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92697, USA

2Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92697, 
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Abstract

The development and application of nonlinear optical (NLO) microscopy methods in biomedical 

research have experienced rapid growth over the past three decades. Despite the compelling 

power of these methods, optical scattering limits their practical use in biological tissues. 

This tutorial offers a model-based approach illustrating how analytical methods from classical 

electromagnetism can be employed to comprehensively model NLO microscopy in scattering 

media. In Part I, we quantitatively model focused beam propagation in non-scattering and 

scattering media from the lens to focal volume. In Part II, we model signal generation, 

radiation, and far-field detection. Moreover, we detail modeling approaches for major optical 

microscopy modalities including classical fluorescence, multi-photon fluorescence, second 

harmonic generation, and coherent anti-Stokes Raman microscopy.

1. INTRODUCTION

Laser-scanning nonlinear optical (NLO) microscopy methods enable structural and 

functional visualization of thick cellular and tissue samples with sub-micrometer detail 

[1–3]. These methods rely critically on the formation of a well-defined focal spot within the 

tissue specimen. Light scattering in the tissue, however, distorts the amplitude and phase of 

the incident laser beam wavefront, which degrades the confinement of the diffraction-limited 

focal volume [4,5]. As a result, the focal volume within scattering samples is often expanded 

in both lateral and axial dimensions and generally accompanied by an overall reduction of 

light intensity in the focal region. This negatively impacts the imaging depth in the tissue, 

as well as image resolution and signal-to-noise ratio (SNR). Overcoming the effects of light 

scattering constitutes a grand challenge in optical microscopy with the purpose of improving 

imaging depth and resolution in thick tissue samples.
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Counteracting the effects of scattering is challenging. Various adaptive optics approaches 

have been developed to compensate for wavefront distortions introduced by light scattering 

in the sample. A common compensation strategy is to modify the wavefront of the incident 

beam with a deformable mirror (DM) or spatial light modulator (SLM) to offset the optical 

aberrations caused by optical components and/or refractive index variations within the 

sample [6–8]. Optical aberrations can be largely canceled out by adjusting the incident 

wavefront with the conjugate of the phase aberration. Phase distortion due to the presence 

of discrete scatterers has been evaluated or sensed by various methods to determine the 

optimal phase compensation [8]. While these approaches have been successful in improving 

the magnitude and SNR of optical signals in laser scanning microscopy, the performance 

gains achieved thus far have remained rather modest [9,10]. In some cases, knowledge of 

the phase front is useful to compensate for scattering effects albeit at the expense of image 

acquisition speed. Many adaptive optics implementations for laser-scanning microscopy 

circumvent direct measurement of the wavefront entirely and apply phase compensation 

indirectly using iterative optimization of empirical parameters such as overall signal strength 

[11,12]. In some cases, this indirect optimization approach results in large errors [13].

The fundamental principles governing electromagnetic beam propagation and scattering are 

well established [14–17]. Therefore, it stands to reason that these principles can be utilized 

to comprehensively model and describe the effects of light scattering in laser-scanning 

optical microscopy. Such a model has the potential to provide fundamental insights into the 

factors that control the degradation of image resolution and depth within scattering media. 

Such a model would enable a comparative analysis of the relative sensitivity of different 

imaging modalities under similar scattering conditions. This approach would provide a 

rigorous basis for understanding the fundamental processes that contribute to wavefront 

distortion. This knowledge may then be leveraged to generate a priori information to 

dynamically synthesize wavefronts for adaptive optics applications.

Investigators have modeled various components of the optical microscopy process. One 

approach taken to model electromagnetic beam propagation in scattering media is to 

consider randomly distributed scatterers and apply a stochastic model [18–22]. Another 

approach is the use of convolutions with a 3D Green’s function to calculate forward and 

backward scattered fields [23–25]. Such approaches may provide qualitative agreement with 

experimental observations, but they are unable to properly account for the amplitude and 

phase characteristics of propagating fields for specific scatterer configurations.

Numerical Maxwell’s equations solvers such as the finite difference time domain (FDTD) 

or pseudo-spectral time domain (PSTD) methods are well suited for computing optical 

microscopy signals for specific scatterer configurations. While both FDTD and PSTD 

methods have been used successfully to model tightly focused beam propagation in 

scattering media [26–30], the process is complex and requires special techniques to 

define sources and minimize errors [31–34]. Moreover, these techniques require significant 

computational resources in terms of memory and run time, and scale with the total volume 

under consideration [35]. FDTD and PSTD methods also require near- to far-field (NTFF) 

transformation [36] to obtain the far-field results, which may be compromised by poor 

accuracy [37]. In contrast, the electromagnetic propagation tools that have been used 
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successfully to model stratified media [38,39] are limited to a few specific structures 

possessing a high degree of symmetry [40].

Several analytical field propagation methods have been developed to calculate the effect 

of scattering on tightly focused laser fields [41–47]. Most methods are limited to a 

single scatterer placed at a specific location [41–43]. Other methods [44,45] based on the 

T-matrix approach [48,49] with no adaptive optics corrections are limited in scope. The 

method developed by Török and co-workers [46] considers multiple spherical scatterers 

located proximal to the focal point and applies Mie theory to compute the scattered 

far field. Another approach, based on Huygens–Fresnel propagators [47], shares some 

similarities with the scattering calculations of [46] but has the advantage of considering the 

effects of interparticle scattering. Using Huygens–Fresnel propagators, we have developed 

a computational framework that simulates focused beam propagation, followed by the 

generation, radiation, and detection of nonlinear microscopy signals in media containing 

scattering particles at specific locations [50]. We utilize elements of this framework in this 

tutorial.

In this tutorial, we show how existing analytical electromagnetic field propagation methods 

can be synthesized into an integrated, comprehensive, modeling framework for NLO 

microscopy in scattering media. One important advantage of the analytical modeling 

framework presented here is that the computational cost does not depend on the volume 

of the computational domain, but rather on the number of scatterers and number of locations 

where we compute the field. Unless one wishes to model a system with thousands of 

scatterers, investigators can implement and execute the methods provided in this tutorial 

using a desktop/laptop computer.

In Part I of this tutorial, we consider a basic optical microscope configuration with 

aberration-free aplanatic lenses as shown in Fig. 1. The incident beam traverses the aplanatic 

lens and propagates toward the focal region in either a scattering or non-scattering medium. 

We present the methods used to model electric field propagation. Specifically, we formulate 

the mathematical representation of the incident beam in Section 2 and the lens output in 

Section 3. In Section 4, we present and analyze several electromagnetic approaches that 

can be utilized to compute focal fields in non-scattering media. In Section 5, we describe 

methods to model the effects of discrete scatterers in the medium and compute the resultant 

scattered fields proximal to the focal region. In Part II of this tutorial [51], we show how 

to calculate the electric field distribution near the focal volume and use these results to 

compute the resulting induced nonlinear polarization within the sample. In addition, we 

treat signal radiation from the focal volume in the direction of the detector in scattering 

media and describe a method for displaying far-field data and continuous propagation of 

NLO signals in a 4 f system. We conclude by providing case studies that illustrate results 

obtained at each stage of this modeling process for second harmonic generation (SHG) and 

two-photon excitation (TPE) microscopy.
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2. INCIDENT BEAM FORMULATION

We begin by considering a collimated incident beam Einc x∞, y∞  that propagates in a 

direction parallel to the optical axis. Using the Jones vector representation [52,53], the 

incident beam can be expressed as

Einc x∞, y∞ =
Ex

inc

Ey
inc

Ez
inc

=
Ax x∞, y∞ exp iψx

Ay x∞, y∞ exp iψy

0
, (1)

where Ex
inc, Ey

inc, Ez
inc  are the Cartesian electric field components of Einc. Ax x∞, y∞  and 

Ay x∞, y∞  are amplitudes of the x and y electric field components, respectively, at the 

locations x∞, y∞ , which span the plane perpendicular to the z axis. ψx and ψy represent the 

phase of each component. Note that Eq. (1) is valid for collimated beams with the entrance 

pupil at infinity and does not apply generally to non-collimated incident beams.

A. Linearly and Circularly Polarized Beams

For an axisymmetric linearly or circularly polarized beam, we can rewrite the incident beam 

introduced above as [40,53]

Einc x∞, y∞ = A0 x∞, y∞ exp(iψ) BS ⋅ ℙV , (2)

where the BS matrix describes the characteristics of an ideal linear retarder (Babinet–Soleil 

compensator) [54] and ℙV  is the input polarization vector. BS ⋅ ℙV  represents the Jones 

vector [16]. A0 x∞, y∞  is the apodization function [55], and ψ and A0 x∞, y∞  represent the 

phase and amplitude, respectively, at the far-field pupil. As the phase ψ is the same for all 

electric field components, it can be safely ignored. The apodization function for beams of 

uniform amplitude or fundamental Hermite–Gaussian beam (HG00) mode with beam waist 

ω0 can be expressed as [55]

A0 x∞, y∞ =
1 Flat
exp − x∞

2 + y∞
2 /ω0

2 HG00. (3)

In Eq. (2), the BS matrix facilitates the expression of polarized illumination [54,56]:

BS =
1 c 0
c 1 0
0 0 1

, (4)

where c = 0 for linearly polarized illumination and c = i = −1 for circularly polarized 

illumination. ℙV , defined in terms of unit intensity, can be written as
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ℙV =
ex

ey

ez

, (5)

where ex, ey, ez  for linearly x-polarized, linearly y-polarized, linearly +45° polarized, 

linearly −45° polarized, left-hand circularly polarized, and right-hand circularly polarized 

illuminations are given by 1, 0, 0 , 0, 1, 0 , 1/ 2, 1/ 2, 0 , 1/ 2, − 1/ 2, 0 , 1/ 2, 0, 0 , and 

0, 1/ 2, 0 , respectively.

B. Incorporation of a Spatial Light Modulator

We can expand this basic framework by introducing a SLM into the light path prior to 

the incident lens. The SLM can be used to change the phase of the transverse field before 

entering the imaging system. The modified incident beam can be expressed as

Einc x∞, y∞ = ESLM
inc xlm, ylm exp iψlm xlm

2 + ylm
2 ≤ D2

4
, (6)

where ESLM
inc xlm, ylm  represents the incident field on the SLM. Each x∞, y∞  location within the 

incident field interacts with a corresponding xlm, ylm  pixel of the SLM. ψlm is the phase angle 

provided by element l, m  of the SLM. We consider a rectangular SLM with l rows and m
columns. To adjust the phase within the entire beam using the SLM, the beam diameter D
should be smaller than or equal to the SLM dimensions.

3. LENS AND LENS OUTPUT

We consider an aberration-free aplanatic lens that we represent geometrically using a 

spherical surface. We will refer to this surface as the “spherical reference surface,” and 

it is also known as a reference sphere [55] or a focal sphere [57]. For a flat wavefront, 

the radius of the spherical reference surface is f1, which corresponds to the focal length as 

shown in Fig. 2. The size, curvature, and angular extent of the spherical reference surface are 

specified by the lens numerical aperture (NA) and focal length.

The lens output is determined by the electric field on the spherical reference surface, 

Ers θ, ϕ , which can be expressed as [53,55]

Ers(θ, ϕ) = ninc

nm
a(θ)ℝ−1 ⋅ It ⋅ L ⋅ ℝ ⋅ Einc x∞, y∞ , (7)

where ninc and nm are the refractive indices of the medium before and after the lens, 

respectively. The ninc
nm

a θ  term is an apodization function that is introduced due to 

the radiometric effect and modifies the field amplitude [53,58–60]. Setting a θ = cos θ
specifies Abbe’s sine condition [53,55,61] and provides optimal imaging in a plane 

perpendicular to the optical axis. For a θ = 1, Herschel’s condition is satisfied [53,59,60], 
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which provides only optimal imaging along a line segment, namely, along the optical axis. 

Unless stated otherwise, we will use the Abbe’s sine condition because this condition is 

satisfied by the vast majority of microscopy imaging systems [53]. We consider a coordinate 

system where the origin lies at the focal point and the optical axis is collinear with the z axis.

It is helpful to define various transformation matrices. We define ℝ to provide azimuthal 

rotation around the z axis [53,54]:

ℝ =
cos ϕ sin ϕ 0

−sin ϕ cos ϕ 0
0 0 1

, (8)

where ϕ is measured from the +x axis in the counterclockwise direction. ℝ−1 in Eq. (7) 

transforms the electric field vectors back to the Cartesian basis. ℝ−1 can be calculated by 

computing the transpose of ℝ because ℝT = ℝ−1.

We define the matrix L to provide the rotation around the axis that lies perpendicular to the 

meridional plane. L is used to account for the rotation of the field vector, i.e., the bending of 

the ray toward the axis. L is defined as [53,54]

L =
cos θ 0 −sin θ

0 1 0
sin θ 0 cos θ

, (9)

where θ is defined with respect to the −z axis (Fig. 2). The matrix It provides the change in 

amplitude due to refraction at the lens/medium interface [53,54]:

It =
t∥ 0 0
0 t⊥ 0
0 0 t∥

, (10)

where t∥ and t⊥ are parallel and perpendicular Fresnel transmission coefficients [40,53], 

respectively.

Equation (7) describes the effect of the lens on the incident electric field. The electric field 

on the spherical reference surface for a lens with a perfect anti-reflection coating t∥ = t⊥ = 1
can be expressed as
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Ers(θ, ϕ) = ninc

nm

a(θ)
2

(1 + cos θ) − (1 − cos θ) cos 2ϕ −(1 − cos θ) sin 2ϕ −2 sin θ cos ϕ
−(1 − cos θ) sin 2ϕ (1 + cos θ) + (1 − cos θ) cos 2ϕ −2 sin θ sin ϕ

2 sin θ cos ϕ 2 sin θ sin ϕ 2 cos θ
Ex

inc

Ey
inc

Ez
inc

.

(11)

Equation (11) provides a foundation for the focused beam propagation formulas that we 

provide in Section 4. Wherever Ers θ, ϕ  is present, it can be replaced with Eq. (11) and the 

corresponding Einc. For linearly and circularly polarized beams, we can determine Einc using 

the relationships described in Eqs. (2)–(5).

4. FOCUSED BEAM PROPAGATION IN NON-SCATTERING MEDIA

In this section, we examine three methods that, based on the information provided by 

Ers θ, ϕ , can be used to compute field propagation to, and field distribution within, the 

focal volume for non-scattering media. The first method uses the Debye–Wolf integral 

(DWI), also known as the Richards and Wolf integral [40,57,62,63]. The DWI has been 

applied to a variety of focusing problems in homogeneous media including tightly focused 

fields obtained by focusing linearly polarized light [40,53–55,58]. The second approach 

is a solution obtained from Kirchhoff’s vector integral (KVI) [53]. The KVI theorem is 

a solution to the wave equation, and it is the most frequently used diffraction integral in 

physical optics [15,53]. The third method is based on the Huygens–Fresnel principle (HFP), 

which describes electric field propagation between two points [15,64]. Solutions provided by 

the DWI are equivalent to the Fourier spectrum of the far field [55], and solutions from the 

KVI and HFP are based on fundamental electromagnetic theorems or principles [15,53].

A. Theory

1. Debye–Wolf Integral—The DWI provides the electric field at any observation 

location ρ as follows [40,53,57]:

E(ρ) = −ikf1

2π ∬
ux

2 + uy
2 ≤ 1

E ux, uy exp(iku ⋅ ρ) 1
uz

dux duy, (12)

where ρ = ρ cos φ, ρ sin φ, z  is the observation location, proximal to the focal region (Fig. 

2). û = ûx, ûy, ûz  is a unit vector describing the direction of a ray [53]. This unit vector can 

also be expressed in terms of the wave propagation vector k as û = kx/k, ky/k, kz/k , where 

kx = − k cos ϕ sin θ, ky = − k sin ϕ sin θ, kz = k cos θ, and k = 2π/ λnm . E ûx, ûy  represents the 

electric field vector on the spherical reference surface. We can expand the vector dot product 

in the exponent and write
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u ⋅ ρ = − ρ sin θ cos(ϕ − φ) + z cos θ . (13)

The infinitesimal surface area on the reference sphere, expressed in Eq. (12) in terms of the 

unit vectors, can be rewritten in terms of the surface angles θ and ϕ as follows:

1
uz

dux duy = sin θ dθ dϕ . (14)

By substituting Eqs. (13) and (14) into Eq. (12) and replacing E ûx, ûy  with Ers θ, ϕ , the DWI 

in a homogeneous medium can be formulated as [40,53,55]

E(ρ) = −ikf1

2π ∫
0

θmax∫
0

2π

Ers(θ, ϕ) × exp ikz cos θ − ik[(ρ sin θ cos (ϕ − φ)]
sin θ dϕ dθ .

(15)

Note that Eq. (15) considers the phase of Ers θ, ϕ  relative to the focal point. We can express 

the phase relative to the lens position by introducing a propagation phase exp ikf1  to Eq. 

(15) as

E(ρ) = −ikf1 exp ikf1

2π ∫
0

θmax∫
0

2π

Ers(θ, ϕ) × exp ikz cos θ − ik[(ρ sin θ cos

(ϕ − φ)] sin θ dϕ dθ .
(16)

Equation (16) is known as the angular representation of the focal field [55] and can be used 

to compute the focal electric field distribution.

2. Kirchhoff’s Vector Integral Theorem—The KVI theorem considers the 

electromagnetic field following its passage through an aperture. Within this formulation, 

this electric field is expressed as [16,53,65]

E(ρ) = 1
4π∮S

E ∂G
∂ u − G ∂E

∂ u d S , (17)

where G is a scalar Green’s function and E represents the electric field. S is a closed 

surface that consists of surfaces A, B, and C, shown in Fig. 3 [66]. A represents the spherical 

reference surface, while B represents an opaque planar screen where both the field and its 

gradient are zero (E = 0 and ∂E
∂ û = 0) [16]. C represents a large spherical surface with radius 

Rc that encloses the observation point ρ. A sufficiently large Rc is chosen such that ρ does 

not receive any contribution from C when the diverging field from ρ falls off sufficiently 

rapidly. Under these conditions, the contribution from the integral over C vanishes. This is 

also known as the Sommerfeld radiation condition. For more details, the reader is referred to 
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Section 8 of [16] or Section 3 of [64]. As the integrals over B and C have zero contribution, 

we can express Eq. (17) for surface A as

E(ρ) = 1
4π∫ ∫

A
E ∂G

∂ u − G ∂E
∂ u dA, (18)

where G and E in the integrand of Eq. (18) are

G = exp(ik r )
r , (19)

E = Ers(θ, ϕ) . (20)

After applying Kirchhoff’s boundary conditions, we can write

∂G
∂ u A

= ∂G
∂ r

∂ r
∂ u A

= − exp(ik r )
r ik − 1

r u ⋅ r
r , (21)

where r  is given by

r = x − x0
2 + y − y0

2 + z − z0
2

1
2 . (22)

The partial derivative of G has a negative sign because Kirchhoff’s original formulation had 

the normal unit vector û pointing in the −z direction. We can safely ignore the 1/ r  term in 

the bracket because the distance to the observation location from the lens r  is much bigger 

than the wavelength ( r ≫ 1/k, where k = 2π/λ). In this case, Eq. (21) can be simplified as

∂G
∂ u A

= − exp(ik r )
r ik cos α, (23)

where û is the unit vector of r0, and α is the angle between r and u. ∂E
∂ u  in Eq. (18) can be 

expressed as

∂E
∂ u A

= ∂Ers r0, θ, ϕ
∂r0

, (24)

where r0 is the magnitude of vector r0.

Substitution of Eqs. (23) and (24) into Eq. (18) gives a KVI-based solution for the 

propagation of the electric field toward the focal volume:
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E(ρ) = −ik
2π ∫ ∫

A
Ers r0, θ, ϕ cos α

2 + ∂Ers r0, θ, ϕ
∂r0

1
2ik × 1

r exp(ik r ) dA . (25)

3. Huygens–Fresnel Principle—The HFP considers every point along a wavefront as 

a source of spherical wavelets. The electric field at any “downstream” location is given by 

the mutual interference of all wavelets arriving at that location. As dictated by Kirchhoff’s 

boundary conditions, we know surfaces B and C have zero contribution to the electric field 

propagation. We can apply the HFP for surface A in Fig. 3 and write a scalar superposition 

integral as [64]

E(ρ) = ∫ ∫
A

Ers(θ, ϕ) ℎ(r) dA, (26)

where Ers θ, ϕ  is a scalar electric field on the spherical reference surface and ℎ r  is a 

weighting function:

ℎ(r) = −ik
2π

exp(ik r )
r K(α), (27)

where K α  is known as the obliquity factor [16]. Equation (26) can be utilized to write 

three independent scalar equations that represent the Cartesian electric field components of 

Ers θ, ϕ . Combining these scalar equations with Eq. (27), we can write

E(ρ) = −ik
2π ∫ ∫

A
Ers(θ, ϕ) K(α) 1

r exp(ik |r | ) dA . (28)

The obliquity factor K α  has several formulations [16,64,67–69]. The original selection of 

cos α in Huygen’s principle [64] is an excellent choice for forward propagation because 

cos α is non-negative for −π/2 ≤ α ≤ π/2, but beyond this range, cos α is negative and 

thus specifies backward propagating contributions that do not exist in reality for freely 

propagating light (Fig. 4). Using the Fresnel–Kirchhoff diffraction formula, K α  can be 

derived as 1 + cos α /2 [16].

Even though this selection provides a non-zero contribution at α = π/2, it does not provide 

a contribution in the backward direction. In practical focal field calculations, the choice of 

cos α or 1 + cos α /2 has no significant effect on the outcome in the limit that α is small. 

In what follows, we utilize K α = 1 + cos α /2 in Eq. (28). Using the HFP to compute the 

propagation of light from the lens to the focal volume, we can rewrite Eq. (28) as follows:

E(ρ) = −ik
2π ∫ ∫

A
Ers(θ, ϕ) (1 + cos α)

2
1
r exp(ik r ) dA . (29)
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B. Comparison of DWI, KVI, and HFP Solution Integrals

The integral expressions obtained using these three methods have different forms. Table 

1 highlights the differences in the integral expressions for the DWI, KVI, and HFP. The 

exponential factor in the DWI differs from the exponential factor in both the KVI and HFP. 

The DWI neither has an obliquity factor nor does it depend on the factor 1/ r . Note that the 

DWI can describe the focal field with the same degree of accuracy as the KVI/HFP only 

when certain conditions are satisfied [70].

A mathematical difference between the KVI and HFP is that the KVI has the partial 

derivative of the field. Regardless of these differences, all three methods provide the 

same solution at the focal point because at that location, r = f1, ψ1 = ψ2, cos α = 1, and 
∂E
∂r0

= ik E. Below, we examine how the differences among these methods impact the focal 

field predictions at other locations.

1. Exponential Propagation Factor—The differences in the exponential propagation 

factors are difficult to appreciate since the form of the DWI in Eq. (16) is expressed in 

spherical coordinates, whereas the r  term in the KVI and HFP is expressed in Cartesian 

coordinates. To understand the impact of the exponential factor, we compute each integral 

and observe the phase at the focal plane. We consider an x-polarized incident field, and 

substitute the form of r  given in Eq. (22) into Eq. (25) or (29) and compare the result with 

the DWI expression. Figure 5(a) shows the phase of the dominant electric field component 

Ex using the KVI/HFP solution and the DWI solution. In the case of the KVI/HFP solution, 

the phase oscillation of Ex shows a gradual upward shift for locations away from the focal 

point. The greatest shift can be observed at the location farthest from the focal point. This is 

in contrast to the DWI prediction where the phase displays a steady oscillation without drift. 

The tiny spikes observed at the phase flipping locations in Fig. 5 are due to round-off and 

truncation errors during numerical integration.

This phase drift is significant within the focal plane only for locations away from the 

focal point. Its influence at other locations proximal to the focal point may be negligible. 

Nevertheless, it is instructive to analyze r  in the exponent to understand its origin. Equation 

(22) can be rewritten as

r = r0 1 − 2 x0x + y0y + z0z
r0

2 − x2 + y2 + z2

2r0
2

1
2 . (30)

Application of the binomial approximation and replacement of r0 by f1 gives

r = f1 − x0x + y0y + z0z
f1

+ x2 + y2 + z2

2f1
. (31)

We now apply the Fraunhofer approximation, [16,53], which ignores the quadratic term in 

Eq. (31) when 2f1 ≫ x2 + y2 + z2 . This provides the following approximate form for r :
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r = f1 − x0x + y0y + z0z
f1

. (32)

Utilizing spherical and cylindrical coordinates, we substitute 

x0, y0, z0 = f1 sin θ cos ϕ, f1 sin θ sin ϕ, − f1 cos θ  and x, y, z = ρ cos φ, ρ sin φ, z , which 

allows us to write ik r  in the exponent as

ik r = ik f1 + ikz cos θ − ik[ρ sin θ cos (ϕ − φ)] . (33)

This argument is identical to that appearing in the exponent of the DWI in Eq. (16). The 

introduction of this simplified form of r  in the exponent in Eqs. (25) or (29) diminishes 

the phase drift for locations away from the focal point on the focal plane as shown in Fig. 

5(a), indicating that the quadratic terms in r are those that give rise to the phase drift away 

from the focal spot. Nevertheless, we will utilize the full expression for r  as shown in the 

exponent of Eqs. (25) and (29) in the remainder of this tutorial.

2. Evaluation of the Partial Derivative in the KVI—The KVI contains the partial 

derivative of the field in Eq. (25). To compute this derivative, we need to determine the 

electric fields of two spherical reference surfaces with radii equal to f1 + Δr0 and f1 − Δr0. 

However, this computation can be simplified for certain wavefronts. Let us consider a 

monochromatic wavefront in the form of

A r0, θ, ϕ rp exp ikr0 =
A r0, θ, ϕ exp ikr0 p = 0

A r0, θ, ϕ 1
r exp ikr0 p = − 1, (34)

where p = 0 represents plane waves and p = − 1 represents diverging and converging beams. 

A θ, ϕ rp is the field amplitude at location θ, ϕ . r is the distance r ≫ 1/k  to the radiating 

point of a diverging beam or the point of convergence of a converging beam. The wave is 

assumed to propagate from left to right. The radiation point of the diverging beam is located 

on the left, and the point of convergence of the converging beam is located on the right.

When such a wavefront is incident upon the lens, we can write the partial derivative in Eq. 

(25) as a finite difference:

∂Ers r0, θ, ϕ
∂r0

= 1
2 Δ r0

Ers r0 + Δ r0, θ, ϕ − Ers r0 − Δ r0, θ, ϕ

= 1
2 Δ r0

Ers r0, θ, ϕ exp ik Δ r0 − exp −ik Δ r0

= ik Ers r0, θ, ϕ sin k Δ r0

k Δ r0

= ik Ers r0, θ, ϕ sinc k Δ r0 ,

(35)
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where Δr0 is an infinitesimal distance along r0. When Δr0 0, the sin c kΔr0  function 

approaches 1 [71]. This allows us to write Eq. (25) for the focused field as follows:

E(ρ) = −ik
2π ∫ ∫

A
Ers(θ, ϕ) (1 + cos α)

2
1
r exp(ik r ) dA . (36)

We see that under these conditions, the solution of the KVI is identical to the integral 

expression obtained within the HFP [Eq. (29)].

3. Multiplication Factors—The KVI and the HFP both contain an obliquity factor in 

the integrand, which is absent in the DWI. Figure 4 shows the obliquity factor variation with 

α. When α is very small and the lens has a long focal length, the effect of the obliquity 

factor is negligible. But if we consider a location far away from the focal point, α becomes 

larger and the results from the KVI/HFP will deviate from the DWI. Another difference we 

observe in Table 1 is the distance-dependent attenuation factor. The DWI uses 1/f, while the 

KVI/HFP have a 1/ r  term. To observe the combined effect of α and the attenuation factor, 

in Fig. 6, we compute the focal field amplitude along the x axis, y axis, and z axis using 

the solution from the KVI/HFP and the DWI for an incident plane wave. We also include 

the solution from the KVI/HFP with simplified ∣ r ∣ [Eq. (32)] in the exponent to avoid the 

impact from different exponential factors. The results show negligible differences between 

the different approaches.

C. Numerical Evaluations

We have formulated the integral expressions using the DWI [Eq. (16)], KVI [Eq. (25)], and 

HFP [Eq. (29)] to represent the focal field. Here, we discuss how those integrals can be 

computed numerically.

1. Debye–Wolf Integral—Solutions to the DWI [Eq. (16)] have been obtained for 

different illumination conditions after substitution with the following identity [53,55,57]:

∫
0

2π

exp(inϕ) exp[ ± iρ cos (ϕ − φ)] = 2π( ± i)nJn(ρ) exp(inφ) . (37)

This substitution reduces the 2D integral to a 1D integral. For commonly used polarization 

states of the incident field, we can write the following 1D integrals [53,55,57]:

I00 = ∫
0

θmax

A0(θ) a(θ) sin θ(1 + cos θ)J0(kρ sin θ) exp(iψ) dθ, (38)

I01 = ∫
0

θmax

A0(θ) a(θ)sin 2θJ1(kρ sin θ) exp(iψ) dθ, (39)
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I02 = ∫
0

θmax

A0(θ) a(θ) sin θ(1 − cos θ)J2(kρ sin θ) exp(iψ) dθ, (40)

where A0 θ  is the beam amplitude given by Eq. (3) and ψ = kz cos θ. A0 θ  can vary only 

with the polar angle θ. a θ  is either Abbe’s sine condition or Herschel’s condition as given 

in Eq. (7).

We can solve these integrals numerically and express E ρ  for different polarizations as 

linearly x polarized:

E(ρ) = F ninc

nm

I00 + I02 cos 2φ
I02 sin 2φ

−2i I01 cos φ
, (41)

linearly y polarized:

E(ρ) = F ninc

nm

I02 sin 2φ
I00 − I02 cos 2φ
−2i I01 sin φ

, (42)

linearly +45° polarized:

E(ρ) = F
2

ninc

nm

I00 + I02(cos 2φ + sin 2φ)
I00 − I02(cos 2φ − sin 2φ)

−2i I01(cos φ + sin φ)
, (43)

linearly −45° polarized:

E(ρ) = F
2

ninc

nm

I00 + I02(cos 2φ − sin 2φ)
−I00 + I02(cos 2φ + sin 2φ)

−2i I01(cos φ − sin φ)
, (44)

left circularly polarized:

E(ρ) = F
2

ninc

nm

I00 + I02(cos 2φ + i sin 2φ)
iI00 − iI02(cos 2φ + i sin 2φ)

−2i I01(cos φ + i sin φ)
, (45)

and right circularly polarized:

E(ρ) = F
2

ninc

nm

iI00 + iI02(cos 2φ − i sin 2φ)
I00 − I02(cos 2φ − i sin 2φ)

2I01(cos φ − i sin φ)
, (46)

where
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F = −ikf1 exp ikf1

2 . (47)

2. KVI and HFP Integrals—To solve the area integral expressions for the KVI and HFP, 

we may express dA in either Cartesian (dxdy) or spherical coordinates (sin θ dϕdθ), before 

proceeding with the complicated double integration. Another approach that can be applied 

for this integral is to use a set of uniformly distributed radiating points on the spherical 

reference surface, so that surface element dA can be approximated as

dA ≈ A
N =

∫0

θmax∫0
2πf1

2 sin θ dϕ dθ
N = 2π 1 − cos θmax f1

2

N , (48)

where N is the number of radiating points on the reference surface and A represents the 

area of the spherical reference surface. This allows us to express the integral as a direct 

summation. The advantage of this integration approach is that all radiating points on the 

spherical reference surface are equally spaced, and any spatial variations of Ers will be 

properly represented in the focal volume. If we consider traditional θ, ϕ  sampling or 

cos θ, ϕ  sampling, the spacing along ϕ will be different for different θ values, and the spatial 

variations of Ers may not be properly represented in the focal volume. We adapt Koay’s 

method [72] to uniformly sample the spherical reference surface. Note that x, y  coordinates 

of the sampled points at the spherical reference surface should match the x∞, y∞  coordinates 

in Eqs. (1)–(3). The best way to do this is to first sample the spherical reference surface and 

use the coordinates x, y  of the surface to determine the coordinates x∞, y∞  in Eqs. (1)–(3).

We use Eq. (48) to express the integral in Eqs. (25) and (29) as a summation. The solution 

obtained from the KVI [Eq. (25)] can now be written as

E(ρ) = −ikf1
2 1 − cos θmax

N × ∑
j = 1

N
Ers(θ, ϕ)j

cos αj

2 + ∂Ers r0, θ, ϕ j

∂r0

1
2ik × 1

r j

exp ik r j ,
(49)

where the partial derivative along r0 can be obtained by writing the central finite difference 

between Δr0
+ = f1 + Δr0 and Δr0

− = f1 − Δr0:

∂Ers r0, θ, ϕ
∂r0

= 1
2 Δ r0

Ex
rs Δ r0

+, θ, ϕ − Ex
rs Δ r0

−, θ, ϕ
Ey

rs Δ r0
+, θ, ϕ − Ey

rs Δ r0
−, θ, ϕ

Ez
rs Δ r0

+, θ, ϕ − Ez
rs Δ r0

−, θ, ϕ
, (50)

where Δr0 represents an infinitesimal distance along r0.

The solution obtained from the HFP [Eq. (29)] can be written as
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E(ρ) = −ikf1
2 1 − cos θmax

N × ∑
j = 1

N
Ers(θ, ϕ)j

1 + cos αj

2
1
r j

exp ik r j , (51)

Where Ers θ, ϕ j is the electric field wavelet (small section of a wave) on the jth location of 

the spherical surface. This summation is also known as an electric field superposition. The 

factor 1 − cos θmax  acts as a normalizing factor and attains the value of one when NA = 1. To 

obtain accurate results, it is important to select a sufficiently high value for N and perform 

a convergence test on the numerical integration scheme. A simple way to ensure this is to 

determine which of the Cartesian electric field amplitude components is the highest in the 

focal plane when using the DWI and increase the value used for N until the change in the 

value obtained for the integral becomes insignificant. In Fig. 7, we show the results obtained 

with the HFP solution to the diffraction integral. It shows the phase of each component.

D. Selection of Focused Beam Propagation Method

We have presented three integral methods that can be employed to model focused beam 

propagation in non-scattering media. We have provided a comparative analysis of these 

methods and shown how to compute them numerically. The DWI provides an efficient 

method for analyzing focal fields in homogeneous and stratified media [39,53,73,74] and is 

considered a good approximation to a well-posed boundary value problem [70]. However, 

any attempt to use the DWI in a scattering medium requires using either a representation 

of the scattering medium in k-space or an approach similar to that provided by Török and 

co-workers [46]. Representation of the scattering medium in k-space requires an evaluation 

of the effects of scattering and the propagation of the resulting k vector distribution before 

the application of the Fourier transform. To our knowledge, such a process has not been 

developed and applied for computing propagation in deterministic scattering media. The 

approach provided by Török’s group [46] does not account for inter-particle scattering and is 

not easily applied to a medium with multiple scatterers. By contrast, solutions provided by 

the KVI and HFP are in a form that is readily applicable for computing both direct scattering 

and inter-particle scattering necessary for modeling various microscopy modalities. The 

KVI solution is computationally expensive because it requires the computation of electric 

field gradients at the lens. However, we have shown in Eqs. (34)–(36) that for converging, 

diverging, and plane wavefronts, this computation can be simplified, and that the simplified 

version is identical to the HFP. The HFP [Eq. (29)] is computationally efficient because it 

does not require the computation of electric field gradients. Our prior use of the HFP method 

has provided results that agree well with FDTD results [47].

5. FOCUSED BEAM PROPAGATION IN SCATTERING MEDIA

In this section, we outline an approach for describing the interaction of the focused 

beam wavefront with scatterers found in the medium between the focusing lens and the 

focal volume. While many other approaches have been discussed [41–46], each method 

has certain limitations. Here, we describe an approach grounded in the fundamentals of 
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scattering theory [14,15,17,47,48,75–77] and provide a comprehensive framework that can 

be applied to a variety of microscopy modalities under different illumination conditions.

A. Medium with a Single Scatterer

First, we discuss the modeling of focused beam propagation in the presence of a single 

scatterer within the medium. Second, we extend the approach for use in the case of multiple 

scatterers. Figure 8 depicts the graphical representation for the case of a single scatterer.

1. Electric Field Components and Unit Vectors—Up to this point, we have 

represented the electric fields using their Cartesian components so that the total electric field 

can be determined through the vector addition of each Cartesian component. However, when 

performing scattering calculations, we must compute the incident electric field components 

that lie parallel and perpendicular to a scattering plane [15,17]. As shown in Fig. 8(a), the 

scattering plane contains the source, a scatterer, and an observation location. We can start 

with the parallel and perpendicular field components at the lens and apply the required 

coordinate transformations to obtain the incident field at the scatterer. It is also convenient 

to define unit vectors m̂ and n̂ of a local orthonormal coordinate system to track the parallel 

and perpendicular electric field components as well as unit vector û that represents the 

propagation direction [47,75].

2. Parallel and Perpendicular Components at the Lens—Consider a collimated 

beam incident upon the lens at location L = f1 sin θl cos ϕl, f1 sin θl sin ϕl, − f1 cos θl . The 

first step is to consider the meridional plane as shown in Fig. 2 and compute the electric field 

components parallel and perpendicular to it, as follows:

E∥
l θl, ϕl

E⊥
l θl, ϕl

0
= L−1 ⋅ ℝ ⋅ Ers θl, ϕl , (52)

where L−1 is equal to the transpose of L specified previously in Eq. (9). E∥
l θl, ϕl  and 

E⊥
l θl, ϕl  are electric field components parallel and perpendicular to the meridional plane, 

respectively, as shown in Fig. 8(a).

To track the parallel and perpendicular components, we can determine unit vectors 

m̂l = m̂x
l , m̂y

l , m̂z
l  and n̂l = n̂x

l , n̂y
l , n̂z

l  at location L for components E∥
l θ, ϕl  and E⊥

l θl, ϕl  in the 

following way:

ml

nl =
cos θl cos ϕl cos θl sin ϕl sin θl

−sin ϕl cos ϕl 0 . (53)

The unit vector that represents the propagation direction ûl points towards the focal point F . 

It is given by −sin θl cos ϕl, −sin θl sin ϕl, cos θl .
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3. Electric Field Propagation from Lens to Scatterer—Consider the placement of 

a scatterer at location Q ρq cos φq, ρq sin φq, zq  as shown in Fig. 8(a). We aim to compute the 

incident electric field components E∥
in and E⊥

in at location Q. We start with E∥
l and E⊥

l  and 

transform them to E∥
lq and E⊥

lq at location L. We then propagate the electric field towards 

location Q and apply another transformation to obtain E∥
in and E⊥

in.

First, we find the direction of propagation of the wavelet ûlq that points toward Q at location 

L:

ulq T =
ρq cos φq − f1 sin θl cos ϕl / rlq

ρq sin φq − f1 sin θl sin ϕl / rlq

zq + f1 cos θl / rlq
, (54)

and rlq  is the distance between L and Q. Second, we find a plane parallel to unit vector ûlq

because such a plane can be considered as the incident plane at Q. If we can find the angle 

pair that transforms LF  to LQ, we can use it to map the meridional plane shown in Fig. 8(b) 

to a new plane parallel to ûlq [78]. The transformation angle pair ϕt and θt  can be computed 

as [79]

ϕt = arctan nl ⋅ ulq

ml ⋅ ulq , θt = arccos ul ⋅ ulq . (55)

We can now write the relationship between E∥
lq, E⊥

lq T  and E∥
l, E⊥

l T  as

E∥
lq

E⊥
lq =

cos ϕt sin ϕt

−sin ϕt cos ϕt

E∥
l

E⊥
l , (56)

where E∥
lq is parallel and E⊥

lq is normal to the new plane that we have identified as the incident 

plane.

The unit vectors of the electric field components in Eq. (56) are shown in Fig. 8(c), and are 

given by

mlq

nlq = [T] ml

nl , (57)

where m̂lq and n̂lq are unit vectors of E∥
lq and E⊥

lq, respectively, and the transformation matrix 

T  is expressed as [78]

[T] =
cos θt cos ϕt cos θt sin ϕt −sin θt

−sin ϕt cos ϕt 0 . (58)
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To account for the finite volume of the scatterer, we must consider separately each wavelet 

that reaches the scatterer. Let us consider the radiation from a single radiating point of the 

spherical reference surface that represents a partial field incident upon the scatterer at Q. We 

apply the solution provided by the HFP [Eq. (51)] to propagate a polarized wavelet from L
towards Q and write the partial field E∥

q, E⊥
q  in Fig. 8(d) as

E∥
q

E⊥
q = −ikf1

2 1 − cos θmax

N
E∥

lq(θ, ϕ)
E⊥

lq(θ, ϕ)
× 1 + cos θt

2
1

rlq exp ik rlq . (59)

The local unit vectors at Q remain unchanged. m̂q, n̂q, ûq T
 is given by

mq

nq

uq
=

mlq

nlq

ulq
. (60)

We now know the partial field incident upon the scatterer at Q. However, its parallel and 

perpendicular components are given relative to the incident plane. Thus, the next step is to 

compute the parallel and perpendicular components relative to the scattering plane, as shown 

in Fig. 8(f). Similar to Eq. (55), we can compute the transformation angle pair ϕs and θs  for 

this transformation as

ϕs = arctan nq ⋅ us

mq ⋅ us , θs = arccos uq ⋅ us , (61)

where the unit vector representing the propagation of the scattered field, ûs in Fig. 8(g), can 

be determined as

us T =
ρ cos φ − ρq cos φq /d
ρ sin φ − ρq sin φq /d

z − zq /d
, (62)

and d is the distance from the scatterer to the observation location O at 

ρ = ρ cos φ, ρ sin φ, z .

We next transform the parallel and perpendicular components of Eq, which are defined 

relative to the incident plane, in terms of the parallel and perpendicular field components 

relative to the scattering plane, i.e., E∥
in, E⊥

in T , as shown in Fig. 8(f). This transformation is 

given as

E∥
in

E⊥
in =

cos ϕs sin ϕs

−sin ϕs cos ϕs

E∥
q

E⊥
q = ℝ2

E∥
q

E⊥
q , (63)
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where ℝ2 represents a 2 × 2 transformation matrix.

The subsequent step is to obtain the unit vectors of E∥
in and E⊥

in as shown in Fig. 8(e). m̂in

and m̂s lie in the same plane, and n̂in is collinear with n̂s [Fig. 8(g)]. When cos θs = 1, 

we can apply the azimuthal angle transformation given in Eq. (63) to compute unit vectors 

m̂s = m̂in = m̂x
q cos ϕs, m̂y

q sin ϕs, m̂z
q  and n̂s = n̂in = −n̂x

q sin ϕs, n̂y
q cos ϕs, n̂z

q . When cos θs ≠ 1, 

we can write orthonormal unit vector relationships to determine n̂s and n̂in and then use that 

information to obtain m̂s and m̂in[17]. This yields the following relations:

ns = uin × us

uin × us

ms = ns × us
,

nin = uin × us

uin × us

min = nin × uin
. (64)

4. Computation of the Scattered Field—The rigorous computation of the scattered 

field is a tedious process and requires the evaluation of complex integral expressions 

[14,15,17] that follow from the solution for optical scattering produced by a dielectric 

particle. Once the incident electric field components are defined, we can consider the 

following simplified relationship to calculate the scattered far field [14,15,17,76]:

E∥
s

E⊥
s = i

kdexp(ikd)
S2 θs, ϕs S3 θs, ϕs

S4 θs, ϕs S1 θs, ϕs

E∥
in

E⊥
in

= i
kdexp(ikd) [S] ℝ2

E∥
q

E⊥
q ,

(65)

where E∥
s, E⊥

s T  are the parallel and perpendicular components of the scattered field, 

respectively, and E∥
in, E⊥

in T  is given in Eq. (63). S1 θs, ϕs , S2 θs, ϕs , S3 θs, ϕs , and S4 θs, ϕs

are components of the scattering amplitude matrix S[15,17].

To represent a matrix multiplication, we can place the common multiplier inside the 

scattering amplitude matrix and express the partial scattered field detected at the observation 

location for the jth wavelet as

E∥
s

E⊥
s = i

kd exp(ikd) S ℝ2
E∥

q

E⊥
q

j

.
(66)

To compute the full scattered field, we need to consider wavelets emanating from all 

locations on the spherical reference surface. However, the partial electric fields provided 

by Eq. (66) cannot be directly summed because the reference frames of parallel and 

perpendicular components are not identical across all the partial fields considered. 

Superposition can be performed only once all local parallel and perpendicular components 
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are converted to global Cartesian components. This conversion is accomplished using the 

following relationship:

Ex
s

Ey
s

Ez
s

=
mx

snx
s

my
sny

s

mz
snz

s

E∥
s

E⊥
s = ms

ns

T E∥
s

E⊥
s , (67)

where m̂s = m̂x
s, m̂y

s, m̂z
s  and n̂s = n̂x

s, n̂y
s, n̂z

s  can be computed by the relations given in Eq (64).

To obtain the complete scattered field, we apply Eq. (59) for each wavelet that is oriented 

towards Q from the spherical reference surface and use it in Eqs. (66) and (67). The total 

scattered field at the observation location ρ due to a single scatterer can then be expressed as

Es(ρ) = ∑
j = 1

N ms

ns

T
i

kd exp(ikd)S ℝ2
E∥

q

E⊥
q

j

= ∑
j = 1

N
Es(ρ) j,

(68)

where Es ρ j represents the partial scattered field detected at ρ in Cartesian form for the jth 

wavelet.

Note that Eq. (68) was derived for an observation location in the “far zone.” Here, the 

far zone represents locations that satisfy d ≫ max λ, a, ka2/2 , where λ is wavelength, and a
is the radius of the scatterer [17,76]. The distance between any point within the scatterer 

and the observation location should be greater than λ. For scatterers much smaller than 

the wavelength, the inequality d ≫ a defines the far-zone condition. For scatterers much 

larger than the wavelength, the inequality d ≫ ka2/2, which defines the Fraunhofer distance, 

determines the distance beyond which the far-zone expressions are valid [76].

5. Scattering Amplitude Matrix—We now take a closer look at the scattering 

amplitude matrix defined in Eq. (65). This matrix can be used for various scatterer shapes 

[48]. Here, we discuss how to obtain the scattering amplitude matrix components for 

spherical scatterers, which is a good approximation for the scattering objects relevant for 

optical microscopy of biological samples [50,80–82]. Rigorous computation of the scattered 

field for non-spherical scatterers is more complicated and beyond the scope of this tutorial.

For spherical scatterers, S3 θs, ϕs = S4 θs, ϕs = 0, and the azimuthal dependence of remaining 

S1 θs, ϕs , S2 θs, ϕs  can be ignored. In this case, we may write the scattering amplitude matrix 

for spherical scatterers as

[S] = S2 θs 0
0 S1 θs

, (69)
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where

S1 θs = ∑
n = 1

∞ (2n + 1)
n(n + 1) anπn cos θs + bnτn cos θs ,

S2 θs = ∑
n = 1

∞ (2n + 1)
n(n + 1) anτn cos θs + bnπn cos θs ,

(70)

where an and bn are Mie scattering coefficients and πn cos θs  and τn cos θs  are Legendre 

functions [14,15].

6. Application of Near-Field Lorenz–Mie Theory—The scattering amplitude matrix 

components S1 θs  and S2 θs  in the Mie solution are known as asymptotic scattering 

amplitudes at infinity. However, when the observation location or another spherical scatterer 

is located at a distance that does not satisfy the far-zone criteria specified above, we can 

apply results from near-field Lorenz–Mie theory [15,77,83] to obtain the scattered field in 

lieu of using S1 θs  and S2 θs . Near-field Lorenz–Mie theory contains distance-dependent 

components that are not fully transverse. The scattered field contains a radial component 

Er  in addition to polar Eθ  and azimuthal Eϕ  components. However, we can ignore the 

effect of the radial component because it decays rapidly within an optical wavelength, and 

its effect on the overall result is negligible for well-separated scatterers. Assigning Eθ as 

the parallel component and Eϕ as the perpendicular component, we can write a relationship 

similar to Eq. (65) as

E∥
s

E⊥
s = i

kd
Eθ θs, kd 0

0 Eϕ θs, kd ℝ2
E∥

q

E⊥
q

= i
kdE(kd) ℝ2

E∥
q

E⊥
q ,

(71)

where

Eϕ θs, d = ∑
n = 1

∞ (2n + 1)
n(n + 1) inξ'(kd)anπn cos θs +in + 1ξ(kd)bnτn cos θs ,

Eθ θs, d = ∑
n = 1

∞ (2n + 1)
n(n + 1) inξ'(kd)anτn cos θs +in + 1ξ(kd)bnπn cos θs .

(72)

Here, ξ kd  is the Riccati–Bessel function, and ξ′ kd  is its derivative [14,15]. E kd
represents a distance-dependent scattering matrix.

Note that Eq. (65) includes the phase term exp ikd , which is not explicitly found in Eq. 

(71). The scattering amplitudes S1 θs, ϕs , S2 θs, ϕs , S3 θs, ϕs , and S4 θs, ϕs  in Eq. (65) are 

not distance-dependent functions and require a separate propagation phase to compute the 

scattered field at the observation location. Functions ξ kd  and ξ′ kd  in Eq. (71), on the other 

hand, already include the propagation phase.
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B. Medium with Multiple Scatterers

We now discuss how to extend the equations developed in Section 5.A to describe wave 

propagation in a medium containing multiple scatterers. When considering each scatterer 

independently, we can determine the scattered field due to primary scattering at the 

observation location. Additionally, we must consider the potential for multiple scattering, 

i.e., the possibility that the scattered field from one scatterer may act as an incident field 

on other scatterers and vice versa [Fig. 9(a)]. Fortunately, in many scenarios of practical 

interest, the scattered field undergoes considerable geometric attenuation before it is incident 

on another scatterer. Such an attenuated incident field produces an even weaker scattered 

field. Thus, the influence of this secondary scattered field on other scatterers, as shown in 

Fig. 9, is often negligibly small in many relevant cases.

To obtain an estimate of the magnitude of the secondary scattering effect, we considered the 

scenario shown in Fig. 9(a) and computed the primary and secondary scattering at ρ along 

the y axis for spherical scatterers. Figure 9(b) shows the primary and secondary scattering 

intensities for the arrangement in Fig. 9(a). In this scenario, we see that the secondary 

scattering intensities are, at most, two to three orders of magnitude smaller than the primary 

scattering intensities. Of course, these results do depend on the size and location of the 

secondary scatterer, but the scenario shown here is representative of the typical relative 

differences between primary and secondary scattering intensities.

In practice, the influence of tertiary or higher-order scattering can be safely ignored. We 

accordingly restrict our description to primary scattering and secondary scattering. With 

reference to Fig. 9(a), consider a field radiated from a dipole j that is incident on a scattering 

object Q. In the case of a nearby object R, following Eq. (68) derived for a single scatterer, 

we can write the scattered field observed at point ρ for multiple scatterers as

Es(ρ) j = Epri
s (ρ) j + Esec

s (ρ) j, (73)

where the primary scattered field is

Epri
s (ρ) j = ∑

q = 1

nscat ms

ns
q

T

i
kdq

exp ikdq Sq ℝ2qρ
E∥

q

E⊥
q

j

(74)

and the secondary scattering field is

Esec
s (ρ) j = ∑

q = 1

nscat

∑
r( ≠ q) = 1

nsat ms

ns
r

T

i
kdr

exp ikdr Sr ℝ2rρ

× i
kdqr

exp ikdqr Sq ℝ2qr
E∥

q

E⊥
q

j

.

(75)
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Here, nscat is the number of scatterers in the media, and Sq and Sr are the scattering amplitude 

matrices for the Qth and Rth scatterers, respectively. ℝ2qρ is a 2 × 2 transformation matrix at 

the Qth scatterer with an observation location at ρ. ℝ2rρ is a 2 × 2 transformation matrix at 

the Rth scatterer with an observation location at ρ. ℝ2qr is a 2 × 2 transformation matrix at the 

Qth scatterer with an observation location at the Rth scatterer [Fig. 9(a)]. m̂, n̂ q
T and m̂, n̂ r

T

transform parallel and perpendicular components to Cartesian components, and subscripts q
and r represent Qth and Rth scatterers, respectively.

When we consider all locations of the spherical reference surface, the total scattered field at 

ρ is given by

Es(ρ) = ∑
j = 1

N
Epri

s (ρ)j + Esec
s (ρ)j . (76)

When the near-field Lorenz–Mie theory is considered, the exp ikd S matrix in Eqs. (74) and 

(75) and the other primary and secondary scattering expressions in Part II [51] should be 

replaced with E kd  as shown in Eq. (71).

Figure 10(a) shows the computed scattered electric field based on Eq. (76). Two scatterers 

are placed prior to the focal plane, and three scatterer diameters are considered: 1 μ m, 

2.5 μ m and 5 μ m. The results are in excellent agreement with the FDTD results given 

in Fig. 10(b). We note that the results obtained from Eq. (76) may lack accuracy in the 

immediate near field of the scatterers because of the missing radial component. On the other 

hand, the FDTD results may be affected by the focused beam implementation technique, 

discretization errors, and unavoidable reflections from the perfectly matched layer (PML) 

[27,28]. The results obtained in Eq. (76) and FDTD simulations near the focal plane are 

compared numerically in [47].

When scatterers are involved, a detector at ρ captures the total electric field Etot ρ

representing the superposition of both incident E ρ  and scattered Es ρ  fields [14,15,17]:

Etot(ρ) = E(ρ) + Es(ρ) . (77)

E ρ  in Eq. (77) is provided by Eq. (49) or Eq. (51). The corresponding intensity of the field 

at the location of a nonlinearly polarizable object is proportional to Ex
2 + Ey

2 + Ez
2, where 

Ex, Ey, and Ez are Cartesian components of Etot ρ . It is the computation of the total electric 

field and corresponding intensities within the focal volume that provides the critical input to 

determine the generation of optical signals within the focal volume considered in Part II of 

this tutorial.
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6. CONCLUSION AND FURTHER READING

We have provided a framework that utilizes classical analytical electromagnetic field 

propagation methods to comprehensively model optical microscopy in scattering samples 

with fixed scatterer configurations. The equations used in the tutorial for propagating light 

in non-scattering media originate from the vectorial and scalar theory of diffraction and 

focusing. Their foundation and application can be found in [15,39,40,53,54,57,64].

We have limited our scope to spherical scatterers, which are generally considered to provide 

a good approximation to the scattering objects relevant for optical microscopy of biological 

samples. Rigorous modeling and computation of the scattered field for non-spherical 

scatterers is more complicated and is treated in [48,84].

We have treated both primary and secondary scattering. The inclusion of secondary 

scattering increases the computational time exponentially. Secondary scattering becomes 

important once scatterers are larger than three to four times the wavelength and when they 

are located very close to each other. In other cases, the effect of secondary scattering on the 

final result is rather low and may be ignored. In cases where the scatterers are smaller than 

the wavelength with the neighboring scatterers located in the far zone, secondary scattering 

can be safely neglected.

In Part II of this tutorial [51], we consider focal field distributions in the presence of 

scatterers, signal generation, radiation, and far-field detection. We also provide a case study 

that includes two-photon and SHG microscopy.
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Fig. 1. 

Excitation part of a basic microscopy system. Incident beam Einc x∞, y∞  is considered as a 

collimated beam. The number in front of the process indicates the related sections in this 

tutorial.
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Fig. 2. 
Depiction of the spherical reference surface and coordinate system. The origin is placed 

at the focal point. We consider a refracted ray that emanates from the source and lies 

on a meridional plane that contains both the optical axis (z axis) and refracted ray under 

consideration. This ray points toward the focal point and is oriented at a polar angle θ
relative to the −z axis and an azimuthal angle ϕ relative to the +x axis on the plane 

perpendicular to the z axis.
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Fig. 3. 
Diffraction by the spherical reference surface aperture. A is the spherical reference surface, 

and B is a plane outside of the spherical reference surface whose orientation is perpendicular 

to the z axis. C is a large spherical surface centered around the observation point ρ x, y, z . 

x0, y0, z0  represents any point on the reference surface. F  is the focal point at the origin. The 

origin of the Cartesian coordinate system lies at focal point F .
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Fig. 4. 
Polar plots of obliquity factors K α = cos α [64] and K α = 1 + cos α /2 [16]. While 

1 + cos α /2 is non-negative for the whole α range, cos α is non-negative for only 

−π/2 ≤ α ≤ π/2.
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Fig. 5. 
Dependency of r  on the exponent. Phase of dominant component Ex at the focal plane 

for x-polarized incidence. (a) Results obtained using the KVI/HFP solution with expression 

for r  stated in Eq. (22) (solid blue) and DWI solution (dashed red). (b) Results obtained 

using KVI/HFP solution with simplified r  without quadratic terms in Eq. (32) (solid blue). 

Incident wavelength is 0.8μm and NA = 0.866; medium refractive index is 1.333.
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Fig. 6. 
Computed focal field amplitudes log10  along the (a) x axis, (b) y axis, and (c) z axis, 

using the solution from the DWI (dashed blue), KVI/HFP (solid red), and KVI/HFP 

with simplified r  in the exponent (dashed red). Since the curves overlap without visible 

differences, only the KVI/HFP solution is fully visible. Inset on the right magnifies the 

dashed box located at 10 μ m from the focal origin. Incident wavelength is 0.8 μ m and 

NA = 0.866; medium refractive index is 1.333.
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Fig. 7. 
Computed electric fields in the focal volume in a non-scattering medium for x-polarized 

incident plane wave. The solution of the HFP is applied to compute (a) amplitude log10  of 

selected slices in the focal volume. x − y plane slices are shown at z = − 4.5 μ m, −3 μ m, 

−1.5 μ m, 0, 1.5 μ m, 3 μ m, and 4.5 μ m. (b) Amplitude and (c) phase of electric field 

components at the focal plane z = 0 . Incident wavelength is 0.8 μ m and NA = 0.866; 

medium refractive index is 1.333.
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Fig. 8. 
Scattering by a single scatterer. (a) Complete process including the electric field at the 

spherical reference surface L , incident electric field at the scatterer Q , and scattered field 

at the observation point O . (b) Graphical representation of electric field components E∥
l, E⊥

l

at the spherical reference surface before transformation and E∥
lq, E⊥

lq  after transformation. 

E∥
l is parallel to the meridional plane, and E∥

lq is parallel to the incident plane. (c) Unit 

vectors of (b). (d) Graphical representation of incident field at the scatterer relative to the 

incident plane E∥
q, E⊥

q  and relative to the scattering plane E∥
in, E⊥

in . (e) Unit vectors of (d). 

(f) Graphical representation of scattered field at the observation location O. E∥
in and E∥

s are 

parallel, and E⊥
in and E⊥

s  are normal to the scattering plane. (g) Unit vectors of (f). The 

spherical reference surface is drawn horizontally such that the scattering diagram aligns with 

the illustrations in other references [15,17,48]. Not to scale.
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Fig. 9. 
(a) Primary, secondary, and tertiary scattering. The scattered field of the Qth scatterer 

becomes an incident on the Rth scatterer and creates secondary scattering. The secondary 

scattering reaches the observation location. In addition, it becomes an incident on the Qth 

scatterer and produces tertiary scattering. dq is distance from the center of the Qth scatterer to 

ρ, dr is distance from the center of the Rth scatterer to ρ, and dqr is distance from the center 

of the Qth scatterer to the center of the Rth scatterer. (b) log10 intensities of primary (solid) 

and secondary (dashed) scattering at ρ along the y axis for spherical scatterers of different 
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sizes. For each simulation, we considered two scatterers of the same size spaced dqr 4 μ m
apart. d = 4 μ m and β = 45°. Four scatterer sizes considered are 0.5 μ m, 1 μ m, 1.5 μ m, and 

2 μ m.
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Fig. 10. 
x component of the scattered electric field amplitude on the x − z plane y = 0
computed using (a) our method discussed in Section 5 and (b) FDTD for 1.0 μ m (left), 

2.5 μ m (middle), and 5.0 μ m (right) spherical scatterers. The scatterers are located at 

− 2.4 μ m, 0 μ m, − 6 μ m  and 2.4 μ m, 0 μ m, − 15 μ m . The horizontal dashed line 

shows the focal plane. Amplitude results are shown in log10 scale. NA of the lens is 0.667.
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Table 1.

Comparison of Solution Integrals Provided by DWI, KVI, and HFPa

Method Integral Eqs.

DWI
−ik
2π ∫ ∫A

exp iψ1
f1

(E) dA (16)

KVI
−ik
2π ∫ ∫A

exp iψ2
|r|

Ecos α
2 + ∂E

∂r0

1
2ik dA (25)

HFP
−ik
2π ∫ ∫A

exp iψ2
|r|

Ecos α
2 + E

2 dA (29)

aψ1 = kf1 + kz cos θ − k ρ sin θ cos ϕ − φ , and ψ2 = k r .
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