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Summary

Profiling analysis aims to evaluate health care providers, such as hospitals, nursing homes, or 

dialysis facilities, with respect to a patient outcome. Previous profiling methods have considered 

binary outcomes, such as 30-day hospital readmission or mortality. For the unique population of 

dialysis patients, regular blood works are required to evaluate effectiveness of treatment and avoid 

adverse events, including dialysis inadequacy, imbalance mineral levels, and anemia among others. 

For example, anemic events (when hemoglobin levels exceeds normative range) are recurrent and 

common for patients on dialysis. Thus, we propose high-dimensional Poisson and negative 

binomial regression models for rate/count outcomes and introduce a standardized event ratio 

(SER) measure to compare the event rate at a specific facility relative to a chosen normative 

standard, typically defined as an “average” national rate across all facilities. Our proposed 

estimation and inference procedures overcome the challenge of high-dimensional parameters for 

thousands of dialysis facilities. Also, we investigate how overdispersion affects inference in the 

context of profiling analysis. The proposed methods are illustrated with profiling dialysis facilities 

for recurrent anemia events.

Keywords

End-stage renal disease; fixed effects; high-dimensional parameters, negative binomial regression; 
Poisson regression; profiling analysis

1 Introduction

Due to kidney failure, patients with end-stage renal disease (ESRD) require long-term renal 

replacement therapy with dialysis or kidney transplantation to sustain life. Compared to 
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other morbid populations, dialysis patients have much higher mortality and morbidity. At the 

end of 2015, there were over 700,000 cases of ESRD, which included over 124,000 incident 

ESRD patients in the United States (US).1 Patients receiving dialysis are monitored 

regularly. For example, patients receiving dialysis care at over 6,000 dialysis facilities 

typically dialyze three times per week and they are monitored regularly with respect to 

patient outcomes, including dialysis adequacy (sufficient removal of waste from blood); 

bone and mineral disorder (e.g., to prevent high calcium in the blood or hypercalcemia); 

phosphorous level; regulation of blood pressure; and hemoglobin (Hb) to manage anemia 

among other conditions. Management of anemia, for instance, contributes to improved 

cardiovascular health, reduced risk of hospitalization, and prevention of fatigue.

Therefore, monitoring or profiling of dialysis facilities (or more generally of health care 

providers, including hospitals, nursing homes etc.) with respect to specific patient outcomes, 

contributes to the national goal of ensuring safe and adequate delivery of health care to 

patients (CMS [Center for Medicare and Medicaid Services]).2 For example, the CMS have 

implemented quality of care measures for 30-day hospital readmission based on profiling 

models, which compare the performance of a specific heath care provider, such as a hospital 

or dialysis facility, to the national average rate of readmission.3–6 Because patients are 

nested within providers and the patient outcome variables, such as hospital readmission or 

mortality, are binary outcomes, profiling models previously considered were hierarchical 

logistic regression models with provider random effects5,7–9 for the general population and 

providers as hospitals, for example. For profiling dialysis facilities (providers), high-

dimensional fixed effects (FEs) models (with providers as fixed effects) have been advanced 

by researchers from the University of Michigan Kidney Epidemiology and Cost Center 

(UM-KECC).10,11 Part of CMS new initiative for quality of care for dialysis facilities is 

based on the methodology works from UM-KECC.12 Our own works13–16 also focuses on 

FEs profiling models for the dialysis population where outcomes are typically not sparse. 

For example, in our application the overall anemic rate is 5.6 per person-year. For binary 

outcomes, the choice of fixed versus random dialysis facility effects was previously 

examined.11,15 As previously noted, random effects models have smaller average absolute 

error in estimation, although this is achieved through average gain in the center of the 

distribution of the outcomes. In profiling analysis where focus is on identifying extreme 

facilities (e.g., facilities with extremely high rate of patients with out of target Hb level), 

high-dimensional fixed effects (FEs) models has been reported to be effective in flagging/

identifying extreme facilities10 and at the same time avoids confounding between patient 

risk factors and facility effects 9,11 (which is inherent in random facility effects). However, 

when the outcome is highly sparse, such as profiling hospital readmission in the general 

population, shrinkage to stabilize estimates via RE models is needed.9

In this work we develop FEs models for profiling with respect to rate/count outcomes. This 

is particularly relevant to the dialysis patients, where routine (e.g., weekly or monthly) blood 

works are performed to evaluate effectiveness of treatment, including dialysis adequacy, 

calcium, parathyroid hormone, and hemoglobin (Hb) among others. For each marker, a 

normal range is targeted. For instance, for hemoglobin in red blood cells the target range is 

Hb between 9 and 11 g/dL. Thus, the outcome for patient k in facility i, denoted Yik, is 

defined as the number of times Hb is out of target range during the follow-up time, denoted 
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by tik. More specifically, first, we develop a high-dimensional FEs Poisson regression model 

that accommodates thousands of facility-level parameters needed for profiling and the model 

estimation is achieved via an efficient Newton-Raphson algorithm, inspired by the seminal 

work of.10 Second, we investigate the effect of overdisperson on profiling, and also propose 

a negative binomial (NB) regression model that accounts for overdispersion when needed. 

For profiling facilities with a count outcome, we introduce the standardized event ratio 

(SER) measure for each facility, which is the ratio of the expected number of events (e.g., # 

of Hb out of target) for patients treated at a given facility to the expected number of events if 

these same patients were treated at an “average” facility, i.e., a national reference standard. 

The SER reduces to the standardized readmission ratio or standardized mortality ratio when 

the profiling model is for a binary outcome. We note that to date profiling facilities with 

respect to rate of adverse events have not been considered in the literature.

The remainder of the paper is organized as follows. The high-dimensional FEs Poisson and 

NB regression models along with the definition of SER, estimation algorithm, and inference 

(hypothesis testing) procedure are presented in Section 2. In Section 3, we present 

simulation studies to demonstrate the efficacy of the proposed estimation and inference 

procedure and the effect of ignoring overdisperson on inference. Profiling of dialysis 

facilities with respect to the rate of anemia events is illustrated in Section 4 and we conclude 

with a brief discussion in Section 5.

2 Profiling Models for Rate/Count Outcomes

2.1 High-dimensional Log-Linear Regression Model

Let i = 1, …, I index dialysis facilities and k = 1, …, Ni index patients receiving dialysis 

treatment at facility i with Ni total number of patients. The outcome variable Yik counts the 

number of adverse recurrent events for patient k, such as the number of anemic events (e.g., 

when Hb level exceeds target range) during follow-up time tik. In profiling models, it is 

critical to adequately risk-adjust for patient-level factors and avoid inclusion of variables 

(e.g., facility-level or patient-level variables) that are related to the process of care. (For 

instance, erythropoiesis stimulating agents and iron therapy used to manage anemia should 

not be included in the risk adjustment). Denote the patient risk adjustment factors for patient 

k in facility i by the vector Zik = (Z1ik, …, Zrik)T, where r is the number of risk adjustment 

variables. In our application, risk adjustment included age, sex, body mass index (BMI), 

diabetes as the cause of ESRD, years on dialysis, past-year comorbidities, nephrology care 

prior to initiation of dialysis, and if the patient experienced Hb outside the target range in the 

prior year to the start of follow-up. We propose the following log-linear model to profile 

dialysis facilities with respect to a rate/count outcome:

log{E(Y ik Zik, tik)} = log(μik) = log(tik) + γi + Zik
T β, i = 1, …, I, (1)

where Yik is the number of adverse events for patient k in facility i during follow-up time tik, 

μik = E(Y ik Zik, tik) = exp{log(tik) + γi + Zik
T β}, γi is facility i effect, and β = (β1, …, βr)T is a 

vector of parameters for patient-level risk adjustment factors. We emphasize that the model 

shown in (1) is not a collection of individual models (i.e., not one for each facility), but 
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rather a single model with high-dimensional parameters and requires simultaneous 

estimation for thousands of facility-level effects parameters (γi’s). For our application, the 

dimension of γ = (γ1, …, γI)T is 6,188 and the dimension of β is 39.

Under model (1) with outcomes assumed to follow a Poisson or NB distribution, we present 

estimation procedures that overcome the challenges associated with the high-dimensional 

parameters in Section 2.3 and 2.5, respectively. We first introduce the standardized event 

ratio (SER) as a measure to flag extreme (“outlier”) facilities under profiling model (1) in 

the next section.

2.2 Standardized Event Ratio Measure

To assess the performance of the ith facility relative to a reference (e.g., national median/

average) that account for patient-level risk adjustment, we introduce the following 

standardized event ratio (SER) measure

SERi = k = 1
Ni μik

k = 1
Ni μik, M

. (2)

In the denominator, μik, M = exp{log(tik) + γM + Zik
T β} with γM denoting the median of {γ1, 

…, γI}, and Σk = 1
Ni μik, M is the expected total number of events for facility i if patients in 

that facility were treated at a national “average” facility (taken over the population of all 

facilities). The numerator is the expected total number of events at facility i. For example, 

with respect to Hb outcome, SERi is the ratio of the expected total number of anemia events 

for all patients at facility i relative to the expected total number of anemia events for the 

same patients based on the national reference. We note that for binary outcome, such as 

hospital readmission and mortality, the SERi measure reduces to the standardized 

readmission ratio and standardized mortality ratio, respectively. A natural estimator of SERi 

is

SERi = k = 1
Ni μik

k = 1
T μik, M

, (3)

where μik = exp{log(tik) + γ i + Zik
T β} and μik, M = exp{log(tik) + γM + Zik

T β}. Estimates β  and 

γ1, …, γI of the model parameters are obtained iteratively using a Newton-Raphson 

algorithm alternating between the estimation of β and γ1, …, γI due to the large number of 

facility effects in the model. The estimation procedure is detailed in next section.

2.3 Poisson Model and Estimation Procedure

For the log-linear model (1) with Poisson counts, Pr(Y ik = yik; μik) = μik
yikexp(−μik)/yik!, the 

likelihood function is
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L(γ, β) =
i = 1

I

k = 1

Ni μik
yikexp(−μik)

yik! . (4)

Maximization of (4) is challenging when I is large, as in our data application where I is 

larger than 6,000, and standard software is not feasible due to the size of the design matrix. 

In profiling binary outcome via logistic regression, He et al. (2013) proposed an iterative 

algorithm that alternates between estimation of γi given β and estimation of β given γi using 

one-step Newton-Raphson updates.10 We take a similar approach. More precisely, estimation 

of the high-dimensional parameters (γ, β) is feasible since the likelihood (4) can be written 

as L(γ, β) = iLi(γi, β) where Li(γi, β) = kμik
yikexp(−μik)/yik!. Thus, given β, γi can be 

estimated via a Newton-Raphson procedure that depends only on one variable in the 

maximization of Li(γi, β). The estimation procedure is as follows.

i. Set the initial values β(0) and γi
(0) = 0 of β and γi, respectively. For example, one 

might choose β(0) = 0 and γi
(0) = 0 or take β(0) = 0 and 

γi
(0) = log(ni−1

k = 1
ni yik/tik), the log of the average event rate for facility i.

ii. The mth maximization step for β is given by

β(m) = β(m − 1) − ∂2ℓ
∂β ∂βT{γi

(m − 1), β(m − 1)}
−1∂ℓ

∂β {γi
(m − 1), β(m − 1)},

where the partial derivatives evaluated at {γi
(m − 1), β(m − 1)} are provided in the 

Appendix section.

iii. The mth maximization step for γi is given by

γi
(m) = γi

(m − 1) − ∂2ℓ
∂γi2

{γi
(m − 1), β(m)}

−1 ∂ℓ
∂γi

{γi
(m − 1), β(m)},

where the partial derivatives evaluated at {γi
(m − 1), β(m − 1)} are provided in the 

Appendix section.

iv. The above steps are repeated until convergence, defined by 

max
i, k

μik
(m) − μik

(m − 1) < ϵ, where μik
(m) = exp{log(tik) + γi

(m) + Zik
T β(m)} and ϵ is some 

pre-specified tolerance level. Programs in R, sample data, and tutorial are 

provided as supplemental materials at http://faculty.sites.uci.edu/nguyenlab/

supplement/. (Website not yet activated.)

2.4 Hypothesis Testing for Facility Effects: Identifying Extreme Facilities

It is of interest to identify facilities that significantly deviate from the national norm. For a 

facility with an event rate that does not differ from the national norm, γi = γM, which 
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implies SERi = 1. When SERi > 1 or SERi < 1, then the event rate for facility i is greater 

than or less than the national norm, respectively. Thus, testing the null hypothesis H0 : γi = 

γM is of interest and a suitable test statistic is Ti = Σk = 1
Ni μik when sampling from the null. 

That is, we assess the probability that the facility would have a count (or rate) of adverse 

events at least as extreme as what was observed if the null hypothesis was true. For this, we 

adapt the procedure by He et al. (2013) to be applicable to rate/count outcome.10

First, note that simultaneously testing the null hypothesis for thousands of facilities is 

computationally expensive. However, one can take advantage of the fact that β and γM can 

be estimated quite precisely based on the large data from all facilities. Hence, these 

parameters are estimated only once and fixed throughout the proposed algorithm below 

which is based on resampling responses under the null hypothesis. Since the global 

parameters β and γM are fixed, model fitting to the resampled data only requires estimation 

of facility-level effects γi. This reduces the computational burden substantially since each γi 

is estimated using only data from each facility separately. The steps of the procedure are:

1. Draw B samples Y ik
b Pois(exp{log(tik) + γM + Zik

T β}) for b = 1, …, B.

2. Calculate Ti
b = k = 1

Ni exp{log(tik) + γ i
b + Zik

T β}, where γ i
b is the effect estimate of 

γi in sample b.

3. A nominal two-sided p value is calculated as

pi = 2 ⋅ min B−1
b = 1

B
{0.5I(Ti = Tib) + I(Ti < Tib)}, B−1

b = 1

B
{0.5I(Ti = Tib) + I(Ti > Tib)} .

We note that in the estimation of γib (step 2), k = 1
Ni exp{log(tik) + γ i

b + Zik
T β}

equals Σkyik
b , which follows from the score equation. Thus, estimation of γib is 

not necessary and we can take Ti
b = Σkyik

b  in step (2) to reduce computational 

burden. However, we have presented step 2 in more generality (with total 

estimated counts from the model fit) so that the procedure will be applicable to 

other models, such as the NB model for overdispersed data, where the total 

estimated counts does not equal the observed counts.

2.5 Negative Binomial Model for Data with Overdispersion

When the event counts exhibit overdispersion (variance greater than mean), in which the 

Poisson distribution cannot naturally accommodate, alternative models, such as the negative 

binomial, can be used. We consider the following parametrization of the NB model for 

overdispersed outcome. Consider the conditional distribution Yik|θik ~ Pois(θik), where θik ~ 

Gamma(αμik, α−1) with shape parameter αμik and scale parameter α−1. Thus, the 

distribution of observed counts, Yik, is negative binomial with probability mass function
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Pr(Y ik = yik; μik, ϕ) = Γ(yik + μikα)
Γ(μikα)yik!

α
1 + α

μikα 1
1 + α

yik
, (5)

with E(Yik) = μik, Var(Yik) = μikϕ, ϕ = (1 + α−1) is the overdispersion parameter, and Γ(·) 

denotes the gamma function.

Thus, the likelihood function for the log-linear regression model (1) under NB outcome (5) 

is

L(γ, β, ϕ) =
i = 1

I

k = 1

Ni Γ{yik + μik(ϕ − 1)−1}
Γ{μik(ϕ − 1)−1}yik!

ϕ−yik−μik/(ϕ − 1)(ϕ − 1)yik . (6)

Estimation of the model parameters γi, β and ϕ follows same overall estimation steps 

provided in Section 2.3 for the Poisson regression model, but with appropriate modifications 

for the NB model. The details of NB model estimation are provided in the Appendix section. 

The hypothesis testing procedure outlined in Section 2.4 is only modified by resampling 

from a NB distribution rather than a Poisson distribution in Step (1).

3 Simulation Studies

3.1 Simulation Design

We carried out simulation studies to assess the efficacy of estimation (patient-level and 

facility effects), hypothesis test of facility effects, and flagging of extreme facilities. Because 

outcome data with overdispersion is likely to affect the inference procedure, we also 

considered this in the simulation studies. Three overall settings were considered.

Setting I (Poisson Model): Data was generated from the regression model (1) with 

subject baseline covariates Zik = (Zik1, Zik2)T generated by Zik1 ~ Bernoulli(.5) and Zik2|Zik1 

~ Zik1N(−.25, 1) + (1 − Zik1 )N(.25,1), where N(a, b) denotes the normal distribution with 

mean a and variance b. Event counts were generated from the Poisson distribution, Yik ~ 

Pois(μik). A total of I = 5,000 facilities was specified, with facility fixed-effects, γi (i = 1, …, 

I), equally spaced between −0.5 and 0.5 inclusively. The number of subjects in each facility 

was randomly generated from a truncated Gamma distribution with shape 1.9 and scale 38 

over the support [20,600] which paralleled what was observed in the United States Renal 

Data System (USRDS) data of Section 4. Each dataset generated included 400,000 subjects. 

Also, subject follow-up times (months), tik, were generated from a discrete random variable 

T, where pr(T = 1) = 0.015, pr(T = 12) = 0.685, and pr(T = t) = 0.03 for t = 2, …, 11. In this 

setting, expected follow-up time is 10.2 and the standard deviation of follow-up time is 

approximately 3.2, which are similar to our data application. Also, to mimic the baseline 

event rate in our data application, a constant of log(0.22) was added so that the data 

generating model used was log(μik) = log(0.22) + log(tik) + γi + Zik
T β for i = 1, …, I. The 

Poisson regression model was fitted to each dataset as described in Section 2.3.

Setting II (Negative Binomial Model): In this setting, data was generated as described 

by regression model (1) with outcome from the NB distribution (5) with mean μik, variance 
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μikϕ, and overdispersion ϕ = 3 (as detailed in Section 2.5). All other simulation parameters 

were as described in setting I above. The NB regression model was fitted to each dataset as 

described in Section 2.5.

Setting III (Ignoring Overdispersion): In this setting, data with overdispersion was 

generated via the NB model (as in setting II); however, the Poisson regression model was 

fitted to ignore overdispersion.

In each setting, 1,000 Monte Carlo datasets were generated.

3.2 Estimation

Table 1A shows that the subject-level parameters, β1 and β2, were accurately targeted in 

Poisson regression ([absolute] bias: <7e-6 and <5e-6), NB regression (bias: 0.001 and 

0.001), and when ignoring overdispersion (bias: <2e-4 and <2e-6). The 5,000 facility effect 

estimates, γ i’s, were also well estimated with low bias and small MSE in the three 

simulation settings: Setting I (max bias and MSE: 0.077 and 0.010), II (max bias and MSE: 

0.079 and 0.118), and III (max bias and MSE: 0.084 and 0.131). See Table 1B for details. 

Finally, our proposed SERi measure used for inference was also nicely targeted in all 

settings examined: Setting I (max bias and MSE: 0.076 and 0.010), II (max bias and MSE: 

0.125 and 0.027), and III (max bias and MSE: 0.130 and 0.029). We note that, similar to 

classical Poisson and NB regression models, overdispersion did not affect maximum 

likelihood estimation in these corresponding high-dimensional model. However, 

overdispersion does affect inference as illustrated in the next two subsections.

3.3 Hypothesis Testing

The hypothesis testing procedure outlined in Section 2.4 (replace γM with γ0) was carried 

out to test the null hypothesis H0 : γ1 = γ0 for γ0 ∈ {−1.0, −0.4, 0.0, 0.4, 1.0} in simulation 

settings I, II, and III. (These γ0 values translate to SER of 0.368 to 2.718; see Table 2.) For 

this, the first facility’s effect, namely γ1, was set to the value γ0 and the remaining (4,999) 

facility effects were set to be equally spaced between −0.5 and 0.5 inclusively. Estimated 

bias and standard deviation (SD) of our SERi estimator are summarized in Table 2 as well as 

acceptance probabilities (AP) based on 1,000 Monte Carlo runs.

Table 2 shows that the true SER1 was accurately targeted in all simulation settings with 

small bias and the AP in Settings I and II target the nominal value of 0.95 (AP: 0.941 to 

0.952 for setting I and II). However, as expected, in setting III where data with 

overdispersion was ignored, the AP was degraded substantially to roughly 0.74 (range: 0.726 

to 0.757), thus, clearly failing to target the nominal level. Therefore, ignoring overdispersion 

led to serious inflation of Type I error.

3.4 Flagging Extreme Facilities

We also conducted simulation studies to assess the relative performance of profiling models 

to identify/flag extreme facilities that under-perform (W: “worse”) or over-perform (B: 

“better”) relative to the reference standard (e.g., national reference). For this, we considered 

the hypothesis testing procedure (for H0: γi = γM) outlined in Section 2.4 applied to 
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simulation settings I, II, and III with 600 better-performing facilities: γi ~ Unif(−ξ −.1, −ξ 
+ .1) for i = 1 … 600; 3,800 facilities performing not different from the reference: γi = 0 for 

i = 601 … 3,800; and 600 worse-performing facilities: γi ~ Unif(ξ − .1, ξ + .1) for i = 3, 801 

… 5000 for each data set. Results are presented for this case of 12% worse and 12% better 

performing facilities. (Results were similar for other percentage of “extreme” facilities and 

those results are not presented.) We examined flagging performance under small, moderate, 

and large facility effect size defined by ξ ∈ {0.15, 0.25, 0.40} over 200 Monte Carlo datasets 

for each effect size setting. The percentage of truly worse and better facilities were both 12% 

(600/5,000), which is similar to the percentage of facilities flagged in the data application; 

however, results with varying percentage of truly worse and better facilities were similar.

The relative efficacy of the flagging procedure was evaluated by the sensitivity (SEN) or 

proportion of truly worse facilities identified (“SEN-W”); the sensitivity of truly better 

facilities identified (“SEN-B”); and the specificity (SPEC) or proportion of facilities truly 

not different (ND) from the reference (“SPEC-ND”). We note that in the context of FE 

model profiling, the reader may have a question regarding multiple testing, specifically 

control of type I error. However, in the context of profiling, this must balanced with type II 

error. The work from Professors John D. Kalbfleisch and Robert A. Wolfe,11 summarizes 

this point: “In the context of profiling centers, it seems important to assess each center 
separately, treating each center and its patients as the population of interest, without regard 
to the totality of tests being done. Adjustments for multiple testing are typically done to 
control the overall type I error … But in the context of profiling centers, patient interests 
suggest that the type II error is at least equally important and that we should have methods 
which will typically identify a center whose results are relatively extreme.” For these 

reasons, our current work on profiling (as well as previous works in profiling14,16) provides 

performance assessment metrics that focus on the rate of correctly identifying extreme 

facilities (referred to as “sensitivity-worse” and “sensitivity-better”), but also the rate of 

correctly identifying non-significant facilities (“specificity - not different”) and these are 

provided Figure 1, for instance. These are analogous to power (1-type II) and (1-type I) 

errors in profiling.

Note that facilities assessment policies in practice focus on identifying under-performing 

(worse) facilities. Results of our simulation studies are summarized in Figure 1 for the 

Poisson and negative binomial data settings. As expected, the sensitivities to detect truly 

worse and better performing facilities improves with increasing effect sizes (A: small, B: 

moderate, C: large; Figure 1). Because of the relatively high number of truly ND facilities 

(3,800 out of facilities), specificities for both the negative binomial and Poisson models were 

high at about 95%.

The hypothesis testing described above in Section 3.3 suggests that ignoring overdispersion 

may affect flagging performance. Indeed this is the case, as illustrated in Figure 2 (effect 

size fixed at moderate level). Sensitivity for identifying truly under-performing facilities 

were inflated (mean SEN-W: 84%, SD 2.7%) compared to the optimal negative binomial 

model (mean SEN-W: 67%, SD 2.6%) at the high cost of substantially reduced specificity 

ND (optimal mean SPEC-ND: 95%, SD 0.8% vs. mean SPEC-ND: 75%, SD 1.5% for the 

Poisson model ignoring overdispersion).
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4 Profiling Dialysis Facilities for Recurrent Anemia Events

4.1 Study Cohort, Follow-up Time, Outcome, and Risk Adjustment

To illustrate the proposed methods, we consider profiling dialysis facilities for the year 2014 

using data from the United States Renal Data System (USRDS), a national registry that 

includes nearly all patients receiving care for ESRD in the US.1 The study cohort included 

dialysis patients from January 1, 2014 through December 31, 2014 with Medicare as 

primary payer in the US. Follow-up for prevalent patients (beginning 1/1/14) and incident 

patients (beginning from the start of dialysis in 2014) continued until kidney transplant 

(2.4%), renal function recovery (0.7%), death (14.3%), or to end of 2014 (82.6%). There 

were 15.4% of patients who switched among facilities during 2014, among which 13.0% 

patients were in 2 facilities, and 2.4% patients were in 3-4 facilities. Because the profiling 

analysis aims to assess each dialysis facility’s performance with respect to an outcome of 

patients treated at the facility, accordingly, for patients who switched between dialysis 

facilities during 2014, only their follow-up time period at each facility was used. The 

potential analysis cohort included 464,774 patients and 6,401 facilities. However, an 

extremely small facility with only several patients may not be reliable for profiling since the 

object of inference is based on SER, which may not be reliably estimated. (For a more 

detailed discussion of this issue in the context of binary outcome models, see Ash et al.9). 

Thus, facilities with less than 10 patients were excluded (3.3%). Also, patients with missing 

baseline covariates were excluded (5.2%, mainly missing BMI and previous year Hb). The 

final analysis cohort after the above exclusion included 440,107 patients and 6,188 facilities 

with the number of patients per facility ranging from 10 to 560.

We defined the outcome to be the number of times a patient’s Hb is outside the Hb target 

range (Hb between 9 and 11 g/dL) and the count is measured monthly. (Thus, the potential 

count ranges from 0 to 12.) Because the main goal of profiling models is to assess facility 

effects, the model must carefully adjust for patients risk characteristics. Following previous 

works on profiling dialysis facilities,12,13 the risk adjustment included age, sex, body mass 

index (BMI), diabetes as the cause of ESRD, years on dialysis, past-year comorbidities, 

past-year high-risk hospitalization, and nephrology care prior to initiation of dialysis. We 

also included in the risk adjustment whether the patient experienced Hb outside the target 

range in the prior year to the start of follow-up. (See Table 3.)

4.2 Model Fits and Profiling Results

The distribution of patient follow-up time ranged from 1 to 12 months, with a median 

follow-up time of 11 months, and the average raw rates of anemia across patients was 0.43 

per month (SD 0.07); see Figure 3 (row 1). We fitted both the Poisson and NB models and 

the rate ratio (RR) estimates (exp(βr)) are summarized in Table 3 for the NB model. (Results 

for the Poisson regression were nearly identical and are not shown.) The model goodness-of-

fit was assessed by examination of the observed rates vs. model estimated/predicted rates 

and shown in Supplementary Figure S3. The observed vs. model-based predicted values 

showed overall good fit, aligning with the 45° line. Not surprisingly, patients who had Hb 

level out of target range in the year prior to the start of follow-up for the study was 

associated with the largest estimated increase in rate of anemia over 30% (RR 1.302, 95% 
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confidence interval [CI]: 1.295-1.320). Having hematological disorder as a past year 

comorbidity was associated with nearly a 9% increase rate of anemia (RR 1.089, 95% CI: 

1.066-1.112). Patient factors associated with notably reduced rate of anemia included female 

(RR 0.861), diabetes as the cause of ESRD (RR 0.938), and longer times on dialysis (e.g., 

RR 0.896 for 2 to 3 years on ESRD vs. < 1 year). See Table 3 for details of RR estimates for 

all patient risk factors. Confidence intervals for RR estimates (or βr’s) in Table 3 were 

obtained using bootstrap estimates of standard errors (SEs) based on 200 bootstrap samples 

at the facility level. (Because the alternating one-step Newton-Raphson estimation algorithm 

is not classical MLEs, SE estimates obtained from the observed information matrix at 

convergence generally may not target the true variability of the estimators. Simulation 

studies documenting this are provided in the Supplementary Materials and Figure S1.)

The distribution of SERs for facilities flagged as significantly worse (SW), significant better 

(SB), and not different (ND) compared to the national reference are displayed in Figure 3 

(row 2) for the negative binomial model. Mean (SD) of the estimated SERs for SW, ND, and 

SB dialysis facilities were 1.264 (0.114), 1.010 (0.110), and 0.762 (0.96), respectively. As 

described in simulation study of Section 3, overdispersed data leads to overflagging of 

“extreme” facilities. Table 4 shows the flagging results for 6,188 facilities between the 

Poisson and negative binomial model, with the Poisson model flagging 16.2% (1005) 

facilities as having SW (standardized) anemia rates compared to 12.5% (774) for the 

negative binomial model. This was consistent with overdispersion parameter estimate of 1.4. 

Thus, the negative binomial model results are more appropriate in the presence of 

overdispersion. Table 5 provides further details of flagging results for the negative binomial 

model across all facilities and by facilities size (small: 10-55, medium: 56-96, and large: 

97-560 patients). The main focus of profiling in practice centers on identifying facilities that 

are extremely under-performing. We note that of the 774 facilities identified as having 

anemia rates significantly worse than the national norm, variation in the proportion of 

facilities flagged for small (9.4%), medium (12.7%), and large facilities (15.4%) was not 

substantial.

Note that the analysis identified 12.5% of facilities have patient anemic rates worse than the 

national average (Table 5). Consumers of profiling analysis must interpret this result within 

the context of the specific outcome, the patient population, and stakeholder objectives. More 

specifically, we point out the following considerations in interpreting this result. (1) First, 

unlike the general population and most chronic disease conditions, dialysis patients have 

many serious comorbidities and survival is worse than most malignancies. Conditions/events 

including anemia, malnutrition, volume overload, mineral metabolism disorders, and dialysis 

inadequacy (among others) are monitored routinely and they are commonly out of target 

range and not all are easily controlled in this population, such as Hb level considered in this 

work. For example, with respect to the outcome considered here, namely anemic events, this 

occurred 5.6 times per year on average and we are not surprised from our experience with 

dialysis patients that there are many facilities with rates substantially deviating from the 

national average. (2) Second, in profiling applications, the total percentage of providers 

flagged that are used for quality improvement (and/or payment reimbursement policy) is 

partly determined/set by the policy objective with stakeholder inputs. For example, in the 
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extreme case where the regulatory agency and stakeholders deemed the outcome event of 

critical importance and the objective may be to motivate/enforce immediate change in the 

patient care culture, then all under-performing facilities identified (e.g., 12.5%) would be 

flagged for quality improvement/enforcement, regardless of how many. However, more 

practically, it is also feasible that the policy objective would set a threshold such as using the 

top 5% of under-performing facilities identified. (Also, see the Discussion section for further 

context for interpretation of the results.)

Finally, we note that when the percentage of total truly outlier facilities is small (e.g., 

1%-5% usually or at most 10%), flagging extreme facilities based on the empirical null 

distribution17 may be preferred to avoid over-flagging of higher volume (size) facilities. This 

was previously implemented for profiling dialysis facilities with respect to 30-day hospital 

readmission (a binary outcome) due to the relatively low rate of extreme facilities.10,11,13 

Use of the empirical null distribution procedure may not be appropriate when extreme 

(outlier) facilities are common (e.g., > 10% as suggested by Efron17), which may be the case 

in our application. The empirical null distribution approach is based on a robust regression 

fit to the empirical null distribution and may suffer from a large proportion of outlier 

providers and may over estimate the variance of the empirical null distribution. This is an 

issue that warrants further research in the context of profiling health care providers. For the 

interested reader, the flagging results based on the empirical null distribution are provided in 

supplementary Tables S1 and S2.

5 Discussion

In this work, we have presented methods applicable to profiling health care providers with 

respect to patient outcomes that are rates/counts per unit time. Specifically, high-

dimensional FEs Poisson and negative binomial regression were proposed and illustrated 

with monitoring dialysis facilities with respect to the rate of out of target hemoglobin level 

in dialysis patients. For simplicity of exposition, we considered Hb between 9 and 11 g/dL 

as the target range, although there are some debates with respect to the target range and 

possibly target ranges should be tailored to age groups and sex. The proposed methods 

would be applicable to such modifications of the outcome with respect to Hb. Also, despite 

the broad patient-level risk adjustment factors included, indicator of hematological disorders 

and having Hb out of target range in the prior year were the two factors that were associated 

with the largest increase in the rate of out of target Hb. Adequate risk adjustment in profiling 

models is important, and, therefore, refinement to the risk adjustment factors presented in 

this work may be useful in practice. The “final” profiling model typically includes risk 

factors selected from various stakeholder perspectives, including from technical/statistical 

considerations (e.g., using a variety of regression modeling strategies, e.g., see18), clinical 

knowledge of the specific outcome considered, and the specific regulatory (CMS) objectives 

among others. Our main purpose in the data analysis was to illustrate the main aspects of the 

proposed models and also to use a set of risk adjustment factors that had previously received 

stakeholder inputs in the dialysis community with respect to dialysis patients and their 

hospitalizations. Further refinement of the application should consider addition of other 

relevant factors as well as exclusion of factors found not to contribute to model fit beyond 

noise.
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With respect to the data application, we also note that factors such as erythropoiesis 

stimulating agents and iron therapy used to manage anemia in dialysis patients were not 

included in the risk adjustment as these are precisely part of the facility’s process of care 

(which should be excluded from risk adjustment in profiling). In addition to modeling counts 

of specific types of events, such as anemia, hypercalcemia, or dialysis adequacy etc., in the 

dialysis population, in practice, it may be informative to also consider combination of events 

deemed important for monitoring dialysis facilities. For example, the outcome of interest 

may be the number of times a patient was inadequately dialyzed who also had anemia, or 

hypercalcemia, or both, for instance. The proposed profiling models, with suitably chosen 

risk adjustment, would be useful in such applications.

An important consideration, raised by a reviewer, is the issue of volume-quality relationship 

in many areas of profiling. Indeed, the inclusion of volume (and other provider 

characteristics) to stabilize estimates of standardized readmission ratios (SRR) and 

standardized mortality ratio (SMR) for hospitals has been contentious and discussed in 

details previously9 and also in recent works.19,20 As discussed in Ash et al.,9 inclusion of 

volume typically centers on the need to stabilize quality measure (SRR, SMR, and in our 

context here SER) in the context of low volume providers (as high volume providers are 

largely unaffected). This is naturally achieved within the framework of random effects 

models (for binary outcomes) which shrinks SRR/SMR estimates towards the national 

average (SMR, SRR = 1) for very low volume providers and inclusion of volume in such 

models translate to setting different shrinkage targets for low volume providers. Such an 

approach/model conceptually can be extended for patient outcomes which are counts. One 

limitation with current high-dimensional fixed effects models is the inability to handle 

extremely sparse data inherent in very low volume providers and it is an area of future 

research. However, we note that volume should not be included in the model for the 

denominator of SER (the expected rate), similar to SRR and SMR, because volume is 

potentially both exogenous (“associated with quality but not ‘caused’ by quality”, e.g., 

“practice makes perfect”) and endogenous (poor quality led to low volume), i.e., volume is 

on the causal pathway to outcome (see Ash et al.9 for details).

In our illustrative data analysis with respect to anemic rates, 12.5% of facilities were 

identified as having worse rates than the national average and with 9.4%, 12.7%, and 15.4% 

of facilities flagged from small, medium and large facilities, respectively. The amount of 

variation in the proportion of facilities flagged by volume may vary (depending on the 

outcome considered), and consideration of models that incorporate facility characteristics, 

such as volume, or setting different targets for identifying facilities that depend on volume 

must balance the specific profiling objective with the aforementioned considerations. 

However, generally larger facilities are flagged more frequently. This is partly due to the 

effect of volume (# of patients) on inference (flagging providers), which is essentially a 

reflection of the issue of effective sample size in inference. This issue has been recognized 

and extensively discussed in profiling.9 Inference in profiling models (as in any statistical 

model) for providers with larger effective sample sizes (~ higher volume) is improved on 

average, resulting in typically more providers flagged, as expected due to lower variance 

(relative to smaller effective sample sizes among low volume providers). However, a 

cautionary note is that for rare outcomes, large providers may also have low effective sample 
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size (events) due to rare events, but generally among the population of providers, volume 

and effective sample size are highly related. Nevertheless, there are also complicated issues 

related to the “process of care” that is generally confounded with the technical impact of 

volume/effective sample size. Some non-technical effects of volume on patient outcomes 

have been investigated indirectly. For example, our previous study showed that for-profit 

dialysis facilities have higher patient hospitalization rates than nonprofit facilities,21 and 

typically for-profit dialysis chains are larger. Furthermore, for-profit (larger facilities) 

typically employs more patient-care-technicians, which is relatively less costly, and the 

ratios of registered nurses-to-patients and the ratio of licensed practical nurses-to-patients 

has been reported to be 35% and 42% lower, respectively, in for-profit dialysis facilities.22 

These real effects which potentially could lead to larger facilities being flagged would be 

confounded with the above technical impact of sample size/volume in profiling. More 

directly, we recently found that dialysis facilities identified as having significantly worse 30-

day unplanned hospital readmission rates using profiling models, indeed on average have 

lower proportions of nurses-to-total staff and higher patient-to-nurse ratios.16

Finally, we note that overdispersion in the high-dimensional Poisson model affects the 

inference procedure (i.e., the ability to identify extreme facilities), but not estimation of the 

regression coefficients or SER estimates. This is analogous to classical Poisson regression 

models where overdispersion does not affect parameter estimates, but do lead to incorrect 

inference (inflated Type I errors) in hypothesis tests. In the context of profiling considered 

here, ignoring substantial overdispersion leads to “inflated” sensitivity in detecting truly 

extreme facilities, but at the severe cost of reduced specificity to detect facilities that are not 

different from the reference standard. To account for overdispersion, the proposed negative 

binomial regression profiling method may be used instead.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

We provide maximum likelihood estimation details for the proposed high-dimensional 

Poisson and negative binomial regression. For the Poisson model, the log-likelihood is

ℓ(γ, β) =
i = 1

I

k = 1

Ni
{yiklog(μik) − μik − log(yik!)}
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where μik = exp{log(tik) + γi + Zik
T β}. The partial derivatives are:

∂ℓ
∂γi

=
k = 1

Ni
(yik − μik),

∂2ℓ
∂γi2

= −
k = 1

Ni
μik,

∂ℓ
∂β =

i = 1

I

k = 1

Ni
(yik − μik)Zik, and

∂2ℓ
∂β ∂βT = −

i = 1

I

k = 1

Ni
μikZikZik

T .

For the negative binomial model, the log-likelihood is

ℓ(γ, β, ϕ) =
i = 1

I

k = 1

Ni
logΓ{yik + μik(ϕ − 1)−1} − logΓ{μik(ϕ − 1)−1} − log(yik!)

− {yik + μik(ϕ − 1)−1}log(ϕ) + yiklog(ϕ − 1)

where μik = exp{log(tik) + γi + Zik
T β} and Γ(·) is the Gamma function. Let ψ(·) to denote the 

digamma function, i.e., ψ(·) = Γ′(·)/Γ(·). For a given β and ϕ, the maximization of ℓ(γ1, …, 

γI, β) with respect to γi only depends on γi reducing a high-dimensional maximization 

problem to a sequence of maximizations in one dimension. This motivates our one-step 

Newton-Raphson procedure as follows. Set the initial valued β(0), γi
(0) and ϕ(0) of β, γi and 

ϕ, respectively. The mth maximization step for β, γi and ϕ are given by

β(m) = β(m − 1) − ∂2ℓ
∂β ∂βT{γi

(m − 1), β(m − 1)}
−1∂ℓ

∂β {γi
(m − 1), β(m − 1)},

γi
(m) = γi

(m − 1) − ∂2ℓ
∂γi2

{γi
(m − 1), β(m)}

−1 ∂ℓ
∂γi

{γi
(m − 1), β(m)}, and
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ϕ(m) = ϕ(m − 1) − ∂2ℓ
∂ϕ2{γi

(m), β(m)}
−1 ∂ℓ

∂ϕ{γi
(m), β(m)},

where the partial derivative are

∂ℓ
∂γi

=
k = 1

Ni
ψ{yik + μik(ϕ − 1)−1} − ψ{μik(ϕ − 1)−1} − log(ϕ) μik(ϕ − 1)−1,

∂2ℓ
∂γi2

=
k = 1

Ni
ψ′{yik + μik(ϕ − 1)−1} − ψ′{μik(ϕ − 1)−1} μik

2 (ϕ − 1)−2 + ∂ℓ
∂γi

,

∂ℓ
∂β =

i = 1

I

k = 1

Ni
ψ{yik + μik(ϕ − 1)−1} − ψ{μik(ϕ − 1)−1} − log(ϕ) μik(ϕ − 1)−1Zik,

∂2ℓ
∂β ∂βT =

i = 1

I

k = 1

Ni
( ψ′{yik + μik(ϕ − 1)−1} − ψ′{μik(ϕ − 1)−1} μik

2 (ϕ − 1)−2

+ ψ{yik + μik(ϕ − 1)−1} − ψ{μik(ϕ − 1)−1} − log(ϕ) μik(ϕ − 1)−1)ZikZik
T ,

∂ℓ
∂ϕ =

i = 1

I

k = 1

Ni
( ψ{μik(ϕ − 1)−1} − ψ{yik + μik(ϕ − 1)−1} + log(ϕ) μik(ϕ − 1)−2

− {yik + μik(ϕ − 1)−1}ϕ−1 + yik(ϕ − 1)−1), and

∂2ℓ
∂ϕ2 =

i = 1

I

k = 1

Ni
( ψ′{yik + μik(ϕ − 1)−1} − ψ′{μik(ϕ − 1)−1} μik

2 (ϕ − 1)−4

− 2 ψ{μik(ϕ − 1)−1} − ψ{yik + μik(ϕ − 1)−1} + log(ϕ) μik(ϕ − 1)−3 + (2μikϕ−1 − yik)(ϕ − 1)−2

+ {yik + μik(ϕ − 1)−1}ϕ−2) .
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Figure 1: 
Flagging performance for negative binomial and poisson models for rates of abnormal 

events based on standardized event rate (SER). Given are sensitivity-worse (under-

performing facilities, sensitivity-better (over-performing facilities), and specificity-not 

different (facilities event rates not different from the reference standard) as a function of 

effect sizes (A: low; B: moderate; C: large).
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Figure 2: 
Effect of ignoring overdisperson on flagging performance based on models for standardized 

event rate (SER). Given are sensitivity-worse (under-performing facilities) and and 

specificity-not different (i.e., facilities event rates not different from the reference standard) 

the negative binomial model (optimal) and the Poisson, model that ignores overdispersion.
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Figure 3: 
Row 1: Distribution of follow-up time and distribution of raw anemia rates. Row 2: 

Distribution of standardized event rates (SERs) in dialysis facilities flagged/identified as 

significantly worse, better, and not different relative to the national reference.
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Table 2:

Estimated absolute bias, standard deviation (SD), and acceptance probability (AP) for testing H0: γ1 = γ0 for 

γ0 ∈ {−1.0, −0.4, 0.0, 0.4, 1.0} in simulation settings I (Poisson model), II (negative binomial model), and III 

(ignoring overdispersion) based on 1,000 Monte Carlo datasets. (SER, standardized event ratio)

I. Poisson II. Negative Binomial III. Ignoring Overdispersion

γ0 True SER Bias SD AP Bias SD AP Bias SD AP

−1.0 0.368 <6e-5 0.043 0.949 0.001 0.066 0.941 0.005 0.075 0.735

−0.4 0.670 <5e-4 0.059 0.950 0.001 0.095 0.952 <4e-4 0.099 0.747

0.0 1.000 <3e-4 0.075 0.952 0.001 0.120 0.941 <6e-4 0.129 0.726

0.4 1.492 0.005 0.089 0.950 0.005 0.144 0.954 0.003 0.147 0.757

1.0 2.718 0.002 0.122 0.948 0.007 0.197 0.948 0.001 0.202 0.729
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Table 3:

Estimated rate ratio (RR: exp(βr)) and 95% lower and upper confidence limit (LCL, UCL) for patient-level risk 

adjustment from the negative binomial model. (Results for the Poisson model were very similar; not shown.)

Variable Groups Percent (Count) RR LCL UCL

Age group (reference: 45-60) <25 0.88 (3,683) 1.019 1.002 1.040

25-45 10.92 (45,835) 1.019 1.013 1.027

45-60 27.69 (116,207) Ref

60-75 38.61 (162,078) 0.954 0.950 0.960

>75 21.90 (91,930) 0.894 0.889 0.900

BMI (referent: Normal) Underweight 2.77 (11,641) 1.014 1.002 1.026

Normal weight 26.31 (110,442) Ref

Overweight 27.76 (116,497) 1.015 1.011 1.021

Obese 43.16 (181,153) 1.040 1.036 1.046

Cause of ESRD: Diabetes 45.73 (191,951) 0.938 0.934 0.942

Prior nephrology care (reference: No) Yes 56.92 (226,839) 1.007 1.003 1.012

Missing 19.48 (77,645) 1.015 1.010 1.023

Time on ESRD (years) (reference: < 1) <1 34.47 (144,688) Ref

1 to 2 14.79 (62,071) 0.904 0.899 0.910

2 to 3 11.96 (50,202) 0.896 0.890 0.903

3 to 6 22.78 (95,615) 0.894 0.890 0.899

>6 16.00 (67,157) 0.944 0.938 0.950

Sex: female 43.97 (184,540) 0.861 0.858 0.864

Hemoglobin out of target range in the prior year 91.49 (384,005) 1.302 1.295 1.320

Past-year comorbidities:

Amputation status 5.02 (21,080) 1.006 0.998 1.016

COPD* 12.10 (50,773) 1.013 1.008 1.020

Cardiorespiratory failure/shock 10.32 (43,310) 0.977 0.971 0.983

Coagulopathy 7.66 (32,163) 0.988 0.981 0.995

Drug and alcohol disorders 1.41 (5,922) 0.986 0.971 1.000

End-stage liver disease 1.74 (7,307) 0.987 0.975 1.002

Fibrosis of lung or OCLD* 1.09 (4,578) 0.993 0.976 1.010

Motor disfunction 3.11 (13,061) 0.993 0.983 1.005

Hip fracture/dislocation 1.27 (5,325) 1.000 0.984 1.017

Transplants 0.57 (2,405) 0.913 0.893 0.934

Metastatic cancer 0.46 (1,914) 0.995 0.970 1.020

Severe hematological disorders 0.65 (2,727) 1.089 1.066 1.112

Other infectious disease and pneumonias 20.13 (84,512) 0.986 0.982 0.992

Other cancers 3.73 (15,671) 0.963 0.954 0.974

Pancreatic disease 1.86 (7,818) 0.991 0.977 1.003

Psychiatric comorbidity 14.47 (60,753) 0.991 0.985 0.996

Respirator dependence* 0.45 (1,873) 0.986 0.958 1.012
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Variable Groups Percent (Count) RR LCL UCL

Arthritis and ICTD* 2.70 (11,340) 0.970 0.958 0.981

Seizure disorders and convulsions 3.64 (15,286) 0.969 0.960 0.978

Septicemia/shock 8.33 (34,973) 1.014 1.007 1.021

Severe cancer 1.49 (6,268) 0.967 0.953 0.983

Severe infection 1.88 (7,893) 0.993 0.981 1.006

Decubitus ulcer or chronic skin ulcer 7.72 (32,399) 1.000 0.992 1.007

*
OCLD: other chronic lung disorder; ICTD: inflammatory connective tissue disease; COPD: chronic obstructive pulmonary disease; respirator 

dependence/tracheostomy status
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Table 4:

Comparison of dialysis facility flagging between Poisson and negative binomial regression models for 6,188 

facilities.

Poisson model

Negative binomial model Better Not different Worse Total

Better 907 29 0 936 (15.1%)

Not different 137 4108 233 4478 (72.4%)

Worse 0 2 772 774 (12.5%)

Total 1044 (16.9%) 4139 (69.9%) 1005 (16.2%) 6188
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Table 5:

Results of identifying extreme dialysis facilities using the negative binomial model among all facilities and by 

facility size (small: 10-55, medium: 56-96, and large: 97-560 patients).

Facility size Worse Not different Better

Small 194 9.4% 1713 82.7% 164 7.9%

Medium 261 12.7% 1466 71.5% 323 15.8%

Large 319 15.4% 1299 62.8% 449 21.7%

Overall 774 12.5% 4478 72.4% 936 15.1%
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