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Abstract

Study Objectives—We present an automated sleep electroencephalogram (EEG) spectral 

analysis pipeline that includes an automated artifact detection step, and we test the hypothesis that 

spectral power density estimates computed with this pipeline are comparable to those computed 

with a commercial method preceded by visual artifact detection by a sleep expert (standard 

approach).

Methods—EEG data were analyzed from the C3-A2 lead in a sample of polysomnograms from 

161 older women participants in a community based cohort study. We calculated sensitivity, 

specificity, accuracy and Cohen’s kappa measures from epoch-by-epoch comparisons of 

automated to visual-based artifact detection results; then, we computed the average EEG spectral 

power densities in six commonly used EEG frequency bands and compared results from the two 

methods using correlation analysis and Bland-Altman plots.

Results—Assessment of automated artifact detection showed high specificity (96.8 to 99.4% in 

NREM, 96.9 to 99.1% in REM sleep), but low sensitivity (26.7 to 38.1% in NREM, 9.1 to 27.4% 

in REM sleep). However, large artifacts (total power > 99th percentile) were removed with 
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sensitivity up to 87.7% in NREM, 90.9% in REM, with corresponding specificities of 96.9% and 

96.6%. Mean power densities computed with the two approaches for all EEG frequency bands 

showed very high correlation (>0.99). The automated pipeline allowed for a 100-fold reduction in 

analysis time with respect to the standard approach.

Conclusion—Despite low sensitivity for artifact rejection, the automated pipeline generated 

results comparable to those obtained with a standard method that included manual artifact 

detection. Automated pipelines can enable practical analyses of recordings from thousands of 

individuals, allowing for use in genetics and epidemiological research requiring large samples.

Keywords

Large-scale spectral analysis; sleep EEG; artifact detection

1. Introduction

Sleep is a complex and dynamic process often quantified through spectral analysis of the 

electroencephalogram (EEG). Quantitative analysis of the EEG (qEEG), including spectral 

analysis, is advantageous in that it is not based on the use of arbitrary criteria and their 

subjective interpretation, and it provides a wealth of information that exceeds traditional 

sleep stage scoring1–7. In fact, application of qEEG has led to new insights into the 

homeostatic regulation of sleep, reflected in the sleep-wake dependent changes of EEG 

slow-wave activity8,9. Moreover, among its manifold applications, qEEG during sleep has 

identified markers that associate with psychiatric disease6,10,11, cognitive development and 

decline12,13, memory consolidation4,14,15 drug responses16–18, and genetic variants19. An 

important barrier for further discovery is that qEEG has required labor-intensive annotation 

and thus has mostly been applied in relatively small studies. While large-scale qEEG was 

impractical in the past, advances in algorithms and the collection of electronic 

polysomnography (PSG) data provide opportunities to apply qEEG on large numbers of 

individuals.

The application of Fourier spectral analysis to the EEG was proposed early in the study of 

this signal20 and continues to be used commonly in research21,22. Fourier spectral analysis 

transforms a signal from the time domain into the frequency domain, that is, it defines the 

signal as a sum of sinusoidal signals with different frequencies and phases23. Power spectra 

are usually computed separately for NREM and REM sleep due to characteristic differences 

in the EEG signal that reflect different states and physiological generators. The current gold 

standard approach to qEEG analysis involves pre-processing of studies with visual 

identification and manual removal of EEG artifacts typically arising from body and eye 

movements, electrode instability, power line noise, etc., prior to the computation of the 

power spectrum. Commercial software tools for facilitating manual artifact removal and 

performing spectral analysis are commonly provided as part of an EEG data collection 

system or are available for purchase as stand-alone software products.

As interest in using qEEG grows for improving phenotypic characterization of sleep, there is 

a need to identify automated methods for producing consistent results, applicable to analysis 

of large numbers of records, as is needed for genetic association tests or precision medicine. 
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Although commercial software tools provide a turn-key solution for analyzing small 

numbers of sleep studies, the cost and time required for manual artifact removal of 

individual recordings can become prohibitive for analysis of large numbers of studies. We 

estimate that the current analysis approach with manual artifact removal requires between 1 

and 2 hours per lead in each study. Commercial and open source applications provide 

automatic artifact detection routines that may include routines for identifying artifacts 

arising from the electrocardiogram, eye movements, body movements and muscle activation, 

which can reduce the time required to perform spectral analysis24–28. However, proprietary 

algorithms are often unavailable for examination in sufficient detail to provide the ability to 

reproduce findings. Available current spectral analysis software may also provide only 

limited documentation, and not detail validation procedures. Across vendors, various 

algorithms are used, which limits generalization. The need for transparent and validated 

methods for data analysis is increasingly emphasized by the National Institutes of Health, 

which now requires plans for ensuring “reproducibility and rigor” in research.

In order to address these needs, we developed a computationally efficient open-source 

spectral analysis pipeline that integrates an artifact detection step, provides a wide range of 

spectral features, and can automatically create reports and figures. The latter allow large-

scale results to be quickly reviewed by a trained technician. The analysis pipeline can be 

performed on multiple recordings per run (in contrast to many current software tools) and is 

modeled after a procedure that includes manual artifact removal and spectral analysis 

performed with commercial software. Results generated by the automated pipeline were 

compared to those from a previously reported study29, where spectral analysis was 

conducted with commercial software and preceded by manual artifact detection. In this 

study, we tested the hypothesis that, despite the expectation of some residual artifacts 

present in the EEG signal following automated artifact detection and removal, spectral 

power density estimates for commonly used EEG bands computed with the two approaches 

are comparable. We further hypothesized that substantial decreases in spectral analysis time 

could be achieved by integrating each analysis step (data preparation, data checking, artifact 

detection, spectral analysis, report generation and visualization) into a single tool and that 

processing a large number of recordings in conjunction with efficient visual review of 

studies will reduce the need to apply manual artifact removal.

2. Methods

2.1. Study Data

Polysomnography data were analyzed from 170 female participants (mean age: 83.1 years; 

SD: 3.1 years) in the Sleep and Cognition Ancillary Study (SleepCog) of the Study of 

Osteoporotic Fractures (SOF)29, a study of the potential association between indices derived 

from polysomnography and spectral analysis of the sleep EEG and later-life cognitive 

impairment. SleepCog is a sub-study of the SOF study, a multi-site, prospective, 

observational study of incident osteoporotic fractures in women at age 65 years and older 

with recruitment occurring in Baltimore, Maryland; Minneapolis, Minnesota; Portland, 

Oregon; and the Monongahela Valley, Pennsylvania30. SOF recruited a total of 9704 

Caucasian women between 1986 and 1988. Sleep was assessed by actigraphy in 2932 
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subjects and two cognitive function tests, the Mini-Mental State Examination and the Trail 

Making B Test, were administered by trained clinic staff31. The study included a subsample 

of the SOF participants enrolled at the Minnesota and Pennsylvania sites, encompassing 461 

women in whom polysomnography and cognitive testing (4 years after the sleep recording) 

were carried out. Participants also underwent wrist actigraphy and completion of 

questionnaires, including the Pittsburg Sleep Quality Index (PSQI). For the present analysis, 

data from 170 participants – 85 randomly chosen controls and the 85 women identified with 

cognitive impairment (n=49) or a diagnosis of dementia (n=36) – were used. In this sample, 

97 subjects (57%) had a PSQI greater than 5, indicative of poor sleep quality. Data were 

combined across groups as initial analyses did not show statistically significant differences 

between healthy controls and the group of cognitive impairment/dementia subjects when 

comparing the automated pipeline performance against the standard approach (in terms of 

epoch-by-epoch artifact detection accuracy and differences in EEG spectral power). 

Information for sleep analysis is reported on the National Sleep Research Resource (https://

sleepdata.org/datasets/sof).

2.2. Polysomnography

Polysomnograms were collected using an in-home PSG collection system and procedures 

adapted from the Sleep Heart Health Study32. Study staff underwent centralized data 

collection training and assessed data quality on an ongoing basis. Each study was reviewed 

for quality and scored by certified technicians according to published guidelines32. The 

Compumedics Siesta Portable PSG (Abbotsford, AU) system was used. The montage 

included the EEG C3-A2 and C4-A1 leads (sampling frequency 128 Hz, acquisition filters: 

low-pass at 63 Hz, high pass at 0.5 Hz, notch at 60 Hz), bilateral electrooculograms (EOG), 

a bipolar submental electromyogram (EMG), thoracic and abdominal excursions, airflow, 

bilateral leg movements, finger pulse oximetry, electrocardiogram (ECG) and body position. 

Trained technicians conducted sleep stage scoring according to conventional AASM criteria 

on a 30-s epoch basis33.

Mean recording time was 9.81 hours (SD 2.15 hours); mean sleep efficiency 61.33% (SD 

14.10%); mean AHI was 26.0 (SD 17.28).

For the analysis, we employed the C3-A2 EEG lead.

2.3. Quantitative analysis of the sleep EEG with commercial system and manual artifact 
removal (standard approach)

Offline spectral analysis of EEG signals was performed using a Fast-Fourier Transform 

(FFT)34 routine (Vitascore, TEMEC, Kerkrade, The Netherlands) with Welch’s method35. A 

trained technician visually inspected all recordings and manually excluded artifacts on a 4-s 

sub-epoch basis. Raw power spectra were first computed for 4-s sub-epochs by applying a 

50% tapered cosine window36 to adjust for edge effects. Next, spectra were calculated for 

consecutive 30-s epochs after removing 4-s sub-epochs with visually identified artifacts and 

then averaging the remaining artifact-free 4-s spectra from up to ten overlapping 4-s sub-

epochs. For each 30-s epoch, the number of 4-s sub-epochs labeled as artefactual was 

exported. Spectral power densities in the range of 0.25 to 25 Hz were included in further 
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analysis. Average NREM and REM sleep EEG spectra were calculated for each EEG signal. 

Spectral power densities were calculated for commonly used frequency bands: slow 

oscillations (SlowOsc, 0.25–1 Hz), delta (1.25–4 Hz), theta (4.25–8 Hz), alpha (8.25–12 

Hz), sigma (12.25–15 Hz), and beta (15.25–20 Hz).

2.4. Quantitative analysis of the sleep EEG with the automated pipeline

We calculated raw power spectra on an epoch-by-epoch basis. Similar to the previously 

described approach, we applied Welch’s method, using 10 overlapping 4-s sub-epochs for 

each 30-s epoch, with a 50% tapered cosine (Tukey) window35–37, using the Matlab function 

pwelch.

We designed the artifact detection method as a modification of a published automated 

method37. The algorithm includes: (i) computing the EEG power in a slow frequency band 

(0.5–4.5 Hz) and in a fast frequency band (20–40 Hz) for consecutive 30-s epochs; (ii) 

calculating a 15-epoch running average for each of the two bands; and (iii) computing the 

ratio of the EEG power in each band over the current epoch and its respective moving 

average, i.e., the average on the 15-epoch window centered on that epoch. 30-s epochs in 

which this ratio for the slow or the fast frequency band exceeded 2.5 and 2.0 (i.e. the 

recommended defaults38), respectively, were considered to be contaminated by artifacts and 

therefore excluded from further analysis. Thus, in contrast to manual artifact removal (see 

above), artifacts were excluded on a 30-s basis instead of a 4-s basis. Of note, the original 

cited method38 employed a (0.75–4.5 Hz) slow frequency band, but we elected to include the 

0.5 Hz bin to also detect artifacts due to slow oscillation.

Finally, we computed the average spectral power density for each frequency band for NREM 

and REM sleep.

2.5. Visual Adjudication

The automated pipeline produced a visual summary for each single sleep recording, 

allowing the user to quickly view the data quality and identify sleep recordings with long-

range artifacts that escaped automated artifact detection (Fig. 1). The visual summaries 

included a color-coded spectrogram (spectral power density vs. epoch and EEG frequency), 

a hypnogram, a plot of the time course of slow-wave activity (0.5–4.5 Hz) across the night 

and a plot of the average EEG spectra for NREM and REM sleep. A trained technician 

reviewed each visual summary according to a predefined adjudication procedure developed 

by the authors, and entire sleep recordings were included or excluded from the analysis 

accordingly. The primary exclusion criteria included non-physiological signal components 

and excessive undetected artifacts. Examples of criteria for identifying artifacts included tall 

spikes on the power density spectra (Fig. 1B), especially if occurring in pairs or triplets of 

similar height (indicative of electrical artifacts), very gradually sloping density spectra with 

little or no changes in slope in the theta and sigma bands, high amplitude peaks near 0 Hz 

(indicative of pervasive slow wave artifact), or clusters of short spikes occurring in groups 

along the density spectra (indicative of ECG contamination). A detailed description of the 

spectral result adjudication procedure can be found within the SpectralTrainFig on-line 

documentation (https://github.com/nsrr/SpectralTrainFig/wiki/SpectralTrainFig-Results-
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Adjudication). Figure 1 shows an example of visual summary, where panel A) reports a 

recording that would pass adjudication, while panel B) shows a recording with noise that 

would be excluded.

2.6. Statistical Analysis

2.6.1. Artifact Detection—We compared automated artifact detection with visual artifact 

detection (i.e. the gold standard) by means of contingency tables listing true positive, true 

negative, false positive and false negative detections. Since the two analyses were performed 

using different parameters – automated scoring returned a 1/0 classification of each 30-s 

epoch as artifactual or not, while visual scoring returned, for each 30-s epoch, the number of 

artifactual 4-s sub-epochs – there was no unique way to define the gold standard. Thus, we 

considered the agreement between methods as a function of the number of artifactual sub-

epochs (1 to 10) required to designate a 30-s epoch as artifactual. Thus, our gold standard 

ranged from a more “stringent” definition, where we considered a 30-s epoch as containing 

artifact even if only one of its 4-s sub-epochs had been scored as artifact, to a more “liberal” 

definition, where we considered a 30-s epoch as containing artifact only if all 10 4-s sub-

epochs had been scored as artifact. We computed the sensitivity, specificity, accuracy and 

Cohen’s Kappa for each of these 10 definitions.

As a secondary analysis, we restricted the comparison to the sole “large” artifacts, that is, the 

epochs visually scored as containing artifact where the total EEG power was higher than the 

99th percentile for that night. We compared the two classifications with the same procedure 

as described above.

2.6.2. Spectra Comparison—We used Spearman correlation analysis to determine the 

strength of association between EEG spectra computed with the commercial system 

following visual artifact detection and with the automated pipeline. Wilcoxon rank sum tests 

were used to compare the average spectral power density in NREM and REM sleep in each 

relevant EEG band between the two approaches. In addition, we investigated the intra-

participant Spearman correlation between the power density values computed for each 

method across all epochs of sleep, and we plotted the histogram of the r values.

We constructed Bland-Altman plots to examine the agreement between average power 

densities in NREM and REM computed with the two approaches for the different frequency 

bands. In these representations, the differences in power density between the two methods 

are plotted against the means of the two methods.

2.7. Software Tools

We developed and made publicly available the tool box used to conduct the analyses 

described in this paper, named SpectralTrainFig and available at https://www.sleepdata.org/

community/tools/nsrr-spectraltrainfig. SpectralTrainFig contains the pipeline for spectral 

analysis with prior artifact detection described above, and features a user-friendly graphic 

user interface for the analysis of multiple recordings with different options. The user is 

prompted to select the folder where the data resides, the channels to analyze and the 

reference channels. Additional functionalities are computation of spectral coherence, 
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decontamination from ECG interference39, and sleep cycle-specific analysis40. All the code 

was implemented in Matlab® (The Mathworks, Inc., Natick, MA), version R2015b, and is 

periodically updated and improved following user feedback. Figure 2 shows the Graphic 

User Interface of the tool.

3. Results

3.1. Pipeline Performance and Adjudication

3.1.1. Pipeline Processing Speed—Our open source pipeline was designed to replicate 

the results of the standard analysis in an automatic way. The generation of average EEG 

power spectra for NREM and REM sleep including automated artifact detection took 

approximately 8 seconds per recording on a 3.50 GHz processor, 32 GB RAM system. 

Approximately 15 additional seconds were required to save adjudication figures to a 

Microsoft PowerPoint file and numeric results to Excel files. In contrast, the time to perform 

manual artifact removal and spectral analysis with the commercial system was between 1 

and 2 hours per recording.

3.1.2. Visual Verification and Adjudication of Spectral Results—After visual 

review, nine studies (5%) were excluded from further analysis. The primary reasons for 

exclusion were the presence of non-physiological signal components and excessive artifacts 

within the signals during sleep. In the perspective of a big data analysis, which prioritizes 

computing speed over data retention, we removed these records entirely from the analysis 

rather than attempt to identify recording segments that could be analyzed, which could also 

introduce bias. Figure 1 shows examples of visual summaries for representative included and 

excluded recordings.

3.2. Validation: Artifact Detection

We report the statistics on the global performance of the automated artifact detection method 

in Table 1. We analyzed 86,250 NREM epochs and 20,717 REM epochs from the sample of 

161 participants (excluding 9 participants as described above). Of note, although the method 

specificity is very high (96.8 to 99.4% in NREM, 96.9 to 99.1% in REM sleep) and 

consequently the accuracy is high (due to the higher proportion of epochs scored as non-

artifact compared to epochs scored as artifact), the sensitivity is low (max sensitivity = 38% 

to recognize as artifact an epoch of NREM sleep with at least four visually identified sub-

epochs with artifacts). The performance of the automated classifier varies as the criterion for 

defining visual classification changes, that is, with the number x of sub-epochs with artifact 

needed to define an epoch with artifact. The best agreement, as indicated by Cohen’s kappa, 

is obtained for x=2 in NREM and x=3 in REM, where x represents the minimum number of 

artifactual 4-s subepochs needed to define a 30-s epoch as artifactual.

Accuracy and Cohen’s Kappa did not differ between control and cognitively impaired 

subjects, for any of the 10 criteria, according to the Wilcoxon’s rank sum test (P>0.06).

In Table 2 we report the artifact detection performance when the analysis is restricted to 

large artifacts only. The sensitivity for these artifacts, that are the most likely to confound the 

spectral analysis, is very high.
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Figure 3 illustrates the performance of the two artifact detection methods exemplified for a 

short segment of raw EEG data. In general, the automated detector is very accurate at 

detecting large, obvious artifacts that affect the slow band or the fast band descriptor. In the 

example, the two larger artifacts at 50 and 240 s, approximately, are detected by the 

automatic algorithm, while the smaller one at 80 s is missed.

The visual artifact detection procedure resulted in the removal of 3.55% and 8.51% of 

recording time spent in NREM sleep and REM sleep, respectively. The automatic artifact 

detection procedure resulted in the removal of 3.30% and 3.40% of recording time spent in 

NREM sleep and REM sleep, respectively.

3.3. Validation: Spectra characteristics

We computed sleep EEG spectra characteristics for the analysis dataset with both the 

standard approach and the automated pipeline.

Spearman correlations between mean log-transformed spectral power density obtained with 

the standard and the automated procedures ranged between 0.99 and 1.00 for all frequency 

bands (Table 3) for both REM and NREM sleep. Bland-Altman plots showed good 

agreement between spectral analyses results computed with the two procedures (Figure 4). 
For all bands, the Wilcoxon test showed no significant difference between the means of the 

two distributions. Mean differences in spectral power obtained with the two approaches 

ranged between 0.46% (for NREM delta power) and 10.10% (for NREM beta power). 

Differences in spectral power, both absolute and relative, did not differ between healthy and 

cognitively impaired subjects (p> 0.2).

Figure 5 shows the distribution of per-individual Spearman correlation for epoch-by-epoch 

log-transformed spectral power in each band between the two methods. For the large 

majority of participants, very high correlation coefficients were obtained. Participants for 

whom the correlation was lower, were in general those with larger numbers of visually 

identified artifacts, as shown in supplemental Figure S1.

To investigate the effect of automated artifact rejection on spectral power, we also plotted 

power in the relevant bands obtained with the traditional approach, with the automated 

approach with no artifact rejection, and with automated approach with artifact rejection. An 

example is shown in Figure S2.

As a final analysis, we computed mean spectral power density in each band, for consecutive 

NREM-REM sleep cycles. We defined sleep cycles as periods of NREM sleep lasting at 

least 15 minutes, and terminated by either 1) the end of a period of stage REM sleep of any 

duration for cycle 1 or at least 5 minutes for other cycles, or 2) a period of wake or stage N1 

for at least 15 contiguous minutes. This analysis by cycles revealed that the correlation 

coefficients between the standard and the automated approach ranged between 0.98 and 1 

while no significant differences in power density were found (Wilcoxon). Figure S3 shows 

the results.
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4. Discussion

We implemented an open-source, user-friendly tool for both automating artifact rejection 

and for computing EEG spectral analysis. This automated pipeline reduces analysis time 

100-fold with respect to standard analysis, which requires visual artifact scoring by a sleep 

expert. Although overall epoch-by-epoch sensitivity for detecting artifacts was low to 

modest, major artifacts, that are most likely to distort average spectral estimates, were 

detected with high sensitivity. The automated pipeline produced average power densities and 

power densities across the night that were nearly identical to values computed with 

traditional visual editing. In particular, correlations between EEG spectral power density 

computed with the two methods were greater than 0.99 for both NREM and REM, and 

differences between power densities in the relevant EEG bands ranged between 0.5 and 10% 

on average.

Research opportunities to aggregate and analyze large amounts of data are gaining 

increasing attention. Publicly available programs, source code, and documentation reduce 

the startup time for new users, facilitate the ability to replicate analyses, and provide a 

platform for technology-enabled research. Additional details and cohort specific spectral 

analysis information are made available from the National Sleep Research Resource 

(NSRR)41 website (http://sleepdata.org). To optimize the uptake of the tools, a detailed 

standard operating procedure for adjudication was developed.

A focus of our work was detection and elimination of artifact in the EEG channel, which 

could be due to cardiac, electrode, environmental, muscle and ocular artifact is a known 

limitation of quantitative analysis42. While traditional approaches have used manual artifact 

removal17, we adapted an automated threshold-based artifact detection approach described 

in the literature38 supported by a report demonstrating that physiology-driven, threshold-

based artifact detection can perform well in comparison to more sophisticated methods43. 

We combined this automated method with a procedure involving quick expert review 

(adjudication). We found that visual adjudication of a one-page summary per recording 

identified studies with substantial missing data, electrical (60 Hz) contamination, 

environmental contamination and cardiac contamination that escaped threshold-based 

artifact detection. Taken together, the current analyses support the utility of using a single 

artifact detection approach that removes epochs with large non-physiological components in 

the 0.5–4.5 Hz and 20–40 Hz range combined with a brief review of informative summary 

figures to identify problematic recordings as an acceptable a and efficient approach for 

generating spectral analysis output for large numbers of studies.

The artifacts that are not picked up by the algorithms seem to occur at frequencies that are 

often not in the range of spectra commonly examined for clinical purposes and for many 

sleep research purposes, and did not materially affect the summary spectra results. 

Nonetheless, while the artifact rejection method is suitable for spectral analysis of the EEG 

on a macroscopic scale, it is important to recognize that there are qEEG analyses for which 

more sensitive, and perhaps multiple, artifact detection methods are needed, such as for 

studies of transient EEG events In our analysis of sleep spindles44, we additionally 
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incorporated statistical filtering on per-epoch Hjorth parameters, RMS and clipped signals to 

increase detection sensitivity.

The amount of recording time that was rejected with the visual and automated methods was 

similar for NREM sleep (3.6% for the visual scoring, 3.3% for the automated scoring), while 

for REM sleep the automated method removed a smaller proportion (3.4%) with respect to 

the visual method (8.5%). This difference is most likely due the presence of artifacts caused 

by interspersed rapid-eye movements, REM sleep twitches or transitions into and out of 

REM accompanied by some brief movement, which escaped automated detection. The 

process for rejecting epochs also was influenced by the size of the epochs, since individual 

short artifacts of 4 s could be rejected in the visual method, while in the automated pipeline 

the artifact needed to be pervasive over the 30-s epoch. This difference also influenced the 

performance assessment, as the gold standard could not be uniquely defined. The best 

performance was obtained with the presence of a minimum of two 4-s artifacts (x=2) within 

a 30-s epoch of NREM sleep and three 4-s artifacts (x=3) within a 30-s epoch of REM sleep. 

For smaller values of x, the sensitivity decreases, as shorter artifacts scored visually may be 

harder to detect by the automated detector, and it is particularly low in REM. In NREM, the 

sensitivity decreases also for increasing threshold values.

We considered application of additional and customized artifact detection algorithms. EEG 

artifact detection utilities are available that include functions for identifying a range of 

environmentally and physiologically generated artifacts25,27,45. Open source tools such as 

Brainstorm46 and EEGlab47 include a large set of artifact detection methods that support 

spectral analysis of EEG data and interactive/automated artifact detection. Although the 

analysis procedures are sophisticated, Brainstorm and EEGlab were developed to primarily 

analyze EEG evoked response data, and the artifact detection methods are based on 

Independent Component Analysis, which requires multiple leads and is computationally 

more intensive. The pipeline presented in our study is designed for sleep analysis, providing 

measures that are tailored to represent sleep rhythms, available for analysis in customized 

spreadsheets. Artifact rejection utilizes a simple approach that does not require multiple 

leads, and includes sleep-dedicated features, such as ECG decontamination and cycle-

specific analysis. In addition, our pipeline offers a user-friendly approach when working 

with large datasets of hundreds of recordings at a time.

There are many commercial products that include spectral analysis of sleep studies and 

provide artifact detection such as Prana Software (Strasbourg, France)48. However, 

commercial sleep analysis software that includes spectral analysis and automatic artifact 

detection is often costly, and code is proprietary. Moreover, application of additional and 

customized artifact detection algorithms that identify physiological and environmental 

artifacts seemed cumbersome and potentially subjective.

Future automation of visual adjudication rules may be possible, resulting in a completely 

automated pipeline. In addition, the spectral analysis performed in the pipeline currently 

relies on manually staged sleep, but could be integrated into an automated sleep staging 

approach in the future. Artifact detection could be used to eliminate noisy epochs prior to 

feature extraction for sleep stage classification or provide an additional feature for 

Mariani et al. Page 10

Sleep Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



wakefulness detection. As some artifacts, such as in the case of Figure 1B, are only present 

for part of the night, future iterations of the program might allow for selection of non-

artifactual portions of the recordings, in order to retain a larger amount of data.

One limitation of the study is that the algorithms were tested using data from a single, 

elderly cohort of women. Additional validation studies in different populations and with 

different spectral parameters/methods are required to better understand how the current 

analysis pipeline performs compared to standard manual artifact detection. Given the 

challenges in EEG collection in older individuals and data collected in in-home settings, 

however, our estimates of agreement are likely conservative compared to data obtained in 

young individuals or in controlled laboratory settings. While we focused our analysis on 

absolute power in each band, there is also interest in calculating relative power, i.e., absolute 

power in a certain band divided by total power (up to a certain frequency). Since the pipeline 

produces the epoch-by-epoch spectral power density values for each frequency bin, the 

relative power can easily be derived, and we tested it in our cohort. There was good 

agreement between the two approaches in this case as well, with all p values from the 

Wilcoxon t tests showing no significant differences between spectral power in each band 

computed with the two approaches and percentage differences ranging from 0.7 to 4.8%.

Our pipeline was designed with the NSRR datasets in mind, accommodating input data that 

are in European Data Format (EDF) for signals and XML for annotations. However, our 

approach is easily generalizable to any sleep recording, as most sleep acquisition systems 

can output data in EDF. The tool has been developed in Matlab, which is a commercial 

software. Future implementation in versions compatible with GNU-Octave, could provide a 

free alternative.

5. Conclusion

In summary, the study results demonstrate that automated artifact detection can be applied in 

conjunction with spectral analysis efficiently and maintain good agreement with gold 

standard methods. The analysis pipeline resulted in a decrease of two orders of magnitude in 

the amount of time required to perform spectral analysis. This computational advance has 

enabled spectral analyses of thousands of recordings that aggregate across several NIH 

funded cohorts (data posted at sleepdata.org) and has the potential to provide new insights 

into individual and subgroup differences in sleep, cognitive development, and cognitive 

decline. In this perspective, we predict that the statistical power that is realized by 

processing large numbers of recordings will likely outweigh the effects of residual 

differences in artifact detection between hand-scored and automatically scored recordings 

for many purposes. Employing an open source analysis framework is consistent with 

national data, analysis and computational initiatives52 that encourage availability of source 

code so that the research community can replicate published analyses49,50. Our methods will 

address an important gap on the path to next-generation national sleep research 

opportunities51.

The publicly released software provides the scientific community with a suite of tools 

designed to support large-scale spectral analyses of sleep studies. Future work will involve 
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expanding the pipeline to include additional artifact detection approaches, analyses of 

transient events, and multivariate approaches. Incorporating higher order statistics, EMG 

driven EEG artifact detection, and sleep/wake-state aware artifact detection could greatly 

enhance the applicability of the analysis pipeline to other research problems. Extending the 

pipeline to include additional methods for analyzing unique features of the EEG (e.g., 

spindles) or cross-signal analysis could accelerate the development of an array of 

physiological metrics for use in a wide range of genomic, precision medicine and other 

research. Future enhancements may include computational informatics that combine 

analyses with distributing computing and reporting functionality. Such computational 

informatics derived from methods used in computer science to address Big Data analysis are 

encouraged by Big Data to Knowledge initiatives, but have only been applied sparingly in 

sleep analyses52,53.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An automated pipeline for spectral analysis of the sleep electroencephalogram 

is proposed, which includes automated artifact detection

• Our pipeline is featured in the framework of the National Sleep Research 

Resource, for efficient analysis of large cohorts of polysomnographic data

• We validate our method by comparing it with a standard approach which 

employs manual artifact scoring and the use of a commercial software

Mariani et al. Page 16

Sleep Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Spectral analysis adjudication panel for a high quality signal and a signal with harmonic 

contamination. Each panel includes a frequency vs. epoch number spectrogram with color-

coded power density (top left), a hypnogram (middle left), a slow-wave activity (SWA) vs. 

epoch number plot (bottom left) and average spectra for NREM and REM sleep (right). 

White vertical lines in top left plot indicate beginning and end of wake periods, white 

horizontal lines highlight spindle frequency band. Tick marks in bottom left plot denote 

epochs removed due to artifacts (pink = slow frequency artifact, red = high frequency 

artifact, black = both slow and high frequency artifact). (A) Example of a recording that does 

not meet any of the a priori adjudication rules for exclusion. The spectra summary figure is 

typical of data from an older person that is included in the analysis. (B) Example of a 

recording with harmonic contamination is shown. Harmonic contamination can be found at 

8, 16 and 24 Hz in the NREM spectra. Data is identified as having a non-physiological 

component. Data is removed from further analysis according to the a priori adjudication 
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rules. Note that the long-range harmonic contaminations escaped automated artifact 

detection but were identified during adjudication.
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Figure 2. 
Graphic User Interface of SpectralTrainFig. The user can select data folders, signals to be 

analyzed, spectral settings, optional ECG decontamination, cycle analysis and coherence 

computation.
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Figure 3. 
Comparison between visual and automated artifact scoring exemplified for a 5-min segment 

of sleep EEG. The top panel shows the raw EEG signal. The second panel shows, for each 

30-s epoch, the number of 4-s sub-epochs with artifacts according to the visual scoring. The 

third panel shows the automatic artifact scoring for each 30-s epoch. The two bottom panels 

show the two indices used to derive the automated scoring, each with its respective threshold 

(dashed lines). For details, see Methods.
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Figure 4. 
Bland-Altman plots of power density computed with standard and automated pipeline for 

various frequency bands. Bland-Altman plots are provided to show the agreement between 

the two approaches. Differences in power density between the two approaches (y-axis) are 

plotted against the means of them (x-axis). Each blue circle represents results for a single 

participant. The dashed blue horizontal line corresponds to the average difference between 

the two approaches. The two dotted blue lines correspond to plus/minus 2 standard 
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deviations of the difference. Data are shown for NREM sleep (A) and REM sleep (B) 

separately.
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Figure 5. 
Histograms of Spearman’s correlation coefficients between power densities computed 

following standard and automated artifact removal. Individual correlation coefficients are 

from 161 participants and were calculated across 30-s epochs of sleep that remained after 

artifact removal.
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