
UC Irvine
UC Irvine Previously Published Works

Title
Knowledge-based three-dimensional dose prediction for tandem-and-ovoid brachytherapy.

Permalink
https://escholarship.org/uc/item/6q10k742

Journal
Brachytherapy, 21(4)

ISSN
1538-4721

Authors
Cortes, Katherina G
Kallis, Karoline
Simon, Aaron
et al.

Publication Date
2022-07-01

DOI
10.1016/j.brachy.2022.03.002

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6q10k742
https://escholarship.org/uc/item/6q10k742#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


A knowledge-based organ dose prediction tool for 
brachytherapy treatment planning of cervical cancer 
patients
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Abbreviations: BT = brachytherapy, DVH = dose-volume histogram, EBRT = external beam 
radiotherapy, GYN = gynecologic, HRCTV = high-risk clinical target volume, IMRT = intensity-
modulated radiation therapy, OAR = organ-at-risk, T&O = tandem-and-ovoid
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Purpose: To  explore  knowledge-based  organ-at-risk  (OAR)  dose  estimation  for

intracavitary  brachytherapy  planning  for  cervical  cancer.  Using  established  external-beam

knowledge-based  dose-volume  histogram  (DVH)  estimation  methods,  we  sought  to  predict

bladder, rectum, and sigmoid D2cc for tandem-and-ovoid treatments.

Methods: 136  loco-regionally  advanced  cervical  cancer  patients  treated  with  456

(356:100  training:validation  ratio)  CT-based  tandem-and-ovoid  brachytherapy  fractions  were

analyzed. Single fraction prescription doses were 5.5-8 Gy with dose criteria for the high-risk

clinical target volume (HRCTV), bladder, rectum and sigmoid. DVH estimations were obtained

by subdividing training set OARs into HRCTV boundary distance sub-volumes and computing

cohort-averaged differential DVHs. Full DVH estimation was then performed on the training and

validation sets. Model performance was quantified by ΔD2cc=D2cc(actual)-D2cc(predicted) (mean

and  standard  deviation).  ΔD2cc between  training  and  validation  sets  were  compared  with  a

Student’s  t-test  (p<0.01  significant).  Categorical  variables  (physician,  fraction-number,  total

fractions, case complexity) that might explain model variance were examined using an ANOVA

test (Bonferroni-corrected p<0.01 threshold). 

Results: Training set deviations  were bladder ΔD2cc  = -0.04+0.61 Gy, rectum ΔD2cc  =

0.02+0.57 Gy and sigmoid ΔD2cc  = -0.05+0.52 Gy. Model predictions on validation set did not

statistically  differ:  bladder  ΔD2cc  = -0.02+0.46 Gy  (p=0.80),  rectum ΔD2cc  = -0.007+0.47 Gy

(p=0.53), and sigmoid ΔD2cc = -0.07+0.47 Gy (p=0.70). The only significant categorical variable

was attending physician for bladder and rectum ΔD2cc. 

Conclusion: A  simple  boundary  distance-driven  knowledge-based  DVH  estimation

exhibited promising results in predicting critical brachytherapy dose metrics. Future work will
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examine  the  utility  of  these  predictions  for  quality  control  and  automated  brachytherapy

planning. 

Key Words: knowledge-based planning,  cervical  cancer,  dose predictions,  machine learning,

quality control, treatment planning
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Introduction

Brachytherapy (BT) is an essential component of cervical cancer treatment, which has

been linked to improved pelvic control and disease-free survival  (1,2). Image guidance allows

for  tumor  dose escalation  and normal  tissue sparing,  by  enabling  applicator  and subsequent

source  positioning  to  be  tailored  to  individual  tumor  features  and  anatomy.  High-quality

gynecologic (GYN) BT requires a skilled, coordinated multi-disciplinary team to carry out labor-

intensive workflows  (3). Currently, clinicians rely on their BT experience, serial on-treatment

pelvic exams, and images from earlier time points to make decisions about applicator type prior

to the procedure. Quality assessment for BT treatment plans is challenging, as patient anatomy,

applicator choice, implant quality, and source loading pattern can all affect tumor coverage and

organ-at-risk (OAR) sparing. Currently there are no standardized tools to assist practitioners in

troubleshooting cases that do not achieve dosimetric goals. Furthermore, utilization of BT for

cervical cancer is declining, some of which could be due to the requirements of the sophisticated

workflow (4). This comes at a cost to patients, as a lack of BT is associated with reduced cause-

specific and overall survival (5). Additionally, BT remains the standard of care, as demonstrated

by a recent study that evaluated the use of stereotactic body radiation therapy (SBRT) in place of

BT for cervical cancer treatment and closed early due to concerns for toxicity (6). 

Computational  prediction  of  achievable  dosimetric  parameters  could  increase  clinical

efficiency,  improve  treatment  quality,  and  expand  the  accessibility  and  utilization  of  BT.

Population-based guidelines, and current protocols such as the ongoing clinical trial EMBRACE

II recommended dose constraints  (7), provide clinicians with static plan quality metrics against

which to assess individual BT treatment plan quality. While useful for ensuring patients do not

exceed critical normal tissue limits, such guidelines are not patient-specific and only provide
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limits.  In  analogous  situations  of  external  beam  radiotherapy  (EBRT)  where  only  static

population-based limits are used as plan quality guidance, high degrees of plan quality variability

and excess dose to normal tissues have been observed (8,9). 

Machine  learning  methods  have  been  applied  to  EBRT  to  automate  human-driven

processes through a technique known as knowledge-based planning (KBP) (10–14). Knowledge-

based  dose  estimation  models  are  trained  on  large  datasets  of  prior  treatments  and  provide

patient-specific  dosimetric  predictions  for  new  patients.  Automated  planning  with  KBP  is

accomplished  using  patient-specific  dose  predictions  to  guide  plan  optimization.  These

approaches  have not  been systematically  translated  to  the unique challenges  of  intracavitary

GYN BT, where dosimetry is highly constrained by the implanted applicator and the degrees of

freedom for dose modulation are reduced. The purpose of this work was to explore the accuracy

of knowledge-based OAR dose estimation for high-dose rate (HDR) BT treatment of cervical

cancer.  Using established external-beam knowledge-based DVH estimation methods  (11), we

sought to accurately predict bladder, rectum, and sigmoid D2cc for standard tandem-and-ovoid

(T&O)  treatments.  These  dose  estimations  are  an  important  precursor  and  step  towards

knowledge-based planning in BT. 

To our knowledge, this work is the first application of knowledge-based dose estimation

to GYN intracavitary BT where models are based only on contours of organs and target. This

approach  could  facilitate  multi-institutional  data-driven  quality  control,  and  increase  BT

utilization  by  giving  clinicians  objective  assurances  that  their  dose  distributions  are  of  high

quality. 
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Materials and Methods

Model specification

The mathematical framework employed in this work for DVH estimation of OARs is

closely related to an approach developed for intensity-modulated radiation therapy (IMRT) (11).

The planning datasets consist of structure sets for the OARs,  OARij, for  i=1...N cases (where

“case” refers to a single fraction in a patient’s  course of treatment) and  j=1…M OARs, and

corresponding structure-specific dose matrices D [ x , y , z ; i , j ], where (x , y , z ) is the 3D-position

of a point that lies within the jth structure. To facilitate equivalence we normalize dose in the ith

case to its prescription dose, ~D [ x , y , z ; i , j ]=D [ x , y , z ; i , j ] /DRx i
. 

Our model is built on the boundary distance feature that quantifies the minimum distance

r between any OAR volume element and the  high-risk clinical target volume (HRCTV) target

(11). The primary assumption of this model is that the probability that a voxel in the jth organ will

take a dose value between  ~D and  ~D+∆~D is given by  p j(
~D ;r )∆~D , with  ∫

0

∞

p j (
~D ;r ) d~D=1.  

That this probability distribution is a function of r implies that any two points equidistant from

their respective HRCTV boundaries within the same organ will have the same normalized dose

distribution with respect to the prescription dose. 

The practical consequences of these assumptions are that the dose-distance data of each

of the  N cases can be pooled to generate an enlarged dataset used to estimate the ‘ensemble-

averaged’  dose-distance  kernels  p j(
~D ;r )for  each  of  the  j=1-3  OARs (bladder,  rectum,  and

sigmoid). Then, for a new case iN+1, once we extract the differential volume of each OAR as a

function of r, dV i N+1 j /d r , these kernels can be used to predict the differential DVH
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V iN +1

' pred
(~D j )=∫ dr (

d V iN +1 j

dr ) p j(
~D ;r ) .

In turn, this is transformed into the cumulative DVH,

DVH iN +1

pred
(
~D j )=V i N+1 j

total
−∫

0

~D j

dDV iN +1

' pred
(
~D )  ,

where V iN +1 j
total  is the total volume of the jth OAR for the case. From this predicted cumulative DVH,

D2cc metrics of the bladder, rectum, and sigmoid are extracted, since D2cc  is currently the only

standardized OAR DVH metric that is used to evaluate clinical plans.

Model training and validation

136 loco-regionally advanced cervical cancer patients, over a six-year period (2012-2018,

UCSD IRB Project #181609), treated with N=456 (356:100 training:validation ratio) T&O CT-

guided BT fractions were analyzed retrospectively in an integrated training-validation workflow

as illustrated in Figure 1. The 100 case validation set was composed of all 5 fractions of 10

patients completely independent of the training set, and 50 cases randomly sampled from the

remaining 126 patients (consisted of 2 treatment fractions from 9 patients, and single fractions

from  33  patients,  for  a  total  of  42  patients).  The  purpose  of  this  was  to  evaluate  model

performance on both totally  independent  patients,  as well  as independent  treatment  fractions

from patients used to train the model. 

 Single-fraction prescription doses were 4-8 Gy. Plans were created using institutional

dose criteria for external beam + BT equivalent dose in 2 Gy fractions (EQD2s), which were

originally  based  on  the  2011  update  to  the  ABS HDR BT guidelines  for  locally  advanced

cervical  cancer  (15),  and  later  updated  to  incorporate  soft  constraints  from  the  ongoing

EMBRACE-II  trial  (7).  Hard  planning  constraints  include  high-risk  clinical  target  volume
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(HRCTV) D90>85 Gy, bladder D2 cc<90 Gy, rectum D2 cc<75 Gy, and sigmoid D2 cc<75 Gy. Soft

planning aims (recommended but not required) include bladder D2 cc<80 Gy, rectum D2 cc<65 Gy,

and sigmoid D2 cc<70 Gy. The HRCTV contour included residual disease at the time of BT and

the whole cervix. Our planning process consisted of the following steps. First, the T&O dwell

positions were set to a standard loading pattern, and then normalized to deliver prescription to

point A. Then radiation oncologists manually adjusted dwell positions or dragged isodose lines

to achieve target coverage while minimizing dose to OARs. During this tuning process, EQD2

values were evaluated on a spreadsheet to ensure planning objectives were met.

DVH estimation  models  were obtained by subdividing OARs into HRCTV boundary

distance sub-volumes (extending from overlapping with the HRCTV to 10.6 cm radially from the

HRCTV) and computing an ensemble-averaged differential DVH estimate from the training set

sub-volumes. Full DVH estimation was performed on all cases in the training and validation sets

by applying OAR sub-volume DVH models to each fraction’s OARs. The proposed framework

was implemented in the form of in-house extensions to MIM (version 9.6.3, MIM Software Inc.,

Cleveland, Ohio, USA). The DVH predictions for any new case take less than 10 seconds. 

Model  performance was quantified by analyzing  the residual  ∆ D2 cc=¿ Actual  D2cc –

Predicted D2cc, where D2cc is the absolute OAR dose for a single BT fraction. Standard deviation

over these residuals was taken as a measure of model error, as has been done for prior EBRT

KBP studies (10–13,16).  Goodness-of-fit was measured by the Pearson correlation coefficient R

and the  variance  of  the  ΔD2cc distribution.  We chose  to  report  most  analysis  and figures  in

absolute  dose,  as absolute dose is  more commonly  used to  evaluate  OARs during treatment

planning, and thus is more clinically meaningful. To ensure this assumption was valid, metrics

were also computed for relative dose (i.e. dose normalized to prescription for that BT fraction).
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Consistency between the distributions of ΔD2cc for training and validation sets was checked with

an unpaired Student’s t-test (p<0.01 significance threshold). 

Variance reduction via incorporation of continuous geometric features

In an attempt to uncover possible anatomic variability not captured by the boundary distance

approach,  we  identified  a  preliminary  list  of  eleven  geometric  features  suspected  to  have

additional predictive power, including:

1) HRCTV volume

2) An  anterior-posterior  asymmetry  metric  APasymmetry,  defined  as  the  furthest  posterior

distance of the HRCTV boundary from the tandem minus the furthest anterior distance of

the HRCTV boundary from the tandem

3) Nine additional geometric features measuring OAR orientation relative to the base of the

HRCTV.  The centroid of the inferior-most HRCTV slice was defined as the origin, and

the closest 2cc to the HRCTV was identified for each of the three OARs.  The rationale

for  this  orientation  feature  is  that  the  inferior-most  slice  of  the  HRCTV serves  as  a

surrogate for the top of the ovoids (the ovoids can contribute to dose deviations that

might not be captured by the HRCTV-driven model) and the closest 2cc of the OARs

likely  correspond  with  the  structure’s  highest  dose  values.  The  vector  connecting

HRCTV base to the OAR’s closest 2cc is then decomposed into the radial distance  ρ,

azimuth φ, and height (superior-inferior distance) z in the redefined coordinate system. A

negative z indicates the OAR’s closest approach is inferior to the HRCTV and therefore

near the ovoids. 

Some of these features are depicted in Figure 2. From this candidate feature set  Fcandidate, we

sought to identify the subset of predictor features F predictors ⊆Fcandidate that could explain error in
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our initial model. We performed stepwise regression, iteratively adding and removing candidate

features to  F predictors, performing least squares multiple linear regression of  ∆ D2 cc on  F predictors,

and continuing until only the candidate features with statistically significant predictive power

remained  in  the  predictor  set  (p<0.01  threshold  and  Bonferroni  corrections  for  multiple

hypothesis testing). This stepwise regression analysis was performed on all training cases, and

the end result was a linear model of ∆ D2 cc as a function of a few significant variables. In order to

determine  whether  these  variables  could  improve  predictive  accuracy,  the  linear  model  was

applied as a correction to predictD2 cc in the validation dataset. 

Additional attempts at variance reduction via discrete categorical stratifications

In addition to the aforementioned set of candidate continuous features, we also considered

discrete categories  C candidate that could potentially explain and reduce variance via stratification.

Our list of candidate categories fell into five classes, with the exact breakdown of our datasets by

categories listed in Table 1:

1) The chronological fraction number of a case within a patient’s treatment, which defines

five distinct groups

2) The total number of prescribed fractions of the BT treatment

3) The tumor stage 

4) The ‘brachytype’, a variable that attempts to capture case complexity. Although only T&O

fractions were included in the training and validation datasets, some patients were treated

with other applicators and/or needles for at least one other fraction. We suspect that the

use of needles or other applicators for some fractions might indicate more challenging

anatomy, and wanted to determine whether this affected model predictions. We defined

three  distinct  groups:  group  1  corresponding  to  cases  from  patients  who  underwent
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entirely T&O treatments, group 2 to patients who had either a tandem-and-ring (T&R) or

tandem-and-cylinder  (T&C)  implant  at  some  point  during  treatment,  and  group  3  to

patients who received supplemental needles for at least one fraction. 

5) The attending radiation  oncologist,  which  resulted in  five different  groupings for this

dataset.

For  each  categorical  variable  considered,  we  tested  for  group-dependent  differences  in  the

combined training and validation cohort in the distribution of ∆ D2 cc via an ANOVA test with a

post-hoc Tukey’s  B analysis  (p<0.01 significance threshold  for  group-specific variation  with

Bonferroni  corrections  for  multiple  hypothesis  testing).  All  statistical  data  analysis  was

performed using MATLAB (R2018a, MathWorks, Inc., Natick, Massachusetts, USA). 

Results

Actual bladder  D2 ccvalues for the combined training and validation cohort displayed a

[minimum:maximum]  range  of  [1.65Gy:7.30Gy],  with  a  mean  ±  standard  deviation  of

4.64±1.03Gy.  The  corresponding  statistics  for  rectum  D2 cc were  [1.12 Gy:6.50 Gy]  and

3.58±0.93 Gy,  and for sigmoid  D2 cc,  they were [1.63Gy:6.58Gy] and 3.88±0.86Gy.  Average

DVHs for each OAR, for both actual clinical plans and predictions, are shown in Figure 3. 

The model  predicted  D2 cc to  bladder,  rectum and sigmoid to within 0.46-0.61 Gy, as

quantified  by  standard  deviation  (see  Figure  4).  Model  accuracy  did  not  statistically  differ

between the validation and training datasets for bladder (p=0.80), rectum (p=0.53) or sigmoid

(p=0.70). When the validation dataset was separated into totally independent patients (group 1)

and independent treatment fractions from patients used to train the model (group 2), performance
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metrics were similar (mean ± standard deviation of  ∆ D2 cc = 0.06 ± 0.45 Gy, -0.02 ± 0.42 Gy

and -0.07 ± 0.47 Gy for bladder, rectum and sigmoid for group 1; and -0.08 ± 0.75 Gy, -0.05 ±

0.43 Gy and -0.10 ± 0.50 Gy for group 2). Model accuracy did not significantly differ between

validation groups (p>0.25).  Mean and standard deviation over  ∆ D2 cc for dose normalized to

prescription for training (validation) were bladder = -0.51 ± 9.43% (0.13 ± 9.38%), rectum =

0.36 ± 8.84% (-0.46 ± 7.05%), and sigmoid = -0.75 ± 8.05% (-1.14 ± 7.77%). Multiplying these

numbers by a 6-7 Gy prescription (the most common prescriptions of our dataset), these numbers

are similar to those obtained for absolute dose. 

The  results  of  the  categorical  stratification  analyses  on  the  combined  training  and

validation cohorts for various group variables are reported in Table 2. The ANOVA and post-hoc

analyses  revealed  that  ∆ D2 cc values  significantly  varied  between  radiation  oncologists  for

bladder (p<0.001) and rectum (p<0.001) (see Figure 5). No significant differences were found

between any other  stratifications.  To test  whether  inter-practitioner  differences  in  OAR dose

might be related to differences in target coverage, we ran an ANOVA and post-hoc analysis for

D90, dose to 90% of the HRCTV, normalized to prescription. As indicated in Figure 4, while

there are physician-dependent differences in coverage, these differences are not clearly related to

the corresponding differences seen for ∆ D2 cc metrics.

The stepwise linear regression highlighted up to one significant variable correcting each

organ model.  Bladder ΔD2cc  was correlated with  APasymmetry,  rectum ΔD2cc  was correlated with

zrectum, and sigmoid ΔD2cc was correlated with none of the analyzed features (regression equations

and adjusted R-squared shown in Supplementary Material, Table S1). The results of the stepwise

multiple  linear  regression  suggest  that  certain  geometric  features  have  nonzero  predictive

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251



correlation with ∆ D2 cc, but ultimately these corrections made on average very modest ~0.02 Gy

improvements  in  ∆ D2 cc prediction  accuracy as  quantified by the standard deviation  (σ ¿ and

correlation coefficient R (Table 3). 

Discussion

Machine learning is thus far relatively unexplored in the BT realm. One study applied

machine learning to automate planning for prostate low dose rate BT (17). For HDR BT, several

recent papers have investigated the use of advanced computational methods in multi-objective

optimization criteria  (18–20), and multiple  pilot studies  (21–23) have successfully automated

various aspects of treatment planning. Damato et al (24) developed simple mathematical models

to  predict  bladder  and  rectum D2cc for  interstitial  GYN BT,  using  a  dataset  of  20  patients.

However, to our knowledge this is the first study that applies machine learning to patient-specific

dosimetric prediction in intracavitary GYN BT. In contrast to the interstitial GYN work (24), we

had a much larger patient group and thus were able to validate our model on an independent

dataset, and our models include only geometric inputs.  

As shown in Figure 4,  our  knowledge-based DVH estimation  system predicts  D2 ccto

OARs to within 0.46-0.61 Gy standard deviation. This amounts to a ±0.9-1.2 Gy 95% confidence

interval for each BT fraction. Model performance did not significantly differ between the training

and two validation sets, indicating that the model is not skewed towards patients included in the

training  set,  and  does  not  suffer  from  overfitting.  Although  the  entire  OAR  DVH  is  not

considered in current cervical brachytherapy practice and thus was not a focus of this work, the

model did predict reasonable DVHs on average, as shown in Figure 3. In its current form, the
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model  uses  only  contour  information  from  post-implant  CT  imaging  and  does  not  require

applicator geometry, effectively providing an external reference for expected T&O dosimetry.

The value of this is that any institution could input their HRCTV and OAR contours and receive

a prediction for the dose they could expect for a given T&O implant. In addition, because of the

non-reliance on applicator geometry, this approach could be extended to create decision support

tools that could identify cases where T&O applicators alone could/could not meet dosimetric

constraints. Since interstitial needle implantation is challenging, increases treatment time and can

reduce patient comfort, it would be valuable to identify cases that do not need needles up front. 

The analysis of relative dose resulted in model performance metrics that were similar to

those in absolute dose, using an average per fraction prescription of ~6-7 Gy to convert between

the two. For example, the standard deviations of ∆ D2 cc ranged from 7.1 to 9.4% (0.46 to 0.61 Gy

in absolute dose), and mean ∆ D2 ccranged from -1.14 to 0.36% (-0.07 to 0.02 Gy). In addition,

model accuracy did not significantly differ between patients treated with different total numbers

of fractions (and by extension, cases with different prescriptions). Based on these results, we feel

it is valid to train and apply these models on cases with different prescriptions. 

Notably, the predictive accuracy of  ∆ D2 cc to within 0.46-0.61 Gy standard deviation is

comparable to the range of inter-practitioner differences in ∆ D2 cc means, e.g. [-0.69 Gy, 0.1 Gy]

for rectum. There are numerous unaccounted for inter-practitioner variations that could influence

dose, including differences in applicator loading, updates in target and OAR constraints over

time, variability in contouring and vaginal packing, differences in patient groups, and variations

in internal optimization stopping criteria, which is further complicated by the disconnect between

isodose tuning and DVH dose evaluation. The fact that our model already predicts estimation

error  to  within  inter-practitioner  variability  in  spite  of  these  complexities  is  promising,  and
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suggests that the model can be used for plan quality control.  In fact,  the model was able to

identify a case (see * in Figure 6A) that featured a non-ideal implant due to difficulties with

tandem  insertion  through  a  stenotic  os  into  an  anteverted  uterus.  In  later  fractions,  where

implants were improved (e.g. Figure 6B), the actual doses were in better agreement with the

model-predicted doses (∆ D2 cc for bladder ranged from 1.07-2.05 Gy for fractions 2-4, while

∆ D2 cc for fraction 1 was 3.52 Gy). This suggests that the model could help physicians decide

whether  a  re-implant  is  warranted  for  challenging  cases.  It  should  be  noted  that  although

variability was observed between practitioners, nearly all clinical plans met our institutional dose

constraints. 

The HRCTV and OAR contours used in this study were primarily CT-based. It stands to

question whether the current models would be directly applicable for MR-based contouring and

planning.  MR-based tumor volumes for cervical  cancer have been shown to be smaller  than

those drawn on CT  (25). Since the model relies only on the extracted contours, it should still

provide accurate predictions for any given HRCTV. 

There are limitations  to  our presented approach.  The study was restricted to a single

institution and, presently, only considers standard T&O cases. Like similar EBRT KBP methods

(11,14), the target coverage is taken as a set variable, and therefore the model cannot be used to

predict target coverage, or predict optimal target and OAR dose tradeoffs. The identification of

any  significant  geometric  predictors  of  ∆ D2 cc hints  that  more  sophisticated  accounting  of

HRCTV  and  applicator  geometry  could  yield  more  accurate  predictions.  Figure  6  shows

examples  of  a  few  geometric  features  that  are  not  well  captured  by  the  simple  HRCTV

boundary-distance model, such as asymmetry of the HRCTV with respect to the tandem and

dose  from  the  ovoids.  However,  it  is  evident  that  a  linear  correction  for  these  features  is
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insufficient;  although  model  error  was  reduced  in  the  training  dataset  by  0-4  cGy after  the

correction,  there was no improvement in predictive accuracy in the validation set,  leading to

concerns of over-fitting. Regardless, despite the model’s reliance on a simplistic assumption of

equivalent dose fall-off for points within an organ that are equidistant from the target (which is

arguably more applicable to EBRT treatment plans), it seems to perform quite well. Future work

will explore voxel-based dose prediction that accounts for relative positioning of targets, OARs

and all applicator components.

Despite the current model’s limitations,  the ~0.5 Gy prediction accuracy demonstrates

that the model could function as a multi-institutional quality control tool for T&O BT planning,

since it can compute BT predictions from contours alone. Predictions are produced fully within

the MIM environment and require only the structure set of an RT DICOM, so any institution

with MIM could upload a structure set for a patient and receive dose predictions with the click of

a button. As seen in the context of multi-institutional clinical trials of EBRT  (9,26), objective

measures of plan quality can highlight previously uncontrolled quality variability across multiple

institutions. Patient-specific dose predictions can not only quantify unknown quality variations in

BT practice, but also provide a means to reduce inter-practitioner variability.  Future work will

extend these models to other applicators and intracavitary/interstitial hybrid cases and examine

whether  predictions  could  guide  further  plan  optimization  and  improve  plan  quality  by  re-

planning cases  with  large  discrepancies  between predicted  and actual  dose.  Finally,  we will

deploy this tool in the multi-institutional context and utilize dose predictions for fully-automated

BT planning. 

In summary, we have adapted knowledge-based dose prediction methods to predict OAR

DVHs and, in particular, the critical OAR D2cc quality metric for GYN brachytherapy. To our
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knowledge, this is the first such application of knowledge-based methods to GYN brachytherapy

and  could  form  the  basis  for  treatment  plan  quality  control  and  automated  brachytherapy

planning.  
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Figure  1. Methodology  and  workflow applied  to  A)  train  the  model,  and  B)  validate  on  a
separate dataset.
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Figure 2. Illustration of some of the geometric features and how they were defined, including the

anterior-posterior asymmetry metric, APasymmetry (left), which quantifies how well the tandem was

centered  in  the  HRCTV,  superior-inferior  distance,  z,  and  radial  distance  ρ (right),  which

identify the relative positioning of the closest 2cc of an OAR to the base of the HRCTV. 
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Figure 3. Actual (solid line) and predicted (dotted line) OAR DVHs, averaged over all cases in

training (A) and validation (B) datasets. 
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Figure 4. Actual vs. predicted  D2 cc for each organ for training and validation datasets, along

with Pearson correlation  coefficients  (R),  standard deviation  (indicated  by σ as  well  as grey

colorwash) and mean of ∆ D2 cc’s (equal to zero for the training set due to bias subtraction). Black

lines indicate hypothetical perfect model predictions. 
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Figure 5. Box-and-whisker plots showing physician-dependent variation in ΔD2cc for bladder and

rectum,  along with corresponding variation  in  the HRCTV coverage metric  D90.  Black line

segments connect pairs of physicians whose average ΔD2cc or D90 values significantly differed at

the confidence level p<0.01, after accounting for multiple-comparison corrections.
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F

igure 6. (A, C, E) show pooled plots of both the training and validation dataset predictions after

geometric  correction,  compared  to  the  actual  values.  (B,  D,  E)  display  example  cases  that
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featured  a large deviation  between actual  and predicted  D2cc,  along with explanations  of  the

underlying geometric features that likely led to these discrepancies. The black arrow in each plot

shows how each of these cases changed with the geometric correction. The most extreme outlier

in (A) (indicated by the green arrow and *) corresponded to a first-fraction case that featured a

non-ideal implant due to difficulties with tandem insertion through challenging anatomy. The

implants  improved  for  later  fractions  (e.g.  (B),  which  was  the  second  fraction  of  the  same

patient), and as a result the difference between actual and predicted dose was much smaller. 
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Table 1. Breakdown of training and validation data by various categorical features, including the
stage, attending radiation oncologist, total number of fractions and fraction number of the case. 
Some patients received T&O for all fractions of their treatment (“All T&O”), while other 
patients (“Component T&O”) had at least one fraction that was treated with a different applicator
(tandem and cylinder (T&C) or tandem and ring (T&R)), or needles. Although only T&O 
fractions were included in training and validation datasets, the “Brachytype” provides a 
breakdown of the number of cases that corresponded to patients that fell into each of these 
categories. 

Number of
patients

Training (P = 114) Validation (P= 52) Total (P = 126)

Stage

T1 35 11 40

T2 51 26 57

T3 25 15 26

T4 3 0 3

Prescribed total
number of
fractions

2 1 0 1

3 5 4 6

4 54 14 54

5 54 34 64

Number of cases Training (N = 356) Validation (N = 100) Total (N = 456)

Physician

A 154 (43 %) 44 (44 %) 198 (44 %)

B 16 (5 %) 8 (8 %) 24 (5 %)

C 101 (28 %) 18 (18 %) 119 (26 %)

D 69 (19 %) 27 (27 %) 96 (21 %)

E 16 (5 %) 3 (3 %) 19 (4 %)

Brachytype

All T&O 304 (85 %) 96 (96 %) 400 (88 %)

Component T&O 
- T&C
- T&R 
- Needles

52 (15 %)
- 13 (4 %)
- 16 (6 %)
- 23 (5 %)

4 (4%)
- 2 (2%)
- 1 (1%)
- 1 (1%)

56 (12 %)
- 15 (3 %)
- 17 (5 %)
- 24 (4 %)
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Fraction Number

1 87 (24 %) 18 (18%) 105 (23 %)

2 84 (24 %) 19 (19%) 103 (23 %)

3 73 (21 %) 28 (28%) 101 (22 %)

4 72 (20 %) 19 (19%) 91 (20 %)

5 40 (11 %) 16 (16%) 56 (12 %)
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Table 2. The results of categorical stratification analysis indicate that, after 
Bonferroni corrections, only stratification by radiation oncologist for bladder and 
rectum yields significant differences in ΔD2cc (as indicated by bold text). 

∆ D2 cc p-Value

Bladder Rectum Sigmoid

Physician 1.6*10-12 6.6*10-11 1.9*10-3

Brachytype 0.30 0.08 0.05

Tumor Stage 0.98 0.46 0.34

Fraction Number 0.60 0.50 0.33

Total Number of
Fractions

0.77 0.80 0.71
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Table 3. A comparison of model performance metrics on both the training and validation sets, 
both before and after including geometric corrections.

OAR
Model

Performan
ce

Training Set
(N=356)

Validation Set
(N=100)

Pre-
correction

Post-
correction

Pre-
correction

Post-
correction

Bladder
<D2cc>

R
σ

-0.04 Gy
0.83

0.61 Gy

0.00 Gy
0.85

0.57 Gy

-0.02 Gy
0.80

0.61 Gy

0.02 Gy
0.80

0.61 Gy

Rectum
<D2cc>

R
σ

0.02 Gy
0.82

0.57 Gy

0.00 Gy
0.83

0.53 Gy

-0.01 Gy
0.89

0.43 Gy

-0.02 Gy
0.86

0.49 Gy

Sigmoid
< D2cc>

R
σ

-0.05 Gy
0.82

0.52 Gy

0.00 Gy
0.82

0.52 Gy

-0.07 Gy
0.79

0.47 Gy

-0.02 Gy
0.78

0.47 Gy
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Table S1. Displayed are the best-fit linear regression models of ΔD2cc to selected 
geometric features for each of the three OARs. Mean estimates of the dominant 
coefficients are listed, along with the corresponding standard errors (S.E.). The 
adjusted R-squared, which measures the goodness-of-fit adjusted for the number of 
fitting parameters, is also listed.

OAR Regression Equation (Coefficients listed as Mean ±S.E.) Adj. R-Squared

Bladder ΔD2cc = (-0.11±0.03) + (0.05±0.01) APasymmetry 0.13
Rectum ΔD2cc = (-0.00±0.03) - (-0.19±0.02) zrectum 0.14

Sigmoid ΔD2cc = (-0.05±0.03) 0.00
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