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Abstract

Provably Efficient Algorithms for Non-convex Optimization with Benign Structures

by

Haixiang Zhang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Javad Lavaei, Co-chair

Professor Jon Wilkening, Co-chair

This dissertation focuses on devising innovative approaches to understanding and comput-
ing the optimal decision within complex large-scale operational frameworks, such as service
networks and power systems. These approaches aim to facilitate interpretable, scalable, and
robust decision-making under uncertainty. However, achieving this objective is hindered by
the computational hurdle presented by the fact that most practical problems are known to
be NP-hard in the worst case. Nevertheless, this dissertation has been primarily inspired by
the observation that real-world problem instances often exhibit benign geometric properties,
which can be exploited to reduce the computational complexity. By leveraging method-
ologies from mathematics, statistics, operations research, and machine learning, our goal
is to identify and harness these underlying geometric properties to devise algorithms that
are demonstrably efficient and resilient, thereby supporting decision-making in large-scale
systems.

In the first part of the dissertation, we focus on the low-rank matrix optimization problem,
which targets at recovering the underlying low-rank ground truth matrix from a small number
of measurements. Various important applications in the fields of machine learning, signal
processing, and power systems can be formulated as a low-rank matrix optimization problem.
By utilizing the benign optimization landscape around the manifold of low-rank matrices, we
establish state-of-the-art theoretical guarantees to the highly efficient non-convex formulation
based on the Burer-Monteiro factorization. First, we significantly improve existing sufficient
conditions in terms of the Restricted Isometry Property constant, leading to the guaranteed
success of local search algorithms for more problem instances. Next, we propose a new
complexity metric for the rank-1 generalized matrix completion problem. The new metric
has the potential of unifying several existing metrics and provides both sufficient conditions
and necessary conditions to the success of local search algorithms. This part serves as
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a crucial step towards closing the gap between the empirical success and the theoretical
understanding of the Burer-Monteiro factorization approach.

The second part of the dissertation is concerned with the discrete optimization via simula-
tion problem. The design of scalable and robust simulation-optimization algorithms plays
a vital role in the timely decision-making in large-scale systems with uncertainty, such as
the bike-sharing system. Inspired by the marginal decreasing property, we utilize a spe-
cial structure, named the L♮-convexity, to develop algorithms with scalability and optimal-
ity guarantees. More specifically, we first construct a subgradient estimator based on the
Lovász extension and develop stochastic search algorithms using the subgradient information.
We theoretically and empirically illustrate that the proposed algorithms are highly efficient
for high-dimensional discrete optimization via simulation problems. Next, by combining the
subgradient information with the discrete nature of the problem, we propose the stochastic
localization algorithms, which exhibit an improved efficiency on large-scale applications.

In the third part of the dissertation, we focus on the AC power flow problem in power systems.
The efficient and reliable control of large-scale power systems, e.g., the dispatch of electricity
under safety-critical constraints, is contingent upon developments of advanced computational
and analytical tools. In the first chapter, we consider the uniqueness of solutions to the power
flow problem. Utilizing properties of the monotone regime and the network topology, stronger
necessary conditions and sufficient conditions, based on the maximal girth and the maximal
eye, are proposed to guarantee the uniqueness of solutions. We also provide the corresponding
reduction algorithms to efficiently estimate these two network parameters. Given the ongoing
emergence of intermittent renewable generation, the second chapter is devoted to the design
of optimal power flow algorithms that are robust to large generation forecast errors, which
plays an essential role in incorporating renewable energy generators into electrical networks.
More concretely, we propose a novel distributionally robust optimization formulation for the
chance-constrained optimal power flow problem and provide corresponding algorithms to
effectively find the robust solution with the minimum generation cost.
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Chapter 1

Introduction

The design of highly scalable algorithms with theoretical guarantees has been a long-
standing challenge in a wide range of applications, including but not limited to artificial
intelligence, power systems and service networks. After entering the era of big data, the
size of datasets and the scale of systems are growing at an unprecedented rate. As a result,
the development of computationally efficient algorithms has become a more essential and
indispensable part to support the optimization and decision-making in large-scale systems.

For example, the recent years have witnessed the empirical success of deep neural net-
works in various fields. The deep neural network models can contain up to hundreds of
millions of parameters and the training of such models requires solving non-convex opti-
mization problems with the same number of variables, which is NP-hard in general. By
reducing the computational complexity with more efficient algorithms, it is possible to save
a considerably large amount of the computational budget. In practice, it has been observed
that simple local search algorithms, such as variants of the stochastic gradient descent algo-
rithm, are able to find a solution with good generalization ability. Despite recent progress
in the theoretical explanation of this phenomenon, there is still a huge gap between the
theory and the practice. A few recent works hint that the landscape of the loss function
of deep neural networks is high structured. As an important step towards closing the gap
between theory and practice, it remains an open question whether we can identify the hidden
structure to (i) theoretically explain the empirical success of local search algorithms and (ii)
design faster optimization algorithms with guarantees to further reduce the computational
complexity.

As another example, the efficient and resilient control of energy systems is contingent
upon the development of fast algorithms that are (i) robust to adversarial noise in the
data and (ii) guaranteed to find optimal or near-optimal decisions in real time for systems
with millions of nodes. The power state estimation problem is one of the most important
data-analysis problems for power systems and it is solved every 5-15 minutes in practice
using heuristic methods. The lack of theoretical guarantees of these methods have caused
catastrophic results in recent years, including several major blackouts in the US and Canada.
In addition, with more advanced algorithms, higher-quality estimations are available and
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better decisions can be made to improve the resiliency and efficiency of the system, which is
critical for the sustainability of energy systems. This calls for scalable and reliable algorithms
that can process massive amount of data in real time and resistant to the uncertainty from
both measurement errors and adversarial attacks.

In this chapter, we first formulate the problems studied in the dissertation and the chal-
lenges that we need to overcome when solving the problem. Then, we provide an overview
of our contributions in the dissertation and related publications associated with each chap-
ter. Finally, we conclude the introduction chapter with the definition of notations used
throughout the dissertation.

1.1 Optimization Algorithms with Theoretical

Guarantees

This dissertation is primarily focused on addressing optimization problems formulated in
the following manner:

min
x∈Rd

f(x; Θ) s.t. x ∈ X (Θ), (1.1)

where:

- The first variable x ∈ Rd is the targeted multivariate optimization variable. For exam-
ple, if we target at optimally allocating staff across a service network, the optimization
variable can denote the number of staff assigned to each service station. In the control
of power systems, the variable may correspond to the bus voltage phasor vector. We
note that in modern optimization applications, the number of optimization variables,
or the problem dimension, d can be on the order of several millions.

- The second variable Θ summarizes the exogenous elements in problem (1.1), which
directly or indirectly capture the problem parameters. In different problem settings,
the variable Θ may take different forms. For instance, in the context of signal processing
problems, it may include the measurement schemes and measurement results. When
problem (1.1) involves certain randomness, the variable can correspond to the empirical
distribution of a set of randomly generated samples or an unknown distribution that
can generate independent samples of the distribution in an online setting. In general,
we are not able to control this part of the problem in optimization algorithms.

- Function f(x; Θ) is the objective function that evaluates the quality of the optimization
variable x. For example, it can be chosen as the generation cost of a power system.
In a service system, the objective function may correspond to a utility function (e.g.,
the average waiting time of customers) that reflects the service quality and efficiency
of the system under current decision x. In large-scale optimization problems, it is
usually computationally heavy to evaluate the value and the derivatives of the objective
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function, which calls for optimization algorithms that use as few as possible function
evaluations to find the optimizer.

- Set X (Θ) ⊂ Rd is the feasible set of the optimization problem, namely, the set of
all acceptable values of the optimization variable x. As an example, the feasible set
should include the physical laws and safety-critical constraints in the operation of
power systems. In addition, the feasible set can reflect the user’s prior information
or preference on the optimal decision, such as low rankness, sparsity, or robustness.
Mathematically, the feasible set can consist of a set of equalities and inequalities that we
can directly evaluate; or it may involve implicit constraints that we can only estimate
from known information, such as the chance constraints in robust optimization.

In the fields of machine learning, operations research, signal processing, and power sys-
tems, a wide range of real-world problems can be cast into the form of problem (1.1). Opti-
mization plays a major role in providing the computational tool for these applications. The
ultimate goal of optimization algorithms is to find a global optimum to problem (1.1), in the
sense that it achieves the universally minimal objective function value over all feasible solu-
tions. Besides the optimality guarantee, there exist various other factors that practitioners
may seek in algorithm design.

However, the goal of developing efficient algorithms with theoretical guarantees is hin-
dered by the computational challenge that most practical problems are known to be NP-
hard in the worst case. More specifically, modern statistical and data analysis problems have
posted new challenges for optimization, including but not limited to massive-scale optimiza-
tion problems, non-convexity, tight time budget, and adversarial noises. In the following, we
briefly discuss three important types of theoretical guarantees for optimization algorithms:

• Convergence guarantees. In most applications, it is important to theoretically guaran-
tee the quality or the performance of the solution returned by optimization algorithms.
For example, a low-quality solution may lead to an incorrect state estimation of power
systems and result in dangerous control operations of the system. In the context of
problem (1.1), it is necessary to design algorithms that provably converge to a global
optimum or a sub-optimal solution with nearly optimal performance. In contrast to
convex optimization problems, the optimization problem embedded in modern data
analysis applications is often inherently non-convex. Conventionally, it is believed that
the non-convexity of problem (1.1) fails the convergence of local search methods due
to the existence of spurious local minima1. However, recent years have witnessed the
empirical success of heuristic algorithms on a large number of non-convex optimization
problems, e.g., low-rank matrix recovery, phase retrieval, deep learning, etc. Theo-
retical efforts, including this dissertation, have been made to establish convergence
guarantees for these algorithms and shed light on future algorithm design.

1A spurious local minimum is a local minimum of problem (1.1) that is not globally optimal.
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• Efficiency guarantees. To support real-time decision-making, it is important that the
algorithms deliver solutions in a timely manner. For instance, in a service system, the
operator may want to re-balance the resource allocation among service stations every a
few hours. In this application, a high-quality decision needs to be made under a tight
time budget. For an optimization algorithm, its computation efficiency can be charac-
terized by the convergence rate and the per-iteration computation cost. In particular,
we are interested in reducing the dependence of computation cost on the problem scale
d and develop algorithms that are able to solve massive-scale optimization problems
with more than millions of optimization variables.

Besides the computation efficiency, the sample efficiency or the sample complexity is
an equally important factor for optimization algorithms. In generally, the improve-
ment on sample efficiency can lead to a better applicability of algorithms, especially
for applications where collecting more samples is expensive if not impossible. For
example, for the state estimation problem in power systems, the amount of available
samples is closely related to electrical network infrastructures and collecting more sam-
ples means constructing more infrastructures, which may take years of planning and
construction to complete. More specifically, this dissertation takes two approaches to
improve the guarantees on sample efficiency: (i) we improve the minimum number
of samples required to guarantee the success of local search algorithms, and (ii) we
develop data-driven algorithms to utilize samples more efficiently.

• Robustness guarantees. In real-world dataset, there exist two common types of uncer-
tainties: noises and adversarial attacks. The noises are relatively small-scale, universal
and homoscedastic. For example, the MRI scans often involve small measurement er-
rors; the customer arrival times in a service system may follow certain distribution. In
contrast, adversarial attacks are relatively large-scale but sparse outliers in the dataset.
For example, the measurement devices in power grids may suffer from natural disas-
ters or cyber-attacks, which result in large deviation from the correct measurement
values; the deep learning-backed autonomous driving algorithms can be misguided by
adversarial attacks on traffic signs. Without robustness guarantees, algorithms are vul-
nerable to both types of uncertainties and may result in the violation of safety-critical
constraints. In this dissertation, we design optimization algorithms that provably sat-
isfy the quality and safety requirements with high probability under uncertainty of the
dataset.

Throughout this dissertation, we illustrate that real-world problem instances usually
satisfy certain benign geometric properties that can be utilized to develop algorithms with
strong theoretical guarantees.
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1.2 Summary of Contributions

Utilizing advanced tools from mathematics, statistics, operations research and machine
learning, we aim at identifying and utilizing the underlying geometric properties to design
provably efficient algorithms that support the efficient and resilient decision-making in large-
scale systems. On a high level, the results in this dissertation consist of two major parts,
i.e., the theoretical part and the algorithmic part:

1. Theoretical work: utilize statistical and geometric analysis techniques to establish solid
theoretical guarantees that not only explain the empirical success of simple gradient-
based optimization algorithms on non-convex optimization problems, but also identify
the situations when those algorithms may fail to find the optimal solution.

2. Algorithm design: after formulating a practical problem as optimization and control
problems, identify and utilize the special geometric structure of the non-convex opti-
mization landscape to design scalable and robust algorithms with convergence guaran-
tees.

The two parts are tightly connected with each other. The design of efficient and resilient op-
timization algorithms is critical to the real-time control and operation of large-scale systems,
especially when the stability and robustness of the solution against uncertainty is necessary.
For example, Chapters 6 and 7 analyze the uniqueness theory and the distributionally robust
optimization of the AC power flow problem, respectively. The results provide important in-
sights into the operation and planning of large-scale power systems under safety constraints.
In the following, we discuss the contributions of each part of the dissertation.

Low-rank Matrix Optimization

In the low-rank matrix optimization, our goal is to recover an unknown low-rank matrix
through a few measurements of its entries. This problem plays a central role in a wide range of
applications, including but not limited to machine learning, signal processing, power systems
and operations research. In practice, the optimization problem needs to be solved periodically
and thus, it is necessary to design an efficient and robust algorithm. For the past few decades,
the problem has attracted the attention of researchers from different fields and important
progress has been made from both the theoretical and the experimental perspectives. Some
of the early work focused on the semi-definite relaxation of the original non-convex problem
and established exactness relaxation guarantees under various settings. However, despite
the strong theoretical guarantees, the semi-definite relaxation approach is computationally
challenging since solving the semi-definite program in the lifted space requires prohibitively
huge computational efforts, especially when the problem size has surged in the big data era.

To deal with this challenge, Burer and Monteiro proposed a new factorization approach,
which is more efficient than the semi-definite relaxation approach in terms of both the com-
putation and memory complexity. Although the factorization approach requires solving a
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non-convex optimization problem, it is shown that simple optimization algorithms, such as
gradient descent and alternate minimization, exhibit fast and robust convergence to the
ground truth solution. The goal of the first part of the dissertation is to utilize techniques
from geometric analysis and statistics to provide theoretical characterizations on the opti-
mization complexity of the non-convex optimization problem involved in the factorization
approach. Namely, we estimate the chance that those algorithms can successfully find the
ground truth solution from a random initial point.

Chapter 2. This paper considers the global geometry of general low-rank minimization
problems via the Burer-Monteiro factorization approach. For the rank-1 case, we prove that
there is no spurious second-order critical point for both symmetric and asymmetric problems
if the rank-2 RIP constant δ is less than 1/2. Combining with a counterexample with δ = 1/2,
we show that the derived bound is the sharpest possible. For the arbitrary rank-r case, the
same property is established when the rank-2r RIP constant δ is at most 1/3. We design a
counterexample to show that the non-existence of spurious second-order critical points may
not hold if δ is at least 1/2. In addition, for any problem with δ between 1/3 and 1/2, we
prove that all second-order critical points have a positive correlation to the ground truth.
Finally, the strict saddle property, which can lead to the polynomial-time global convergence
of various algorithms, is established for both the symmetric and asymmetric problems when
the rank-2r RIP constant δ is less than 1/3. The results of this paper significantly extend
several existing bounds in the literature.

Chapter 3. In this chapter, we develop a new complexity metric for an important class
of low-rank matrix optimization problems in both symmetric and asymmetric cases, where
the metric aims to quantify the complexity of the non-convex optimization landscape of
each problem and the success of local search methods in solving the problem. The existing
literature has focused on two recovery guarantees. The RIP constant is commonly used to
characterize the complexity of matrix sensing problems. On the other hand, the incoherence
and the sampling rate are used when analyzing matrix completion problems. The proposed
complexity metric has the potential to generalize these two notions and also applies to a
much larger class of problems. To mathematically study the properties of this metric, we
focus on the rank-1 generalized matrix completion problem and illustrate the usefulness
of the new complexity metric on three types of instances, namely, instances with the RIP
condition, instances obeying the Bernoulli sampling model, and a synthetic example. We
show that the complexity metric exhibits a consistent behavior in the three cases, even when
other existing conditions fail to provide theoretical guarantees. These observations provide
a strong implication that the new complexity metric has the potential to generalize various
conditions of optimization complexity proposed for different applications. Furthermore, we
establish theoretical results to provide sufficient conditions and necessary conditions for the
existence of spurious solutions in terms of the proposed complexity metric. This contrasts
with the RIP and incoherence conditions that fail to provide any necessary condition.
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Convex Discrete Optimization via Simulation

The second part of the dissertation focuses on the discrete optimization via simulation
(DOvS) problem. The DOvS problem targets at finding an approximately optimal decision
from a discrete feasible set via noisy evaluations to the objective function, which are gen-
erated by the simulations of stochastic system. A large number of important problems in
the field of operations research, management science and economics can be formulated as
the DOvS problem. Designing efficient DOvS algorithms is a vital part of time-sensitive
decision-making in a large-scale system with uncertainty. Therefore, the DOvS problem has
been a popular research topic over the past few decades and with very subtle differences,
the DOvS problem is also known as the zeroth-order stochastic optimization in optimization
literature and (contextual) multi-armed bandits in theoretical computer science literature.
The challenges of solving the DOvS problem come from the following two parts:

1. First, the simulation of the system is usually time-consuming and cannot be acceler-
ated by parallel computing. For example, the simulation of a queueing system involves
generating the paths of time series, which can only been computed sequentially. With
limited time and computation budgets, the DOvS algorithms aim at finding approxi-
mate solutions up to a specified precision using fewest possible number of simulations.

2. Additionally, the set of feasible decisions can be high-dimensional and large-scale. It
requires a prohibitively large amount of computation resources to evaluate each feasible
decision. As a result, without further assumptions on the problem, it is not possible
to find a global solution.

In this dissertation, we focus on the second challenge and utilized the special structure of the
objective function to avoid simulating each feasible decision. More specifically, we designed
algorithms to screen out sub-optimal decisions and largely reduce the number of required
simulations. The proposed algorithms outperform the state-of-the-art algorithms that ignore
the special structure by a large margin. The main thrust of this part is the observation that
in continuous optimization, the underlying structure of the problem (e.g., the convexity, the
strict saddle property [244]) is able to reduce the optimization complexity from NP-hard
(general non-convex optimization) to polynomial-time solvable (e.g., convex optimization).
Chapters 4 and 5 provide the first attempt in the area of discrete optimization to identify
and utilize the hidden structure of the objective function, except the simple linear structure
studied in mixed-integer programming literature.

In Chapters 4 and 5, we choose to analyze a specific structure called the L♮-convexity
[168], which serves as one of the discrete counterparts of the classical convexity in continuous
optimization. The choice of considering the L♮-convexity structure has several advantages.
On the one hand, the L♮-convexity is satisfied by a wide range of applications, especially
those in queueing networks and economics. In the one-dimensional case, the L♮-convexity
reduces to the marginal decreasing property, which is a very common property of service
networks. Moreover, the well-studied submodular function is a special case of the L♮-convex
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function. On the other hand, the L♮-convexity is a sufficiently strong condition in the sense
that utilizing the structure is able to reduce the optimization complexity from exponential
to polynomial in terms of the problem dimension and scale. Therefore, our contributions
to the convex DOvS problem (i.e., the DOvS problem with L♮-convexity) can significantly
improve the efficiency of a variety of practical decision-making problems, in ways that both
improve the quality of the solution and reduce the computation cost. We have designed two
classes of algorithms for the convex DOvS problem, namely, the stochastic search algorithms
(Chapter 4) and the stochastic localization algorithms (Chapter 5).

Chapter 4. We propose new sequential simulation-optimization algorithms for general
convex optimization via simulation problems with high-dimensional discrete decision space.
The performance of each choice of discrete decision variables is evaluated via stochastic
simulation replications. If an upper bound on the overall level of uncertainties is known, our
proposed simulation-optimization algorithms utilize the discrete convex structure and are
guaranteed with high probability to find a solution that is close to the best within any given
user-specified precision level. The proposed algorithms work for any general convex problem
and the efficiency is demonstrated by proven upper bounds on simulation costs. The upper
bounds demonstrate a polynomial dependence on the dimension and scale of the decision
space. For some DOvS problems, a gradient estimator may be available at low costs along
with a single simulation replication. By integrating gradient estimators, which are possibly
biased, we propose simulation-optimization algorithms to achieve optimality guarantees with
a reduced dependence on the dimension under moderate assumptions on the bias.

Chapter 5. We develop and analyze a set of new sequential simulation-optimization al-
gorithms for large-scale multi-dimensional DOvS problems with a convexity structure. The
“large-scale” notion refers to that the discrete decision variable has a large number of values
to choose from on each dimension of the decision variable. The proposed algorithms are tar-
geted to identify a solution that is close to the optimal solution given any precision level with
any given probability. To achieve this target, utilizing the convexity structure, our algorithm
design does not need to scan all the choices of the decision variable, but instead sequentially
draws a subset of choices of the decision variable and uses them to “localize” potentially
near-optimal solutions to an adaptively shrinking region. To show the power of the proposed
methods based on the localization idea, we first consider one-dimensional large-scale prob-
lems. We develop the shrinking uniform sampling algorithm, which is proved to achieve the
target with an optimal expected simulation cost under an asymptotic criterion. For multi-
dimensional problems, we combine the idea of localization with subgradient information and
propose a framework to design stochastic cutting-plane methods, whose expected simulation
costs have a low dependence on the scale and the dimension of the problems. In addition,
utilizing the discrete nature of the problems, we propose a stochastic dimension reduction
algorithm, which does not require prior information about the Lipschitz constant of the ob-
jective function and its simulation costs are upper bounded by a value that is independent of



CHAPTER 1. INTRODUCTION 9

the Lipschitz constant. We implement the proposed algorithms on synthetic problems and
queueing simulation optimization problems, and demonstrate better performances compared
to benchmark methods especially for large-scale examples.

Power Systems

The third part of the dissertation focuses on the AC power flow problem in power systems.
The power flow problem plays a crucial role in various aspects of power systems, e.g., the daily
operations in contingency analysis and security-constrained dispatch of electricity markets.
Designing scalable and reliable algorithms for the power flow problem is critical to the efficient
and resilient operation of large-scale power systems.

Chapter 6. This chapter extends the uniqueness theory in [184] and establishes general
necessary and sufficient conditions for the uniqueness of P -Θ power flow solutions in an AC
power system using some properties of the monotone regime and the power network topology.
We show that the necessary and sufficient conditions can lead to tighter sufficient conditions
for the uniqueness in several special cases. Our results are based on the existing notion of
maximal girth and our new notion of maximal eye. Moreover, we develop a series-parallel
reduction method and search-based algorithms for computing the maximal eye and maximal
girth, which are necessary for the uniqueness analysis. Reduction to a single line using the
proposed reduction method is guaranteed for 2-vertex-connected Series-Parallel graphs. The
relations between the parameters of the network before and after reduction are obtained. It
is verified on real-world networks that the computation of the maximal eye can be reduced to
the analysis of a much smaller power network, while the maximal girth is computed during
the reduction process.

Chapter 7. Designing scalable and robust algorithms for the optimal power flow (OPF)
problem is critical for the control of large-scale power systems under uncertainty. The chance-
constrained AC OPF (CCOPF) problem provides a natural formulation of the trade-off
between the operation cost and the constraint satisfaction rate. In Chapter 7, we propose a
new data-driven algorithm for the CCOPF problem, which is based on the distributionally
robust optimization (DRO). The proposed DRO approach achieves the optimal efficiency in
the sense that (i) it finds the minimum-cost solution given the maximum rate of violating the
constraints, and (ii) it uses an exact mixed-integer reformulation of chance constraints instead
of inner approximations as used in existing literature. We apply the proposed algorithm to
the semi-definite relaxation of the CCOPF problem and illustrate the advantage of our
approach on IEEE benchmark power systems.
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1.3 Notations

Sets. The number of elements in a finite set S is denoted as |S|. We use S to denote
the closure of a set S. For N ∈ N, we define [N ] := {1, 2, . . . , N}. For a given set S and
an integer d ∈ N, the product set Sd is defined as {(x1, x2 . . . , xd) : xi ∈ S, i ∈ [d]} in which
[d] = {1, 2, . . . , d}. For example, if S = [N ], then Sd = {(x1, x2 . . . , xd) : xi ∈ [N ], i ∈ [d]}.
We use N,Z,R,C to denote the set of all natural numbers, integers, real numbers and
complex numbers, respectively. The set of n-dimensional integer, real and complex vectors
are denoted as Zn, Rn and Cn, respectively. Similarly, we use Rm×n and Cm×n to denote the
set of m-by-n real and complex matrices, respectively. For every vector x ∈ Rn, the sets of
indices corresponding to zero and nonzero components of x are denoted as I0(x) and I1(x),
respectively. In Chapters 4 and 5, let c be the indifference zone parameter in the PCS-IZ
criterion. The symbol j denotes the unit imaginary number. For every complex number x,
the real and imaginary parts of x are denoted as ℜ(x) and ℑ(x), respectively. The same
notation applies componentwise to complex vectors and matrices. For a complex number x,
|x| denotes its magnitude.

Vectors, matrices, and tensors. Let 1n and 0n be the vectors with all elements
equal to 1 and 0, respectively. Denote ek as the k-th standard basis vector of Rn. Let
∥ · ∥ be the 2-norm of vectors. The entry-wise ℓ1-norm, operator 2-norm and the Frobenius
norm of a matrix M are denoted as ∥M∥1, ∥M∥2 and ∥M∥F , respectively. The trace of
matrix M is denoted as tr(M). The inner product between two matrices is defined as
⟨M,N⟩ := tr(MTN). For a given vector v ∈ Rn, matrix diag(v) ∈ Rn×n is the diagonal
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matrix with diagonal entries from v. The unit sphere of matrices with non-negative entries
denoted as Sn2−1

+,1 is the set of all symmetric matrices X ∈ Rn×n such that ∥X∥1 = 1

and Xij ≥ 0 for all i, j ∈ [n]. Similarly, the unit sphere of vectors Sn−1
1 is the set of all

vectors x ∈ Rn such that ∥x∥1 = 1. The n-by-n identity matrix is denoted as In. The
identity tensor is denoted as I. For any matrix M ∈ Rn×m, we denote its singular values
by σ1(M) ≥ · · · ≥ σk(M), where k := min{n,m}. For any symmetric matrix M ∈ Rn×n,
we denote its eigenvalues by λ1(M) ≥ · · · ≥ λn(M). The minimal eigenvalue is denoted as
λmin(·). The notation M ⪰ 0 means that the matrix M is symmetric and positive semi-
definite. The set of symmetric and positive semi-definite matrices of size n-by-n is denoted
as Sn

+.
Operations. The notations (·)T and (·)H denote the transpose and Hermitian transpose

of a matrix, respectively. For two vectors x, y ∈ Rd, we use (x ∧ y)i := min{xi, yi} and
(x ∨ y)i := max{xi, yi} to denote the component-wise minimum and maximum. Similarly,
the ceiling function ⌈·⌉ and the flooring function ⌊·⌋ round each component to an integer
when applied to vectors. For each vector v ∈ Rn, we say v ≤ 0n if vk ≤ 0 for all k ∈ [n].
For any matrix U , we use PU to denote the orthogonal projection onto the column space of
U . For any matrices A,B ∈ Rn×m, we use A ⊗ B to denote the fourth-order tensor whose
(i, j, k, ℓ) element is Ai,jBk,ℓ. The sub-matrix Ri:j,k:ℓ consists of the i-th to the j-th rows and
the k-th to the ℓ-th columns of matrix R. The action of the Hessian ∇2f(M) on any two
matrices K and L is given by [∇2f(M)](K,L) :=

∑
i,j,k,ℓ[∇2f(M)]i,j,k,ℓKijLk,ℓ.

Big-O notation. The notations an = O(bn) and an = Θ(bn) mean that there exist
constants c1, c2 > 0 such that an ≤ c2bn and c1bn ≤ an ≤ c2bn hold for all n ∈ Z, respectively.
In Chapters 4 and 5, the notation f = O(g) means that there exist constants c1, c2 > 0
independent of N, d, ϵ, δ, c such that f ≤ c1g + c2. Similarly, the notation f = Õ(g) means
that there exist constants c1 > 0 independent of N, d, ϵ, δ, c and constant c2 > 0 independent
of δ such that f ≤ c1g + c2. The notation f = Θ(g) means that there exist constants
c1, c2, c3 > 0 independent of N, d, ϵ, δ, c such that c3g ≤ f ≤ c1g+ c2. The notation f = Θ̃(g)
means that there exist constants c1, c3 > 0 independent of N, d, ϵ, δ, c and constants c2, c4 > 0
independent of δ such that c3g + c4 ≤ f ≤ c1g + c2. In Chapter 3, the objective function of
an instance MC(C, u∗) is shown as g(u;C, u∗) :=

∑
i,j∈[n]Cij(uiuj − u∗

iu
∗
j)

2.
Graphs and power systems. The unweighted undirected graph G with node set

V and edge set E is denoted as G = (V,E). Suppose that the edges of an undirected
graph are weighted with the weights captured by a matrix W ∈ R|V|×|V|, where Wij is
the weight of edge {i, j}. Then, the graph is represented as (V,E,W ). In Chapter 3, for
every instance MC(C, u∗), we use G(C, u∗) = [V(C, u∗),E(C, u∗),W(C, u∗)] to denote the
associated weighted graph, which is defined in Section 3.2. For a directed graph (V,E, A),
the matrix A ∈ R|V|×|V| gives the orientation of each line, where Aij = 1 (resp. Aij = −1)
represents the direction i→ j (resp. j → i). The undirected edge connecting two vertices k
and ℓ is denoted by a set notation {k, ℓ}, whereas (k, ℓ) denotes a directed edge coming out
of vertex k and going into ℓ. For parallel edges, we use {k, ℓ, i} to represent different edges
connecting k and ℓ, where i ∈ Z+ is the index of each parallel edge.
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A power network G = (V,E, Y ) consists of two parts: the underlying undirected graph
(V,E) and the complex admittance matrix Y ∈ Cn×n, where n is the number of vertices
in the underlying graph. The underlying graph is assumed to be a simple and connected
graph. The set of vertices V and the set of edges E correspond to the set of buses and the
set of lines of the power network. The series element of the equivalent Π-model of each
line {k, ℓ} is modeled by admittance Ykℓ = Gkℓ − jBkℓ, where Gkℓ, Bkℓ ≥ 0. We denote
v ∈ Cn as the vector of complex bus voltages. The complex voltage at bus k can be written
in the polar form using its magnitude and phase angle vk = |vk|ejΘk for all k ∈ [n], where
|vk| ∈ R and Θk ∈ R denote the voltage magnitude and phase angle, respectively. We denote
Θkℓ := Θk − Θℓ ∈ [−π, π) as the phase difference modulus by 2π for all {k, ℓ} ∈ E. In the
rest of the chapter, we use the corresponding values in [−π, π) for phase differences.

Probability. The failing probability of simulation-optimization algorithms is denoted
as δ. For a stochastic system labeled by its decision variable x, we denote ξx as the random
object associated with the decision variable. We write ξx,1, ξx,2, . . . , ξx,n as independent
and identically distributed (i.i.d.) copies of ξx. The empirical mean of the n independent
evaluations for a decision variable labeled by x is denoted as F̂n(x) := 1

n

∑n
j=1 F (x, ξx,j).



14

Part I

Low-rank Matrix Optimization



15

Chapter 2

Optimization Complexity Based on
The RIP Constant

2.1 Introduction

A variety of modern signal processing and machine learning applications require solving
optimization problems that involve a low-rank matrix variable. More specifically, given
measurements to some unknown ground truth matrix M∗ ∈ Rn×n of rank r ≪ n, the low-
rank matrix optimization problem can be formulated as

min
M∈Rn×n

f(M ;M∗) s. t. M ⪰ 0, rank(M) ≤ r, (2.1)

where f(·;M∗) is the loss function that penalizes the mismatch between the input matrix
and M∗. The goal is to recover the matrix M∗ via (2.1). Examples of this problem include
matrix sensing [191, 247, 244], matrix completion [34, 35, 86], phase retrieval [200, 32, 210,
48], phase synchronization [204, 26] and robust principle component analysis [36, 75]; see
the review papers [40, 50] for more applications.

To deal with the nonconvex rank constraint, there have been several works on the convex
relaxations of problem (2.1). More concretely, one may replace the rank constraint with a
nuclear norm regularizer [34, 191, 35, 36, 143]. The convex relaxation approach is proven to
achieve the optimal sampling complexity for various statistical models. In the special case
when f(·;M∗) is a linear function, the sketching method [243] can be applied to accelerate
the computation. However, for most applications of problem (2.1), the convex relaxation
approach needs to update a matrix variable in each iteration, which relies on the Singular
Value Decomposition (SVD) of the matrix variable. This will lead to an O(n3) computational
complexity in each iteration and an O(n2) space complexity, which are prohibitively high for
large-scale problems; see the numerical comparison in [252].

To improve the computational efficiency, an alternative approach was proposed by Burer
and Monteiro [28], which is named as the Burer-Monteiro factorization approach. The fac-
torization approach is based on the fact that the mapping U 7→ UUT is surjective onto the
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manifold of positive semi-definite matrices of rank at most r, where U ∈ Rn×r. Therefore,
problem (2.1) is equivalent to

min
U∈Rn×r

f(UUT ;M∗), (2.2)

which is an unconstrained nonconvex problem. The Burer-Monteiro factorization provides a
natural parameterization of the low-rank structure of the unknown solution, and reformulates
problem (2.1) as an unconstrained optimization problem. In addition, the number of vari-
ables reduces from O(n2) or O(nm) to as low as O(rn) or O(r(n+m)) when r ≪ min{n,m}.
However, the reformulated problem is highly non-convex, and NP-hard to solve in the worst
case. A major difficulty about nonconvex optimization problems is the existence of spuri-
ous local minima1. In general, common local search methods are only able to guarantee
a point approximately satisfying the first-order and the second-order necessary optimality
conditions. Therefore, local search methods with a random initialization will likely be stuck
at spurious local minima and unable to converge to the global solution.

In recent years, simple iterative algorithms such as gradient descent and alternating min-
imization have achieved empirical success in various applications of problem (2.2), despite
the aforementioned issue of nonconvex optimization problems. Intuitively, these problems
share a specific non-convex structure, which makes it possible to utilize the structure and
design efficient algorithms to find a global optimum under some conditions. Substantial
progress has been made on the theoretical understandings of these algorithms, which gener-
ally focused on proving the absence of spurious local minima. For example, the alternating
minimization algorithm was first studied in [118, 172, 173]. The (stochastic) gradient de-
scent algorithm, which is in general easier to implement than the alternating minimization
algorithm, was analyzed in [32, 219, 242, 48, 40]. Besides algorithmic analysis, a critical
geometric property named the strict-saddle property [210] was established in [86, 210, 256,
244], which can guarantee the polynomial-time global convergence of various saddle-escaping
algorithms [37, 124, 8].

Restricted Isometry Property and basic properties

In this chapter, we also consider the asymmetric version of problem (2.1), which eliminates
the condition M ⪰ 0 and allows M to be a non-square matrix. More specifically, given the
natural numbers n, m and r, we consider the low-rank matrix optimization problems

min
M∈Rn×n

fs(M) s. t. rank(M) ≤ r, M ⪰ 0 (2.3)

and

min
M∈Rn×m

fa(M) s. t. rank(M) ≤ r, (2.4)

1A point U0 is called a spurious local minimum if it is a local minimum of problem (2.2) and U0(U0)T ̸=
M∗.
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where the functions fs(·) and fa(·) are twice continuously differentiable. Problems (2.3)-(2.4)
are referred to as the symmetric and the asymmetric problems, respectively. In addition,
we call these problems linear if the objective function is induced by a linear measurement
operator, i.e.,

f(M) = 1
2
∥A(M)− b∥2F (2.5)

for some vector b ∈ Rp and linear operator A mapping each matrix M to a vector in Rp,
where f(M) denotes either fs(M) or fa(M). Those problems not fitting into the above model
are called nonlinear. One common example with non-linearity is the one-bit matrix sensing
problem; please see [256, 145, 257] for more concrete discussions. Using the Burer-Monteiro
factorization approach, the asymmetric problem (2.4) is equivalent to

min
U∈Rn×r,V ∈Rm×r

ha(U, V ), (2.6)

where ha(U, V ) := fa(UV T ). Similarly, the symmetric problem (2.3) is equivalent to

min
U∈Rn×r

hs(U), (2.7)

where hs(U) := fs(UUT ).
A regularity condition, named the Restricted Isometry Property, is commonly used to

guarantee the convergence of iterative local search algorithms. We state the following two
definitions only in the context of the symmetric problem since the corresponding definitions
for the asymmetric problem are similar.

Definition 1 ([191, 256]). Given natural numbers r and t, the function fs(·) is said to satisfy
the Restricted Isometry Property (RIP) of rank (2r, 2t) for a constant δ ∈ [0, 1), denoted
as δ-RIP2r,2t, if for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r, rank(K) ≤ 2t, it holds
that

(1− δ)∥K∥2F ≤
[
∇2f(M)

]
(K,K) ≤ (1 + δ)∥K∥2F , (2.8)

where [∇2f(M)] (·, ·) is the curvature of the Hessian at point M .

The RIP condition appears in a variety of applications of the low-rank matrix optimiza-
tion problem. For instance, in the case of linear measurements with a Gaussian model, [34]
showed that O (nr/δ2) samples are enough to ensure the δ-RIP2r,2r property with high prob-
ability. Please see the survey paper by [50] for more examples. In certain applications, even
the RIP condition cannot be established over the whole low-rank manifold, we are able to
establish similar strongly convex and smooth conditions on part of the manifold. If the iter-
ation points of algorithms are constrained to or regularized (either explicitly or implicitly)
towards those benign regions, the proof techniques in this chapter may still be applica-
ble. Examples include the phase retrieval problem [157] and the matrix completion problem
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[40]. However, the analysis of the case when the strong convexity does not hold is usually
application-specific and cannot be generalized to general low-rank problems. Moreover, the
RIP assumption is standard in the literature of general low-rank matrix optimization prob-
lem. Furthermore, if we drop the strong convexity assumption, we are unable to achieve
linear convergence in general [21]. The work by [247] shows that the existence of RIP is
enough to obtain guarantees on the local landscape of the problem and the size of this local
region depends on the RIP constant that can be anything between 0 and 1 (however, the
provided bounds on the RIP constant are not sharp). Although we aimed to obtain sharp
bounds on the RIP constant for global landscape of the problem in this chapter, we believe
that our analysis can be adopted to obtain sharp RIP bounds for local regions. We leave
the precise derivation to a future work since it needs a number of lemma and we have space
restrictions. We note that the RIP property is equivalent to the restricted strongly convex
and smooth property defined in [227, 183, 257] with the condition number (1 + δ)/(1 − δ).
Intuitively, the RIP property implies that the Hessian matrix is close to the identity tensor
when the perturbation is restricted to be low-rank. This intuition naturally leads to the
following definition.

Definition 2 ([23]). Given a natural number r, the function fs(·) is said to satisfy the
Bounded Difference Property (BDP) of rank 2r for a constant κ ≥ 0, denoted as κ-
BDP2r, if for all matrices M,M ′, K, L ∈ Rn×n such that

rank(M), rank(M ′), rank(K), rank(L) ≤ 2r,

it holds that ∣∣[∇2fs(M)−∇2fs(M
′)
]

(K,L)
∣∣ ≤ κ∥K∥F∥L∥F .

It has been proven in [23, Theorem 1] that those functions satisfying the δ-RIP2r,2r

property also satisfy the 4δ-BDP2r property. With the RIP property, there are basically two
categories of algorithms that can solve the factorized problem in polynomial time. Algorithms
in the first category require a careful initialization so that the initial point is already in
a small neighbourhood of a global optimum, and a certain local regularity condition in
the neighbourhood ensures that local search algorithms will converge linearly to a global
optimum; see [219, 21, 183] for a detailed discussion. The other class of algorithms is able
to converge globally from a random initialization. The convergence of these algorithms is
usually established via the geometric analysis of the landscape of the objective function. One
of the important geometric properties is the strict saddle property [210], which combined
with the smoothness properties can guarantee the global polynomial-time convergence for
various saddle-escaping algorithms [125, 124, 210, 110]. For the linear case, [87, 86] proved
the strict saddle property for both problems (2.6)-(2.7) when the RIP constant is sufficiently
small. More recently, [257] extended the results to the nonlinear asymmetric case. Moreover,
a weaker geometric property, namely the non-existence of spurious (non-global) second-order
critical points, has been established for both problems when the RIP constant is small [145,
95]. We note that second-order critical points are points that satisfy the first-order and
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the second-order necessary optimality conditions, and thus the result of the non-existence of
second-order critical points implies the non-existence of spurious local minima. Under certain
regularity conditions, this weaker property is also able to guarantee the global convergence
from a random initialization without an explicit convergence rate [138, 179]. Please refer to
Table 2.1 for a summary of the state-of-the-art results.

Most of the aforementioned papers are based on the following assumption on the low-rank
critical points of the functions fs(·) and fa(·):

Assumption 1. The function fa(·) has a first-order critical point M∗
a such that rank(M∗

a ) ≤
r. Similarly, the function fs(·) has a first-order critical point M∗

s that is symmetric, positive
semi-definite and of rank at most r.

This assumption is inspired by the noiseless matrix sensing problem in the linear case
for which the non-negative objective function becomes zero (the lowest value possible) at
the true solution. This is a natural property of the matrix sensing problem for nonlinear
measurement models as well. Under the above assumption and the RIP property, [256]
proved that M∗

s and M∗
a are the unique global minima of problems (2.3)-(2.4).

Theorem 1 ([256]). If the functions fs(·) and fa(·) satisfy the δ-RIP2r,2r property, then the
critical points M∗

s and M∗
a are the unique global minima of problems (2.3)-(2.4).

Given a solution (U∗, V ∗) to problem (2.6), we observe that (U∗P, V ∗P−T ) is also a
solution for any invertible P ∈ Rr×r. This redundancy may induce an extreme non-convexity
on the landscape of the objective function. To reduce this redundancy, [219] considered the
regularized problem

min
U∈Rn×r,V ∈Rm×r

ρ(U, V ), (2.9)

where
ρ(U, V ) := ha(U, V ) +

µ

4
· g(U, V )

with a constant µ > 0 and the regularization term

g(U, V ) := ∥UTU − V TV ∥2F .

The regularization term is introduced to balance the magnitudes of U∗ and V ∗. [256] showed
that the regularization term does not introduce bias and thus problem (2.9) is equivalent to
the original problem (2.4) in the sense that any first-order critical point (U, V ) of problem (2)
corresponds to a first-order critical point of problem (5) with balanced energy, i.e. UTU =
V TV .

Theorem 2 ([256]). Every first-order critical point (U∗, V ∗) of problem (2.9) satisfies

(U∗)TU∗ = (V ∗)TV ∗.

Moreover, problems (2.4) and (2.9) are equivalent.

Detailed optimality conditions for problems (2.3)-(2.9) are provided in the appendix.
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No SSCPs SSP Holds
Problem Setups Existing Ours Existing Ours

Rank-1
Sym.

Linear δ2,2 <
1
2

[247] δ2,2 <
1
2

- -

Nonlinear δ2,2 <
2−O(κ)
4+O(κ)

[23] δ2,2 <
1
2

- -

Rank-1
Asym.

Linear
& Nonlinear

- δ2,2 <
1
2

- -

Rank-r
Sym.

Linear δ2r,2r <
1
5

[87] δ2r,2r ≤ 1
3

δ2r,2r <
1
10

[86] δ2r,2r <
1
3

Nonlinear δ2r,4r <
1
5

[145] δ2r,2r ≤ 1
3

- δ2r,2r <
1
3

Rank-r
Asym.

Linear δ2r,2r <
1
3

[95] δ2r,2r ≤ 1
3

δ2r,2r <
1
20

[86] δ2r,2r <
1
3

Nonlinear δ2r,2r <
1
3

[95] δ2r,2r ≤ 1
3 δ2r,4r <

α(M∗
a )

100
[257] δ2r,2r <

1
3

Table 2.1: Comparison of the state-of-the-art results and our results. Here δ2r,2t and κ are
the RIP2r,2t and BDP2r constants of fs(·) or fa(·), respectively. Constant α(M∗

a ) ∈ (0, 1)
only depends on M∗

a . “SSCP” and “SSP” refer to suprious second-order critical points and
strict saddle property, respectively.

Contributions

In this chapter, we analyze the geometric properties of problems (2.7)-(2.9). Novel anal-
ysis methods are developed to obtain less conservative conditions for guaranteeing benign
landscapes for both problems. We note that, unlike the linear measurements case, the RIP
constant of nonlinear problems may not concentrate to 0 as the number of samples increases.
Therefore, a sharper RIP bound leads to theoretical guarantees that hold under less stringent
statistical requirements. In addition, even if the RIP constant concentrates to 0 when more
samples are included, there may only be a limited number of samples available, either due
to the constraints of specific applications or to the great expense of taking more samples.
Hence, obtaining a sharper RIP bound is essential for many applications. We summarize
our results in Table 2.1. More concretely, the contributions of this chapter are three-folds.

First, we derive necessary conditions and sufficient conditions for the existence of spu-
rious second-order critical points for both symmetric and asymmetric problems. Using our
necessary conditions, we show that the δ-RIP2r,2r property with δ ≤ 1/3 is enough to guar-
antee the non-existence of such points. This result provides a marginal improvement to the
previous work [95], which developed the sufficient condition δ < 1/3 for asymmetric prob-
lems, and is a major improvement over [87] and [145], which requires δ < 1/5 for symmetric
problems. With this non-existence property and under some common regularity conditions,
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[138, 179] showed that the vanilla gradient descent method with a small enough step size
and a random initialization almost surely converges to a global minimum. We note that the
convergence rate was not studied and could theoretically be exponential in the worst case.
In addition, by studying our necessary conditions, we show that every second-order critical
point has a positive correlation to the global minimum when δ ∈ (1/3, 1/2). When δ = 1/2,
a counterexample with spurious second-order critical points is given by utilizing the sufficient
conditions. We note that the sufficient conditions can greatly simplify the construction of
counterexamples.

Second, we separately study the rank-1 case to further strengthen the bounds. In par-
ticular, we utilize the necessary conditions to prove that the δ-RIP2,2 property with δ < 1/2
is enough for the non-existence of spurious second-order critical points. Combining with a
counterexample in the δ = 1/2 case, we conclude that the bound δ < 1/2 is the sharpest
bound for the rank-1 case. Our results significantly extend the bounds in [247] derived for
the linear symmetric case to the linear asymmetric case and the general nonlinear case. It
also improves the bound in [23] by dropping the BDP constant.

Third, we prove that in the exact parametrization case, problems (2.7)-(2.9) both satisfy
the strict saddle property [210] when the δ-RIP2r,2r property is satisfied with δ < 1/3. This
result greatly improves the bounds in [86, 257] and extends the result in [95] to approximate
second-order critical points. With the strict saddle property and certain smoothness prop-
erties, a wide range of algorithms guarantee a global polynomial-time convergence with a
random initialization; see [125, 124, 210, 110]. Due to the special non-convex structure of
our problems and the RIP property, it is possible to prove the boundedness of the trajectory
of the perturbed gradient descent method using a similar method as in [125]. Since the
smoothness properties are satisfied over a bounded region, combined with the strict saddle
property, it follows that the perturbed gradient descent method [125] achieves a polynomial-
time global convergence when δ < 1/3.

The remainder of this chapter is organized as follows. In Section 2.2, the Singular Value
Projection algorithm is analyzed as an enlightening example for our main results. Sections
2.3 and 2.4 are devoted to the non-existence of spurious second-order critical points and
the strict saddle property of the low-rank optimization problem in both symmetric and
asymmetric cases, respectively.

2.2 Motivating Example: Singular Value Projection

Algorithm

Before providing theoretical results for problems (2.7)-(2.9), we first consider the Singular
Value Projection Method (SVP) algorithm (Algorithm 1) as a motivating example, which
is proposed in [117]. The SVP algorithm is basically the projected gradient method of the
original low-rank problems (2.3)-(2.4) via the truncated SVD. For the asymmetric problem
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(2.4), the low-rank manifold is

Masym := {M ∈ Rn×m | rank(M) ≤ r}

and the projection is given by only keeping components corresponding to the r largest
singular values. For the symmetric problem (2.3), the low-rank manifold is

Msym := {M ∈ Rn×n | rank(M) ≤ r, MT = M, M ⪰ 0}.

We assume without loss of generality that the gradient ∇f(·) is symmetric; see Appendix
2.A for a discussion. The projection is given by only keeping components corresponding
to the r largest eigenvalues and dropping all components with negative eigenvalues. Since
both low-rank manifolds are non-convex, the projection solution may not be unique and we
choose an arbitrary solution when it is not unique. We note that the above projections are
orthogonal in the sense that

∥M+ −M∥F = min
K∈M

∥K −M∥F ,

where M+ is the projection of a matrix M . Henceforth,M stands forMsym orMasym, which
should be clear from the context. Although each truncated SVD operation can be computed
within O(nmr) operations, the constant hidden in the O(·) notation is considerably larger
than 1. Thus, the truncated SVD operation is significantly slower than matrix multiplication,
which makes the SVP algorithm impractical for large-scale problems. However, the analysis
of the SVP algorithm, combining with the equivalence property given in [95], provides some
insights into how to develop proof techniques for problems (2.7)-(2.9).

We extend the proof in [117] and show that Algorithm 1 converges linearly to the global
minimum under the δ-RIP2r,2r property with δ < 1/3.

Theorem 3. If function fs(·) (resp. fa(·)) satisfies the δ-RIP2r,2r property with δ < 1/3 and
the step size is chosen to be η = (1 + δ)−1, then Algorithm 1 applied to problem (2.3) (resp.
(2.4)) returns a solution MT such that MT ∈M and f(MT )− f(M∗) ≤ ϵ within

T :=

⌈
1

log[(1− δ)/(2δ)]
· log

[
f(M0)− f(M∗)

ϵ

]⌉
iterations, where f(·) := fs(·) (resp. f(·) := fa(·)), M∗ is the global minimum, M0 is the
initial point and ⌈·⌉ is the ceiling function.

The proof is almost identical to that in [117] except that we have replaced the quadratic
function with the RIP bounds. However, the result of the proof provides a key inequality
(2.17) for the subsequent proofs. We note that the above proof can be applied to other low-
rank optimization problems with a suitable definition of the orthogonal projection. In [95],
it is proved that the unique global minimum is the only fixed point of the SVP algorithm
if the RIP constant δ is less than 1/3. However, the above paper has not proven the linear
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Algorithm 1 Singular Value Projection (SVP) Algorithm

Input: Low-rank manifoldM, initial point M0, number of iterations T , step size η, objective
function f(·).

Output: Low-rank solution MT .
1: for t = 0, . . . , T − 1 do
2: Update M̃t+1 ←Mt − η∇f(Mt).
3: Set Mt+1 to be the projection of M̃t+1 onto M via truncated SVD.
4: end for
5: return MT .

convergence (as done in Theorem 3). This difference leads to a strengthened inequality in
the following analysis, which further serves as an essential step in proving the strict saddle
property. The results in this section provide a hint that the landscape may be benign when
the RIP constant is smaller than 1/3 and we may be able to establish linear convergence
under this condition, which is the main topic of the remainder of this chapter.

2.3 No Spurious Second-order Critical Points

In this section, we develop necessary conditions and sufficient conditions for the existence
of spurious second-order critical points of problems (2.7)-(2.9). Besides the non-existence
of spurious local minima, the non-existence of spurious second-order critical points also
guarantees the global convergence of many first-order algorithms with random initialization
under certain regularity conditions [138, 179]. More precisely, we require the iterates of
the algorithm to converge to a single point and the objective function to have a Lipschitz-
continuous gradient. The first condition is satisfied by the gradient descent method applied
to a large class of functions known as the K L-functions [14]. For the second condition, many
objective functions that appear in applications, e.g., the ℓ2-loss function, do not satisfy this
condition. However, if the step size is small enough, the special non-convex structure of
the Burer-Monteiro decomposition and the RIP property ensure that the trajectory of the
gradient descent method stays in a compact set, where the Lipschitz condition is satisfied
due to the second-order continuity of the functions fs(·) and fa(·). The proof of this claim is
similar to Theorem 8 in [125] and is omitted here. Therefore, the non-existence of spurious
second-order critical points can ensure the global convergence of the gradient descent method
for many applications.

The non-existence of spurious second-order critical points has been proved in [86, 256]
for problems with linear and nonlinear measurements, respectively. Recently, [95] proved
a relation between the second-order critical points of problem (2.6) or (2.9) and the fixed
points of the SVP algorithm on problem (2.4). Using this relation, they showed that problems
(2.6) and (2.9) have no spurious second-order critical points when the δ-RIP2r,2r property is
satisfied with δ < 1/3. In this chapter, we take a different approach to show that δ ≤ 1/3 is
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enough for the general case in both symmetric and asymmetric scenarios, and that δ < 1/2
is enough for the rank-1 case. Moreover, we prove that there exists a positive correlation
between every second-order critical point and the global minimum when δ ∈ (1/3, 1/2). We
also show that there may exist spurious second-order critical points when δ = 1/2 for both
the symmetric and asymmetric problems, which extends the construction of such examples
for the linear symmetric rank-1 problem in [248] to general cases. We first give necessary
conditions and sufficient conditions for the existence of a function that satisfies the δ-RIP2r,2r

condition and spurious second-order critical points below.

Theorem 4. Let ℓ := min{m,n, 2r}. For a given δ ∈ [0, 1), there exists a function fa(·)
with the δ-RIP2r,2r property such that problems (2.6) and (2.9) have a spurious second-order
critical point only if 1 − δ < (1 + δ)/2 and there exists a constant α ∈ (1 − δ, (1 + δ)/2], a
diagonal matrix Σ ∈ Rr×r, a diagonal matrix Λ ∈ R(ℓ−r)×(ℓ−r) and matrices A ∈ Rr×r, B ∈
Rr×r, C ∈ R(ℓ−r)×r, D ∈ R(ℓ−r)×r such that

If CBT = 0 and ADT = 0, then there exists a function fa(·) with the δ-RIP2r,2r property
such that problems (2.6) and (2.9) have a spurious second-order critical point.

(1 + δ) min
1≤i≤r

Σii ≥ max
1≤i≤ℓ−r

Λii, Σ ≻ 0, Λ ⪰ 0,

⟨Λ, CDT ⟩ = α
[
tr(Σ2)− 2⟨Σ, ABT ⟩+ ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F

]
, (2.10)

tr(Λ2) ≤ α−1(2α− 1 + δ2) · ⟨Λ, CDT ⟩, ⟨Λ, CDT ⟩ ≠ 0.

Remark 1. We note that there may exist simpler forms of the above conditions. For instance,
we may solve α via the condition in the second line of (2.10) and substitute into other
conditions. In addition, the requirement that α ∈ (1 − δ, (1 + δ)/2] may also be dropped
without affecting the conditions. More specifically, the conditions in (2.10) are equivalent to

(1 + δ) min
1≤i≤r

Σii ≥ max
1≤i≤ℓ−r

Λii, Σ ≻ 0, Λ ⪰ 0, ⟨Λ, CDT ⟩ ≠ 0,

tr(Λ2) ≤ 2 · ⟨Λ, CDT ⟩ − (1− δ2)
[

tr(Σ2)− 2⟨Σ, ABT ⟩

+ ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F
]
.

We state Theorem 4 in the current form since it helps with deriving corollaries more directly.

Intuitively, Λ and Σ correspond to the singular values of the second-order critical point
and the gradient at the second-order critical point, respectively. Matrices A,B,C,D cor-
respond to the SVD of the global optimum. The original problem of the non-existence of
spurious second-order critical points can be viewed as a property of the set of functions satis-
fying the RIP property, which is a convex set in an infinite-dimensional functional space. The
conditions in (2.10) reduce the infinite-dimensional problem to a finite-dimensional problem
by utilizing the optimality conditions and the RIP property, which provides a basis for solv-
ing these conditions numerically. We note that the conditions in the third line of (2.10) are
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novel and serve as an important step in developing strong theoretical guarantees. Although
the conditions in (2.10) seem complicated, they lead to strong results on the non-existence
of spurious second-order critical points. We provide two corollaries below to illustrate the
power of the above theorem. The first corollary focuses on the rank-1 case. In this case, we
can simplify condition (2.10) through suitable relaxations to obtain a sharper bound on δ
that ensures the non-existence of spurious second-order critical points.

Corollary 1. Consider the case r = 1, and suppose that the function fa(·) satisfies the δ-
RIP2,2 property with δ < 1/2. Then, problems (2.6) and (2.9) have no spurious second-order
critical points.

The following example shows that the counterexample in [247] designed for the symmetric
case also works for the asymmetric rank-1 case.

Example 1. We note that Example 12 in [247] shows that problem (2.7) may have spurious
second-order critical points when δ = 1/2. In general, a second-order critical point for
problem (2.7) is not a second-order critical point for problem (2.9), since the asymmetric
manifoldMasym has a larger second-order critical cone than the symmetric manifoldMsym.
However, it can be verified that the same example also has a spurious second-order critical
point in the asymmetric case. For completeness, we verify the claim in the appendix.

It follows from Corollary 1 and Example 1 that the bound 1/2 is the sharpest bound for
the rank-1 asymmetric case. The next corollary provides a marginal improvement to the
state-of-the-art result for the general rank case, which derives the RIP bound δ < 1/3 [95].
In addition, we prove that there exists a positive correlation between every second-order
critical point and the global minimum when δ < 1/2.

Corollary 2. Given an arbitrary r, suppose that the function fa(·) satisfies the δ-RIP2r,2r

property. If δ ≤ 1/3, then both problems (2.6) and (2.9) have no spurious second-order
critical points. In addition, if δ ∈ [0, 1/2), then every second-order critical point M̃ has
a positive correlation with the ground truth M∗

a . Namely, there exists a universal function
C(δ) : (0, 1/2) 7→ (0, 1] such that

⟨M̃,M∗
a ⟩ ≥ C(δ) · ∥M̃∥F∥M∗

a∥F .

For the general rank-r case, we construct a counterexample with spurious second-order
critical points when δ = 1/2.

Example 2. Let n = m = 2r. Now, we use the sufficiency part of Theorem 4 to construct
a counterexample. We choose

δ :=
1

2
, α :=

3

5
, Σ :=

1

2
Ir, Λ :=

3

4
Ir, A = B := 0r, C = D := Ir.

It can be verified that the conditions in (2.10) are satisfied and CBT = ADT = 0, which
means that there exists a function fa(·) satisfying the δ-RIP2r,2r property for which problems
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(2.6) and (2.9) have spurious second-order critical points. We also give a direct construction
with linear measurements in the appendix. This example illustrates that Theorem 4 can be
used to systematically design instances of the problem with spurious second-order critical
points.

Before closing this section, we note that similar conditions can be obtained for the sym-
metric problem (2.7). Although there exists a natural transformation of symmetric problems
to asymmetric problems (see the appendix), the approach requires the objective function
fs(·) to have the δ-RIP4r,2r property, which provides sub-optimal RIP bounds compared to
a direct analysis. We give the results of the direct analysis below and omit the proof due to
the similarity to the asymmetric case.

Theorem 5. Let ℓ := min{n, 2r}. For a given δ ∈ [0, 1), there exists a function fs(·) with
the δ-RIP2r,2r property such that problem (2.7) has a spurious second-order critical point only
if 1 − δ < (1 + δ)/2 and there exists a constant α ∈ (1 − δ, (1 + δ)/2], a diagonal matrix
Σ ∈ Rr×r, a diagonal matrix Λ ∈ R(ℓ−r)×(ℓ−r) and matrices A ∈ Rr×r, C ∈ R(ℓ−r)×r such that

(1 + δ) min
1≤i≤r

Σii ≥ max
1≤i≤ℓ−r

Λii, Σ ≻ 0,

⟨Λ, CCT ⟩ = α
[
tr(Σ2)− 2⟨Σ, AAT ⟩+ ∥AAT∥2F + 2∥ACT∥2F + ∥CCT∥2F

]
, (2.11)

tr(Λ2) ≤ α−1(2α− 1 + δ2) · ⟨Λ, CCT ⟩, ⟨Λ, CCT ⟩ ≠ 0.

If ACT = 0, then there exists a function fs(·) with the δ-RIP2r,2r property for which problem
(2.7) has a spurious second-order critical point.

Compared to Theorem 4, the diagonal matrix Λ is not enforced to be positive semi-
definite. The reason is that the eigenvalue decomposition is used instead of the singular
value decomposition in the symmetric case, and therefore some eigenvalues can be nega-
tive. Similarly, we can obtain the non-existence and the positive correlation results for the
symmetric problem.

Corollary 3. If function fs(·) satisfies the δ-RIP2r,2r property, then the following statements
hold:

• If δ ≤ 1/3, then there are no spurious second-order critical points;

• If δ < 1/2, then there exists a positive correlation between every second-order critical
point and the ground truth;

• If δ = 1/2, then there exists a counterexample with spurious second-order critical points;

• If δ < 1/2 and r = 1, then there are no spurious second-order critical points.

We note that the last statement serves as a generalization of the results in [247] to the
nonlinear measurement case, and improves upon the bound in [23] by dropping the BDP
constant.
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2.4 Global Landscape: Strict Saddle Property

Although the non-existence of spurious second-order critical points can ensure the global
convergence under certain regularity conditions, it cannot guarantee a fast convergence rate
in general. Saddle-point escaping algorithms may become stuck at approximate second-
order critical points for exponentially long time. To guarantee the global polynomial-time
convergence, the following strict saddle property is commonly considered in the literature:

Definition 3 ([210]). Consider an arbitrary optimization problem minx∈X⊂Rd F (x) and let
X ∗ denote the set of its global minima. It is said that the problem satisfies the (α, β, γ)-
strict saddle property for α, β, γ > 0 if at least one of the following conditions is satisfied
for every x ∈ X :

dist(x,X ∗) ≤ α; ∥∇F (x)∥F ≥ β; λmin[∇2F (x)] ≤ −γ.

For the low-rank problems, we choose the distance to be the Frobenius norm in the
factorization space. This distance is equivalent to the Frobenius norm in the matrix space
in the sense that there exist constants c1(X ∗) > 0 and c2(X ∗) > 0 such that

c1(X ∗) · ∥U − U∗∥F ≤ ∥UUT − U∗(U∗)T∥F ≤ c2(X ∗) · ∥U − U∗∥F
holds for all U ∈ X as long as ∥U−U∗∥F is small and X ∗ is bounded [219]. A similar relation
holds for the asymmetric case.

In [125], it has been proved that the perturbed gradient descent method can find an
ϵ-approximate second-order critical point in Õ(ϵ−2) iterations with high probability if the
Hessian of the objective function is Lipschitz. Namely, the algorithm returns a point x ∈ X
such that

∥∇F (x)∥F ≤ O(ϵ), λmin[∇2F (x)] ≥ −O(
√
ϵ)

in Õ(ϵ−2) iterations with high probability. If we choose ϵ > 0 to be small enough such
that O(ϵ) < β and −O(

√
ϵ) > −γ, then the strict saddle property ensures that the returned

point satisfies dist(x,X ∗) ≤ α with high probability. We note that the Lipschitz continuity of
the Hessian can be similarly guaranteed by the boundedness of trajectories of the perturbed
gradient method, which can be proved similarly as Theorem 8 in [125]. Since the smoothness
properties are satisfied over a bounded region, we may apply the perturbed gradient descent
method [125] to achieve the polynomial-time global convergence with random initialization.

In this section, we prove that problems (2.7) and (2.9) satisfy the strict saddle property
with an arbitrary α > 0 in the exact parameterization case, i.e., when the global optimum
has rank r.

Assumption 2. The global optimum M∗
a or M∗

s has rank r.

It has been proved in [257] that the regularized problem (2.9) satisfies the strict saddle
property if the function fa(·) has the δ-RIP2r,4r property with

δ <
σr(M

∗
a )3/2

100∥M∗
a∥F∥M∗

a∥
1/2
2

.
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Our results improve upon their bounds by allowing a larger problem-free RIP constant and
requiring only the RIP2r,2r property (note that there are problems with RIP2r,2r property for
which the RIP2r,4r property does not hold [23]). Our result can also be viewed as a robust
version of the results in [95].

Theorem 6. Suppose that the function fa(·) satisfies the δ-RIP2r,2r property with δ < 1/3.
Given an arbitrary constant α > 0, if µ is selected to belong to the interval [(1− δ)/3, 1− δ),
then there exist positive constants

ϵ1 := ϵ1(δ, r, µ, σr(M
∗
a ), ∥M∗

a∥F , α), λ1 := λ1(δ, r, µ, σr(M
∗
a ), ∥M∗

a∥F , α)

such that for every ϵ ∈ (0, ϵ1] and λ ∈ (0, λ1], problem (2.9) satisfies the (α, β, γ)-strict saddle
property with

β := min
{
µ(ϵ/r)3/2, λ

}
, γ := µϵ.

We note that the constraint µ ∈ [(1− δ)/3, 1− δ) is not optimal and it can be similarly
proved that µ ∈ (δ, 1 − δ) also guarantees the strict saddle property. The key step in the
proof is to show that for every point (U, V ) at which the gradient of fa(UV T ) is small, it
holds that

∥∇fa(UV T )∥22 ≥ (1 + δ)2σ2
r(UV T ) + C · (1− 3δ)[fa(UV T )− fa(M

∗
a )],

where C > 0 is a constant independent of (U, V ). This inequality can be viewed as a major
extension of the non-existence of spurious second-order critical points when δ < 1/3 [95],
which shows that every spurious second-order critical point (U, V ) satisfies

∥∇fa(UV T )∥22 > (1 + δ)σ2
r(UV T ).

We emphasize that our proof requires a new framework and is not a standard revision of the
existing methods, which is the reason why sharper bounds can be established. By replacing
∥∇fa(M)∥2 with −λmin(∇fs(M)), the analysis for the asymmetric case can be extended to
the symmetric case with minor modifications and the same bound follows.

Theorem 7. Suppose that the function fs(·) satisfies the δ-RIP2r,2r property with δ < 1/3.
Given an arbitrary constant α > 0, there exists a positive constant

λ1 := λ1(δ, r, σr(M
∗
s ), ∥M∗

s ∥F , α)

such that for every λ ∈ (0, λ1], problem (2.7) satisfies the (α, β, γ)-strict saddle property with

β := λ, γ := 2λ.

The above bound is the first theoretical guarantee of the strict saddle property for the
nonlinear symmetric problem.
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Appendix

2.A Optimality Conditions

In this section, we develop the optimality conditions for problems (2.3)-(2.9). We assume
without loss of generality that ∇fs(M) is symmetric for every M ∈ Rn×n. This is because
we can always optimize the equivalent problem

min
M∈Rn×n

1

2

[
fs(M) + fs(M

T )
]

s. t. rank(M) ≤ r, MT = M, M ⪰ 0.

We first consider problems (2.3) and (2.4).

Theorem 8 ([145, 95]). The matrix M̃ = Ũ ŨT with Ũ ∈ Rn×r is a first-order critical point
of the constrained problem (2.3) if and only if{

∇fs(M̃)Ũ = 0 if rank(M̃) = r

∇fs(M̃) ⪰ 0 if rank(M̃) < r.

The matrix M̃ = Ũ Ṽ T with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a first-order critical point of the
constrained problem (2.4) if and only if{

[∇fa(M̃)]T Ũ = 0, ∇fa(M̃)Ṽ = 0 if rank(M̃) = r

∇fa(M̃) = 0 if rank(M̃) < r.

In [95], the authors proved that each second-order critical point of problem (2.6) or (2.9)
is a fixed point of the SVP algorithm run on problem (2.4). We note that this relation can be
extended to the symmetric and positive semi-definite case. This relation plays an important
role in the analysis of Section 2.3.

Theorem 9 ([95]). The matrix M̃ = Ũ ŨT with Ũ ∈ Rn×r is a fixed point of the SVP
algorithm run on problem (2.3) with the step size 1/(1 + δ) if and only if

∇fs(M̃)Ũ = 0, −λmin(∇fs(M̃)) ≤ (1 + δ)σr(Ũ).

The matrix M̃ = Ũ Ṽ T with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a fixed point of the SVP algorithm
run on problem (2.4) with the step size 1/(1 + δ) if and only if

[∇fa(M̃)]T Ũ = 0, ∇fa(M̃)Ṽ = 0, ∥∇fa(M̃)∥2 ≤ (1 + δ)σr(M̃).
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Next, we consider problems (2.6)-(2.9). Since the goal is to study only spurious local
minima and saddle points, it is enough to focus on the second-order necessary optimality
conditions. The following two theorems follow from basic calculations and we omit the proof.

Theorem 10. The matrix Ũ ∈ Rn×r is a second-order critical point of problem (2.7) if and
only if

∇fs(Ũ ŨT )Ũ = 0

and

2⟨∇fs(Ũ ŨT ),∆∆T ⟩+ [∇2fs(Ũ ŨT )](Ũ∆T + ∆ŨT , Ũ∆T + ∆ŨT ) ≥ 0

holds for every ∆ ∈ Rn×r.

Theorem 11. The point (Ũ , Ṽ ) with Ũ ∈ Rn×r and Ṽ ∈ Rm×r is a second-order critical
point of problem (2.6) if and only if

∇[fa(Ũ Ṽ T )]T Ũ = 0, ∇fa(Ũ Ṽ T )Ṽ = 0

and

2⟨∇fa(Ũ Ṽ T ),∆U∆T
V ⟩+ [∇2fa(Ũ Ṽ T )](Ũ∆T

V + ∆U Ṽ
T , Ũ∆T

V + ∆U Ṽ
T ) ≥ 0

holds for every ∆U ∈ Rn×r and ∆V ∈ Rm×r. Moreover, the given point is a a second-order
critical point of problem (2.9) if and only if

∇[fa(Ũ Ṽ T )]T Ũ = 0, ∇fa(Ũ Ṽ T )Ṽ = 0, ŨT Ũ = Ṽ T Ṽ

and

2⟨∇fa(Ũ Ṽ T ),∆U∆T
V ⟩+ [∇2fa(Ũ Ṽ T )](Ũ∆T

V + ∆U Ṽ
T , Ũ∆T

V + ∆U Ṽ
T )

+
µ

2
∥ŨT∆U + ∆T

U Ũ − Ṽ T∆V −∆T
V Ṽ ∥2F ≥ 0

holds for every ∆U ∈ Rn×r and ∆V ∈ Rm×r.

2.B Relation between the Symmetric and

Asymmetric Problems

In this section, we study the relationship between problems (2.7)-(2.9). This relation-
ship is more general than the topic of this chapter, namely the non-existence of spurious
second-order critical points and the strict saddle property, and holds for any property that
is characterized by the RIP constant δ and the BDP constant κ. Specifically, we show that
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any property that holds for the symmetric problems (2.7) with (δ, κ) also holds for the reg-
ularized asymmetric problem (2.9) with another pair of constants (δ̃, κ̃) decided by δ, κ, and
vice versa.

We first consider the transformation from the asymmetric case to the symmetric case. The
transformation to the symmetric case has been established in [86] for linear problem. Here,
we show that the transformation can be revised and extended to the nonlinear measurements
case.

Theorem 12. Suppose that the function fa(·) satisfies the δ-RIP2r,2s and the κ-BDP2t prop-
erties. If we choose µ := (1− δ)/2, then problem (2.9) is equivalent to a symmetric problem
whose objective function satisfies the 2δ/(1+δ)-RIP2r,2s and the 2κ/(1+δ)-BDP2t properties.

Proof of Theorem 12. For any matrix N ∈ R(n+m)×(n+m), we divide the matrix into four
blocks as

N =

[
N11 N12

N21 N22

]
,

where N11 ∈ Rn×n, N12 ∈ Rn×m, N22 ∈ Rm×m. Then, we define a new function

f̃(N) := fa(N12) + fa(N
T
21).

We observe that f̃(WW T ) = 2ha(U, V ), where

W :=

[
U
V

]
∈ R(n+m)×r.

For any K ∈ R(n+m)×(n+m), the Hessian of f̃(·) satisfies

[∇2f̃(N)](K,K) = [∇2fa(N12)](K12, K12) + [∇2fa(N
T
21)](K

T
21, K

T
21). (2.12)

Similarly, we can define

g̃(N) := ∥N11∥2F + ∥N22∥2F − ∥N12∥2F − ∥N21∥2F .

We can also verify that g̃(WW T ) = g(U, V ) and

[∇2g̃(N)](K,K) = 2
(
∥K11∥2F + ∥K22∥2F − ∥K12∥2F − ∥K21∥2F

)
. (2.13)

for every K ∈ R(n+m)×(n+m). The minimization problem (2.9) is then equivalent to

min
W∈R(n+m)×r

F (WW T ) := f̃(WW T ) +
µ

2
· g̃(WW T ), (2.14)

which is in the symmetric form as problem (2.7). For every N,K ∈ R(n+m)×(n+m) with
rank(N) ≤ 2r and rank(K) ≤ 2s, it results from relations (2.12) and (2.13) that

[∇2F (N)](K,K)
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≥ (1− δ)
(
∥K12∥2F + ∥K21∥2F

)
+ µ

(
∥K11∥2F + ∥K22∥2F − ∥K12∥2F − ∥K21∥2F

)
≥ min{1− δ − µ, µ} · ∥K∥2F

and

[∇2F (N)](K,K)

≤ (1 + δ)
(
∥K12∥2F + ∥K21∥2F

)
+ µ

(
∥K11∥2F + ∥K22∥2F − ∥K12∥2F − ∥K21∥2F

)
≤ max{1 + δ − µ, µ} · ∥K∥2F .

Choosing µ := (1− δ)/2, we obtain

1− δ

2
· ∥K∥2F ≤ [∇2F (N)](K,K) ≤ 1 + 3δ

2
· ∥K∥2F .

Hence, it follows that the function 2F (·)/(1 + δ) satisfies the 2δ/(1 + δ)-RIP2r,2s property.
Moreover, for every N,N ′, K, L ∈ R(n+m)×(n+m) with

rank(N), rank(N ′), rank(K), rank(L) ≤ 2t,

it holds that

[∇2g̃(N)](K,L) = [∇2g̃(N ′)](K,L)

= 2 (⟨K11, L11⟩+ ⟨K22, L22⟩ − ⟨K12, L12⟩ − ⟨K21, L21⟩)

and∣∣[∇2F (N)−∇2F (N ′)](K,L)
∣∣

=
∣∣[∇2f(N12)−∇2f(N ′

12)](K12, L12) + [∇2f(NT
21)−∇2f((N ′

21)
T )](KT

21, L
T
21)
∣∣

≤κ∥K12∥F∥L12∥F + κ∥K21∥F∥L21∥F ≤ κ∥K∥F∥L∥F ,

which implies that the function 2
1+δ
· F (·) satisfies the 2κ/(1 + δ)-BDP2r property. Since

problem (2.14) is equivalent to the minimization of 2
1+δ
· F (WW T ), it is equivalent to a

symmetric problem that satisfies the 2δ/(1+δ)-RIP2r,2s and the 2κ/(1+δ)-BDP2r properties.

We can see that both constants δ and κ are approximately doubled in the transformation.
As an example, [22] showed that the symmetric linear problem has no spurious local minima
if the δ-RIP2r property is satisfied with δ < 1/5. Using Theorem 12, we know that the
asymmetric linear problem has no spurious local minima if the δ-RIP2r property is satisfied
with δ < 1/9.

The transformation from a symmetric problem to an asymmetric one is more straight-
forward. We can equivalently solve the optimization problem

min
U,V ∈Rn×r

fs

[
1

2

(
UV T + V UT

)]
(2.15)
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or its regularized version with any parameter µ > 0. It can be easily shown that the above
problem has the same RIP and BDP constants as the original symmetric problem. We omit
the proof for brevity.

Theorem 13. Suppose that the function fs(·) satisfies the δ-RIP4r,2s and the κ-BDP4t prop-
erties. For every µ > 0, problem (2.7) is equivalent to an asymmetric problem and its
regularized version with the δ-RIP2r,2s and the κ-BDP2t properties.

Note that the transformation from a symmetric problem to an asymmetric problem
will not increase the constants κ and δ but requires stronger RIP and BDP properties.
Hence, a direct analysis on the symmetric case may establish the same property under a
weaker condition. In addition to problem (2.15), we can also directly consider the problem
minU,V fa(UV T ). However, in certain applications, the objective function is only defined for
symmetric matrices and we can only use the formulation (2.15) to construct an asymmetric
problem. In more restricted cases when the objective function is only defined for symmetric
and positive semi-definite matrices, we can only apply the direct analysis to the symmetric
case.

2.C Proofs for Section 2.2

Proof of Theorem 3

Proof of Theorem 3. We denote f(·) := fs(·) and f(·) := fa(·) for the symmetric and asym-
metric case, respectively. Using the mean value theorem and the δ-RIP2r,2r property, there
exists a constant s ∈ [0, 1] such that

f(Mt+1)− f(Mt)

= ⟨∇f(Mt),Mt+1 −Mt⟩+
1

2
[∇2f(Mt + s(Mt+1 −Mt))](Mt+1 −Mt,Mt+1 −Mt)

≤ ⟨∇f(Mt),Mt+1 −Mt⟩+
1 + δ

2
∥Mt+1 −Mt∥2F .

We define

ϕt(M) := ⟨∇f(Mt),M −Mt⟩+
1 + δ

2
∥M −Mt∥2F =

1 + δ

2
∥M − M̃t+1∥2F + constant,

where the last constant term is independent of M . Since the projection is orthogonal, the
projected matrix Mt+1 achieves the minimal value of ϕt(M) over all matrices on the manifold
M. Therefore, we obtain

f(Mt+1)− f(Mt) ≤ ϕt(Mt+1) ≤ ϕt(M
∗)

= ⟨∇f(Mt),M
∗ −Mt⟩+

1 + δ

2
∥M∗ −Mt∥2F . (2.16)
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On the other hand, we can similarly prove that the δ-RIP2r,2r property ensures

f(M∗)− f(Mt) ≥ ⟨∇f(Mt),M
∗ −Mt⟩+

1− δ

2
∥M∗ −Mt∥2F ,

f(Mt)− f(M∗) ≥ 1− δ

2
∥M∗ −Mt∥2F .

Substituting the above two inequalities into (2.16), it follows that

f(Mt+1)− f(Mt) ≤ f(M∗)− f(Mt) + δ∥M∗ −Mt∥2F

≤ f(M∗)− f(Mt) +
2δ

1− δ
[f(Mt)− f(M∗)]. (2.17)

Therefore, using the condition that δ < 1/3, we have

f(Mt+1)− f(M∗) ≤ 2δ

1− δ
[f(Mt)− f(M∗)] := α[f(Mt)− f(M∗)],

where α := 2δ/(1 − δ) < 1. Combining this single-step bound with the induction method
proves the linear convergence of Algorithm 1.

2.D Proofs for Section 2.3

Proof of Theorem 4

Proof of Theorem 4. We only consider the case when m and n are at least 2r. In this case,
we have ℓ = 2r. Other cases can be handled similarly. For the notational simplicity, we
denote M∗ := M∗

a in this proof.

Necessity. We first consider problem (2.6). Suppose that M∗ and M̃ are the optimum
and a spurious second-order critical point of problem (2.6), respectively. It has been proved
in [95] that the spurious second-order critical point M̃ has rank r and is a fixed point of the
SVP algorithm with the step size (1 + δ)−1. Therefore, the point M̃ should be a minimizer
of the projection step of the SVP algorithm. This implies that

∥M̃ − [M̃ − (1 + δ)−1∇fa(M̃)]∥2F ≤ ∥M∗ − [M̃ − (1 + δ)−1∇fa(M̃)]∥2F ,

which can be simplified to

⟨∇fa(M̃), M̃ −M∗⟩ ≤ 1 + δ

2
∥M̃ −M∗∥2F . (2.18)

Let U and V denote the subspaces spanned by the columns and rows of M̃ and M∗, respec-
tively. Namely, we have

U := {M̃v1 + M∗v2 | v1, v2 ∈ Rm}, V := {M̃Tu1 + (M∗)Tu2 | u1, u2 ∈ Rn}.
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Since the ranks of both matrices are bounded by r, the dimensions of U and V are bounded
by 2r. Therefore, we can find orthogonal matrices U ∈ Rn×2r and V ∈ Rm×2r such that

U ⊂ range(U), V ⊂ range(V )

and write M̃,M∗ in the form

M̃ = U

[
Σ 0r×r

0r×r 0r×r

]
V T , M∗ = URV T ,

where Σ ∈ Rr×r is a diagonal matrix and R ∈ R2r×2r has rank at most r. Recalling the first
condition in Theorem 11, the column space and the row space of ∇fa(M̃) are orthogonal to
the column space and the row space of M̃ , respectively. Then, the δ-RIP2r,2r property gives

∃α ∈ [1− δ, 1 + δ] s. t. − ⟨∇fa(M̃),M∗⟩ = ⟨∇fa(M̃), M̃ −M∗⟩

=

∫ 1

0

[∇2fa(M
∗ + s(M̃ −M∗))](M̃ −M∗, M̃ −M∗) ds

= α∥M̃ −M∗∥2F > 0. (2.19)

This means that
G := PU∇fa(M̃)PV ̸= 0,

where PU and PV are the orthogonal projections onto U and V , respectively. Combining
with inequality (2.18), we obtain α ≤ (1 + δ)/2. By the definition of G, we have

⟨∇fa(M̃),M∗⟩ = ⟨G,M∗⟩.

Since both the column space and the row space of G are orthogonal to M̃ , the matrix G has
the form

G = U

[
0r×r 0r×r

0r×r −Λ

]
V T , (2.20)

where Λ ∈ Rr×r. We may assume without loss of generality that Λii ≥ 0 for all i; otherwise,
one can flip the sign of some of the last r columns of U . By another orthogonal transforma-
tion, we may assume without loss of generality that Λ is a diagonal matrix. Then, Theorem
9 gives

(1 + δ) min
1≤i≤r

Σii = (1 + δ)σr(M̃) ≥ ∥∇fa(M̃)∥2 ≥ ∥G∥2 = max
1≤i≤(ℓ−r)

Λii. (2.21)

In addition, condition (2.19) is equivalent to

⟨Λ, Rr+1:2r,r+1:2r⟩ = α∥M̃ −M∗∥2F = α
[
tr(Σ2)− 2⟨Σ, R1:r,1:r⟩+ ∥R∥2F

]
. (2.22)
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By the Taylor expansion, for every Z ∈ Rn×m, we have

⟨∇fa(M̃), Z⟩ =

∫ 1

0

[∇2fa(M
∗ + s(M̃ −M∗))](M̃ −M∗, Z) ds = (M̃ −M∗) : H : Z,

where the last expression is the tensor multiplication and H is the tensor such that

K : H : L =

∫ 1

0

[∇2fa(M
∗ + s(M̃ −M∗))](K,L) ds, ∀K,L ∈ Rn×m.

We define
G̃ := G− α(M̃ −M∗).

By the definition of α, we know that ⟨G̃, M̃ −M∗⟩ = 0. Furthermore, using the definition
of H, we obtain

(M̃ −M∗) : H : (M̃ −M∗) = α∥M̃ −M∗∥2F ,
(M̃ −M∗) : H : G̃ = G̃ : H : (M̃ −M∗) = ∥G̃∥2F .

Suppose that
G̃ : H : G̃ = β∥G̃∥2F

for some β ∈ [1− δ, 1 + δ]. We consider matrices of the form

K(t) := t(M̃ −M∗) + G̃, ∀t ∈ R.

Since K(t) is a linear combination of M̃−M∗ and G, the column space of K(t) is a subspace
of U , and thus K(t) has rank at most 2r and the δ-RIP2r,2r property implies

(1− δ)∥K(t)∥2F ≤ K(t) : H : K(t) ≤ (1 + δ)∥K(t)∥2F . (2.23)

Using the facts that

∥K(t)∥2F = ∥M̃ −M∗∥2F · t2 + ∥G̃∥2F ,
K(t) : H : K(t) = α∥M̃ −M∗∥2F · t2 + 2∥G̃∥2F · t + β∥G̃∥2F ,

we can write the two inequalities in (2.23) as quadratic inequalities

[α− (1− δ)]∥M̃ −M∗∥2F · t2 + 2∥G̃∥2F · t + [β − (1− δ)]∥G̃∥2F ≥ 0,

[(1 + δ)− α]∥M̃ −M∗∥2F · t2 − 2∥G̃∥2F · t + [(1 + δ)− β]∥G̃∥2F ≥ 0. (2.24)

If α = 1− δ, then we must have ∥G̃∥F = 0 and thus G = α(M̃ −M∗). Equivalently, we have
M∗ = M̃ −α−1G. Since the column and row spaces of G ̸= 0 are orthogonal to M̃ , the rank
of M∗ is at least rank(M̃) + 1 = r + 1, which is a contradiction. Since α ≤ (1 + δ)/2, we
have α < 1 + δ. Thus, we have proved that

1− δ < α < 1 + δ.
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Checking the condition for quadratic functions to be non-negative, we obtain

∥G̃∥2F ≤ [α− (1− δ)][β − (1− δ)] · ∥M̃ −M∗∥2F ,
∥G̃∥2F ≤ [(1 + δ)− α][(1 + δ)− β] · ∥M̃ −M∗∥2F .

Since
α− (1− δ) > 0, (1 + δ)− α > 0,

the above two inequalities are equivalent to

∥G̃∥2F
α− (1− δ)

≤ [β − (1− δ)] · ∥M̃ −M∗∥2F ,

∥G̃∥2F
(1 + δ)− α

≤ [(1 + δ)− β] · ∥M̃ −M∗∥2F .

Summing up the two inequalities and dividing both sides by 2δ gives rise to

∥G̃∥2F
δ2 − (1− α)2

≤ ∥M̃ −M∗∥2F . (2.25)

We note that the above condition is also sufficient for the inequalities in (2.24) to hold by
choosing β = 2− α. Using the relation ∥G∥2F = ∥G̃∥2F + α2∥M̃ −M∗∥2F , one can write

tr(Λ2) = ∥G∥2F ≤ (2α− 1 + δ2)∥M̃ −M∗∥2F = α−1(2α− 1 + δ2)⟨Λ, Rr+1:2r,r+1:2r⟩. (2.26)

Now, using the fact that rank(M∗) ≤ r, we can write the matrix R as

R =

[
A
C

] [
B
D

]T
=

[
ABT ADT

CBT CDT

]
,

where A,B,C,D ∈ Rr×r. Then, conditions (2.22) and (2.26) become

⟨Λ, CDT ⟩ = α
[
tr(Σ2)− 2⟨Σ, ABT ⟩+ ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F

]
(2.27)

and

tr(Λ2) ≤ α−1(2α− 1 + δ2) · ⟨Λ, CDT ⟩. (2.28)

If ⟨Λ, CDT ⟩ = 0, we have

tr(Σ2)− 2⟨Σ, ABT ⟩+ ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F = 0,

which implies that
ABT = Σ, ADT = CBT = CDT = 0.

This contradicts the assumption that M̃ ̸= M∗. Combining this with conditions (2.21), (2.27)
and (2.28), we arrive at the necessity part. For problem (2.9), Lemma 3 in [95] ensures that
M̃ is still a fixed point of the SVP algorithm. Recalling the necessary conditions in Theorem
11, we know that the same necessary conditions also hold in this case.
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Sufficiency. Now, we study the sufficiency part. We first consider problem (2.6). We
choose two orthogonal matrices U ∈ Rn×2r, V ∈ Rm×2r and define

M̃ = U

[
Σ 0r×r

0r×r 0r×r

]
V T , M∗ := U

([
A
C

] [
B
D

]T)
V T , G := U

[
0r×r 0r×r

0r×r −Λ

]
V T .

Since ⟨Λ, CDT ⟩ ≠ 0, we have M̃ ̸= M∗. Then, we know that rank(M̃) ≤ r and rank(M∗) ≤ r.
We define

G̃ := G− α(M̃ −M∗),

which satisfies ⟨G̃, M̃ −M∗⟩ = 0 by the condition in the second line of (2.10). If G̃ = 0, then[
0r×r 0r×r

0r×r −Λ

]
= α ·

[
Σ 0r×r

0r×r 0r×r

]
− α ·

[
A
C

] [
B
D

]T
= α ·

[
Σ 0r×r

0r×r 0r×r

]
− α ·

[
ABT 0

0 CDT

]
,

where the second step is because of CBT = 0 and ADT = 0. The above relation is equivalent
to

Σ = ABT , Λ = α · CDT .

Since Σ ≻ 0, the matrix ABT has rank r. Noticing that the decomposition of matrix M∗

ensures that the rank of M∗ is at most r, we have CDT = 0, which is a contradiction to the
condition that ⟨CDT ,Λ⟩ ≠ 0. Therefore, we have G̃ ̸= 0. We consider the rank-2 symmetric
tensor

G1 :=
α

∥M̃ −M∗∥2F
· (M̃ −M∗)⊗ (M̃ −M∗) +

2− α

∥G̃∥2F
· G̃⊗ G̃

+
1

∥M̃ −M∗∥2F

[
(M̃ −M∗)⊗ G̃ + G̃⊗ (M̃ −M∗)

]
.

For every matrix K ∈ Rn×m, we have the decomposition

K = t(M̃ −M∗) + sG̃ + K̃, ⟨M̃ −M∗, K̃⟩ = ⟨G̃, K̃⟩ = 0,

where t, s ∈ R are two suitable constants. Then, using the definition of G1, we have

K : G1 : K = α∥M̃ −M∗∥2F · t2 + 2∥G̃∥2F · ts + (2− α)∥G̃∥2F · s2.

By the conditions in the third line of (2.10), one can write

∥G̃∥2F ≤ [α− (1− δ)][(1 + δ)− α] · ∥M̃ −M∗∥2F ,

which leads to

[α− (1− δ)]∥M̃ −M∗∥2F · t2 + 2∥G̃∥2F · ts + [(1 + δ)− α]∥G̃∥2F · s2 ≥ 0,

[(1 + δ)− α]∥M̃ −M∗∥2F · t2 − 2∥G̃∥2F · ts + [α− (1− δ)]∥G̃∥2F · s2 ≥ 0.
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The above two inequalities are equivalent to

(1− δ)[∥M̃ −M∗∥2F · s2 + ∥G̃∥2F · t2] ≤ K : G1 : K ≤ (1 + δ)[∥M̃ −M∗∥2F · s2 + ∥G̃∥2F · t2].
(2.29)

By restricting to the subspace

S := span{M̃ −M∗, G̃} = {s(M̃ −M∗) + tG̃ | s, t ∈ R},

the tensor G1 can be viewed as a 2 × 2 matrix. Then, inequality (2.29) implies that the
matrix has two eigenvalues λ1 and λ2 such that

1− δ ≤ λ1, λ2 ≤ 1 + δ.

Therefore, we can rewrite the tensor G1 restricted to S as

[G1]S = λ1 ·G1 ⊗G1 + λ2 ·G2 ⊗G2,

where G1, G2 are linear combinations of M̃ − M∗, G̃ and have the unit norm. Since the
orthogonal complementary S⊥ is in the null space of G1, we have

G1 = [G1]S = λ1 ·G1 ⊗G1 + λ2 ·G2 ⊗G2.

Now, we choose matrices G3, . . . , GN such that G1, . . . , GN form an orthonormal basis of the
linear vector space Rn×m, where N := nm. We define another symmetric tensor by

H := G1 +
N∑
i=3

(1 + δ) ·Gi ⊗Gi.

Then, inequality (2.29) implies that the quadratic form K : H : K satisfies the δ-RIP2r,2r

property.
Therefore, we can choose the Hessian to be the constant tensor H and define the function

fa(·) as

fa(K) :=
1

2
(K −M∗) : H : (K −M∗), ∀K ∈ Rn×m.

Combining with the definition of H, we know

∇fa(M̃) = H : (M̃ −M∗) = G, ∇2fa(M̃) = H.

We choose matrices Ū ∈ Rn×r, V̄ ∈ Rm×r such that M̃ = Ū V̄ T and ŪT Ū = V̄ T V̄ . By the
definitions of M̃ and G, we know that M̃ and G have orthogonal column and row spaces,
i.e.,

ŪTG = 0, GV̄ = 0.
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This means that the first-order optimality conditions are satisfied at the point (Ū , V̄ ). For
the second-order necessary optimality conditions, we consider the direction

∆ :=

[
∆U

∆V

]
∈ R(n+m)×r.

We consider the decomposition

∆U = PŪ∆U + P⊥
Ū ∆U := ∆1

U + ∆2
U , ∆V = PV̄ ∆V + P⊥

V̄ ∆V := ∆1
V + ∆2

V ,

where PŪ ,PV̄ are the orthogonal projection onto the column space of Ū , V̄ , respectively.
Then, using the conditions in the first line of (2.10), we have

⟨∇fa(M̃),∆U∆T
V ⟩ = ⟨G,∆U∆T

V ⟩ = ⟨G,∆2
U(∆2

V )T ⟩ ≥ −∥GT∆2
U∥F∥∆2

V ∥F

≥ −(1 + δ)σr(M̃)∥∆2
U∥F∥∆2

V ∥F ≥ −(1 + δ)σr(M̃) · ∥∆
2
U∥2F + ∥∆2

V ∥2F
2

.

(2.30)

We define
∆1 := Ū(∆1

V )T + ∆1
U V̄

T , ∆2 := Ū(∆2
V )T + ∆2

U V̄
T .

Then, we know that ⟨∆1,∆2⟩ = 0. Using the assumption that CBT = ADT = 0, we know
that M∗ has the form

M∗ = U

[
ABT 0

0 CDT

]
V T = PŪM

∗PV̄ + P⊥
ŪM

∗P⊥
V̄ . (2.31)

Then, the special form (2.31) implies that

⟨M∗,∆2⟩ = ⟨M∗, Ū(∆2
V )T + ∆2

U V̄
T ⟩ =

〈
M∗, Ū∆T

VP⊥
V̄ + P⊥

Ū ∆U V̄
T
〉

= 0.

Using the definitions of M̃ and G, it can be concluded that

⟨M̃,∆2⟩ = 0, ⟨G,∆2⟩ = ⟨G, Ū(∆2
V )T + ∆2

U V̄
T ⟩ = 0.

Since G1, G2 are linear combinations of M̃ −M∗ and G, the last three relations lead to

⟨G1,∆2⟩ = ⟨G2,∆2⟩ = 0.

Therefore, there exist constants a3, . . . , aN such that

∆2 =
N∑
i=3

aiGi.

Suppose that the constants b1, . . . , bN satisfy

∆1 =
N∑
i=1

biGi.
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Then, the fact ⟨∆1,∆2⟩ = 0 and the orthogonality of G1, . . . , GN imply that

N∑
i=3

aibi = 0.

We can calculate that

[∇2fa(M̃)](Ū∆T
V + ∆U V̄

T , Ū∆T
V + ∆U V̄

T ) = (∆1 + ∆2) : H : (∆1 + ∆2)

=λ1 · b21 + λ2 · b22 + (1 + δ)
N∑
i=3

(ai + bi)
2 ≥ (1 + δ)

N∑
i=3

(ai + bi)
2

=(1 + δ)
N∑
i=3

(
a2i + b2i

)
≥ (1 + δ)

N∑
i=3

a2i = (1 + δ)∥Ū(∆2
V )T + ∆2

U V̄
T∥2F ,

where the third last step is due to
∑N

i=3 aibi = 0. Noticing that ⟨Ū(∆2
V )T ,∆2

U V̄
T ⟩ = 0, the

above inequality gives that

[∇2fa(M̃)](Ū∆T
V + ∆U V̄

T , Ū∆T
V + ∆U V̄

T ) ≥ (1 + δ)∥Ū(∆2
V )T∥2F + (1 + δ)∥∆2

U V̄
T∥2F

≥(1 + δ)σr(Ū)2∥∆2
V ∥2F + (1 + δ)σr(V̄ )2∥∆2

U∥2F = (1 + δ)σr(M̃)(∥∆2
V ∥2F + ∥∆2

U∥2F ),

where the last equality is because of σr(Ū)2 = σr(V̄ )2 = σr(M̃) when ŪT Ū = V̄ T V̄ . Com-
bining with inequality (2.30), one can write

[∇2ha(U, V )](∆,∆) = 2⟨∇fa(M̃),∆U∆T
V ⟩+ [∇2fa(M̃)](Ū∆T

V + ∆U V̄
T , Ū∆T

V + ∆U V̄
T )

≥− (1 + δ)σr(M̃)(∥∆2
V ∥2F + ∥∆2

U∥2F ) + (1 + δ)σr(M̃)(∥∆2
V ∥2F + ∥∆2

U∥2F ) = 0.

This shows that (Ū , V̄ ) satisfies the second-order necessary optimality conditions, and there-
fore it is a spurious second-order critical point.

Now, we consider problem (2.9). Since the point (Ū , V̄ ) satisfies ŪT Ū = V̄ T V̄ , it is
also a local minimum of the regularization term. Hence, the point (Ū , V̄ ) is also a spurious
second-order critical point of the regularized problem (2.9).

Proof of Corollary 1

Proof of Corollary 1. We assume that problem (2.6) has a spurious second-order critical
point. By the necessity part of Theorem (2.10), there exist α ∈ (1 − δ, 1 + δ) and real
numbers σ, λ, a, b, c, d such that

(1 + δ)σ ≥ λ > 0, α−1(2α− 1 + δ2)cd · λ ≥ λ2 > 0,

cd · λ = α[σ2 − 2ab · σ + (ab)2 + (ad)2 + (cb)2 + (cd)2]. (2.32)

We first relax the second line to

cd · λ ≥ α[σ2 − 2|ab| · σ + (ab)2 + 2|ab| · |cd|+ (cd)2]. (2.33)
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Then, we denote x := |ab| and consider the quadratic programming problem

min
x≥0

x2 + 2(|cd| − σ) · x,

whose optimal value is
−(σ − |cd|)2+,

where (t)+ := max{t, 0}. Substituting into inequality (2.33), we obtain

cd · λ ≥ α[σ2 − (σ − |cd|)2+ + (cd)2]. (2.34)

Then, we consider two different cases.

Case I. We first consider the case when σ ≥ |cd|. In this case, the inequality (2.34)
becomes

cd · λ ≥ 2α · σ|cd| = 2α · σcd,

where the last equality is due to cd > 0. Therefore,

λ ≥ 2α · σ.

The second inequality in (2.32) implies λ ≤ α−1(2α− 1 + δ2) · cd. Combining with the above
inequality and the assumption of this case, it follows that

α−1(2α− 1 + δ2) · σ ≥ α−1(2α− 1 + δ2) · cd ≥ 2α · σ,

which is further equivalent to

α−1(2α− 1 + δ2) ≥ 2α ⇐⇒ δ2 ≥ 2α2 − 2α + 1.

Since 2α2 − 2α + 1 ≥ 1/2, we arrive at δ2 ≥ 1/2, which is a contradiction to δ < 1/2.

Case II. We then consider the case when σ ≤ |cd|. In this case, the inequality (2.34)
becomes

cd · λ ≥ α[σ2 + (cd)2].

Combining with the second inequality in (2.32), we obtain λ ≤ α−1(2α − 1 + δ2) · (cd).
Therefore,

α−1(2α− 1 + δ2) · (cd)2 ≥ cd · λ ≥ α[σ2 + (cd)2].

Moreover, the first inequality in (2.32) gives

(1 + δ)σ · cd ≥ cd · λ ≥ α[σ2 + (cd)2].
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By denoting y := cd, the above two inequalities become

α−1(2α− 1 + δ2) · y2 ≥ α[σ2 + y2],

(1 + δ)σ · y ≥ α[σ2 + y2]. (2.35)

By denoting z := y/σ, the first inequality in (2.35) implies

z2 ≥ α2

δ2 − (1− α)2
. (2.36)

Since δ < 1/2, one can write

(1− α)2 + α2 ≥ 1

2
>

1

4
> δ2,

which is equivalent to α2 ≥ δ2 − (1 − α)2. Therefore, inequality (2.36) implies that z2 ≥ 1
and

z2 +
1

z2
≥ α2

δ2 − (1− α)2
+

δ2 − (1− α)2

α2
. (2.37)

On the other hand, the second inequality in (2.35) implies

z +
1

z
≤ 1 + δ

α
and thus z2 +

1

z2
+ 2 ≤ (1 + δ)2

α2
.

Combining with inequality (2.37), it follows that

α2

δ2 − (1− α)2
+

δ2 − (1− α)2

α2
+ 2 ≤ (1 + δ)2

α2
. (2.38)

By some calculation, the above inequality is equivalent to

(δ2 + 2δ + 5) · α2 + (2δ2 − 4δ − 6) · α + 2(1 + δ)(1− δ2) ≤ 0.

Checking the discriminant of the above quadratic function, we obtain

(2δ2 − 4δ − 6)2 − 8(δ2 + 2δ + 5)(1 + δ)(1− δ2) ≥ 0,

which is equivalent to
4(2δ − 1)(δ + 1)4 ≥ 0.

However, the above claim contradicts the assumption that δ < 1/2.
In summary, the contradictions in the two cases imply that the condition (2.32) cannot

hold, and therefore there does not exist spurious second-order critical points.
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Counterexample for the Rank-one Case

Example 3. Let ei ∈ Rn be the i-th standard basis of Rn. We define the tensor

H :=
n∑

i,j=1

(eie
T
j )⊗ (eie

T
j ) +

1

2
(e1e

T
1 )⊗ (e2e

T
2 ) +

1

2
(e2e

T
2 )⊗ (e1e

T
1 )

+
1

4

[
(e1e

T
2 )⊗ (e1e

T
2 ) + (e2e

T
1 )⊗ (e2e

T
1 )
]

+
1

4
(e1e

T
2 )⊗ (e2e

T
1 ) +

1

4
(e2e

T
1 )⊗ (e1e

T
2 )

and the objective function

fa(M) := (M − e1e
T
1 ) : H : (M − e1e

T
1 ) ∀M ∈ Rn×n.

The global minimizer of fa(·) is the rank-1 matrix M∗ := e1e
T
1 . It has been proved in [247]

that the function fa(·) satisfies the δ-RIP2,2 property with δ = 1/2. Moreover, we define

U :=
1√
2
e2, V := U, M̃ := UUT ̸= M∗.

It has been proved in [247] that the first-order optimality condition is satisfied. To verify
the second-order necessary condition, we can calculate that

[∇2ha(U,U)](∆,∆) = 2⟨∇fa(M̃),∆U∆T
V ⟩+ (U∆T

V + ∆UU
T ) : H : (U∆T

V + ∆UU
T )

= −3

2
(∆U)1(∆V )1 +

5

8

[
(∆U)21 + (∆V )21

]
+

1

4
(∆U)1(∆V )1

+
1

2
[(∆U)2 + (∆V )2]

2 +
1

2

n∑
i=3

[
(∆U)2i + (∆V )2i

]
=

5

8
[(∆U)1 − (∆V )1]

2 +
1

2
[(∆U)2 + (∆V )2]

2 +
1

2

n∑
i=3

[
(∆U)2i + (∆V )2i

]
,

which is non-negative for every ∆ ∈ Rn. Hence, we conclude that the point M̃ is a spurious
second-order critical point of problem (2.6). Moreover, since we choose V = U , the point
M̃ is a global minimizer of the regularizer ∥UTU − V TV ∥2F and thus M̃ is also a spurious
second-order critical point of problem (2.9).

Proof of Corollary 2

Proof of Corollary 2. We first consider the case when δ ≤ 1/3. We assume that there exists
a spurious second-order critical point M̃ . Then, by Theorem 4, we know that there exists a
constant α ∈ (1− δ, (1 + δ)/2]. This means that

1− δ <
1 + δ

2
,
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which contradicts the assumption that δ ≤ 1/3.
Then, we consider the case when δ < 1/2. With no loss of generality, assume that

M̃ ̸= M∗ and M∗ ̸= 0; otherwise, the inequality in this theorem is trivially true. Define

m11 := ∥Σ∥2F , m12 := ⟨Σ, ABT ⟩, m22 := ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F .

By our construction in Theorem 4, we know that

m11 = ∥M̃∥2F , m12 = ⟨M̃,M∗⟩, m22 = ∥M∗∥2F .

Therefore, we only need to prove m12 ≥ C(δ) · √m11m22 for some constant C(δ) > 0. By

the analysis in [95], we know that the second-order critical point M̃ must have rank r and
thus m11 ̸= 0. The remainder of the proof is split into two steps.

Step I. First, we prove that

(m11 + m22 − 2m12)
2

m11m22 −m2
12

≤ (1 + δ)2

α2
,

(m11 −m12)
2

m11m22 −m2
12

≤ δ2 − (1− α)2

α2
. (2.39)

We first rule out the case when m11m22 −m2
12 = 0. In this case, the equality condition of

the Cauchy inequality shows that there exists a constant t such that

M̃ = tM∗.

Since M̃ ̸= 0, the constant t is not 0. Using the mean value theorem, for any Z ∈ Rn×m,
there exists a constant c ∈ [0, 1] such that

⟨∇fa(M̃), Z⟩ = ∇2f [M∗ + c(M̃ −M∗)](M̃ −M∗, Z)

= ∇2f [M∗ + c(M̃ −M∗)][(t− 1)M∗, Z].

The δ-RIP2r,2r property gives

⟨∇fa(M̃), M̃⟩ = ∇2f [M∗ + c(M̃ −M∗)][(t− 1)M∗, tM∗] ≥ t(t− 1)(1− δ)∥M∗∥2F .

If t = 1, we conclude that M̃ = M∗, which contradicts the assumption that M̃ ̸= M∗.
Therefore, it holds that

⟨M̃,∇fa(M̃)⟩ ≠ 0.

This contradicts the first-order optimality condition, which states that ⟨M̃,∇fa(M̃)⟩ = 0.
Hence, we have proved that inequality (2.39) is well defined. We consider the decomposition[

0 0
0 Λ

]
= c1

[
Σ 0
0 0

]
+ c2

[
A
C

] [
B
D

]T
+ K,

〈
K,

[
Σ 0
0 0

]〉
=

〈
K,

[
A
C

] [
B
D

]T〉
= 0.
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Using the conditions in Theorem 4, it follows that〈[
0 0
0 Λ

]
,

[
Σ 0
0 0

]〉
= 0,

〈[
0 0
0 Λ

]
,

[
A
C

] [
B
D

]T〉
= α(m11 − 2m12 + m22).

The pair of coefficients (c1, c2) can be uniquely solved as

c1 = −α · m11 + m22 − 2m12

m11m22 −m2
12

·m12, c2 = α · m11 + m22 − 2m12

m11m22 −m2
12

·m11.

Using the orthogonality of the decomposition, we have

∥Λ∥2F ≥

∥∥∥∥∥c1
[
Σ 0
0 0

]
+ c2

[
A
C

] [
B
D

]T∥∥∥∥∥
2

F

= c21m11 + 2c1c2m12 + c22m22

= α2 · m11(m11 + m22 − 2m12)
2

m11m22 −m2
12

. (2.40)

Using the last two lines of condition (2.10), one can write

α2 · m11(m11 + m22 − 2m12)
2

m11m22 −m2
12

≤ ∥Λ∥2F

≤ (2α− 1 + δ2)
[
tr(Σ2)− 2⟨Σ, ABT ⟩+ ∥ABT∥2F + ∥ADT∥2F + ∥CBT∥2F + ∥CDT∥2F

]
= (2α− 1 + δ2)(m11 − 2m12 + m22).

Simplifying the above inequality, we arrive at the second inequality in (2.39). Now, the first
inequality in condition (2.10) implies that

∥Λ∥2F ≤ (1 + δ)2∥Σ∥2F = (1 + δ)2m11.

Substituting inequality (2.40) into the left-hand side, it follows that

α2 · m11(m11 + m22 − 2m12)
2

m11m22 −m2
12

≤ (1 + δ)2m11,

which is equivalent to the first inequality in (2.39).

Step II. Next, we prove the existence of C(δ). We denote

κ :=
m12√
m11m22

∈ (−1, 1).

and

C1 :=
δ2 − (1− α)2

α2
, C2 :=

(1 + δ)2

α2
, t :=

√
m11

m22

.
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Since M̃ ̸= 0, we have t > 0. The inequalities in (2.39) can be written as

(t− κ)2 ≤ (1− κ2)C1, (t + 1/t− 2κ)2 ≤ (1− κ2)C2. (2.41)

Using the assumption that δ < 1/2, we can write

δ2 <
1

4
< (1− α)2 +

1

2
α2,

which leads to

C1 =
δ2 − (1− α)2

α2
<

1

2
.

If κ +
√

(1− κ2)C1 ≥ 1, then

|κ| ≥ 1− C1

1 + C1

≥ 1

3
> 0. (2.42)

If κ < 0, then it holds that

κ +
√

(1− κ2)C1 ≤ −
1

3
+

√
1

2
< 1,

which contradicts the assumption. Therefore, we have κ ≥ 0 and inequality (2.42) gives
κ ≥ 1/3.

Now, we assume that κ +
√

(1− κ2)C1 ≤ 1. Then, the first inequality in (2.41) gives

0 < t ≤ κ +
√

(1− κ2)C1 ≤ 1,

which further leads to

t +
1

t
− 2κ ≥ −κ +

√
(1− κ2)C1 +

1

κ +
√

(1− κ2)C1

.

Combining with the second inequality in (2.41), we obtain

−κ +
√

(1− κ2)C1 +
1

κ +
√

(1− κ2)C1

≤
√

(1− κ2)C2.

The above inequality can be simplified to
√

1− κ2(1 + C1 −
√

C1C2) ≤ κ
√

C2.

We notice that the inequality 1 + C1 −
√
C1C2 ≤ 0 is equivalent to inequality (2.38), which

cannot hold when δ < 1/2. Therefore, we have 1 + C1 −
√
C1C2 > 0 and κ > 0. Then, the

above inequality is equivalent to

(1− κ2)(1 + C1 −
√

C1C2)
2 ≤ κ2 · C2.
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Therefore, we have

κ2 ≥ (1 + C1 −
√
C1C2)

2

(1 + C1 −
√
C1C2)2 + C2

= 1− 1

1 + η2
,

where we define

η :=
1 + C1 −

√
C1C2√

C2

.

To prove the existence of C(δ) such that κ ≥ C(δ) > 0, we only need to show that η is lower
bounded by a positive constant. With δ fixed, η can be viewed as a continuous function of
α. Since η = (1− δ)/(1 + δ) > 0 when α = 1− δ, the function/parameter η is defined for all
α in the compact set [1− δ, (1 + δ)/2]. Combining with the fact that 1 + C1 −

√
C1C2 > 0,

the function η is positive on a compact set, and thus there exists a positive lower bound
C̄(δ) > 0.

In summary, we can define the function

C(δ) := min

{
1

3
, C̄(δ)

}
> 0

such that κ ≥ C(δ) for every spurious second-order critical point M̃ .

Counterexample for the General Rank Case with Linear
Measurements

Example 4. Using the previous rank-1 example, we design a counterexample with linear
measurement for the rank-r case. Let n ≥ 2r be an integer and ei ∈ Rn be the i-th standard
basis of Rn. We define the tensor

H :=
3

2

n∑
i,j=1

(eie
T
j )⊗ (eie

T
j ) +

r∑
i=1

{
− 1

2

[
(e2i−1e

T
2i−1)⊗ (e2i−1e

T
2i−1) + (e2ie

T
2i)⊗ (e2ie

T
2i)
]

+
1

2

[
(e2i−1e

T
2i−1)⊗ (e2ie

T
2i) + (e2ie

T
2i)⊗ (e2i−1e

T
2i−1)

]
− 1

4

[
(e2i−1e

T
2i)⊗ (e2i−1e

T
2i) + (e2ie

T
2i−1)⊗ (e2ie

T
2i−1)

]
+

1

4

[
(e2i−1e

T
2i)⊗ (e2ie

T
2i−1) + (e2ie

T
2i−1)⊗ (e2i−1e

T
2i)
] }

and the rank-r global minimum

U∗ :=
[
e1 e3 · · · e2r−1

]
, M∗ := U∗(U∗)T =

r∑
i=1

e2i−1e
T
2i−1.

The objective function is defined as

fa(M) := (M −M∗) : H : (M −M∗) ∀M ∈ Rn×n.
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We can similarly prove that the function fa(·) satisfies the δ-RIP2r,2r property with δ = 1/2.
Moreover, we define

Ũ :=
1√
2

[
e2 e4 · · · e2r

]
, M̃ := Ũ ŨT =

1

2

r∑
i=1

e2ie
T
2i ̸= M∗.

The gradient of fa(·) at point M̃ is

∇fa(M̃) = −3

4

r∑
i=1

e2i−1e
T
2i−1 ∈ R2r×2r.

Since the column and row spaces of the gradient are orthogonal to those of M̃ , the first-
order optimality condition is satisfied. To verify the second-order necessary condition, we
can similarly calculate that

[∇2ha(Ũ , Ũ)](∆,∆)

=2⟨∇fa(M̃),∆U∆T
V ⟩+ (Ũ∆T

V + ∆V Ũ
T ) : H : (Ũ∆T

V + ∆U Ũ
T )

=− 3

2

r∑
i=1

[
r∑

j=1

(∆U)2i−1,j

][
r∑

j=1

(∆V )2i−1,j

]
+

r∑
i=1

{5

8

[
(∆U)22i−1,i + (∆V )22i−1,i

]
+

1

4
(∆U)2i−1,i(∆V )2i−1,i +

1

2
[(∆U)2i,i + (∆V )2i,i]

2
}

+
∑

1≤i,j≤n,i ̸=j

3

4
[(∆U)2j,i + (∆V )2i,j]

2 +
∑

1≤i,j≤n,i̸=j

3

4

[
(∆U)22j−1,i + (∆V )22j−1,i

]
=

r∑
i=1

{5

8
[(∆U)2i−1,i − (∆V )2i−1,i]

2 +
1

2
[(∆U)2i,i + (∆V )2i,i]

2
}

+
∑

1≤i,j≤n,i ̸=j

3

4
[(∆U)2j,i + (∆V )2i,j]

2 +
∑

1≤i,j≤n,i̸=j

3

4
[(∆U)2j−1,i − (∆V )2j−1,i]

2 ,

which is non-negative for every ∆ ∈ Rn×r. Hence, the point M̃ is a spurious second-order
critical point of problem (2.6). Moreover, since we choose Ṽ = Ũ , the point M̃ is a global
minimizer of the regularizer ∥ŨT Ũ − Ṽ T Ũ∥2F and thus M̃ is also a spurious second-order
critical point of problem (2.9).

2.E Proofs for Section 2.4

Proof of Theorem 6

In this subsection, we use the following notations:

M := UV T , M∗ := U∗(V ∗)T , W :=

[
U
V

]
, W ∗ :=

[
U∗

V ∗

]
, Ŵ :=

[
U
−V

]
, Ŵ ∗ :=

[
U∗

−V ∗

]
,
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where M∗ := M∗
a is the global optimum. We always assume that U∗ and V ∗ satisfy

(U∗)TU∗ = (V ∗)TV ∗. When there is no ambiguity about W , we use W ∗ to denote the
minimizer of minX∈X ∗ ∥W − X∥F , where X ∗ is the set of global minima of problem (2.9).
We note that the set X ∗ is the trajectory of a global minimum (U∗, V ∗) under the orthogonal
group:

X ∗ = {(U∗R, V ∗R) | R ∈ Rr×r, RTR = RRT = Ir}.

Therefore, the set X ∗ is a compact set and its minimum can be attained. With this choice,
it holds that

dist(W,X ∗) = ∥W −W ∗∥F .

We first summarize some technical results in the following lemma.

Lemma 1 ([219, 256]). The following statements hold for every U ∈ Rn×r, V ∈ Rm×r and
W ∈ R(n+m)×r:

• 4∥M −M∗∥2F ≥ ∥WW T −W ∗(W ∗)T∥2F − ∥UTU − V TV ∥2F .

• ∥W ∗(W ∗)T∥2F = 4∥M∗∥2F .

• If rank(W ∗) = r and W ∗ is the minimizer of minX∈X ∗ ∥W − X∥F , then ∥WW T −
W ∗(W ∗)T∥2F ≥ 2(

√
2− 1)σ2

r(W ∗)∥W −W ∗∥2F .

• If rank(U∗) = r and U∗ is the minimizer of minX∈X ∗ ∥U − X∥F , then ∥UUT −
U∗(U∗)T∥2F ≥ 2(

√
2− 1)σ2

r(U∗)∥U − U∗∥2F .

The proof of Theorem 6 follows from the following sequence of lemmas. We first identify
two cases when the gradient is large. The following lemma proves that an unbalanced solution
cannot be a first-order critical point.

Lemma 2. Given a constant ϵ > 0, if

∥UTU − V TV ∥F ≥ ϵ,

then
∥∇ρ(U, V )∥F ≥ µ(ϵ/r)3/2.

Proof. Using the relationship between the 2-norm and the Frobenius norm, we have

∥UTU − V TV ∥2 ≥ r−1∥UTU − V TV ∥F ≥ ϵ/r.

Let q ∈ Rr be an eigenvector of UTU − V TV such that

∥q∥2 = 1,
∣∣qT (UTU − V TV )q

∣∣ = ∥UTU − V TV ∥2.

We consider the direction
∆ := Ŵ qqT .
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Then, we can calculate that

∥∆∥2F = tr
(
Ŵ qqT qqT Ŵ T

)
= tr

(
qT Ŵ T Ŵ q

)
= qT (UTU + V TV )q.

In addition, we have

⟨∇ha(U, V ),∆⟩ =

〈[
∇fa(M)V

[∇fa(M)]T U

]
,

[
UqqT

−V qqT

]〉
= tr

[
V T [∇fa(M)]TUqqT

]
− tr

[
UT∇fa(M)V qqT

]
= qT

[
V T [∇fa(M)]TU

]
q − qT

[
UT∇fa(M)V

]
q = 0.

and ∣∣∣〈µ
4
∇g(U, V ),∆

〉∣∣∣ = µ
∣∣∣〈ŴŴ TW,WqqT

〉∣∣∣
= µ

∣∣tr [(UTU − V TV )(UTU + V TV )qqT
]∣∣

= µ
∣∣qT (UTU − V TV )(UTU + V TV )q

∣∣
= µ∥UTU − V TV ∥2 · qT (UTU + V TV )q

= µ∥UTU − V TV ∥2 ·
√
qT (UTU + V TV )q · ∥∆∥F .

Hence, Cauchy’s inequality implies that

∥∇ρ(U, V )∥F ≥
|⟨∇ρ(U, V ),∆⟩|

∥∆∥F
= µ∥UTU − V TV ∥2 ·

√
qT (UTU + V TV )q.

Using the fact that

qT (UTU + V TV )q ≥
∣∣qT (UTU − V TV )q

∣∣ = ∥UTU − V TV ∥2,

we obtain
∥∇ρ(U, V )∥F ≥ µ∥UTU − V TV ∥3/22 ≥ µ(ϵ/r)3/2.

The next lemma proves that a solution with large norm cannot be a first-order critical
point.

Lemma 3. Given a constant ϵ > 0, if

1− δ

3
≤ µ < 1− δ, ∥WW T∥3/2F ≥ max

{(
1 + δ

1− µ− δ

)2

∥W ∗(W ∗)T∥3/2F ,
4
√
rλ

1− µ− δ

}
,

then
∥∇ρ(U, V )∥F ≥ λ.
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Proof. Choosing the direction ∆ := W , we can calculate that

⟨∇ρ(U, V ),∆⟩ = 2⟨∇fa(UV T ), UV T ⟩+ µ∥UTU − V TV ∥2F . (2.43)

Using the δ-RIP2r,2r property, we have

[∇2fa(N)](M,M) ≥ (1− δ)∥M∥2F , [∇2fa(N)](M∗,M) ≤ (1 + δ)∥M∥F∥M∗∥F ,

where N ∈ Rn×m is every matrix with rank at most 2r. Then, the first term can be estimated
as

⟨∇fa(UV T ), UV T ⟩ =

∫ 1

0

[∇2fa(M
∗ + s(M −M∗)][M −M∗,M ] ds

≥ (1− δ)∥M∥2F − (1 + δ)∥M∗∥F∥M∥F .

The second term is

µ∥UTU − V TV ∥2F = µ
(
∥UUT∥2F + ∥V V T∥2F

)
− 2µ∥M∥2F .

Substituting into equation (2.43), it follows that

⟨∇ρ(U, V ),∆⟩ ≥ µ
(
∥UUT∥2F + ∥V V T∥2F

)
+ 2(1− δ − µ)∥M∥2F − 2(1 + δ)∥M∗∥F∥M∥F

≥ µ
(
∥UUT∥2F + ∥V V T∥2F

)
+ 2(1− δ − µ)∥M∥2F − 2c∥M∥2F −

(1 + δ)2

2c
∥M∗∥2F

≥ min {µ, 1− δ − µ− c} ∥WW T∥2F −
(1 + δ)2

2c
∥M∗∥2F ,

where c ∈ (0, 1 − δ − µ) is a constant to be designed later. Using equality that (U∗)TU∗ =
(V ∗)TV ∗, Lemma 1 gives

∥W ∗(W ∗)T∥2F = 4∥M∗∥2F .

As a result,

⟨∇ρ(U, V ),∆⟩ ≥ min {µ, 1− δ − µ− c} ∥WW T∥2F −
(1 + δ)2

8c
∥W ∗(W ∗)T∥2F .

Now, choosing

c =
1− δ − µ

2

and noticing that µ ≥ (1− δ − µ)/2, it yields that

⟨∇ρ(U, V ),∆⟩ ≥ 1− δ − µ

2
∥WW T∥2F −

(1 + δ)2

4(1− δ − µ)
∥W ∗(W ∗)T∥2F . (2.44)

On the other hand,
∥∆∥F = ∥W∥F ≤

√
r∥WW T∥1/2F .
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Combining with inequality (2.44) and using the assumption of this lemma, one can write

∥∇ρ(U, V )∥F ≥
⟨∇ρ(U, V ),∆⟩
∥∆∥F

≥ 1− δ − µ

2
√
r
∥WW T∥3/2F −

(1 + δ)2

4
√
r(1− δ − µ)

∥W ∗(W ∗)T∥2F∥WW T∥−1/2
F

≥ 1− δ − µ

2
√
r
∥WW T∥3/2F −

(1 + δ)2

4
√
r(1− δ − µ)

∥W ∗(W ∗)T∥3/2F

≥ 1− δ − µ

4
√
r
∥WW T∥3/2F ≥ λ.

Using the above two lemmas, we only need to focus on points such that

∥UTU − V TV ∥F = o(1), ∥WW T∥F = O(1).

The following lemma proves that if (U, V ) is an approximate first-order critical point with
a small singular value σr(W ), then the Hessian of the objective function at this point has a
negative curvature.

Lemma 4. Consider positive constants α,C, ϵ, λ such that

ϵ2 ≤ (
√

2− 1)σ2
r(W ∗) · α2, G > µ

(
ϵ +

4H2

G2

)
+

(1 + δ)H2

G2
, (2.45)

where G := ∥∇fa(M)∥2 and H := λ + µϵC. If

∥UTU − V TV ∥2F ≤ ϵ2, ∥WW T∥F ≤ C2, ∥W −W ∗∥F ≥ α, ∥∇ρ(U, V )∥F ≤ λ

and

σ2
r(W ) ≤ 2

1 + δ

[
G− µ

(
ϵ +

4H2

G2

)
− (1 + δ)H2

G2

]
− 2τ (2.46)

for some positive constant τ , then it holds that

λmin(∇2ρ(U, V )) ≤ −(1 + δ)τ.

Proof. We choose a singular vector q of W such that

∥q∥2 = 1, ∥Wq∥2 = σr(W ).

Since ∥Wq∥2 =
√
∥Uq∥22 + ∥V q∥22, we have

∥Uq∥22 + ∥V q∥22 = σ2
r(W ).
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We choose singular vectors u and v such that

∥u∥2 = ∥v∥2 = 1, ∥∇fa(M)∥2 = uT∇fa(M)v.

We define the direction as

∆U := −uqT , ∆V := vqT , ∆ :=

[
∆U

∆V

]
, ∆̂ :=

[
∆U

−∆V

]
.

For the Hessian of ha(·, ·), we can calculate that

⟨∇fa(M),∆U∆T
V ⟩ = −∥∇fa(M)∥2 = −G (2.47)

and the δ-RIP2r,2r property gives

[∇2fa(M)](∆UV
T + U∆T

V ,∆UV
T + U∆T

V )

≤ (1 + δ)∥∆UV
T + U∆T

V ∥2F = (1 + δ)∥ − u(V q)T + (Uq)vT∥2F
= (1 + δ)

(
∥V q∥2F + ∥Uq∥2F

)
− 2(1 + δ)[qT (UTu)] · [qT (V Tv)]

≤ (1 + δ)σ2
r(W ) + 2(1 + δ) · ∥UTu∥F∥V Tv∥F . (2.48)

Then, we consider the terms coming from the Hessian of the regularizer. First, we have

⟨∆̂Ŵ T ,∆W T ⟩ ≤ ∥UTU − V TV ∥F · ∥∆T
U∆U −∆T

V ∆V ∥F
≤ ϵ ·

[
∥∆T

U∆U∥F + ∥∆T
V ∆V ∥F

]
= 2ϵ. (2.49)

Next, we can estimate that

⟨Ŵ ∆̂T ,∆W T ⟩+ ⟨ŴŴ T ,∆∆T ⟩ =
1

2
∥UT∆U + ∆T

UU − V T∆V −∆T
V V ∥2F

≤ 4
(
∥UT∆U∥2F + ∥V T∆V ∥2F

)
= 4

(
∥(UTu)qT∥2F + ∥(V Tv)qT∥2F

)
= 4

(
∥UTu∥2F + ∥V Tv∥2F

)
. (2.50)

Using the assumption that ∥WW T∥F ≤ C2 and ∥UTU − V TV ∥2F ≤ ϵ2, one can write

∥ŴŴ TW∥2F ≤ ∥UTU − V TV ∥2F · ∥UTU + V TV ∥F ≤ ϵ2∥WW T∥F ≤ ϵ2C2

and ∥∥∥∥[ ∇fa(UV T )V
∇fa(UV T )TU

]∥∥∥∥
F

= ∥∇ρ(U, V )− µŴŴ TW∥F ≤ λ + µϵC = H. (2.51)

The second relation implies that

∥∇fa(UV T )V ∥2 ≤ ∥∇fa(UV T )V ∥F ≤ H, ∥UT∇fa(UV T )∥2 ≤ ∥UT∇fa(UV T )∥F ≤ H.
(2.52)
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By the definition of u and v, it holds that

∥v∥2 = 1, ∥∇fa(M)∥2u = ∇fa(M)v.

Therefore,

∥UTu∥2F =
∥UT∇fa(M)v∥2F
∥∇fa(M)∥22

≤ ∥U
T∇fa(M)∥2F∥v∥22
∥∇fa(M)∥22

≤ H2

G2
.

Similarly,

∥V Tv∥2F ≤
H2

G2
.

Substituting into (2.48) and (2.50) yields that

[∇2fa(M)](∆UV
T + U∆T

V ,∆UV
T + U∆T

V ) ≤ (1 + δ)σ2
r(W ) + 2(1 + δ) · H

2

G2
(2.53)

and

⟨Ŵ ∆̂T ,∆W T ⟩+ ⟨ŴŴ T ,∆∆T ⟩ ≤ 8 · H
2

G2
. (2.54)

Combining (2.47), (2.49), (2.53) and (2.54), it follows that

[∇2ρ(U, V )](∆,∆) ≤ −2G + (1 + δ)σ2
r(W ) + 2µϵ + [8µ + 2(1 + δ)] · H

2

G2
.

Since ∥∆∥2F = 2, the above relation implies

λmin(∇2ρ(U, V )) ≤ −G +
1 + δ

2
σ2
r(W ) + µϵ + (4µ + 1 + δ) · H

2

G2
≤ −(1 + δ)τ.

Remark 2. The positive constants ϵ and λ in the proof of Lemma 4 can be chosen to be
arbitrarily small with α,C fixed. Hence, we may choose small enough ϵ and λ such that the
assumptions given in inequality (2.45) are satisfied. This lemma resolves the case when the
minimal singular value σ2

r(W ) is on the order of ∥∇fa(M)∥2/(2 + 2δ). In the next lemma,
we will show that this is the only case when δ < 1/3.

The final step is to prove that condition (2.46) always holds provided that δ < 1/3 and
ϵ, λ, τ = o(1).

Lemma 5. Given positive constants α,C, ϵ, λ, if

∥UTU − V TV ∥2F ≤ ϵ2, max{∥WW T∥F , ∥W ∗(W ∗)T∥F} ≤ C2,

∥W −W ∗∥F ≥ α, ∥∇ρ(U, V )∥F ≤ λ, δ < 1/3,
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then the inequality G ≥ cα holds for some constant c > 0 independent of α, ϵ, λ, C. Further-
more, there exist two positive constants

ϵ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C), λ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C)

such that

σ2
r(W ) ≤ 2

1 + δ

[
G− µ

(
2ϵ +

4H2

G2

)
− (1 + δ)H2

G2

]
(2.55)

whenever

0 <ϵ ≤ ϵ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C),

0 <λ ≤ λ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C).

Here, G and H are defined in Lemma 4.

Proof. We first prove the existence of the constant c. Using Lemma 1, one can write

4∥M −M∗∥2F ≥ ∥WW T −W ∗(W ∗)T∥2F − ∥UTU − V TV ∥2F ≥ ∥WW T −W ∗(W ∗)T∥2F − ϵ2.

Using Lemma 1 and the assumption that ∥W −W ∗∥F ≥ α, we have

∥M −M∗∥2F ≥
√

2− 1

2
σ2
r(W ∗)∥W −W ∗∥2F −

ϵ2

4
≥
√

2− 1

2
σ2
r(W ∗) · α2 − ϵ2

4
. (2.56)

By the definition of ϵ, it follows that

∥M −M∗∥2F ≥
√

2− 1

4
σ2
r(W ∗) · α2 > 0.

Thus, the δ-RIP2r,2r property gives

∥∇fa(M)∥F ≥
⟨∇fa(M),M −M∗⟩
∥M −M∗∥F

≥ (1− δ)∥M −M∗∥F ≥

√√
2− 1

4
· σr(W

∗)(1− δ) · α.

Hence, we have

G = ∥∇fa(M)∥2 ≥

√√
2− 1

4r
· σr(W

∗)(1− δ) · α = cα,

where we define

c :=

√√
2− 1

4r
· σr(W

∗)(1− δ).

Next, we prove inequality (2.55) by contradiction, i.e., we assume

σ2
r(W ) >

2

1 + δ

[
G− µ

(
2ϵ +

4H2

G2

)
− (1 + δ)H2

G2

]
≥ 2cα

1 + δ
+ poly(ϵ, λ). (2.57)

The remainder of the proof is divided into three steps.
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Step I. We first develop a lower bound for σr(M). We choose a vector p ∈ Rr such that

∥p∥F = 1, UTUp = σ2
r(U) · p.

It can be shown that

∥(Wp)TW∥F = ∥pTUTU + pTV TV ∥F ≤ 2∥pTUTU∥F + ∥pT (V TV − UTU)∥F
≤ 2σ2

r(U) + ∥pT∥F∥V TV − UTU∥F ≤ 2σ2
r(U) + ϵ.

On the other hand, since W has rank r, it holds that∥∥(Wp)TW
∥∥
F
≥ σ2

r(W ) · ∥p∥F = σ2
r(W ).

Combining the above two estimates, we arrive at

2σ2
r(U) ≥ σ2

r(W )− ϵ > 0,

where the last inequality is from the assumption that ϵ, λ are small and σr(W ) is lower
bounded by a positive value in (2.57). Using the inequality that

√
1− x ≥ 1 − x for every

x ∈ [0, 1], the above inequality implies that

σr(U) ≥ 1√
2
σr(W ) ·

√
1− ϵ

σ2
r(W )

≥ 1√
2
σr(W )− ϵ√

2σr(W )
. (2.58)

Similarly, one can prove that

σr(V ) ≥ 1√
2
σr(W )− ϵ√

2σr(W )
.

When ϵ is small enough, we know that σr(U), σr(V ) ̸= 0 and both U, V have rank r. To
lower bound the singular value σr(M), we consider vectors x such that ∥x∥2 = 1 and lower
bound xTV (UTU)V Tx. Since the range of V (UTU)V T is a subspace of the range of V and
the range of V has exactly dimension r, directions x that are in the orthogonal complement
of the range of V correspond to exactly m− r zero singular values. Hence, to estimate the
r-th largest singular value of M , we only need to consider directions that are in the range of
V . Namely, we only consider directions that have the form x = V y for some vector y. Then,
we have

xTV (UTU)V Tx = yT (V TV )(UTU)(V TV )y

= yT (V TV )3y + yT (V TV )(UTU − V TV )(V TV )y.

First, we bound the second term by calculating that

∥V (V TV − UTU)V T∥2 ≤ ∥V ∥22∥UTU − V TV ∥2 ≤ ∥V TV ∥F∥UTU − V TV ∥F
≤ ∥W TW∥F∥UTU − V TV ∥F ≤ C2ϵ.
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This implies that

yT (V TV )(UTU − V TV )(V TV )y ≥ −C2ϵ · ∥V y∥2F .

Next, we assume that y has the decomposition

y =
r∑

i=1

civi,

where vi is an eigenvector of V TV associated with the eigenvalue σ2
i (V ). Then, we can

calculate that

yT (V TV )3y =
r∑

i=1

c2iσ
6
i (V ), ∥V y∥2F =

r∑
i=1

c2iσ
2
i (V ) = 1.

Combining the above estimates leads to

xTV (UTU)V Tx ≥
[∑r

i=1 c
2
iσ

6
i (V )∑r

i=1 c
2
iσ

2
i (V )

− C2ϵ

]
· ∥V y∥2F

=

∑r
i=1 c

2
iσ

6
i (V )∑r

i=1 c
2
iσ

2
i (V )

− C2ϵ ≥ σ4
r(V )− C2ϵ.

This implies that

σ2
r(M) ≥ σ4

r(V )− C2ϵ ≥
[

1√
2
σr(W )− ϵ√

2σr(W )

]4
− C2ϵ

≥ 1

4
σ4
r(W )− σ2

r(W )ϵ− σ−2
r (W )ϵ3 − C2ϵ

≥ 1

4
σ4
r(W )− σ−2

r (W )ϵ3 − 2C2ϵ

≥ 1

4
σ4
r(W )− 1 + δ

G
· ϵ3 − 2C2ϵ

≥ 1

4
σ4
r(W )− 1 + δ

cα
· ϵ3 − 2C2ϵ. (2.59)

where the second last inequality is due to (2.57) and the assumption that ϵ and λ are
sufficiently small.

Step II. Next, we derive an upper bound for σr(M). We define

M̄ := Pr

[
M − 1

1 + δ
∇fa(M)

]
,
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where Pr is the orthogonal projection onto the low-rank set via SVD. Since M ̸= M∗ and
δ < 1/3, we recall that inequality (2.17) gives

−ϕ(M̄) ≥ 1− 3δ

1− δ
[fa(M)− fa(M

∗)] ≥ 1− 3δ

2
∥M −M∗∥2F

≥ 1− 3δ

2

[√
2− 1

2
σ2
r(W ∗)α2 − ϵ2

4

]
:= K,

where the second inequality follows from (2.56) and

−ϕ(M̄) = ⟨∇fa(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F .

Hence,

⟨∇fa(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F ≥ K. (2.60)

When we choose ϵ to be small enough, it holds that K > 0. For simplicity, we define

N := − 1

1 + δ
∇fa(M).

Then, M̄ = Pr(M + N) and the left-hand side of (2.60) is equal to

⟨∇fa(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F

= (1 + δ)⟨N,Pr(M + N)−M⟩ − 1 + δ

2
∥Pr(M + N)−M∥2F

=
1 + δ

2

[
∥N∥2F − ∥N + M − Pr(M + N)∥2F

]
=

1 + δ

2

[
∥N∥2F − ∥N + M∥2F + ∥Pr(M + N)∥2F

]
. (2.61)

Similar to the proof of inequality (2.52), we can prove that

∥NV ∥F ≤ H̃ :=
H

1 + δ
, ∥UTN∥F ≤ H̃.

Then, we have

− tr[NT (UV T )] ≤ ∥UTN∥F∥V ∥F ≤ H̃ · ∥W∥F ≤ H̃ ·
√√

r∥WW T∥F ≤ 4
√
rC · H̃.

Using the above relation, we obtain

∥N∥2F − ∥N + M∥2F = −2 tr[NT (UV T )]− ∥M∥2F ≤ 2 4
√
rC · H̃ − ∥M∥2F .
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Suppose that PU and PV are the orthogonal projections onto the column spaces of U and
V , respectively. We define

N1 := PUNPV , N2 := PUN(I − PV ), N3 := (I − PU)NPV , N4 := (I − PU)N(I − PV ).

Then, recalling the assumption (2.57) and inequality (2.58), it follows that

∥N1∥F = ∥PUNPV ∥F ≤ σ−1
r (U)∥UTPUNPV ∥F ≤ σ−1

r (U)∥UTN∥F ≤
√

2σr(W )

σ2
r(W )− ϵ

· H̃

≤

[√
1 + δ

G
+ poly(ϵ, λ)

]
· H̃ ≤

[√
1 + δ

cα
+ poly(ϵ, λ)

]
· H̃ := κH̃.

Similarly, we can prove that

∥N1 + N2∥F = ∥PUN∥F ≤ κH̃, ∥N1 + N3∥F = ∥NPV ∥F ≤ κH̃,

which leads to
∥N2∥F ≤ 2κH̃, ∥N3∥F ≤ 2κH̃.

Using Weyl’s theorem, the following holds for every 1 ≤ i ≤ r:

|σi(M + N)− σi(M + N4)| ≤ ∥N1 + N2 + N3∥2 ≤ ∥N1 + N2 + N3∥F ≤ 3κH̃.

Therefore, we have

∥Pr(M + N)∥2F =
r∑

i=1

σ2
i (M + N)

≥
r∑

i=1

σ2
i (M + N4)− r · 3κH̃ · (∥M + N∥2 + ∥M + N4∥2)

≥
r∑

i=1

σ2
i (M + N4)− 6rκH̃ · (∥M∥2 + ∥N∥2)

≥
r∑

i=1

σ2
i (M + N4)− 6rκH̃ ·

(
∥M∥F +

G

1 + δ

)
. (2.62)

Using the assumption (2.57) and the inequality (2.59), one can write

G

1 + δ
≤ σ2

r(W )

2
+ poly(

√
ϵ, λ) ≤ σr(M) + poly(

√
ϵ, λ) ≤ ∥M∥F + poly(

√
ϵ, λ), (2.63)

where poly(
√
ϵ, λ) means a polynomial of

√
ϵ and λ. Therefore, we attain the bound

∥M∥F + ∥N∥F ≤ 2∥M∥F + poly(
√
ϵ, λ) ≤ 2 · ∥WW T∥F√

2
+ poly(

√
ϵ, λ)
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≤
√

2C2 + poly(
√
ϵ, λ). (2.64)

Substituting back into the previous estimate (2.62), it follows that

∥Pr(M+N)∥2F ≥
r∑

i=1

σ2
i (M+N4)−6

√
2rκH̃C2+poly(

√
ϵ, λ) =

r∑
i=1

σ2
i (M+N4)+poly(

√
ϵ, λ).

Now, since M and N4 have orthogonal column and row spaces, the maximal r singular values
of M +N4 are simply the maximal r singular values of the singular values M and N4, which
we assume to be

σi(M), i = 1, . . . , k and σi(N4), i = 1, . . . , r − k.

Now, it follows from (2.61) that

2

1 + δ

[
⟨∇fa(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F

]
= ∥N∥2F − ∥N + M∥2F + ∥Pr(M + N)∥2F

≤ −
r∑

i=1

σ2
i (M) +

k∑
i=1

σ2
i (M) +

r−k∑
i=1

σ2
i (N4) + poly(

√
ϵ, λ) + 2 4

√
rC · H̃

= −
r∑

i=k+1

σ2
i (M) +

r−k∑
i=1

σ2
i (N4) + poly(

√
ϵ, λ)

≤ −(r − k)σ2
r(M) + (r − k)∥N4∥22 + poly(

√
ϵ, λ)

≤ −(r − k)σ2
r(M) + (r − k)∥N∥22 + poly(

√
ϵ, λ).

If k = r, then the above inequality and inequality (2.60) imply that

poly(
√
ϵ, λ) ≥ K = O(α2),

which contradicts the assumption that ϵ and λ are small. Hence, it can be concluded that
r − k ≥ 1. Combining with (2.60), we obtain the upper bound

σ2
r(M) ≤ − 2

1 + δ
· K

r − k
+ ∥N∥22 +

1

r − k
· poly(

√
ϵ, λ)

= − 2

1 + δ
· K
r

+ ∥N∥22 + poly(
√
ϵ, λ). (2.65)

Step III. In the last step, we combine the inequalities (2.59) and (2.65), which leads to

1

4
σ4
r(W )− 1 + δ

cα
· ϵ3 − 2C2ϵ ≤ − 2

1 + δ
· K
r

+
1

(1 + δ)2
G2 + poly(

√
ϵ, λ).
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This means that

σ4
r(W ) +

8

1 + δ
· K
r
≤ 4

(1 + δ)2
G2 + poly(

√
ϵ, λ).

Since K > 0 has lower bounds that are independent of ϵ and λ, we can choose ϵ and λ to be
small enough such that

σ4
r(W ) +

4

1 + δ
· K
r
≤ 4

(1 + δ)2
G2.

However, recalling the assumption (2.57), we have

σ4
r(W ) >

4

(1 + δ)2

[
G− µ

(
2ϵ +

4H2

G2

)
− (1 + δ)H2

G2

]2
≥ 4

(1 + δ)2
G2 − 16

(1 + δ)2
G · µϵ + poly(

√
ϵ, λ)

≥ 4

(1 + δ)2
G2 − 16

(1 + δ)2
µϵ · 1√

2
(1 + δ)C2 + poly(

√
ϵ, λ)

=
4

(1 + δ)2
G2 + poly(

√
ϵ, λ),

where in the third inequality we use inequalities (2.63)-(2.64) to conclude that

G ≤ (1 + δ)∥M∥F + poly(
√
ϵ, λ) ≤ 1√

2
(1 + δ)C2 + poly(

√
ϵ, λ).

The above two inequalities cannot hold simultaneously when λ and ϵ are small enough. This
contradiction means that the condition (2.55) holds by choosing

0 <ϵ ≤ ϵ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C),

0 <λ ≤ λ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C),

for some small enough positive constants

ϵ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C), λ0(δ, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C).

The only thing left is to piecing everything together.

Proof of Theorem 6. We first choose

C :=

[(
1 + δ

1− µ− δ

)2

∥W ∗(W ∗)T∥3/2F

]1/3
.



CHAPTER 2. OPTIMIZATION COMPLEXITY BASED ON THE RIP CONSTANT 63

Then, we select ϵ1 and λ1 as

ϵ1(δ, r, µ, σr(M
∗
a ), ∥M∗

a∥F , α) := ϵ0(δ, r, µ, σr(M
∗
a ), ∥M∗

a∥F , α, C),

λ1(δ, r, µ, σr(M
∗
a ), ∥M∗

a∥F , α) := min

{
λ0(δ, r, µ, σr(M

∗
a ), ∥M∗

a∥F , α, C),

(1− µ− δ)C3

4
√
r

}
.

Finally, we combine Lemmas 4-5 to get the bounds for the gradient and the Hessian.

Proof of Theorem 7

In this subsection, we use similar notations:

M := UUT , M∗ := U∗(U∗)T ,

where M∗ := M∗
s is the global optimum. We also assume that U∗ is the minimizer of

minX∈X ∗ ∥U −X∥F when there is no ambiguity about U . In this case, the distance is given
by

dist(U,X ∗) = ∥U − U∗∥F .

The proof of Theorem 7 is similar to that of Theorem 6. We first consider the case when
∥UUT∥F is large.

Lemma 6. Given a constant ϵ > 0, if

∥UUT∥2F ≥ max

{
2(1 + δ)

1− δ
∥U∗(U∗)T∥2F ,

(
2λ
√
r

1− δ

)4/3
}
,

then
∥∇hs(U)∥F ≥ λ.

Proof. Choosing the direction ∆ := U , we can calculate that

⟨∇hs(U),∆⟩ = ⟨∇fs(UUT ), UUT ⟩.

Using the δ-RIP2r,2r property, we have

⟨∇fs(UUT ), UUT ⟩ =

∫ 1

0

[∇2fs(M
∗ + s(M −M∗)][M −M∗,M ]

≥ (1− δ)∥M∥2F − (1 + δ)∥M∗∥F∥M∥F

≥ 1− δ

2
∥M∥2F .
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Moreover,
∥∆∥F = ∥U∥F ≤

√
r∥UUT∥1/2F .

This leads to

∥∇hs(U)∥F ≥
⟨∇hs(U),∆⟩
∥∆∥F

=
⟨∇fs(UUT ), UUT ⟩

∥U∥F
≥ 1− δ

2
√
r
∥UUT∥3/2F ≥ λ.

The next lemma is a counterpart of Lemma 4.

Lemma 7. Consider positive constants α,C, λ such that

λ ≤ 2(
√
rC)−1(

√
2− 1)σ2

r(U∗) · α2, G >
(1 + δ)λ2

4G2
,

where G := −λmin(∇fs(M)). If

∥UUT∥F ≤ C2, ∥U − U∗∥F ≥ α, ∥∇hs(U)∥F ≤ λ,

then the inequality G ≥ cα2 holds for some constant c > 0 independent of α, λ, C. Moreover,
if there exists some positive constant τ such that

σ2
r(U) ≤ 1

1 + δ

[
G− (1 + δ)λ2

4G2

]
− τ, (2.66)

then
λmin(∇2hs(U)) ≤ −2(1 + δ)τ.

Proof. We choose a singular vector q of U such that

∥q∥2 = 1, ∥Uq∥2 = σr(U).

We first prove the existence of the constant c. The δ-RIP2r,2r property gives

⟨∇fs(M),M∗ −M⟩ ≤ −(1− δ)∥M −M∗∥2F .

Using the assumption of this lemma, we have

∥∇fs(M)U∥2 ≤ ∥∇fs(M)U∥F =
1

2
∥∇hs(U)∥F ≤

1

2
λ, (2.67)

which leads to

⟨∇fs(M),M⟩ = ⟨∇fs(M)U,U⟩ ≤ ∥∇fs(M)U∥F∥U∥F ≤
1

2
λ ·
√
rC.
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Substituting into (2.67), it follows that

⟨∇fs(M),M∗⟩ ≤ −(1− δ)∥M −M∗∥2F +
1

2
λ ·
√
rC.

Using Lemma 1, we have

∥M −M∗∥2F ≥ 2(
√

2− 1)σ2
r(U∗)∥U − U∗∥2F ≥ 2(

√
2− 1)σ2

r(U∗) · α2.

By the condition on λ, it follows that

⟨∇fs(M),M∗⟩ ≤ −(1− δ)∥M −M∗∥2F +
1

2
λ ·
√
rC ≤ −(

√
2− 1)(1− δ)σ2

r(U∗) · α2. (2.68)

The above inequality also indicates that λmin(∇fs(M)) < 0. Using the relations that

∇fs(M) ⪰ λmin(∇fs(M)) · In, M∗ ⪰ 0,

we arrive at

⟨∇fs(M),M∗⟩ ≥ λmin(∇fs(M)) tr(M∗) ≥
√
r∥M∗∥F · λmin(∇fs(M)).

Combining the last inequality with (2.68), we obtain

λmin(∇fs(M)) ≤ −(
√
r∥M∗∥F )−1(

√
2− 1)(1− δ)σ2

r(U∗) · α2 = −cα2

and thus G ≥ cα2, where

c := (
√
r∥M∗∥F )−1(

√
2− 1)(1− δ)σ2

r(U∗)

Next, we prove the upper bound on the minimal eigenvalue. We choose an eigenvector u
such that

∥u∥2 = 1, λmin(∇fs(M)) = uT∇fs(M)u.

The direction is chosen to be
∆ := uqT .

For the Hessian of hs(·, ·), we can calculate that

⟨∇fs(M),∆∆T ⟩ = λmin(∇fs(M)) = −G (2.69)

and the δ-RIP2r,2r property gives

[∇2fs(M)](∆UT+U∆T ,∆UT + U∆T )

≤ (1 + δ)∥∆UT + U∆T∥2F = (1 + δ)∥u(Uq)T + (Uq)uT∥2F
= 2(1 + δ)∥Uq∥2F + 2(1 + δ)[qT (UTu)]2

≤ 2(1 + δ)σ2
r(U) + 2(1 + δ) · ∥UTu∥2F . (2.70)
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By letting the vector ṽ be

∥ṽ∥2 = 1, λmin(∇fs(M))u = ∇fs(M)ṽ,

the inequality (2.67) implies that

∥UTu∥2F =
∥UT∇fs(M)ṽ∥2F
λ2
min(∇fs(M))

=
∥UT∇fs(M)ṽ∥22
λ2
min(∇fs(M))

≤ ∥U
T∇fs(M)∥22∥ṽ∥22
λ2
min(∇fs(M))

≤ λ2

4G2
.

Substituting into (2.70), we obtain

[∇2fs(M)](∆UT + U∆T ,∆UT + U∆T ) ≤ 2(1 + δ)σ2
r(U) + (1 + δ) · λ2

2G2
. (2.71)

Combining (2.69) and (2.71), it follows that

[∇2hs(U)](∆,∆) ≤ −2G + 2(1 + δ)σ2
r(U) + (1 + δ) · λ2

2G2
.

Since ∥∆∥2F = 1, the above inequality implies

λmin(∇2hs(U)) ≤ −2G + 2(1 + δ)σ2
r(U) + (1 + δ) · λ2

2G2
≤ −(1 + δ)τ.

We finally give the counterpart of Lemma 5, which states that the condition (2.66) always
holds when δ < 1/3.

Lemma 8. Given positive constants α,C, ϵ, λ, if

max{∥UUT∥F , ∥U∗(U∗)T∥F} ≤ C2, ∥U − U∗∥F ≥ α, ∥∇hs(U)∥F ≤ λ, δ < 1/3,

then there exists a positive constant λ0(δ,W
∗, α, C) such that

σ2
r(U) ≤ 1

1 + δ

[
G− (1 + δ)λ2

4G2
− λ

]
(2.72)

whenever
0 < λ ≤ λ0(δ, σr(M

∗
s ), ∥M∗

s ∥F , α, C).

Proof. We prove by contradiction, i.e., we assume

σ2
r(U) >

1

1 + δ

[
G− (1 + δ)λ2

4G2
− λ

]
≥ cα2

1 + δ
+ poly(λ). (2.73)

To follow the proof of Lemma 5, we also divide the argument into three steps, although the
first step is superficial.
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Step I. We first give a lower bound for λr(M). In the symmetric case, this step is straight-
forward, since we always have

λ2
r(M) = σ4

r(U). (2.74)

Step II. Next, we derive an upper bound for λr(M). We define

M̄ := Pr

[
M − 1

1 + δ
∇fs(M)

]
,

where Pr is the orthogonal projection onto the low-rank manifold (we do not drop negative
eigenvalues in this proof). Since M ̸= M∗ and δ < 1/3, we recall that inequality (2.17) gives

−ϕ(M̄) ≥ 1− 3δ

1− δ
[fs(M)− fs(M

∗)] ≥ 1− 3δ

2
∥M −M∗∥2F

≥ (1− 3δ) · (
√

2− 1)σ2
r(W ∗)α2 := K > 0,

where the second inequality comes from Lemma 1 and

−ϕ(M̄) = ⟨∇fs(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F .

Hence,

⟨∇fs(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F ≥ K. (2.75)

For simplicity, we define

N := − 1

1 + δ
∇fs(M).

Then, M̄ = Pr(M + N) and the left-hand side of (2.75) is equal to

⟨∇fs(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F

= (1 + δ)⟨N,Pr(M + N)−M⟩ − 1 + δ

2
∥Pr(M + N)−M∥2F

=
1 + δ

2

[
∥N∥2F − ∥N + M − Pr(M + N)∥2F

]
=

1 + δ

2

[
∥N∥2F − ∥N + M∥2F + ∥Pr(M + N)∥2F

]
. (2.76)

Similar to the proof of inequality (2.67), we can prove that

∥UTN∥F ≤ H̃ :=
λ

2(1 + δ)
.
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Then, we have

− tr[NT (UUT )] ≤ ∥UTN∥F∥U∥F ≤ H̃ · ∥U∥F ≤ H̃ ·
√√

r∥UUT∥F ≤ 4
√
rC · H̃.

Using the above relation, one can write

∥N∥2F − ∥N + M∥2F = −2 tr[NT (UUT )]− ∥M∥2F ≤ 2 4
√
rC · H̃ − ∥M∥2F .

Suppose that PU is the orthogonal projections onto the column space of U . We define

N1 := PUNPU , N2 := PUN(I − PU), N3 := (I − PU)NPU , N4 := (I − PU)N(I − PU).

Then, it follows from (2.73) that

∥N1∥F = ∥PUNPU∥F ≤ σ−1
r (U)∥UTPUNPU∥F ≤ σ−1

r (U)∥UTN∥F ≤ σ−1
r (U) · H̃

≤

[√
1 + δ

G
+ poly(λ)

]
· H̃ ≤

[√
1 + δ

cα2
+ poly(λ)

]
· H̃ := κH̃.

Similarly, we can prove that

∥N1 + N2∥F = ∥PUN∥F ≤ κH̃, ∥N1 + N3∥F = ∥NPV ∥F ≤ κH̃,

which leads to
∥N2∥F ≤ 2κH̃, ∥N3∥F ≤ 2κH̃.

Using Weyl’s theorem, the following holds for every 1 ≤ i ≤ r:

|λi(M + N)− λi(M + N4)| ≤ ∥N1 + N2 + N3∥2 ≤ ∥N1 + N2 + N3∥F ≤ 3κH̃.

Therefore, we have

∥Pr(M + N)∥2F =
r∑

i=1

λ2
i (M + N)

≥
r∑

i=1

λ2
i (M + N4)− r · 3κH̃ · (∥M + N∥2 + ∥M + N4∥2)

≥
r∑

i=1

λ2
i (M + N4)− 6rκH̃ · (∥M∥2 + ∥N∥2)

≥
r∑

i=1

λ2
i (M + N4)− 6rκH̃ ·

(
∥M∥F +

G

1 + δ

)
. (2.77)

Similar to the asymmetric case, we can prove that

G

1 + δ
≤ ∥M∥F + poly(λ).
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holds under the assumption (2.73). Therefore, we obtain the bound

∥M∥F + ∥N∥F ≤ 2∥M∥F + poly(λ) ≤ 2C2 + poly(λ).

Substituting back into the previous estimate (2.77), it follows that

∥Pr(M + N)∥2F ≥
r∑

i=1

λ2
i (M + N4) + poly(λ).

Now, since M and N4 have orthogonal column and row spaces, the maximal r eigenvalues
of M + N4 are simply the maximal r eigenvalues of the eigenvalues of M and N4, which we
assume to be

λi(M), i = 1, . . . , k and λi(N4), i = 1, . . . , r − k.

Now, it follows from (2.76) that

2

1 + δ

[
⟨∇fs(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F

]
= ∥N∥2F − ∥N + M∥2F + ∥Pr(M + N)∥2F

≤ −
r∑

i=1

λ2
i (M) +

k∑
i=1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) + poly(λ) + 2 4

√
rC · H̃

= −
r∑

i=k+1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) + poly(λ). (2.78)

Using the assumption (2.73) and the fact that λ is small, we know that λi(N4) > 0 for all
i ∈ {1, . . . , k}. Therefore,

−
r∑

i=k+1

λ2
i (M) +

r−k∑
i=1

λ2
i (N4) ≤ −(r − k)λ2

r(M) + (r − k)λmax(N4)
2.

Substituting into (2.78) gives rise to

2

1 + δ

[
⟨∇fs(M),M − M̄⟩ − 1 + δ

2
∥M − M̄∥2F

]
≤ −(r − k)λ2

r(M) + (r − k)λmax(N4)
2 + poly(λ)

≤ −(r − k)λ2
r(M) + (r − k)λmax(N)2 + poly(λ).

If k = r, then the above inequality and inequality (2.75) imply that

poly(λ) ≥ K = O(α2),
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which contradicts the assumption that λ is small. Hence, we conclude that r − k ≥ 1.
Combining with (2.75), we obtain the upper bound

λ2
r(M) ≤ − 2

1 + δ
· K

r − k
+ λmax(N)2 +

1

r − k
· poly(λ)

= − 2

1 + δ
· K
r

+ λmax(N)2 + poly(λ). (2.79)

Step III. In the last step, we combine the relations (2.74) and (2.79), which leads to

σ4
r(U) ≤ − 2

1 + δ
· K
r

+
1

(1 + δ)2
G2 + poly(λ).

This means that

σ4
r(U) +

2

1 + δ
· K
r
≤ 1

(1 + δ)2
G2 + poly(λ).

Since K > 0 has lower bounds that are independent of λ, we can choose λ to be small enough
such that

σ4
r(U) +

1

1 + δ
· K
r
≤ 1

(1 + δ)2
G2.

However, considering the assumption (2.73), we have

σ4
r(U) ≥ 1

(1 + δ)2

[
G− (1 + δ)λ2

4G2
− λ

]2
=

1

(1 + δ)2
G2 − 2λ ·G + poly(λ)

≥ 1

(1 + δ)2
G2 − 2λ · (1 + δ)C2 + poly(λ) =

1

(1 + δ)2
G2 + poly(λ),

where the second inequality is due to G ≤ (1 + δ)C2, which can be proved similar to the
asymmetric case. The above two inequalities cannot hold simultaneously when λ is small
enough. This contradiction means that the condition (2.72) holds by choosing

0 < λ ≤ λ0(δ, σr(M
∗
s ), ∥M∗

s ∥F , α, C),

for a small enough positive constant λ0(δ, σr(M
∗
s ), ∥M∗

s ∥F , α, C).

Proof of Theorem 7. We first choose

C :=

[
2(1 + δ)

1− δ
∥U∗(U∗)T∥2F

]1/4
.

Then, we select λ1 as

λ1(δ, r, σr(M
∗
s ), ∥M∗

s ∥F , α) := min

{
λ0(δ, r, σr(M

∗
s ), ∥M∗

s ∥F , α, C),
(1− δ)C3

2
√
r

}
.

Finally, we combine Lemmas 6-8 to get the bounds for the gradient and the Hessian.
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Chapter 3

A New Complexity Metric for
Rank-one Generalized Matrix
Completion

3.1 Introduction

To explain the empirical success of the Burer-Monteiro factorization (2.2), multiple com-
plexity metrics were proposed to characterize the behavior of local search methods. A small
complexity metric implies that the landscape of problem (2.2) is benign and thus, local
search methods with random initialization converge to global solutions with high probabil-
ity. Otherwise, if the complexity metric takes a large value, problem (2.2) may have spurious
local minima, which will imply the failure of most local search methods. However, the ex-
isting so-called “complexity metrics” for problem (2.2) are only able to guarantee a benign
landscape when the complexity is small and fail to prove the existence of spurious local min-
ima when the complexity is large. To differentiate with true complexity metrics, we use the
term recovery guarantees to reflect such weaker properties. In addition, the existing recovery
guarantees were designed separately for different applications. As a result, several different
bounds were proposed to characterize the optimization complexity of problem (2.2).

For example, in the context of matrix sensing problems, we have shown in Chapter 2
that the Restrict Isometry Property (RIP) is effective in characterizing the optimization
complexity of the Burer-Monteiro factorization. As an important class of matrix sensing
problems, the linear matrix sensing problem (2.5) can be equivalently formulated as

min
U∈Rn×r

1

m

m∑
i=1

⟨Ai, UUT −M∗⟩2, (3.1)

where m ∈ N is the number of measurements modeled by the known measurement matrices
Ai ∈ Rn×n for all i ∈ [m]. In the special case when each matrix Ai is an independently
identically distributed Gaussian random matrix, the δ-RIP2r,2s condition holds with high
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probability if m = O(nrδ−2) [33]. The RIP constant δ plays a critical role in bounding
the optimization complexity of problem (2.2). In Chapter 2 and the related paper [24], we
showed that the strict-saddle property holds for problem (2.2) if the δ-RIP2r,2r condition
holds with δ < 1/2 and the ground truth matrix satisfies rank(M∗) = r. On the other hand,
counterexamples have been constructed in Chapter 2 to illustrate that the strict-saddle
property can fail under the δ-RIP2r,2r condition with δ ≥ 1/2.

Despite these strong theoretical results under the RIP assumption, there exists a large
number of applications that do not satisfy the RIP condition. One of those applications
without the RIP condition is the matrix completion problem. Given a set of indices Ω ⊂
[n] × [n], the matrix completion problem aims at recovering the low-rank matrix M∗ from
the available entries M∗

ij for (i, j) ∈ Ω. With the least squares loss function, the matrix
completion problem can be formulated as

min
U∈Rn×r

∑
(i,j)∈Ω

[
(UUT )ij −M∗

ij

]2
. (3.2)

The matrix completion problem (3.2) is a special case of the matrix sensing problem (3.1),
where each measurement matrix Ai has exactly one nonzero entry. However, the RIP2r,2r

condition does not hold for problem (3.2) unless all entries of M∗ are observed, namely,
when Ω = [n]× [n]. As an alternative to the RIP condition, the optimization complexity of
problem (3.2) is closely related to the incoherence of M∗.

Definition 4 ([34]). Given a constant µ ∈ [1, n], the ground truth matrix M∗ is said to be
µ-incoherent if

∥eTi V ∗∥F ≤
√
µr/n, ∀i ∈ [n], (3.3)

where V ∗Λ∗(V ∗)T is the truncated SVD of M∗ and ei is the i-th standard basis of Rn.

Intuitively, if the ground truth M∗ is highly sparse, it is likely that only zero entries of M∗

are observed and there is no chance to learn the other entries of the matrix M∗. A relatively
small incoherence of M∗ avoids this extreme case. The most popular statistical model of the
measurements for problem (3.2) is the Bernoulli model, where each entry of M∗ is observed
independently with probability p ∈ (0, 1]. Assuming the Bernoulli model, the incoherence
of M∗ and the sampling probability p can jointly characterize the complexity of the matrix
completion problem. For example, the scaled gradient descent algorithm with a spectral
initialization [216] converges linearly given the condition p ≥ O(µr2κ2 max(µκ2, log n)/n),
where κ := σ1(M

∗)/σr(M
∗) is the condition number of M∗. In addition, under the assump-

tion that p ≥ O(µ4r6κ6 log n/n), the global convergence was established in [86] through the
strict-saddle property of a regularized version of problem (3.2). We note that the dependence
on the condition number κ may be unnecessary as shown in [97] and that the condition num-
ber is equal to 1 in the rank-1 case. On the other hand, the information-theoretical lower
bound in [34] shows that p ≥ Θ(µr log(n/δ)/n) is necessary for the exact completion with
probability at least 1−δ. Therefore, the complexity of problem (3.2) is closely related to the
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incoherence of M∗ and the sampling probability p. In the remainder of this chapter, we refer
to the conditions on the incoherence of M∗ and sampling rate p as incoherence conditions
when there is no confusion in the context.

To be more rigorous, the RIP condition and the incoherence condition may have a subtle
difference in their nature. As a counterpart of the incoherence condition in other low-
rank matrix optimization problems, one should consider conditions in terms of the sampling
complexity. On the other hand, the RIP condition is a deterministic condition on the loss
function and is not related to the underlying random model. However, there is a wide range
of problems that satisfy the RIP condition when the sample complexity is sufficiently large.
By considering the properties of the RIP condition, we are able to analyze a large number of
low-rank matrix optimization problems simultaneously. Therefore, we use the RIP condition
instead of conditions based on the sample complexity as a notion of the computational
complexity for those problems.

The main issue with the notions of RIP and incoherence is that they require stringent con-
ditions to guarantee the success of local search methods for recovering M∗. Whenever these
conditions are violated, local search methods may still work successfully, which questions
whether these customized notions designed for special cases of the problem truly capture the
complexity of the problem in general. Hence, it is natural to ask:

Does there exist a complexity metric with two properties: (i) it is consistent with
existing recovery guarantees designed for different applications, e.g., the RIP con-
stant δ and the incoherence µ combined with the sampling rate p, (ii) even when
the customized conditions for different applications are violated, it still quanti-
fies the optimization complexity of the problem in the sense that the smaller the
value of this metric is, the higher the success of local search methods with random
initialization is in finding the ground truth M∗?

In this chapter, we provide a partial answer to the question by developing a powerful complex-
ity metric. To analyze the usefulness of this new metric, we focus on the rank-1 generalized
matrix completion problem

min
u∈Rn

∑
i,j∈[n]

Cij(uiuj −M∗
ij)

2, (3.4)

where the ground truth M∗ is symmetric and has rank at most 1. The weights are Cij ≥ 0
for all i, j ∈ [n]. Without loss of generality, we can assume that the matrix C := (Cij)i,j∈[n]
is symmetric since otherwise one can replace C with (C + CT )/2, which will not change the
optimization landscape. We use MC(C, u∗) to denote the instance of problem (3.4) with
the weight matrix C and the ground truth M∗ = u∗(u∗)T , for all C ∈ Rn×n and u∗ ∈ Rn.
The matrix completion problem (3.2) is a special case of the generalized matrix completion
problem (3.4), where Cij = 1 if (i, j) ∈ Ω and Cij = 0 otherwise.

Moreover, problem (3.4) is a special case of the matrix sensing problem (3.1), where
each measurement only captures one entry of M∗. However, the problem (3.4) still contains
difficult instances of the matrix sensing problem from the perspective of the RIP condition.
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In Section 3.3, we show that there exists an instance of problem (3.4) that satisfies the
1/2-RIP2,2 condition but has spurious local minima. This counterexample implies that the
optimal RIP bound in [247, 244] still holds for problem (3.4) and thus, problem (3.4) contains
difficult instances of the matrix sensing problem. Moreover, we show in Section 3.3 that some
of the results developed for problem (3.4) can be extended to general problem (2.2).

Now, we provide an intuition into the design of our complexity metric for problem
(3.4). For a given problem instance of (3.4), if there exist global solutions u1, u2 such
that u1(u1)T ̸= u2(u2)T , it is impossible to decide which global solution corresponds to M∗

from the observations. Intuitively, no matter what optimization algorithm we choose and
how much computational effort is exerted, there is a chance that we could not recover M∗

by solving problem (3.4). This observation motivates us to define the complexity metric
to be the inverse of the infimum of the distance between any given instance and the set of
instances with multiple global solutions. Since problem (3.4) is parameterized by the weight
matrix C and the global solution M∗, we are able to define the metric through norms in
Euclidean spaces and their Cartesian products. In addition, in the rank-1 case, (random)
graph theory serves as an important tool in characterizing the solvability of problem (3.4).
These two advantages enable a more thorough analysis of the new complexity metric. The
formal definition of the metric is provided in Section 3.2. In this chapter, we exhibit several
pieces of evidence to show that the proposed metric can serve as an alternative to the RIP
constant and the incoherence, which are summarized below:

1. For problem instances that satisfy the δ-RIP2,2 condition, we provide an upper bound
on the complexity metric. The upper bound is tightened with extra information about
the incoherence of M∗. Similarly, for matrix completion problems obeying the Bernoulli
sampling model, an upper bound on the complexity metric in terms of the incoherence
of M∗ is derived.

2. We then construct a class of parameterized instances of problem (3.4), where the RIP
condition fails to provide useful guarantees. A lower bound on the complexity metric
is developed to prove that instances whose complexity metric is larger than the lower
bound have an exponential number of spurious local minima. In addition, an upper
bound that is consistent with the aforementioned two upper bounds is established
to guarantee the absence of spurious local minima if the complexity metric is below
this bound. The consistency of the upper bounds between different types of models
provides strong evidence that the new complexity metric is able to provide theoretical
guarantees for different applications, even when the RIP condition or the incoherence
condition fails.

3. We prove the existence of a non-trivial upper bound on the complexity metric. For
all problem instances whose complexity metric is below this upper bound, problem
(3.4) has no spurious local minima and M∗ can be successfully found via local search
methods with random initialization. In addition, under a standard bounded-away-
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from-zero assumption, we show that all instances with a larger complexity metric will
possess spurious local minima.

4. We extend all results for the symmetric generalized matrix completion problem to the
asymmetric case, where low-rank matrices is decomposed in to UV T for some U ∈ Rm×r

and V ∈ Rn×r in problem (2.2).

Based on the aforementioned results, we make some key conjectures and discuss the potential
extensions of the proposed metric to more general cases of the low-rank matrix optimization
problem (2.1).

Related works

Following the famous Netflix prize, the theoretical analysis of problem (2.1) has attracted
a lot of attention in recent years; see the review papers [46, 50]. Early attempts mainly
focused on the construction of convex relaxations to rank-constrained problems [34, 35,
191, 36], where the RIP condition and the incoherence condition were introduced. Recently,
several modified RIP conditions were proposed to better characterize the landscapes of other
classes of problems, e.g., the ℓ1/ℓ2-RIP condition [146], the sign-RIP condition [158], and
the approximation and sharpness condition [38].

Although the convex relaxation is usually guaranteed to recover the exact ground truth
with almost the optimal sample complexity, the associated algorithms operate in the space
of matrix variables and, thus, are computationally inefficient for large-scale problems [252].
Similar issues are observed for algorithms based on the Singular Value Projection [117] and
Riemannian optimization algorithms [230, 229, 106, 4, 156]. The analysis of the convex
relaxation approach in the noisy case is recently conducted by bridging the convex and the
nonconvex approaches [49, 47].

To deal with the difficulties in solving large-scale problems, an efficient alternative model
(2.2) using the Burer-Monteiro factorization is considered. Despite the nonconvexity, a grow-
ing number of works demonstrated that problem (2.2) has benign landscapes and, therefore,
is amenable for efficient optimization. Theoretical analysis stems from the alternating min-
imization method [118, 172, 96, 97, 173, 1]. The alternating minimization method has the
advantage that the number of iterations has only logarithmic dependence on the condition
number of the ground truth [97]. More recently, this advantage is also achieved by the scaled
(sub)gradient descent algorithm [216, 217, 218, 245].

The gradient descent algorithm has also gained a significant attention due to its simplicity
in implementation. In general, there are two ways to apply the gradient descent algorithm.
First, the gradient descent algorithm can serve as the local refinement method after a suitable
initialization [32, 219, 213, 242, 7, 40]. On the other hand, the gradient descent algorithm
is proved to converge globally for the phase retrieval problem [48]. More generally, under
the strict-saddle property, a number of saddle-escaping algorithms [124, 37, 8] converge to
the global solution in polynomial time; see e.g., [211, 87, 86, 256, 210, 247, 39, 244, 23, 24,



CHAPTER 3. A NEW COMPLEXITY METRIC FOR RANK-ONE GENERALIZED
MATRIX COMPLETION 76

161]. Moreover, the gradient descent algorithm is proved to have the implicit regularization
phenomenon in the over-parameterization case [147, 53, 209].

In the remainder of this chapter, we first define the proposed complexity metric and derive
basic properties of the metric in Section 3.2. In Section 3.3, we analyze this metric under
existing conditions, including the RIP condition and the incoherence condition. Section
3.4 is devoted to the theoretical guarantees provided by the new complexity metric on the
general instances of problem (3.4). The results for the rank-1 asymmetric generalized matrix
completion problem are provided in Appendix 3.E. Some of the proofs are provided in the
appendix.

3.2 New Complexity Metric and Basic Properties

In this section, we first provide the formal definition of the new complexity and investigate
the properties of the proposed metric. More specifically, we show that we are able to utilize
the graph theory to estimate the complexity metric and calculate the minimum possible
value of the proposed complexity metric in closed form. Before proceeding to the definitions,
we note that the problem (3.4) is “scale-free” in the sense that the instance MC(η1C, η2u∗)
has the same landscape as MC(C, u∗) up to a scaling, where C ∈ Rn×n, u∗ ∈ Rn and
η1, η2 > 0 are constants. Therefore, we may normalize the parameters C and u∗ without loss
of generality, as follows:

Assumption 3. Assume that C ∈ Sn2−1
+,1 and u∗ ∈ Sn−1

1 , i.e., ∥C∥1 = ∥u∗∥1 = 1.

The above assumption excludes the degenerate cases when C = 0 or M∗ = 0. If C = 0,
the objective function is always 0 and it is impossible to recover the ground truth. For
the case when M∗ = 0, we can prove that either u = 0 is the only stationary point or the
instance MC(C, 0) has multiple different global solutions. In the first situation, the results
in [138] imply that randomly initialized gradient descent algorithm will converge to 0 with
probability 1. In the second situation, the instance is information-theoretically unsolvable.
We provide a more detailed analysis in the appendix and assume that Assumption 3 holds
in the remainder of the chapter.

The definition of the complexity metric is closely related to the set of instances with
multiple “essentially different” global solutions. More specifically, the set of degenerate
instances is defined as

D := {(C, u∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 , ∃u ∈ Rn s. t. g(u;C, u∗) = 0, uuT ̸= u∗(u∗)T}.

Since there exist multiple global solutions to problem (3.4) if (C, u∗) ∈ D, it is information-
theoretically impossible to find the ground truth for any instance in D. Intuitively, we say
that the optimization complexity of all instances in D is infinity. Motivated by the above
observation, we introduce the new complexity metric.
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Definition 5 (Complexity Metric). Given arbitrary parameters C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 and
α ∈ [0, 1], the complexity of the instance MC(C, u∗) is defined as

Dα(C, u∗) :=

[
inf

(C̃,ũ∗)∈D
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

. (3.5)

Since the set D is bounded, the infimum in the definition is finite. The term inside the
inverse operation can be viewed as a weighted distance between the point (C, u∗) and the
set D. In addition, we take the convention that 1/0 = +∞ and thus, Dα(C, u∗) = +∞ for
all (C, u∗) ∈ D. In this chapter, we choose the entry-wise ℓ1-norm in (3.5) for the simplicity
of calculations. We believe that similar theory can still be derived for other choices of the
norm. We note that a similar complexity was proposed in [193, 192] for conic optimization
and to the best of authors’ knowledge, there is no similar complexity metric for nonconvex
optimization problems.

For the parameter α, we will discuss two potential choices in this section, namely α∗

and α⋄. In the case when α = α∗, the range of the complexity metric has the largest size.
Intuitively, by choosing α = α∗, the difference between the complexities of two instances will
be maximized and thus, it is easier to compare the complexities of different instances. On
the other hand, when we choose α = α⋄, the complexity metric attains its minimum possible
value if and only if the 0-RIP2,2 condition holds. This is consistent with the intuition that
instances with the RIP constant 0 are the easiest to solve. We note that both α∗ and α⋄

satisfy 1 − α = Θ(1/n). Moreover, in Section 3.3, we show that the parameter α strikes a
balance between the RIP constant of the instance and the incoherence of the ground truth. It
is still an open question what the optimal choice of parameter α is, which may depend on the
class of problems under consideration. It may be needed to jointly consider the complexity
metric with several different choices of α to determine the solvability of the instance.

Basic Properties of the New Complexity Metric

We first provide a more concrete characterization of the set D. In the rank-1 case,
we are able to exactly describe the set D using graph-theoretic notations. We introduce
the associated graphs of any instance of the problem. Given an instance MC(C, u∗), the
weighted graph G(C, u∗) = [V(C, u∗),E(C, u∗),W(C, u∗)] is defined by

V(C, u∗) := [n], E(C, u∗) := {{i, j} | Cij > 0, i, j ∈ [n]} ,
[W(C, u∗)]ij := Cij, ∀i, j ∈ [n] s. t. {i, j} ∈ E(C, u∗).

To include the information of u∗, we define

I1(C, u∗) := {i ∈ [n] | u∗
i ̸= 0}, I0(C, u∗) := [n]\I1(C, u∗),

I00(C, u∗) := {i ∈ I0(C, u∗) | {i, j} /∈ E(C, u∗), ∀j ∈ I1(C, u∗)}.

Intuitively, the sets I1(C, u∗) and I0(C, u∗) contain the locations of the nonzero and zero
components of u∗. The subset I00(C, u∗) corresponds to indices in I0(C, u∗) that are not
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connected to any index in I1(C, u∗). We denote the subgraph of G(C, u∗) induced by the
index set I1(C, u∗) as G1(C, u

∗) = [I1(C, u∗),E1(C, u
∗),W1(C, u

∗)], where E1(C, u
∗) and

W1(C, u
∗) are the edge set and weight set of this subgraph. The following theorem provides

an equivalent definition of D in terms of I00(C, u∗) and G1(C, u
∗).

Theorem 14. Given C ∈ Sn2−1
+,1 and u∗ ∈ Sn−1

1 , it holds that (C, u∗) /∈ D if and only if

1. G1(C, u
∗) is connected and not bipartite;

2. {i, i} ∈ E(C, u∗) for all i ∈ I00(C, u∗).

Proof. We first construct counterexamples for the necessity part and then prove the unique-
ness of the global minimum (up to a sign flip) for the sufficiency part. For the notational
simplicity, we fix the point (C, u∗) and omit them in the notations.

Necessity. In this part, our goal is to construct a solution u ∈ Rn such that

uiuj = u∗
iu

∗
j , ∀{i, j} ∈ E; uuT ̸= u∗(u∗)T .

We denote M∗ := u∗(u∗)T and analyze three different cases below.

Case I. First, we consider the case when G1 is disconnected, which means that there exist
two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i ∈ I, ∀j ∈ J .

We define the vector u ∈ Rn as

ui := 0, ∀i ∈ I0; ui = u∗
i , ∀i ∈ I; ui = −u∗

i , ∀i ∈ J .

The above definition leads to

uiuj =

{
−M∗

ij if i ∈ I and j ∈ J
M∗

ij otherwise.

Since u∗
i ̸= 0 for all i ∈ I1, it follows that uiuj = −M∗

ij ̸= M∗
ij for all {i, j} such that i ∈ I

and j ∈ J .

Case II. Next, we consider the case when G1 is bipartite, which means that there exist
two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i, j ∈ I1 s. t. i, j ∈ I or i, j ∈ J .

In this case, we define the vector u ∈ Rn as

ui := 0, ∀i ∈ I0; ui := u∗
i /2, ∀i ∈ I; ui := 2u∗

i , ∀i ∈ J .
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Now, we have

uiuj =


M∗

ij/4 if i, j ∈ I
4M∗

ij if i, j ∈ J
M∗

ij otherwise.

Since M∗
ij ̸= 0 for all i, j ∈ J , we have that uiuj = 4M∗

ij ̸= M∗
ij for all i, j ∈ J .

Case III. Finally, we check the case when there exists a node i0 ∈ I00 such that {i0, i0} /∈ E.
In this case, we define the vector u ∈ Rn as

ui0 := 1, ui := u∗
i , ∀i ∈ [n]\{i0}.

Now, we have
ui0ui0 = 1 ̸= 0 = M∗

i0i0
, uiuj = M∗

ij, ∀{i, j} ∈ E.

Combining the above three cases completes the proof of the necessity part.

Sufficiency. We prove that any global solution u ∈ Rn to problem (3.4) satisfies uuT = M∗,
where M∗ := u∗(u∗)T . Since u is a global solution, it follows that

uiuj = M∗
ij, ∀i, j ∈ [n] s. t. {i, j} ∈ E.

Since the graph G1 is not bipartite, there exists a cycle with an odd number of edges in G1.
We denote the length of the cycle as 2k + 1, where k is a non-negative integer. Moreover,
we denote the edges of the cycle as

{i0, i1}, {i1, i2}, . . . , {i2k, i0}.

Since {i0, . . . , i2k} ⊂ I1, we know that

uiuj = M∗
ij ̸= 0, ∀i, j ∈ [n] s. t. {i, j} ∈ {{iℓ, iℓ+1}, ℓ ∈ {0, . . . , 2k}} ,

where i2k+1 := i0. Hence, we can calculate that

u2
0 =

2k∏
ℓ=0

(uiℓuiℓ+1
)(−1)ℓ =

2k+1∏
ℓ=0

M
(−1)ℓ

iℓiℓ+1
= (u∗

i0
)2.

Without loss of generality, assume that ui0 = u∗
i0

since otherwise we can consider the solution
−u if ui0 = −u∗

i0
. With the value of ui0 correctly recovered, it follows that

ui1 =
ui0ui1

ui0

=
u∗
i0
u∗
i1

u∗
i0

= u∗
i1
.

Similarly, we can utilize the connectivity of G1 to iteratively obtain ui = u∗
i for all i ∈ I1.
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The remaining part is to show that ui = 0 for all i ∈ I0. For every node i ∈ I0\I00, there
exists a node j ∈ I1 such that {i, j} ∈ E. This implies that

uj = u∗
j ̸= 0, uiuj = M∗

ij = 0,

Hence, it holds that ui = 0. For every node i ∈ I00, the assumption in the theorem requires
that {i, i} ∈ E, which leads to

u2
i = M∗

ii = 0.

In this case, we also obtain ui = 0.

Since the set D is bounded, the infimum in the definition (3.5) can be attained by using
the closure of D, namely

Dα(C, u∗) =

[
min

(C̃,ũ∗)∈D
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

. (3.6)

The alternative definition (3.6) simplifies the verification of parameters that attain the infi-
mum. In addition, with the help of Theorem 14, we can exactly characterize the closure D,
which has a slightly simpler form than D.

Theorem 15. We have the following relation:

D = {(C, u∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 ,G1(C, u
∗) is disconnected or bipartite}

∪ {(C, u∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 , I00(C, u∗) is not empty}.

Let the set in the right-hand side of the above equation be called D′. The proof of
Theorem 15 is based on a standard technique that first shows D̄ ⊂ D′ and then shows
D′ ⊂ D̄. The details can be found in Appendix 3.B. Using the results in Theorems 14 and
15, we provide an estimate on the scale of the new metric. Since D is a bounded set, there
exists an upper bound on the minimum possible value of the complexity metric, which is
defined below:

Dmin
α := min

C∈Sn2−1
+,1 ,u∗∈Sn−1

1

Dα(C, u∗).

The next theorem provides the expression of Dmin
α .

Theorem 16. Suppose that n ≥ 5. Then, it holds that

Dmin
α =


n
4α

if α ≤ n2−3n−2
n2−5n+4

n2

2(1−α)(n−2)n+4α
if n

n+2
≤ α ≤ n

n+1
n(n+1)

2(1−α)(n−2)(n+1)+4
if α ≥ n

n+1
.

In the regime (n2 − 3n− 2)/(n2 − 5n + 4) ≤ α ≤ n/(n + 2), we have the estimate

Dmin
α ∈

[
n

4α
,

n2

4α(n− 1)

]
.
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Figure 3.2.1: Comparison of Dmin
α for n = 20, 50, 100. The red “×” sign refers to the value

at α∗. In the right plot, the complexity metric is scaled by n−1.

The proof of Theorem 16 can be found in Appendix 3.B. Now, we provide the proof
of Theorem 16. The results of Theorem 16 imply that in the regime where α ≥ Θ(1) and
1−α ≥ Θ(n−1), we have Dmin

α = O (n). This suggests that n−1Dα(C, u∗) may be a dimension-
free complexity metric; see more examples supporting this claim in Section 3.3. In addition,
the minimum possible value of the complexity is attained at

α∗ := (n2 − 5n + 4)/(n2 − 3n− 2).

Hence, the set of possible values of the complexity metric attains the maximum size by
choosing α = α∗. This observation hints that α∗ may be the optimal choice of α since it
may enable the metric to differentiate instances with different complexities to the maximum
degree. Using the exact formulation of g(α, c) in Lemma 11, we plot the minimum possible
value of the complexity metric both without scaling and after scaling by n−1 in Figure 3.2.1.
From the numerical results, we can see that the complexity scales with n if α is smaller than
α∗, which is consistent with Theorem 16. If α is larger than α∗, the complexity metric for
different values of n approximately lies on the same curve.

In the following theorem, we show that if α = α∗, the instances that attain the minimum
value of the complexity metric are unique up to sign flips to components of the global solution.

Theorem 17. Suppose that n ≥ 5 and the instanceMC(C, u∗) satisfies

Dα∗(C, u∗) = n/(4α∗).

Then, it holds that

|u∗
i | = 1/n, Cii = 0, ∀i ∈ [n]; Cij = 1/[n(n− 1)], ∀i, j ∈ [n], i ̸= j.
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The proof of Theorem 17 can be found in Appendix 3.B. The above theorem states that
if we choose the weight α = α∗, the “easiest” instance is unique up to a change in the signs
of the components of the global solution u∗. In the next theorem, we show that a similar
property as α∗ holds if we set α to be

α⋄ := n/(n + 2).

Theorem 18. Suppose that n ≥ 5 and the instanceMC(C, u∗) satisfies

Dα⋄(C, u∗) = Dmin
α = n(n + 2)/[4(n− 1)].

Then, it holds that
|u∗

i | = 1/n, ∀i ∈ [n]; C = n−2In.

Since the proof is similar to that of Theorem 17, we omit it for brevity. The above
theorem implies that the weight matrix C of the “easiest” instances is a constant multiple of
the identity matrix In, which satisfies the δ-RIP2,2 condition with δ = 0. This is consistent
with the common sense that the RIP constant δ being 0 is the optimal situation. Hence,
Theorem 18 suggests that the choice α⋄ = n/(n+2) may potentially be the optimal choice of
α. On the other hand, we will prove in Section 3.4 that the “easiest” instances in Theorems
17 and 18 all have a benign landscape in the sense that they satisfy the strict-saddle property
[210], which guarantees the polynomial-time global convergence of various algorithms. If the
weight α is different from α∗ and α⋄, there may exist multiple “essentially” different instances
attaining the minimum complexity.

3.3 Connections to Existing Results

In this section, we provide estimates of the proposed complexity metric on two well-
studied problem instances and a synthetic problem. More specifically, we consider matrix
sensing problems satisfying the RIP condition and matrix completion problems under the
Bernoulli sampling model. In addition, we construct a class of instances parameterized by
a single parameter. We estimate the threshold of the parameter that separates instances
with a desirable optimization landscape from those with a bad landscape. The results in the
synthetic example show that our proposed complexity metric has the potential to provide
guarantees on the optimization landscape when the RIP condition fails.

Matrix Sensing Problem: RIP Condition

We first consider instances of problem (3.4) that satisfy the δ-RIP2,2 condition, where

δ ∈ [0, 1) is the RIP constant. However, the constraint that C ∈ Sn2−1
+,1 is inconsistent with

the RIP condition (2.8) in the sense that the entries of C are averagely on the scale of n−2,
but the RIP condition requires that the entries of C be on the scale of O(1). Therefore, we
generalize the definition of the RIP condition to deal with the inconsistent scaling:
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Definition 6. Given natural numbers r and s, the function f(·;M∗) is said to satisfy the
Restricted Isometry Property (RIP) of rank (2r, 2s) for a constant δ ∈ [0, 1), denoted
as δ-RIP2r,2s, if there exist constants c1, c2 ≥ 0 such that c2/c1 = (1 + δ)/(1− δ) and

c1∥K∥2F ≤
[
∇2f(M ;M∗)

]
(K,K) ≤ c2∥K∥2F (3.7)

holds for all matrices M,K ∈ Rn×n such that rank(M) ≤ 2r, rank(K) ≤ 2s.

The above definition of the RIP condition is scale-free in the sense that for any constant
c > 0, the function cf(·;M∗) satisfies the δ-RIP2r,2s condition if and only if f(·;M∗) satisfies
the same condition.

Since the instances satisfying the RIP condition have a benign optimization landscape,
we expect that the complexity metric is upper-bounded for those instances. By suitably
generalizing the definitions of Dα(C, u∗) and D, we provide an upper bound for problem
(2.2) under the RIP condition. Note that the ground truth M∗ is not necessarily rank-1 in
this part. Instead, we assume that M∗ = U∗(U∗)T is rank-r, where U∗ belongs to Rn×r. For
problem (2.2), each instance is defined by the loss function f(·; ·) and the ground truth M∗.
We assume that the M∗ is a global optimum of the loss function, namely,

f(M∗;M∗) = min
K∈Rn×n

f(K;M∗), ∀M∗ ∈ Rn×n s. t. M∗ ⪰ 0, rank(M∗) = r. (3.8)

In the special case when f(·; ·) is the weighted ℓ2-loss function in (3.4), the above condition

implies that Cij ≥ 0 for all i, j ∈ [n]. Similar to the normalization constraint C ∈ Sn2−1
+,1 , we

assume that objective function f(·;M∗) is normalized in the sense that∑
i,j∈[n]

[f(M∗ + Eij;M
∗)− f(M∗;M∗)] = 1. (3.9)

For the normalization constraint u∗ ∈ Sn−1
1 , we assume that the global truth M∗ satisfies

∥U∗∥1 = 1. (3.10)

The set of degenerate instances is given by

D :=

{
(f,M∗)

∣∣∣∣ f(·; ·) and M∗ satisfy (3.8)-(3.10),

∃M ̸= M∗ s. t. f(M ;M∗) = f(M∗;M∗), M∗ ⪰ 0, rank(M∗) = r

}
.

The “entry-wise ℓ1-norm” between two arbitrary functions h1(·) and h2(·) with the domain
Rn×n is defined as the restricted ℓ∞-Lipschitz constant of h1−h2. Namely, we define ∥h1−h2∥1
to be

∥h1 − h2∥1 := sup
K,L∈Rn×n

|(h1(K)− h2(K))− (h1(L)− h2(L))|
maxi,j∈[n](Kij − Lij)2
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s. t. K ̸= L, rank(K − L) ≤ 2r.

For every constant α ∈ [0, 1], the distance between two instances (f,M∗) and (f̃ , M̃∗) is
defined as

distα

[
(f,M∗), (f̃ , M̃∗)

]
:= α∥f(·;M∗)− f̃(·; M̃∗)∥1 + (1− α)∥U∗ − Ũ∗∥1,

where U∗, Ũ∗ ∈ Rn×r satisfy U∗(U∗)T = M∗ and Ũ∗(Ũ∗)T = M̃∗. Finally, the complexity
metric is given by

Dα(f,M∗) :=

[
inf

(f̃ ,M̃∗)∈D
distα

[
(f,M∗), (f̃ , M̃∗)

]]−1

. (3.11)

We note that the definitions of D and Dα(f,M∗) are consistent with those of instance (3.4).
The following theorem provides an upper bound on the complexity metric of any instance
satisfying the RIP2,2 condition.

Theorem 19. Let α ∈ [0, 1] and δ ∈ [0, 1) be two constants. Suppose that the function
f(·;M∗) satisfies the δ-RIP2r,2r condition and the normalization constraint (3.9), where r is
the rank of M∗. Then, it holds that

Dα(f,M∗) ≤ n2(1 + δ)

α(1− δ)
.

Proof. We fix the instance (f,M∗) and assume that (f̃ , M̃∗) ∈ D. Suppose that the matrix
M ̸= M̃∗ satisfies

f̃(M ; M̃∗) = f̃(M̃∗; M̃∗).

We first consider the case when M ̸= M∗. In this case, we can estimate that

∥f(·;M∗)− f̃(·; M̃∗)∥1 (3.12)

≥

∣∣∣[f(M ;M∗)− f̃(M ; M̃∗)
]
−
[
f(M∗;M∗)− f̃(M∗; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

=

∣∣∣[f(M ;M∗)− f(M∗;M∗)] +
[
f̃(M∗; M̃∗)− f̃(M ; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

=

∣∣∣[f(M ;M∗)− f(M∗;M∗)] +
[
f̃(M∗; M̃∗)− f̃(M̃∗; M̃∗)

]∣∣∣
maxi,j∈[n](Mij −M∗

ij)
2

≥ f(M ;M∗)− f(M∗;M∗)

maxi,j∈[n](Mij −M∗
ij)

2
≥ (c1/2) · ∥M −M∗∥2F

maxi,j∈[n](Mij −M∗
ij)

2
≥ c1

2
,
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where c1 is the constant in the RIP condition of f(·;M∗). The second inequality is due to

f(M ;M∗)− f(M∗;M∗) ≥ 0, f̃(M∗; M̃∗)− f̃(M̃∗; M̃∗) ≥ 0.

The second last inequality follows from the global optimality of M∗ and the second inequality
after inequality (12) in [244], namely,

f(M ;M∗) ≥ f(M∗;M∗) +
c1
2
∥M −M∗∥2F , ∀M ∈ Rn×n, rank(M) ≤ r.

Now, we provide a lower bound on c1. Using the normalization constraint (3.9) and the
stationarity of M∗, it holds that

1 =
∑
i,j∈[n]

[f(M∗ + Eij;M
∗)− f(M∗;M∗)] ≤ c2

2
·
∑
i,j∈[n]

∥Eij∥2F =
c2n

2

2
,

which implies that c2 ≥ 2n−2. Using the relation c2/c1 = (1 + δ)/(1− δ), we obtain that

c1 ≥
2(1− δ)

n2(1 + δ)
.

By substituting into inequality (3.12), it follows that

∥f(·;M∗)− f̃(·; M̃∗)∥1 ≥
1− δ

n2(1 + δ)
.

which leads to distα[(f,M∗), (f̃ , M̃∗)] ≥ α(1 − δ)/[n2(1 + δ)]. Now, the desired bound on
Dα(f,M∗) follows from taking the inverse. In the case when M = M∗, we can replace M
with M̃∗ and the proof can be done in the same way.

We note that the upper bound on Dα(C, u∗) is increasing in δ, which is consistent with
the intuition that a smaller δ will lead to a better optimization landscape. Moreover, in the
case when α(1− δ) = Θ(1), the upper bound is on the order of O(n2), which is O(n) larger
than the minimum possible complexity metric in Theorem 16. Now, we provide a remedy
to the aforementioned issue for problem (3.4). With the knowledge about the incoherence
of the global solution, we can improve the upper bound on the complexity metric.

Theorem 20. Suppose that the instanceMC(C, u∗) satisfies the δ-RIP2,2 condition and u∗

has incoherence µ. Then, it holds that

Dα(C, u∗) ≤ max

{
n(1 + δ)

4α(1− δ)
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

n

)−1

, 3µ

}
.
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The proof of Theorem 20 can be found in Appendix 3.C. From the above theorem, we
can use the weight α to control the balance between the RIP constant δ and the incoherence
µ. If we choose 1− α = Θ(n−1), then the complexity can be upper-bounded by

Dα(C, u∗) = µn ·max

{
O

(
1 + δ

1− δ

)
, O

(
1

µ

)}
= O

(
µn · 1 + δ

1− δ

)
.

In addition, if it holds that µ = O(1) and (1 − δ)−1 = O(1), then the complexity is upper-
bounded by O(n), which matches the minimum possible complexity in Theorem 16 up to
a constant. Although the complexity metric may have a large value for extreme instances
(i.e., instances with a large incoherence), the complexity of regular instances achieves the
optimal value up to a constant. Furthermore, we conjecture in Section 3.4 that the condition
Dα(C, u∗) = O(nµ/α) is sufficient to guarantee the success of local search methods. Assuming
that this conjecture is true, then the condition (1−δ)−1 = O(1) alone is sufficient to guarantee
that the optimization landscapes are benign regardless of the value of the incoherence µ. This
is consistent with the existing results on the RIP condition. We conclude the discussion
of instances with the RIP condition by showing that the dependence of δ in Theorem 20 is
tight up to a constant.

Theorem 21. Suppose that n ≥ 4, α ∈ [0, 1], µ ∈ [1, n] and δ ∈ [0, 1). Let ℓ := ⌈n/µ⌉. Then,
there exists an instanceMC(C, u∗) such thatMC(C, u∗) satisfies the δ-RIP2,2 condition, u∗

has incoherence µ and

Dα(C, u∗) ≥ n(1 + δ)

4α(1− δ)
·min

{
nµ

µℓ− µ
, µ

}
.

The proof of Theorem 21 can be found in Appendix 3.C.

Matrix Completion Problem: Bernoulli Model and Incoherence
Condition

Next, we consider instances MC(C, u∗) of problem (3.4) where the global solution u∗

is µ-incoherent and the random weight matrix C obeys the Bernoulli model. Similar to
the RIP condition, we need to generalize the definition of the Bernoulli model under the
normalization constraint.

Definition 7. Given the sampling rate p ∈ (0, 1], a random matrix C ∈ Sn2−1
+,1 is said to

obey the Bernoulli model if

Cij =
δij∑

k,ℓ∈[n] δkℓ
, ∀i, j ∈ [n],

where {δkℓ|k, ℓ ∈ [n]} are independent Bernoulli random variables with the parameter p.
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We note that the above model is well defined only when
∑

i,j δij > 0, which happens with

probability 1− (1− p)n
2 ≥ 1− exp(−n2p). This probability is sufficiently large if n2p≫ 1.

In [35], the authors showed that p ≥ Θ(µ log n/n) is necessary and under this condition, the
success probability is at least 1 − O(n−µn). Therefore, we only focus on the case when the
event

∑
i,j δij > 0 happens. In the existing literature [34, 87, 40], the instances obeying the

Bernoulli model are proven to have no spurious local minima. We show that our complexity
metric is able to characterize this property by proving an upper bound on the complexity
metric.

Theorem 22. Given µ ∈ [1, n] and p ∈ (0, 1], suppose that the weight matrix C obeys the
Bernoulli model with the parameter p and that u∗ has incoherence µ. If η > 2 is a constant
and the sampling rate satisfies

p ≥ min

{
1,

16(1 + ηµ) log n + 16

n

}
,

it holds with probability at least 1− 3n−η/2+1 that

Dα(C, u∗) ≤ max

{
3n

4α
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

n

)−1

, 3µ

}
.

The proof of Theorem 22 can be found in Appendix 3.C. By Theorem 22, if 1 − α =
Θ(n−1µ−1), then the complexity of instances obeying the Bernoulli model is on the order of
Θ[n2µ/(n− µ)]. If the incoherence µ = O(1), the complexity is on the order of O(n), which
matches the minimum possible complexity up to a constant. Therefore, the proposed metric
can also serve as a good indicator for the matrix completion problem with the Bernoulli
model. Finally, we note that the bound p ≥ Θ(µ log n/n) is optimal up to a constant [35];
see also the discussions in Appendix E of [75].

Finally, we note that problem (3.4) may still have spurious local minima when the sam-
pling probability p and the incoherence µ satisfy the condition in Theorem 22. In the existing
literature, the global convergence of randomly initialized local search methods is established
for problem (3.4) only under an extra regularizer or an extra constraint on the incoherence of
u. That being said, our proposed complexity metric correctly reflects the commonsense that
the matrix completion problem is generally easier to solve when the incoherence is small or
when the sampling rate p is large. When the complexity is small, it is possible to apply local
search methods to find the ground truth. The local search methods may be different for
different classes of low-rank matrix optimization problems. In addition, the new complexity
metric has the advantage that it is able to simultaneously capture the RIP condition, the
incoherence condition and potentially other existing complexity metrics.

One-parameter Class of Instances

In Sections 3.3 and 3.3, we provided several upper bounds on the complexity metric.
In this part, we consider a class of instances that are parameterized by a single parameter
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ϵ ∈ [0, 1]. Intuitively, when the parameter grows from 0 to 1, the optimization landscape of
the instance becomes more benign. Unlike the previous results in this section, the analysis
of the small parameter case provides necessary conditions for the existence of spurious local
minima. More specifically, we fix G = (V,E) to be an unweighted undirected graph without
self-loops, where the node set is V = [n]. We consider the maximal independent set of G,
which is defined as follows:

Definition 8. For an undirected graph G = (V,E), a set S ⊂ V is called an independent
set if no two nodes in S are adjacent. The set S is called a maximal independent set if it is
an independent set with the maximum number of nodes 1.

Suppose that S ⊂ [n] is a maximal independent set of G. For every ϵ ∈ [0, 1], the instance
MC(Cϵ, u∗) is defined by

Cϵ
ij := ϵ/Zϵ, ∀i, j ∈ S s. t. i ̸= j; Cϵ

ij := 1/Zϵ, if {i, j} ∈ E; (3.13)

Cϵ
ii := 1/Zϵ, ∀i ∈ [n], Cϵ

ij := 0, otherwise,

u∗
i := 1/m, ∀i ∈ S; u∗

i := 0, ∀i /∈ S,

where m := |S| and Zϵ := 2|E| + n + m(m − 1)ϵ is the normalization constant. In the
remainder of this subsection, we assume without loss of generality that S = [m].

First, we study for what values of ϵ the instanceMC(Cϵ, u∗) has benign landscape or has
spurious local minima. The following theorem guarantees that the threshold ϵ = Θ(m−1) =
Θ(µ/n) separates the regimes where the instance possesses and does not possess spurious
local minima, where µ := n/m denotes the incoherence of u∗.

Theorem 23. If ϵ ≥ Θ(m−1), the instance MC(Cϵ, u∗) does not have spurious second-
order critical points2 (SSCPs), namely, all second-order critical points are global minima
associated with the ground truth solution M∗. If ϵ = O(m−1), the instance MC(Cϵ, u∗) has
at least O(2m/2) spurious local minima.

The proof of Theorem 23 can be found in Appendix 3.C. In the case when m = 2, the
proof of Theorem 23 (more specifically, Theorem 31) states that the instance MC(Cϵ, u∗)
has spurious local minima if ϵ < 1/3. The condition ϵ = 1/3 corresponds to the δ-RIP2,2

condition holding with δ = 1/2. Therefore, the RIP constant δ ≤ 1/2 is necessary for the
instance MC(Cϵ, u∗) to have no spurious local minima. Combined with the results in [244,
24], we can see that the one-parameter groupMC(Cϵ, u∗) also contains difficult instances of
the general problem (2.2).

Furthermore, we note that the constants in the proof of Theorem 23 are not optimal. We
conjecture that the instance MC(Cϵ, u∗) has spurious solutions if ϵ < (m + 1)−1 + o(m−1)

1We note that this definition is different from the common definition of maximum independent set, which
only requires that a maximum independent set is not a proper subset of an independent set.

2A point u ∈ Rn is called a spurious second-order critical point if it satisfies the first-order and the
second-order necessary optimality conditions and uuT ̸= u∗(u∗)T .
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Figure 3.3.1: The left plot shows the transitions of the success rate of the gradient descent
algorithm when n = 100, 125, 150, 175. The red “×” sign refers to the transition threshold,
i.e., the smallest value of η that attains 100% success rate. In the right plot, the transition
thresholds of η are compared with the curves y = 1 and y = 1− 1.7(n + 1)−2/3.

and does not have spurious solutions if ϵ > (m + 1)−1 + o(m−1). We numerically verify
this conjecture in the special case when m = n. In numerical examples, we consider the
scaled parameter η := (n + 1)ϵ. For each instance, we implement the randomly initialized
gradient descent algorithm for 200 times and check the number of implements for which the
distance between the last iterate and ±u∗ has Frobenius norm at most 10−5. The results
are plotted in Figure 3.3.1. In the left plot, we can see that in most cases, the success rate
grows with the parameter η, which is proportional to ϵ. This indicates that the optimization
landscape becomes more benign when ϵ is larger. In addition, the transition thresholds
of η are very close to 1 (to be more accurate, the thresholds of η are between 0.95 and
1.05). This observation is consistent with our conjecture. In the right plot, we compare the
transition thresholds of η against the constant number 1. We observe that the thresholds
are approximately located between 1 and 1− 1.7(n + 1)−2/3, which implies that the original
thresholds of ϵ are between (n + 1)−1 and (n + 1)−1 − 1.7(n + 1)−5/3. Hence, the thresholds
become close to (n + 1)−1 when n is large, which is also consistent with our conjecture.
Moreover, we can see that the threshold of η is not monotone in n and is slightly smaller
when n is odd.

Finally, we transform the estimates on the parameter ϵ to the complexity metric.

Theorem 24. Suppose that n ≥ m ≥ 36, α ∈ [0, 1] and ϵ ∈ [0, 1]. Then, the following
statements hold true:

1. If

Dα(Cϵ, u∗) ≤
[

36α

n2
+ min

{
72α · m

n2
, 2(1− α)

}]−1

,

then the instanceMC(Cϵ, u∗) has no spurious local minima;
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2. If

Dα(Cϵ, u∗) ≥ 18

17
max

{
13n2

2α
,

1

2(1− α)

}
,

then the instanceMC(Cϵ, u∗) has spurious local minima.

The proof of Theorem 24 can be found in Appendix 3.C. In the case when 1 − α ≥
Θ(m/n2), the upper bound on Dα(Cϵ, u∗) is on the order of O(nµ/α), where µ := n/m is the
incoherence of u∗. This result is consistent with the upper bounds in Sections 3.3 and 3.3.
In addition, the RIP constant is 1−O(1/m) if ϵ = O(1/m), which shows that the proposed
complexity metric can provide better guarantees on the optimization complexities than the
RIP constant. On the other hand, the lower bound in Theorem 24 is on the order of O(n2/α)
in the case when 1− α ≥ Θ(n−2).

In summary, we have provided a consistent upper bound on the complexity metric that
is on the order of Θ(nµ/α) for all three examples (Θ[nµ/α · (1 + δ)/(1− δ)] for the RIP case)
if we choose 1 − α = O(n−1). These theoretical results provide strong evidence that our
proposed complexity metric is able to capture the properties of the optimization landscape
for several different models, even when other existing conditions fail to provide theoretical
guarantees; see the comparison of the condition and our complexity metric in Section 3.3.
In Section 3.4, we make some conjectures based on these observations and provide a partial
theoretical explanation.

3.4 Theoretical Results for General Instances

In this section, we provide a theoretical analysis for the proposed complexity metric (3.6)
on the general problem (3.4). Intuitively, we expect the problem (3.4) to have a benign
landscape when the complexity metric is small and vice versa. We first prove that the
proposed complexity metric is able to provide a sufficient condition on the absence of SSCPs
of problem (3.4). Then, we construct another complexity metric that lower-bounds the
metric (3.5) and show that the alternative complexity metric is able to provide necessary
conditions on the absence of SSCPs.

Recalling the analysis in Section 3.3, one might have the following questions: Suppose
that 1−α ≥ Θ(n−1) and the solution u∗ is µ-incoherent. Can we find two constants δ,∆ > 0
such that

1. If Dα(C, u∗) ≤ δµn/α, the instance MC(C, u∗) has no SSCPs;

2. If Dα(C, u∗) ≥ ∆n2/α, the instance MC(C, u∗) has SSCPs?

Suppose that the first property in the above question holds. The results in Section 3.3
imply that the proposed complexity metric guarantees the absence of SSCPs when the RIP
constant is O[(δ−1)/(δ+ 1)], which is independent of µ. In addition, the matrix completion
problem under the Bernoulli model does not have SSCPs when p ≥ O(µ log n/n), which
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matches the lower bound in [35]. In Section 3.4, we prove a weaker version of the first
property in the case when α is equal to α∗ or α⋄, which are defined in Section 3.2. We note
that both α∗ and α⋄ satisfy the condition that 1−α = Θ(n−1). On the other hand, in Section
3.4, we refute the second property in the above question by constructing counterexamples.
This observation implies that similar to the RIP constant and the incoherence, the proposed
complexity metric cannot provide necessary conditions on the absence of spurious local
solutions. However, if we substitute the degenerate set D with a slightly smaller set, we
prove that the complexity metric is able to provide a necessary condition.

Small Complexity Case

We first consider instances with a small complexity metric. In the case when α is equal
to α∗ or α⋄, we prove that Dα(C, u∗) ≤ δn/α serves as a sufficient condition for the absence
of SSCPs, where δ > 0 is an absolute constant. Since the incoherence µ is at least 1, the
aforementioned condition is weaker than the first property in the aforementioned question.
By Theorem 16, the minimum possible value of the complexity metric is on the order of
O(n/α). In this subsection, we show that the constant δ can be chosen such that δn/α is
strictly larger than the minimum possible complexity. The following theorem deals with the
case when α = α∗.

Theorem 25. Suppose that n ≥ 5 and α = α∗. Then, there exists a constant δ > 1/4 such
that for every instanceMC(C, u∗) satisfying

Dα∗(C, u∗) ≤ δn/α∗,

the instanceMC(C, u∗) does not have any SSCPs.

Since the minimum possible complexity metric is n/(4α∗), the upper bound in Theorem
25 is non-trivial in the sense that there exist instances satisfying the inequality. By Theorem
17, the minimum complexity metric n/(4α∗) is only attained by instances in M, where

M :=

{
(C, u∗)

∣∣∣∣∣ |u∗
i | =

1

n
, Cii = 0, ∀i ∈ [n], Cij =

1

n(n− 1)
, ∀i, j ∈ [n], i ̸= j

}
.

In the next lemma, we prove the strict-saddle property [210] of the ℓ1-norm for instances in
M, which can be viewed as a robust version of the absence of SSCPs.

Lemma 9. Suppose that n ≥ 2 and (C0, u0) ∈ M. Then, there exist a positive constant η0
and two positive-valued functions β(η) and γ(η) such that for all η ∈ (0, η0] and u ∈ Rn, at
least one of the following properties holds:

1. min{∥u− u∗∥1, ∥u + u∗∥1} ≤ η;

2. ∥∇g(u;C, u∗)∥∞ ≥ β(η);
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3. λmin[∇2g(u;C, u∗)] ≤ −γ(η).

We then show that after a sufficiently small perturbation to any point (C0, x0) ∈M, the
new instance does not have any SSCPs.

Lemma 10. Suppose that n ≥ 3. There exists a small positive constant ϵ such that for every
pair (C0, u0) ∈M and (C̃, ũ∗) satisfying

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 < ϵ,

the instanceMC(C̃, ũ∗) does not have SSCPs.

The proofs of the last two lemmas involve several standard calculations and can be found
in Appendices 3.D and 3.D. Now, we prove the existence of a non-trivial upper bound on
the metric.

Proof of Theorem 25. Let ϵ be the constant in Lemma 10. We consider the compact set

C :=

{
(C, u∗)

∣∣∣∣ ∥C∥1 = ∥u∗∥1 = 1,

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 ≥ ϵ, ∀(C0, u0) ∈M
}
.

Since the minimum possible complexity metric n/(4α∗) is only attained by points in M, it
holds that

Dα∗(C) := max
(C,u∗)∈C

Dα∗(C, u∗) > n/(4α∗).

Therefore, choosing
δ := (α∗/n) · Dα∗(C) > 1/4,

we have

Dα∗(C, u∗) ≤ δn/α∗ =⇒ (C, u∗) /∈ C =⇒ the instance MC(C, u∗) has no SSCPs.

This completes the proof.

The case when α = α⋄ can be analyzed in a similar way. We note that the strict-saddle
property of the instances in Theorem 18 has been established in [125]. Hence, we present
the results in the following theorem and omit the proof.

Theorem 26. Suppose that n ≥ 5 and α = α⋄. Then, there exists a constant δ > 1/4 such
that for every pair (C, u∗) satisfying

Dα⋄(C, u∗) ≤ δn(n + 2)/(n + 1),

the instanceMC(C, u∗) does not have any SSCPs.

Similar to Theorem 25, since the minimum possible complexity metric is attained with
δ = 1/4, the upper bound in Theorem 26 is non-trivial.
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Large Complexity Case

In this subsection, we first refute the second property in the question that we asked in
the beginning of Section 3.4 and then refine its statement to make it hold true. We note that
the RIP condition and the incoherence condition cannot provide necessary conditions for the
absence of SSCPs either. Namely, there exist instances that satisfy the δ-RIP2,2 condition
with δ as high as 1 which do not have SSCPs. Similarly, in the case when the incoherence
of the global solution is n, it is still possible to have an instance of the matrix completion
problem without any SSCPs. In other words, although small values for the RIP constant
and incoherence guarantee the absence of spurious solutions, these notions cannot capture
the complexity of the problem since there are low-complexity problems with large values for
these parameters. We first show that our new metric suffers from the same shortcoming, but
we then propose a simple refinement to address this issue.

Example 5. Suppose that the weight matrix and the ground truth are

Cδ :=
1

1 + 3δ

[
1 δ
δ δ

]
, u∗ :=

[
1
0

]
,

where δ ≥ 0 is a constant. One can verify that ±u∗ are the only local minima to the instance
MC(Cδ, u∗) for all δ > 0. However, in the case when δ = 0, the instance MC(C0, u∗) has
the set of global solutions

±
[
1
c

]
, ∀c ∈ R.

Moreover, we consider the case when both components of u∗ are measured, where the instance
MC(C̃ϵ, ũϵ) is defined by

C̃ϵ :=
1

1 + ϵ

[
1 0
0 ϵ

]
, ũϵ :=

1

1 + ϵ

[
1
ϵ

]
,

where ϵ is a positive constant. One can verify that the pair (C̃ϵ, ũϵ) belongs to D for all
ϵ > 0. Setting δ and ϵ to be small enough, the instances MC(Cδ, u∗) and MC(C̃ϵ, ũϵ) can
be arbitrarily close to each other in the sense that

α∥Cδ − C̃ϵ∥1 + (1− α)∥u∗ − ũϵ∥1 = O(αδ + ϵ).

Therefore, the complexity metric ofMC(Cδ, u∗) can be arbitrarily large. This example shows
that instances without SSCPs can be arbitrarily close to those in D, which have non-unique
global solutions.

Nevertheless, we derive a lower bound on the complexity metric (3.6) by constructing
a subset of D, which allows obtaining a necessary condition. Intuitively, if an instance has
multiple global minima, these global minima are still locally optimal after a sufficiently small
perturbation to the instance. To ensure the “robustness” of the local optimality, we require
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the positive-definiteness of the Hessian matrix. For each instanceMC(C, u∗), let G1k(C, u∗)
for all k ∈ [n1] be the connected components of G1(C, u

∗), where n1 is the number of
connected components. Moreover, we use I1k(C, u∗) to denote the node set of G1k(C, u∗) for
all k ∈ [n1]. We define the following subset of D:

SD := {(C, u∗) ∈ D | G1k(C, u∗) is not bipartite for all k ∈ [n1],

G1(C, u
∗) is disconnected, I00(C, u∗) = ∅}.

The following theorem provides a characterization of the Hessian matrix at global solutions
for pairs in SD.

Theorem 27. Suppose that (C, u∗) ∈ SD. Then, the Hessian matrix is positive definite at
all global solutions of the instanceMC(C, u∗).

The proof of Theorem 27 can be found in Appendix 3.D. Using the positive-definiteness
of the Hessian matrix, we are able to apply the implicit function theorem to guarantee the
existence of spurious local minima in a neighbourhood of each instance in SD; see Appendix
3.D for more details. The global guarantee can be established by considering closed subsets
of SD. For every constant ϵ ≥ 0, we consider the closed subset SDϵ, which is defined as

SDϵ :=
{

(C, u∗) ∈ SD | Cij ∈ {0} ∪ [ϵ, 1], ∀i, j ∈ [n], |u∗
i | ∈ {0} ∪ [ϵ, 1], ∀i ∈ [n]

}
.

Basically, the extra condition in the definition of SDϵ requires that the nonzero components
of C and u∗ be at least ϵ. We can verify that the set SDϵ is a compact set and for every
ϵn → 0, it holds that

limn→∞ ∪ni=1 SDϵi = SD0 = SD.

Now, we define the alternative complexity metric

Dα,ϵ(C, u
∗) :=

[
min

(C̃,ũ∗)∈SDϵ

α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1
]−1

. (3.14)

Since SDϵ is a subset of D, it holds that

Dα,ϵ(C, u
∗) ≤ Dα(C, u∗).

Similar to Theorem 15, we can prove the following relation:

SD = {(C, u∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 ,G1(C, u
∗) is disconnected}

∪ {(C, u∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 , I00(C, u∗) is not empty}.

Hence, the closure of SD is a proper subset of D. Combining with the fact that SDϵ is a
subset of SD, the metric Dα,ϵ(C, u

∗) is not equivalent to Dα(C, u∗). Using the compactness
of SDϵ, the following theorem provides a necessary condition for the existence of spurious
local minima.
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Theorem 28. Suppose that ϵ > 0 is a constant. Then, there exists a large constant ∆(ϵ) > 0
such that for every instanceMC(C, u∗) satisfying

Dα,ϵ(C, u
∗) ≥ ∆(ϵ),

the instanceMC(C, u∗) has spurious local minima.

Proof. For every pair (C, u∗) ∈ SDϵ, Lemma 22 implies that there exists an open neighbor-
hood of (C, u∗) such that the desired properties hold. Now, we consider the union of such
open neighborhoods over all points (C, u∗) ∈ SDϵ, which is an open cover of SDϵ. Using the
Heine-Borel covering theorem, there exists an open sub-cover of SDϵ. Therefore, we obtain
the existence of ∆(ϵ).

We note that the maximum possible value of Dα,ϵ(C, u
∗) is +∞, which is attained by

instances in SDϵ. Therefore, there exist instances satisfying the condition of Theorem 28
and the lower bound is non-trivial. Using Theorem 28, the slightly modified complexity
metric is able to provide a necessary condition on the absence of SSCPs. This result implies
that our complexity metric is able to provide conditions that are much better than the RIP
condition and the incoherence condition that fail to provide necessary conditions.

Finally, we conjecture that the second property in the question we asked in the beginning
of the section holds for any fixed weight matrix. More specifically, we define

DC(u∗) :=

(
min

(C,ũ∗)∈D
∥u∗ − ũ∗∥1

)−1

. (3.15)

We have the following conjecture:

Conjecture 1. Suppose that ϵ ∈ [0, 1]. Then, there exists a large constant Γ(ϵ) > 0 such
that for every instanceMC(C, u∗) satisfying

Cij ∈ {0} ∪ [ϵ, 1], DC(u∗) ≥ Γ(ϵ),

the instanceMC(C, u∗) has spurious local minima.

We note that the metric DC(u∗) is equal to 0 ifMC(C, u∗) satisfies the δ-RIP2,2 condition
with δ ∈ [0, 1).
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Appendix

3.A Analysis of the Degenerate Case

In this section, we provide a detailed analysis on instances with u∗ = 0. The optimization
problem of the instance MC(C, 0) can be written as

min
u∈Rn

∑
i,j∈[n]

Ciju
2
iu

2
j . (3.16)

We prove that problem (3.16) either has multiple global solutions or has no SSCPs.

Theorem 29. If Cii > 0 for all i ∈ [n], the instanceMC(C, 0) has no SSCPs. Otherwise if
Cii = 0 for some i ∈ [n], the instanceMC(C, 0) has nonzero global solutions.

Proof. We first consider the case when Cii > 0 for all i ∈ [n]. Let u0 ∈ Rn be a second-order
critical point. By the first-order optimality conditions, it holds that

1

4
∇ig(u0;C, 0) = Cii(u

0
i )

3 +
∑

j∈[n],j ̸=i

Ciju
0
i (u

0
j)

2 = 0, ∀i ∈ [n].

Multiplying u0
i on both sides, we have

0 = Cii(u
0
i )

4 +
∑

j∈[n],j ̸=i

Cij(u
0
i )

2(u0
j)

2 ≥ Cii(u
0
i )

4 ≥ 0,

which implies that Cii(u
0
i )

4 = 0. Since Cii > 0, it follows that

u0
i = 0, ∀i ∈ [n].

Hence, u0 = 0 is the unique second-order critical point.
Next, we consider the case when there exists an index i0 such that Ci0i0 = 0. In this case,

define u0 ∈ Rn by
u0
i0

= 1, u0
i = 0, ∀i ∈ [n]\{i0}.

Then, we have [
u0(u0)T

]
i0i0

= 1,
[
u0(u0)T

]
ij

= 0, otherwise.

Since the (i0, i0) entry is not observed, the point u0 leads to the same measurements as
u∗ = 0. Therefore, u0 is a nonzero global solution to the instance MC(C, 0).
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3.B Proofs in Section 3.2

Proof of Theorem 15

Proof. We denote the set on the right-hand side as D′. We first prove that

D ⊃ D′. (3.17)

Suppose that (C, u∗) ∈ D′. If G1(C, u
∗) is disconnected or bipartite, the instanceMC(C, u∗)

already belongs to D and, therefore, belongs to the closure D. We only need to consider
the case when I00(C, u∗) is not empty. For every constant ϵ > 0, we construct a new global
solution ũ∗ as follows:

ũ∗
i :=

{
u∗
i + ϵ if i ∈ I00(C, u∗)

u∗
i otherwise.

Let M̃∗ := ũ∗(ũ∗)T . For the instance MC(C, ũ∗), we have

I1(C, ũ∗) = I1(C, u∗) ∪ I00(C, u∗).

By the definition of I00(C, u∗), the nodes in I1(C, u∗) and I00(C, u∗) are disconnected. There-
fore, the new subgraph G1(C, ũ

∗) is disconnected and the new instance MC(C, ũ∗) belongs
to D. By letting ϵ→ 0, it follows that (C, u∗) is a limit point of D and belongs to D. This
completes the proof of the relation (3.17).

Then, we prove the other direction D ⊂ D′. By Theorem 14, we have D ⊂ D′. Hence, it
remains to prove that the set D′ is closed. Equivalently, we prove that (D′)c is open, where
(D′)c is the complementary set with respect to Rn×n × Rn. Suppose that (C, u∗) ∈ (D′)c. If
∥C∥1 ̸= 1 or ∥u∗∥1 ̸= 1, changing C and u∗ by a small perturbation will not make ∥C∥1 =
∥u∗∥1 = 1. Now, we only consider the case when ∥C∥1 = ∥u∗∥1 = 1. Since (C, u∗) ∈ (D′)c,
the subgraph G1(C, u

∗) is connected and not bipartite and the set I00(C, u∗) = ∅. Denote

ϵ := min

{
min
Cij>0

Cij,min
u∗
i ̸=0
|u∗

i |
}

> 0.

Suppose that we add a sufficiently small perturbation to the point (C, u∗) such that each
component of C and u∗ is changed by at most ϵ/2. Then, all nonzero components of C and
u∗ are still nonzero after the perturbation. Therefore, the edges of the subgraph G1(C,M

∗)
are not deleted after the perturbation and, thus, the subgraph is still connected and not
bipartite. Similarly, after perturbation, each node in I0(C,M∗) either becomes nonzero or
is connected to G1(C,M

∗), which implies that I00(C,M∗) is still an empty set. Therefore,
the perturbed instance still belongs to (D′)c. Hence, the set (D′)c is open and we obtain the
relation D ⊂ D′.
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Proof of Theorem 16

The proof of Theorem 16 relies on the following two lemmas, which transform the compu-
tation of Dmin

α into a one-dimensional optimization problem. The first lemma upper-bounds
the maximum possible distance.

Lemma 11. Suppose that n ≥ 2. It holds that(
Dmin

α

)−1 ≤ max
c∈[0, 1

n(n−1) ]
g(α, c),

where the function g(α, c) is defined by

g(α, c) := min

{
2(1− α) · n− 2

n
+ 4αc, 4α(n− 1)c,

2(1− α) · n− 4

n
+ 2α

(
4

n
− 4(n− 2)c

)
,

2(1− α) · n− 3

n
+ 2α

(
3

n
− (3n− 5)c

)
,

2(1− α) · n− 2

n
+ 2α

(
2

n
− 2(n− 1)c

)
,

2(1− α) · n− 1

n
+ 2α

(
1

n
− (n− 1)c

)}
.

Proof. Denote the distance between (C, u∗) and D as

Tα(C, u∗) := min
(C̃,ũ∗)∈D

α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

We fix the pair (C, u∗) and let

η :=
1

n(n− 1)

∑
i,j∈[n],i ̸=j

Cij ∈
[
0,

1

n(n− 1)

]
.

Using the condition ∥C∥1 = 1, it follows that

θ :=
1

n

∑
i∈[n]

Cii =
1

n

1−
∑

i,j∈[n],i ̸=j

Cij

 =
1

n
− (n− 1)η ∈ [0, n−1].

Our goal is to prove that

Tα(C, u∗) ≤ g(α, η).
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In the remainder of the proof, we upper-bound the distance Tα(C, u∗) by constructing some
instances in D.

We first consider those instances in D with a disconnected subgraph G1. For every
k ∈ {2, . . . , n}, let I1 be a subset of [n] satisfying |I1| = k and I0 := [n]\I1. Suppose that
ϵ > 0 is a sufficiently small constant. For every i0 ∈ I1, we consider the pair (C̃, ũ∗), where

ũ∗
i = 0, ∀i ∈ I0; ũ∗

i = (1− ϵ)u∗
i + ϵ ·

∥∥u∗
I1

∥∥
1

|I1|
+

∥∥u∗
I0

∥∥
1

|I1|
, ∀i ∈ I1 (3.18)

and

C̃i0j = C̃ji0 = 0, ∀j ∈ I1\{i0}; C̃ij = Cij +
2

n2 − 2(k − 1)

∑
j∈I1\{i0}

Ci0j, otherwise.

By choosing a sufficiently small ϵ, it can be shown that

I1(C̃, ũ∗) = I1; I0(C̃, ũ∗) = I0.

The node i0 is disconnected from other nodes in G1(C̃, ũ∗) and, therefore, (C̃, ũ∗) ∈ D. The
distance between u∗ and ũ∗ is

∥u∗ − ũ∗∥1 = 2
∥∥u∗

I0

∥∥
1

+ 2ϵ
∥∥u∗

I1

∥∥
1
≤ 2

∥∥u∗
I0

∥∥
1

+ 2ϵ. (3.19)

In addition, the distance between C and C̃ can be calculated as

∥C − C̃∥1 = 4
∑

j∈I1\{i0}
Ci0j. (3.20)

Combining inequalities (3.19) and (3.20), we have

Tα(C, u∗) ≤ 2(1− α)
∥∥u∗

I0

∥∥
1

+ 4α
∑

j∈I1\{i0}
Ci0j + 2ϵ. (3.21)

Taking the average of inequality (3.21) over i0 for I1, we have

Tα(C, u∗) ≤ 2(1− α)
∥∥u∗

I0

∥∥
1

+ 4α(k − 1)
∑

i,j∈I1,i ̸=j
Cij + 2ϵ. (3.22)

Then, we take the average of (3.22) over I1 for all k-element subsets of [n], which leads to

Tα(C, u∗) ≤ 2(1− α) · n− k

n
+ 4α(k − 1)η + 2ϵ.

By setting ϵ→ 0, we obtain that

Tα(C, u∗) ≤ 2(1− α) · n− k

n
+ 4α(k − 1)η. (3.23)
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Since inequality (3.23) is linear in k, the minimum of the right-hand side over k ∈ {2, . . . , n}
is attained by either 2 or n. Hence, it holds that

Tα(C, u∗) ≤ min

{
2(1− α) · n− 2

n
+ 4αη, 4α(n− 1)η

}
. (3.24)

Using a similar analysis, we can obtain inequality (3.23) by considering instances in D whose
I00 is non-empty.

Finally, we check those instances in D whose G1 is bipartite. Let I1 be a subset of [n]
satisfying |I1| = 4, and let I0 = [n]\I1. We define ũ∗ in the same way as (3.18). For every
subset I11 ⊂ I1 such that |I11| = 2, the new weight matrix is defined as

C̃ii = 0, ∀i ∈ I1; C̃ij = 0, ∀i, j ∈ I11; C̃ij = 0, ∀i, j ∈ I1\I11;

C̃ij = Cij +
2

n2 − 8

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij

 .

The distance between C and C̃ is

∥C − C̃∥1 = 2

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij


Therefore, the maximum distance is bounded by

Tα(C, u∗) ≤ 2(1− α)
∥∥u∗

I0

∥∥
1

(3.25)

+ 2α

∑
i∈I1

Cii +
∑

i,j∈I11,i ̸=j

Cij +
∑

i,j∈I1\I11,i ̸=j

Cij

+ 2ϵ.

By taking the average of (3.25) over I11 for all 2-element subsets of I1, it follows that

Tα(C, u∗) ≤ 2(1− α)
∥∥u∗

I0

∥∥
1

+ 2α

(∑
i∈I1

Cii +
1

3

∑
i,j∈I1,i ̸=j

Cij

)
+ 2ϵ. (3.26)

Furthermore, we take the average of (3.26) over I1 for all 4-element subsets of [n], which
gives

Tα(C, u∗) ≤ 2(1− α) · k
n

+ 2α (4θ + 4η) + 2ϵ.

By letting ϵ→ 0, we conclude that

Tα(C, u∗) ≤ 2(1− α) · 4

n
+ 2α (4θ + 4η) . (3.27)
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By applying a similar technique to subsets of [n] with 1, 2, 3 elements, the distance can be
bounded as

Tα(C, u∗) ≤ 2(1− α) · 3

n
+ 2α (3θ + 2η) , (3.28)

Tα(C, u∗) ≤ 2(1− α) · 2

n
+ 2α · 2θ,

Tα(C, u∗) ≤ 2(1− α) · 1

n
+ 2α · θ.

By combining inequalities (3.23), (3.27) and (3.28) and recalling the relation that θ = 1/n−
(n− 1)η, it follows that

Tα(C, u∗) ≤ g(α, η).

Now, we take the maximum over C ∈ Sn2−1
+,1 and u∗ ∈ Sn−1

1 , which is equivalent to taking the

maximum over η ∈
[
0, 1

n(n−1)

]
in the right-hand side. This yields that

max
∥C∥1=∥u∗∥1=1

Tα(C, u∗) ≤ max
c∈[0, 1

n(n−1) ]
g(α, c).

This completes the proof.

We denote gi(α, c) be the i-th term in the above minimization for all i ∈ {1, . . . , 6}. The
next lemma proves the other direction.

Lemma 12. Suppose that n ≥ 2. It holds that(
Dmin

α

)−1 ≥ max
c∈[0, 1

n(n−1) ]
g(α, c),

where the function g(α, c) is defined in Lemma 11.

Proof. Let η ∈
[
0, 1

n(n−1)

]
and define the pair (C, u∗) according to

u∗
i :=

1

n
, Cii :=

1

n
− (n− 1)η, ∀i ∈ [n]; Cij := η, ∀i, j ∈ [n] s. t. i ̸= j.

Our goal is to prove that
Tα(C, u∗) ≥ g(α, η).

Suppose that (C̃, ũ∗) ∈ D attains the distance Tα(C, u∗), namely,

Tα(C, u∗) = α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

We analyze three different cases.
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Case I. We first consider the case when G1(C̃, ũ∗) is disconnected. Denote k := |I1(C̃, ũ∗)|.
The distance between u∗ and ũ∗ is lower-bounded by

∥u∗ − ũ∗∥1 ≥ 2∥u∗
I0(C̃,ũ∗)

− ũ∗
I0(C̃,ũ∗)

∥1 = 2∥u∗
I0(C̃,ũ∗)

∥1 =
2(n− k)

n
. (3.29)

Since there are k nodes in G1(C̃, ũ∗), we need to eliminate at least k − 1 edges that are not
self-loops to make the graph disconnected. Therefore, at least 2(k− 1) non-diagonal weights
of C̃ are 0 and the distance between C and C̃ is at least

∥C − C̃∥1 ≥ 2 · 2(k − 1)η = 4(k − 1)η. (3.30)

Combining inequalities (3.29) and (3.30), we obtain that

Tα(C, u∗) ≥ 2(1− α) · n− k

n
+ 4α(k − 1)η. (3.31)

Case II. For the case when I00(C̃, ũ∗) is not empty, similar estimations as Case I can be
derived and inequality (3.31) also holds true.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. Denote the size of set
I1(C̃, ũ∗) as k := |I1(C̃, ũ∗)|. If k ≥ 5, we need to eliminate at least k − 1 edges that are
not self-loops to make the graph bipartite. Thus, we can follow the same proof as Case I
to arrive at inequality (3.31). If k = 4, we need to eliminate at least 2 edges that are not
self-loops and 4 self-loops to make the graph bipartite. Therefore, at least 4 non-diagonal
weights and 4 diagonal weights of C̃ are 0, and the distance between C and C̃ is at least

∥C − C̃∥1 ≥ 2

[
4η + 4

(
1

n
− (n− 1)η

)]
= 2

[
4

n
− (4n− 8)η

]
. (3.32)

Combining inequalities (3.29) and (3.32) yields that

Tα(C, u∗) ≥ 2(1− α) · n− 4

n
+ 2α

[
4

n
− (4n− 8)η

]
. (3.33)

The cases when k = 1, 2, 3 can be analyzed similarly, leading to

Tα(C, u∗) ≥ 2(1− α) · n− 3

n
+ 2α

[
3

n
− (3n− 5)η

]
, (3.34)

Tα(C, u∗) ≥ 2(1− α) · n− 2

n
+ 2α

[
2

n
− (2n− 2)η

]
,

Tα(C, u∗) ≥ 2(1− α) · n− 1

n
+ 2α

[
1

n
− (n− 1)η

]
.
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By combining Cases I-III, it follows that

Tα(C, u∗) ≥ g(α, η).

Choosing η to be the maximizer

η∗ := arg max
c∈[0, 1

n(n−1) ]
g(α, c),

we have

Tα(C, u∗) ≥ max
c∈[0, 1

n(n−1) ]
g(α, c).

Taking the maximum over C ∈ Sn2−1
+,1 and u∗ ∈ Sn−1

1 gives rise to the desired conclusion.

Proof of Theorem 16. By the results of Lemmas 11 and 12, we only need to compute

max
c∈[0, 1

n(n−1) ]
g(α, c).

Let κ := (1− α)/α ∈ [0,+∞]. We study three cases below.

Case I. We first consider the case when κ ≥ 2(n − 3)/[(n − 4)(n − 1)]. We prove that
g(α, c) = g2(α, c). Since g2(α, c) has a larger gradient than g1(α, c) and the function gi(α, c)
is decreasing in c for i = 3, 4, 5, 6, we only need to show that

gi

(
α,

1

n(n− 1)

)
≥ g2

(
α,

1

n(n− 1)

)
, ∀i ∈ {1, 3, 4, 5, 6}. (3.35)

The above inequality with i = 1 is equivalent to κ ≥ 2/(n− 1), which is guaranteed by the
assumption that κ ≥ 2(n − 3)/[(n − 4)(n − 1)]. For i ∈ {3, 4, 5, 6}, the inequality (3.35) is
equivalent to

κ ≥ max

{
2(n− 3)

(n− 1)(n− 4)
,

2(n− 2)

(n− 1)(n− 3)
,

2

n− 2
,

2

n− 1

}
=

2(n− 3)

(n− 1)(n− 4)
.

Therefore, it holds that
g(α, c) = g2(α, c) = 4α(n− 1)c.

whose maximum is attained at c = [n(n− 1)]−1 and

max
C,u∗

Tα(C, u∗) = g2

(
α,

1

n(n− 1)

)
=

4α

n
.
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Case II. Then, we consider the case when κ ≤ 2/n. In this case, we prove that the
maximum is achieved by the intersection point between g1(α, c) (an increasing function in
c) and min{g5(α, c), g6(α, c)} (a decreasing function in c). The intersection points between
g1(α,C) and the other five functions are

κ

2n
,

2− κ

n(2n− 3)
,

3− κ

3n(n− 1)
,

1

n2
,

1 + κ

n(n + 1)
.

In the regime κ ≤ 1/n, we have

κ

2n
≤ 1 + κ

n(n + 1)
≤ 1

n2
≤ min

{
2− κ

n(2n− 3)
,

3− κ

3n(n− 1)

}
,

which implies that the maximum is attained at c = (1 +κ)/[n(n+ 1)]. Hence, the maximum
distance is

max
C,u∗

Tα(C, u∗) = g1

(
α,

1 + κ

n(n + 1)

)
=

2(1− α)(n− 2)(n + 1) + 4

n(n + 1)
.

In the regime 1/n ≤ κ ≤ 2/n, we have

κ

2n
≤ 1

n2
≤ 1 + κ

n(n + 1)
≤ min

{
2− κ

n(2n− 3)
,

3− κ

3n(n− 1)

}
,

which implies that the maximum is attained at c = 1/n2. Hence, the maximum distance is

max
C,u∗

Tα(C, u∗) = g1

(
α,

1

n2

)
=

2(1− α)(n− 2)n + 4α

n2
.

Case III. We finally consider the case when 2/n ≤ κ ≤ 2(n− 3)/[(n− 4)(n− 1)]. In this
regime, the intersection point between g2(α, c) and g5(α, c) is

κ(n− 2) + 2

4n(n− 1)
≤ κ

2n
.

This implies that g2(α, c) intersects with g5(α, c) before g1(α, c). Therefore, the maximum is
attained at one of the intersects between g2(α, c) and gi(α, c) for i = 3, 4, 5, 6. By calculating
the four intersects, the optimal c that achieves the maximum is given by

c∗(κ) := min

{
κ(n− 4) + 4

n(6n− 10)
,
κ(n− 3) + 3

n(5n− 7)
,
κ(n− 2) + 2

4n(n− 1)
,
κ(n− 1) + 1

3n(n− 1)

}
,

which is an increasing function in κ. If κ = 2/n, we can estimate that

c∗(κ) = min

{
2(n− 4)/n + 4

n(6n− 10)
,
2(n− 3)/n + 3

n(5n− 7)
,
2(n− 2)/n + 2

4n(n− 1)
,
2(n− 1)/n + 1

3n(n− 1)

}
(3.36)
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= min

{
3n− 4

n2(3n− 5)
,

5n− 6

n2(5n− 7)
,

1

n2
,

3n− 2

n2(3n− 3)

}
=

1

n2
.

Similarly, if κ = 2(n− 3)/[(n− 4)(n− 1)], it holds that

c∗(κ) =
1

n(n− 1)
. (3.37)

Combining (3.36) and (3.37), we have

c∗(κ) ∈
[

1

n2
,

1

n(n− 1)

]
, ∀κ ∈

[
2

n
,

2(n− 3)

(n− 4)(n− 1)

]
.

Therefore, the maximum distance satisfies the bound

max
C,u∗

Tα(C, u∗) = g2 [α, c∗(κ)] ∈
[

4α(n− 1)

n2
,
4α

n

]
.

This completes the proof.

Proof of Theorem 17

Proof. By the assumption that the complexity metric of (C, u∗) is finite, we have that
(C, u∗) /∈ D. It follows from Theorem 15 that the subset I00(C, u∗) is empty and that
G1(C, u∗) is connected and not bipartite. Let k := |I1(C, u∗)|. For each node i0 ∈ I1(C, u∗),
we define the new weight matrix C̃ as

C̃i0j = C̃ji0 = 0, ∀j ∈ I1(C, u∗)\{i0};

C̃ij = Cij +
2

n2 − 2(k − 1)

∑
j∈I1(C,u∗)\{i0}

Ci0j, otherwise.

The subgraph G1(C̃, u∗) is disconnected and, therefore, we have (C̃, u∗) ∈ D. It follows that

4α∗

n
= [Dα∗(C, u∗)]−1 ≤ α∗∥C − C̃∥1 = 4α∗

∑
j∈I1(C,u∗)\{i0}

Ci0j. (3.38)

For each node i0 ∈ I0(C, u∗), a similar construct of C̃ leads to

4α∗

n
= [Dα∗(C, u∗)]−1 ≤ 4α∗

∑
j∈I1(C,u∗)

Ci0j. (3.39)

By summing inequality (3.38) over i0 for all nodes in I1(C, u∗) and summing inequality (3.39)
over i0 for all nodes in I0(C, u∗), it follows that

4α∗ ≤ 4α∗

 ∑
i,j∈I1(C,u∗),i ̸=j

Cij +
∑

i∈I1(C,u∗),j∈I0(C,u∗)

Cij

 ≤ 4α∗
∑

i,j∈[n],i ̸=j

Cij ≤ 4α∗, (3.40)
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where all inequalities should hold with equality. Since the last inequality in (3.40) holds with
equality, we obtain that

Cii = 0, ∀i ∈ [n].

It follows from the equality of inequalities (3.38) and (3.39) that∑
j∈I1(C,u∗)\{i}

Cij =
1

n
, ∀i ∈ I1(C, u∗);

∑
j∈I1(C,u∗)

Cij =
1

n
, ∀i ∈ I0(C, u∗). (3.41)

Using the condition that ∥C∥1 = 1, the above equalities imply that all weights of C are
limited to edges with a node in I1(C, u∗). Namely, we have∑

j∈I0(C,u∗)
Cij = 0, ∀i ∈ I1(C, u∗). (3.42)

If Io(C, u∗) is not empty, the above equality contradicts the second equality in (3.41). Hence,
the point (C, u∗) satisfies that I0(C, u∗) = ∅. By a similar analysis of the bipartite instance
in Lemma 11, for every 4-element subset {i, j, k, ℓ} of [n], it holds that

2(1− α∗)(1− |u∗
i | − |u∗

j | − |u∗
k| − |u∗

ℓ |) + 4α∗(Cij + Ckℓ) = 4α∗/n.

Taking the average of the above equality over {i, j, k, ℓ} for all 4-element subsets of [n− 1],
we obtain that

2(1− α∗)

(
1−

3∥u∗
1:n−1∥1

n− 1

)
+ 4α∗ 2

(n− 1)(n− 2)
∥C1:n−1,1:n−1∥1 =

4α∗

n
.

Using the first equality in (3.41) and the symmetry of C, it holds that ∥C1:n−1,1:n−1∥1 =
1− 2/n. Substituting into the above equality, we know

2(1− α∗)

(
1−

3∥u∗
1:n−1∥1

n− 1

)
= 4α∗ · n− 3

n(n− 1)
.

By recalling that α∗ = (n− 1)(n− 4)/(n2 − 3n− 2), the above inequality leads to

∥u∗
1:n−1∥1 = (n− 1)/n,

which is equivalent to |u∗
n| = 1/n. By the same proof technique, we conclude that

|u∗
i | = 1/n, ∀i ∈ [n].

By substituting back into equality (3.42), it holds for all 4-element subsets {i, j, k, ℓ} ⊂ [n]
that

Cij + Ckℓ =
2

n(n− 1)
,

which implies that

Cij =
1

n(n− 1)
, ∀i, j ∈ [n] s. t. i ̸= j.
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3.C Proofs in Section 3.3

Proof of Theorem 20

Before proving the estimation of the complexity metric, we prove two properties of µ-
incoherent vectors.

Lemma 13. Given any constant µ ∈ [1, n], suppose that u∗ has incoherence µ and ∥u∗∥1 = 1.
Then, the following properties hold:

1. u∗ has at least n/µ nonzero components;

2. |u∗
i | ≤ µ/n for all i ∈ [n].

Proof. Assume without loss of generality that

|u∗
i | > 0, ∀i ∈ [ℓ]; u∗

i = 0, ∀i ∈ {ℓ + 1, . . . , n}.

By the definition (3.3), we have

(u∗
i )

2 ≤ µ

n
∥u∗∥22 =

µ

n

∑
i∈[ℓ]

(u∗
i )

2, ∀i ∈ [ℓ].

Summing over i ∈ [ℓ], we obtain that∑
i∈[ℓ]

(u∗
i )

2 ≤ ℓµ

n

∑
i∈[ℓ]

(u∗
i )

2,

which implies that ℓ ≥ n/µ. Let

ci := |u∗
i |/∥u∗∥2, ∀i ∈ [ℓ].

The assumption that the incoherence is equal to µ implies that

ci ∈ (0,
√
µ/n], ∀i ∈ [ℓ]. (3.43)

In addition, it holds that

∥u∗∥22 =
∑

i∈[ℓ]
(u∗

i )
2 =

∑
i∈[ℓ]

c2i ∥u∗∥22,

1 = ∥u∗∥1 =
∑

i∈[ℓ]
|u∗

i | =
∑

i∈[ℓ]
ci∥u∗∥2,

which implies that ∑
i∈[ℓ]

c2i = 1,
∑

i∈[ℓ]
ci = ∥u∗∥−1

2 .

Combined with (3.43), it follows that

∥u∗∥−1
2 =

∑
i∈[ℓ]

ci ≥
√

n

µ
·
∑

i∈[ℓ]
c2i =

√
n

µ
.
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Therefore,
|u∗

i | = ci∥u∗∥2 ≤
√

µ/n ·
√
µ/n = µ/n.

The following lemma lower-bounds the perturbation of the weight matrix C.

Lemma 14. Suppose that the instance MC(C, u∗) satisfies the δ-RIP2,2 condition and the

weight matrix C̃ ∈ Sn2−1
+,1 has N zero entries, where δ ∈ [0, 1) and N ∈ [n2]. Then, it holds

that

∥C − C̃∥1 ≥ 2
∑

(i,j)∈N
Cij ≥

2(1− δ)N

(1 + δ)n2 − 2δN
,

where N is the set of indices of zero entries of C̃.

Proof. The δ-RIP2,2 condition implies that

mini,j Cij

maxi,j Cij

≥ 1− δ

1 + δ
.

Therefore, considering the average of entries in N and that of entries not in N , we have

1
N

∑
(i,j)∈N Cij

1
n2−N

∑
(i,j)/∈N Cij

≥ 1− δ

1 + δ
,

which further leads to

∑
(i,j)∈N

Cij ≥
1− δ

1 + δ
· N

n2 −N

∑
(i,j)/∈N

Cij =
1− δ

1 + δ
· N

n2 −N

1−
∑

(i,j)∈N

Cij

 .

The above inequality is equivalent to∑
(i,j)∈N

Cij ≥
(1− δ)N

(1 + δ)n2 − 2δN
.

Hence, the distance between C and C̃ is lower-bounded as

∥C − C̃∥1 ≥ 2
∑

(i,j)∈N
Cij ≥

2(1− δ)N

(1 + δ)n2 − 2δN
.

This completes the proof.

Now, we prove the main theorem.

Proof of Theorem 20. Suppose that MC(C̃, ũ∗) ∈ D is the instance such that

[Dα(C, u∗)]−1 = α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

In the following, we split the proof into two steps.
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Step I. We first fix ũ∗ and consider the closest matrix C̃ to C such that (C̃, ũ∗) ∈ D. Let
k := |I1(C̃, ũ∗)|. Without loss of generality, we assume that

I1(C̃, ũ∗) = {1, . . . , k}, I0(C̃, ũ∗) = {k + 1, . . . , n}.

We first consider the case when k ≥ 2. If G1(C̃, ũ∗) is disconnected, at least 2(k− 1) entries
of C̃ are 0. If G1(C̃, ũ∗) are bipartite, at least k2/2 ≥ 2(k−1) entries of C̃ are 0. If I00(C̃, ũ∗)
is non-empty, at least 2k entries of C̃ are 0. Otherwise if k = 1, at least one entry of C̃
should be 0 to make G1(C̃, ũ∗) bipartite. In summary, at least N(k) entries of C̃ are 0, where

N(k) := max{2(k − 1), 1}.

Using the results in Lemma 14, the distance between C and C̃ is at least

∥C − C̃∥1 ≥
2(1− δ)N(k)

(1 + δ)n2 − 2δN(k)
. (3.44)

We note that the distance is monotonously increasing as a function of k.

Step II. Now, we consider the optimal choice of ũ∗ based on the lower bound in (3.44).
Let

ℓ := |I1(C, u∗)|, k := |I1(C̃, ũ∗)|.
Since the distance between C and C̃ is a monotonously increasing function of k, the minimum
distance between (C, u∗) and (C̃, ũ∗) cannot be attained by k > ℓ. Therefore, we focus on
the case when k ≤ ℓ. Without loss of generality, we assume that

|u∗
1| ≥ |u∗

2| ≥ · · · ≥ |u∗
ℓ | > 0; |u∗

i | = 0, ∀i ≥ ℓ + 1.

Then, the distance between u∗ and ũ∗ satisfies

∥u∗ − ũ∗∥1 ≥ 2
∑ℓ

i=k+1
|u∗

i |. (3.45)

Denote the distance between (C, u∗) and (C̃, ũ∗) by

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Step II-1. We first consider the case when µ ≤ 2n/3. Combining inequalities (3.44) and
(3.45), we obtain a lower bound on dα:

dα ≥ min
k∈[ℓ]

[
2α(1− δ)N(k)

n2(1 + δ)− 2δN(k)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i |
]
.

For every k ∈ [ℓ], the term inside the above minimization can be lower-bounded by

2α(1− δ)N(k)

n2(1 + δ)− 2δN(k)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i | ≥
2α(1− δ) · 2(k − 1)

n2(1 + δ)
+ 2(1− α)

∑ℓ

i=k+1
|u∗

i |
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=
4α(1− δ)

n2(1 + δ)
· (k − 1) + 2(1− α)

∑ℓ

i=k+1
|u∗

i |.

The minimum of the right-hand side over k ∈ [ℓ] can be solved in closed form and is equal
to ∑ℓ

i=2
min

{
4α(1− δ)

n2(1 + δ)
, 2(1− α)|u∗

i |
}
.

Using the second property in Lemma 13, we have

min

{
4α(1− δ)

n2(1 + δ)
, 2(1− α)|u∗

i |
}
≥ min

{
4α(1− δ)

n2(1 + δ)
· n|u

∗
i |

µ
, 2(1− α)|u∗

i |
}

= min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· |u∗

i |.

Taking the summation over k ∈ {2, . . . , ℓ}, we can conclude that

dα ≥
∑ℓ

k=2
min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· |u∗

i | = min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
·
∑ℓ

k=2
|u∗

i |.

(3.46)

Using the second property in Lemma 13 and ∥u∗∥1 = 1, it follows that∑ℓ

k=2
|u∗

i | ≥ 1− µ

n
.

Substituting back into inequality (3.46), we have

dα ≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
·
(

1− µ

n

)
.

Step II-2. Next, we consider the case when µ ≥ 2n/3. By Theorem 19, the distance is at
least

dα ≥
2α(1− δ)

n2(1 + δ)− 2δ
≥ 2α(1− δ)

(3/2)µ · n(1 + δ)
≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
· 1

3
,

where the second inequality is due to the assumption that µ ≥ 2n/3.
By combining Steps II-1 and II-2, the distance is lower-bounded by

dα ≥ min

{
4α(1− δ)

µn(1 + δ)
, 2(1− α)

}
×max

{
1− µ

n
,
1

3

}
= min

{
4α(1− δ)

n(1 + δ)
, 2(1− α)µ

}
×max

{
1

µ
− 1

n
,

1

3µ

}
The proof is completed by using the relation between dα and Tα(C, u∗).
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Proof of Theorem 21

Proof. The proof is split into two different cases.

Case I. We first consider the case when µ ≤ n/2. We construct the weight matrix C̃ as

C̃1i = C̃i1 = 0, ∀i ∈ {2, . . . , ℓ}; C̃ij =
1

n2 − 2(ℓ− 1)
, otherwise.

For the instance MC(C̃, u∗), node 1 is disconnected from nodes {2, . . . , ℓ} and thus, the
subgraph G1(C̃, u∗) is disconnected. This implies that (C̃, u∗) ∈ D. The matrix C is defined
as

C1i = Ci1 =
1− δ

(1 + δ)n2 − 4δ(ℓ− 1)
, ∀i ∈ {2, . . . , ℓ};

Cij =
1 + δ

(1 + δ)n2 − 4δ(ℓ− 1)
, otherwise.

We can verify that the weight matrix C ensures that MC(C, u∗) satisfies the δ-RIP2,2 con-
dition. The complexity of MC(C, u∗) is lower-bounded by

Dα(C, u∗) ≥
(
α∥C − C̃∥1

)−1

=
(1 + δ)n2 − 4δ(ℓ− 1)

4α(ℓ− 1)(1− δ)

≥ (1 + δ)(n2 − 2n)

4α(ℓ− 1)(1− δ)
=

n(1 + δ)

4α(1− δ)
· n− 2

ℓ− 1
≥ n(1 + δ)

4α(1− δ)
· nµ

2(nℓ− 1)
,

where the second last inequality follows from 4δ ≤ 2(1 + δ) and the last inequality is due to
n ≥ 4.

Case II. Next, we consider the case when µ ≥ n/2. Theorem 19 implies that there exists
an instance MC(C, u∗) such that

Dα(C, u∗) =
n2(1 + δ)− 2δ

2α(1− δ)
≥ (n2 − 1)(1 + δ)

2α(1− δ)
≥ n(1 + δ)

2α(1− δ)
· n

2
,

where the first inequality results from 2δ ≤ 1 + δ and the second inequality is in light of
n ≥ 4. Using the condition that µ ≤ n, it follows that

Dα(C, u∗) ≥ n(1 + δ)

4α(1− δ)
· µ.

Combining Cases I and II completes the proof.



CHAPTER 3. A NEW COMPLEXITY METRIC FOR RANK-ONE GENERALIZED
MATRIX COMPLETION 112

Proof of Theorem 22

We first establish several lemmas before providing the proof of Theorem 22. The first
lemma is the Chernoff bound for the sum of Bernoulli random variables, which is a result of
Proposition 2.14 in [224].

Lemma 15. Suppose that X1, . . . , Xm are i.i.d. Bernoulli random variables with the param-
eter p. Then, it holds that

P

∑
i∈[m]

Xi ≤
mp

2

 ≤ exp

(
−mp

8

)
, P

∑
i∈[m]

Xi ≥
3mp

2

 ≤ exp

(
−mp

10

)
.

The next lemma provides an upper bound on the total number of nonzero entries.

Lemma 16. Suppose that n ≥ 3. With probability at least 1 − exp(−np/10), there are at
most 3n2p/2 nonzero entries in C. With the same probability, it holds that

Cij ≥
2

3n2p
, ∀i, j ∈ [n] s. t. Cij > 0.

Proof. For the n(n− 1) non-diagonal entries of C, Lemma 15 implies that there are at most
(3/2) · n(n− 1)p nonzero entries with probability at least 1− exp (−n(n− 1)p/20). For the
n diagonal entries of C, the same lemma implies that there are at most (3/2) · np nonzero
entries with probability at least 1 − exp (−np/10). Combining both parts concludes that
there are at most (3/2) · n2p nonzero entries in C with probability at least

1− exp (−n(n− 1)p/20)− exp (−np/10) ≥ 1− 2 exp (−np/10) ,

where the last inequality is due to n ≥ 3. The lower bound on Cij follows from the normal-
ization constraint.

For every fixed global solution ũ∗, the next lemma estimates the distance between (C, ũ∗)
and D.

Lemma 17. Suppose that ũ∗ is a given vector and the random matrix C obeys the Bernoulli
model. In addition, suppose that η > 2 is a constant and

∥ũ∗∥0 ≥
n

2µ
, p ≥ min

{
1,

16(1 + ηµ) log n + 16

n

}
,

where ∥ũ∗∥0 is the number of nonzero entries of ũ∗. For every instance (C̃, ũ∗) ∈ D, it holds
with probability at least 1− 3n−η/2 that

∥C − C̃∥1 ≥
4(∥ũ∗∥0 − 1)

3n2
.
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Proof. For all i, j ∈ [n], we define Bernoulli random variables Xij to be 1 if Cij > 0 and
0 otherwise. Then, Xij are independent identically distributed Bernoulli random variables
with the parameter p. Let N :=

∑
i,j Xij be the number of nonzero weights in C. By the

definition of the Bernoulli model, all nonzero entries of C are equal to N−1. Since the global
solution ũ∗ is fixed, we assume without loss of generality that

I1(C, ũ∗) = [ℓ], I0(C, ũ∗) = {ℓ + 1, . . . , n}.

We fix C̃ to be a weight matrix such that (C̃, ũ∗) ∈ D and investigate three cases.

Case I. We first consider the case when G1(C̃, ũ∗) is disconnected. Suppose that Ĩ11 and
Ĩ12 are a division of [ℓ] such that the nodes in Ĩ11 are not connected with the nodes in Ĩ12.
In addition, we denote k := |Ĩ11| and assume that k ≤ ℓ/2. Since the nodes in Ĩ11 are
disconnected from the nodes in Ĩ12, at least

2
∑

i∈Ĩ11,j∈Ĩ12
Xij

nonzero entries in C are equal to 0 in C̃. Therefore, we have

∥C − C̃∥1 ≥
1

N
· 4

∑
i∈Ĩ11,j∈Ĩ12

Xij =
4

N

∑
i∈Ĩ11,j∈Ĩ12

Xij.

Using Lemma 15, it holds that∑
i∈Ĩ11,j∈Ĩ12

Xij ≥
1

2
· |Ĩ11||Ĩ12|p =

k(ℓ− k)p

2

with probability at least 1− exp(−k(ℓ− k)p/8). Since k(ℓ− k) ≥ ℓ− 1, one can write:

∥C − C̃∥1 ≥
4

N

∑
i∈Ĩ11,j∈Ĩ12

Xij ≥
4

N
· (ℓ− 1)p

2
=

2(ℓ− 1)p

N
(3.47)

with the same probability. Considering the union bound over all weight matrices C̃ for which
G1(C̃, ũ∗) is disconnected, inequality (3.47) holds with probability at least

1−
⌊ℓ/2⌋∑
k=1

(
ℓ

k

)
exp

[
−k(ℓ− k)p

8

]
≥ 1−

⌊ℓ/2⌋∑
k=1

(
ℓe

k

)k

exp

[
−k(ℓ− k)p

8

]

= 1−
⌊ℓ/2⌋∑
k=1

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
,
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where the inequality uses the relation
(
ℓ
k

)
≤ (ℓe/k)k. Using the relation that k ≤ ℓ/2, we

can estimate that

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
≤ exp

[
k + k log ℓ− kℓp

16

]
= exp

[
−kℓ

16

(
p− 16(1 + log ℓ)

ℓ

)]
≤ exp

[
−kℓ

16

(
p− 16(1 + log n)

n

)]
≤ exp

[
−kℓ

16
· 16ηµ log n

n

]
= exp

(
−ηµkℓ log n

n

)
= n− ηµℓ

n
·k ≤ n− η

2
·k,

where the second last inequality is from the assumption on p and the last inequality is from
ℓ ≥ n/(2µ). By taking the summation over k = 1, . . . , ⌊ℓ/2⌋, it follows that

1−
⌊ℓ/2⌋∑
k=1

exp

[
k + k log

(
ℓ

k

)
− k(ℓ− k)p

8

]
≥ 1−

⌊ℓ/2⌋∑
k=1

n− η
2
·k ≥ 1− n− η

2

1− n− η
2

≥ 1− 2n−η/2,

where the last inequality is due to n−η/2 ≥ n−1 ≥ 1/2. Therefore, inequality (3.47) holds
with probability at least 1− 2n−η/2. Using the lower bound of N in Lemma 16, the distance
between C and C̃ is at least

2

3n2p
· 2(ℓ− 1)p =

4(ℓ− 1)

3n2

with probability at least

1− 2n−η/2 − exp(−np/10) ≥ 1− 2n−η/2 − n−4µη/5 ≥ 1− 3n−η/2.

Case II. For the case when I00(C̃, ũ∗) is non-empty, the analysis is the same as Case I.
and it holds that

∥C − C̃∥1 ≥
2

3n2p
· 2(ℓ− 1)p =

4(ℓ− 1)

3n2

with probability at least 1− 3n−η/2.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. In this case, we show
that there exists a set of indices I ⊂ [n]2 with at least max{ℓ2/2, 1} elements such that

C̃ij = 0, ∀(i, j) ∈ I.

The proof of the above claim can be found in the proof of Theorem 20 and we omit it here.
If ℓ ≥ 2, we have ℓ2/2 ≥ 2(ℓ − 1) and the proof is the same as Case I. Otherwise if ℓ = 1,
the inequality

∥C − C̃∥1 ≥
4(ℓ− 1)

3n2
= 0
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always holds.
By combining the above three cases, it holds with probability at least 1− 9n−η/2 that

∥C − C̃∥1 ≥
4(ℓ− 1)

3n2
.

Now, we are ready to prove Theorem 22.

Proof of Theorem 22. Suppose that the instance MC(C̃, ũ∗) ∈ D attains the maximum in
(3.6). Denote

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Let
k := |I1(C, u∗)|, ℓ := |I1(C̃, ũ∗)|.

Similar to Theorem 20, our goal is to decide the optimal global solution ũ∗. By Lemma 17,
the high-probability lower bound of ∥C − C̃∥1 is increasing in ℓ. Hence, the optimal choice
of ℓ is not larger than k. We then analyze two cases.

Case I. We first consider the case when ℓ < n/(2µ). Since ℓ ≥ 1, it follows that µ < n/2.
By Lemma 13, at least k− ℓ > n/(2µ) nonzero entries in u∗ are equal to 0 in ũ∗. Hence, the
distance between u∗ and ũ∗ satisfies

∥u∗ − ũ∗∥1 ≥ 2

(
1− n

2µ
· µ
n

)
≥ 1.

Therefore, it holds that

Dα(C, u∗) = d−1
α =

[
α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1

]−1

≤ 1

1− α
≤ 1

2(1− α)
·
(

1− µ

n

)−1

=
1

2(1− α)µ
·
(

1

µ
− 1

n

)−1

.

Case II. Next, we focus on the case when ℓ ≥ n/(2µ). By Lemma 17, it holds with
probability at least 1− 3n−η/2 that

∥C − C̃∥1 ≥
4(ℓ− 1)

3n2
. (3.48)

By considering the union bound over ℓ ∈ L := {⌈n/(2µ)⌉, . . . , k}, the probability that
inequality (3.48) holds for all ℓ ∈ L is at least

1−
(
ℓ− n

2µ

)
· 3n−η/2 ≥ 1− 3n−η/2+1.
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In the remainder of this proof, we assume that inequality (3.48) holds for all ℓ ∈ L. In
addition, we assume without loss of generality that

|u∗
1| ≥ |u∗

2| ≥ · · · ≥ |u∗
k| > 0; |u∗

i | = 0, ∀i ≥ k + 1.

By the assumption of this case, at least k − ℓ nonzero entries in u∗ are equal to 0 in ũ∗.
Then, we can estimate that

dα ≥ min
n/(2µ)≤ℓ≤k

[
4α(ℓ− 1)

3n2
+ 2(1− α)

k∑
i=ℓ+1

|u∗
i |

]
≥ min

1≤ℓ≤k

[
4α(k − 1)

3n2
+ 2(1− α)

k∑
i=ℓ+1

|u∗
i |

]
.

The above minimization problem can be solved in closed form, which leads to

dα ≥
∑k

ℓ=1
min

{
4α

3n2
, 2(1− α)|u∗

i |
}
.

By the second property in Lemma 13, we have

dα ≥
k∑

i=2

min

{
4α

3µn
|u∗

i |, 2(1− α)|u∗
i |
}

= min

{
4α

3µn
, 2(1− α)

} k∑
i=2

|u∗
i |

≥ min

{
4α

3µn
, 2(1− α)

}
·
(

1− µ

n

)
= min

{
4α

3n
, 2(1− α)µ

}
·
(

1

µ
− 1

n

)
.

The desired upper bound follows from Dα(C, u∗) = d−1
α .

By combining the above two cases, the distance dα satisfies

Dα(C, u∗) ≤ max

{
3n

4α
,

1

2(1− α)µ

}
·
(

1

µ
− 1

n

)−1

(3.49)

with probability at least 1− 3n−η/2+1.
In the case when µ ≥ n/16, the sampling probability p is equal to 1 and the instance

MC(C, u∗) satisfies the RIP2,2 condition with δ = 0. Hence, we can utilize the upper bound
in Theorem 20 to obtain

Dα(C, u∗) ≤ max

{
n

4α
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

n

)−1

, 3µ

}
.

Combing with the upper bound in (3.49), we conclude the proof of the theorem.

Reduction of Problem (3.13)

Before discussing the properties of problem instances in Section 3.3, we prove that the
SSCPs of the instanceMC(Cϵ, u∗) are closely related to those of the m-dimensional problem

min
x∈Rm

∑
i∈[m]

(x2
i − 1)2 + ϵ

∑
i,j∈[m],i ̸=j

(xixj − 1)2. (3.50)
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Lemma 18. If problem (3.50) has no SSCPs, then the instanceMC(Cϵ, u∗) has no SSCPs.
In addition, given a number N ∈ N, suppose that problem (3.50) has N SSCPs with nonzero
components at which the objective function has a positive definite Hessian matrix. Then, the
instanceMC(Cϵ, u∗) has at least N spurious local minima.

Proof. To prove the first part of the theorem, we assume that problem (3.50) has no SSCPs.
Suppose that u0 ∈ Rn is a second-order critical point of the instanceMC(Cϵ, u∗). Calculating
the gradient of g(u;C, u∗) with respect to ui for any index i ≥ m leads to

Zϵ∇ig(u0;Cϵ, u∗) = 4(u0
i )

3 + 4
∑

j∈[n],{i,j}∈E
u0
i (u

0
j)

2 = 0,

where ∇ig(·;Cϵ, u∗) is i-th component of the gradient. By multiplying u0
i on both sides, it

follows that
4(u0

i )
4 + 4(u0

i )
2
∑

j∈[n],{i,j}∈E
(u0

j)
2 = 0,

which implies that u0
i = 0 for all i ∈ {m + 1, . . . , n}. Calculating the gradient and the

Hessian matrix with respect to u1:m yields that

Zϵ∇ig(u0;Cϵ, u∗) = 4ϵ
∑

j∈[m],j ̸=i
u0
j(u

0
iu

0
j − 1/m2) + 4u0

i [(u
0
i )

2 − 1/m2], ∀i ∈ [m];

Zϵ∇2
iig(u0;Cϵ, u∗) = 12(u0

i )
2 − 4/m2 + 4ϵ

∑
j∈[m],j ̸=i

(u0
j)

2, ∀i ∈ [m];

Zϵ∇2
ijg(u0;Cϵ, u∗) = 4ϵ(2u0

iu
0
j − 1), ∀i, j ∈ [m] s. t. i ̸= j,

where ∇ijg(·;Cϵ, u∗) is the (i, j)-th component of the Hessian matrix. By defining x0 ∈ Rm

as x0
i := mu0

i for all i ∈ [m], the above gradient and Hessian matrix turn out to be the same
as those of problem (3.50). Since the first m entries of ∇g(u0;Cϵ, u∗) are 0 and the first
m-by-m principle sub-matrix of ∇2g(u0;Cϵ, u∗) is positive semi-definite, the point x0 is a
second-order critical point of problem (3.50). In addition, the point u0 is a global optimum
if and only if |u0

i | = 1/m for all i ∈ [m], which is further equivalent to x0
i = 1 for all i ∈ [m]

and x0 is the global solution to problem (3.50). Therefore, the point x0 is a SSCP if u0

is a SSCP, which is a contradiction to the assumption that problem (3.50) has no SSCPs.
Therefore, the point u0 is a global minimum of the instance MC(Cϵ, u∗).

For the second part of the theorem, suppose that x0 is a SSCP of problem (3.50), where
the Hessian matrix is positive definite and x0

i ̸= 0 for all i ∈ [m]. We construct u0 ∈ Rn

by setting u0
i := m−1x0

i for all i ∈ [m] and u0
i = 0 for all i ∈ {m + 1, . . . , n}. By similar

calculations, we can prove that the Hessian matrix at u0 is a block diagonal matrix with
two blocks, where the first block is H(x; ϵ) and the second block is a diagonal matrix with
positive diagonal entries. Moreover, the gradient at u0 is equal to 0. Hence, u0 is a SSCP
with a positive definite Hessian matrix. The construction shows that the mapping from x0

to u0 is injective.
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Proof of Theorem 23

To simplify the notations in the following proofs, we denote the gradient and the Hessian
matrix of the objective function of problem (3.50) by

gi(x; ϵ) := 4
[
x3
i − xi + ϵ

∑
j ̸=i

xj(xixj − 1)
]
, ∀i ∈ [m];

Hii(x; ϵ) := 4
[
3x2

i − 1 + ϵ
∑

j ̸=i
x2
j

]
, ∀i ∈ [m];

Hij(x; ϵ) := 4ϵ(2xixj − 1), ∀i, j ∈ [m] s. t. i ̸= j.

The following theorem guarantees that the instanceMC(Cϵ, u∗) does not have spurious local
minima when ϵ ≥ O(m−1).

Theorem 30. If ϵ > 18/m, the instance MC(Cϵ, u∗) does not have SSCPs, namely, all
second-order critical points are global minima associated with the ground truth solution M∗.

Proof. By Lemma 18, we only need to prove that problem (3.50) has no SSCPs. The
conclusion holds when ϵ = 1 since the δ-RIP2,2 condition holds with δ = 0 and the results
in [247] guarantee that there is no SSCP. In the remainder of the proof, we assume that
ϵ ∈ [0, 1). Suppose that x0 ∈ Rm is a second-order critical point of problem (3.50). Denote

Sk :=
∑m

i=1
(x0

i )
k, ∀k ∈ N.

Using the first-order optimality conditions, we have

0 =
1

4

∑
i∈[m]

gi(x
0; ϵ) = (1− ϵ)S3 − (1− ϵ)S1 −mϵS1 + ϵS1S2, (3.51)

0 =
1

4

∑
i∈[m]

x0
i gi(x

0; ϵ) = (1− ϵ)S4 − (1− ϵ)S2 − ϵS2
1 + ϵS2

2 .

Using the second-order necessary optimality conditions, the curvatures of the objective func-
tion along the directions

c+ := (x0
1 − 1, . . . , x0

m − 1) and c− := (x0
1 + 1, . . . , x0

m + 1)

are given by

cT+H(x; ϵ)c+/4 = 3(1− ϵ)(S4 − 2S3 + S2) + [ϵS2 − (1− ϵ)](S2 − 2S1 + m)

+ 2ϵ(S2
2 − 2S2S1 + S2

1)− ϵ(S2
1 − 2nS1 + m2) ≥ 0,

cT−H(x; ϵ)c−/4 = 3(1− ϵ)(S4 + 2S3 + S2) + [ϵS2 − (1− ϵ)](S2 + 2S1 + m)

+ 2ϵ(S2
2 + 2S2S1 + S2

1)− ϵ(S2
1 + 2nS1 + m2) ≥ 0.

Using the relations in (3.51), we can write S3 and S4 in terms of S1 and S2, which leads to

[mϵ + 5(1− ϵ)]S2 + 4ϵS2
1 − 4[mϵ + (1− ϵ)] · |S1| − [m2ϵ + m(1− ϵ)] ≥ 0. (3.52)
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Let c be a positive number such that

S2
1 = cS2.

Using Hölder’s inequality, we have c ∈ [1,m]. We note that in the case when S2 = 0, it holds
that S1 = 0 and we can choose c to be any constant in [1,m]. Then, inequality (3.52) can
be written as

[mϵ + 5(1− ϵ) + 4ϵc]S2 − 4[mϵ + (1− ϵ)]
√
c ·
√

S2 − [m2ϵ + m(1− ϵ)] ≥ 0. (3.53)

Inequality (3.53) is a quadratic inequality in
√
S2 and thus, it can be solved in closed form,

namely, inequality (3.53) is equivalent to√
S2 (3.54)

≥
4[mϵ + (1− ϵ)]

√
c +

√
4[mϵ + (1− ϵ)][8mϵc + 4(1− ϵ)c + m2ϵ + 5m(1− ϵ)]

2[mϵ + 5(1− ϵ) + 4ϵc]

=m
√
mϵ + (1− ϵ) ·

[√
[8mϵ + 4(1− ϵ)]c + m2ϵ + 5m(1− ϵ)−

√
4[mϵ + (1− ϵ)]c

]−1

.

Consider the function

e(c) :=
√

[8mϵ + 4(1− ϵ)]c + m2ϵ + 5m(1− ϵ)−
√

4[mϵ + (1− ϵ)]c, ∀c ∈ [1,m],

which is the negative of a unimodal function3. Hence, the maximum value of e(c) on [1,m]
is attained at 1 or m. Let

C := mϵ > 18.

We calculate that

e(m) =
√

9m[mϵ + (1− ϵ)]−
√

4m[mϵ + (1− ϵ)]

=
√

m[mϵ + (1− ϵ)] ≤
√
m(C + 1) ≤

√
2mC,

e(1) =
√

8mϵ + 4(1− ϵ) + m2ϵ + 5m(1− ϵ)−
√

4[mϵ + (1− ϵ)]

≤
√

8C + 4 + mC + 5m ≤
√

2(m + 8)C.

Hence, we have
e(c) ≤

√
2(m + 8)C, ∀c ∈ [1,m].

By combining with (3.54), it follows that√
S2 ≥ m

√
C + (1− ϵ) ·

[√
2(m + 8)C

]−1

≥ m
√
C ·
[√

2(m + 8)C
]−1

=
m√

2(m + 8)
,

3We say a function f : R 7→ R is a unimodal function if there exists a constant c ∈ R such that f is
increasing on (−∞, c] and decreasing on [c,+∞).
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which further leads to

S2 ≥
m2

2(m + 8)
≥ m

18
. (3.55)

Therefore, we obtain that
ϵ

1− ϵ
S2 − 1 ≥ ϵm

18
− 1 > 0.

Using the first-order optimality condition, each component x0
i is the solution to the third-

order polynomial equation

gi(x; ϵ) = x3
i +

[
ϵ

1− ϵ
S2 − 1

]
xi −

ϵ

1− ϵ
S1 = 0, ∀i ∈ [m]. (3.56)

Since the first-order coefficient ϵ/[(1− ϵ)S2]− 1 is positive, the derivative of the polynomial
is positive and the equation has a unique real root x0. Hence, we know

x0
1 = · · · = x0

m = x0.

The equation in (3.56) now becomes

x3
0 +

[
ϵ

1− ϵ
·mx2

0 − 1

]
x0 −

ϵ

1− ϵ
·mx0 =

[
mϵ

1− ϵ
+ 1

]
(x3

0 − x0) = 0,

which gives x0 ∈ {−1, 0, 1}. If x0 ∈ {−1, 1}, then the point x0 is a global optimum. Other-
wise if x0 = 0, it follows that x0 = 0 and S2 = 0, which contradicts (3.55). Combining the
two cases, we conclude that problem (3.50) does not have SSCPs, which implies that the
instance MC(Cϵ, u∗) also has no SSCPs.

Then, we consider the regime of ϵ where the instanceMC(Cϵ, u∗) has spurious solutions.
The following theorem studies the case when m is an even number.

Theorem 31. Suppose that m is an even number. If ϵ < 1/(m + 1), then the instance
MC(Cϵ, u∗) has at least 2m/2 spurious local minima.

Proof. By Lemma 18, we only need to show that problem (3.50) has at least
(

m
m/2

)
SSCPs

whose associated Hessian matrices are positive definite and whose components are nonzero.
We consider a point x0 ∈ Rm such that

(x0
i )

2 =
1− ϵ

1 + (m− 1)ϵ
> 0, ∀i ∈ [m];

∑
i∈[m]

x0
i = 0.

The above equations have a solution since m is an even number. By a direct calculation, we
can verify that the gradient g(x0; ϵ) is equal to 0. We only need to show that the Hessian
matrix H(x0; ϵ) is positive definite, namely

cTH(x0; ϵ)c > 0, ∀c ∈ Rm\{0}.
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The above condition is equivalent to[
(3 + (m− 3)ϵ)

(
x0
1

)2 − 1 + ϵ
]∑

i∈[m]
c2i − ϵ

(∑
i∈[m]

ci

)2

+ 2ϵ
(
x0
1

)2(∑
i∈[m]

sign(x0
i )ci

)2

> 0, ∀c ∈ Rn\{0}.

Under the normalization constraint ∥c∥2 = 1, the Cauchy inequality implies that the mini-
mum of the left-hand side is attained by

c1 = · · · = cm = 1/
√
m.

Therefore, the Hessian is positive definite if and only if

(3 + (m− 3)ϵ)
(
x0
1

)2 − 1 + ϵ > mϵ.

By substituting (x0
1)

2 = (1− ϵ)/[1 + (m− 1)ϵ], the above condition is equivalent to

2− (m + 4)ϵ− (m− 2)(m + 1)ϵ2 > 0.

Using the condition that (m + 1)ϵ < 1, we obtain that

2− (m + 4)ϵ− (m− 2)(m + 1)ϵ2 > 1− 3ϵ− (m− 2)ϵ = 1− (m + 1)ϵ > 0,

where the first inequality is from the fact that m ≥ 2, which follows from the assumption
that m > 0 is an even number.

To estimate the number of SSCPs, we observe that m/2 components of x0 have a positive
sign and the other m/2 components have a negative sign. Hence, there are at least(

m

m/2

)
spurious SSCPs. The estimate on the combinatorial number is in light of the inequality(
n
k

)
≥ (n/k)k.

The estimation of the odd number case is similar and we present the result in the following
theorem.

Theorem 32. Suppose that m is an odd number. If ϵ < 1/[13(m + 1)], then the instance
MC(Cϵ, u∗) has at least [2m/(m + 1)](m+1)/2 spurious local minima.

Proof. We pursue a similar way as in Theorem 31 to construct spurious solutions. By Lemma
18, we only need to show that problem (3.50) has at least

(
m

(m−1)/2

)
SSCPs whose Hessian

matrices are positive definite and whose components are nonzero. Let k := (m− 1)/2 ∈ Z.
We first choose a subset

I ⊂ [m], |I| = k.
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Then, we consider the point x ∈ Rm, where

ui = y1, ∀i ∈ I, ui = y2, ∀i /∈ I,

where y1 and y2 are real numbers such that

(1 + kϵ)(1 + 2kϵ)[(1− ϵ)y22]3 − 2(1 + kϵ)(1 + (k − 1)ϵ)[(1− ϵ)y22]2 (3.57)

+ (1 + kϵ)(1 + (k − 1)ϵ)(2k2ϵ2 + 2kϵ2 − kϵ− ϵ + 1)[(1− ϵ)y22]

− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2 = 0,

y1 =
y2
kϵ
· (1 + kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1)

[(1− ϵ)y22] + (1 + (k − 1)ϵ)
.

We first assume the existence of the constants y1 and y2. After some direct calculations,
one can show that the conditions in (3.57) imply the first-order optimality condition of the
instance MC(Cϵ, u∗), i.e.,

y31 − y1 + ϵ[(k − 1)y21 + (k + 1)y22]y1 − ϵ[(k − 1)y1 + (k + 1)y2] = 0,

y32 − y2 + ϵ[ky21 + ky22]y2 − ϵ[ky1 + ky2] = 0.

Therefore, the point x is a first-order critical point of the instanceMC(Cϵ, u∗). In addition,
the following relations result from the condition (3.57):

(1− ϵ)y1y2(y1 + y2) = −ϵ[ky1 + (k + 1)y2], (3.58)

(1− ϵ)(y21 + y1y2 + y22 − 1) = −ϵ[ky21 + (k + 1)y22].

Now, we prove the existence of y1, y2 and estimate their values. We note that the first
equation in (3.57) is a third-order polynomial equation for (1− ϵ)y22, which has at least one
real root. To show that the equation has a positive root, we observe that the coefficient of the
third-order term is (1+kϵ)(1+2kϵ) > 0 and the value at zero is −k2ϵ2(1+(k−1)ϵ)(1−ϵ)2 < 0.
Therefore, the polynomial equation for (1− ϵ)y22 has at least one positive root and y2 is well
defined. We provide a more accurate estimate to y1 and y2, namely, we show that there
exists a solution (y1, y2) to equations (3.57) such that

y1 ∈ [−2,−3/5], y2 ∈ [1/2, 1].

Define the polynomial function

g(z) :=(1 + kϵ)(1 + 2kϵ)z3 − 2(1 + kϵ)(1 + (k − 1)ϵ)z2

+ (1 + kϵ)(1 + (k − 1)ϵ)(2k2ϵ2 + 2kϵ2 − kϵ− ϵ + 1)z − k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2.

We first estimate g(1− (2k + 1)ϵ) as follows:

g(1− (2k + 1)ϵ)
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=(1 + kϵ)[1− (2k + 1)ϵ]
[
(1 + 2kϵ)[1− (2k + 1)ϵ]2 − 2[1 + (k − 1)ϵ][1− (2k + 1)ϵ]

+ [1 + (k − 1)ϵ][1− (k + 1)ϵ + 2k(k + 1)ϵ2]
]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=(1 + kϵ)[1− (2k + 1)ϵ]
[
k2ϵ2 + 2k2(5k + 4)ϵ3

]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

≥k2ϵ2(1 + kϵ)[1− (2k + 1)ϵ][1 + 2(5k + 4)ϵ]− k2ϵ2(1 + kϵ)(1− ϵ)2

=k2ϵ2(1 + kϵ)[(8k + 9)ϵ− [2(2k + 1)(5k + 4) + 1]ϵ2]

≥k2ϵ2(1 + kϵ)[(8k + 8)ϵ− 20(k + 1)2ϵ2] > 0,

where the last inequality is due to (k + 1)ϵ = (n + 1)ϵ/2 < 2/5. Next, we estimate g(1 −
(3k/2 + 1)ϵ) as follows:

g(1− (3k/2 + 1)ϵ)

=(1 + kϵ)[1− (k + 1)ϵ]
[
(1 + 2kϵ)[1− (3k/2 + 1)ϵ]2 − 2[1 + (k − 1)ϵ][1− (3k/2 + 1)ϵ]

+ [1 + (k − 1)ϵ][1− (k + 1)ϵ + 2k(k + 1)ϵ2]
]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=(1 + kϵ)[1− (3k/2 + 1)ϵ]
[
k2ϵ2/4 + k2(13k/2 + 6)ϵ3

]
− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

=k2ϵ2(1 + kϵ)[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− k2ϵ2(1 + (k − 1)ϵ)(1− ϵ)2

≤k2ϵ2(1 + kϵ)[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− k2ϵ2 · [(1 + kϵ)/2] · (1− ϵ)2

≤k2ϵ2(1 + kϵ)
[
[1− (3k/2 + 1)ϵ][1/4 + (13k/2 + 6)ϵ]− (1− ϵ)2/2

]
=k2ϵ2(1 + kϵ)

[
− 1/4 + (49k/8 + 27/4)ϵ− (39k2/4 + 31k/2 + 13/2)ϵ2

]
≤k2ϵ2(1 + kϵ)

[
− 1/4 + 27(k + 1)/4ϵ− 39(k + 1)2ϵ2/4

]
< 0,

where the last inequality is in light of (k + 1)ϵ = (n + 1)ϵ/2 < 1/26. Combining the above
two estimates, we conclude that there exists a solution y2 to the first equation in (3.57) such
that

(1− ϵ)y22 ∈ [1− (2k + 1)ϵ, 1− (3k/2 + 1)ϵ]. (3.59)

Hence,

y2 ≤
√

1− (3k/2 + 1)ϵ

1− ϵ
≤ 1 (3.60)

and

y2 ≥
√

1− (2k + 1)ϵ

1− ϵ
≥
√

1− (2k + 1)ϵ ≥ 1

2
. (3.61)
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Now, we use the second equation in (3.57) to estimate y1, which leads to

(1 + kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1)

kϵ

≥(1 + kϵ)[1− (2k + 1)ϵ]− (k2ϵ2 + (k − 1)ϵ + 1)

kϵ
=− 2− (3k + 1)ϵ

and

(1 + kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1)

kϵ

≤(1 + kϵ)[1− (3k/2 + 1)ϵ]− (k2ϵ2 + (k − 1)ϵ + 1)

kϵ

=− 3

2
−
(

5k

2
+ 1

)
ϵ.

On the other hand, we have

y2
[(1− ϵ)y22] + (1 + (k − 1)ϵ)

=
1

(1− ϵ)(y2 + y−1
2 ) + kϵ

≤ 1

2(1− ϵ) + kϵ
.

Using the bound in (3.59), it holds that

y2 ≥
√

1− (2k + 1)ϵ

1− ϵ
≥ 1− (2k + 1)ϵ

1− ϵ
=

1

2
− 1− (4k + 1)ϵ

2(1− ϵ)
≥ 1

2
.

Therefore,

y2
[(1− ϵ)y22] + (1 + (k − 1)ϵ)

=
1

(1− ϵ)(y2 + y−1
2 ) + kϵ

≥ 1

2.5(1− ϵ) + kϵ
.

Combining the above inequalities and the second equation in (3.57) yields that

y1 ≥
−2− (3k + 1)ϵ

2(1− ϵ) + kϵ
≥ −

(
1 +

5ϵ

1− ϵ

)
≥ −2 (3.62)

and

y1 ≤
−3/2− (5k/2 + 1)ϵ

2.5(1− ϵ) + kϵ
≤ −1.5

2.5
= −3

5
, (3.63)

where the last inequality in (3.62) results from ϵ ≤ 1/(3(k + 1)) ≤ 1/6. In summary,
inequalities (3.60)-(3.63) lead to

y1 ∈ [−2,−3/5], y2 ∈ [1/2, 1].
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We then prove that y1 + 2y2 > y2 ≥ 0.5, which is equivalent to

y2
kϵ
· (1 + kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1)

[(1− ϵ)y22] + (1 + (k − 1)ϵ)
+ y2 > 0.

Since y2 > 0, we only need to prove that

0 < (1 + kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1) + kϵ
[
[(1− ϵ)y22] + (1 + (k − 1)ϵ)

]
= (1 + 2kϵ)[(1− ϵ)y22]− (k2ϵ2 + (k − 1)ϵ + 1) + kϵ(1 + (k − 1)ϵ).

Using inequality (3.59), it suffices to show that

(1 + 2kϵ)[1− (3k/2 + 1)ϵ)] + kϵ(1 + (k − 1)ϵ) > 1 + (k − 1)ϵ + k2ϵ2

⇐⇒ 1

2
kϵ > 3k

(
k +

3

2

)
ϵ2 ⇐⇒ 3(2k + 3)ϵ < 1⇐ 6(k + 1)ϵ < 1,

where the last inequality holds since (k + 1)ϵ = (n + 1)ϵ/2 < 1/6.
Now, we verify the second-order sufficient optimality condition. For every c ∈ Rm\{0},

we calculate that

cTH(x; ϵ)c =
∑
i∈I

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)

]
c2i

+
∑
i/∈I

[
3y22 − 1 + ϵ(ky21 + ky22)

]
c2i +

∑
i,j∈I,i ̸=j

ϵ
(
2y21 − 1

)
cicj

+
∑

i,j /∈I,i ̸=j

ϵ
(
2y22 − 1

)
cicj + 2

∑
i∈I,j /∈I

ϵ (2y1y2 − 1) cicj

=
[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]∑
i∈I

c2i

+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]∑
i/∈I

c2i

+ ϵ
(
2y21 − 1

)(∑
i∈I

ci

)2

+ ϵ
(
2y22 − 1

)(∑
i/∈I

ci

)2

+ 2ϵ (2y1y2 − 1)

(∑
i∈I

ci

)(∑
i/∈I

ci

)
.

Using the Cauchy inequality, the above expression is positive if and only if

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
· 1

k

(∑
i∈I

ci

)2
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+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]
· 1

k + 1

(∑
i/∈I

ci

)2

+ϵ
(
2y21 − 1

)(∑
i∈I

ci

)2

+ ϵ
(
2y22 − 1

)(∑
i/∈I

ci

)2

+2ϵ (2y1y2 − 1)

(∑
i∈I

ci

)(∑
i/∈I

ci

)
> 0.

We denote
A :=

∑
i∈I

ci, B :=
∑

i/∈I
ci.

Then, the second-order sufficient condition is equivalent to[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
· 1

k
A2

+
[
3y22 − 1 + ϵ(ky21 + ky22)−

(
2y22 − 1

)]
· 1

k + 1
B2 + 2ϵ(y1A + y2B)2 − ϵ(A + B)2 > 0.

The above inequality is a quadratic inequality in A and B, which can be rewritten as[
1

k

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
+ ϵ(2y21 − 1)

]
A2

+2ϵ(2y1y2 − 1)AB

+

[
1

k + 1

[
3y22 − 1 + ϵ(ky21 + ky22)− ϵ

(
2y22 − 1

)]
+ ϵ(2y22 − 1)

]
B2 > 0.

Therefore, the positivity condition can be verified through the discriminant, namely,

ϵ2(2y1y2 − 1)2 <

[
1

k

[
3y21 − 1 + ϵ((k − 1)y21 + (k + 1)y22)− ϵ

(
2y21 − 1

)]
+ ϵ(2y21 − 1)

]
·
[

1

k + 1

[
3y22 − 1 + ϵ(ky21 + ky22)− ϵ

(
2y22 − 1

)]
+ ϵ(2y22 − 1)

]
.

Using the second property in (3.58), the above condition can be simplified into

− (1− ϵ)2(y2 − y1)
2(2y1 + y2)(y1 + 2y2) + (k + 1)ϵ(1− ϵ)(2y22 − 1)(y1 − y2)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y2 − y1)(y1 + 2y2) > k(k + 1)ϵ2(y1 − y2)
2.

Since y2 > y1, it suffices to have

− (1− ϵ)2(y2 − y1)(2y1 + y2)(y1 + 2y2)− (k + 1)ϵ(1− ϵ)(2y22 − 1)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y1 + 2y2) > k(k + 1)ϵ2(y2 − y1).



CHAPTER 3. A NEW COMPLEXITY METRIC FOR RANK-ONE GENERALIZED
MATRIX COMPLETION 127

We can estimate that

− (1− ϵ)2(y2 − y1)(2y1 + y2)(y1 + 2y2)− (k + 1)ϵ(1− ϵ)(2y22 − 1)(2y1 + y2)

+ kϵ(1− ϵ)(2y21 − 1)(y1 + 2y2)− k(k + 1)ϵ2(y2 − y1)

≥ [1− (k + 1)ϵ]2 · 1.1 · 0.2 · 0.5− (k + 1)ϵ · 1 · 0.5 · 2
− (k + 1)ϵ · 1 · 0.64 · 1.4− (k + 1)2ϵ2 · 3

= 0.11[1− (k + 1)ϵ]2 − 1.896(k + 1)ϵ− 3(k + 1)2ϵ2

= 0.11− 2.116(k + 1)ϵ− 2.89(k + 1)2ϵ2

≥ 0.11− 2.116(k + 1)ϵ− 2.89(k + 1)2ϵ2 > 0,

where the last inequality is due to (k + 1)ϵ = (n + 1)ϵ/2 < 1/26. Thus, we have shown that
the Hessian matrix is positive definite and the point x is a SSCP.

To count the number of spurious solutions, we notice that the subset I has
(

m
(m+1)/2

)
different choices. Hence, the total number of SSCPs is at least

(
m

(m+1)/2

)
. The estimate on

the combinatorial number follows from
(
n
k

)
≥ (n/k)k.

By combining Theorems 30-32, we complete the proof of Theorem 23.

Proof of Theorem 24

The proof of Theorem 24 relies on the following lemma, which calculates the complexity
metric of the instance MC(Cϵ, u∗). The proof of Lemma 19 is similar to that of Theorem
16.

Lemma 19. Suppose that n ≥ m ≥ 5, α ∈ [0, 1] and ϵ ∈ [0, 1]. The complexity metric
Dα(Cϵ, u∗) has the closed form

[Dα(Cϵ, u∗)]−1 = min

{
2α

Zϵ

+
2(1− α)(m− 1)

m
,
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
.

Moreover, Dα(Cϵ, u∗) is strictly decreasing in ϵ on [0, 1/2].

Proof. We fix ϵ, α and m in the proof. Let MC(C̃, ũ∗) be an instance that attains the
minimum in (3.6) and ℓ := |I1(C̃, ũ∗)|. Denote

dα := α∥C − C̃∥1 + (1− α)∥u∗ − ũ∗∥1.

Then, we investigate three different cases.

Case I. Suppose that G1(C̃, ũ∗) is disconnected. In this case, at least 2(ℓ−1) non-diagonal
entries of C̃ are equal to 0. This implies that

∥Cϵ − C̃∥1 ≥ 4(ℓ− 1) · (ϵ/Zϵ). (3.64)
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Case II. The case when I00(C̃, ũ∗) is non-empty can be analyzed similarly as Case I and
the inequality (3.64) holds. We omit the proof for brevity.

Case III. Finally, we consider the case when G1(C̃, ũ∗) is bipartite. If ℓ ≥ 5, at least
2(ℓ − 1) non-diagonal entries of C̃ are equal to 0 and inequality (3.64) holds. If ℓ = 4, at
least 4 non-diagonal entries and 4 diagonal entries of C̃ are equal to 0. Hence, we have

∥Cϵ − C̃∥1 ≥ 8 · ϵ

Zϵ

+ 8 · 1

Zϵ

=
8ϵ + 8

Zϵ

≥ 12ϵ

Zϵ

. (3.65)

Similarly, it follows from analyzing the cases with ℓ = 1, 2, 3 that

∥Cϵ − C̃∥1 ≥ (4ϵ + 6)/(Zϵ) ≥ 8ϵ/Zϵ, (3.66)

∥Cϵ − C̃∥1 ≥ 4/Zϵ ≥ 4ϵ/Zϵ,

∥Cϵ − C̃∥1 ≥ 2/Zϵ.

Combining inequalities (3.64), (3.65) and (3.66), we know that

∥Cϵ − C̃∥1 ≥ N(ℓ)/Zϵ, (3.67)

where N(ℓ) := 4(ℓ− 1)ϵ if ℓ ≥ 2 and N(1) := 2.
Now, we consider the optimal choice of ũ∗. Since the distance in (3.67) is increasing in

ℓ, it is not optimal to choose ℓ > m. For every ℓ ∈ [m], at least m− ℓ of the first m entries
of ũ∗ are 0. Hence, we have the lower bound

∥u∗ − ũ∗∥1 ≥ 2(m− ℓ) ·m−1. (3.68)

Combining inequalities (3.67) and (3.68), we have

dα ≥
N(ℓ) · α

Zϵ

+
2(1− α)(m− ℓ)

m
.

Taking the minimum over ℓ ∈ [m] leads to

dα ≥ min
ℓ∈[m]

[
N(ℓ) · α

Zϵ

+
2(1− α)(m− ℓ)

m

]
.

We note that the above inequality indeed attains equality with a suitable choice of C̃ and
ũ∗. For all ℓ ≥ 2, we can set ũ∗

i = 0 for all i ∈ {ℓ+1,m} and make node 1 disconnected from
nodes {2, . . . , ℓ}. If ℓ = 1, we can remove the self-loop at node 1. Therefore, it holds that

dα = min
ℓ∈[m]

[
αN(ℓ)

Zϵ

+
2(1− α)(m− ℓ)

m

]
.
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The minimum in the above equality is attained at one of the points 1, 2,m, which gives

dα = min

{
2α

Zϵ

+
2(1− α)(m− 1)

m
,
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
.

Since each component in the minimization is an increasing function in ϵ, the distance dα is
also increasing in ϵ. Results for Dα(Cϵ, u∗) follow accordingly by taking the inverse of dα.

Since the closed form expression of Dα(Cϵ, u∗) is the minimum of three monotone func-
tions in ϵ, the complexity metric is the negative of a unimodal function. For every ϵ ≤ 1/(2m),
we can prove that

2α

Zϵ

+
2(1− α)(m− 1)

m
> min

{
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
.

Therefore, in the regime [0, 1/2], the complexity metric Dα(Cϵ, u∗) is the minimum of two
strictly decreasing functions and, thus, is also strictly decreasing in ϵ.

Combining Theorem 23 and Lemma 19, we are able to estimate the range of the com-
plexity metric.

Proof of Theorem 24. By defining constants δ := 1/26 and ∆ := 18, Theorem 23 implies
that

1. If ϵ < δ/m, the instance MC(Cϵ, u∗) has spurious local minima;

2. If ϵ > ∆/m, the instance MC(Cϵ, u∗) has no spurious local minima.

Then, we study two different cases.

Case I. We first consider the case when mϵ is large. Since ϵ < ∆/m ≤ 1/2, the threshold
is located in the regime where Dα(Cϵ, u∗) is strictly decreasing. Hence, it suffices to show
that [

2α∆

n2
+ min

{
4α∆ · m

n2
, 2(1− α)

}]−1

is a lower bound on Dα(Cϵ, u∗) when ϵ = ∆/m. By Lemma 19, it holds that

[Dα(Cϵ, u∗)]−1 = min

{
2α

Zϵ

+
2(1− α)(m− 1)

m
,
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
≤min

{
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
=

4αϵ

Zϵ

+ (m− 2) min

{
4αϵ

Zϵ

,
2(1− α)

m

}
≤ 4αϵ

Zϵ

+ mmin

{
4αϵ

Zϵ

,
2(1− α)

m

}
.
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Since the graph G does not contain any independence set with m+1 nodes, Turán’s theorem
[5] implies that the graph G has at least n2/(2m) edges, namely,

|E| ≥ n2/(2m).

We note that the above bound is asymptotically tight and is attained by the Turán graph.
Hence, we obtain that

Zϵ = 2|E|+ n + m(m− 1)ϵ ≥ 2|E| ≥ n2/m.

By substituting into the estimate of Dα(Cϵ, u∗), it follows that

[Dα(Cϵ, u∗)]−1 ≤ 4αϵ ·m
n2

+ mmin

{
4αϵ ·m

n2
,
2(1− α)

m

}
=

2α∆

n2
+ min

{
4α∆ · m

n2
, 2(1− α)

}
.

Case II. Next, we consider the case when ϵm is small. Similar to Case I, it suffices to
show that

18

17
max

{
n2

4αδ
,

1

2(1− α)

}
is an upper bound for Dα(Cϵ, u∗) when ϵ = δ/m. Since δ < 1/2, we have

2α/Zϵ > 4αϵ/Zϵ.

By Lemma 19, it holds that

[Dα(Cϵ, u∗)]−1

= min

{
2α

Zϵ

+
2(1− α)(m− 1)

m
,
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
= min

{
4αϵ

Zϵ

+
2(1− α)(m− 2)

m
,
4α(m− 1)ϵ

Zϵ

}
=

4αϵ

Zϵ

+ (m− 2) min

{
4αϵ

Zϵ

,
2(1− α)

m

}
≥ 17

18
min

{
4αϵm

Zϵ

, 2(1− α)

}
,

where the last inequality is from m ≥ 36. Since ϵ ≤ 1, the definition of Zϵ implies that
Zϵ ≤ n2. By substituting into the estimate of Dα(Cϵ, u∗), it follows that

[Dα(Cϵ, u∗)]−1 ≥ 17

18
min

{
4αϵm

n2
, 2(1− α)

}
=

17

18
min

{
4αδ

n2
, 2(1− α)

}
.

By combining Cases I and II, we complete the proof.



CHAPTER 3. A NEW COMPLEXITY METRIC FOR RANK-ONE GENERALIZED
MATRIX COMPLETION 131

3.D Proofs in Section 3.4

Proof of Lemma 9

Proof. Without loss of generality, we assume that

u0
i = 1/n, ∀i ∈ [n].

We first consider the scaled problem instance

min
x∈Rn

∑
i,j∈[n],i ̸=j

(xixj − 1)2. (3.69)

We denote the gradient and the Hessian matrix of problem (3.69) as g(x) ∈ Rn and H(x) ∈
Rn×n, respectively. Then, we can calculate that

1

4
gi(x) = −x3

i + (∥x∥22 + 1)xi −
∑

k∈[n]
xk, ∀i ∈ [n];

1

4
Hii(x) =

∑
k∈[n],k ̸=i

x2
k,

1

4
Hij(x) = 2xixj − 1, ∀i, j ∈ [n].

Let c be a small positive constant and define ϵ := c/n. Suppose that x ∈ Rn satisfies

∥g(x)∥∞ < 4ϵ. (3.70)

Then, we study three different cases.

Case I. We first consider the case when
∑

i∈[n] xi > 2ϵ. For all i ∈ [n], the condition (3.70)
implies that

1

4
|gi(x)| =

∣∣∣∣(∑j∈[n],j ̸=i
x2
j + 1

)
xi −

∑
j∈[n]

xj

∣∣∣∣ < ϵ. (3.71)

If xi ≤ ϵ, it holds that(∑
j∈[n],j ̸=i

x2
j + 1

)
xi −

∑
j∈[n]

xj ≤ xi −
∑

j∈[n]
xj < −ϵ,

which contradicts (3.71). Hence,

xi > ϵ, ∀i ∈ [n].

Define three index sets

I1 := {i ∈ [n] | xi ≥ 1 + ϵ}, I2 := {i ∈ [n] | xi ≤ 1− ϵ}, I3 := [n]\(I1 ∪ I2).
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Choosing the perturbation direction q ∈ Rn to be

qi = −xi, ∀i ∈ I1; qi = xi, ∀i ∈ I2; qi = 0, ∀i ∈ I3,

we can calculate that

1

4
qTg(x) =

∑
i,j∈I1,i ̸=j

−xixj(xixj − 1) +
∑

i,j∈I2,i ̸=j

xixj(xixj − 1) (3.72)

+
∑

i∈I1,j∈I3

−xixj(xixj − 1) +
∑

i∈I2,j∈I3

xixj(xixj − 1).

We then consider four sub-cases.

Case I-1. We first assume that |I1| ≥ 2. In this case, we have∑
i,j∈I1,i ̸=j

−xixj(xixj − 1) ≤
∑

i,j∈I1,i ̸=j

−xixj[(1 + ϵ)2 − 1] ≤ −2ϵ
∑

i,j∈I1,i ̸=j

xixj (3.73)

≤ −2ϵ(|I1| − 1)∥xI1∥1 ≤ −2∥xI1∥1 · ϵ,∑
i,j∈I2,i ̸=j

xixj(xixj − 1) =
∑

i,j∈I2,i ̸=j

−xi · [xj − xix
2
j ] ≤

∑
i,j∈I2,i ̸=j

xi · [xj − (1− ϵ)x2
j ]

≤
∑
i∈I2

xi max(|I2| − 1, 0) · ϵ[1− (1− ϵ)ϵ]

= −max(|I2| − 1, 0)∥xI2∥1 · ϵ + O(nϵ2),∑
i∈I1,j∈I3

−xixj(xixj − 1) =
∑

i∈I1,j∈I3

−1

4
(2xixj − 1)2 +

1

4

≤ |I1||I3|
[
−1

4
[2(1 + ϵ)(1− ϵ)− 1]2 +

1

4

]
,

= |I1||I3|
(
ϵ2 − ϵ4

)
= O(n2ϵ2),∑

i∈I2,j∈I3

xixj(xixj − 1) =
∑

i∈I2,j∈I3

1

4
(2xixj − 1)2 − 1

4

≤ |I2||I3|
[

1

4
[2(1 + ϵ)(1− ϵ)− 1]2 − 1

4

]
≤ 0.

Choosing ϵ to be small enough and substituting the above four estimates into (3.72), we
obtain that

1

4
qTg(x) ≤ −2ϵ∥xI1∥1 −max(|I2| − 1, 0)ϵ∥xI2∥1 + O(n2ϵ2)

≤ − [∥xI1∥1 + max(|I2| − 1, 0)∥xI2∥1] · ϵ.
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If |I2| ≥ 2, it follows from Hölder’s inequality that

∥g(x)∥∞ ≥
4(∥xI1∥1 + ∥xI2∥1) · ϵ

∥q∥1
=
∥xI1∥1 + ∥xI2∥1
∥xI1∥1 + ∥xI2∥1

· 4ϵ = 4ϵ.

which is a contradiction to (3.70). Otherwise if |I2| ≤ 1, it also follows from Hölder’s
inequality that

∥g(x)∥∞ ≥
4∥xI1∥1ϵ
∥q∥1

=
4∥xI1∥1

∥xI1∥1 + ∥xI2∥1
· ϵ ≥ ∥xI1∥1

∥xI1∥1 + 1
· 4ϵ ≥ 2ϵ.

In summary, in this sub-case, we have

∥g(x)∥∞ ≥ 2ϵ.

Case I-2. Now, we consider the case when |I1| = 1 and |I2| ≥ 2. Assume without loss of
generality that I1 = {1}. A similar calculation as (3.73) leads to

1

4
qTg(x) ≤ −max(|I2| − 1, 0)ϵ∥xI2∥1 + O(n2ϵ2) ≤ −1

2
∥xI2∥1 · ϵ.

If x1 ≤ 2ϵ−1, Hölder’s inequality gives

∥g(x)∥∞ ≥
4ϵ∥xI2∥1

2∥q∥1
= 2ϵ · ∥xI2∥1

∥xI1∥1 + ∥xI2∥1
≥ 2ϵ · 2ϵ

2ϵ−1 + 2ϵ
≥ 2ϵ · ϵ

2

2
= ϵ3.

Now, we assume that x1 > 2ϵ−1. The first component of the gradient is

1

4
g1(x) =

∑
j∈[n],j ̸=1

(x2
jxi − xj) ≥

∑
j∈[n],j ̸=1

(ϵ2xi − ϵ)

= (n− 1)ϵ2 · x1 − (n− 1)ϵ > (n− 1)ϵ > ϵ,

which contradicts (3.70). In summary, in this sub-case, we have

∥g(x)∥∞ ≥ ϵ3.

Case I-3. In this case, we assume |I1| = 1 and |I2| ≤ 1. In addition, we assume I1 = {1}.
If x1 ≥ (1− ϵ)−1 + ϵ, the third estimate in (3.73) becomes∑

j∈I3
− x1xj(x1xj − 1) ≤

∑
j∈I3
− x1(1− ϵ)[x1(1− ϵ)− 1]

≤ −(1− ϵ)2ϵx1 ≤ −
1

2
∥xI1∥1 · ϵ.

Then, using a similar analysis and by applying Hölder’s inequality, it follows that

1

4
qTg(x) ≤ −1

2
∥xI1∥1ϵ and ∥g(x)∥∞ ≥ 2ϵ · ∥xI1∥1

∥xI1∥1 + ∥xI2∥1
> ϵ.
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Otherwise, if x1 < (1− ϵ)−1 + ϵ,

|x1 − 1| < ϵ

1− ϵ
+ ϵ < 3ϵ.

Hence,
∥x− x0∥1 ≤ 3ϵ + (n− 1)ϵ = (n + 2)ϵ.

In summary, in this sub-case, we have

∥g(x)∥∞ < ϵ/4 or ∥x− x0∥1 ≤ (n + 2)ϵ.

Case I-4. Finally, we assume |I1| = 0. If |I2| ≥ 2, we can use a similar analysis as Case
I-2 to conclude that

1

4
qTg(x) ≤ −1

2
∥xI2∥1 · ϵ + O(nϵ2)

and thus
∥g(x)∥∞ ≥ ϵ.

Next, we consider the case when |I2| = 1 and we assume I2 = {1}. The fourth term in
(3.73) can be estimated as∑

i∈I2,j∈I3
xixj(xixj − 1) =

(∑n

j=2
x2
j

)
x2
1 −

(∑n

j=2
xj

)
x1.

Since xj ∈ [1− ϵ, 1 + ϵ] for all j ∈ {2, . . . , n}, it holds that∑n
j=2 xj∑n
j=2 x

2
j

≥ 1

1 + ϵ
> 1− ϵ.

Therefore, ∑
i∈I2,j∈I3

xixj(xixj − 1) =
(∑n

j=2
x2
j

)
x2
1 −

(∑n

j=2
xj

)
x1

≤
(∑n

j=2
x2
j

)
(1− ϵ)2 −

(∑n

j=2
xj

)
(1− ϵ)

=
∑n

j=2

[
(1− ϵ)2x2

j − (1− ϵ)xj

]
≤
∑n

j=2

[
(1− ϵ)2(1 + ϵ)2 − (1− ϵ)(1 + ϵ)

]
≤ −(n− 1)ϵ2 + O(nϵ3).

Thus, it holds that
1

4
qTg(x) ≤ −(n− 1)ϵ2 + O(nϵ3) ≥ −ϵ2.

Hölder’s inequality implies that

∥g(x)∥∞ ≥
4ϵ2

∥q∥1
=

4ϵ2

x1

≥ 4ϵ2

1− ϵ
≥ 4ϵ2.
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The only remaining case is when |I2| = 0. In this case, we have

xi ∈ [1− ϵ, 1 + ϵ], ∀i ∈ [n].

Therefore, it holds that
∥x− x0∥1 ≤ nϵ.

In summary, in this sub-case, we have

∥g(x)∥∞ ≥ 4ϵ2 or ∥x− x0∥1 ≤ nϵ.

Combining Cases I-1 to I-4 yields that

∥g(x)∥∞ ≥ ϵ3 or ∥x− x0∥1 ≤ (n + 4)ϵ

in Case I.

Case II. For the case when
∑

i∈[n] xi < −2ϵ, one can obtain the same conclusions as Case
I by the symmetry of the landscape.

Case III. We finally consider the case when
∑

i∈[n] xi ∈ [−2ϵ, 2ϵ]. Considering the assump-

tion (3.70), we have

1

4
gi(x) =

(∑
j∈[n],j ̸=i

x2
j + 1

)
xi −

∑
j∈[n]

xj ∈ [−ϵ, ϵ], ∀i ∈ [n].

Combined with the assumption that
∑

i∈[n] xi ∈ [−2ϵ, 2ϵ], it follows that(∑
j∈[n],j ̸=i

x2
j + 1

)
xi ∈ [−3ϵ, 3ϵ].

Furthermore, since
∑

j∈[n],j ̸=i x
2
j + 1 ≥ 1, we have

xi ∈ [−3ϵ, 3ϵ], ∀i ∈ [n].

We consider the descent direction p ∈ Rn, where

pi = 1/
√
n, ∀i ∈ [n].

Then, we can calculate that

1

4
pTH(x)p =

∑
i,j∈[n]j ̸=i

[
x2
jp

2
i + (2xixj − 1)pipj

]
=

1

n

∑
i,j∈[n]j ̸=i

[
x2
j + (2xixj − 1)

]
=

1

n

[
(n− 1)

∑
i∈[n]

x2
i + 2

∑
i,j∈[n],i ̸=j

xixj − n(n− 1)

]
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≤ 1

n

[
(n− 1) · 9nϵ2 + 2n(n− 1) · 9ϵ2 − n(n− 1)

]
= 27(n− 1)ϵ2 − (n− 1) ≤ −n/2,

where the last inequality is because ϵ is sufficiently small.
Combined Cases I-III, we have proved that under assumption (3.70), it holds that

min{∥x− x0∥1, ∥x + x0∥1} ≤ (n + 4)ϵ or ∥g(x)∥∞ ≥ ϵ3 or λmin[H(x)] ≤ −2n.

Letting ϵ := η/(n + 4) ≪ 1, we know that the property stated in the theorem holds for
problem (3.69) with

β(η) =
η3

(n + 4)3
, γ(η) = 2n.

In addition, we have η0 = O(1), β(η) = O(n−3η3) and γ(η) = O(n). Transforming back to
the instance (C0, u0), the property stated in the theorem holds with

η0 = O(n−0.5), β(η) = O(n−6.5η3), γ(η) = O(n−2).

This completes the proof.

Proof of Lemma 10

Proof. Similar to Lemma 9, it is equivalent to prove the results for the scaled instance
MC(n(n − 1)C̃, nũ∗). With a little abuse of notations, we use (C̃ũ∗) to denote the scaled
pair of parameters. Denote

δ := max

{
n(n− 1)ϵ

α∗ ,
nϵ

1− α∗

}
.

Then, the condition stated in the lemma implies that

C̃ij ∈ [1− δ, 1 + δ], ∀i, j ∈ [n] s. t. i ̸= j; C̃ii ∈ [0, δ], ũ∗
i ∈ [1− δ, 1 + δ], ∀i ∈ [n].

Let R > 0 be a large enough constant. Suppose that u ∈ Rn is a stationary point of the
instance (C̃, ũ∗) such that ∥u∥2 = R. Denote the gradient and the Hessian matrix of the
instance MC(C̃, ũ∗) at u as g(u) ∈ Rn and H(u) ∈ Rn×n, respectively. Then, it holds that

1

4
gi(u) =

∑
j∈[n]

C̃ijuj(uiuj − ũ∗
i ũ

∗
j) = 0, ∀i ∈ [n]. (3.74)

We assume without loss of generality that

u1 = maxi∈[n]|ui| ≥ R/
√
n > 0.

If ui = 0 for all i ∈ [n]\{1}, we have

1

4
g2(u) =

(
C̃21u

2
1 +

∑
j≥2

C̃2ju
2
j

)
u2 −

(
C̃21ũ

∗
1ũ

∗
2u1 +

∑
j≥2

C̃2jũ
∗
j ũ

∗
2uj

)
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= −C̃21ũ
∗
1ũ

∗
2u1 ≤ −(1− δ) · (1− δ)2 ·R < 0,

where the last inequality is in light of C̃21 > 1 − δ and ũ∗
i > 1 − δ. This contradicts the

stationarity of point x and thus ∑
j≥2

u2
j > 0.

Moreover, since C̃1j > 1− δ for all j ∈ [n]\{1}, we have∑
j∈[n]

C̃1ju
2
j ≥

∑
j≥2

C̃1ju
2
j > (1− δ)

∑
j≥2

u2
j > 0.

Similarly, for all i ∈ [n]\{1}, it holds that∑
j∈[n]

C̃iju
2
j ≥

∑
j∈[n],j ̸=i

C̃iju
2
j > (1− δ)

∑
j∈[n],j ̸=i

u2
j > (1− δ)u2

i > 0.

Solving (3.74) for all i ∈ [n], we conclude that

ui =

∑
j∈[n] C̃ijũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

. (3.75)

Assuming that

u1 < R− 2n

(1− δ)R
,

it follows that ∑
j∈[n]

C̃1ju
2
j > (1− δ)

∑
j≥2

u2
j ≥ 4n− 4n2

(1− δ)R2
. (3.76)

In addition, we can calculate that∑
j∈[n]

C̃1jũ
∗
1ũ

∗
juj ≤

∑
j∈[n]

C̃1jũ
∗
1ũ

∗
j |uj| (3.77)

< (1 + δ) · (1 + δ)2
∑

j∈[n]
|uj| ≤ 2∥u∥1 ≤ 2

√
nR,

where the second last inequality is because δ is a sufficiently small constant. Combining
inequalities (3.76)-(3.77), we have

u1 =

∑
j∈[n] C̃1jũ

∗
1ũ

∗
juj∑

j∈[n] C̃1ju2
j

<
2
√
nR

4n− 4n2/[(1− δ)2R2]
.

Choosing R ≥ 4n ≥ 2(1− δ)−1n, the above inequality leads to

u1 <
2
√
nR

4n− 4n2/[(1− δ)2R2]
<

2
√
nR

2n
=

R√
n
,
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which contradicts the assumption that u1 ≥ R/
√
n. Therefore,

u1 ≥ R− 2n

(1− δ)R
.

Using the condition that ∥x∥2 = R, it holds that∑
j≥2

u2
j ≤

2n

1− δ
− 4n2

(1− δ)2R2
<

2n

1− δ
.

For all i ∈ [n]\{1}, the relation (3.75) implies that

ui =

∑
j∈[n] C̃ijũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

=
C̃1iũ

∗
i ũ

∗
1u1 +

∑
j≥2 C̃ijũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

≥
(1− δ) · (1− δ)2(R− 2n/[(1− δ)R])− (1 + δ) · (1 + δ)2

√
n ·
∑

j≥2 u
2
j∑

j∈[n] C̃iju2
j

≥
(1− δ) · (1− δ)2(R− 2n/[(1− δ)R])− (1 + δ) · (1 + δ)2

√
n · 2n/(1− δ)∑

j∈[n] C̃iju2
j

≥
1/2 · (R− 1)− 2n

√
2/(1− δ)∑

j∈[n] C̃iju2
j

≥ R/2− 1/2− 4n∑
j∈[n] C̃iju2

j

> 0,

where the last inequality is due to choosing R > 8n+1 and the second last inequality results
from the fact that δ is sufficiently small. Using the same relation, it follows that

ui =

∑
j∈[n] C̃ijũ

∗
i ũ

∗
juj∑

j∈[n] C̃iju2
j

≥ C̃1iũ
∗
i ũ

∗
1u1∑

j∈[n] C̃iju2
j

≥ (1− δ)(1− δ)2u1

(1 + δ) ·R2

≥ 1

4R2
·
(
R− 2n

(1− δ)R

)
≥ 1

8R
,

where the last inequality is due to choosing R ≥ 8n ≥ 4(1− δ)−1n. Furthermore, using the
relation (3.75) with i = 1, we have∑

j≥2
uj ≥

1

(1 + δ)(1 + δ)2

∑
j≥2

C̃1jũ
∗
i ũ

∗
juj

=
1

(1 + δ)(1 + δ)2
· u1

[∑
j≥2

C̃1ju
2
j + C̃11[u

2
1 − (ũ∗

1)
2]
]

≥ 1

(1 + δ)(1 + δ)2
· u1

[
(1− δ)

∑
j≥2

u2
j + C̃11[(R− 2n/[(1− δ)R])2 − (1 + δ)2]

]
≥ 1− δ

(1 + δ)(1 + δ)2
· u1

(∑
j≥2

u2
j

)
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≥ 1− δ

(1 + δ)(1 + δ)2

(
R− 2n

(1− δ)R

)
·
∑

j≥2
u2
j ≥

1

4

(
R− 2n

(1− δ)R

)
·
∑

j≥2
u2
j .

Since
∑

j≥2 uj ≤
√

n(
∑

j≥2 u
2
j), it follows that√

n
(∑

j≥2
u2
j

)
≥ 1

4

(
R− 2n

(1− δ)R

)
·
∑

j≥2
u2
j ,

which further implies that∑
j≥2

u2
j ≤

16n

(R− 2n/[(1− δ)R])2
≤ 16n

(R− 1)2
≤ 1

4
,

where the last inequality is because of choosing R ≥ 1 + 8
√
n. Now, we consider the descent

direction q ∈ Rn, where
q1 = −u1; qi = ui, ∀i ∈ [n]\{1}.

Similar to the proof of Lemma 9, we can calculate that

1

4
⟨g(u), q⟩ =

∑
i,j≥2,i ̸=j

C̃ijuiuj

(
uiuj − ũ∗

i ũ
∗
j

)
− C̃11u

2
1[u

2
1 − (ũ∗

1)
2] +

∑
i≥2

C̃iiu
2
i [u

2
i − (ũ∗

i )
2]

≤
∑

i,j≥2,i ̸=j
C̃ijuiuj

(
uiuj − ũ∗

i ũ
∗
j

)
+
∑

i≥2
C̃iiu

2
i [u

2
i − (ũ∗

i )
2]

≤
∑

i,j≥2,i ̸=j
C̃ijuiuj

[
1/4− (1− δ)2

]
+
∑

i≥2
C̃iiu

2
i [1/4− (1− δ)2]

≤
∑

i,j≥2,i ̸=j
(1− δ) · (8R)−2 · (1/4− 1/2) +

∑
i≥2

δ · (8R)−2 · (1/4− 1/2) < 0,

which contradicts the assumption that x is a stationary point. Therefore, the above analysis
implies that the instance (C̃, ũ∗) has no stationary point in the region {u ∈ Rn | ∥u∥2 >
8n + 1}.

Now, We focus on the compact region {u ∈ Rn | ∥u∥2 ≤ 8n + 1}. Since the gradient
and the Hessian matrix are continuous functions of (C, u∗), the ℓ∞-norm of the gradient and
the eigenvalues of the Hessian matrix are also continuous functions of (C, u∗). Intuitively, a
small perturbation to (C, u∗) would not significantly change the norms of the gradient and
the Hessian matrix. Thus, the strict-saddle property still holds after a small perturbation.
More rigorously, let (C0, u0) ∈M and η ∈ (0, η0]. In the region

Rη := {u ∈ Rn | ∥u∥2 ≤ 8n + 1, ∥u− u0∥1 ≥ η, ∥u + u0∥1 ≥ η},

at least one of the following properties holds:

∥∇g(u;C0, u0)∥∞ ≥ β(η), λmin[∇2g(u;C0, u0)] ≤ −γ(η).

Since Rη is a compact set and we constrain (C, u∗) by ∥C∥1 = 1 and ∥u∗∥1 = 1, the functions

∥∇g(u;C, u∗)∥∞ and λmin[∇2g(x;C, u∗)]
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are Lipschitz continuous in (C, u∗). Suppose that the Lipschitz constants are Lg and LH

under the weighted ℓ1-norm, namely∣∣∣∥∇g(u;C, u∗)∥∞ − ∥∇g(u; C̃, ũ∗)∥∞
∣∣∣ ≤ Lg

[
α∗∥C̃ − C∥1 + (1− α∗)∥ũ∗ − u∗∥1

]
,∣∣∣λmin[∇2g(u;C, u∗)]− λmin[∇2g(u; C̃, ũ∗)]

∣∣∣ ≤ LH

[
α∗∥C̃ − C∥1 + (1− α∗)∥ũ∗ − u∗∥1

]
,

∀x ∈ Rη, (C, u∗) s. t. ∥C∥1 = ∥u∗∥1 = 1.

Let

ϵ := min

{
β(η)

2Lg

,
γ(η)

2LH

}
.

Then, for every pair (C̃, ũ∗) satisfying

α∗∥C̃ − C0∥1 + (1− α∗)∥ũ∗ − u0∥1 < ϵ,

at least one of the following properties holds for all x ∈ Rη:

∥∇g(u; C̃, ũ∗)∥∞ ≥ β(η)/2, λmin[∇2(u; C̃, ũ∗)] ≤ −γ(η)/2.

This implies that the strict-saddle property holds for the the perturbed instanceMC(C̃, ũ∗).
Letting η → 0, it follows that ±ũ∗ are the only points satisfying the second-order necessary
optimality conditions, and thus MC(C̃, ũ∗) does not have SSCPs.

Proof of Theorem 27

The proof of Theorem 27 directly follows from the next two lemmas.

Lemma 20. Suppose that (C, u∗) ∈ SD and that u0 is a global solution to MC(C, u∗).
Then, for all k ∈ [n1], it holds that u

0
iu

0
j = u∗

iu
∗
j for all i, j ∈ I1k. In addition, u0

i = 0 for all
i ∈ I0(C, u∗).

Proof. Denote M∗ := u∗(u∗)T . We first consider nodes in G1k for some k ∈ [n1]. Since the
subgraph is not bipartite, there exists a cycle with an odd length 2ℓ+ 1, which we denote as

{i1, . . . , i2ℓ+1}.

Then, we have

(u0
i1

)2 =
∏2ℓ+1

s=1
(u0

isu
0
is+1

)(−1)s−1

=
∏2ℓ+1

s=1
(M∗

isis+1
)(−1)s−1

=
∏2ℓ+1

s=1
(u∗

isu
∗
is+1

)(−1)s−1

= (u∗
i1

)2,

which implies that the conclusion holds for i = j = i1. Using the connectivity of G1k(C, u∗),
we know

u0
iu

0
j = u∗

iu
∗
k, ∀i, j ∈ I1k(C, u∗).
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Then, we consider nodes in I0(C, u∗). Since I00(C, u∗) is empty, for every node i ∈ I0(C, u∗),
there exists another node j ∈ I1(C, u∗) such that Cij > 0. Hence, we have

u0
i = M∗

ij/u
0
j = 0.

This completes the proof.

The following lemma provides a necessary and sufficient condition for instances with a
positive definite Hessian matrix at global solutions, which is stronger than what Theorem
27 requires.

Lemma 21. Suppose that u0 ∈ Rn is a global minimizer of the instance MC(C, u∗) such
that the conditions in Lemma 20 hold. Then, the Hessian matrix is positive definite at u0 if
and only if

1. G1i(C, u
∗) is not bipartite for all i ∈ [n1];

2. I00(C, u∗) = ∅.

Proof. We first construct counterexamples for the necessity part and then prove the positive
definiteness of the Hessian matrix for the sufficiency part.

Necessity. We construct counterexamples by discussing two different cases.

Case I. We first consider the case when there exists k ∈ [n1] such that G1k(C, u∗) is
bipartite. Suppose that G1i(C, u

∗) = G1k1 ∪ G1k2 is a partition of G1k(C, u∗). Let the sets
I1k, I1k1 and I1k2 be the node sets of the corresponding graphs. Define q ∈ Rn as

qi := u0
i , ∀i ∈ I1k1; qi := −u0

i , ∀i ∈ I1k2; qi := 0, ∀i /∈ I1k.

Then, the curvature of the Hessian along the direction q is

1

4
[∇2g(u0;C, u∗)](q, q)

=
∑

i∈I1k1,j∈I1k2

Cij

[
(u0

i )
2q2j + (u0

j)
2q2i
]

+ 2
∑

i∈I1k1,j∈I1k2

Cij(2u
0
iu

0
j − u∗

iu
∗
j)qiqj

=
∑

i∈I1k1,j∈I1k2

Cij

[
(u0

i )
2q2j + (u0

j)
2q2i
]

+ 2
∑

i∈I1k1,j∈I1k2

Ciju
0
iu

0
jqiqj

=
∑

i∈I1k1,j∈I1k2

2Cij(u
0
iu

0
j)

2 − 2
∑

i∈I1k1,j∈I1k2

Cij(u
0
iu

0
j)

2 = 0.

We note that there is no self-loop in G1k(C, u∗) and, thus, the diagonal entries of the weight
matrix are equal to 0. Therefore, the Hessian matrix has a zero curvature along q and is not
positive definite.
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Case II. We consider the case when I00(C, u∗) ̸= ∅. Suppose that k ∈ I00(C, u∗). Define
the vector q ∈ Rn as

qk := 1; qi := 0, ∀i ̸= k.

The curvature of the Hessian along the direction q is

1

4
[∇2g(u0;C, u∗)](q, q) = Ckk

[
2(u0

k)2 − (u∗
k)2
]
q2k +

∑
j∈I0(C,u∗),j ̸=k

Ckj(u
0
j)

2q2k

= Ckk(u0
k)2 +

∑
j∈I0(C,u∗),j ̸=k

Ckj(u
0
j)

2 = 0.

Therefore, the Hessian matrix is not positive-definite at u0.

Sufficiency. Next, we consider the sufficiency part, namely, we prove that the Hessian
matrix is positive definite under the two conditions stated in the theorem. Suppose that
there exists a nonzero vector q ∈ Rn such that

[∇2g(u0;C, u∗)](q, q) = 0.

Then, after straightforward calculations, we arrive at

u0
i qj + u0

jqi =0, ∀i, j s. t. Cij > 0, i ̸= j;

[2(u0
i )

2 − (u∗
i )

2]q2i = (u0
i qi)

2 =0, ∀i s. t. Cii > 0.

The two conditions can be written compactly as

u0
i qj + u0

jqi =0, ∀i, j s. t. Cij > 0. (3.78)

Consider the index set I1k(C, u∗) for some k ∈ [n1]. The equality (3.78) implies that

qi/u
0
i + qj/u

0
j = 0, ∀i, j ∈ I1k(C, u∗). (3.79)

Since the graph G1k(C, u∗) is not bipartite, there exists a cycle with an odd length 2ℓ + 1,
which we denote as

{i1, i2, . . . , i2ℓ+1}.

Denoting i2ℓ+2 := i1, we can calculate that

2
qi1
u0
i1

=
2ℓ+1∑
s=1

(−1)s−1

(
qis
u0
is

+
qis+1

u0
is+1

)
= 0,

which leads to qi1 = 0. Using the connectivity of G1k and the relation (3.79), it follows that

qi = 0, ∀i ∈ I1k(C, u∗).
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Moreover, the same conclusion holds for all k ∈ [n1] and, thus, we conclude that

qi = 0, ∀i ∈ I1(C, u∗).

Since I00(C, u∗) = ∅, for every node i ∈ I0(C, u∗), there exists another node j ∈ I1(C, u∗)
such that Cij > 0. Considering the relation (3.79), we obtain that

qj = −u0
jqi/u

0
i = 0.

In summary, we have proved that qi = 0 for all i ∈ [n], which contradicts the assumption
that q ̸= 0. Hence, the Hessian matrix at u0 is positive definite.

Application of the implicit function theorem

Using the positive-definiteness of the Hessian matrix, we are able to apply the implicit
function theorem to certify the existence of spurious local minima.

Lemma 22. Suppose that α ∈ [0, 1] and consider a pair (C, u∗) ∈ SD. Then, there exists a
small constant δ(C, x∗) > 0 such that for every instanceMC(C̃, ũ∗) satisfying

α∥C̃ − C∥1 + (1− α)∥ũ∗ − u∗∥1 < δ(C, u∗),

the instanceMC(C̃, ũ∗) has spurious local minima.

Proof. By Theorem 27, there exists a global solution u0 to the instanceMC(C, u∗) such that

u0(u0)T ̸= u∗(u∗)T , ∇2g(u0;C, u∗) ≻ 0.

Consider the system of equations:

∇g(u;C, u∗) = 0.

Since the Jacobi matrix of ∇g(u;C, u∗) with respect to u is the Hessian matrix ∇2g(u;C, u∗)
and (u0, C, u∗) is a solution, the implicit function theorem guarantees that there exists a
small constant δ(C, u∗) > 0 such that in the neighborhood

N :=
{

(C̃, ũ∗)
∣∣ α∥C̃ − C∥1 + (1− α)∥ũ∗ − u∗∥1 < δ(C, u∗)

}
,

there exists a function u(C̃, ũ∗) : N 7→ Rn such that

1. u(C, u∗) = u0;

2. u(·, ·) is a continuous function in N ;

3. ∇g[u(C̃, ũ∗); C̃, ũ∗] = 0.

Using the continuity of the Hessian matrix and u(·, ·), we can choose δ(C, u∗) to be small
enough such that

u(C̃, ũ∗)[u(C̃, ũ∗)]T ̸= ũ∗(ũ∗)T , ∇2g
[
u(C̃, ũ∗); C̃, ũ∗

]
≻ 0, ∀(C̃, ũ∗) ∈ N .

Therefore, the point u(C̃, ũ∗) is a spurious local minimum of the instance MC(C̃, ũ∗).
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3.E Analysis for the Asymmetric Case

In this section, we extend the analysis of the symmetric weighted matrix completion
problem (3.4) to the asymmetric weighted matrix completion problem, which is defined as

min
u∈Rm,v∈Rn

∑
i∈[m],j∈[n]

Cij(uivj −M∗
ij)

2, (3.80)

where M∗ ∈ Rm×n is the ground truth matrix and C ∈ Rm×n is the weight matrix. We
note that in the asymmetric case, we do not assume that the weight matrix C is symmetric.
Similar to the symmetric case, we assume that M∗ = u∗(v∗)T has rank-1, where u∗ ∈ Rm

and v∗ ∈ Rn. We denote each instance of problem (3.80) as MC(C, u∗, v∗), where C is
the weight matrix and u∗(v∗)T is the ground truth matrix. Moreover, since the degenerate
instances where C = 0 or M∗ = 0 can be easily analyzed separately, we utilize the “scale-
free” property of problem (3.80) and extend the normalization assumption (Assumption 3)
to the asymmetric case:

Assumption 4. Assume that C ∈ Snm−1
+,1 , u∗ ∈ Sm−1

1 and v∗ ∈ Sn−1
1 , i.e., ∥C∥1 = ∥u∗∥1 =

∥v∗∥1 = 1.

Define the objective function of problem (3.80) as

h(u, v;C, u∗, v∗) :=
∑

i∈[m],j∈[n]
Cij(uivj − u∗

i v
∗
j )2.

Then, the set of degenerate instances is defined as

Dasym := {(C, u∗, v∗) | C ∈ Sn2−1
+,1 , u∗ ∈ Sn−1

1 , v∗ ∈ Sm−1
1 ,

∃u ∈ Rm, v ∈ Rn s. t. h(u, v;C, u∗, v∗) = 0, uvT ̸= u∗(v∗)T}.

Using graphical notations, we can establish an exact characterization for the set Dasym. The
weighted graph G(C, u∗, v∗) = [V(C, u∗, v∗),E(C, u∗, v∗),W(C, u∗, v∗)] is defined by

V(C, u∗, v∗) := [m + n],

E(C, u∗, v∗) := {{i, j + m} | Cij > 0, i ∈ [m], j ∈ [n]} ,
[W(C, u∗, v∗)]i,j+m := Cij, ∀i ∈ [m], j ∈ [n] s. t. {i, j + m} ∈ E(C, u∗, v∗).

To include the information of u∗ and v∗, we define

Iu1 (C, u∗, v∗) := {i ∈ [m] | u∗
i ̸= 0}, Iu0 (C, u∗, v∗) := [m]\Iu1 (C, u∗, v∗),

Iv1 (C, u∗, v∗) := {j + m | j ∈ [m], v∗j ̸= 0},
Iv0 (C, u∗, v∗) := {m + 1, . . . ,m + n}\Iv1 (C, u∗, v∗),

Iu00(C, u∗, v∗) := {i ∈ Iu0 (C, u∗, v∗) | {i, j + m} /∈ E(C, u∗, v∗), ∀j ∈ Iv1 (C, u∗, v∗)},
Iv00(C, u∗, v∗) := {j + m ∈ Iv0 (C, u∗, v∗) | {i, j + m} /∈ E(C, u∗, v∗), ∀i ∈ Iu1 (C, u∗, v∗)}.

The sub-graph G1(C, u
∗, v∗) is induced by Iu1 (C, u∗, v∗)∪Iv1 (C, u∗, v∗). The following theorem

provides necessary and sufficient conditions for instances in Dasym and Dasym.
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Theorem 33. Given C ∈ Snm−1
+,1 , u∗ ∈ Sm−1

1 and v∗ ∈ Sn−1
1 , it holds that (C, u∗, v∗) does not

belong to Dasym if and only if

1. G1(C, u
∗, v∗) is connected;

2. Iu00(C, u∗, v∗) = ∅ and Iv00(C, u∗, v∗) = ∅.

Moreover, the following relation holds:

Dasym ={(C, u∗, v∗) | C ∈ Snm−1
+,1 , u∗ ∈ Sm−1

1 , v∗ ∈ Sn−1
1 ,G1(C, u

∗, v∗) is disconnected}
∪ {(C, u∗, v∗) | C ∈ Snm−1

+,1 , u∗ ∈ Sm−1
1 , v∗ ∈ Sn−1

1 , Iu00(C, u∗, v∗) is not empty}
∪ {(C, u∗, v∗) | C ∈ Snm−1

+,1 , u∗ ∈ Sm−1
1 , v∗ ∈ Sn−1

1 , Iv00(C, u∗, v∗) is not empty}.

The proof of Theorem 33 is based on a slight modification of the proof of Theorem 14
and therefore, we omit the proof here. Similarly, the proofs of all subsequent theorems in
this section follow directly from those of the symmetric case and are omitted for brevity.
The new complexity metric for the asymmetric problem is given by

Dasym
α (C, u∗, v∗) :=

[
inf

(C̃,ũ∗,ṽ∗)∈Dasym

α∥C − C̃∥1 + (1− α)(∥u∗ − ũ∗∥1 + ∥v∗ − ṽ∗∥1)
]−1

=

[
min

(C̃,ũ∗,ṽ∗)∈Dasym

α∥C − C̃∥1 + (1− α)(∥u∗ − ũ∗∥1 + ∥v∗ − ṽ∗∥1)
]−1

.

Connection to Existing Results

Now, we derive upper bounds on the complexity metric under several different existing
conditions. We first develop an upper bound on the complexity metric under the RIP
condition, which is stated in the following theorem.

Theorem 34. Suppose that δ ∈ [0, 1) is a constant and the instanceMC(C, u∗, v∗) satisfies
the δ-RIP2,2 condition. Then, it holds that

Dasym
α (C, u∗, v∗) ≤ mn(1 + δ)− 2δ

2α(1− δ)
.

The maximum complexity is attained by the instanceMC(Cδ, uδ, vδ), where

Cδ
11 =

1− δ

(1 + δ)mn− 2δ
; Cδ

ij =
1 + δ

(1 + δ)mn− 2δ
, ∀(i, j) ∈ [m]× [n]\{(1, 1)};

uδ
1 = 1; uδ

i = 0, ∀i ≥ 2, vδ1 = 1; vδj = 0, ∀j ≥ 2.

We note that the upper bound in Theorem 34 is O(min{m,n}) larger than the smallest
possible complexity, which is O(max{m,n}). Following the same path as in the symmetric
case, we improve the upper bound using the incoherence information. We first give the
definition of the incoherence in the asymmetric case.
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Definition 9 ([118]). Given constants µ1 ∈ [1,m] and µ2 ∈ [1, n], the ground truth matrix
M∗ ∈ Rm×n is said to be (µ1, µ2)-incoherent if

∥(emi )TU∗∥F ≤
√

µ1r/m, ∀i ∈ [m], ∥(enj )TV ∗∥F ≤
√

µ2r/n, ∀j ∈ [n],

where U∗Σ∗(V ∗)T is the truncated SVD of M∗, emi is the i-th standard basis of Rm and enj
is the j-th standard basis of Rn. Moreover, the ground truth matrix M∗ ∈ Rm×n is said to
be µ-incoherent if it is (µ1, µ2)-incoherent with some µ1, µ2 ≤ µ.

As a counterpart of Theorem 20, the upper bound can be improved to O[µmax{m,n}].

Theorem 35. Suppose that the instanceMC(C, u∗, v∗) satisfies the δ-RIP2,2 condition and
u∗(v∗)T is (µ1, µ2)-incoherent. Then, it holds that

Dasym
α (C, u∗, v∗) ≤ max

{
max{ρ1, ρ2}mn(1 + δ)

4α(1− δ)
,

1

2(1− α)

}
×min

{
(1−max{ρ1, ρ2})−1 , 3

}
,

where ρ1 := µ1/m and ρ2 := µ2/n. Moreover, suppose that the instance MC(C, u∗, v∗)
satisfies the δ-RIP2,2 condition and u∗(v∗)T is µ-incoherent. Then, it holds that

Dasym
α (C, u∗, v∗) ≤ max

{
max{m,n}(1 + δ)

4α(1− δ)
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

min{m,n}

)−1

+

, 3µ

}
,

where we define x+ := max{x, 0} and 1/0 = +∞.

If we choose 1− α = Θ(n−1), the complexity can be upper-bounded by

Dasym
α (C, u∗, v∗) = O

(
µmax{m,n} · 1 + δ

1− δ

)
.

In the case when 1 − δ = Θ(1) and µ = O(1), the upper bound is on the same order (i.e.,
O(max{m,n})) as the minimum possible complexity.

Next, we consider the case when components of M∗ are observed under the Bernoulli
model with parameter p.

Theorem 36. Given µ ∈ [1, n] and p ∈ (0, 1], suppose that the weight matrix C obeys the
Bernoulli model with the parameter p and that u∗ has incoherence µ. If η > 2 is a constant
and the sampling rate satisfies

p ≥ min

{
1,

(m + n)[16(1 + ηµ) log(mn) + 16]

mn

}
,
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then it holds with probability at least 1−O[(mn)−η/2+1] that

Dasym
α (C, u∗, v∗) ≤ max

{
3 max{m,n}

4α
,

1

2(1− α)µ

}
×min

{(
1

µ
− 1

min{m,n}

)−1

+

, 3µ

}
.

In the case when 1 − α = Θ(n−1) and µ = O(1), the upper bound is on the order of
O(max{m,n}), which is also the same as the minimum possible complexity.

Theoretical Results

Now, we extend the theoretical results in Section 3.4 to the asymmetric case. We first
prove that if the complexity metric is on the order of O(max{m,n}), there does not exist
spurious second-order critical point. This result is established in the case when we choose
α = α∗

asym, where α∗
asym is the minimizer of the minimum possible complexity metric:

Dmin,asym
α := min

C∈Snm−1
+,1 ,u∗∈Sm−1

1 ,v∗∈Sn−1
1

Dasym
α (C, u∗, v∗).

The following theorem provides a characterization of the complexity metric when α = α∗
asym.

Theorem 37. It holds that

α∗
asym = 1− 1

max{m,n}+ 1
, Dmin,asym

α∗
asym

=
max{m,n}

2α∗
asym

.

Moreover, the complexity metric Dasym
α∗
asym

(C, u∗, v∗) is equal to Dmin,asym
α∗
asym

if and only if

Cij =
1

mn
, ∀i ∈ [m], j ∈ [n], u∗

i =
1

m
, ∀i ∈ [m], v∗j =

1

n
, ∀j ∈ [n].

The next theorem states that the optimization landscape is benign when the complexity
is close to Dmin,asym

α∗
asym

.

Theorem 38. Suppose that α = α∗
asym. Then, there exists a constant δ > 1/2 such that for

every instanceMC(C, u∗, v∗) satisfying

Dasym
α∗
asym

(C, u∗, v∗) ≤ δ max{m,n}/α∗
asym,

the instanceMC(C, u∗, v∗) does not have any SSCPs.

Next, we consider instances with a large complexity. We note that the landscape of
problem (3.80) is “scale-invariant”. Namely, if (u, v) is a stationary point of problem (3.80),
the scaled point (c1u, c

−1
1 v) is also a stationary point of problem (3.80) for all constants

c1 ̸= 0. To deal with this problem, consider a regularized version of problem (3.80):

min
u∈Rm,v∈Rn

∑
i∈[m],j∈[n]

Cij(uivj −M∗
ij)

2 + λ(uTu− vTv)2, (3.81)
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where λ > 0 is the regularization parameter. We denote instances of problem (3.81) as
MCreg(C, u∗, v∗). It is proved in [256] that problems (3.80) and (3.81) are equivalent in
the sense that they have the same set of local minima under scaling; see [244] for a more
detailed discussion. We note that adding the regularizer to problem (3.80) will not affect
the existence of SSCPs, and we consider problem (3.81) since it is desirable to construct
degenerate instances with a positive definite Hessian matrix at global minima. Similar to
the symmetric case, we define the following subset of Dasym:

SDasym := {(C, u∗, v∗) ∈ Dasym | G1(C, u
∗, v∗) is disconnected,

Iu00(C, u∗, v∗) = Iv00(C, u∗, v∗) = ∅}.

The following theorem proves that the Hessian matrix is positive definite at global solutions
for instances in SDasym.

Theorem 39. Suppose that (C, u∗, v∗) ∈ SDasym. Then, the Hessian matrix of the ob-
jective function of problem (3.81) is positive definite at all global solutions of the instance
MC(C, u∗, v∗).

The next step is to consider a closed subset of SDasym, which is defined as

SDasym,ϵ :=
{

(C, u∗, v∗) ∈ SDasym | Cij ∈ {0} ∪ [ϵ, 1], ∀i ∈ [m], j ∈ [n],

|u∗
i | ∈ {0} ∪ [ϵ, 1], ∀i ∈ [m], |v∗j | ∈ {0} ∪ [ϵ, 1], ∀j ∈ [n]

}
.

Define the alternative complexity metric as

Dasym
α,ϵ (C, u∗, v∗) :=

[
min

(C̃,ũ∗,ṽ∗)∈SDasym,ϵ

α∥C − C̃∥1 + (1− α)(∥u∗ − ũ∗∥1 + ∥v∗ − ṽ∗∥1)
]−1

.

The new metric Dasym
α,ϵ is a lower bound on the original metric Dasym

α . The following theorem
provides a sufficient condition on the existence of spurious local minima for problems (3.80)
and (3.81).

Theorem 40. Suppose that ϵ > 0 is a constant. Then, there exists a large constant ∆(ϵ) > 0
such that for every instanceMC(C, u∗, v∗) satisfying

Dasym
α,ϵ (C, u∗, v∗) ≥ ∆(ϵ),

both instancesMC(C, u∗, v∗) andMCreg(C, u∗, v∗) have spurious local minima.
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Part II

Convex Discrete Optimization via
Simulation
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Chapter 4

Gradient-based
Simulation-optimization Methods

4.1 Introduction

Many decision making problems in operations research and management science involve
large-scale complex stochastic systems. The objective function in the decision making prob-
lems often involve expected system performances that need to be evaluated by discrete-event
simulation or general stochastic simulation. The decision variables in many of these problems
are naturally discrete-valued and multi-dimensional. This class of problems is called Discrete
Optimization via Simulation, Discrete Simulation Optimization, or Simulation/Stochastic
Optimization with Integer Decision Variables (see [169, 103, 189]). Typically for discrete
optimization via simulation problems, continuous approximations are either not naturally
available or may incur additional errors that are themselves difficult to accurately quantify;
see [169]. this chapter is centered around designing and proving theoretical guarantees for
simulation-optimization algorithms to solve discrete optimization via simulation problems
with multi-dimensional decision space.

For complex stochastic systems, even one replication of simulation can be time consuming
or costly; see also [236, 212, 239, 237] for related discussions. An accurate evaluation of the
expected performance associated with a single decision needs many independent replications
of simulation. Running simulations for all feasible choices of decision variables in a high-
dimensional discrete space to find the optimal is computationally prohibitive. The use of
parallel computing (e.g. [155]) may alleviate the computation burden, but to find the best
decision in high-dimensional problems can still be challenging. Fortunately, for a number of
applications, the objective function exhibits convexity in the discrete decision variables, or
the problem can be transformed into a convex one. One such example with convex structure
comes from a bike-sharing system [205, 121, 77]. This problem involves around 750 stations
and 25,000 docks. The goal is to find the optimal allocation of bikes and docks, which are
naturally discrete decision variables. The performance of each allocation is evaluated by the
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dissatisfaction function, which is defined as the total number of failures to rent or return
a bike in a whole day. In the presence of non-stationary exogenous random demands and
travel patterns, the evaluation of the dissatisfaction function for a given allocation needs to
be done by simulation. This simulation is costly as it may need to simulate the full operation
of the system over the entire day.

When the decision space is large, it is often computationally impractical to run simula-
tions for all choices of the decision variables, creating a challenge in finding the optimal or
near-optimal choice of decision variables. To circumvent this challenge, problem structure
such as convexity or local convexity of the objective function may need to be exploited to
lower costs and improve the efficiency to find an optimal or near-optimal choice. See [105] for
a more detailed overview. In [77], the expected dissatisfaction function is proved to be “con-
vex” under a linear transformation if the stochastic arrival processes are exogenous. For this
problem, running stochastic simulations for the entire discrete and high-dimensional decision
space is computationally prohibitive. It is therefore of interest to explore how the convexity
structure of the objective function may help solve the simulation-optimization problem. In
fact, many performance functions in the operations research and management science do-
main exhibit convexity in discrete decision variables. For example, the expected customer
waiting time in a multi-server queueing network was proved to be convex in the routing
policy and staffing decisions; see [10] and [232]. [198] discusses a wide range of stochastic
systems including queueing systems, reliability systems and branching systems and show
the convexity of key expected performance measures as a function of the associated decision
variable. In addition, a large variety of problems in economics, computer vision and network
flow optimization exhibit convexity with discrete decision variables [168].

Even in the presence of convexity, the nominal task in discrete optimization via simulation
– correctly finding the best decision with high enough probability, which is often referred
to as the Probability of Correct Selection (PCS) guarantee – can still be computationally
prohibitive. For a convex problem without convenient assumptions such as strong and strict
convexity, there may be a large number of choices of decision variables that render very close
objective value compared to the optimal. In this case, the simulation efforts to identify the
exact optimal choice of decision variables can be huge and practically unnecessary. Our focus,
alternatively, is to find a good choice of decision variables that is assured to render ϵ-close
objective value compared to the optimal with high probability, where ϵ is any arbitrarily small
user-specified precision level. This guarantee is also called the Probability of Good Selection
(PGS) or Probably Approximately Correct (PAC) in the literature. this chapter adopts the
notion of PGS as a guarantee for simulation-optimization algorithms design. We refer to [67,
68] for thorough discussions on settings when the use of PGS is preferable compared to the use
of PCS. In this chapter, we propose simulation-optimization algorithms that achieve the PGS
guarantee for general discrete convex problems, without knowing any further information
such as strong convexity, etc. Knowing strong convexity or a specific parametric function
form of the objective function, of course, will further enhance the simulation-optimization
algorithms. However, such fine structural information may not be available a priori for
large-scale simulation optimization problems. The design of our simulation-optimization
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algorithms utilizes the convex structure and the intuition is that the convex structure of
optimization landscapes can provide global information through local evaluations. Global
information helps the algorithm avoid evaluating all feasible choices of decision variables,
which therefore avoids spending simulation efforts that are proportional to the number of
choices of decision variables and are exponentially dependent on the dimension in general.
Our proposed simulation-optimization algorithms are based on stochastic gradient methods
and discrete steepest descent methods, which need to be designed as fundamentally different
from continuous optimization algorithms. For high-dimensional problems, gradient-based
methods are preferred compared to strongly polynomial methods like cutting-plane methods,
because the simulation costs of gradient-based methods usually have a slower growth rate
when the dimension increases.

In order to compare algorithms that all return a solution that achieves the PGS opti-
mality guarantee, we use the metric of expected simulation cost. Intuitively here but with
exact definition to follow in the main body of this chapter, the expected simulation cost is
described by the expected number of simulation replications that are run over the decision
space, in order to achieve a solution with the PGS guarantee. We prove upper bounds on the
expected simulation cost for our proposed simulation-optimization algorithms that achieve
the PGS guarantee. The proven upper bounds show a low-order polynomial dependence on
the decision space dimension d. Note that the upper bounds hold for any arbitrary convex
problem. As a comparison, if the convex structure is not present or utilized, the expected
simulation cost to achieve the PGS guarantee can easily be exponential in the dimension
d. We also provide lower bounds on the expected simulation costs that are needed for any
possible simulation-optimization algorithm. The lower and upper bounds of expected sim-
ulation costs imply the limit of algorithm performance and provide directions to improving
existing simulation-optimization algorithms. In general, we refer readers to [160] and [254]
for more detailed discussions on the use of simulation costs and upper/lower bounds on the
order of simulation costs to analyze and compare algorithms.

Main Results and Contributions

We design gradient-based simulation-optimization algorithms that achieve the PGS guar-
antee for high-dimensional and large-scale discrete convex problems with a known upper
bound on the level of overall uncertainties. We consider the decision space to be

{(x1, x2 . . . , xd) | xi ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , d}},

which has in total Nd possible choices of decision variables. The discrete convexity in high
dimension that preserves the mid-point convexity (namely, the mid-point has an objective
value smaller than the average of objective values at the two endpoints) is called L♮-convexity
[168]. From the optimization perspective, our work addresses the stochastic version of dis-
crete convex analysis in [168]. From the simulation optimization perspective, this chapter
provides simulation-optimization algorithms with optimality guarantee and polynomial de-
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pendence of simulation costs on dimension, for high-dimensional discrete convex simulation
optimization problems.

We categorize our simulation-optimization algorithms to two classes. One class is the
zeroth-order algorithm, for which the simulation is a black-box and one run of simulation
can only provide an evaluation of a single decision. The other class is the first-order algo-
rithm, for which the neighboring choices of decision variables can be simultaneously evaluated
(possibly results in a biased finite difference gradient estimator) within a single simulation
run for a given choice of decision variables. We develop simulation-optimization algorithms
with the PGS guarantee as a major focus, but we also provide algorithms with the PCS-IZ
guarantee for cases when the indifference zone (IZ) parameter is known. See [101] for de-
tailed discussions on the PCS-IZ guarantee. We summarize our results in Table 4.1.1, where
algorithm performance is demonstrated by the expected simulation cost. In this table, we
omit terms in the expected simulation cost that do not depend on the failing probability
δ, i.e., the probability that the solution does not satisfy the specified precision. Therefore,
when δ is very small, the dominating term in the expected computation cost is what we
list in Table 4.1.1. This comparison scheme is also considered in [128]. That being said,
we provide all terms in the upper bounds for expected simulation costs in corresponding
theorems.

Algorithms PGS
PCS-IZ

(known IZ parameter c)

Zeroth-order Alg.
(Gaussian Noise)

Õ(d2N2ϵ−2 log(1/δ))

(Lower bound: Õ(dϵ−2 log(1/δ)))
Õ(d2 log(N)c−2 log(1/δ))

Zeroth-order Alg.
(Assumption 10)

Õ(dN2ϵ−2 log(1/δ)) Õ(d log(N)c−2 log(1/δ))

Lower Bound Õ(dϵ−2 log(1/δ)) Õ(dc−2 log(1/δ))

Biased First-order Alg.
(Assumption 9)

Õ(N3ϵ−2 log(1/δ))
(requires additional memory cost)

Õ(Nc−2 log(1/δ))

Table 4.1.1: Upper bounds and lower bounds on expected simulation cost for the proposed
simulation-optimization algorithms that achieve the PGS and the PCS-IZ guarantees. Con-
stants and terms that do not depend on δ are omitted in the Õ(·) notation. In comparison,
the expected simulation cost without L♮-convexity is Õ(Ndϵ−2 log(1/δ)). Here, d and N are
the problem dimension and scale; the feasible set is {1, . . . , N}d; constants ϵ and δ are the
precision and failing probability of algorithms.

For zeroth-order algorithms, the Lovász extension [152] is introduced to define a convex
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linear interpolation of the original discrete function. Using properties of the Lovász exten-
sion [80], it is equivalent to optimize the interpolated continuous function. Therefore, the
projected stochastic subgradient descent method can be used to find PGS solutions. More-
over, the truncation of stochastic subgradients is essential in reducing the expected simu-
lation costs and we prove that the dependence on the dimension d is reduced from O(d3)
to O(d2) using truncation. In stochastic optimization literature, it is common to assume
the stochastic subgradient is bounded when deriving high-probability bounds, and we also
provide a theoretical guarantee under the boundedness assumption. When the boundedness
assumption can be verified, the dependence on dimension can be further reduced to O(d).
When the indifference zone parameter c is known, an accelerated algorithm is proposed and
is proved to reduce the dependence on the scale N from O(N2) to O(log(N)). Finally, an
information-theoretical lower bound is derived to show the limit of simulation-optimization
algorithms.

For first-order algorithms, we have available gradient information, at a cost as a constant
multiplying the cost of one simulation run, for which the constant does not depend on the
dimension. This gradient information is regarded as a subgradient estimator. In practice,
the subgradient estimator can be biased, and there is no convergence guarantee for any
optimization algorithm in general. However, under a moderate assumption on the bias, we
are still able to develop simulation-optimization algorithms that achieve the PGS guarantee
through a stochastic version of the steepest descent method. The associated simulation cost
does not scale up with d, but the memory cost and the number of arithmetic operations can
be much larger than those of simulation-optimization algorithms designed for the unbiased
gradient estimators. Finally, utilizing the indifference zone, the expected simulation cost can
be reduced from O(N3) to O(N) in terms of dependence on N .

Literature Review

The problem of selecting the best or a good choice of decision variables through simulation
has been widely studied in the simulation literature. The problem is often called ranking-and-
selection (R&S). We refer to [101] as a recent review of this literature. There have been two
approaches to categorize the R&S literature. One approach is differentiating the frequentist
view and the Bayesian view when describing the probability models and procedures in R&S;
see [131] and [52]. The other approach differentiates the fixed-confidence procedures and
the fixed-budget procedures; see [112] and [101]. In particular, the probability of correct
selection (PCS) of the best choice of decision variables has been a widely used guarantee for
both types of procedures. Generally in the R&S problems, there is no structural information
such as convexity that is considered.

A large number of R&S procedures based on the PCS guarantee adopt the indifference
zone formulation, called PCS-IZ. The PCS-IZ guarantee is built upon the assumption that
the expected performance of the best choice of decision variables is at least c > 0 better than
all other choices of decision variables. This IZ parameter c is typically assumed to be known,
while [74], as a notable exception, provides selection guarantees without the knowledge of
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the indifference-zone parameter. In practice, for some problem settings, this IZ parameter
may be unknown a priori. When many choices of decision variables have close performance
compared to the best, it is practically inefficient to select the exact best. In this case, choices
of decision variables that are close enough to the best are referred to as “good choices” and
any one of them can be satisfying. This naturally gives rise to a notion of PGS. [67, 68] have
thoroughly discussed settings when the use of PGS is preferable to the use of PCS-IZ.

Discussions on discrete optimization via simulation can be found in [78], [169], [212],
[182, 181], [103] and [44] among others. [107, 108] have discussed model reference adap-
tive search algorithms in order to ensure global convergence. [102, 104, 236] propose and
study algorithms based on the convergent optimization via most-promising-area stochastic
search (COMPASS) that can be used to solve general simulation optimization problems with
discrete decision variables. The proposed algorithms are computationally efficient and are
proven to converge with probability one to optimal points. [149] studies simulation opti-
mization problems over multidimensional discrete sets where the objective function adopts
multimodularity, which is equivalent to the submodularity under a linear transform; see two
equivalent definitions of multimodular functions in [11] and [168]. They propose algorithms
that converge almost surely to the global optimal. [226] discusses stochastic optimization
problems with integer-ordered decision variables.

When a simulation problem involves a response surface to estimate or optimize over,
gradient information may be constructed and used to enhance simulation. [43] constructs
gradient estimator to enhance simulation metamodeling. [188] proposes a new approach
called gradient extrapolated stochastic kriging that exploits the extrapolation structure.
[79] discusses the use of Monte Carlo gradient estimators to enhance regression. See also
[135] for a review of Monte Carlo gradient estimators. [71] discusses the use of possibly
biased gradient estimators in continuous stochastic optimization, by assuming that the bias
is uniformly bounded. [228] considers a setting in which the response surface is a quadratic
function and gradient information is available and discusses optimal budget allocation to
maximize the probability of correct selection.

Discrete optimization via simulation is also formulated as the best-arm identification
problem, or the pure-exploration multi-armed bandits problem. The best-arm identification
literature usually does not consider the problem structure nor the high-dimensional nature
of an arm. More recent works focus on general distribution families and utilize techniques
from the information theory. Informational upper bounds and lower bounds for exponential
bandit models are established by the change of measure technique in [129, 128]. In [85], a
transportation inequality is proved and a general non-asymptotic lower bound can be formu-
lated thorough the solution of a max-min optimization problem. [3] shows that restrictions
on the distribution family are necessary and generalizes the algorithm to models with milder
restriction than exponential family.

Discrete optimization via simulation problems fall into the more general class of problems
called discrete stochastic optimization. In contrast to continuous optimization, most works
on discrete stochastic optimization [82, 94, 83, 132, 196] do not consider the convex structure.
The main obstacle to the development of discrete convex optimization lies in the lack of a
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suitable definition of the discrete convex structure. A natural definition of the discrete convex
functions would be functions that are extensible to continuous convex functions. However, for
that class of functions, the local optimality does not imply the global optimality and therefore
it is not suitable for the purpose of optimization. An example with spurious local minima is
given in Section 4.2. Later, [76] proposes a stronger condition, named the integral convexity,
that ensures the local optimality is equivalent to the global optimality. On the other hand,
after [152] shows the equivalence between the submodularity of a function and the convexity
of its Lovász extension, submodular functions are viewed as the discrete analogy of convex
functions in the field of combinatorial optimization. The Fenchel-type min-max duality
theorem [81] and the subgradient [80] of submodular functions provide a good framework of
applying gradient-based method to the submodular function minimization (SFM) problem.
The SFM problem has wide applications in computer vision, economics, game theory and
is well-studied in literature [140, 15, 246]. In contrast, the stochastic SFM problem is less
understood and [114] gives the only result on stochastic SFM problem, where they provide
upper and lower bounds for finding solutions with small error bound in expectation. In [168],
a generalization of submodular functions, called the L♮-convex functions, are defined through
the translation submodularity. The L♮-convex functions are equivalent to functions that are
both submodular and integrally convex on integer lattice. In addition, the L♮-convex function
has a convex extension that shares similar properties as the Lovász extension and therefore
gradient-based methods are also applicable for L♮-convex functions minimization.

Two most recent papers [228] and [70] also discuss the use of the convexity structure
in simulation. [228] consider a discrete simulation optimization problem with a specific
polynomial functional form for the objective function, and focus on how to strategically use
gradient information to accelerate the selection of the best. However, in general simulation
optimization problems, when the decision variables are discrete, the gradient with respect to
the decision variable may not be appropriately defined. Instead, the difference of performance
between two neighboring choices of decision variables contains gradient-like information.
[120] uses this information to guide the search for the optimal choices of decision variables.
In addition, they focused on the fixed-budget problem with an approximately quadratic
objective function and a one-dimensional decision space, which is different from our problem
setting. [70] utilize the convexity structure to select a feasible region that contains the
optimal given existing simulation samples at different choices; see also [69]. Because they
do not consider an optimization problem and their goal is not to find an optimal or near-
optimal solution, the focus of [70] is different from ours. For example, they do not provide
simulation-optimization algorithms that can find an optimal or near-optimal decision, nor
do they analyze simulation costs and their dependence on problem scale. On the other hand,
the method and analysis provided by [70] and [69] can serve effectively as a module to help
solve other general simulation problems, such as multi-objective simulation optimization,
which is not the focus of our work.
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4.2 Model and Framework

The model in consideration contains a complex stochastic system whose performance
depends on discrete decision variables that belong to a discrete feasible set X ⊂ Zd. From a
modeling perspective, in a stochastic system, the system performance may depend on three
elements: the decision variable x ∈ Zd, a random object ξx supported on a proper space
(Y,BY) that summarizes all the associated random quantities and processes involved in the
system when the decision x is taken, and a deterministic function F : X ×Y → R that takes
the value of decision variables and a realization of the randomness as inputs and outputs the
associated system performance. Specifically, the deterministic function F captures the full
operations logic of the stochastic system, which can be complicated. The objective function
with decision variable x is given by

f(x) := E[F (x, ξx)].

We consider scenarios when f(x) does not adopt a closed-form representation and can
only be evaluated by averaging over simulation samples of F (x, ξx). More specifically, we
write ξx,1, ξx,2, . . . , ξx,n as independent and identically distributed (iid) copies of ξx. We use

F̂n(x) := 1
n

∑n
j=1 F (x, ξx,j) to denote the empirical mean of the n independent evaluations for

the choice of decision variables x. The selection of the optimal choice of decision variables is
through the selection of a choice of decision variable x that renders the best objective value
f(x). Denote x∗ as any choice of decision variable that renders the optimal objective value,
such that

f(x∗) = min
x∈X

f(x). (4.1)

Note that we fix the use of minimum operation to represent the optimal. Our general goal is
to develop simulation-optimization algorithms that select a good choice of decision variable
x, such that

f(x)− f(x∗) ≤ ϵ,

where ϵ > 0 is the given user-specified precision level. In this chapter, we consider this
selection problem in a large decision space with high dimension.

Because f does not have a closed-form representation and has to be evaluated by sim-
ulation, we take the view that no further structure information is available in addition to
the convex structure. For instance, for a real-world model, f may have a very flat landscape
around the minimum, which may not be known a priori. In this case, there may be a number
of choices of decision variables that render objective value that is at most ϵ apart from the
optimal. This also motivates our goal to select a good choice of decision variables instead
of the best, because too much computational resource may be needed to identify exactly
the best, when the landscape around the minimum is flat. Therefore, our general goal is
to develop simulation-optimization algorithms that are expected to robustly work for any
convex model without knowing further specific structure.
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Because the precision level ϵ cannot be delivered almost surely with finite computational
budget for simulation, we consider a selection optimality guarantee called Probability of Good
Selection; see [67, 68, 101].

• Probability of good selection (PGS). With probability at least 1 − δ, the solution x
returned by an algorithm has objective value at most ϵ larger than the optimal objective
value.

This PGS guarantee is also called the probably approximately correct selection (PAC)
guarantee in the literature [73, 128, 159]. While our focus is to design algorithms that satisfy
the PGS optimality guarantee, we also consider the optimality guarantee of Probability of
Correct Selection with Indifference Zone as a comparison.

• Probability of correct selection with indifference zone (PCS-IZ). The problem is as-
sumed to have a unique solution that renders the optimal objective value. The opti-
mal value is assumed to be at least c > 0 smaller than other objective values. The
gap width c is called the indifference zone parameter in [17]. The PCS-IZ guarantee
requires that with probability at least 1 − δ, the solution x returned by an algorithm
is the unique optimal solution.

By choosing ϵ < c, algorithms satisfying the PGS guarantee can be directly applied
to satisfy the PCS-IZ guarantee. On the other hand, counterexamples in [67] show that
algorithms satisfying the PCS-IZ guarantee may fail to satisfy the PGS guarantee. This
phenomenon is further explained from the hypothesis-testing perspective in [101]. The failing
probability δ in either PGS or PCS-IZ is typically chosen to be very small to ensure a high
probability result. Hence, we assume in the following of this chapter that δ is small enough
and focus on the asymptotic expected simulation cost.

To facilitate the construction of simulation-optimization algorithms that can deliver the
PGS guarantee for general convex problems, we specify the composition of simulation-
optimization algorithms in the next subsection. In addition, we assume that the probability
distribution for the simulation output F (x, ξx) is sub-Gaussian.

Assumption 5. The distribution of F (x, ξx) is sub-Gaussian with known parameter σ2 for
any x ∈ X .

The sub-Gaussian distributional assumption part in Assumption 5 is standard in simu-
lation optimization literature; see for example the discussions in [253]. One special case is
that the probability distribution for the simulation output at a choice of decision variables x
is Gaussian with variance σ2

x. However, it is indeed possible that these variances for different
x’s are unknown in advance, therefore posing a challenge. In that regard, one may consider
using the system structure to provide a generic upper bound σ2 ≥ maxx∈X σ2

x, particularly
when the maximum possible level of uncertainties associated with a system is available. In
practice, if the decision maker knows in advance what specific extreme choices of decision
variables lead to the highest achievable variance of the system, that would be significantly
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valuable to find the upper bound. In general, when the variances are not known in advance,
such a generic upper bound can sometimes be loose and therefore is conservative. In this
chapter, we take the view that an upper bound (maybe a loose one) is known in advance, and
focus on the algorithm design to search for a good solution that has light dependence on the
dimension. Note that our analysis under Assumption 5 can be naturally extended to mod-
els whose randomness distribution satisfies certain concentration inequalities. For example,
when the randomness is sub-exponential (which may have heavier tails than Gaussian), one
can apply the Hoeffding-Azuma inequality for sub-exponential tailed martingales to achieve
provably efficient algorithms.

Simulation-optimization Algorithms

In this subsection, we define different classes of simulation-optimization algorithms. We
hope to design simulation-optimization algorithms that can deliver certain optimality guar-
antee, say, PGS, for any convex model without knowing further structure. A broad range of
sequential simulation-optimization algorithms consist of three parts.

• The sampling rule determines which choice of decision variables to simulate next, based
on the history of simulation observations up to current time.

• The stopping rule controls the end of the simulation phase and is a stopping time
according to the filtration up to current time. We assume that the stopping time is
finite almost surely.

• The recommendation rule selects the choice of decision variables that satisfies the
optimality guarantee based on the history of simulation observations.

The model of problem (4.1) consists of the decision set X , the space of randomness (Y,BY)
and the function F (·, ·). Next, we define the class of simulation-optimization algorithms that
can deliver solutions satisfying certain optimality guarantee for a given set of models.

Definition 10. Suppose the optimality guarantee O and the set of models M is given. A
simulation-optimization algorithm is called an (O,M)-algorithm, if for any model M ∈M,
the algorithm returns a solution to M that satisfies the optimality guarantee O.

We define the set of all models such that the objective function f(·) is convex (defined in
the next subsection) on the discrete set X asMC(X ), or simplyMC. Using this definition,
a (PGS,MC)-algorithm is one that guarantees the finding of a solution that satisfies the
PGS guarantee for any convex model without knowing further structure.

Simulation Costs

In the development of simulation-optimization algorithms that satisfy a certain optimal-
ity guarantee, especially for large-scale problems, the performance of different algorithms can
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be compared based on the their computational costs to achieve the same optimality guaran-
tee. We take the view that the simulation cost of generating replications of F (x, ξx) is the
dominant contributor to the computational cost associated with a simulation-optimization
algorithm. See also [155], [176], and [160]. Therefore, we quantify the computational cost as
the total number of evaluations of F (x, ξx) for all x ∈ X . In some simulation problems but
not all, we may also have access to noisy and possibly biased estimates of f(·) near point x
along with an evaluation of F (x, ξx). The simulation cost in this case is discussed in Section
4.6. For all simulation-optimization algorithms proposed in this chapter, we provide upper
bounds on the expected simulation cost to achieve a certain optimality guarantee. Note
that these upper bounds do not rely on the specific structure of the problem in addition
to convexity. The expected simulation cost serves as a measurement to compare different
algorithms and provide insights on how the computational cost depends on the scale and
dimension of the problem.

Now, we define the expected simulation cost for a given set of models M and given
optimality guarantee O.

Definition 11. Given the optimality guarantee O and a set of models M, the expected
simulation cost is defined as

T (O,M) := inf
A is (O,M)

sup
M∈M

E[τ ],

where A is a simulation-optimization algorithm and τ is the stopping time of the algorithm
A, which is also the number of simulation evaluations of F (·, ·).

The notion of simulation cost in this chapter is largely focused on

T (ϵ, δ,MC) := T ((ϵ, δ)-PGS,MC), T (δ,MCc) := T ((c, δ)-PCS-IZ,MCc).

Note that the (ϵ, δ)-PGS refers to the PGS optimality guarantee with user-specified precision
level ϵ > 0 and confidence level 1 − δ. The notion (c, δ)-PCS-IZ refers to the PCS-IZ
optimality guarantee with confidence level 1 − δ and IZ parameter c. The class of models
MC include all convex models while MCc include all convex models with IZ parameter c.
In addition, we mention that all upper bounds derived in this chapter are actually almost
sure bounds of the simulation cost, while lower bounds only hold in expectation.

Discrete Convex Functions in Multi-dimensional Space

In contrast to the continuous case, the discrete convexity has various definitions, e.g.,
convex extensible functions and submodular functions. Although these concepts coincide
for the one-dimensional case, they have essential differences in the multi-dimensional case.
In this chapter, we consider L♮-convex functions [168], which are defined by the mid-point
convexity (defined later in this subsection) for discrete variables. Considerably many dis-
crete optimization via simulation problems have the L♮-convex structure. For example, the
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expected customer waiting time in a multi-server queueing network is proved to be a sepa-
rated convex function [10, 232] and therefore is L♮-convex. In addition, the dissatisfaction
function of bike-sharing system is shown to be multimodular in [77], which is L♮-convex
under a linear transformation. More examples of L♮-convex functions are given in [168]. On
the other hand, the minimization of a L♮-convex function is equivalent to the minimization
of its linear interpolation, which is continuous and convex. Combined with the closed-form
subgradient, L♮-convex functions provide a good framework for studying discrete convex
simulation optimization problems.

Before we give the definition of L♮-convexity, we first show that it is not suitable to define
discrete convex functions just as functions that have a convex extension. The main problem
of this definition based on extension is that the “local optimality” may not be equivalent to
the global optimality, which is one of the important properties used in convex optimization.
In the discrete case, we say a point x̄ is a local minimum of f(·) if f(x̄) ≤ f(x) for all feasible
x such that ∥x − x̄∥∞ ≤ 1. Without this property, algorithms may get stuck at spurious
local minima and fail to satisfy the optimality guarantee. We give an example to illustrate
the failure.

Example 6. We consider the case when N = 4 and d = 2. The objective function is given
as

f(x, y) := 4|2x + y − 8|+ |x− 2y + 6|.
The function f(x, y) is a convex function on the set [1, 4]2 and the unique global minimizer is
(2, 4). When restricted to the integer lattice {1, 2, 3, 4}2, the global minimizer is still (2, 4).
We consider the point (3, 2) with objective value f(3, 2) = 5. In the local neighborhood
{2, 3, 4} × {1, 2, 3}, which contains points that have ℓ∞-distance at most 1 from (3, 2), the
objective values are

f(2, 1) = 18, f(3, 1) = 11, f(4, 1) = 12, f(2, 2) = 12,

f(4, 2) = 14, f(2, 3) = 6, f(3, 3) = 7, f(4, 3) = 16.

Thus, the point (3, 2) is a spurious local minimizer of the discrete function. This shows that
local optimality cannot imply global optimality.

On the other hand, the L♮-convexity ensures that local optimality implies global opti-
mality. Similar to the continuous case, L♮-convex functions can be characterized by the
mid-point convexity property.

Definition 12. A set S ⊂ Zd is called a L♮-convex set, if it holds that

x, y ∈ S =⇒ ⌊(x + y)/2⌋, ⌈(x + y)/2⌉ ∈ S.

A function f(x) : X 7→ R is called a L♮-convex function, if X is a L♮-convex set and the
discrete mid-point convexity holds:

f(x) + f(y) ≥ f(⌈(x + y)/2⌉) + f(⌊(x + y)/2⌋), ∀x, y ∈ X .
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The set of models such that f(x) is L♮-convex on X is denoted as MC(X ), or simply MC.
The set of models such that f(x) is L♮-convex with indifference zone parameter c is denoted
as MCc(X ), or simply MCc.

We assume that the objective function is L♮-convex in the remainder of this chapter.

Assumption 6. The objective function f(x) is a L♮-convex function on the L♮-convex set
X .

Before proceeding to the properties, we provide a few examples of L♮-convex sets and
L♮-convex functions.

Example 7. Examples of L♮-convex sets include the whole space Zd and the hypercube
[N1]×[N2]×· · ·× [Nd], where d and Ni are positive integers for all i ∈ [d]. Another important
example of L♮-convex sets is the linearly transformed capacity-constrained hypercube; see the
derivation in Section 4.7. Specifically, for positive integers d, N and M ≤ N , the following
set is L♮-convex:{

x ∈ Zd | x1 ∈ [N ], xi+1 − xi ∈ [N ], ∀i ∈ [d− 1], xd ≤M
}
.

Examples of L♮-convex functions include the indicator function of any L♮-convex set, linear
functions and separably convex functions, namely, functions having the form

f(x) =
d∑

i=1

f i(xi),

where f i(·) is a convex function for all i ∈ [d]. See [168] for more examples.

In the following lemma, we list several properties of L♮-convex functions.

Lemma 23. Suppose that the function f(x) : X 7→ R is L♮-convex. The following properties
hold.

• There exists a convex function f̃(x) on the convex hull conv(X ) such that f̃(x) = f(x)
for all x ∈ X .

• Local optimality is equivalent to global optimality:

f(x) ≤ f(y), ∀y ∈ X ⇐⇒ f(x) ≤ f(y), ∀y ∈ X s. t. ∥y − x∥∞ = 1.

• Translation submodularity holds:

f(x) + f(y) ≥ f((x− α1) ∨ y) + f(x ∧ (y + α1)),

∀x, y ∈ X , α ∈ N s. t. (x− α1) ∨ y, x ∧ (y + α1) ∈ X .
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The L♮-convexity can be viewed as a combination of submodularity and integral convex-
ity [168, Theorem 7.20]. Intuitively, the submodularity ensures the existence of a piecewise
linear convex interpolation in the local neighborhood of each point, while the integral con-
vexity ensures that the piecewise linear convex interpolations can be pieced together to form
a convex function on [1, N ]d. In addition, we can calculate a subgradient of the convex
extension with O(d) function value evaluations. Hence, L♮-convex functions provides a good
framework for extending continuous convex optimization theory to the discrete case.

4.3 Simulation-optimization Algorithms and

Expected Simulation Costs for a Special Case

In this section and the following section, we propose simulation-optimization algorithms
that achieve the PGS guarantee for any simulation optimization problem with a L♮-convex
objective function. We prove upper bounds on the expected simulation costs. To better
present the dependence of expected simulation costs on the scale and dimension of the
problem, we assume that the feasible set is the hypercube [N ]d in complexity analysis.

Assumption 7. The feasible set of decision variables is X = [N ]d, where N ≥ 2 and d ≥ 1.

In large-scale simulation problems, either N , or d, or both N and d can be large. We note
that if the feasible set X is a general L♮-convex set, the construction of the convex extension
and the analysis are still valid by replacing N with maxx,x′∈X ∥x − x′∥∞. Moreover, our
algorithms are directly applicable to the case where X is a general L♮-convex set, which is
also the minimal requirement on the feasible set for the definition of L♮-convexity. In this
section, we start with a special case where the decision space is {0, 1}d for a large d. We defer
the discussions for general N to Section 4.4. The simulator may have a general complex and
discontinuous structure that no unbiased gradient estimator is available within the replication
of simulation. For scenarios when a single replication of simulation can also generate gradient
information at very low costs, we propose and analyze simulation-optimization algorithms
in Section 4.6.

The general idea of designing simulation-optimization algorithms in the multi-dimensional
case is to construct subgradients of the convex extension with O(d) function value evalu-
ations on the neighboring choices of a decision. Hence, the stochastic subgradient descent
(SSGD) method can be used to solve problem (4.1). Compared with the bi-section method
and general cutting plane methods, gradient-based methods have two advantages in our case.
First, as pseudo-polynomial algorithms, gradient-based methods usually have lighter depen-
dence on the problem dimension d compared to strongly polynomial or weakly polynomial
algorithms. For example, the deterministic integer-valued submodular function minimiza-
tion (SFM) problem can be solved with Õ(d), Õ(d2), Õ(d3) function value evaluations using
pseudo-polynomial [15], weakly polynomial and strongly polynomial [140] algorithms, respec-
tively. Usually, gradient-based methods have extra polynomial dependence on the Lipschitz
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constant of the objective function, in exchange for the reduced dependence on d. However,
for a large group of problems, the Lipschitz constant may be estimated a priori. More-
over, we can design algorithms whose expected simulation cost does not critically rely on
the Lipschitz constant, in the sense that the Lipschitz constant only appears in a smaller
order term in the expected simulation cost. Hence, gradient-based methods are preferred for
high-dimensional problems. On the other hand, ordinary cutting plane methods are not ro-
bust to noise and problem-specific stabilization techniques should be designed for stochastic
problems [197], or complicated robust scheme should be constructed [170, 2]. Considering
these two advantages of gradient-based methods, we focus on the SSGD method in designing
our simulation-optimization algorithms and make the assumption that an upper bound of
the ℓ∞-Lipschitz constant is known a priori.

Assumption 8. An upper bound on the ℓ∞-Lipschitz constant of f(x) is known to be L a
priori. Namely, we know beforehand that

|f(x)− f(y)| ≤ L, ∀x, y ∈ X s. t. ∥x− y∥∞ ≤ 1.

We remark that this constant L, in the general decision-making contexts, reflects the
impact on the objective function by a small change in the value of the high-dimensional
decision variable. For example, in bike-sharing applications, this L may reflect the impact
of allocating one more bike to a station. Whether the objective function being revenue or
number of dissatisfied customers, the upper bound on the impact of allocating one more
bike can be quantified. The estimation of L usually relies on the domain knowledge about
the problem. For example, the user dissatisfaction function in the bike-sharing application
takes values in {0, 1, . . . ,M}, where M is the expected number of users each day. Then, an
estimate of the Lipschitz constant is L ≤M .

When the decision space is X = {0, 1}d, L♮-convex functions are equivalent to submodular
functions and therefore problem (4.1) is equivalent to the stochastic submodular function
minimization (stochastic SFM) problem. To prepare the design of simulation algorithms, we
first define the Lovász extension of submodular functions and give an explicit subgradient
of the Lovász extension at each point.

Definition 13. Suppose that function f(x) : {0, 1}d 7→ R is a submodular function, i.e., it
holds that

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y), ∀x, y ∈ {0, 1}d.

For any x ∈ [0, 1]d, we say a permutation αx : [d] 7→ [d] is a consistent permutation of x, if

xαx(1) ≥ xαx(2) ≥ · · · ≥ xαx(d).

We define Sx,0 := (0, . . . , 0). For each i ∈ {1, . . . , d}, the i-th neighbouring point of x is
defined as

Sx,i :=
i∑

j=1

eαx(j) ∈ X ,
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where vector ek is the k-th unit vector of Rd. We define the Lovász extension f̃(x) : [0, 1]d 7→
R as

f̃(x) := f
(
Sx,0

)
+

d∑
i=1

[
f
(
Sx,i
)
− f

(
Sx,i−1

)]
xαx(i). (4.2)

We note that the value of the Lovász extension does not rely on the consistent permuta-
tion we choose. A numerical illustration of the Lovász extension is provided in the appendix.
We list several well-known properties of the Lovász extension and refer their proofs to [152,
80]. We note that the subdifferential at point x ∈ [0, 1]d is defined as the set

∂f̃(x) =
{
g ∈ Rd : ⟨g, x− y⟩ ≥ f̃(x)− f̃(y), ∀y ∈ [0, 1]d

}
.

Lemma 24. Suppose that Assumptions 5-8 hold. Then, the following properties of f̃(x)
hold.

(i) For any x ∈ X , it holds f̃(x) = f(x).

(ii) The minimizers of f̃(x) satisfy arg minx∈[0,1]d f̃(x) = arg minx∈{0,1}d f(x).

(iii) Function f̃(x) is a convex function on [0, 1]d.

(iv) A subgradient g ∈ ∂f̃(x) is given by

gαx(i) := f
(
Sx,i
)
− f

(
Sx,i−1

)
, ∀i ∈ [d]. (4.3)

(v) Subgradients of f̃(x) satisfy

∥g∥1 ≤ 3L/2, ∀g ∈ ∂f̃(x), x ∈ [0, 1]d.

To apply the SSGD method to design simulation-optimization algorithms for problem
(4.1), we need to resolve the following two questions:

• How to design an unbiased subgradient estimator?

• How to round an approximate solution in [0, 1]d to an approximate solution in X =
{0, 1}d?

For the first question, we consider the subgradient estimator at point x as

ĝαx(i) := F
(
Sx,i, ξ1i

)
− F

(
Sx,i−1, ξ2i−1

)
, ∀i ∈ [d], (4.4)

where ξji are mutually independent for i ∈ [d] and j ∈ [2]. By definition, we know the
components of ĝ are mutually independent and the simulation cost of each ĝ is 2d. Using
the subgradient defined in (4.3), we have

E
[
ĝαx(i)

]
= E

[
F
(
Sx,i, ξi

)
− F

(
Sx,i−1, ξi−1

)]
= f

(
Sx,i
)
− f

(
Sx,i−1

)
= gαx(i), ∀i ∈ [d],
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which means that ĝ is an unbiased estimator of g.
Next, we consider the second question. We define the relaxed problem as

f ∗ := min
x∈[0,1]d

f̃(x). (4.5)

Properties (i) and (ii) of Lemma 24 imply that the original problem (4.1) is equivalent to
the relaxed problem (4.5). In the deterministic case, suppose we already have an ϵ-optimal
solution to problem (4.5), i.e., a point x̄ in [0, 1]d such that f̃(x̄) ≤ f ∗ + ϵ. Then, we rewrite
the Lovász extension in (4.2) as

f̃(x̄) =
[
1− x̄αx̄(1)

]
f
(
Sx̄,0

)
+

d−1∑
i=1

[
x̄αx̄(i) − x̄αx̄(i+1)

]
f
(
Sx̄,i
)

+ x̄αx̄(d)f
(
Sx̄,d

)
, (4.6)

which is a convex combination of f (Sx̄,0) , . . . , f
(
Sx̄,d

)
. Hence, there exists an ϵ-optimal

solution among the neighboring points of x̄. This means that we can solve a sub-problem
with d+ 1 points to get the ϵ-optimal solution among neighboring points. For the stochastic
case, a similar rounding process can be designed and we give the pseudo-code in Algorithm
2. The rounding process for the (c, δ)-PCS-IZ guarantee follows by choosing ϵ = c/2.

Algorithm 2 Rounding process to a feasible solution

Input: Model X ,BY, F (x, ξx), optimality guarantee parameters ϵ, δ, (ϵ/2, δ/2)-PGS solution
x̄ to problem (4.5).

Output: An (ϵ, δ)-PGS solution x∗ to problem (4.1).
1: Compute a consistent permutation of x̄, denoted as α.
2: Compute the neighbouring points of x̄, denoted as S0, . . . , Sd.
3: Simulate at Si until the 1 − δ/(4d) confidence half-width of F̂n(Si) is smaller than ϵ/4

for all i.
4: Return the optimal point x∗ ← arg minS∈{S0,...,Sd} F̂n(S).

The following theorem proves the correctness and estimates the simulation cost of Algorithm
2. Note that all the upper bound results on simulation costs in this chapter are proved to
hold both almost surely and in expectation. We do not differentiate the use of simulation
costs and expected simulation costs in upper bound results.

Theorem 41. Suppose that Assumptions 5-8 hold. The solution returned by Algorithm 2
satisfies the (ϵ, δ)-PGS guarantee. The simulation cost of Algorithm 2 is at most

O

[
d

ϵ2
log

(
d

δ

)
+ d

]
= Õ

[
d

ϵ2
log

(
1

δ

)]
.
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We note that the simulation cost in the Õ notation gives the asymptotic simulation cost
when δ is small enough. After resolving these two problems, we can first use the SSGD
method to find an approximate solution to problem (4.5) and then round the solution to get
an approximate solution to problem (4.1). Hence, the focus of the remainder of this section
is to provide upper bounds of simulation cost to the SSGD method. The main difficulty of
giving sharp upper bounds lies in the fact that the Lovász extension is neither smooth nor
strongly-convex. This property of the Lovász extension prohibits the application of Nesterov
acceleration and common variance reduction techniques.

Now, we propose the projected and truncated SSGD method for the (ϵ, δ)-PGS guarantee.
The orthogonal projection onto the convex hull conv(X ), which is defined as

PX (x) := arg min
y∈conv(X )

∥y − x∥2, ∀x ∈ Rd,

is applied after each iteration to ensure the feasibility of iteration point. Since the convex
hull is a convex set, the projection is well-defined. For the case when the feasible set is
{0, 1}d, the projection is given by

PX (x) := (x ∧ 1) ∨ 0, ∀x ∈ Rd.

In addition to the projection, componentwise truncation of stochastic subgradient is critical
in reducing expected simulation costs. The truncation operator with threshold M > 0 is
defined as

TM(g) := (g ∧M1) ∨ (−M1), ∀g ∈ Rd.

The pseudo-code of projected and truncated SSGD method is listed in Algorithm 3.

Algorithm 3 Projected and truncated SSGD method for the PGS guarantee

Input: Model X ,BY, F (x, ξx), optimality guarantee parameters ϵ, δ, number of iterations T ,
step size η, truncation threshold M .

Output: An (ϵ, δ)-PGS solution x∗ to problem (4.1).
1: Choose an initial point x0 ∈ X .
2: for t = 0, . . . , T − 1 do
3: Generate a stochastic subgradient ĝt at xt.
4: Truncate the stochastic subgradient g̃t ← TM (ĝt).
5: Update xt+1 ← PX (xt − ηg̃t).
6: end for
7: Compute the averaging point x̄←

(∑T−1
t=0 xt

)
/T .

8: Round x̄ to an integral point by Algorithm 2.

The analysis of Algorithm 3 fits into the classical convex optimization framework. With
a suitable choice of the step size, the truncation threshold and the number of iterations,
Algorithm 3 returns an (ϵ, δ)-PGS solution and the expected simulation cost has O(d2)
dependence on the dimension.
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Theorem 42. Suppose that Assumptions 5-8 hold and the subgradient estimator in (4.4) is
used. If we choose

T = Θ̃

[
d

ϵ2
log

(
1

δ

)]
, M = Θ̃

[√
log

(
dT

ϵ

)]
, η =

1

M
√
T
,

then Algorithm 3 returns an (ϵ, δ)-PGS solution. Furthermore, we have

T (ϵ, δ,MC) = O

[
d2

ϵ2
log

(
1

δ

)
+

d3

ϵ2
log

(
d2

ϵ3

)
+

d3L2

ϵ2

]
= Õ

[
d2

ϵ2
log

(
1

δ

)]
.

Although independent of δ, we note that the last two terms in the expected simulation
cost may be comparable to the first term when δ is not that small. We can prove that,
without the truncation step (i.e., M =∞), the expected simulation becomes

Õ

[
d3

ϵ2
log

(
1

δ

)]
.

Hence, the truncation of stochastic subgradient is necessary for reducing the asymptotic
expected simulation cost. In addition, we note that the Lipschitz constant L is required in
determining the truncation threshold M ; see Lemma EC.3 for more details. While the the
error of the normal SSGD method only contains the optimization residual and the variance
terms, the residual of the truncated SSGD method has an extra bias term. We note that the
bias term can be made arbitrarily small with high probability by choosing large enough M
and utilizing the tail bound for sub-Gaussian random variables, and therefore the total error
can be controlled similarly as the normal SSGD method. By choosing ϵ = c/2, Algorithm 3
returns a (c, δ)-PCS-IZ solution and the expected simulation cost for the PCS-IZ guarantee
is

T (δ,MCc) = Õ

[
d2

c2
log

(
1

δ

)]
.

We note that the expected simulation cost for both guarantees does not critically depend on
the Lipschitz constant L. As an alternative to estimator (4.4), one may consider generating
a stochastic subgradient by randomly choosing a subset of components and only estimating
the chosen components of subgradients. However, using this estimator, we cannot achieve
better simulation cost and the expected simulation cost may be critically dependent on L.

Before finishing the discussion of stochastic SFM problem, we note that the expected sim-
ulation cost in Theorem 42 may be improved if we further assume the stochastic subgradient
is bounded almost surely. We provide a detailed analysis in the appendix.

4.4 Simulation-optimization Algorithms and

Expected Simulation Costs for the General Case

In this section, we extend to the general L♮-convex function minimization problem with
decision space [N ]d for general large N and d. We design simulation-optimization algorithms
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that achieve the PGS guarantee and prove upper bounds on the simulation costs.
As an extension to the methodology in Section 4.3, we first show that the Lovász extension

in the neighborhood of each point can be pieced together to form a convex function on
conv(X ) = [1, N ]d. We define the local neighborhood of each point y ∈ [N − 1]d as the
hypercube

Cy := y + [0, 1]d,

where the Minkowski sum of a point y ∈ Rd and a set C ⊂ Rd is defined as

y + C := {y + x | x ∈ C}.

We denote the objective function f(x) restricted to Cy ∩ X as fy(x). For point x ∈ Cy, we
denote αx as a consistent permutation of x− y in {0, 1}d, and for each i ∈ {0, 1, . . . , d}, the
corresponding i-th neighboring point of x is defined as

Sx,i := y +
i∑

j=1

eαx(j).

By the translation submodularity property of L♮-convex functions, we know function fy(x)
is a submodular function on y + {0, 1}d and its Lovász extension in Cy can be calculated as

f̃y(x) := f
(
Sx,0

)
+

d∑
i=1

[
f
(
Sx,i
)
− f

(
Sx,i−1

)]
xαx(i).

Now, we piece together the Lovász extension in each hypercube by defining

f̃(x) := f̃y(x), ∀x ∈ [1, N ]d, y ∈ [N − 1]d s. t. x ∈ Cy. (4.7)

The next theorem verifies the well-definedness and the convexity of f̃ .

Theorem 43. The function f̃(x) in (4.7) is well-defined and is convex on X .

A numerical verification of the results of Theorem 43 is provided in the appendix. Proper-
ties of the Lovász extension in Lemma 24 can be naturally extended to the convex extension
f̃(x).

Lemma 25. Suppose that Assumptions 5-8 hold. Then, the following properties of f̃(x)
hold.

• For any x ∈ X , it holds f̃(x) = f(x).

• The minimizers of f̃ satisfy arg miny∈[1,N ]d f̃(y) = arg miny∈[N ]d f(y).

• For a point x ∈ Cy, a subgradient g ∈ ∂f̃(x) is given by

gαx(i) := f
(
Sx,i
)
− f

(
Sx,i−1

)
, ∀i ∈ [d]. (4.8)
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• Subgradients of function f̃(x) satisfy

∥g∥1 ≤ 3L/2, ∀g ∈ ∂f̃(x), x ∈ X .

Similar to the proof of Theorem 43, the subgradient given in (4.8) does not depend on
the hypercube and the consistent permutation we choose. The subgradient estimator defined
in (4.4) is still valid in the general case. Thus, changing the orthogonal projection to be

PX (x) := (x ∧N1) ∨ 1, ∀x ∈ Rd,

Algorithm 3 can be applied to the general case and we get the counterpart to Theorem 42.

Theorem 44. Suppose that Assumptions 5-8 hold and the subgradient estimator in (4.4) is
used. If we choose

T = Θ̃

[
dN2

ϵ2
log

(
1

δ

)]
, M = Θ̃

[√
log

(
dNT

ϵ

)]
, η =

N

M
√
T
,

then Algorithm 3 returns an (ϵ, δ)-PGS solution. Furthermore, we have

T (ϵ, δ,MC) = O

[
d2N2

ϵ2
log

(
1

δ

)
+

d3N2

ϵ2
log

(
d2N

ϵ3

)
+

d3N2L2

ϵ2

]
= Õ

[
d2N2

ϵ2
log

(
1

δ

)]
.

We reiterate that the results also apply to the general L♮-convex set case by replacing
the scale N with maxx,x′∈X ∥x− x′∥∞. Similarly, the expected simulation costs in Theorem
44 can be improved under the bounded stochastic subgradient assumption and we defer the
discussion to the appendix. For the PCS-IZ guarantee, we can choose ϵ = c/2 and Algorithm
3 will return a (c, δ)-PCS-IZ solution. Hence, the above asymptotic simulation costs also
hold for the PCS-IZ guarantee. However, with the priori knowledge about the indifference
zone parameter, we can design an acceleration scheme similar to [239], which is based on
the Weak Sharp Minimum condition. The acceleration scheme reduces the dependence on
N from O(N2) to O(log(N)) and we provide details in the appendix.

4.5 Lower Bound on Expected Simulation Cost

We derive lower bounds on the expected simulation cost for any simulation-optimization
algorithm that can achieve the PGS guarantee. In this section, we prove that the expected
simulation cost is lower bounded by O(dϵ−2 log(1/δ)). We acknowledge that the lower bound
may not be tight, but the proven lower bound results suggest the limits for all simulation-
optimization algorithms to achieve the PGS guarantee for general simulation optimization
problems with convex structure.

To prove lower bounds, basically, we construct several convex models that are “similar”
to each other but they have distinct optimal solutions, where the difference between two
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models is characterized by the Kullback–Leibler (KL) divergence between their distributions.
Hence, any simulation-optimization algorithms need a large number of simulation runs to
differentiate these models. More rigorously, the information-theoretical inequality in [128]
provides a systematic way to prove lower bounds of zeroth-order algorithms. Given a zeroth-
order algorithm and a model M , we denote Nx(τ) as the number of times that F (x, ξx) is
sampled when the algorithm terminates, where τ is the stopping time of the algorithm.
Then, it follows from the definition that

EM [τ ] =
∑
x∈X

EM [Nx(τ)] ,

where EM is the expectation when the model M is given. Similarly, we can define PM as the
probability when the model M is given. The following lemma was proved in [128] and is the
major tool for deriving lower bounds in this chapter.

Lemma 26. For any two models M1,M2 and any event E ∈ Fτ , we have∑
x∈X

EM1 [Nx(τ)] KL(ν1,x, ν2,x) ≥ d(PM1(E),PM2(E)), (4.9)

where d(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)), KL(·, ·) is the KL divergence and
νk,x is the distribution of model Mk at point x for k = 1, 2.

The information-theoretical inequality (4.9) is our major tool for deriving lower bounds.
We first reduce the construction of L♮-convex functions to the construction of submodular
functions. Then, using the family of submodular functions defined in [90], we can construct
d + 1 submodular functions that have different optimal solutions and have the same value
except on d + 1 potential solutions. Hence, the algorithm has to simulate enough samples
on the d + 1 potential solutions to decide the optimal solution and the simulation cost is
proportional to d.

Theorem 45. Suppose that Assumptions 5-7 hold. We have

T (ϵ, δ,MC) ≥ Θ

[
d

ϵ2
log

(
1

δ

)]
.

We note that the lower bound above is also true when Assumption 8 holds with L ≥ ϵ/N .
In addition, a similar construction to Theorem 45 leads to a lower bound on the expected
simulation cost for the PCS-IZ guarantee.

Theorem 46. Suppose that Assumptions 5-7 hold. We have

T (δ,MCc) ≥ Θ

[
d

c2
log

(
1

δ

)]
.
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4.6 Simulation-optimization Algorithms with Biased

Gradient Information

In large-scale discrete optimization via simulation, during a simulation run for perfor-
mance evaluation at a given value of the d-dimensional decision variable x, it is sometimes
possible that the neighboring values of decision variables (those very close to x) can be
evaluated simultaneously within the same simulation run for x at marginal costs. See [121]
and [120] for a bike sharing discrete optimization via simulation problem that adopts this
feature. When the decision variable x is in continuous space, this simultaneous simulation
approach is called the Infinitesimal Perturbation Analysis (IPA) or the Forward/Backward
Automatic Differentiation, in which a gradient estimator at x can be obtained within the
same simulation run for evaluation of x. In continuous decision space, such gradient esti-
mators can be unbiased under Lipschitz continuity regularity conditions, though no general
guarantees on unbiasedness exist when continuity fails. In contrast, for discrete optimiza-
tion via simulation problems, in particular for those where discrete decision variables do
not easily relax to continuous variables, the difference of function value on x and function
value on the neighboring points of x can be viewed as an approximate directional derivative.
This approximate gradient information (i.e., the difference of objective function values) is
very difficult, if not impossible, to estimate without bias using only a single simulation run.
In general, the system dynamics and logic are different for two different discrete decision
variables even when they differ in only one coordinate. Therefore, in the simulation run for
some choice of the decision variable x, the simultaneous evaluation for neighboring choices of
the decision variable may incur a bias. See Chapter 4 of [120] for a detailed discussion in the
bike-sharing optimization as an example. Despite the bias, the availability of such gradient
information can potentially be beneficial when d is large, because only one simulation run
is needed to evaluate a biased version of a d-dimension gradient estimator. The gradient
estimator can be usually obtained at a marginal cost that does not depend on the dimension
d, which is much lower than the cost of constructing a finite difference gradient estimator.

In this section, we provide simulation-optimization algorithms to achieve the PGS guar-
antee for discrete convex simulation optimization problems, when the gradient information
is available (but possibly biased) within a simulation run at a cost that does not depend on
dimension. We call this class of simulation-optimization algorithms, which utilize the avail-
able gradient information, first-order algorithms. We will show how the use of the gradient
information reduces the expected simulation cost and how the bias existing in the gradient
information affects the results. We first rigorously define the gradient information that can
be obtained in simulation with different choices of decision variables. The gradient informa-
tion that can be obtained within one simulation run is generally biased and has correlated
components. The existence of correlation may increase the difficulty of analyzing the per-
formance of simulation-optimization algorithms. Moreover, the correlation could contribute
to a larger overall variance of the norm of the subgradient estimator, which may adversely
affect the simulation-optimization algorithm.
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On the bias side, if the bias in the subgradient estimator can be arbitrarily large, the sign
of a subgradient estimator can even be flipped (see an example in [71]). In those cases, there
is in general no guarantee for gradient-based algorithms even for convex problems. Examples
in [6] also show that the biased gradient-based methods may not converge to the optimum
or even dramatically diverge. To circumvent this challenge, some existing works on biased
gradient-based methods require the objective function to be smooth and have additional
benign geometrical properties, e.g., the strongly convexity or the Polyak- Lojasiewicz (PL)
condition [60, 41, 6, 109]. Since the convex extension of a general L♮-convex function is a
piecewise linear function and is neither smooth nor strongly convex, these methods which
require benign structure cannot be applied to our case.

In the special case when the biased subgradient estimator of f(x) is the unbiased sub-
gradient estimator of another function h(x), we can view h(x) as a perturbed version of
f(x). We define the Lovász extension of h(x) in the same way and equivalently minimize the
Lovász extension via the SSGD method. However, since function h(x) may not be L♮-convex,
its Lovász extension is a non-smooth and non-convex function and there is no guarantee on
the complexity of the SSGD method [58, 56]. In [246], the authors proposed a stochastic
normalized subgradient descent method with sample complexity O(ϵ−4) for finding a point
with a subgradient with norm smaller than ϵ. Under the assumption of weak convexity, al-
gorithms with sample complexity of O(ϵ−2) have been proved in [57, 249, 163]. On the other
hand, to achieve the same sample complexity as convex optimization, it is proved that the
perturbation h(x)− f(x) should has order O(1/d) for all feasible x [18, 126, 164]. However,
the existence of the perturbed function h(x) does not always hold and therefore we may not
use the above methods.

The above discussion shows that some regularity assumptions on the bias are necessary for
the applicability of gradient information to achieve the PGS guarantee. Now, we describe a
formal definition of biased subgradient estimator along with the assumption on bias. The key
in the assumption is to regulate the relative magnitude of the bias, so that in expectation the
bias does not flip the sign of any components of the true subgradient at any choices of decision
variables, i.e., the magnitude of any component of the bias is bounded by the magnitude
of this component of the true subgradient. The use of common random variables whenever
available in general can contribute to the validity of this assumption. As a comparison, [71]
regulate the norm of the bias to provide guarantees for continuous stochastic optimization
problems. To prepare notation, the set of neighboring choices of decision variable x ∈ X is
defined as

Nx := {x± eS : S ⊂ [d]} ∩ X .

where ei is the i-th unit vector of Rd and eS is the indicator vector
∑

i∈S ei. The following as-
sumption describes the case that allows the gradient information to have bias and correlation
among different directions.

Assumption 9 (Subgradient estimator with bias and correlation.). Given the bias ratio
a ∈ [0, 1), for any point x ∈ X , there exists a deterministic function Hx(y, ηy) : Nx×Z 7→ R
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such that

|E[Hx(y, ηy)]− [f(y)− f(x)]| ≤ a · |f(y)− f(x)| , ∀y ∈ Nx, (4.10)

where Nx is the set of neighboring points of x and (Z,BZ) is a proper space that summarizes
the randomness of G(x, ηx). Moreover, the marginal distribution for each Hx(y, ηy) is sub-
Gaussian with parameter σ̃2 and the simulation cost of evaluating Hx(y, ηy) for all y ∈ Nx

is at most γ multiplying the simulation cost of evaluating F (x, ξx).

Under Assumption 9, E[Hx(y, ηy)] has the same sign as f(y)− f(x) and, using Theorem
7.14 in [168], point x ∈ X is a minimizer of f(x) if and only if

E[Hx(y, ηy)] ≥ 0, ∀y ∈ Nx.

Therefore, it is still possible to check the global optimality by merely comparing the dif-
ferences with neighboring points. A similar optimality condition can be established for the
PGS guarantee. Using the above observation, we give an algorithm for the PGS guarantee
using the biased subgradient estimator Hx(y, ηy). The algorithm can be seen as a stochastic
version of the steepest descent method in [168] and is listed in Algorithm 4.

Algorithm 4 Adaptive stochastic steepest descent method for the PGS guarantee

Input: Model X ,BY, F (x, ξx), optimality guarantee parameters ϵ, δ, biased subgradient es-
timator Hx(y, ηy), bias ratio a.

Output: An (ϵ, δ)-PGS solution x∗ to problem (4.1).
1: Choose the initial point x0,0 ← (N/2, . . . , N/2)T .
2: Set the initial confidence half-width threshold h0 ← (1− a)L/12.
3: Set maximal number of epochs E ← ⌈log2(NL/ϵ)⌉.
4: Set maximal number of iterations T ← (1 + a)/(1− a) · 6N .
5: for e = 0, 1, . . . , E − 1 do
6: for t = 0, 1, . . . , T − 1 do
7: repeat simulate Hxe,t(y, ηy) for all y ∈ Nxe,t

8: Compute the empirical mean Ĥxe,t(y) using all simulated samples for all y ∈
Nxe,t .

9: Compute the 1− δ/(ET ) one-sided confidence interval[
Ĥxe,t(y)− hy,∞

)
, ∀y ∈ Nxe,t .

10: until the confidence half-width hy ≤ he for all y ∈ Nxe,t

11: if Ĥxe,t(y) ≤ −2he for some y ∈ Nxe,t then ▷ This takes 2d+1 arithmetic
operations.

12: Update xe,t+1 ← y.
13: else if Ĥxe,t(y) > −2he for all y ∈ Nxe,t then
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14: break
15: end if
16: end for
17: Set xe+1,0 ← xe,t and he+1 ← he/2.
18: end for
19: Return xE,0.

The following theorem verifies the correctness of Algorithm 4 and estimates its simulation
cost.

Theorem 47. Suppose that Assumptions 5-9 hold. Algorithm 4 returns an (ϵ, δ)-PGS solu-
tion and we have

T (ϵ, δ,MC) = O

[
γN3

(1− a)3ϵ2
log

(
1

δ

)
+

γN

1− a
log

(
N

ϵ

)]
= Õ

[
γN3

(1− a)3ϵ2
log

(
1

δ

)]
.

We note that Algorithm 4 requires 2d+1 arithmetic operations for each iteration. Even
though they share the same simulation logic, the memory cost may not be negligible, which
may also incur additional computational cost of keeping track of large-scale vectors. There
is then a trade-off between simulation costs and memory in general, which we do not exactly
model in this chapter. To avoid exponentially many arithmetic operations and memory
occupation in the steepest descent method, the comparison-based zeroth-order method in [2]
can be extended to our case and reduce the number of arithmetic operations to a polynomial
in d. In addition, we may consider using the following stochastic coordinate steepest descent
method as a simple and fast implementation of Algorithms 4 and 6. Let xt be the current
iteration point and we update by two steps.

1. Simulate Hxt(y, ηy) for all y ∈ {xt ± ei, i ∈ [d]} until the confidence interval is small
enough.

2. If for some y ∈ {xt ± ei, i ∈ [d]}, we know f(y) < f(xt) holds with high probability,
then update xt+1 = y; otherwise if f(y) ≥ f(xt)−O(ϵ) holds for all y ∈ {xt±ei, i ∈ [d]}
with high probability, then we terminate the iteration and return xt as the solution.

We can see that the number of arithmetic operations for each iteration is O(d). Moreover,
an analogous method utilizing O(d) neighboring points in constructing gradient is shown to
have good empirical performance in [120]. However, theoretically, without extra assumptions
on the problem structure, the stopping criterion f(y) ≥ f(x)−O(ϵ) for all y ∈ {xt± ei, i ∈
[d]} cannot ensure the approximate optimality of solution x. We give a counterexample to
show that f(y) ≥ f(x) for all y ∈ {xt ± ei, i ∈ [d]} cannot ensure the optimality of solution
x.

Example 8. We consider the case when d = 2 and N = 3. Define the objective function as

f(x, y) := 2|x− y| − |x + y − 2|, ∀(x, y) ∈ {1, 2, 3}2.
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We can verify that f(x, y) is a L♮-convex function and its minimizer is (3, 3) with optimal
value −4. Considering point (2, 2), we can calculate that

f(2, 2) = −2, f(1, 2) = 1, f(3, 2) = −1, f(2, 1) = 1, f(2, 3) = −1.

Hence, the guarantee is satisfied at (2, 2) but the point is not a minimizer of f(x).

Finally, in the case when the indifference zone parameter c is known, we can prove that
choosing ϵ = Nc is enough for the (c, δ)-PCS-IZ guarantee. We provide the algorithm and
its complexity analysis in the appendix.

4.7 Numerical Experiments

In this section, we implement our proposed simulation-optimization algorithms that are
guaranteed to find high-confidence high-precision PGS solutions. We first consider the op-
timal allocation problem of a queueing system, where we show the advantage of using the
truncation step. Next, we consider an artificially constructed L♮-convex function, where
more details about the objective function landscape are available for the evaluation of the
performance.

Optimal Allocation Problem

In the optimal allocation problem, we consider the 24-hour operation of a service system
with a single stream of incoming customers. The customers arrive according to a a doubly
stochastic non-homogeneous Poisson process with intensity function

Λ(t) := 0.5λN · (1− |t− 12|/12), ∀t ∈ [0, 24],

where λ is a positive constant and N is a positive integer. Each customer requests a service
with service time independent and identically distributed according to the log-normal distri-
bution with mean 1/λ and variance 0.1. We divide the 24-hours operation into d time slots
with length 24/d for some positive integer d. For the i-th time slot, there are xi ∈ [N ] of ho-
mogeneous servers that work independently in parallel and the number of servers cannot be
changed during the slot. Assume that the system operates based on a first-come-first-serve
routine, with unlimited waiting room in each queue, and that customers never abandon.

The decision maker’s objective is to select the staffing level x := (x1, . . . , xd) such that
the total waiting time of all customers is minimized. Namely, letting f(x) be the expected
total waiting time under the staffing plan x, then the optimization problem can be written
as

min
x∈[N ]d

f(x). (4.11)
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It has been proved in [10] that the function f(·) is multimodular. We define the linear
transformation

g(y) := (y1, y2 − y1, . . . , yd − yd−1), ∀y ∈ Rd.

Then, [168] has proved that

h(y) := f ◦ g(y) = f(y1, y2 − y1, . . . , yd − yd−1)

is a L♮-convex function on the L♮-convex set

Y := {y ∈ [Nd]d | y1 ∈ [N ], yi+1 − yi ∈ [N ], i = 1, . . . , N − 1}.

The optimization problem (4.11) has the trivial solution x1 = · · · = xd = N . However, in
reality, it is also necessary to keeping the staffing cost low. There are two different approaches
to achieve this goal. First, we can constrain the total number of servers

∑d
i=1 xi to be at

most K, where K ≤ Nd is a positive integer and the optimization problem can be written
as

min
y∈Y

h(y) s. t. yd ≤ K. (4.12)

On the other hand, we can add a regularization term R(x1, . . . , xd) := C/d·
∑d

i=1 xi = C/d·yd
to the objective function, where C > 0 is a constant. The optimization problem can be
written as

min
y∈Y

h(y) + C/d · yd. (4.13)

We refer problems (4.12) and (4.13) as the constrained and the regularized problems, re-
spectively. Our algorithms can be extended to this case by considering the Lovász extension
h̃(y) on the set

Ỹ := {y ∈ [1, Nd]d | y1 ∈ [1, N ], yi+1 − yi ∈ [1, N ], i = 1, . . . , N − 1}.

We compare the performance of the projected SSGD method (Algorithm 3) with trunca-
tion (M < ∞) and without truncation (M = ∞) on both problems. In the truncation-free
case, the step size is chosen to be η = O(N

√
d/T ). We first fix the dimension (number of

time slots) to be d = 4 and compare the performance when the scale N ∈ {10, 20, 30, 40, 50},
and we then fix the scale to be N = 10 and compare the performance when the dimension
d ∈ {4, 8, 12, 16, 20, 24}. The parameters of the problem are chosen as λ = 4, C = 50 and
K = ⌊Nd/3⌋, and the optimality guarantee parameters are ϵ = N/2 and δ = 10−6. For each
problem setup, we average the simulation costs of 10 independent implementations to esti-
mate the expected simulation cost. Moreover, early stopping is used to terminate algorithms
early when little progress is made after some iterations. More concretely, we maintain the
empirical mean of stochastic objective function values up to the current iteration and termi-
nate the algorithm if the empirical mean does not decrease by ϵ/

√
N after O(dϵ−2 log(1/δ))

consecutive iterations.
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Regularized Constrained
Params. Truncated Not truncated Truncated Not truncated
d N Cost Obj. Cost Obj. Cost Obj. Cost Obj.

4 10 2.99e5 2.10e2 6.56e5 2.11e2 3.00e5 4.76e1 4.99e5 4.97e1
4 20 1.21e5 3.53e2 2.61e5 3.53e2 1.14e5 5.23e1 1.77e5 5.38e1
4 30 8.85e4 4.75e2 1.68e5 4.76e2 7.38e4 5.24e1 1.23e5 5.21e1
4 40 6.25e4 5.91e2 1.34e5 6.07e2 5.28e4 5.31e1 9.24e4 5.28e1
4 50 5.34e4 7.07e2 1.08e5 7.07e2 4.66e4 5.64e1 6.61e4 5.51e1

8 10 1.19e6 1.75e2 3.80e6 1.76e2 1.20e6 3.11e1 2.23e6 3.02e1
12 10 2.68e6 1.59e2 9.48e6 1.59e2 2.69e6 1.87e1 5.36e6 1.86e1
16 10 6.35e6 1.49e2 1.31e7 1.50e2 4.78e6 1.49e1 1.08e7 1.41e1
20 10 9.91e6 1.43e2 2.09e7 1.46e2 9.43e6 1.17e1 1.70e7 1.28e1
24 10 1.50e7 1.35e2 3.09e7 1.41e2 1.36e7 9.43e0 2.10e7 1.17e1

Table 4.7.1: Simulation costs and objective function values of Algorithm 3 on the optimal
allocation problem.

We first implement both algorithms on the trivial problem (4.11) for 10 times. Since
the optimal solution is known, it is possible to verify whether the solutions returned by
algorithms are at most ϵ worse than the optimum, at a confidence that is larger than 1− δ.
In the experiment, we run sufficiently large number of simulation replications to verify the
ϵ-optimality at the selected solution with confidence higher than 1− δ′, where δ′ ≪ δ.

Next, we consider the performance of algorithms on problems (4.12) and (4.13). We
summarize the simulation costs and the objective values in Table 4.7.1. We can see that
both algorithms return a similar objective value and the simulation cost grows when d
becomes larger. The growth rate is approximately quadratic. The simulation cost becomes
smaller when N gets larger, since we allow a larger sub-optimality gap (N/2) when N is
larger. We note that the feasible set of both problems is not a hypercube, and thus the
dependence of simulation costs on d and N is not exactly quadratic as indicated by our
theory. In addition, we can see that the truncation plays an important role in reducing the
simulation cost, especially when the dimension is high.

Separable Convex Function Minimization

We consider the problem of minimizing a stochastic L♮-convex function whose expectation
is a separable convex function parameterized by a vector c ∈ Rd and the optimal solution
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x∗ ∈ Rd:

fc,x∗(x) :=
d∑

i=1

cig(x∗
i ;xi),

where ci ∈ [0.75, 1.25], x∗
i ∈ {1, . . . , ⌊0.3N⌋} for all i ∈ [d] and

g(y∗; y) :=


√

y∗

y
− 1 if y ≤ y∗√

N+1−y∗

N+1−y
− 1 if y > y∗

, ∀y, y∗ ∈ [N ].

It is observed that the function fc,x∗(x) is a separable convex functions and therefore is L♮-
convex. Moreover, the function fc,x∗(x) has the optimum x∗ associated with the optimal
value 0. For stochastic evaluations, we add Gaussian noise with mean 0 and variance 1 to
each point x ∈ X . Due to the O[(y∗)−3/2] growth rate, the landscape of g(y∗; y) is flat around
x∗. The advantage of this numerical example is that the expected objective function has
a closed form, and we are able to verify the ϵ-optimality of the solutions returned by the
proposed algorithms.

To analyze the effect of the dimension and the scale on the expected simulation cost,
we first fix d = 10 and compare the performance when N = 30, 60, 90, 120, 150; then we fix
N = 30 and compare the performance when d = 10, 20, 30, 40, 50. The optimality guarantee
parameters are chosen as ϵ = (d!)1/d/5 and δ = 10−6. In the one-dimensional case, this
choice of ϵ ensures that the ϵ-sub-level set of the objective function approximately covers
N/4 choices of decisions. We note that this choice of ϵ is only for comparisons between
different (d,N) and our results can be extended to other choices of ϵ. We compute the
average simulation cost of 100 independently generated models to estimate the expected
simulation cost. Similar early stopping criteria are also applied.

Figure 4.7.1 shows the results of fixed d and fixed N . Since the choice of ϵ is dependent
on d, the relation between the simulation costs and d is not clear. Therefore, we compare
the simulation costs to the theoretical bound (up to a constant)

T (d,N) := N2d2ϵ−2 log 1/δ.

More specifically, we compare the simulation costs to 0.87T (d,N) in this experiment, which
corresponds to the “Theory” curve in the figure. We can observe from the plotting that the
growth of simulation costs matches our theory very well. This implies that our estimation
on the performance of the truncated SSGD algorithm is tight on this example. Moreover,
the optimality gap between the returned solutions and the optimal solution is smaller than
ϵ for all experiments, which implies that the algorithm succeeds with high probability.
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(a) (b)

Figure 4.7.1: The expected simulation costs of the separable convex minimization problem.
(a) Expected simulation costs with N = 30. (b) Expected simulation costs with d = 10.
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Appendix

4.A More Numerical Experiments

Illustrations of the Lovász Extension

In this subsection, we show the Lovász extension of a two-dimensional function on [3]2 =
{1, 2, 3}2. We consider the quadratic function

f(x) := xT

[
0.101 −0.068
−0.068 0.146

]
x, ∀x ∈ R2.

By the results in [168, Section 7.3], we know the function f(·) is a L♮-convex function. We
compare the landscapes of the original objective and the Lovász extension in Figure 4.A.1.
We can see that the Lovász extension is a piecewise linear and convex function, which is
consistent with the results in Section 4.4 and [168].

4.B Proofs in Section 4.3

Proof of Theorem 41

Proof of Theorem 41. We denote the optimal value of f(x) as f ∗. Since point x̄ satisfies the
(ϵ/2, δ/2)-PGS guarantee, we have

f̃(x̄)− f ∗ ≤ ϵ/2

holds with probability at least 1 − δ/2. We assume this event happens in the following of
this proof. Let S0, S1, . . . , Sd be the neighboring points of x̄. Using the expression of the
Lovász extension in (4.6), we know there exists an ϵ/2-optimal solution among S0, S1, . . . , Sd.
We denote the ϵ/2-optimal solution and the solution returned by Algorithm 2 as S∗ and Ŝ,
respectively. By the definition of confidence intervals, we know∣∣∣F̂n(Si)− f(Si)

∣∣∣ ≤ ϵ/4, ∀i ∈ {0, . . . , d},
∣∣∣F̂n(Ŝ)− f(Ŝ)

∣∣∣ ≤ ϵ/4

holds uniformly with probability at least 1− δ/2. Under this event, we know

f(Ŝ)− f ∗ ≤ F̂n(Ŝ)− f ∗ + ϵ/4 ≤ F̂n(S∗)− f ∗ + ϵ/4 ≤ f(S∗)− f ∗ + ϵ/2 ≤ ϵ,
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Figure 4.A.1: The Lovász extension of the objective function.

which implies that x∗ ∈ X is an ϵ-optimal solution and the probability is at least 1− δ/2−
δ/2 = 1− δ. Hence, we know x∗ is an (ϵ, δ)-PGS solution to problem (4.1).

Now, we estimate the simulation cost of Algorithm 2. By Hoeffding bound, simulating

32

ϵ2
log

(
8d

δ

)
times on each neighboring point is enough to achieve 1 − δ/(4d) confidence half-width ϵ/4.
Hence, the simulation cost of Algorithm 2 is at most

32(d + 1)

ϵ2
log

(
8d

δ

)
= O

[
d

ϵ2
log

(
d

δ

)]
= Õ

[
d

ϵ2
log

(
1

δ

)]
.

Proof of Theorem 42

The following Azuma’s inequality for martingales with sub-Gaussian tails plays as a major
role for deriving high-probability bounds, i.e., the number of required samples to ensure the
algorithms succeed with high probability.
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Lemma 27 (Azuma’s inequality for sub-Gaussian tails [199]). Let X0, . . . , XT−1 be a mar-
tingale difference sequence. Suppose there exist constants b1 ≥ 1, b2 > 0 such that, for any
t ∈ {0, . . . , T − 1},

P(|Xt| ≥ a | X1, . . . , Xt−1) ≤ 2b1 exp(−b2a2), ∀a ≥ 0. (4.14)

Then for any δ > 0, it holds with probability at least 1− δ that

1

T

T−1∑
t=0

Xt ≤

√
28b1
b2T

log

(
1

δ

)
.

Since the stochastic subgradient ĝt is truncated, the stochastic subgradient used for
updating, namely g̃t, is not unbiased. We define the bias at each step as

bt := E
[
g̃t | x0, x1, . . . , xt

]
− gt, ∀t ∈ {0, 1, . . . , T − 1}.

First, we bound the ℓ1-norm of the bias.

Lemma 28. Suppose that Assumptions 5-8 hold. If we have

M ≥ 2σ ·

√
log

(
4σdT

ϵ

)
= Θ

[√
log

(
dT

ϵ

)]
, T ≥ 2ϵ

σ
,

then it holds
∥bt∥1 ≤

ϵ

2T
, ∀t ∈ {0, 1, . . . , T − 1}.

Proof. Let αt be a consistent permutation of xt and St,i be the corresponding i-th neighboring
points. We only need to prove ∣∣btαt(i)

∣∣ ≤ ϵ

2dT
, ∀i ∈ [d].

We define two random variables

Y1 := F
(
St,i, ξ1i

)
− f

(
St,i
)
, Y2 := F

(
St,i−1, ξ2i−1

)
− f

(
St,i−1

)
.

By Assumption 5, both Y1 and Y2 are independent and sub-Gaussian with parameter σ2.
Hence, we know

btαt(i) = E
[
g̃tαt(i) − gtαt(i)

]
= E [(Y1 + Y2) · 1−M≤Y1+Y2≤M ] + E [M · 1Y1+Y2>M ] + E [−M · 1Y1+Y2<−M ]

= E [(M − Y1 − Y2) · 1Y1+Y2>M ] + E [−(M + Y1 + Y2) · 1Y1+Y2<−M ] ,
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where the second step is from E[Y1] = E[Y2] = 0. Taking the absolute value on both sides,
we get∣∣btαt(i)

∣∣ ≤ E [(Y1 + Y2 −M) · 1Y1+Y2>M ] + E [−(M + Y1 + Y2) · 1Y1+Y2<−M ] (4.15)

= E [(Y −M) · 1Y >M ] + E [−(Y + M) · 1Y <−M ] ,

where we define the random variable Y := Y1 + Y2. Since Y1, Y2 are independent, random
variable Y is sub-Gaussian with parameter 2σ2. Let F (y) := P[Y ≤ y] be the distribution
function of Y . Then, we have

E [(Y −M) · 1Y >M ] =

∫ ∞

M

(y −M) dF (y) =

∫ ∞

M

(1− F (y)) dy. (4.16)

By the Hoeffding bound, we know

1− F (y) = P[Y > y] ≤ exp
(
−y2/4σ2

)
, ∀y ≥ 0.

Using the upper bound for Q-function in [25], it holds that∫ ∞

M

1− F (y) dy ≤
∫ ∞

M

exp
(
−y2/4σ2

)
dy ≤ 2σ2

M
exp

(
−M2

4σ2

)
.

By the choice of M , we know

M ≥ 2σ
√

log(8d) ≥ 2σ and σ exp(−M2/4σ2) ≤ ϵ

4dT
.

which implies that ∫ ∞

M

1− F (y) dy ≤ 2σ2

M
exp(−M2/4σ2) ≤ ϵ

4dT
.

Substituting the above inequality into (4.16), we have

E [(Y −M) · 1Y >M ] ≤ ϵ

4dT
.

Considering −Y in the same way, we can prove

E [−(Y + M) · 1Y <−M ] ≤ ϵ

4dT
.

Substituting the last two estimates into inequality (4.15), we know∣∣btαt(i)

∣∣ ≤ ϵ

2dT
.
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Next, we show that ⟨gt + bt − g̃t, xt − x∗⟩ forms a martingale sequence and use Azuma’s
inequality to bound the deviation, where x∗ is a minimizer of f(x).

Lemma 29. Suppose that Assumptions 5-8 hold and let x∗ be a minimizer of f(x). The
sequence

Xt :=
〈
gt + bt − g̃t, xt − x∗〉 t = 0, 1, . . . , T − 1

forms a martingale difference sequence. Furthermore, if we have

M = max

{
L, 2σ ·

√
log

(
4σdT

ϵ

)}
= Θ̃

[√
log

(
dT

ϵ

)]
, T ≥ 2ϵ

σ
,

then it holds

1

T

T−1∑
t=0

Xt ≤

√
224dσ2

T
log

(
1

δ

)
with probability at least 1− δ.

Proof. Let Ft be the filtration generated by x0, x1, . . . , xt. By the definition of bt, we know

E
[
gt + bt − g̃t | Ft

]
= 0,

which implies that

E [Xt | Ft] =
〈
E
[
gt + bt − g̃t | Ft

]
, xt − x∗〉 = 0.

Hence, the sequence {Xt} is a martingale difference sequence. Next, we estimate the proba-
bility P[|Xt| ≥ a | Ft]. We have the bound

|Xt| =
∣∣〈gt + bt − g̃t, xt − x∗〉∣∣ ≤ ∥∥gt + bt − g̃t

∥∥
1

∥∥xt − x∗∥∥
∞

≤
∥∥gt + bt − g̃t

∥∥
1
≤
∥∥gt − g̃t

∥∥
1

+
∥∥bt∥∥

1
.

Since M satisfies the condition in Lemma 28, we know ∥bt∥1 ≤ ϵ/2T . Recalling Assumption
8, we get |gti | ≤ L for all i ∈ [d]. By the truncation rule and the assumption M ≥ L, we have∣∣g̃ti − gti

∣∣ =
∣∣(ĝti ∧M) ∨ (−M)− gti

∣∣ ≤ ∣∣ĝt − gt
∣∣ , ∀i ∈ [d].

Hence, we get

|Xt| ≤
ϵ

2T
+
∥∥ĝt − gt

∥∥
1
. (4.17)

Define random variables Yi := |ĝti − gti | for all i ∈ [d]. By Assumption 5, Yi is sub-Gaussian
with parameter σ2. Hence, we have

Y :=
∥∥ĝt − gt

∥∥
1

=
d∑

i=1

Yi
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is sub-Gaussian with parameter dσ2. First, we consider the case when a ≥ ϵ/T . Using
inequality (4.17), it follows that

P [|Xt| ≥ a | Fσ] ≤ P
[ ϵ

2T
+ Y ≥ a

]
≤ P

[
Y ≥ a− ϵ

2T

]
≤ P

[
Y ≥ a

2

]
≤ 2 exp

(
− a2

8dσ2

)
,

(4.18)

where the last inequality is from Hoeffding bound. In this case, we know condition (4.14)
holds with

b1 = 1, b2 =
1

8dσ2
.

Now, we consider the case when a < ϵ/T . In this case, by the assumption that T ≥ 2ϵ/σ,
we have

2b1 exp
(
−b2a2

)
> 2 exp

(
− 1

8dσ2
· ϵ

2

T 2

)
≥ 2 exp

(
− 1

32d

)
≥ 2 exp

(
− 1

32

)
> 1.

Hence, it holds
P [|Xt| ≥ a | Fσ] ≤ 1 < 2b1 exp

(
−b2a2

)
.

Combining with inequality (4.18), we know condition (4.14) holds with b and c defined above.
Using Lemma 27, we know

1

T

T−1∑
t=0

Xt ≤

√
224dσ2

T
log

(
1

δ

)
holds with probability at least 1− δ.

Then, we prove a lemma similar to the Lemma in [260].

Lemma 30. Suppose that Assumptions 5-8 hold and let x∗ be a minimizer of f(x). If we
choose

η =
1

M
√
T
,

then we have
1

T

T−1∑
t=0

⟨g̃t, xt − x∗⟩ ≤ dM√
T
.

Proof. We define x̃t+1 := xt−ηg̃t as the next point before the projection onto [0, 1]d. Recalling
the non-expansion property of orthogonal projection, we get

∥xt+1 − x∗∥22 = ∥PX
(
x̃t+1 − x∗) ∥22 ≤ ∥x̃t+1 − x∗∥22 = ∥xt − x∗ − ηg̃t∥22

= ∥xt − x∗∥22 + η2∥g̃t∥22 − 2η⟨g̃t, xt − x∗⟩,
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and equivalently,

⟨g̃t, xt − x∗⟩ =
1

2η

[∥∥xt − x∗∥∥2
2
−
∥∥xt+1 − x∗∥∥2

2

]
+

η

2
·
∥∥g̃t∥∥2

2
.

Summing over t = 0, 1, . . . , T − 1, we have

T−1∑
t=0

⟨g̃t, xt − x∗⟩ =
∥x0 − x∗∥22 −

∥∥xT − x∗
∥∥2
2

2η
+

η

2

T−1∑
t=0

∥∥g̃t∥∥2
2

≤ d ∥x0 − x∥2∞
2η

+
η

2

T−1∑
t=0

∥∥g̃t∥∥2
2
≤ d

2η
+

η

2

T−1∑
t=0

∥∥g̃t∥∥2
2
.

By the definition of truncation, it follows that ∥g̃t∥22 ≤ dM2. Choosing

η :=
1

M
√
T
,

it follows that

T−1∑
t=0

⟨g̃t, xt − x∗⟩ ≤ d

2η
+

η

2

T−1∑
t=0

∥∥g̃t∥∥2
2
≤ d

2η
+

ηTdM2

2
= dM

√
T .

Finally, using Lemmas 28, 29 and 30, we can finish the proof of Theorem 42.

Proof of Theorem 42. Denote f ∗ as the optimal value of f̃(x). Using the convexity of f̃(x),
we know

f̃(x̄)− f ∗ ≤ 1

T

T−1∑
t=0

[
f̃(xt)− f ∗

]
≤ 1

T

T−1∑
t=0

〈
gt, xt − x∗〉 (4.19)

=
1

T

T−1∑
t=0

[〈
gt + bt − g̃t, xt − x∗〉+

〈
g̃t, xt − x∗〉− 〈bt, xt − x∗〉] .

We choose

T :=
3584dσ2

ϵ2
log

(
2

δ

)
= Θ

[
d

ϵ2
log

(
1

δ

)]
.

Recalling Assumption 5, we know δ is small enough and therefore we have the following
estimates:

L2 ≤M2 = Θ̃

[
log

(
dT

ϵ

)]
= Õ

[
log

(
d2

ϵ3

)
+ log log

(
1

δ

)]
≤ ϵ2T

64d2
, T ≥ max

{
2ϵ

σ
, 4

}
.
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Hence, the conditions in Lemmas 28 and 29 are satisfied. By Lemma 28, we know

− 1

T

T−1∑
t=0

〈
bt, xt − x∗〉 ≤ 1

T

T−1∑
t=0

∥∥bt∥∥
1

∥∥xt − x∗∥∥
∞ ≤

ϵ

2T
≤ ϵ

8
. (4.20)

By Lemma 29, it holds

1

T

T−1∑
t=0

〈
gt + bt − g̃t, xt − x∗〉 ≤√224dσ2

T
log

(
2

δ

)
≤ ϵ

4
(4.21)

with probability at least 1− δ, where the last inequality is from our choice of T . By Lemma
30, we know

1

T

T−1∑
t=0

〈
g̃t, xt − x∗〉 ≤ dM√

T
≤ ϵ

8
. (4.22)

Substituting inequalities (4.20), (4.21) and (4.22) into inequality (4.19), we get

f̃(x̄)− f ∗ ≤ ϵ

2

holds with probability at least 1 − δ/2. By the results of Theorem 41, we know Algorithm
3 returns an (ϵ, δ)-PGS solution.

Finally, we estimate the simulation cost of Algorithm 3. For each iteration, we need to
generate a stochastic subgradient using (4.4) and the simulation cost is 2d. Hence, the total
simulation cost of all iterations is

2d · T = Θ̃

[
d2

ϵ2
log

(
1

δ

)]
.

By Theorem 41, the simulation cost of rounding process is at most

Õ

[
d

ϵ2
log

(
1

δ

)]
.

Thus, we know the total simulation cost of Algorithm 3 is at most

Õ

[
d2

ϵ2
log

(
1

δ

)]
.
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Analysis of the Bounded Stochastic Subgradient Case

In this subsection, we consider the special case when the stochastic subgradient is assumed
to have a bounded ℓ1-norm.

Assumption 10. There exist a constant G and an unbiased subgradient estimator ĝ such
that

P (∥ĝ∥1 ≤ G) = 1.

Moreover, the simulation cost of generating each ĝ is at most β simulations.

We note that G and β may depend on d and N . In the field of stochastic optimization,
this assumption is common when analyzing the high-probability convergence of stochastic
subgradient methods [98, 239]. We first give examples where Assumption 10 holds.

Example 9. We consider the case when the randomness of each choice of decision variables
shares the same measure space, i.e., there exists a measure space (Z,BZ) such that ξx can be
any element in the measure space for all x ∈ X . Moreover, for any fixed ξ ∈ B, the function
F (·, ξ) is also L♮-convex (or submodular when N = 2) and has ℓ∞-Lipschitz constant L̃.
Then, we consider the subgradient estimator

ĝαx(i) := F
(
Sx,i, ξ

)
− F

(
Sx,i−1, ξ

)
, ∀i ∈ [d]. (4.23)

The simulation cost of estimator (4.23) is d+1. In addition, property (v) of Lemma 24 gives

∥ĝ∥1 ≤ 3L̃/2.

Therefore, in this situation, the Assumption 10 holds with G = 3L̃/2 and β = d + 1.

When the distribution at each choice of decision variables is the Bernoulli, we show that
Assumption 10 also holds.

Example 10. We consider the case when the distribution at each point x ∈ X is Bernoulli,
namely, we have

P[F (x, ξx) = 1] = 1− P[F (x, ξx) = 0] = f(x) ∈ [0, 1], ∀x ∈ X .

We note that the Bernoulli distribution is a special case of sub-Gaussian distributions. In
this case, the ℓ∞-Lipschitz constant is 1 and property (v) in Lemma 24 gives ∥g∥1 ≤ 3/2 for
any subgradient g. We consider the subgradient estimator (4.4). At point x, if index i is
chosen, then we know that

∥ĝ∥1 = d ·
∣∣F (Sx,i, ξ1i

)
− F

(
Sx,i−1, ξ2i−1

)∣∣ ≤ d.

Hence, Assumption 10 holds with G = d and β = 2.
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Next, we estimate the expected simulation cost of Algorithm 3 under Assumption 10.
Since the stochastic subgradient is bounded, the truncation step is unnecessary in Algorithm
3. The simulation cost of Algorithm 3 is estimated in the following theorem. The proof is
similar to Lemma 10 in [98] and, since the feasible set is the hypercube [0, 1]d, we use ℓ∞-norm
instead of ℓ2-norm to bound distances between points.

Theorem 48. Suppose that Assumptions 5-8 and 10 hold. If we skip the truncation step in
Algorithm 3 (i.e., set M =∞) and choose

T = Θ̃

[
(L + G)2

ϵ2
log

(
1

δ

)]
, η =

√
d

TG2
,

then Algorithm 3 returns an (ϵ, δ)-PGS solution. Furthermore, we have

T (ϵ, δ,MC) = O

[
β(L + G)2 + d

ϵ2
log

(
1

δ

)
+

d2G2

ϵ2

]
= Õ

[
β(L + G)2 + d

ϵ2
log

(
1

δ

)]
.

In the case of Example 9, we have β = d+1, G = 3L̃/2 and then the asymptotic simulation
cost of Algorithm 3 is at most

Õ

[
d(L + L̃)2

ϵ2
log

(
1

δ

)]
.

If both Lipschitz constants are independent of d and N , the asymptotic simulation cost
becomes

Õ

[
d

ϵ2
log

(
1

δ

)]
,

which is O(d) better than the general case without Assumption 10. In addition, in the case
of Example 10, we have G = d and β = 2. Hence, the asymptotic simulation cost is at most

Õ

[
d2

ϵ2
log

(
1

δ

)]
.

Finally, we note that if we substitute ϵ with c/2, all upper bounds of simulation cost under
Assumption 10 also hold for the PCS-IZ guarantee.

Proof of Theorem 48

In this subsection, we provide a proof to Theorem 4.B. Since the stochastic gradient is
bounded, we apply the Azuma’s inequality for martingale difference sequences with bounded
tails.
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Lemma 31 (Azuma’s inequality with bounded tails). Let X0, . . . , XT−1 be a martingale
difference sequence. Suppose there exists a constant b such that for any t ∈ {0, . . . , T − 1},

P(|Xt| ≤ b) = 1.

Then for any δ > 0, it holds with probability at least 1− δ that

1

T

T−1∑
t=0

Xt ≤ b

√
2

T
log

(
1

δ

)
. (4.24)

The proof of Theorem 48 follows a similar way as Theorem 42. We first bound the noise
term by Azuma’s inequality.

Lemma 32. Suppose that Assumptions 5-10 hold and let x∗ be a minimizer of f(x). Then,
it holds

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗〉 ≤ (3L

2
+ G

)√
2

T
log

(
1

δ

)
with probability at least 1− δ.

Proof. Same as the proof of Lemma 29, the fact that ĝt is unbiased implies that

Xt :=
〈
gt − ĝt, xt − x∗〉 t = 0, 1, . . . , T − 1

is a martingale difference sequence. By Assumption 10 and property (v) in Lemma 24, we
know

|Xt| =
∣∣〈gt − ĝt, xt − x∗〉∣∣ ≤ ∥∥gt − ĝt

∥∥
1

∥∥xt − x∗∥∥
∞ ≤

∥∥gt − ĝt
∥∥
1
≤ 3L/2 + G,

which implies that the condition (4.24) holds with b = 3L/2 + G. Using Lemma 31, we get
the conclusion of this lemma.

The following lemma bounds the error of the algorithm and is similar to Theorem 3.2.2
in [171].

Lemma 33. Suppose that Assumptions 5-10 hold and let x∗ be a minimizer of f(x). If we
choose

η =

√
d

TG2
,

then we have
1

T

T−1∑
t=0

〈
ĝt, xt − x∗〉 ≤√dG2

T
.
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Proof. We define x̃t+1 := xt−ηĝt as the next point before the projection onto [0, 1]d. Recalling
the non-expansion property of orthogonal projection, we get

∥xt+1 − x∗∥22 = ∥PX
(
x̃t+1 − x∗) ∥22 ≤ ∥x̃t+1 − x∗∥22 = ∥xt − x∗ − ηĝt∥22

= ∥xt − x∗∥22 + η2∥g̃t∥22 − 2η⟨ĝt, xt − x∗⟩,

and equivalently,

⟨ĝt, xt − x∗⟩ =
1

2η

[∥∥xt − x∗∥∥2
2
−
∥∥xt+1 − x∗∥∥2

2

]
+

η

2
·
∥∥ĝt∥∥2

2
.

Using Assumption 10, we know ∥ĝt∥22 ≤ ∥ĝt∥
2
1 ≤ G2 and therefore

⟨ĝt, xt − x∗⟩ =
1

2η

[∥∥xt − x∗∥∥2
2
−
∥∥xt+1 − x∗∥∥2

2

]
+

ηG2

2
.

Summing over t = 0, 1, . . . , T − 1, we have

T−1∑
t=0

⟨ĝt, xt − x∗⟩ =
∥x0 − x∗∥22 −

∥∥xT − x∗
∥∥2
2

2η
+ T · ηG

2

2

≤ d ∥x0 − x∥2∞
2η

+
ηTG2

2
≤ d

2η
+

ηTG2

2
.

Choosing

η :=

√
d

TG2
,

it follows that
T−1∑
t=0

⟨g̃t, xt − x∗⟩ ≤ G
√
dT .

Now, we prove Theorem 48 using Lemmas 32 and 33.

Proof of Theorem 48. According to to the proof of Theorem 42, we have

f̃(x̄)− f ∗ ≤ 1

T

T−1∑
t=0

[
f̃(xt)− f ∗

]
≤ 1

T

T−1∑
t=0

〈
gt, xt − x∗〉 (4.25)

=
1

T

T−1∑
t=0

〈
ĝt, xt − x∗〉+

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗〉 .

By Lemmas 32 and 33, it holds

1

T

T−1∑
t=0

〈
ĝt, xt − x∗〉 ≤ (3L

2
+ G

)√
2

T
log

(
2

δ

)
,

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗〉 ≤√dG2

T
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with probability at least 1− δ/2. Choosing

T =

(
3L

2
+ G

)2

· 32

ϵ2
log

(
2

δ

)
= Θ

[
(L + G)2

ϵ2
log

(
1

δ

)]
,

we know

T ≥ 16dG2

ϵ2

when δ is small enough. Hence, we have

1

T

T−1∑
t=0

〈
ĝt, xt − x∗〉 ≤ ϵ

4
,

1

T

T−1∑
t=0

〈
gt − ĝt, xt − x∗〉 ≤ ϵ

4

holds with probability at least 1− δ/2. Substituting into inequality (4.25), we have

f̃(x̄)− f ∗ ≤ ϵ

2

holds with probability at least 1 − δ/2. By the results of Theorem 41, we know Algorithm
3 returns an (ϵ, δ)-PGS solution.

Finally, we estimate the simulation cost of Algorithm 3. For each iteration, the simu-
lation cost is decided by the generation of a stochastic subgradient, which is at most β by
Assumption 10. Hence, the total simulation cost of all iterations is

O [βT ] = Õ

[
β(L + G)2

ϵ2
log

(
1

δ

)]
.

By Theorem 41, the simulation cost of rounding process is at most

Õ

[
d

ϵ2
log

(
1

δ

)]
.

Thus, we know the total simulation cost of Algorithm 3 is at most

Õ

[
β(L + G)2 + d

ϵ2
log

(
1

δ

)]
.

4.C Proofs in Section 4.4

Proof of Theorem 43

Proof of Theorem 43. To prove the function is well-defined, we only need to show that for
any two different points y, z ∈ [N − 1]d such that Cy ∩ Cz ̸= ∅, we have f̃y(x) = f̃z(x) for all



CHAPTER 4. GRADIENT-BASED SIMULATION-OPTIMIZATION METHODS 194

x ∈ Cy ∩ Cz. We first consider the case when ∥y − z∥1 = 1. Without loss of generality, we
assume

y = (1, 1 . . . , 1), z = (2, 1, . . . , 1).

In this case, we know that

Cy ∩ Cz = {(2, x2, . . . , xd) : x2, . . . , xd ∈ [0, 1]}.

Suppose that point x ∈ Cy∩Cz. We first calculate f̃y(x). We can define the “local coordinate”
of x in Cy as

x− y = (1, x2 − 1, . . . , xd − 1).

Let α1 be a consistent permutation of x in Cy and and S1,i be the corresponding i-th neigh-
bouring point. Since (x− y)1 = 1 is not smaller than any other components, we can assume
α1(1) = 1 and calculate f̃y(x) as

f̃y(x) = [1− (x− y)α1(1)]f(S1,0) (4.26)

+
d−1∑
i=1

[(x− y)α1(i) − (x− y)α1(i+1)]f(S1,i) + (x− y)α1(d)f(S1,d)

=
d−1∑
i=1

[(x− y)α1(i) − (x− y)α1(i+1)]f(S1,i) + (x− y)α1(d)f(S1,d)

=
d−1∑
i=1

[xα1(i) − xα1(i+1)]f(S1,i) +
[
xα1(d) − 1

]
f(S1,d).

Next, we consider f̃z(x) and define the “local coordinate” of x in Cz is

x− z = (0, x2 − 1, . . . , xd − 1).

We define the permutation α2 as

α2(i) = α1(i + 1), ∀i ∈ [d− 1], α2(d) = α1(1) = 1.

By the definition of α1, we know

(x− z)α2(i) = (x− y)α1(i+1) ≥ (x− y)α1(i+2) = (x− z)α2(i+1), ∀i ∈ [d− 2],

(x− z)α2(d−1) ≥ 0 = (xz)α2(d).

Hence, we know α2 is a consistent permutation of x in Cz and let S2,i be the corresponding
i-th neighbouring point of x in Cz. Similar to the first case, the Lovász extension f̃z(x) can
be calculated as

f̃y(x) = [1− (x− z)α2(1)]f(S2,0) (4.27)
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+
d−1∑
i=1

[(x− z)α2(i) − (x− z)α2(i+1)]f(S2,i) + (x− z)α2(d)f(S2,d)

= [1− (x− z)α2(1)]f(S2,0) +
d−1∑
i=1

[(x− z)α2(i) − (x− z)α2(i+1)]f(S2,i)

= [2− xα2(1)]f(S2,0) +
d−1∑
i=1

[xα2(i) − xα2(i+1)]f(S2,i) + f(S2,d−1).

Recalling the fact that z = y + e1, for any i ∈ [d− 1], we have

S2,i = z +
i∑

j=1

eα2(j) = y + e1 +
i∑

j=1

eα1(j+1) = y +
i+1∑
j=1

eα1(i) = S1,i+1.

Substituting into equation (4.27), we know

f̃y(x) = [2− xα2(1)]f(S2,0) +
d−1∑
i=1

[xα2(i) − xα2(i+1)]f(S2,i) + f(S2,d−1)

= [2− xα2(1)]f(S1,1)

+
d−2∑
i=1

[xα2(i) − xα2(i+1)]f(S1,i+1) + [xα2(d−1) − xα2(d)]f(S1,d) + f(S1,d)

= [xα1(1) − xα1(2)]f(S1,1)

+
d−2∑
i=1

[xα1(i+1) − xα1(i+2)]f(S1,i+1) +
[
xα1(d) − 2

]
f(S1,d) + f(S1,d)

=
d−1∑
i=1

[xα1(i) − xα1(i+1)]f(S1,i) +
[
xα1(d) − 1

]
f(S1,d),

which is equal to f̃y(x) by equation (4.26).
Then, we consider the case when ∥y− z∥1 > 1. Since Cy ∩Cz ̸= ∅, we know ∥y− z∥∞ = 1.

Without loss of generality, we consider the case when

y = (1, 1, . . . , 1), z = y +
k∑

j=1

ej,

where constant k ∈ [d]. In this case, we know

Cy ∩ Cz =
{
x ∈ Rd : xj = 2, ∀j ≤ k, xj ∈ [0, 1], ∀j ≥ k + 1

}
.

We define

yi := y +
i∑

j=1

ej, ∀i ∈ {0, 1, . . . , k}.
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Then, it follows that

∥yi − yi−1∥1 = 1, ∀i ∈ [k], y0 = y, yk = z

and

x ∈ Cy ∩ Cz ⊂ Cyi ∩ Cyi−1
=
{
x ∈ Rd : xi = 2, xj ∈ [0, 1], ∀j ∈ [d]\{i}

}
, ∀i ∈ [k].

Hence, by the results for the case when ∥y − z∥1 = 1, we know

f̃y(x) = f̃y0(x) = f̃y1(x) = · · · = f̃yk(x) = f̃z(x),

which means f̃(x) is well-defined.
Finally, we prove the convexity of f̃(x). Since the Lovász extension is the support function

of submodular functions [80, section 6.3], the function f̃y(x) is the support function of f(x)
inside hypercube Cy. In addition, Theorem 7.20 in [168] implies that the L♮-convex function
f(x) is integrally convex. Hence, we know that the support function of f(x) on X is equal to
f̃y(x) in each hypercube Cy. By the definition of f̃(x) in (4.7), the function f̃(x) is the support
function of f(x) on X . Since support functions are convex, we know f̃(x) is convex.

Proof of Theorem 44

Proof of Theorem 44. The proof can be done in the same way as Theorem 42 and we only
give a sketch of the proof. We use the same notation as the proof of Theorem 28.

• If we have

M ≥ 2σ ·

√
log

(
8σdT

ϵ

)
= Θ̃

[√
log

(
dT

ϵ

)]
, T ≥ 2ϵ

σ
,

then the proof of Lemma 28 implies that∥∥bt∥∥
1
≤ ϵ

2T
, ∀t ∈ {0, 1, . . . , T − 1}.

• If we have

M = max

{
L, 2σ ·

√
log

(
8σdT

ϵ

)}
= Θ̃

[√
log

(
dNT

ϵ

)]
, T ≥ 2Nϵ

σ
,

then the proof of Lemma 29 shows that

1

T

T−1∑
t=0

Xt ≤

√
224dN2σ2

T
log

(
1

δ

)
holds with probability at least 1− δ.
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• If we choose

η =
N

M
√
T
,

then the proof of Lemma 30 implies that

1

T

T−1∑
t=0

⟨g̃t, xt − x∗⟩ ≤ dNM√
T

.

Hence, choosing

T = Θ̃

[
dN2

ϵ2
log

(
1

δ

)]
, M = Θ̃

[√
log

(
dNT

ϵ

)]
, η =

N

M
√
T

and using the inequality (4.19), we know the averaging point x̄ is an (ϵ/2, δ/2)-PGS solu-
tion. Combining with Theorem 41, Algorithm 3 returns an (ϵ, δ)-PGS solution. Since the
simulation cost of each iteration is 2d, the total simulation cost of Algorithm 3 is at most

Õ

[
d2N2

ϵ2
log

(
1

δ

)]
+ Õ

[
d

ϵ2
log

(
1

δ

)]
= Õ

[
d2N2

ϵ2
log

(
1

δ

)]
.

Similarly, we can estimate the asymptotic simulation cost under Assumption 10.

Theorem 49. Suppose that Assumptions 5-8 and 10 hold. If we skip the truncation step in
Algorithm 3 (or equivalently set M =∞) and choose

T = Θ̃

[
(L + G)2N2

ϵ2
log

(
1

δ

)]
, η =

√
dN2

TG2
,

then Algorithm 3 returns an (ϵ, δ)-PGS solution. Furthermore, we have

T (ϵ, δ,MC) = O

[
β(L + G)2N2 + d

ϵ2
log

(
1

δ

)
+

G2d2N2

ϵ2

]
= Õ

[
β(L + G)2N2 + d

ϵ2
log

(
1

δ

)]
.

The above theorem can be proved in the same way as Theorem 48 and we omit the proof.
We note that the step size η does not depend on N in this case.
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Algorithms for the PCS-IZ Case

We first prove that the existence of indifference zone is equivalent to the so-called weak
sharp minima condition of the convex extension. Moreover, we use the ℓ∞ norm in place of
the ℓ2 norm since the feasible set is a hypercube.

Definition 14. We say a function f(x) : X 7→ R satisfies the Weak Sharp Minimum (WSM)
condition, if the function f(x) has a unique minimizer x∗ and there exists a constant κ > 0
such that

∥x− x∗∥∞ ≤ κ (f(x)− f ∗) , ∀x ∈ X ,

where f ∗ := f(x∗).

The WSM condition was first defined in [29], and is also called the polyhedral error bound
condition in recent literature [241]. In addition, the WSM condition is a special case of the
global growth condition in [239] with θ = 1. The WSM condition can be used to leverage
the distance between intermediate solutions and (c, δ)-PCS-IZ solutions. The next theorem
verifies that the WSM condition is equivalent to the existence of indifference zone.

Theorem 50. Suppose that function f(x) : X 7→ R is a L♮-convex function and f̃(x) is the
convex extension on [1, N ]d. Given a constant c > 0, function f(x) ∈ MCc if and only if
f̃(x) satisfies the WSM condition with κ = c−1.

Proof of Theorem 50. We first prove the sufficiency part and then consider the necessity
part.

Sufficiency. Suppose there exists a constant κ > 0 such that the function f̃(x) satisfies
the WSM condition with κ. Considering any point x ∈ X\{x∗}, we know ∥x − x∗∥∞ ≥ 1
and, by the WSM condition,

f(x)− f ∗ = f̃(x)− f ∗ ≥ κ−1∥x− x∗∥∞ ≥ κ−1.

Thus, we know the indifference zone parameter for f(x) is at least κ−1 and f(x) ∈MCκ−1 .

Necessity. Suppose there exists a constant c > 0 such that

f(x)− f ∗ ≥ c, ∀x ∈ X\{x∗}.

We first consider point x ∈ [1, N ]d such that ∥x − x∗∥∞ ≤ 1. In this case, we know there
exists a hypercube Cy containing both x and x∗. By the definition of Lovász extension, we
know that

f̃(x) = [1− xαx(1)]f
(
Sx,0

)
+

d−1∑
i=1

[xαx(i) − xαx(i+1)]f
(
Sx,i
)

+ xαx(d)f
(
Sx,d

)
=

d∑
i=0

λif
(
Sx,i
)
,
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where we define

λi := xαx(i) − xαx(i+1), ∀i ∈ [d− 1], λ0 := 1− xαx(1), λd := xαx(d).

Recalling the definition of consistent permutation, we get

d∑
i=0

λi = 1, λi ≥ 0, ∀i ∈ {0, . . . , d}

and f̃(x) is a convex combination of f (Sx,0) , . . . , f
(
Sx,d

)
. In addition, we can calculate that(

d∑
i=0

λiS
x,i

)
αx(k)

=
d∑

i=0

λi · Sx,i
αx(k)

=
d∑

i=0

λi · 1(i ≥ k) =
d∑

i=k

λi = xαx(k),

which implies that

x =
d∑

i=0

λiS
x,i.

If x∗ /∈
{
Sx,0, . . . , Sx,d

}
, the assumption that indifference zone parameter is c gives

f̃(x)− f ∗ =
d∑

i=0

λi

[
f
(
Sx,i
)
− f ∗] ≥ d∑

i=0

λi · c = c.

Combining with ∥x− x∗∥∞ ≤ 1, we have

∥x− x∗∥∞ ≤ c−1 ·
[
f̃(x)− f ∗

]
.

Otherwise if x∗ = Sx,i for some i ∈ {0, . . . , d}. Then, we know

f̃(x)− f ∗ =
d∑

i=0

λi

[
f
(
Sx,i
)
− f ∗] ≥∑

i ̸=k

λi · c = (1− λk)c

and

∥x− x∗∥∞ =

∥∥∥∥∥
d∑

i=0

λiS
x,i − x∗

∥∥∥∥∥
∞

=

∥∥∥∥∥
d∑

i=0

λi

(
Sx,i − x∗)∥∥∥∥∥

∞

=

∥∥∥∥∥∑
i ̸=k

λi

(
Sx,i − x∗)∥∥∥∥∥

∞

≤
∑
i ̸=k

λi

∥∥Sx,i − x∗∥∥
∞ ≤

∑
i ̸=k

λi = 1− λk,

where the last inequality is because Sx,i and x∗ are in the same hypercube Cy. Combining
the above two inequalities, it follows that

∥x− x∗∥2 ≤ c−1 ·
[
f̃(x)− f ∗

]
,
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which means that the WSM condition holds with κ = c−1. Now we consider point x ∈ [1, N ]d

such that ∥x− x∗∥∞ ≥ 1. We define

x̃ := x∗ +
x− x∗

∥x− x∗∥∞

to be the point on the segment xx∗ such that ∥x̃− x∗∥∞ = 1. By the convexity of f̃(x) and
the WSM condition for point x̃, we know

f̃(x)− f ∗ ≥ ∥x− x∗∥∞
∥x̃− x∗∥∞

[
f̃(x̃)− f ∗

]
=

f̃(x̃)− f ∗

∥x̃− x∗∥∞
· ∥x− x∗∥∞ ≥ c−1 · ∥x− x∗∥∞,

which shows that the WSM condition holds with κ = c−1. Hence, the WSM condition holds
for all points in [1, N ]d with κ = c−1.

Using the WSM condition, we can accelerate Algorithm 3 by dynamically shrinking the
search space. To describe the shrinkage of search space, we define the ℓ∞-neighbourhood of
point x as

N (x, a) := {y ∈ [1, N ]d : ∥y − x∥∞ ≤ a}

and the orthogonal projection onto N (x, a) as

Px,a(y) := (y ∧ (x + a)1) ∨ (x− a)1, ∀x ∈ Rd.

Now we give the adaptive SSGD algorithm for the PCS-IZ guarantee.

Algorithm 5 Adaptive SSGD method for the PCS-IZ guarantee

Input: Model X ,BY, F (x, ξx), optimality guarantee parameter δ, indifference zone parame-
ter c.

Output: An (c, δ)-PCS-IZ solution x∗ to problem (4.1).
1: Set the initial guarantee ϵ0 ← cN/4.
2: Set the number of epochs E ← ⌈log2(N)⌉+ 1.
3: Set the initial search space Y0 ← [1, N ]d.
4: for e = 0, . . . , E − 1 do
5: Use Algorithm 3 to get an (ϵe, δ/(2E))-PGS solution xe in Ye.
6: Update guarantee ϵe+1 ← ϵe/2.
7: Update the search space Ye+1 ← N (xe, 2

−e−2N).
8: end for
9: Round xE−1 to an integral point satisfying the (c, δ)-PCS-IZ guarantee by Algorithm 2.

Basically, the algorithm finds a (c/2, δ)-PGS solution and, with the assumption that the
indifference zone parameter is c, the solution satisfies the (c, δ)-PCS-IZ guarantee. We prove
that the expected simulation cost of Algorithm 5 has only O(log(N)) dependence on N .
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Theorem 51. Suppose that Assumptions 5-8 hold. Then, Algorithm 5 returns a (c, δ)-PCS-
IZ solution. Furthermore, we have

T (δ,MCc) = O

[
d2 log(N)

c2
log

(
1

δ

)
+

d3 log(N)

c2
log

(
d2N

ϵ3

)
+

d3 log(N)L2

c2

]
= Õ

[
d2 log(N)

c2
log

(
1

δ

)]
.

Proof of Theorem 51. We first prove the correctness of Algorithm 5. Let x∗ be the minimizer
of f(x) and f ∗ := f(x∗). We use the induction method to prove that, for each epoch e, it
holds

f̃(xe)− f ∗ ≤ ϵe

with probability at least 1− (e+ 1)δ/(2E). For epoch 0, the solution x0 is (ϵ0, δ/(2E))-PGS
and we know

f̃(x0)− f ∗ ≤ ϵ0

holds with probability at least 1 − δ/(2E). We assume that the above event happens for
the (e− 1)-th epoch with probability at least 1− e · δ/(2E) and consider the case when this
event happens. By Theorem 50, function f̃(x) satisfies the WSM condition with κ = c−1.
Hence, the intermediate solution xe−1 satisfies

∥xe−1 − x∗∥∞ ≤ c−1
[
f̃(xe−1)− f ∗

]
≤ c−1ϵe−1 = c−1 · 2−e+1ϵ0 = 2−e−1N,

which implies that x∗ ∈ N (xe−1, 2
−e−1N) = Ne and therefore x∗ ∈ Ne. For the epoch e, it

holds
f̃(xe)− f ∗ = f̃(xe)− min

x∈Ne

f̃(x) ≤ ϵe

with probability at least 1 − δ/(2E). Hence, the above event happens with probability at
least 1− δ/(2E)− e · δ/(2E) = 1− (e+ 1)δ/(2E) for epoch e. By the induction method, we
know the claim holds for all epochs. Considering the last epoch, we know

f̃(xE−1)− f ∗ ≤ ϵE−1 = 2−E+1ϵ0 = 2−⌈log2(N)⌉−2 · cN ≤ 2− log2(N)−2 · cN = c/4

holds with probability at least 1 − δ/2. Thus, we know xE−1 satisfies the (c/4, δ/2)-PGS
guarantee. By Theorem 41, the integral solution returned by Algorithm 5 satisfies the
(c/2, δ)-PGS guarantee. Since the indifference zone parameter is c, the solution satisfying
the (c/2, δ)-PGS guarantee must satisfies the (c, δ)-PCS-IZ guarantee.

Next, we estimate the asymptotic simulation cost of Algorithm 5. By Theorem 42, the
simulation cost of epoch e is at most

Õ

[
d2 (2−eN)

2

ϵ2e
log

(
E

δ

)]
= Õ

[
d2 (2−eN)

2

(2−e−2 · cN)2
log

(
E

δ

)]
= Õ

[
d2

c2
log

(
1

δ

)]
.
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Summing over e = 0, 1, . . . , E − 1, we know the total simulation cost of E epochs is at most

Õ

[
E · d

2

c2
log

(
1

δ

)]
= Õ

[
d2 log(N)

c2
log

(
1

δ

)]
.

By Theorem 41, the simulation cost of the rounding process is at most

Õ

[
d

c2
log

(
1

δ

)]
.

Combining the two parts, we know the asymptotic simulation cost of Algorithm 5 is at most

Õ

[
d2 log(N)

c2
log

(
1

δ

)]
.

Similarly, we can estimate the asymptotic simulation cost under Assumption 10 and we
omit the proof.

Theorem 52. Suppose that Assumptions 5-8 and 10 hold. Then, Algorithm 5 returns a
(c, δ)-PCS-IZ solution. Furthermore, we have

T (δ,MCc) = Õ

[
β(L + G)2 log(N) + d

c2
log

(
1

δ

)]
.

4.D Proofs in Section 4.5

Proof of Theorem 45

Proof of Theorem 45. In this proof, we change the feasible set to X = {0, 1, . . . , N}d, where
N ≥ 1. We split the proof into three steps.

Step 1. We first show that the construction of L♮-convex functions can be reduced to the
construction of submodular functions. Equivalently, we show that any submodular function
defined on {0, 1}d can be extended to a L♮-convex function on X with the same convex
extension after scaling. Let g(x) be a submodular function defined on {0, 1}d and g̃(x) be
the Lovász extension of g(x). We first extend the domain of the Lovász extension to [0, N ]d

by scaling, i.e.,
f̃(x) := g̃(x/N), ∀x ∈ [0, N ]d.

Then, we define the discretization of f̃(x) by restricting to the integer lattice

f(x) := f̃(x), ∀x ∈ X .
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We prove that f(x) is a L♮-convex function. By Proposition 7.25 in [168], we know the
Lovász extension g̃(x) is a polyhedral L-convex function. Since the scaling operation does
not change the L-convexity, we know f̃(x) is also polyhedral L-convex. Hence, by Theorem
7.29 in [168], the function f̃(x) satisfies the SBF♮[R] property, namely,

f̃(p) + f̃(q) ≥ f̃ [(p− α1) ∨ q] + f̃(p ∧ (q + α1)), ∀p, q ∈ [0, N ]d, α ≥ 0.

Restricting to the integer lattice, we know the SBF♮[Z] property holds for f(x), namely,

f(p) + f(q) ≥ f [(p− α1) ∨ q] + f(p ∧ (q + α1)), ∀p, q ∈ {0, . . . , N}d, α ∈ N.

Finally, Theorem 7.7 in [168] shows that the L♮-convexity is equivalent to the SBF♮[Z] prop-
erty and therefore we know that f(x) is a L♮-convex function.

Step 2. Next, we construct d + 1 submodular functions on {0, 1}d and extend them to X
by the process defined in Step 1. The construction is based on the family of submodular
functions defined in [90]. We denote I := {0} ∪ [d]. For each i ∈ I, we define point
xi ∈ {0, 1}d as

xi :=
i∑

j=1

ej,

where ej is the j-th unit vector of Rd. Index j(x) is defined as the maximal index j such
that

xi = 1, ∀i ∈ [j].

If x1 = 0, then we define j(x) = 0. Given c : I 7→ R, we define a function on {0, 1}d as

gc(x) :=

{
−c(i) if x = xi for some i ∈ I
(∥x∥1 − j(x)) · (d + 2− j(x)) otherwise.

By Lemma 6 in [90], the function gc(x) is submodular if c(i) ∈ {0, 1}. Using the fact that
convex combinations of submodular functions are still submodular, we know that gc(x) is
submodular for any c such that c(i) ∈ [0, 1]. Then, for each i ∈ I, we construct

ci(0) :=
1

2
, ci(j) :=

{
1 j = i

0 j ̸= i
, ∀j ∈ [d].

We denote gi(x) := gc
i
(x) and let f i(x) be the extension of 6ϵ · gi(x) on X by the process in

Step 1. By the result in Step 1, we know that f i(x) is L♮-convex.
Next, we prove that f 0(x) has disjoint set of ϵ-optimal solutions with f i(x) for any i ∈ [d].

For each f i(x), we define the set of ϵ-optimal solutions as

X i
ϵ := {x ∈ X : f i(x)−min

y
f i(y) ≤ ϵ}.
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We first consider X 0
ϵ . By the definition of g0(x), we know that

f 0(x0) = g0(x0) = −3ϵ, f 0(x) = g0(x/N) ≥ 0, ∀x ∈ {0, N}d\{x0}, (4.28)

which implies that
X 0

ϵ = {x ∈ X : f 0(x) ≤ −2ϵ}.

Since f 0(x) is defined by the scaled Lovász extension of g0(x), we have

f 0(x) = N−1 ·

[
(N − xα(1))f

0(S0) +
d−1∑
i=1

(xα(i) − xα(i+1))f
0(Si) + xα(d)f

0(Sd)

]
, (4.29)

where α is a consistent permutation of x/N and Si := N · Sx/N,i ∈ {0, N}d is the i-th
neighbouring points of x in the hypercube {0, N}d. Using the relation in (4.28) and the fact
S0 = x0, we get

f 0(x) ≥ N−1 · (N − xα(1))f(S0) = N−1 · (N − xα(1))f(x0) = −3ϵN−1 · (N − xα(1)).

Hence, for any point x ∈ X 0
ϵ , we have N − xα(1) = N −maxi xi ≥ 2N/3 and therefore

X 0
ϵ ⊂ {x ∈ X : N −max

i
xi ≥ 2N/3} = {x ∈ X : max

i
xi ≤ N/3}. (4.30)

Next, we consider X i
ϵ with i ∈ [d]. By the definition of gi(x), we have

f i(x0) = gi(x0) = −3ϵ, f i(x) = gi(x) ≥ −6ϵ, ∀x ∈ {0, N}d\{x0},

which implies that
X i

ϵ = {x ∈ X : f i(x) ≤ −5ϵ}.

Since the consistent permutation and neighboring points only depend on the coordinate of
x, we know

f i(x) = N−1 ·

[
(N − xα(1))f

i(S0) +
d−1∑
i=1

(xα(i) − xα(i+1))f
i(Si) + xα(d)f

i(Sd)

]
(4.31)

≥ N−1 ·

[
−3ϵ(N − xα(1))− 6ϵ

d−1∑
i=1

(xα(i) − xα(i+1))− 6ϵ · xα(d)

]
= N−1 ·

[
−3ϵ(N − xα(1))− 6ϵ · xα(1)

]
= −3ϵN−1 · (N + xα(1)).

Hence, the set X i
ϵ satisfies

X i
ϵ ⊂

{
x ∈ X : N + max

i
xi ≥ 5N/3

}
=
{
x ∈ X : max

i
xi ≥ 2N/3

}
. (4.32)

Combining the relations (4.30) and (4.32), we know X 0
ϵ ∩ X i

ϵ = ∅ for all i ∈ [d].
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Step 3. Finally, we give a lower bound of T0(ϵ, δ,MC). For each i ∈ I, we define Mi as the
model such that the objective function is f i(x) and the distribution at each point is Gaussian
with variance σ2. Same as the one-dimensional case, given a zeroth-order algorithm and a
model M , we denote Nx(τ) as the number of times that F (x, ξx) is simulated when the
algorithm terminates. By definition, we have

EM [τ ] =
∑
x∈X

EM [Nx(τ)] ,

where EM is the expectation when the model M is given. Similarly, we can define PM as the
probability when the model M is given. Suppose A is an [(ϵ, δ)-PGS,MC]-algorithm and let
E be the event that the solution returned by A is in the set X 0

ϵ . Since X 0
ϵ ∩ X i

ϵ = ∅ for all
i ∈ [d], we know

PM0 [E ] ≥ 1− δ, PMi
[E ] ≤ δ, ∀i ∈ [d].

Using the information-theoretical inequality (4.9), it holds∑
x∈X

EM0 [Nx(τ)] KL(ν0,x, νi,x) ≥ d(PM0(E),PMi
(E)) ≥ d(1− δ, δ) ≥ log

(
1

2.4δ

)
, (4.33)

where d(x, y) := x log(x/y) + (1− x) log((1− x)/(1− y)), KL(·, ·) is the KL divergence and
νi,x is the distribution of F i(x, ξx). Since the distributions νi,x are Gaussian with variance
σ2, the KL divergence can be calculated as

KL(ν0,x, νi,x) = 2σ−2
(
f 0(x)− f i(x)

)2
.

Now we estimate f 0(x)− f i(x) for all i ∈ [d]. By equations (4.29) and (4.31), we get

f 0(x)− f i(x) = N−1

[
(N − xα(1))

(
f 0(S0)− f i(S0)

)
(4.34)

+
d−1∑
j=1

(xα(j) − xα(j+1))
(
f 0(Sj)− f i(Sj)

)
+ xα(d)

(
f 0(Sd)− f i(Sd)

) ]
,

where α is a consistent permutation of x/N and Si is the i-th neighboring point of x in
hypercube {0, N}d. By the definition of f 0(x) and f i(x), we have

f 0(x)− f i(x) =

{
6ϵ if x = xi

0 otherwise.

Since ∥xi∥1 = i and ∥Sj∥1 = j for all j ∈ I, we know

f 0(Si)− f i(Si) ≤ 6ϵ, f 0(Sj)− f i(Sj) = 0, ∀j ∈ I\{i}.
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Substituting into equation (4.34), it follows that

f 0(x)− f i(x) ≤

{(
6ϵ · (xα(i) − xα(i+1))

)2
if i ∈ [d− 1](

6ϵ · xα(d)

)2
if i = d.

Hence, the KL divergence is bounded by

KL(ν0,x, νi,x) = 2σ−2
(
f 0(x)− f i(x)

)2 ≤ {72σ−2N−2ϵ2
(
(xα(i) − xα(i+1))

)2
if i ∈ [d− 1]

72σ−2N−2ϵ2x2
α(d) if i = d.

Substituting the KL divergence into inequality (4.33) and summing over i = 1, . . . , d, we get

∑
x∈X

EM0 [Nx(τ)] · 72σ−2N−2ϵ2

[
d−1∑
i=1

(xα(i) − xα(i+1))
2 + x2

α(d)

]
≥ d log

(
1

2.4δ

)
. (4.35)

Since α is the consistent permutation of x, we know

0 ≤ xα(i) − xα(i+1) ≤ N, ∀i ∈ [d− 1]

and therefore

d−1∑
i=1

(xα(i) − xα(i+1))
2 + x2

α(d) ≤ N ·

(
d−1∑
i=1

(xα(i) − xα(i+1)) + xα(d)

)
= N · xα(1) ≤ N2.

Combining with inequality (4.35), we get∑
x∈X

EM0 [Nx(τ)] · 72ϵ2σ−2 ≥ d log

(
1

2.4δ

)
,

which implies that

EM0 [τ ] =
∑
x∈X

EM0 [Nx(τ)] ≥ dσ2

72ϵ2
log

(
1

2.4δ

)
.

Proof of Theorem 46

Proof of Theorem 46. We consider the submodular functions g0(x), . . . , gd(x) constructed in
the proof of Theorem 45. We want to construct objective functions f 0(x), . . . , fd(x) on
X = [N ]d such that

f i(x) =

{
6c · gi(x− 1) + h(x) if x ∈ [2]d

h(x) if x ∈ [N ]d\[2]d,
∀i ∈ {0, . . . , d},
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where (x− 1)j := xj − 1 for all j ∈ [d] and h(x) is a suitably designed function. Similar to
the proof of Theorem 45, we apply the information-theoretical inequality (4.9) to pairs f 0(x)
and f i(x) for all i ∈ [d]. Since the objective function values for f 0(x) and f i(x) are equal
for all x ∈ [N ]d\[2]d, the terms with respect to those x will disappear and we only need to
analyze the terms with x ∈ [2]d. Now, using the same analysis and notations as Theorem
45, we get the desired lower bound

EM0 [τ ] =
∑
x∈X

EM0 [Nx(τ)] ≥ dσ2

72c2
log

(
1

2.4δ

)
.

Therefore, it remains to chose a suitable function h(x) such that f i(x) are L♮-convex on the
whole feasible set X . We define

M := max
x∈{0,1}d, i∈{0,...,d}

6c · |gi(x)|.

The extended function f i(x) is defined by

h(x) := 4M
d∑

j=1

(xj − 1)(xj − 2) + 2M max
j

xj + 2M
d∑

j=1

1(xj = 1), x ∈ [N ]d,

where 1(·) is the indicator function. The function h(x) is the sum of two L♮-convex functions
[168] and thus is a L♮-convex function. We prove that for each i ∈ [d], the function f i(x)
is L♮-convex, namely, it satisfies the discrete mid-point convexity. Suppose that x, y ∈ [N ]d

are two feasible points. We consider three different cases.

Case I. We first consider the case when x, y ∈ [2]d. In this case, the fact that [2]d is a
L♮-convex set implies that ⌈

x + y

2

⌉
,

⌊
x + y

2

⌋
∈ [2]d.

Since the function 6c · gi(x) + h(x) is L♮-convex, the discrete mid-point convexity holds for
x and y.

Case II. We consider the case when x, y /∈ [2]d. Since the function
∑

j 1(xj = 1) is L♮-
convex, it satisfies the discrete mid-point convexity and we can safely ignore its effect in this
case. If ⌊(x+y)/2⌋, ⌈(x+y)/2⌉ /∈ [2]d, then the L♮-convexity of h(x) implies the discrete mid-
point convexity of points x and y. Now, we consider the case when ⌊(x+y)/2⌋, ⌈(x+y)/2⌉ ∈
[2]d. Since at least one component of x and y is larger than 2, it holds that

f i(x) ≥ 4M · (3− 1)(3− 2) + 3M = 11M, f i(y) ≥ 11M.

Hence, we get

f i(x) + f i(y) ≥ 22M ≥ f i

(⌈
x + y

2

⌉)
+ f i

(⌊
x + y

2

⌋)
.
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The only remaining case is when⌈
x + y

2

⌉
/∈ [2]d,

⌊
x + y

2

⌋
∈ [2]d.

In this case, we have ⌊
xj + yj

2

⌋
≤ 2, ∀j ∈ [d], max

j

⌈
xj + yj

2

⌉
≥ 3,

which implies that
xj + yj ≤ max

j
(xj + yj) = 5, ∀j ∈ [d]

and

max
j

xj ≥ 3, max
j

yj ≥ 3, max
j

⌈
xj + yj

2

⌉
= 3, max

j

⌊
xj + yj

2

⌋
= 2.

Let

Jx := {j ∈ [d] : xj ≥ 3}, Jy := {j ∈ [d] : yj ≥ 3}, J := {j ∈ [d] : xj + yj = 5}.
(4.36)

The analysis above gives
J ⊂ Jx ∪ Jy, Jx ∩ Jy = ∅.

Hence, we know∑
j

(xj − 1)(xj − 2) +
∑
j

(yj − 1)(yj − 2) ≥ 2|Jx|+ 2|Jy|,

∑
j

(⌈
xj + yj

2

⌉
− 1

)(⌈
xj + yj

2

⌉
− 2

)
+
∑
j

(⌊
xj + yj

2

⌋
− 1

)(⌊
xj + yj

2

⌋
− 2

)
= 2|J |.

Combining with inequality (4.36), we get

h(x) + h(y)− h

(⌈
xj + yj

2

⌉)
− h

(⌊
xj + yj

2

⌋)
≥ 8M(|Jx|+ |Jy| − |J |) + 2M ≥ 2M.

Therefore, it holds that

f i(x) + f i(y) = h(x) + h(y) ≥ h

(⌈
xj + yj

2

⌉)
+ h

(⌊
xj + yj

2

⌋)
+ 2M

≥ h

(⌈
xj + yj

2

⌉)
+ h

(⌊
xj + yj

2

⌋)
+ 6c · gi(x− 1)

= f i

(⌈
xj + yj

2

⌉)
+ f i

(⌊
xj + yj

2

⌋)
.
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Case III. Finally, we consider the case when x ∈ [2]d and y /∈ [2]d. If⌈
x + y

2

⌉
,

⌊
x + y

2

⌋
∈ [2]d,

we know

f i(y) + f i(x) ≥ 11M −M > 6M ≥ f i

(⌈
xj + yj

2

⌉)
+ f i

(⌊
xj + yj

2

⌋)
.

Next, for the case where ⌈
x + y

2

⌉
,

⌊
x + y

2

⌋
/∈ [2]d,

we get

max
j

xj + yj
2

≥ 3,

which implies that
max

j
yj ≥ 4.

Considering the component j such that yj ≥ 4, it follows that(⌈
xj + yj

2

⌉
− 1

)(⌈
xj + yj

2

⌉
− 2

)
+

(⌊
xj + yj

2

⌋
− 1

)(⌊
xj + yj

2

⌋
− 2

)
≤
(
xj + yj + 1

2
− 1

)(
xj + yj + 1

2
− 2

)
+

(
xj + yj

2
− 1

)(
xj + yj

2
− 2

)
≤
(
yj + 3

2
− 1

)(
yj + 3

2
− 2

)
+

(
yj + 2

2
− 1

)(
yj + 2

2
− 2

)
=

1

2
y2j −

1

2
yj −

1

4
.

Combining with the L♮-convexity of functions (xk − 1)(yk − 2) for each k ∈ [d] and maxk xk,
we get

h(x) + h(y)− h

(⌈
x + y

2

⌉)
− h

(⌊
x + y

2

⌋)
≥hj(x) + hj(y)− hj

(⌈
x + y

2

⌉)
− hj

(⌊
x + y

2

⌋)
≥4M(xj − 1)(xj − 2) + 4M(yj − 1)(yj − 2)

− 4M

(⌈
xj + yj

2

⌉
− 1

)(⌈
xj + yj

2

⌉
− 2

)
− 4M

(⌊
xj + yj

2

⌋
− 1

)(⌊
xj + yj

2

⌋
− 2

)
≥0 + 4M

[
y2j − 3yj + 2−

(
1

2
y2j −

1

2
yj −

1

4

)]
= M(2y2j − 10yj + 9) ≥M.

Therefore, we have

f i(x) + f i(y) = h(x) + h(y) + 6c · gi(x− 1) ≥ h(x) + h(y)−M
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≥ h

(⌈
x + y

2

⌉)
+ h

(⌊
x + y

2

⌋)
+ M −M

≥ h

(⌈
x + y

2

⌉)
+ h

(⌊
x + y

2

⌋)
= f i

(⌈
x + y

2

⌉)
+ f i

(⌊
x + y

2

⌋)
.

Now, we consider the last case where⌈
x + y

2

⌉
/∈ [2]d,

⌊
x + y

2

⌋
∈ [2]d.

Similar to Case II, we can prove that

xj + yj ≤ 5, ∀j ∈ [d].

If it holds that

h(y) > h

(⌈
x + y

2

⌉)
,

we can utilize that fact that y, ⌈x+y
2
⌉ ∈ Zd to prove

h(y) ≥ h

(⌈
x + y

2

⌉)
+ 2M,

which leads to

f i(x) + f i(y) ≥ h(x) + h(y)−M ≥ 0 + h

(⌈
x + y

2

⌉)
+ 2M −M

≥ h

(⌈
x + y

2

⌉)
+ 6c · gi

(⌊
x + y

2

⌋)
= h

(⌈
x + y

2

⌉)
+ 0 + 6c · gi

(⌊
x + y

2

⌋)
≥ h

(⌈
x + y

2

⌉)
+ h

(⌊
x + y

2

⌋)
+ 6c · gi

(⌊
x + y

2

⌋)
= f i

(⌈
x + y

2

⌉)
+ f i

(⌊
x + y

2

⌋)
.

Therefore, we focus on the case when

h(y) ≤ h

(⌈
x + y

2

⌉)
. (4.37)

First, using the facts that x ∈ [2]d and y /∈ [2]d, it is easy to prove that

max
j

yj ≥ max
j

⌈
xj + yj

2

⌉
= 3, 1(yj = 1) ≥ 1

(⌈
xj + yj

2

⌉
= 1

)
, ∀j ∈ [d]. (4.38)



CHAPTER 4. GRADIENT-BASED SIMULATION-OPTIMIZATION METHODS 211

Moreover, using the condition that xj ∈ [2], it holds that∣∣∣∣yj − 3

2

∣∣∣∣ ≥ ∣∣∣∣⌈xj + yj
2

⌉
− 3

2

∣∣∣∣ , ∀j ∈ [d],

which implies that∑
j

(yj − 1)(yj − 2) ≥
∑
j

(⌈
xj + yj

2

⌉
− 1

)(⌈
xj + yj

2

⌉
− 2

)
.

Combining with inequalities in (4.38), we get

h(y) ≥ h

(⌈
x + y

2

⌉)
.

In addition, the equality of the above inequality holds in combination with our assumption
in (4.37). The equality conditions imply that

max
j

yj = 3, 1(yj = 1) = 1

(⌈
xj + yj

2

⌉
= 1

)
,

∣∣∣∣yj − 3

2

∣∣∣∣ =

∣∣∣∣⌈xj + yj
2

⌉
− 3

2

∣∣∣∣ , ∀j ∈ [d].

The above three conditions imply that

y =

⌈
xj + yj

2

⌉
.

Utilizing the identity

x + y =

⌈
xj + yj

2

⌉
+

⌊
xj + yj

2

⌋
,

we know

x =

⌊
xj + yj

2

⌋
.

In this case, the discrete mid-point convexity holds evidently.

4.E Proofs in Section 4.6

Proof of Theorem 47

First, the following lemma shows that the lower bound of E[Hx(y, ηy)] in Nx implies a
global lower bound of f(x).
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Lemma 34. Suppose that Assumptions 5-9 hold. If we have

E[Hx(y, ηy)] ≥ −b, ∀y ∈ Nx

for some constant b ≥ 0, then it holds

f(y) ≥ f(x)− 2N

1− a
· b, ∀y ∈ X .

Proof of Lemma 34. The proof follows the same framework as Theorem 50. We first consider
points y ∈ Nx. By the condition of this lemma and inequality (4.10), we have

f(y)− f(x) ≥ (1− a)−1 · E[Hx(y, ηy)] ≥ −(1− a)−1(1− a)−1b.

Next, we consider point y ∈ X such that ∥y − x∥∞ ≤ 1. Then, there exists two disjoint sets
S1,S2 ⊂ [d] such that

y = x + eS1 − eS2 ,

where eS :=
∑

i∈S ei is the indicator vector of S. Using the translation submodularity of
f(x), we have

f(y) ≥ f(x + eS1)− f(x) + f(x− eS2)− f(x) ≥ −2(1− a)−1b.

Now, let f̃(x) be the convex extension of f(x) defined in (4.7) and consider y ∈ [1, N ]d such
that ∥y − x∥∞ ≤ 1. We consider the hypercube Cz that contains both x and y and denote
Sy,i as the i-th neighboring point of y in Cz. Recalling the expression (4.6), we know f(y) is
a convex combination of f(Sy,0), . . . , f(Sy,d). Since the neighboring point Sy,i ∈ X satisfies
∥Sy,i − x∥∞ ≤ 1, we know

f̃(y) ≥ min
i∈{0}∪[d]

f(Sy,i) ≥ −2(1− a)−1b.

Finally, we consider points y ∈ [1, N ]d. We define

ỹ := x +
y − x

∥y − x∥∞
.

Then, we know ∥ỹ − x∥∞ = 1 and f̃ ỹ) ≥ −2(1− a)−1b. By the convexity of f̃(x),

f̃(y)− f(x) ≥ ∥y − x∥∞
∥ỹ − x∥∞

[
f̃(ỹ)− f(x)

]
≥ −N · 2(1− a)−1b = − 2N

1− a
· b.

Hence, to find an (ϵ, δ)-PGS solution, it suffices to find point x such that

E[Hx(y, ηy)] ≥ −
(1− a)ϵ

2N
, ∀y ∈ Nx

holds with probability at least 1− δ.
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Proof of Theorem 47. Let x∗ be a minimizer of f(x). We use the induction method to prove
that

f(xe,0)− f(x∗) ≤ 2−e ·NL, ∀e ∈ {0, 1, . . . , E} (4.39)

holds with probability at least 1− e · δ/E. Using Assumption 8, we have

f(x0,0)− f(x∗) ≤ L · ∥x0,0 − x∗∥∞ ≤ NL,

which means the induction assumption holds for epoch 0. Suppose the induction assumption
is true for epochs 0, 1, . . . , e− 1. Now we consider epoch e. We assume the event

f(xe−1,0)− f(x∗) ≤ 2−e+1 ·NL

happens in the following proof, which has probability at least 1 − (e − 1)δ/E. We suppose
epoch e terminates after Te iterations and discuss by two different cases.

Case I. We first consider the case when Te ≤ T − 1. This event happens only if epoch
e− 1 is terminated by the condition in Line 13, i.e.,

Ĥxe−1,Te−1(y) > −2he−1, ∀y ∈ Nxe−1,Te−1 .

By the definition of confidence intervals, it follows that

min
y∈N

xe−1,Te−1

E[Hxe−1,Te−1(y, ηy)] ≥ −3he−1 = −3 · 2−e+1h0 = −2−e−1 · (1− a)L

holds with probability at least 1− δ/(ET ). Then, considering the results of Lemma 34, we
know

f(xe,0)− f(x∗) = f(xe−1,Te−1)− f(x∗) ≤ 2N

1− a
· 2−e−1 · (1− a)L = 2−e ·NL

happens with the same probability. Combining with the induction assumption for epoch e−1,
the above event happens with probability at least 1 − (e − 1)δ/E − δ/(ET ) ≥ 1 − e · δ/E
and the induction assumption holds for epoch e.

Case II. Next, we consider the case when Te = T . We estimate the object function
decrease for each iteration t = 0, 1, . . . , T − 1. By the definition of confidence intervals, it
holds

E[Hxe−1,t(y, ηy)] ≤ −he−1

with probability at least 1−δ/(ET ), where y = xe−1,t+1 is the next iteration point. Recalling
inequality (4.10), we know

f(xe−1,t+1)− f(xe−1,t) ≤ −(1 + a)−1he−1
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happens with probability at least 1 − δ/(ET ). We assume the above event happens for all
t = 1, 2, . . . , T , which has probability at least 1− T · δ/(ET ) = 1− δ/E. Then, we have

f(xe,0)− f(xe−1,0) = f(xe−1,T )− f(xe−1,0) =
T∑
t=1

f(xe−1,t)− f(xe−1,t−1)

≤ −T · (1 + a)−1he−1 = −2−e ·NL

holds with the same probability. Combining with the induction assumption for epoch e− 1,
we know

f(xe,0)− f(x∗) ≤ 2−e ·NL

happens with probability at least 1 − (e − 1)δ/E − δ/E = 1 − e · δ/E. This means the
induction assumption holds for epoch e.

Combining the above two cases, we know the induction assumption is true for epoch e.
By the induction method, we know inequality (4.39) holds for epoch E, i.e.,

f(xE,0)− f(x∗) ≤ 2−E ·NL = 2−⌈log2(NL/ϵ)⌉ ·NL ≤ 2− log2(NL/ϵ) ·NL = ϵ

with probability at least 1 − E · δ/E = 1 − δ. Hence, Algorithm 4 returns an (ϵ, δ)-PGS
solution.

Next, we estimate the simulation cost of Algorithm 4. For each iteration in epoch e,
Hoeffding bound implies that simulating Hx(y, ηy) for

2σ̃2

h2
e

log

(
2ET

δ

)
= 22e · 288σ̃2

(1− a)2L2
log

(
2ET

δ

)
times is sufficient to ensure that the 1− δ/(ET ) confidence half-width is at most Te. Since
the simulation cost of each evaluation of all Hx(y, ηy) is γ, the simulation cost of epoch e is
at most

γ · T · 22e · 288σ̃2

(1− a)2L2
log

(
2ET

δ

)
= 22e · 1728(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
.

Summing over e = 0, 1, . . . , E − 1, we get the bound of total simulation cost as

E−1∑
e=0

22e · 1728(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
=
(
4E − 1

)
· 576(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
≤4⌈log2(NL/ϵ)⌉ · 576(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
≤ 4log2(NL/ϵ)+1 · 576(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
=

4N2L2

ϵ2
· 576(1 + a)σ̃2γN

(1− a)3L2
log

(
2ET

δ

)
=

2304(1 + a)σ̃2γN3

(1− a)3ϵ2
log

(
2ET

δ

)
.

When δ is small enough, the asymptotic simulation cost is at most

2304(1 + a)σ̃2γN3

(1− a)3ϵ2
log

(
2ET

δ

)
= Õ

[
γN3

(1− a)3ϵ2
log

(
1

δ

)]
.
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First-order Algorithms for the PCS-IZ Case

We first give the stochastic steepest descent method for the PCS-IZ guarantee in Algo-
rithm 6.

Algorithm 6 Adaptive stochastic steepest descent method for PCS-IZ guarantee

Input: Model X ,BY, F (x, ξx), optimality guarantee parameter δ, indifference zone parame-
ter c, biased subgradient estimator Hx(y, ηy), bias ratio a.

Output: A (c, δ)-PCS-IZ solution x∗ to problem (4.1).
1: Set the initial confidence half-width threshold h← (1− a)c/12.
2: Set maximal number of iterations T ← (1 + a)/(1− a) · 12N .
3: Use Algorithm 4 to find an (Nc, δ/2)-PGS solution.
4: for t = 0, 1, . . . , T − 1 do
5: repeat simulate Hxt(y, ηy) for all y ∈ Nxt

6: Compute the empirical mean Ĥxt(y) using all simulated samples for all y ∈ Nxt .
7: Compute the 1− δ/(2T ) confidence interval[

Ĥxt(y)− hy, Ĥxt(y) + hy

]
, ∀y ∈ Nxt .

8: until the confidence half-width hy ≤ h for all y ∈ Nxt

9: if Ĥxt(y) ≤ −2h for some y ∈ Nxt then ▷ This step takes 2d+1 arithmetic
operations.

10: Update xt+1 ← y.
11: else if Ĥxt(y) > −2h for some y ∈ Nxt then
12: break
13: end if
14: end for
15: Return xt.

The following theorem verifies the correctness of Algorithm 6 and estimates its asymptotic
simulation cost.

Theorem 53. Suppose that Assumptions 5-8, 9 hold. Algorithm 6 returns an (c, δ)-PCS-IZ
solution and we have

T (δ,MCc) = O

[
γN

(1− a)3c2
log

(
1

δ

)
+

γN

1− a
max

{
log

(
1

c

)
, 1

}]
= Õ

[
γN

(1− a)3c2
log

(
1

δ

)]
.

Proof of Theorem 53. If the algorithm terminates before the T -th iteration, then the condi-
tion at Line 11 is satisfied for the last iteration point, which we denote as xt. Let

yt := arg min
y∈Nxt

f(y).
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Then, by the definition of confidence intervals, it holds

E[Hxt−1(yt, ηyt)] ≥ −3h

with probability at least 1− δ/(2T ) ≥ 1− δ. By inequality (4.10), we know

min
y∈Nxt

f(y)− f(xt) = f(yt)− f(xt) ≥ − 3h

1− a
= − c

4

holds wit the same probability. We assume the event happens in the following proof. For
any point y ∈ X such that ∥y − xt∥∞ ≤ 1, there exists two disjoint sets S1,S2 ⊂ [d] such
that

y = xt + eS1 − eS2 ,

where eS :=
∑

i∈S ei is the indicator vector of S. Then, using the L♮-convexity of f(x), we
know

f(y)− f(xt) ≥ f(xt + eS1)− f(xt) + f(xt − eS2)− f(xt) ≥ − c

2
.

Let f̃(x) be the convex extension of f(x) defined in (4.7). Recalling expression (4.6), we
know

f̃(y)− f(xt) ≥ − c

2
, ∀y ∈ [1, N ]d s. t. ∥y − xt∥∞ ≤ 1. (4.40)

We assume that xt is not the minimizer of f(x), which we denote as x∗. Since the indifference
zone parameter is c, we know

f(y)− f(x∗) ≥ c, ∀y ∈ X\{x∗}. (4.41)

Similarly, using expression (4.6), we get

f̃(y)− f(x∗) ≥ c, ∀y ∈ [1, N ]d s. t. ∥y − x∗∥∞ ≤ 1.

If ∥xt − x∗∥∞ ≤ 1, then there exists a point x∗ such that ∥x∗ − xt∥∞ ≤ 1 and

f(x∗)− f(xt) ≤ −c,

which contradicts with inequality (4.40). Otherwise if ∥xt − x∗∥∞ ≥ 2, we define

xt,1 := xt +
x∗ − xt

∥xt − x∗∥∞
, xt,2 := x∗ +

xt − x∗

∥x∗ − xt∥∞
.

Then, it holds
∥xt − xt,1∥∞ = 1, ∥x∗ − xt,2∥∞ = 1

and xt,1, xt,2 are closer to xt, x∗, respectively. By inequalities (4.40) and (4.41), we get

f̃(xt,1)− f(xt) ≥ − c

2
, f̃(x∗)− f(xt,2) ≤ −c.
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However, the convexity of f̃(x) on the segment xtx∗ implies that

− c

2
≤ f̃(xt,1)− f(xt) ≤ f̃(x∗)− f(xt,2) ≤ −c,

which is a contradiction. Hence, we know xt = x∗ is the minimizer of f(x). This event
happens with probability at least 1− δ and therefore xt is a (c, δ)-PCS-IZ solution.

Otherwise, we assume the algorithm terminates after T iterations. We use the induction
method to prove that

f(xt)− f(x0) ≤ −t · (1− a)c

12(1 + a)

happens with probability at least 1 − t · δ/(2T ). For the initial point x0, this claim holds
trivially. Suppose the induction assumption is true for x0, x1, . . . , xt−1. For the (t − 1)-th
iteration, by the definition of confidence intervals, it holds

E[Hxt−1(xt, ηxt)] ≤ −h

with probability at least 1− δ/(2T ). Using inequality (4.10), we know

f(xt)− f(xt−1) ≤ − h

1 + a
= − (1− a)c

12(1 + a)

holds with the same probability. Using the induction assumption for xt−1, we have

f(xt)− f(x0) ≤ −(t− 1) · (1− a)c

12(1 + a)
− (1− a)c

12(1 + a)
= −t · (1− a)c

12(1 + a)

holds with probability at least 1 − (t − 1)δ/(2T ) − δ/(2T ) = 1 − t · δ/(2T ). Hence, the
induction assumption holds for xt and, by the induction method, holds for all iterations.
Since the algorithm terminates after T iterations, the last point xT satisfies

f(xT )− f(x0) ≤ −T · (1− a)c

12(1 + a)
= −cN

with probability at least 1−T ·δ/(2T ) = 1−δ/2. Recalling the initial point x0 is a (cN, δ/2)-
PGS solution, we know xT is the optimal point with probability at least 1− δ and therefore
is a (c, δ)-PCS-IZ solution.

Finally, we estimate the simulation cost of Algorithm 6. By Theorem 47, the simulation
cost for generating the initial point is

Õ

[
γN

(1− a)3c2
log

(
1

δ

)]
.

For each iteration, Hoeffding bound implies that simulating

2σ̃2

h2
log

(
4T

δ

)
=

288σ̃2

(1− a)2c2
log

(
4T

δ

)
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times is enough for the 1 − δ/(2T ) confidence half-width to be smaller than h. Hence, the
total simulation for iterations is at most

T · γ · 288σ̃2

(1− a)2c2
log

(
4T

δ

)
=

1152γσ̃2(1 + a)N

(1− a)3c2
log

(
4T

δ

)
= O

[
γN

(1− a)3c2
log

(
1

δ

)]
.

Combining the simulation costs for initialization and iterations, we know the asymptotic
simulation cost of Algorithm 6 is at most

Õ

[
γN

(1− a)3c2
log

(
1

δ

)]
.
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Chapter 5

Stochastic Localization
Simulation-optimization Methods

5.1 Introduction

In Chapter 4, we propose subgradient-based stochastic search algorithms for problems
with a high-dimensional decision space. Roughly speaking, these algorithms scale well to
high-dimensional problems, but are computationally expensive for large-scale problems. In
practice, however, many problem settings have a large scale but a relatively low dimension or
even a single dimension; see the examples in the first paragraph of Section 5.3. In this chapter,
the focus is on designing algorithms that work well for large-scale discrete optimization via
simulation problems with a convex objective function. The notion of “large-scale” refers to
a large number of choices for the discrete decision variable on each dimension. Optimization
problems with such features naturally arise in many operations research and management
science applications, including queueing networks, supply chain networks, sharing economy
operations, financial markets, etc.; see [198], [232], [10], [205, 121, 77] for example. Partic-
ularly in the area of supply chain management, a significant amount of models are proved
to be discrete convex: lost-sales inventory systems with positive lead time [261]; serial in-
ventory systems [111]; single-stage inventory systems with positive order lead time [180];
capacitated inventory systems with remanufacturing [88]; more applications are discussed
in [45]. Overall, in these papers, the authors consider various decision-making settings and
prove convexity for commonly used objective functions in the corresponding settings. In
these applications, the convexity is proved, but finer structure such as strong convexity often
does not hold or is very difficult to prove. In addition, there may be many choices of decision
variables whose associated objective values are close to the optimal objective value, and the
gap between optimal and sub-optimal solutions is hard to measure or estimate a priori. For
the algorithms designed in this chapter, we take the view that this gap information is not
available and the algorithms are designed to work for arbitrarily small unknown gap.

Similar with Chapter 4, we develop provably efficient simulation-optimization algorithms
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that guarantee the (ϵ, δ)-Probability of Good Selection ((ϵ, δ)-PGS) criterion ; see Section 4.2
of Chapter 4, [159] and [101]. Although the asymptotic regime δ ≪ 1 is of more interest in
many theoretical works, this chapter provides bounds on the simulation cost that hold for
all ϵ ≥ 0 and δ ∈ (0, 1]. To quantify the computational cost for the proposed algorithms that
are guaranteed to find ϵ-optimal solutions with high probability, we take the view that the
simulation cost is the dominant contributor to the computational cost; see also [160]. The
simulation cost of an algorithm is measured as the total number of simulation replications run
at all possible decisions visited by the algorithm until it stops. When designing algorithms
to solve large-scale discrete optimization via simulation problems, the dependence of the
simulation cost on the problem size (or, the number of alternatives/solutions/systems in the
area of ranking and selection) is crucial to understand; see also discussions in Section 4.2 of
Chapter 4 and [254].

Moreover, the subgradient descent algorithms in Chapter 4 require prior knowledge about
the upper bounds on the Lipschitz constant L and the variance σ2, and the simulation cost
of the subgradient descent algorithm has a polynomial dependence on these upper bounds;
see the comparison of results in Table 5.5.3. For many real-world discrete simulation via
optimization problems, the Lipschitz constant and the variance are unknown and hard to
estimate. As a result, both upper bounds are likely to be over-estimated, which will lead
to worse simulation costs. In this chapter, algorithms that do not rely on prior information
about L and σ2 are proposed, which resolve the aforementioned issues. Moreover, the al-
gorithms proposed in this chapter have a logarithmic dependence or no dependence on the
upper bound L. Intuitively, (discrete) convex functions grow at a super-linear rate when the
input goes to infinity, i.e., lim∥x∥→∞ |f(x)|/∥x∥ = ∞. In this case, the Lipschitz constant
will be large in the regions where ∥x∥ is large. Therefore, the upper bound on the Lipschitz
constant L will be large for large-scale optimization via simulation problems and reducing
the dependence on the Lipschitz constant is important. Another idea is to adaptively adjust
the stepsize (or parameters that play a similar role), which is common for stochastic opti-
mization for machine learning problems, e.g., ADAM, AdaGrad and RMSProp algorithms.
However, the convergence of those algorithms is established for smooth objective functions.
In our case, the Lovász extension is a non-smooth function, which prohibits the application
of most adaptive methods. To the best of our knowledge, the only techniques in literature
that considered a similar setting are the R-SPLINE [226] the ADALINE algorithms [189],
which only provided an asymptotic convergence result.

Contributions

The major methodology in algorithm design in this chapter can be classified as stochastic
localization methods, in the sense that we “localize” potentially near-optimal solutions in a
subset and adaptively shrink the subset (denoted as S in our proposed algorithms) at each
step. At iteration k, the stochastic localization algorithms guarantee that the set Sk contains
an ϵ-optimal solution with high probability. At the beginning of the algorithm (k = 0), the
set S0 is equal to the feasible set X , which can be viewed as a “global” neighbourhood of
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the optimal solution x∗. After several iterations, the size of Sk is reduced by a lot and can
be viewed as a “local” neighbourhood of x∗. We describe this process as the localization
of an approximately optimal solution. The design of algorithms relies on and addresses the
challenge from the fact that the feasible set is a discrete set. Intuitively, if the feasible set has
a finite number of discrete points, the subset of potentially near-optimal solutions can only be
shrunk for a finite number of times, and the number of localization operations cannot exceed
the size of the feasible set. The proposed algorithms generally do not rely on prior estimates
of the Lipschitz constant and the variance. In addition, the simulation cost of achieving
the PGS guarantee does not depend on the Lipschitz constant. We note that the expected
simulation cost has an inevitable dependence on the variance σ2. To avoid requiring prior
knowledge about the variance in the Gaussian case, after designing algorithms that do not
require information about the Lipschitz constant, we propose in the appendix an adaptive
scheme to address the challenge of unknown variances. The idea of localization also appears
in prior literature of discrete optimization [91] or more specifically discrete optimization via
simulation, such as empirical stochastic branch-and-bound [238], nested partition [201] and
COMPASS [102, 236]. The line search procedure in R-SPLINE [226] and ADALINE [189]
is able to capture the local convexity of the objective function. However, existing works
do not utilize the global information implied by the convexity structure and do not provide
complexity analysis of the proposed algorithms. In contrast, we propose specially-designed
algorithms for discrete convex objective functions and provide an estimate of the simulation
costs; see our comparisons to the Industrial-strength COMPASS algorithm in 5.H.

To show the usefulness of the localization operation, we first consider an important
case of discrete simulation via optimization problems, where the decision space is the “one-
dimensional” set {1, 2, . . . , N}. Here, N is an arbitrary positive integer that represents
the problem scale. Without the convexity structure, the problem setting is mathematically
equivalent to the problem of ranking and selection; see [101] for a comprehensive review. In
this chapter, the objective function is assumed to be discrete convex on the decision space, but
no other structure information such as strong convexity or the knowledge of a minimal gap
between the optimal and sub-optimal solutions is known. Utilizing the idea of localization,
we overcome the shortcoming of the subgradient descent algorithm that its simulation cost
has a quadratic dependence on the problem scale. We propose two localization algorithms.
As a natural generalization of the classical bi-section algorithm, we design the tri-section
sampling (TS) algorithm to find an (ϵ, δ)-PGS solution. We prove that, when δ is small,
O(log(N)ϵ−2 log(1/δ)) serves as an upper bound on the simulation cost for the TS algorithm
for any one-dimensional convex problem, which represents the same logarithmic dependence
on the scale as the bi-section algorithm. Note that when the convexity structure is not
exploited, the optimal dependence on N can be linear. We then design the shrinking uniform
sampling (SUS) algorithm that beats the TS algorithm. The SUS algorithm is proved to
enjoy the upper bound on the simulation cost as O[ϵ−2(log(N) + log(1/δ))] when δ is small.
Using the asymptotic criterion in [128], namely δ → 0 with other parameters fixed, the
SUS algorithm asymptotically achieves the optimal performance and, therefore, is the first
algorithm to achieve a matching upper bound on simulation costs for ranking and selection
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problems with general convex structure. This theoretical superiority of the SUS algorithm
is also verified in numerical experiments. We remark that our major contribution is the
SUS algorithm rather than the TS algorithm, though the analysis provided for these two
algorithms may be separately useful in broader settings.

Next, we turn to the settings of large-scale multi-dimensional problems with the “d-
dimensional” discrete decision space {1, 2, . . . , N} × {1, 2, . . . , N} × . . .× {1, 2, . . . , N}. We
note that the scale N can easily be relaxed to be different in each dimension in our algorithm
design (e.g., after linear constraints are applied on the decision space), but we unify the use
of N in each dimension in the analysis, so as to clearly demonstrate the impact of the scale
N . In a multi-dimensional decision space, a common definition of discrete convexity, which
guarantees that a local optimum is globally optimal, is the L♮-convexity [168]; see [66, 77]
for examples of L♮-convex functions. We observe that even though the TS algorithm and
the SUS algorithm designed for one-dimensional problems can be extended to the multi-
dimensional case, the dependence of their simulation cost on the dimension d can be large,
even up to an exponential order of dependence, which may prohibit their practical use in
high-dimensional problems. This motivates us to consider alternative approaches to design
stochastic localization algorithms that have a low dependence on the dimension d.

In this chapter, we combine the idea of localization with the subgradient information in
the multi-dimensional case. The subgradient information is constructed by taking simula-
tion samples and plays a crucial role in reducing the dependence of simulation cost on the
dimension d. The cutting-plane methods [221, 20, 140, 123] are based on a similar idea and
are known to have a lower order or no dependence on the Lipschitz constant. However, the
cutting-plane methods are not robust to noise. Therefore, we develop a novel framework to
design stochastic cutting-plane (SCP) algorithms based on deterministic cutting-plane algo-
rithms, with the goal of achieving the PGS guarantee. A novel stochastic separation oracle
is designed and analyzed. A straightforward application of the proposed framework leads to
SCP algorithms that have an O(d3) dependence on the dimension and a logarithmic depen-
dence on L, which improves the quadratic dependence of the subgradient-based algorithms
in Chapter 4.

Utilizing the discrete nature of the problem, we further develop the dimension reduction
algorithm whose simulation cost is upper bounded by a constant that is independent of
Lipschitz constant L and has an O(d4) dependence on the dimension. This is the first
algorithm for discrete optimization via simulation that utilizes the convex structure of the
objective to reduce the simulation cost and does not require knowledge about the Lipschitz
constant L. In contrast, the subgradient-based search algorithms developed in Chapter 4 has
a higher order dependence on L and requires the knowledge about the Lipschitz constant,
although it has a lower dependence (O(d2)) on the dimension compared to the dimension
reduction algorithm. Our developed SCP algorithms may particularly be preferable when
the Lipschitz parameter L for a given problem is large or hard to estimate. When a prior
estimate of the Lipschitz constant is unavailable, we need to estimate the Lipschitz constant
through the stochastic oracle and this leads to two major difficulties. First, the objective
function can only be evaluated with noise. This means that we need to simulate F (x, ξx)
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a number of times to get a considerably accurate estimate of the Lipschitz constant and
this process can be time-consuming. Second, we need to check a large number of points to
estimate the Lipschitz constant. Even in the local neighbourhood {y ∈ Zd | ∥y − x∥∞ ≤ 1},
we need to evaluate at least O(2d) points to get an estimate of the Lipschitz constant. The
simulation cost will be prohibitively large even when d is as low as 50. The idea of gradually
reducing the problem dimension was proposed in parallel in [122], where the author made the
algorithm more practical by reducing the number of arithmetic operations to be polynomial.
We numerically verify that the dimension reduction algorithm has a better performance than
the subgradient descent algorithm (Algorithm 3) both on the synthetic and the queueing
simulation optimization examples, especially for the large-scale case.

In terms of dependence on the scale N , we theoretically show that the subgradient de-
scent algorithm and the SCP algorithms all present an O(N2) dependence on N for their
simulation costs. However, the SCP algorithms empirically perform better than the sub-
gradient descent algorithm in applications where N is large. On the other hand, the SUS
algorithm, when extended to multi-dimensional problems, still present no dependence on N
under the asymptotic criterion [128], but however incurs an exponential dependence on d.
These analyses can assist practitioners to choose which algorithm to use depending on the
knowledge or partial knowledge on d, N and L in the specific problems.

Finally, we propose a novel algorithm that is able to adaptively estimate the variance of
the randomness at each feasible decision in the case when the noise is Gaussian. Adaptive
variants are highly important since the variance is not known in many real-life applications.
The design of the algorithm is based on the property that the lower tail for χ2-random
variables is sub-Gaussian [224]. The adaptive algorithm is suitable for the case when an upper
bound on the variance is hard to estimate and over-estimation is inevitable. In addition, the
adaptive algorithm provides an approach to improve the simulation cost in the case when
location-dependent upper bounds of the variance σ2

x is available for all feasible decisions
x. This is because the uniform upper bound σ2 = maxx∈X σ2

x is in general attained by
extreme choices of the decision variable and may be much larger than the variance of a large
proportion of feasible decisions. In contrast to common two-stage procedures for the unknown
variance case in ranking and selection literature, the proposed adaptive algorithm does not
require simulating all choices of the decision variable (which requires O(Nd) simulations) to
get an upper bound on the variance. Moreover, using the novel algorithm, the simulation
cost is at most increased by a constant factor compared to the known variance case.

The remainder of this chapter is outlined as follows. Section 5.2 introduces the model,
framework, optimality criterion, and simulation costs. Section 5.3 discusses the algorithms
and performance analysis developed for one-dimensional large-scale problems. Section 5.4
discusses the algorithms and performance analysis developed for multi-dimensional large-
scale problems. Section 5.5 provides numerical experiments to compare the proposed al-
gorithms to benchmark methods. The adaptive algorithm for estimating the variance is
provided in the appendix.
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5.2 Model and Framework

Since we use the same framework as Chapter 4, we only discuss essential notations and
omit the detailed discussion of the framework. We consider a complex stochastic system that
involves discrete decision variables in a d-dimensional subspace X = [N1]× [N2]× · · · × [Nd]
in which the Ni’s are positive integers. The objective function f(x) for x ∈ X is given by

f(x) := E[F (x, ξx)],

in which ξx is a random object belonging to the probability space (Y,BY) and F : X ×Y → R
is a measurable function. Specifically, the function F captures the full operations logic in the
stochastic system and measures the performance of the system. For example, in a queueing
system, ξx is the arrival times and the service times of customers, and F (·, ξx) is the average
waiting time of all customers under the situation described by ξx. We consider scenarios when
the objective function f(x) is not in closed-form and needs to be evaluated by averaging over
simulation replications of F (x, ξx). The random objects ξx’s can be different for different
choices of decision variables. We assume that the probability distribution for the stochastic
simulation output F (x, ξx) is sub-Gaussian.

Assumption 5. The distribution of F (x, ξx) is sub-Gaussian with known parameter σ2 for
any x ∈ X .

We note that a special case of Assumption 5 is when the distribution follows the Gaussian
distribution. In that case, the parameter σ2 can be chosen as the upper bound on the variance
of the distribution. For more general distributions with a finite variance, the mean estimator
in [139] can be used in place of the empirical mean estimator and the results in this chapter
can be directly generalized. We assume that Assumption 5 holds in the remainder of the
chapter except Section 5.G, where we consider the Gaussian noise case when the variance
is unknown. We propose a novel algorithm to adaptively estimate the variance σ2 in the
Gaussian case.

Same as Chapter 4, we focus on identifying the optimal decision, i.e., finding the decision
that has the minimal objective value:

min
x∈X

f(x). (5.1)

Our general goal is to design algorithms that guarantee the selection of a good decision
that yields a close-to-optimal performance with high probability. Formally, this criterion is
defined as Probability of Good Selection. We reiterate the definition of this criterion:

• (ϵ, δ)-Probability of good selection (PGS). The solution x returned by an algorithm has
an objective value at most ϵ larger than the optimal objective value with probability
at least 1− δ.
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In this chapter, we focus on the regime where δ is small enough and estimate the asymptotic
expected simulation cost.

In addition, we assume that the objective function and the feasible set are both L♮-
convex. We describe in detail in Section 4.2 of Chapter 4 the exact definition and properties
of L♮-convexity.

Assumption 6. The objective function f(x) is a L♮-convex function on the L♮-convex set
X .

For optimization via simulation problems, we take the view that the simulation cost of
generating replications of F (x, ξx) is the dominant contributor to the computational cost
is widely held; see [155, 176, 159, 160]. Therefore, for the purpose of comparing different
simulation-optimization algorithms that satisfy certain optimality guarantee, the perfor-
mance of each algorithm is measured by the expected simulation cost (see Definition 11).
The main focus of this chapter is to develop provably efficient simulation-optimization algo-
rithms for the (ϵ, δ)-PGS guarantee and provide an upper bound on the expected simulation
cost to achieve that guarantee. Therefore, the notion of simulation cost in this chapter is
largely focused on

T (ϵ, δ,MC) := T ((ϵ, δ)-PGS,MC),

where the class of models MC include all convex models. We mention that the upper
bounds derived in this chapter also hold almost surely, while the lower bounds only hold in
expectation. Furthermore, our proposed algorithms do not require additional structures of
the selection problem in addition to convexity.

To better present the dependence of the expected simulation cost on the scale and di-
mension of the problem, we assume that N1 = N2 = · · · = Nd.

Assumption 7. The feasible set of decision variables is X = [N ]d, where N ≥ 2 and d ≥ 1.

With Assumption 7 in hand, we will present the dependence of the expected simulation
cost on N and d. We note that the results in this chapter can be naturally extended to the
case when each dimension has a different number of feasible choices of decision variables.
Furthermore, if the objective function f is defined on a L♮-convex set (i.e., the indicator
function of the set is a L♮-convex function, which we will define later), the algorithms pro-
posed in this chapter can be directly extended with small modifications. A typical example
of a L♮-convex set is the capacity-constrained set{

(x1, . . . , xd)
∣∣∣ xi ∈ [N ], ∀i ∈ [d],

∑
ixi ≤ C

}
under a linear transform, where C > 0 is the capacity constraint; see Section 5.5 for more
details.
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5.3 Simulation-optimization Algorithms and

Complexity Analysis: One-dimensional Case

We first consider a special class of optimization via simulation problems where the di-
mension of the decision variable is one, but there are a large number of choices of decision
variable. This class of one-dimensional problems, despite of the less generality compared
to multi-dimensional large-scale problems, have applications when the one-dimensional de-
cision variable is a choice of overall resource level. For example, large delivery companies
often need to decide the total number of trucks that should be recruited for operations in a
self-contained region. A service system may need to decide the total number of staff mem-
bers needed to host a special event. Such decisions often involve a trade-off between service
satisfaction and resource costs. The convexity in the objective function often comes from
the marginal decay of contribution to service satisfaction as the resource level increases; see
the optimal allocation example and Figure 5.5.1 in Section 5.5 for more details.

In the one-dimensional case, the feasible set is X = [N ] = {1, 2, . . . , N}. The L♮-convexity
for a function f reduces to the ordinary continuous convexity through the discrete mid-point
convexity property, namely,

f(x + 1) + f(x− 1) ≥ 2f(x), ∀x ∈ {2, . . . , N − 1}.

If the function f(x) is convex on X , it has a convex linear interpolation on the continuous
interval [1, N ], defined as

f̃(x) := [f(x0 + 1)− f(x0)] · (x− x0) + f(x0), ∀x ∈ [x0, x0 + 1], x0 ∈ [N − 1]. (5.2)

In this section, we propose simulation-optimization algorithms that are guaranteed to
find solutions that satisfy the PGS guarantee, provided that the objective function has
a convex structure. For every developed simulation-optimization algorithm, we provide an
upper bound on the expected simulation cost to achieve the PGS guarantee. We also provide
a lower bound on the expected simulation cost that reflects the best achievable performance
for any algorithm. Under the asymptotic criterion in [128], one of our proposed algorithms
can attain the best achievable asymptotic performance.

In contrast to the multi-dimensional case in Chapter 4, where the subgradient descent
algorithm achieves satisfying performance, the subgradient descent algorithm is not efficient
for large-scale one-dimensional problems. This is because of the O(N2) dependence in the
simulation cost. In addition, the subgradient descent algorithm relies on the Lipschitz con-
stant of the objective function, which is shown to be unnecessary for discrete problems in
this section. Utilizing the localization operation, the algorithms proposed in this section
do not have the aforementioned issues. Therefore, the algorithms in this section provide
better alternatives to the subgradient descent algorithm for one-dimensional problems. The
analysis of the one-dimensional case also shows the limitation of subgradient-based search
methods and provides a hint on how to improve algorithms for multi-dimensional problems.
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Tri-section Sampling Algorithm and Upper Bound on Expected
Simulation Cost

We first propose the tri-section sampling (TS) algorithm for the PGS guarantee. The idea
of the TS algorithm is from the classical bi-section method and the golden section method. A
similar TS algorithm is proposed in [2] for stochastic continuous convex optimization, which
controls the regret instead of the objective value. However, their algorithm does not utilize
the prior information that the optimal solution is an integral point and thus the simulation
cost has a polynomial dependence on the Lipschitz constant. In addition, although an
algorithm that minimizes the regret can be used to minimize the objective function value,
the resulting simulation cost may be larger than that of specialized optimization algorithms
and has an inferior dependence on the dimension d in the multi-dimensional case. The
pseudo-code of the proposed TS algorithm is listed in Algorithm 7. The 3-quantiles of an
interval [L,U ] are (2L+U)/3 and (L+2U)/3. Since we are looking for integral solutions, we
round these quantiles to integers. In the procedure of Algorithm 7, one step is to compute
confidence intervals that satisfy certain confidence guarantees. We now provide one feasible
approach to construct such confidence intervals, which is based on Hoeffding’s inequality for
sub-Gaussian random variables. Define

h(n, σ, α) :=

√
2σ2

n
log

(
2

α

)
.

Recall that σ2 is the upper bound on the sub-Gaussian parameters of all choices of decision
variables. With this function h(·) in hand, whenever n independent simulations of the
decision x are available, one can construct a (1− α)-confidence interval for f(x) as[

F̂n(x)− h(n, σ, α), F̂n(x) + h(n, σ, α)
]
.

This is because the distribution of the empirical mean F̂n(x) is sub-Gaussian with parameter
σ2/n and Hoeffding’s inequality gives

P
[
|F̂n(x)− f(x)| > h(n, σ, α)

]
≤ 2exp

(
−nh(n, σ, α)2

2σ2

)
= α.

If the variance σ2
x of a single choice of decision variable x is known, the confidence interval

may be sharpened by replacing σ with σx; see Section 5.G. We note that the analysis in
this chapter can be generalized to more general distributions, such as the sub-exponential
distributions, by replacing h(n, σ, α) with other concentration bounds.

Algorithm 7 Tri-section sampling algorithm for the PGS guarantee

Input: Model X = [N ], (Y,BY), F (x, ξx), optimality guarantee parameters ϵ, δ.
Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
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1: Set upper and lower bounds of the current interval xL ← 1, xU ← N .
2: Set maximal number of comparisons Tmax ← log1.5(N) + 2.
3: while xU − xL > 2 do ▷ Iterate until there are at most 3 points.
4: Compute 3-quantiles of the interval q1/3 ← ⌊2xL/3 + xU/3⌋ and q2/3 ← ⌈xL/3 +

2xU/3⌉.
5: Simulate n independent copies of F (q1/3, ξ1/3) and F (q2/3, ξ2/3), where n is the smallest

integer such that h[n, σ, 1− δ/(2Tmax)] ≤ ϵ/8.
6: Compute the empirical means F̂n(q1/3), F̂n(q2/3).

7: if F̂n(q1/3)− ϵ/8 ≥ F̂n(q2/3) + ϵ/8 then
8: Update xL ← q1/3.

9: else if F̂n(q1/3) + ϵ/8 ≤ F̂n(q2/3)− ϵ/8 then
10: Update xU ← q2/3.
11: else
12: Update xL ← q1/3 and xU ← q2/3.
13: end if
14: end while
15: Simulate ñ independent copies of F (x, ξx) for each x ∈ {xL, . . . , xU}, where ñ is the

smallest integer such that h[ñ, σ, 1− δ/(2Tmax)] ≤ ϵ/2. ▷ Now xU − xL ≤ 2.
16: Return the point in {xL, . . . , xU} with the minimal empirical mean.

Intuitively, the algorithm iteratively shrinks the size of the set containing a potentially
near-optimal choice of decision variables. We provide an example of the TS algorithm in
Figure 5.3.1. In this example, we suppose that the current set is [10] and then, the two 3-
quantiles are 4 and 7. Without loss of generality, we assume that ϵ0 := f(7)− f(4) ≥ 0 and
the global minimum is in the left set [4]. We consider two different cases. First, if we know
that ϵ0 > 0 holds with high probability, no solution in {7, . . . , 10} can be a global optimum
and we can shrink the set to [6]. On the other hand, if we know that ϵ0 = O(ϵ) holds with
high probability, we can construct a linear lower bound for the objective function in [4] and
{7, . . . , 10}. In the both sets, the decrease of the lower bound is at most ϵ0. Therefore,
we have the relation minx∈{4,5,6,7} f(x) ≤ minx∈[10] f(x) + ϵ0, which implies that {4, . . . , 7}
contains ϵ0-optimal solutions with high probability and we can shrink the set to {4, . . . , 7}
in the next iteration.

The algorithm shrinks the length of the current interval by at least 1/3 for each iteration.
Thus, the total number of iterations is at most O(log1.5(N)) to shrink the set until there
are at most 3 points. Then, the algorithm solves a sub-problem with at most 3 points.
We can prove that Algorithm 7 achieves the PGS guarantee for any given convex problem
without knowing further structural information, i.e., Algorithm 7 is an [(ϵ, δ)-PGS,MC]-
algorithm. By estimating the simulation cost of the algorithm, an upper bound on the
expected simulation cost to achieve the PGS guarantee follows.
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Figure 5.3.1: An example of the iteration of the TS algorithm.

Theorem 54. Suppose that Assumptions 5-7 hold. Algorithm 7 is an [(ϵ, δ)-PGS,MC]-
algorithm. Furthermore, we have

T (ϵ, δ,MC) = O

[
log(N)

ϵ2
log

(
log(N)

δ

)
+ log(N)

]
= Õ

[
log(N)

ϵ2
log

(
1

δ

)]
.

We provide an explanation on the additional log(N) term. We note that in practice,
the number of simulation samples taken in each iteration must be an integer, while the
simulation cost is treated as a real number in our complexity analysis. Hence, the practical
simulation cost of each iteration should be the smallest integer larger than the theoretical
simulation cost, which introduces an extra O(1) term. Then, the total expected simulation
cost of Algorithm 7 should contain an extra O(log(N)) term, which is not related to δ and
is relatively small compared to the main term when δ is small.

Remark 3. The term in the Õ(·) notation reflects the asymptotic simulation cost when δ → 0.
The asymptotic simulation cost is commonly used in multi-armed bandits literature to com-
pare the computational complexities of different algorithms [136, 30, 127, 119, 42, 128]. In
practice, the failing probability δ is usually not small enough to enter the asymptotic regime
and thus the simulation cost of algorithms may deviate from the asymptotic simulation cost.
Therefore, we provide both the non-asymptotic and the asymptotic simulation costs for all
algorithms.
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Shrinking Uniform Sampling Algorithm and Upper Bound on
Expected Simulation Cost

We have shown that the expected simulation cost of TS algorithm for the PGS guarantee
has a log(N) dependence on N . Then, one may naturally ask: is there any algorithm for
the PGS guarantee whose simulation cost has a better dependence on N? The answer is
affirmative. In this subsection, the shrinking uniform sampling (SUS) algorithm for the PGS
guarantee is proposed, which is proven to have a simulation cost as O[ϵ−2(log(N)+log(1/δ))],
which grows as ϵ−2 log(1/δ) in the asymptotic regime δ → 0. Similarly, utilizing the idea of
localization, the SUS algorithm maintains a set of active points and shrinks the set in each
iteration until there are at most 2 points. However, instead of only sampling at 3-quantiles
points of the current interval, the SUS algorithm samples all points in the current active set
but with much fewer simulations. We give the pseudo-code in Algorithm 8.

Algorithm 8 Shrinking uniform sampling algorithm for the PGS guarantee

Input: Model X = [N ], (Y,BY), F (x, ξx), optimality guarantee parameters ϵ, δ.
Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
1: Set the active set S ← X .
2: Set the step size s← 1, maximal number of comparisons Tmax ← N .
3: Set number of samples nx ← 0 simulated at x for all x ∈ X .
4: while the size of S is at least 3 do ▷ Iterate until S has at most 2 points.
5: for x ∈ S do
6: Simulate independent copies of F (x, ξx) such that h[nx, σ, 1 − δ/(2Tmax)] ≤ |S| ·

ϵ/80.
7: end for
8: Compute the empirical mean (using all simulated samples) F̂nx(x) for all x ∈ S.
9: if F̂nx(x)+h[nx, σ, 1−δ/(2Tmax)] ≤ F̂ny(y)−h[ny, σ, 1−δ/(2Tmax)] for some x, y ∈ S

then
▷ Type-I Operation

10: if x < y then
11: Remove all points z ∈ S with the property z ≥ y from S.
12: else
13: Remove all points z ∈ S with the property z ≤ y from S.
14: end if
15: else ▷ Type-II Operation
16: Update the step size s← 2s.
17: Update S ← {xmin, xmin + s, . . . , xmin + ks}, where xmin = minx∈S x and k =
⌈|S|/2⌉ − 1.

18: end if
19: end while ▷ Now S has at most 2 points.
20: Simulate ñ independent copies of F (x, ξx) for each x ∈ {xL, . . . , xU}, where ñ is the

smallest integer such that h[ñ, σ, 1− δ/(2Tmax)] ≤ ϵ/4.
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21: Return the point in S with minimal empirical mean.

There are two kinds of shrinkage operations in Algorithm 8, which we denote as Type-
I and Type-II Operations. Intuitively, Type-I Operations are implemented when we can
compare and differentiate the function values of two points with high probability, and Type-
II Operations are implemented when all points have similar function values. In the latter
case, we prove that there exists a neighboring point to the optimum that has a function value
at most ϵ/2 larger than the optimum. Hence, we can discard every other point in S (the
set in the algorithm that contains a potential good selection) with at least one ϵ/2-optimal
point remaining in the active set. We give a rough estimate to the expected simulation cost
of Algorithm 8. We assign an order to points in X by the time they are discarded from S.
Points discarded in the same iteration are ordered randomly. Then, for the last k-th discarded
point xk, there are at least k points in S when xk is discarded. By the second termination
condition in Line 17, the confidence half-width at xk is at least kϵ/80. If the Hoeffding bound
is used, simulating Õ(ϵ−2k−2 log(1/δ)) times is enough to achieve the confidence half-width.
Recalling the fact that

∑
k k−2 < π2/6 = O(1), if we sum the simulation cost over k ∈ [N ],

the total expected simulation cost is bounded by Õ(ϵ−2 log(1/δ)) and is independent of N .
We note that we are able to reuse the samples in the previous rounds since we use the
union bound to bound the total failing probability across iterations, which does not require
the independence between samples in different iterations. In addition, we mention that the
bound |S|ϵ/80 in lines 10 and 17 is not optimal and we choose this bound since the proof is
simpler using this upper bound, and the expected simulation cost is only a constant factor
worse than that of the case when the optimal bound is chosen. The following theorem proves
that Algorithm 8 indeed achieves the PGS guarantee for any convex problem and provides
a rigorous upper bound on the expected simulation cost T (ϵ, δ,MC).

Theorem 55. Suppose that Assumptions 5-7 hold. Algorithm 8 is an [(ϵ, δ)-PGS,MC)]-
algorithm. Furthermore, we have

T (ϵ, δ,MC) = O

[
1

ϵ2
log

(
N

δ

)
+ N

]
= Õ

[
1

ϵ2
log

(
1

δ

)]
.

If we consider the asymptotic regime δ ≪ 1 (which is considered in [128]), the expected
simulation cost of the SUS algorithm grows as ϵ−2 log(1/δ). This dependence is asymptotic
and holds in the sense that the required failing probability δ tends to be very small. When δ is
moderately large, the cost can depend on N . We demonstrate in the numerical experiments
this asymptotic independence.

Lower Bound on Expected Simulation Cost

In this subsection, we consider the lower bounds on the expected simulation costs for all of
the simulation-optimization algorithms that satisfy certain optimality guarantee for general
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convex problems. The lower bounds show the fundamental limit behind the simulation-
optimization algorithms for general selection problems with a convex structure. By compar-
ing those lower bounds with the upper bounds established for specific simulation-optimization
algorithms, we can conclude that the SUS algorithm is optimal up to a constant factor. The
lower bound on T (ϵ, δ,MC), i.e., the expected simulation cost for achieving the PGS guar-
antee, is derived in Corollary 5, which is also presented in the following corollary.

Corollary 4. Suppose that Assumptions 5-7 hold. We have

T (ϵ, δ,MC) ≥ Θ

[
1

ϵ2
log

(
1

δ

)]
.

Combining with the upper bounds derived in this section, we conclude that the TS
algorithm has a log(N) order gap for the PGS guarantee, while the SUS algorithm is optimal
up to a constant in the asymptotic regime δ ≪ 1. However, the space complexities of the
TS algorithm and the SUS algorithms are O(log(N)) and O(N), respectively. The space
complexity of an algorithm refers to the amount of memory used by a program to execute
the algorithm. This observation implies that we need to consider the trade-off between the
simulation cost and the space complexity when choosing the best algorithm.

Before concluding this section, we note that the subgradient descent algorithms in Chap-
ter 4 requires the knowledge of the Lipschitz constant and has a simulation cost as

Õ
[
N2ϵ−2 log(1/δ)

]
,

which is O(N2) larger than that of the TS and the SUS algorithms. This observation
implies that subgradient-based search methods may not be able to fully utilize the discrete
nature and the convex structure of problem (5.1), especially for low-dimensional problems.
Therefore, the proposed algorithms in this section provide a non-trivial improvement for
solving one-dimensional convex optimization via simulation problems and hint a potential
improvement direction (namely, localization methods) for multi-dimensional problems.

5.4 Simulation-optimization Algorithms and

Complexity Analysis: Multi-dimensional Case

In this section, we propose simulation-optimization algorithms to achieve the PGS guar-
antee for convex discrete optimization via simulation problems with multi-dimensional deci-
sion variables. The decision space is considered as X = [N ]d. In the multi-dimensional case,
the discrete convexity of f is defined by the L♮-convexity (Definition 12). The L♮-convexity
can lead to the property that the discrete convex function has a convex extension along with
an explicit subgradient defined on the convex hull of X . We refer the readers to Section 4.2
for the definition and properties of L♮-convex functions.

We outline the intuition underlying the algorithm design of this section before discussing
the details. Since we have observed the power of localization from the one-dimensional case,
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the major approach is to design multi-dimensional algorithms based on the same idea. The
first idea of applying the localization technique is to extend the TS algorithm to the multi-
dimensional case. A direct generalization of the TS algorithm results in the zeroth-order
stochastic ellipsoid method [2] and the zeroth-order random walk method [148], whose com-
putational complexities have O(d33) and O(d14) dependence on the dimension, respectively.
On the other hand, we show in the appendix that the SUS method can be naturally extended
to the multi-dimensional case. The multi-dimensional SUS algorithm also has an expected
simulation cost independent of the scale N using the asymptotic criterion in [128] (i.e., when
δ is sufficiently small). However, the expected simulation cost has an exponential dependence
on the dimension d and, therefore, the SUS algorithm is only suitable for low-dimensional
problems.

We thus take an alternative approach and combine the localization operation with the
subgradient information, which is known to be useful for high-dimensional problems. In
this chapter, we design stochastic cutting-plane methods, which utilize properties of L♮-
convex functions and the Lovász extension to evaluate unbiased stochastic subgradients at
each point via finite difference. More specifically, we develop a new framework to design
stochastic cutting-plane methods and thus reduce the dependence of the simulation cost on
d. A straightforward application of our proposed framework leads to stochastic cutting-
plane methods whose simulation cost has a O(d3) dependence on d. In addition, stochastic
cutting-plane methods have only a logarithmic dependence on the Lipschitz constant L,
while the subgradient-based algorithm (Algorithm 3) has a higher-order dependence on L.
Further utilizing the discrete nature of problem (5.1), we develop the dimension reduction
algorithm, whose simulation cost is upper bounded by a constant that is independent of
the Lipschitz constant. In addition, the dimension reduction algorithm does not require any
prior knowledge about the Lipschitz constant, which makes it suitable for the case when
prior knowledge about the objective function is limited.

Stochastic Cutting-plane Methods: Stochastic Separation Oracles

Now, we consider designing simulation-optimization algorithms with simulation costs
having a polynomial dependence on the problem parameters d and N . In addition, we
reiterate that the goal is to design algorithms that do not require the information about
the Lipschitz constant L and the simulation cost is upper bounded by a constant that is
independent of L. Intuitively, the subgradient information is useful for high-dimensional
problems, while the localization operation is good at utilizing the discrete nature of the
problem and getting rid of the dependence on the Lipschitz constant. Therefore, one may
expect subgradient-based localization methods to satisfy the aforementioned requirements.
Using the definitions and tools introduced in Section 4.2, we are able to design the desired
algorithm in two steps. In this subsection, we first introduce the definition of stochastic
separation oracles and give a novel framework to design stochastic cutting-plane methods
via deterministic cutting-plane methods. Straightforward extensions of deterministic cutting-
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plane methods require prior knowledge about L and the simulation cost has a logarithmic
dependence on L. Hence, the following assumption is required.

Assumption 11. The ℓ∞-Lipschitz constant L is known a priori. Namely, we have

|f(x)− f(y)| ≤ L, ∀x, y ∈ X , s. t. ∥x− y∥∞ ≤ 1.

In the next subsection, we incorporate the stochastic cutting-plane methods with the
dimension reduction operation. The resulting algorithm, named as the dimension reduction
algorithm, does not require prior information about L and the simulation cost is upper
bounded by a constant that is independent of L. We note that the design of the dimension
reduction algorithm is the main objective of this section and stochastic cutting-plane methods
mainly serve as an example of our novel framework.

In each iteration of a cutting-plane algorithm, a cutting hyperplane is generated to shrink
the subset of potentially optimal choices of decision variables. In other words, the cutting
hyperplane is used to localize the optimal solution. When the volume is small enough,
the Lipschitz continuity implies that the all points in the polytope have their objective
values close to the optimal value. In general, cutting-plane methods have a higher order of
dependence on the dimension than subgradient-based search methods [140, 123]. Hence, we
expect that the simulation cost of cutting-plane methods will have a higher-order dependence
on the problem dimension compared to that of subgradient-based search methods. As a
counterpart of separation oracles, we introduce the stochastic separation oracle, named as
the (ϵ, δ)-separation oracle, to characterize the accuracy of separation oracles in the stochastic
case.

Definition 15. A (ϵ, δ)-separation oracle ((ϵ, δ)-SO) is a function on [1, N ]d with the prop-
erty that for any input x ∈ [1, N ]d, it outputs a stochastic vector ĝx ∈ Rd such that the
inequality

f(y) ≥ f(x)− ϵ, ∀y ∈ [1, N ]d ∩H

holds with probability at least 1−δ, where the half space H is defined as {z : ⟨ĝx, z−x⟩ ≥ 0}.

Before we state algorithms, we give a concrete example of (ϵ, δ)-SO oracles and provide
an upper bound on the expected simulation cost of evaluating each oracle. We define the
averaged subgradient estimator ĝn as

ĝnαx(i) := F̂n

(
Sx,i
)
− F̂n

(
Sx,i−1

)
, ∀i ∈ [d], (5.3)

where αx is a consistent permutation of x, n ≥ 1 is the number of samples, and F̂n is the
empirical mean of n independent evaluations of F . The following lemma gives a lower bound
on n to guarantee that ĝn is an (ϵ, δ)-SO oracle.

Lemma 35. Suppose that Assumptions 5-7 hold. If we choose n such that

n = Θ

[
dN2

ϵ2
log

(
1

δ

)]
,
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then ĝn is an (ϵ, δ)-SO oracle. Moreover, the expected simulation cost of generating an
(ϵ, δ)-SO oracle is at most

O

[
d2N2

ϵ2
log

(
1

δ

)
+ d

]
= Õ

[
d2N2

ϵ2
log

(
1

δ

)]
.

We note that the condition in Lemma 35 provides a sufficient condition of the SO oracle.
In practice, the value of n can be much smaller than the bound in Lemma 35; see numerical
examples in Section 5.5. To show the usefulness of the stochastic separation oracle, we
extend Vaidya’s cutting-plane method [221] to a stochastic cutting-plane method that can
find high-precision solutions with high probability in the stochastic case. Vaidya’s cutting-
plane method maintains a polytope that contains the optimal points and iteratively reduces
the volume of polytope by generating a separation oracle at the approximate volumetric
center. We provide the pseudo-code of deterministic Vaidya’s method in 5.D for the self-
contained purpose. Other deterministic cutting-plane methods based on reducing the volume
of a polytope can also be extended to the stochastic case using our novel framework, and we
consider Vaidya’s method mainly for its simplicity.

It is desirable to prove that by substituting the separation oracles with stochastic sep-
aration oracles, Vaidya’s cutting-plane method can be used to find high-precision solutions
with high probability. The pseudo-code of the stochastic cutting-plane method is given in
Algorithm 9.

Algorithm 9 Stochastic cutting-plane method for the PGS guarantee

Input: Model X , (Y,BY), F (x, ξx), optimality guarantee parameters ϵ and δ, Lipschitz con-
stant L, (ϵ, δ)-SO oracle ĝ.

Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
1: Set the initial polytope P ← [1, N ]d.
2: Set the constant ρ← 10−7. ▷ Constant ρ corresponds to ϵ in [221].
3: Set the number of iterations Tmax ← ⌈2d/ρ · log[dNL/(ρϵ)]⌉.
4: Initialize the set of points used to query separation oracles S ← ∅.
5: Initialize the volumetric center z ← (N + 1)/2 · (1, 1, . . . , 1)T .
6: for T = 1, 2, . . . , Tmax do
7: Decide adding or removing a cutting plane by Vaidya’s method.
8: if add a cutting plane then
9: Evaluate an (ϵ/8, δ/4)-SO oracle ĝz at z.
10: if ĝz = 0 then
11: Round z to an integral solution by Algorithm 2 and return the rounded solu-

tion.
12: end if
13: Add the current point z to S.
14: else if remove a cutting plane then
15: Remove corresponding point z from S.
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16: end if
17: Update the approximate volumetric center z by a Newton-type method.
18: end for ▷ There are at most O(d) points in S by Vaidya’s method.
19: Find an (ϵ/4, δ/4)-PGS solution x̂ of problem minx∈S f(x).
20: Round x̂ to an integral solution by Algorithm 2.

We note that if the approximate volumetric center z is not in [1, N ]d, then we choose a
violated constraint xi ≥ 1 or xi ≤ N and return ei or −ei as the separating vector, respec-
tively. For arithmetic operations, each iteration of Algorithm 9 requires O(d) inversions and
multiplications of d × d matrices. Each inversion and multiplication can be finished within
O(dω) arithmetic operations, where ω < 2.373 is the matrix exponent [9]. Hence, Algorithm
9 needs O(dω+1) arithmetic operations for each iteration. The calculation of the number of
iterations Tmax is provided in Section 5.F. The correctness and the expected simulation cost
of Algorithm 9 are studied in the following theorem.

Theorem 56. Suppose that Assumptions 5-7, and 11 hold. Algorithm 9 returns an (ϵ, δ)-
PGS solution and we have

T (ϵ, δ,MC) = O

[
d3N2

ϵ2
log

(
dLN

ϵ

)
log

(
1

δ

)
+ d2 log

(
dLN

ϵ

)]
= Õ

[
d3N2

ϵ2
log

(
dLN

ϵ

)
log

(
1

δ

)]
.

Remark 4. We note that another popular deterministic cutting-plane method, the random
walk-based cutting-plane method [20], can also be extended to the stochastic case and
achieves a better expected simulation cost

Õ

[
d3N2

ϵ2
log

(
LN

ϵ

)
log

(
1

δ

)]
at the expense of Õ[d6 + log2(1/δ)] arithmetic operations in each iteration. We provide the
pseudo-code in 5.D for the self-contained purpose. Here, the O[log2(1/δ)] factor is required
to ensure the high-probability approximation to the centroid. Moreover, we note that the
fast implementation of Vaidya’s method in [123] reduces number of arithmetic operations in
each iteration to O(d2).

Remark 5. Stochastic cutting-plane methods can also be applied to problems that are defined
on [N ]d with linear constraints {x ∈ Zd : Ax ≤ b}, since we can choose the initial polytope
to be X := [1, N ]d ∩ {Ax ≤ b}. The results in this section still hold if we replace N with
maxx,y∈X ∥x− y∥∞.

From Theorem 56, we can see that the upper bound on the expected simulation cost
only has a logarithmic dependence on the Lipschitz constant L, which is better than the
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quadratic dependence of the subgradient-based algorithms in Chapter 4. In the next sub-
section, we further improve the dependence and develop a dimension reduction algorithm,
whose simulation cost is upper bounded by a constant that is independent of the Lipschitz
constant L.

Stochastic Cutting-plane Methods: Dimension Reduction
Algorithm

In this subsection, we develop the dimension reduction algorithm, which does not require
the knowledge about the Lipschitz constant L and whose simulation cost is upper bounded
by a constant that is independent of L. The idea behind the dimension reduction algorithm
is based on the following observation: if a convex body P ⊂ Rd has a volume vol(P ) smaller
than (d!)−1 = O[exp(−(d + 1/2) log(d) + d)], then all integral points inside P must lie on a
hyperplane. Otherwise, if there exist d+ 1 integral points x0, . . . , xd ∈ P that are not on the
same hyperplane, then the convex body P contains the polytope conv{x0, . . . , xd}, which
has the volume

1

d!
|det(x1 − x0, . . . , xd − x0)| ≥

1

d!
,

where conv(·) is the convex hull and det(·) is the determinant of matrices. This leads
to a contradiction since we assume that vol(P ) < (d!)−1. Hence, we may use Vaidya’s
method or the random walk method to reduce the volume of the search polytope P to
O[exp(−(d + 1/2) log(d) + d)], and then we reduce the problem dimension by projecting
the polytope onto the hyperplane that all remaining points lie on. After d − 1 dimension
reductions, we have a one-dimensional convex problem and algorithms in Section 5.3 can be
applied. This idea is summarized in Algorithm 10.

Algorithm 10 Dimension reduction algorithm for the PGS guarantee

Input: Model X , (Y,BY), F (x, ξx), optimality guarantee parameters ϵ and δ, (ϵ, δ)-SO oracle
ĝ.

Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
1: Set the initial polytope P ← [1, N ]d.
2: Initialize the set of points used to query separation oracles S ← ∅.
3: for d′ = d, d− 1, . . . , 2 do ▷ The current dimension d′ is gradually reduced.
4: Initialize Vaidya’s cutting-plane method.
5: while the volume of P is larger than (d′!)−1 do
6: Take one step of Vaidya’s cutting-plane method with (ϵ/4, δ/4)-SO oracle.

▷ Vaidya’s cutting-plane method decides a suitable cutting plane H.
7: Add the point where the stochastic separation oracle is called to S.
8: Shrink the volume of P using the cutting plane H.
9: end while
10: Find the hyperplane H that contains all integral points in P .



CHAPTER 5. STOCHASTIC LOCALIZATION SIMULATION-OPTIMIZATION
METHODS 238

▷ If P contains no integral points, then an arbitrary hyperplane works.
11: Project P onto the hyperplane H. ▷ Reduce the dimension by 1.
12: end for
13: Find an (ϵ/4, δ/4)-PGS solution of the last one-dim problem and add the solution to S.
14: Find the (ϵ/4, δ/4)-PGS solution x̂ of problem minx∈S f(x).
15: Round x̂ to an integral solution by Algorithm 2.

We note that the application of Vaidya’s method in Line 6 refers to implementing the
cutting-plane algorithm for one iteration. Namely, only a single cutting hyperplane will
be generated. Importantly, the implementation of Vaidya’s method in this step does not
require the knowledge about the Lipschitz constant, since the Lipschitz constant is only
used to calculate the total number of steps in Algorithm 9. In addition, Vaidya’s cutting-
plane method can be replaced with other deterministic cutting-plane methods. Furthermore,
many cutting-plane methods, including Vaidya’s method and random-walk-based method,
guarantee that the volume of the polytope P is decreased at a constant rate. For example,
the random walk-based cutting-plane method reduces the volume at the rate 1 − e−1 and
after k iterations, the volume of P is at most (1 − e−1)kNd. Thus, we can terminate the
cutting-plane method when the upper bound is lower than (d!)−1.

We note that the search of hyperplane H in Line 10 does not require evaluations of the
function F (x, ξx) and therefore, it will not affect the simulation cost of Algorithm 10. The
simplest algorithm to find the hyperplane H is to enumerate all hyperplanes generated by
the points in [N ]d and check if the condition P ∩ Zd ⊂ H is satisfied. This naive algorithm
terminates in finite time but may require an exponential number of arithmetic operations.
In [122], the author reduced the problem of finding a hyperplane H to the problem of finding
an approximate solution to the Shortest Vector Problem in lattices. When the volume of the
current polytope P is small enough, it is proved that a set of Lenstra–Lenstra–Lovász (LLL)-
reduced basis [141] contains the normal vector of the hyperplane H, namely, the vector c ∈ Zd

such that
⟨c, x− y⟩ = 0, ∀x, y ∈ P ∩ Zd.

The LLL algorithm [141], which only requires a polynomial number of arithmetic operations,
can be applied to find the desired LLL-reduced basis. We show that their results can be
extended to the stochastic case and combined with the framework in Section 5.4 to generate
an algorithm that only requires a polynomial number of arithmetic operations.

Intuitively, the dimension reduction algorithm implements the stochastic cutting-plane
method at each dimension from d to 1. Therefore, the total simulation cost is on the same
order as the summation of i3 for i ∈ [d], which is on the order of O(d4). More rigorously, we
provide the correctness and the simulation cost of Algorithm 10 in the following theorem.

Theorem 57. Suppose that Assumptions 5-7 hold. Algorithm 10 returns an (ϵ, δ)-PGS
solution and we have

T (ϵ, δ,MC) = O

[
d3N2(d + log(N))

ϵ2
log

(
1

δ

)
+ d2(d + log(N))

]
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= Õ

[
d3N2(d + log(N))

ϵ2
log

(
1

δ

)]
.

We note that the idea of gradually reducing the dimension is proposed in our work and
[122] independently, although the author of [122] has made the algorithm more practical.
More specifically, if we allow exponentially many arithmetic operations, the LLL algorithm
is not necessary. In that case, we can reduce the number of separation oracles to O(d2) and
the computational complexity can be reduced to Õ[d4N2ϵ−2 log(1/δ)]. From Theorem 57, we
can see that the expected simulation cost of Algorithm 10 is upper bounded by a constant
that is independent of the Lipschitz constant L. In addition, Algorithm 10 does not require
any prior estimation of the upper bound of the Lipschitz constant. Since the estimated
Lipschitz constant is likely to be much larger than the real Lipschitz constant, the error
in the estimation will lead to a significant increase in the the simulation cost. Therefore,
the dimension reduction algorithm is suitable when an estimate of the upper bound of the
Lipschitz constant is difficult to obtain or the upper bound of the Lipschitz constant is large.

5.5 Numerical Experiments

In this section, we implement our proposed simulation-optimization algorithms that are
guaranteed to find high-confidence high-precision solutions. Through these numerical ex-
periments, we show that the localization methods proposed in this manuscript outperform
benchmark algorithms on large-scale problems. We also compare our proposed algorithms
to benchmark algorithms that do not utilize the L♮-convexity, e.g. the Industrial-strength
COMPASS algorithm [236] and the R-SPLINE algorithm [226]; see Section 5.H for additional
numerical results and discussions.

First, we consider the problem of finding the optimal allocation of a total number of N
staffs to two queues so that the average waiting time for all of the arrivals from the two
queues is minimized. Given the optimality parameters ϵ and δ, we empirically show that
the TS algorithm and the SUS algorithm have respectively O(logN) and O(1) dependence
on the scale N , which supports our theoretical results. In addition, we construct a syn-
thetic one-dimensional convex function with a similar landscape to show that the returned
solution satisfies the high-probability guarantee. Second, we construct a multi-dimensional
stochastic function, whose expectation is a separable convex function, i.e., functions of the
form f(x) =

∑d
i=1 f

i(xi) for convex functions f 1(x), . . . , fd(x), to test and compare the sub-
gradient descent algorithm in Chapter 4 with the stochastic localization methods proposed
in this chapter for different values of the scale N and dimension d, especially for large N .
Similar to the one-dimensional case, we consider functions with a closed-form to check the
coverage rate of the proposed algorithms. Finally, the multi-dimensional resource allocation
problem in service systems is considered to compare the performance of proposed algorithms
on practical problems.
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Staffing Two Queues under Resource Constraints

Consider a service system that operates over a time horizon [0, T ] with two streams of
customers arriving at the system. One example is that the system receives service requests
from both online app-based customers and offline walk-in customers, and each stream needs
dedicated servers assigned. The first stream of customers arrives according to a doubly
stochastic non-homogeneous Poisson process N1 := (N1(t) : t ∈ [0, T ]), with the customer
service times being independent and identically distributed according to a distribution S1.
The second stream of customers obeys the same model with the process N2 := (N2(t) : t ∈
[0, T ]) and distribution S2. The two streams of customers form two separate queues and
their arrival processes can be correlated. Suppose that the decision maker needs to staff the
two queues separately. There are in total a number of N + 1 homogeneous servers that work
independently in parallel. Each server can handle the service requested by customers from
either stream, one at a time. Suppose that no change on the staffing plan can be made once
the system starts working. Assume that the system operates based on a first-come-first-serve
routine, with unlimited waiting room in each queue, and that customers never abandon.

The decision maker’s objective is to select the staffing level x ∈ [N ] for the first queue
and the staffing level N + 1 − x for the second queue, in order to minimize the expected
average waiting time for all customers from the two streams over the time horizon [0, T ]. In
the numerical example, we consider N ∈ {10, 20, . . . , 150} and T = 2. The arrival processes
N1 and N2 are non-homogeneous processes with random intensity functions Γ1 · λ1(t) and
Γ2 · λ2(t), in which

λ1(t) := 75 + 25 sin(0.3t), λ2(t) := 80 + 40 sin(0.2t).

Positive-valued random variables Γ1 and Γ2 are defined as

Γ1 := X + Z, Γ2 := Y − Z,

where X, Y are independent uniform random variables on [0.75, 1.25] and Z is an indepen-
dent uniform random variable on [−0.5, 0.5]. The service time distribution S1 is log-normal
distributed with mean 0.75 and variance 0.1. The service time distribution S2 is gamma
distributed with mean 0.65 and variance 0.1. Figure 5.5.1 plots an empirical average waiting
time as a function of the discrete decision variable x. It can be observed that the landscape
around the optimum is extremely flat and such property may cause challenges for algorithms
that aim to exactly select the optimal solution (i.e., the PCS guarantee). In practice, the de-
cision maker may be indifferent about a very small difference in the averaging waiting time
performance, when the small difference does not impact much on customers’ satisfaction.
Instead, algorithms that are designed for the (ϵ, δ)-PGS guarantee do not suffer from the
extremely flat landscape around the global optimum.
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(a) (b)

Figure 5.5.1: The landscapes of objective functions in the one-dimensional case. (a) The
empirical average waiting time with N = 150. (b) The landscape of the synthetic convex
function with scale N = 150 and optimum x∗ = 31.

Separable Convex Function Minimization

We consider the problem of minimizing a stochastic function whose expectation is a
separable L♮-convex function of the form

fc,x∗(x) :=
d∑

i=1

cig(xi;x
∗
i ),

where ci ∈ [0.75, 1.25], x∗
i ∈ {1, . . . , ⌊0.3N⌋} for all i ∈ [d] and

g(x;x∗) :=


√

x∗

x
− 1 if x ≤ x∗√

N+1−x∗

N+1−x
− 1 if x > x∗

, ∀x, x∗ ∈ [N ],

It can be observed that the function fc,x∗(x) is the sum of separable convex functions and
therefore is L♮-convex. Moreover, the function fc,x∗(x) has the optimum x∗ associated with
the optimal value 0. The objective function has a similar landscape as the average waiting
time; see Figure 5.5.1. For stochastic evaluations, we add Gaussian noise with mean 0 and
variance 1. The advantage of this numerical example is that the expected objective function
has a closed form, and we are able to exactly compute the optimality gap of the solutions
returned by the proposed algorithms.
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Resource Allocation Problem in Service Systems

We consider the 24-hour operation of a service system with a single stream of incoming
customers. The customers arrive according to a doubly stochastic non-homogeneous Poisson
process with the intensity function

Λ(t) := 0.5λN · (1− |t− 12|/12), ∀t ∈ [0, 24],

where λ is a positive constant and N is a positive integer. Each customer requests a service
with the service time independent and identically distributed according to the log-normal
distribution with mean 1/λ and variance 0.1. We divide the 24-hour operation into d time
slots with length 24/d for some positive integer d. For the i-th time slot, there are xi ∈ [N ] of
homogeneous servers that work independently in parallel and the number of servers cannot
be changed during the slot. Assume that the system operates based on a first-come first-serve
routine, with an unlimited waiting room in each queue, and that customers never abandon.

The decision maker’s objective is to select the staffing level x := (x1, . . . , xd) such that
the total waiting time of all customers is minimized. Namely, by letting f(x) be the expected
total waiting time under the staffing plan x, the optimization problem can be written as

min
x∈[N ]d

f(x). (5.4)

It has been proved in [10] that the function f(·) is multimodular. We define the linear
transformation

g(y) := (y1, y2 − y1, . . . , yd − yd−1) ∀y ∈ Rd.

Then, [168] has proved that

h(y) := f ◦ g(y) = f(y1, y2 − y1, . . . , yd − yd−1)

is a L♮-convex function on the L♮-convex set

Y := {y ∈ [Nd]d | y1 ∈ [N ], yi+1 − yi ∈ [N ], i = 1, . . . , d− 1}.

The optimization problem (5.4) has the trivial solution x1 = · · · = xd = N . However, in
reality, it is also necessary to keep the staffing cost low. Therefore, we add the staffing cost
term R(x1, . . . , xd) := C/d·

∑d
i=1 xi = C/d·yd to the objective function, where C is a positive

constant. The optimization problem can be written as

min
y∈Y

h(y) + C/d · yd. (5.5)

The proposed algorithms can be extended to this problem by considering the Lovász exten-
sion h̃(y) on the set

Ỹ := {y ∈ [1, Nd]d | y1 ∈ [1, N ], yi+1 − yi ∈ [1, N ], i = 1, . . . , d− 1}.
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(a) (b)

Figure 5.5.2: The expected simulation cost of TS, SUS and lil’UCB algorithms in the one-
dimensional case. (a) Optimal allocation problem. (b) One-dimensional separable convex
function minimization.

Numerical Results: Tri-section Sampling Algorithm and
Shrinking Uniform Sampling Algorithm

We first compare the performance of the TS algorithm and the SUS algorithm on the
optimal allocation problem in Section 5.5 and the closed-form convex function minimiza-
tion problem in Section 5.5. As a comparison to the existing algorithms, we also imple-
ment the state-of-the-art algorithm for the best arm identification problem, namely the
lil’UCB algorithm [119]. The best arm identification problem is equivalent to problem (5.1)
without any convexity structure. We consider problems with dimension d = 1 and scale
N ∈ {10, 20, . . . , 150}. The expected simulation cost is computed by averaging 400 in-
dependent solving processes. For the optimal allocation problem, we set the optimality
parameters for the PGS guarantee as ϵ = 1 and δ = 10−6. An upper bound on the variance
is estimated as σ2 = 10. For the convex function minimization problem, we generate each ci
from the uniform distribution on [0.75, 1.25] and x∗

i from the discrete uniform distribution
on {1, 2, . . . , ⌊0.3N⌋}. The optimality parameters are chosen as ϵ = 0.2 and δ = 10−6 and
the variance is set to be σ2 = 1.

It is observed that both algorithms satisfy the given PGS guarantee on the synthetic
convex function minimization problem, namely, the ϵ-optimality is satisfied for all imple-
mentations. We then plot the estimated expected simulation costs in Figure 5.5.2. For the
optimal allocation problem, the expected simulation costs of the TS and SUS algorithms
approximately have O(⌈logN⌉) and almost O(1) dependence on the scale N , respectively.
The expected simulation cost of the SUS algorithm is almost independent of N and this
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(a) (b)

Figure 5.5.3: The expected simulation cost of TS and SUS algorithms for problems with
a larger scale. (a) Optimal allocation problem. (b) One-dimensional separable convex
function minimization.

verifies our theoretical analysis. For the synthetic convex function minimization problem,
same as the queueing example, the estimated expected simulation costs of the TS algorithm
and SUS algorithm have O(logN) and almost O(1) dependence on N , respectively. This
again verifies our theoretical analysis. Moreover, both algorithms outperform the lil’UCB
algorithm, when N is large. The numerical results show that our proposed algorithms can
efficiently solve large-scale one-dimensional convex problems.

Furthermore, we also compare the TS and the SUS algorithms on problems with a larger
scale. Specifically, we consider both problems with N ∈ {100, 200, . . . , 15000} under the
same setting. The results are plotted in Figure 5.5.3 and we can see that the outcomes of
the algorithms comply with our theoretical results.

Numerical Results: Subgradient Descent and Localization
Methods

We next compare the performances of the truncated stochastic subgradient descent algo-
rithm (Algorithm 3) and stochastic localization methods proposed in this chapter. We first
consider the separable convex function minimization problem, where we can compute the
optimality gap and verify the ϵ-optimality. The dimension and scale of the separable convex
model are chosen as d ∈ {2, 6, 10, 15} and N ∈ {50, 500, 5000}. The optimality guarantee
parameters are chosen as ϵ = d and δ = 10−6, respectively. The empirical choice of ϵ ensures
that any ϵ-optimal solution x0 satisfies ∥x0 − x∗∥1 ≤ d5/6 ≪ N . We compute the average
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simulation cost of 100 independently generated models to estimate the expected simulation
cost. Moreover, early stopping conditions are designed to terminate algorithms early when
little progress is made at any iteration. For the subgradient descent algorithm, we main-
tain the empirical mean of stochastic objective function values up to the current iteration
and terminate the algorithm if the empirical mean does not decrease by O(ϵ/

√
N) after

O[dϵ−2 log(1/δ)] consecutive iterations. For stochastic cutting-plane methods, we terminate
the algorithm if the empirical mean of the objective function of the last 5 iterations does not
decrease by ϵ/d. For the dimension reduction method, we terminate the algorithm early if
the polytope is empty. Furthermore, we have observed that using (Nϵ/4, δ/4)-SO oracles in
localization methods is sufficient for producing high-probability guarantees on this example.

We summarize the results in Table 5.5.1. We define the coverage rate to be the percentage
of implementations that produce an ϵ-optimal solution. The coverage rates of the algorithms
are all equal to 100% and thus, the PGS guarantee is likely to be satisfied by all of the
algorithms. We note that, similar to the one-dimensional case, the standard deviation of
the simulation cost is smaller than 10% of the estimated simulation cost in all settings. The
performances of localization methods are better than the subgradient descent algorithm in
all settings especially for the large-scale instances. The simulation cost of the random walk-
based cutting-plane method is better than the Vaidya’s cutting-plane method, which may
be a result of the extra log(d) term in the simulation cost; see the discussion in Remark 4.
The dimension reduction method has the best performance on examples with N = 500, 5000
and has the advantage of not requiring any knowledge about the Lipschitz constant. From
the experimental results, we can see that the empirical performances of proposed algorithms
are sometimes better than their theoretical guarantees. One possible explanation for the
better empirical performance is that during the implementation of the stochastic localization
methods, the diameter of the feasible set (i.e., the set S in Algorithms 9 and 10) will decrease
and become much smaller than N after a few iterations. In contrast, for the theoretical
analysis, we need to consider the worst case and assume that the diameter is still N for
the shrunken set. Therefore, the number of simulations to generate an accurate stochastic
separation oracle is overestimated in Lemma 35 and the simulation costs of the stochastic
localization algorithms have a better dependence on the problem scale N in practice.

We then consider the multi-dimensional resource allocation problem. We first fix the
dimension (number of time slots) to be d = 4 and compare the performance with the scale
N ∈ {10, 20, 30, 40, 50}, and we then fix the scale to be N = 10 and compare the performance
with the dimension d ∈ {4, 8, 12, 16, 20, 24}. The parameters of the problem are chosen as
λ = 1 and C = 10, and the optimality guarantee parameters are ϵ = N/2 and δ = 10−6.
We also compare the algorithms with a smaller precision parameter ϵ = N/10 + 1 in Section
5.H. An upper bound on the variance is estimated as σ2 = 30

√
N . For each problem

setup, we average the results of 10 independent implementations to estimate the expected
simulation cost and the objective value of the returned solution. The results are summarized
in Table 5.5.2. Similarly, the standard deviation of the simulation cost is smaller than
10% of the estimated simulation cost in all settings. It is observed that the dimension
reduction method achieves the best performance in all cases, although its simulation costs
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Search Methods Localization Methods (Chapter 5)
Params. SubGD (Chapter 4) Vaidya’s Random Walk Dim Reduction
d N Cost Cost Cost Cost

2 50 1.08e3 2.74e2 1.66e2 1.56e2

2 500 2.54e4 6.54e2 2.32e2 2.08e2

2 5000 3.97e5 1.13e4 5.29e2 4.66e2

6 50 5.00e3 4.13e2 3.36e2 4.05e2

6 500 4.75e4 1.34e3 1.65e3 6.45e2

6 5000 2.72e6 8.15e4 4.75e3 8.25e2

10 50 8.46e3 7.98e2 7.70e2 8.34e2

10 500 6.32e4 6.57e3 2.16e3 1.48e3

10 5000 7.76e6 2.42e5 8.03e3 2.02e3

15 50 1.23e4 1.50e3 1.91e3 2.18e3

15 500 2.83e5 2.66e4 1.06e4 3.19e3

15 5000 1.85e7 1.96e6 1.55e5 4.85e3

Table 5.5.1: Simulation cost of different algorithms on separable convex functions.

have a faster growth rate than other methods. The stochastic cutting-plane methods also
outperform the subgradient descent algorithm when the dimension is 4. The truncated
stochastic subgradient descent algorithm returns the smallest objective values except the
case when (d,N) = (4, 50), and the objective values returned by other algorithms are not
much larger than the truncated stochastic subgradient descent algorithm. This is possible
since we are searching for ϵ-optimal solutions and an optimality gap smaller than ϵ = N/2
is acceptable.

In summary, based on the results from numerical results, the SUS algorithm and the
dimension reduction method provide a more efficient choice for large-scale convex discrete
optimization via simulation problems, and they have the advantage that no prior information
about the objective function is required except the L♮-convexity.
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Search Methods Localization Methods (Chapter 5)
Params. SubGD (Chapter 4) Vaidya’s Random Walk Dim Reduction
d N Cost Obj. Cost Obj. Cost Obj. Cost Obj.

4 10 3.06e5 2.13e1 9.89e4 2.19e1 6.92e4 2.47e1 2.42e4 2.40e1

4 20 1.08e5 3.41e1 3.64e4 3.42e1 2.45e4 3.73e1 1.40e4 3.44e1

4 30 7.79e4 4.59e1 1.94e4 4.65e1 1.33e4 5.10e1 9.21e3 4.59e1

4 40 5.06e4 5.73e1 1.24e4 5.86e1 8.68e3 6.35e1 6.31e3 5.75e1

4 50 4.50e4 6.91e1 9.24e3 6.98e1 6.22e3 7.49e1 4.03e3 6.67e1

8 10 1.20e6 2.01e1 7.27e5 2.12e1 5.53e5 2.17e1 1.48e5 2.12e1

12 10 2.69e6 1.90e1 2.49e6 2.07e1 1.86e6 2.13e1 6.10e5 2.01e1

16 10 4.78e6 1.83e1 6.64e6 2.02e1 4.43e6 2.04e1 1.59e6 1.91e1

20 10 7.45e6 1.78e1 1.38e7 2.01e1 8.65e6 2.04e1 3.21e6 1.81e1

24 10 1.43e7 1.71e1 2.42e7 1.99e1 1.49e7 2.04e1 8.54e6 1.76e1

Table 5.5.2: Simulation cost and objective value of different algorithms on the resource
allocation problem.

Algorithms Expected Simulation Cost

TS (Section 5.3) Õ(log(N)ϵ−2 log(1/δ))

SUS (Section 5.3) Õ(ϵ−2 log(1/δ)) (best achievable performance)

Subgradient-based (Chapter 4) Õ(d2N2L2ϵ−2 log(1/δ))

Stochastic Cutting-plane (Section 5.4) Õ(d3N2ϵ−2 log(dNL/ϵ) log(1/δ))

Dimension Reduction (Section 5.4) Õ(d3N2(d+ log(N))ϵ−2 log(1/δ))

Shrinking Uniform Sampling (Section 5.C) Õ(Mdϵ−2 log(1/δ))

Table 5.5.3: Upper bounds on the expected simulation cost for algorithms that achieve the
PGS guarantee. Here, M is an absolute constant. All constants except d,N, ϵ, δ, c,M are
omitted in the Õ(·) notation. In comparison, the expected simulation cost without convexity
is O(Ndϵ−2 log(1/δ)).
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Appendix

5.A Algorithms and Complexity Analysis for the

PCS-IZ Guarantee

In this section, we provide modified simulation-optimization algorithms for the PCS-
IZ guarantee. We assume that the objective value of any sub-optimal choice of decision
variables is at least c larger than the optimal objective value, where the indifference zone
parameter c > 0 is known a priori. We reiterate the definition of the PCS-IZ guarantee for
the completeness.

• Probability of correct selection with indifference zone (PCS-IZ). (See [101]) The problem
is assumed to have a unique solution that renders the optimal objective value. The
optimal objective value is assumed to be at least c > 0 smaller than the objective
values at sub-optimal choices of decisions. The gap width c is called the indifference
zone parameter in [17]. The PCS-IZ guarantee requires that the solution returned
by an algorithm be the optimal solution with probability at least 1− δ.

Let MCc be the set that includes all convex models with the indifference zone parameter c.
Then, the expected simulation cost for the PCS-IZ criterion is denoted as

T (δ,MCc) := T ((c, δ)-PCS-IZ,MCc).

Modified Tri-section Sampling Algorithm for the PCS-IZ
Guarantee

We first consider the one-dimensional case. When the prior information about the indif-
ference zone parameter c is available, we can modify the TS algorithm to achieve a better
simulation cost. The modified algorithm also consists of two parts: the shrinkage of inter-
vals and a sub-problem with at most 3 points. The improvement is achieved by a weaker
condition for the comparison of objective values at two 3-quantiles. We give the modified
algorithm in Algorithm 11 and omit those lines that are the same as Algorithm 7.

Algorithm 11 Tri-section sampling algorithm for the PCS-IZ guarantee
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Input: Model X = [N ], (Y,BY), F (x, ξx), optimality guarantee parameter δ, indifference
zone parameter c.

Output: An (c, δ)-PCS-IZ solution x∗ to problem (5.1).
1: Set upper and lower bounds of current interval xL ← 1, xU ← N .
2: Set maximal number of comparisons Tmax ← log1.5(N) + 2.
3: while xU − xL > 2 do ▷ Iterate until there are at most 3 decisions.

...
5: Simulate n independent copies of F (q1/3, ξ1/3) and F (q2/3, ξ2/3), where n is the smallest

integer such that h[n, σ, 1− δ/(2Tmax)] ≤ (q2/3 − q1/3) · c/5.
...

14: end while
15: Simulate ñ independent copies of F (x, ξx) for all x ∈ {xL, . . . , xU}, where ñ is the smallest

integer such that h[ñ, σ, 1− δ/(2Tmax)] ≤ c/3. ▷ Now xU − xL ≤ 2.
16: Return the point in {xL, . . . , xU} with minimal empirical mean.

The following theorem proves the correctness and the expected simulation cost of the mod-
ified TS algorithm.

Theorem 58. Suppose that Assumptions 5-7 hold. The modified TS algorithm is a [(c, δ)-
PCS-IZ,MCc]-algorithm. Furthermore, we have

T (δ,MCc) = O

[
1

c2
log

(
log(N)

δ

)
+ log(N)

]
= Õ

[
1

c2
log

(
1

δ

)]
.

By Theorem 58, the expected simulation cost for the PCS-IZ guarantee is asymptoti-
cally independent of the number of points N , when the failing probability δ is sufficiently
small. If the SUS algorithm is used for the PCS-IZ guarantee, the algorithm also achieves
an Õ(c−2 log(1/δ)) expected simulation cost by setting the optimality parameter ϵ = c/2.
This is because the objective values of sub-optimal solutions are larger than that of the
optimal solution by at least c and because the solution satisfying the (c/2, δ)-PGS guarantee
also satisfies the (c, δ)-PCS-IZ guarantee. Hence, for both the modified TS algorithm and
the SUS algorithm, the asymptotic simulation cost has an upper bound that is indepen-
dent of N . However, we note that the space complexity of the modified TS algorithm is
only Õ(log(N)), whereas the SUS algorithm requires O(N) memory space. Therefore, the
modified TS algorithm is preferred for the PCS-IZ guarantee.

Modified Stochastic Cutting-plane Methods for the PCS-IZ
Guarantee

In the multi-dimensional case, we develop modified stochastic cutting-plane methods
for the PCS-IZ guarantee. Using the same adaptive acceleration scheme as in Chapter 4,
the indifference zone parameter can help reduce the dependence of the simulation cost on
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the problem scale N . We give the pseudo-code of the accelerated stochastic cutting-plane
method in Algorithm 12.

Algorithm 12 Stochastic cutting-plane method for the PCS-IZ guarantee

Input: Model X , (Y,BY), F (x, ξx), optimality guarantee parameter δ, indifference zone pa-
rameter c, Lipschitz constant L, (ϵ, δ)-SO oracle ĝ.

Output: An (c, δ)-PCS-IZ solution x∗ to problem (5.1).
1: Set the initial guarantee ϵ0 ← cN/4.
2: Set the number of epochs E ← ⌈log2(N)⌉+ 1.
3: Set the initial searching space Y0 ← [1, N ]d.
4: for e = 0, . . . , E − 1 do
5: Use Algorithm 9 to get an (ϵe, δ/(2E))-PGS solution xe in Ye.
6: Update guarantee ϵe+1 ← ϵe/2.
7: Update the searching space Ye+1 ← N (xe, 2

−e−2N).
8: end for
9: Round xE−1 to an integral point by Algorithm 2.

We can prove the correctness and estimate the expected simulation cost of the accelerated
algorithm in the same way as Theorem 51 Thus, we omit the proof.

Theorem 59. Suppose that Assumptions 5-7, and 11 hold. The accelerated stochastic
cutting-plane method returns a (c, δ)-PCS-IZ solution and we have

T (c, δ,MCc) = O

[
d3 log(N)

ϵ2
log(

dLN

ϵ
) log

(
1

δ

)
+ d2 log(N) log(

dLN

ϵ
)

]
= Õ

[
d3 log(N)

ϵ2
log(

dLN

ϵ
) log

(
1

δ

)]
.

By substituting Algorithm 9 with Algorithm 10 in the above algorithm, the acceleration
scheme can be applied to Algorithm 10 to reduce the number of required simulation runs
when the indifference zone parameter c is known. We give the reduced expected simulation
cost for achieving the PCS-IZ guarantee and omit the proof.

Theorem 60. Suppose that Assumptions 5-7 hold. The accelerated dimension reduction
method returns an (c, δ)-PCS-IZ solution and we have

T (c, δ,MCc) = O

[
d3 log(N)(d + log(N))

ϵ2
log

(
1

δ

)
+ d2 log(N)(d + log(N))

]
= Õ

[
d3 log(N)(d + log(N))

ϵ2
log

(
1

δ

)]
.
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Lower Bound on Expected Simulation Cost

In this subsection, we derive the lower bounds on the expected simulation costs for all of
the simulation-optimization algorithms that satisfy certain optimality guarantee for general
convex problems. In the proof for the lower bound result, we construct two convex models
that have similar distributions at each point but have distinct optimal solutions. Then,
the information-theoretical inequality in [128] can be used to provide a lower bound on the
simulation costs for all algorithms.

We first present the results in [128] for completeness. Given a simulation-optimization
algorithm and a model M, we define random variable Nx(τ) to be the number of times that
F (x, ξx) is sampled when the algorithm terminates, where τ is the stopping time of the
algorithm. Then, it follows from the definition that

EM [τ ] =
∑
x∈X

EM [Nx(τ)] ,

where EM is the expectation when the model M is given. Similarly, we can define PM as the
probability when the model M is given. We denote the filtration up to the stopping time
τ as Fτ . The following lemma is proved in [128] and is the major tool for deriving lower
bounds in this chapter.

Lemma 36 ([128]). For any two models M1,M2 and any event E ∈ Fτ , we have∑
x∈X

EM1 [Nx(τ)] KL(ν1,x, ν2,x) ≥ d(PM1(E),PM2(E)), (5.6)

where d(x, y) := x log(x/y) + (1 − x) log((1 − x)/(1 − y)), KL(·, ·) is the Kullback–Leibler
divergence (KL divergence), and νk,x is the distribution of model Mk at point x for k = 1, 2.

We first give a lower bound for the PCS-IZ guarantee.

Theorem 61. Suppose that Assumptions 5-7 hold. We have

T (δ,MCc) ≥ Θ

[
1

c2
log

(
1

δ

)]
.

The lower bound on T (ϵ, δ,MC), i.e., the expected simulation cost for achieving the PGS
guarantee, can be derived in a similar way by substituting c with 2ϵ in the construction of
two models.

Corollary 5. Suppose that Assumptions 5-7 hold. We have

T (ϵ, δ,MC) ≥ Θ

[
1

ϵ2
log

(
1

δ

)]
.
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Combining with the upper bounds derived in Sections 5.3, 5.3 and 5.A, we conclude
that the TS algorithm and the SUS algorithm are optimal up to a constant for the PCS-
IZ guarantee in the asymptotic regime δ ≪ 1. Considering the space complexity, the TS
algorithm is preferred for the PCS-IZ guarantee, while for the PGS guarantee we need to
consider the trade-off between the simulation cost and the space complexity when choosing
the best algorithm.

Proof of Theorem 58

We first estimate the simulation cost of each iteration and the sub-problem.

Lemma 37. Suppose that Assumptions 5-7 hold. The simulation cost for each iteration of
Algorithm 11 is at most 100σ2c−2(q2/3 − q1/3)

−2 log[4Tmax/δ], where Tmax := log1.5(N) + 2.
The simulation cost of the sub-problem is at most 54σ2c−2 log[4Tmax/δ].

Proof. The proof is similar to the proof of Lemma 40 and we only give a sketch of the proof.
By the definition of h(n, σ, α), simulating

n =
50σ2

(q2/3 − q1/3)2c2
log

(
4Tmax

δ

)
times on quantiles q1/3 and q2/3 is enough to ensure that the confidence half-width is at most
(q2/3−q1/3)·c/5. It implies that the last condition in Line 8 is satisfied and the simulation cost
of each iteration is at most 100σ2c−2(q2/3 − q1/3)

−2 log[4Tmax/δ]. For the last sub-problem,
simulating

ñ =
18σ2

c2
log

(
4Tmax

δ

)
times for each point is enough to ensure that the confidence half-width is at most c/3. Since
there are at most 3 points in the sub-problem, the simulation cost for the sub-problem is at
most 54σ2c−2 log[4Tmax/δ].

Using Lemma 37, we can estimate the total simulation cost of Algorithm 11.

Lemma 38. Suppose that Assumptions 5-7 hold. The expected simulation cost of Algorithm
11 is bounded by

459σ2

c2
log

(
4Tmax

δ

)
= O

[
1

c2
log

(
1

δ

)]
,

where Tmax := log1.5(N) + 2.

Proof. We denote the upper bound and the lower bound at the beginning of the k-th iteration
as xUk

and xLk
, respectively. By Lemma 37, the simulation cost for the k-th iteration is at

most 100σ2c−2(qk2/3 − qk1/3)
−2 log[4Tmax/δ], where qk1/3 and qk2/3 are the 3-quantiles for the k-th
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iteration. By the definition of 3-quantiles, it follows that qk2/3 − qk1/3 ≥ (xUk
− xLk

)/3 and
therefore

100σ2

(qk2/3 − qk1/3)
2c2

log

(
4Tmax

δ

)
≤ 900σ2

(xUk
− xLk

)2c2
log

(
4Tmax

δ

)
. (5.7)

Hence, we only need to bound the sum
∑T

k=1(xUk
− xLk

)−2, where T is the number of
iterations of Algorithm 11. By inequality (5.12), we know

xUk
− xLk

≥ 3

2
(xUk+1

− xLk+1
)− 1, ∀k ∈ {1, 2, . . . , T − 1}.

We can rewrite the above inequality as xUk
− xLk

− 2 ≥ 3/2 · (xUk+1
− xLk+1

− 2). Since T is
the last iteration, it holds that xUT

− xLT
≥ 4 and therefore

xUk
− xLk

− 2 ≥
(

3

2

)T−k

(xUT
− xLT

− 2) ≥ 2 ·
(

3

2

)T−k

.

Summing over k = 1, 2, . . . , T , we get the bound

T∑
k=1

(xUk
− xLk

)−2 ≤
T∑

k=1

(
2 ·
(

3

2

)T−k

+ 2

)−2

≤
T∑

k=1

1

4
·
(

3

2

)−2(T−k)

=
9

20

[
1−

(
4

9

)T
]
≤ 9

20
.

Combining with inequality (5.7), the simulation cost for T iterations is at most

900σ2

c2
log

(
4Tmax

δ

)
·

T∑
k=1

(xUk
− xLk

)−2 ≤ 405σ2

c2
log

(
4Tmax

δ

)
.

Considering the simulation cost of the sub-problem, the total simulation cost of Algorithm
11 is at most

405σ2

c2
log

(
4Tmax

δ

)
+

54σ2

c2
log

(
4Tmax

δ

)
=

459σ2

c2
log

(
4Tmax

δ

)
.

Finally, we verify the correctness of Algorithm 11 and get an upper bound on T (δ,MCc).

Proof of Theorem 58. Similar to the proof of Theorem 54, we use the induction method to
prove that Event-I happens for the k-th iteration with probability at least 1− (k−1)δ/Tmax.
For the first iteration, the solution to problem (5.1) is in X = {1, 2, . . . , N} with probability
1. We assume that the claim is true for the first k − 1 iterations, and consider the k-th
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iteration. If one of the first two conditions holds when the current iteration terminates,
then, by the same analysis as the proof of Theorem 54, we know that Event-I happens for
the k-th iteration with probability at least 1− (k− 1)δ/Tmax. Hence, we only need consider
the case when only the last condition holds when the current iteration terminates. Since the
first two conditions do not hold, we know∣∣∣F̂n(q1/3)− F̂n(q2/3)

∣∣∣ ≤ (q2/3 − q1/3) · 2c/5. (5.8)

In addition, it holds that∣∣∣f(q1/3)− F̂n(q1/3)
∣∣∣ ≤ (q2/3 − q1/3) · c/5,

∣∣∣f(q2/3)− F̂n(q2/3)
∣∣∣ ≤ (q2/3 − q1/3) · c/5

with probability at least 1− δ/Tmax. Combining with inequality (5.8), we know that∣∣f(q1/3)− f(q2/3)
∣∣ ≤ (q2/3 − q1/3) · 4c/5 < (q2/3 − q1/3) · c (5.9)

holds with probability at least 1− δ/Tmax. We assume that the above event and Event-I for
the (k− 1)-th iteration both hold, which has a joint probability of at least 1− δ/Tmax− (k−
2)δ/Tmax = 1− (k−1)δ/Tmax. If the solution to problem (5.1) is not in {q1/3, . . . , q2/3}, then
function f(x) is monotone on {q1/3, . . . , q2/3} and

∣∣f(q1/3)− f(q2/3)
∣∣ =

q2/3−1∑
x=q1/3

|f(x)− f(x + 1)| .

Since the indifference zone parameter is c and the function f(x) is convex, the function value
difference between any two neighbouring points is at least c, which implies that

q2/3−1∑
x=q1/3

|f(x)− f(x + 1)| ≥ (q2/3)− q1/3) · c.

However, the above inequality contradicts inequality (5.9) and thus the solution to problem
(5.1) is in {q1/3, . . . , q2/3}. Hence, Event-I happens for the k-th iteration with probability at
least 1− (k − 1)δ/Tmax.

Suppose that there are T iterations in Algorithm 11. Since the updating rule of intervals
is not changed, Lemma 39 gives T ≤ Tmax − 1. By the induction method, the solution to
problem (5.1) is in {xLT+1

, . . . , xUk+1
} with probability at least 1−T ·δ/Tmax ≥ 1−δ+δ/Tmax.

Using the same analysis as Theorem 54, the point returned by the sub-problem is at most
2c/3 larger than the optimal value with probability at least 1 − δ. By the assumption
that the indifference zone parameter is c, all feasible points have function values at least c
larger than the optimal value. This implies that the solution returned by Algorithm 11 is
optimal with probability at least 1 − δ + δ/Tmax − δ/Tmax ≥ 1 − δ and Algorithm 11 is a
[(c, δ)-PCS-IZ,MCc]-algorithm.
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Proof of Theorem 61

Proof of Theorem 61. We construct the two models M1,M2 ∈MC as

ν1,x := N
[
cx, σ2

]
, ν2,x := N

[
c (|x− 2|+ 2) , σ2

]
, ∀x ∈ X .

Given a [(c, δ)-PCS-IZ,MCc]-algorithm, the algorithm returns point 1 with probability at
least 1 − δ when applied to model M1, and returns point 2 with probability at least 1 − δ
when applied to model M2. We choose E as the event that the algorithm returns point 1 as
the solution. Then, we know

PM1(E) ≥ 1− δ, PM2(E) ≤ δ.

Using the monotonicity of function d(x, y), we get

d(PM1(E),PM2(E)) ≥ d(1− δ, δ) ≥ log(1/2.4δ). (5.10)

Since the distributions ν1,x and ν2,x are Gaussian with variance σ2, the KL divergence can
be calculated as

KL(ν1,x, ν2,x) =
[cx− c (|x− 2|+ 2)]2

2σ2
=

{
2c2σ−2 if x = 1

0 otherwise.

Hence, the summation can be calculated as∑
x∈X

EM1 [Nx(τ)] KL(ν1,x, ν2,x) =
2c2

σ2
· EM1 [N1(τ)] . (5.11)

Substituting (5.10) and (5.11) into inequality (5.6), we know

2c2

σ2
· EM1 [N1(τ)] ≥ log(1/2.4δ),

which implies that

EM1 [τ ] ≥ EM1 [N1(τ)] ≥ σ2

2c2
· log

(
1

2.4δ

)
= Θ

[
1

c2
log

(
1

δ

)]
.

5.B Proofs in Section 5.3

Proof of Theorem 54

We first estimate the simulation cost of Algorithm 7. The following lemma gives an upper
bound on the total number of iterations.
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Lemma 39. Suppose that Assumptions 5-7 hold. The number of iterations of Algorithm 7
is at most log1.5(N) + 1.

Proof. If the total number of points N is at most 3, then there is no iteration. In the
following proof, we assume N ≥ 4. We first calculate the shrinkage of interval length after
each iteration. We denote the upper and the lower bound at the beginning of the k-th
iteration as xUk

and xLk
, respectively. Then, we know there are nk := xUk

−xLk
+1 points in

the k-th iteration and the algorithm starts with xL1 = 1, xU1 = N . We define the 3-quantiles
q1/3 := ⌊2xLk

/3 + xUk
/3⌋ and q2/3 := ⌈xLk

/3 + 2xUk
/3⌉. By the updating rule, the next

interval is
[xLk

, q2/3] or [q1/3, xUk
] or [q1/3, q2/3].

By discussing three cases when nk ∈ 3Z, nk ∈ 3Z + 1 and nk ∈ 3Z + 2, we know the next
interval has at most 2nk/3 + 1 points, i.e.,

nk+1 ≤ 2nk/3 + 1. (5.12)

Rewriting the inequality, we get the relation nk+1 − 3 ≤ 2(nk − 3)/3. Combining with the
fact that n1 = N , it follows that

nk ≤
(

2

3

)k−1

(N − 3) + 3.

Suppose Algorithm 7 terminates after T iterations. Then, it holds that nT ≥ 4 and nT+1 ≤ 3.
Hence, we know

4 ≤ nT ≤
(

2

3

)T−1

(N − 3) + 3,

which implies
T ≤ log1.5(N − 3) + 1 < log1.5(N) + 1.

In the next lemma, we estimate the simulation cost of each iteration.

Lemma 40. Suppose that Assumptions 5-7 hold. The simulation cost of each iteration of
Algorithm 7 is at most 256σ2ϵ−2 log (4Tmax/δ), where Tmax := log1.5(N) + 2. The simulation
cost of the sub-problem is at most 24σ2ϵ−2 log (4Tmax/δ).

Proof. We first estimate the simulation cost at each iteration. If we choose n = nϵ,δ, the
confidence half-width is ϵ/4 and the condition h[n, σ, 1−δ/(2Tmax)] ≤ ϵ/8 is satisfied. Hence,
the simulation cost of each iteration is at most 2nϵ,δ.

For the last sub-problem, we choose

ñ = ñϵ,δ :=
8σ2

ϵ2
log

(
4Tmax

δ

)
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and it follows that
h[ñϵ,δ, σ, 1− δ/(2Tmax)] ≤ ϵ/2.

Hence, simulating ñϵ,δ times on each point is sufficient and the simulation cost is at most
3ñϵ,δ.

Combining Lemmas 39 and 40, we get the total simulation cost of Algorithm 7.

Lemma 41. Suppose that Assumptions 5-7 hold. The expected simulation cost of Algorithm
7 is at most

256Tmaxσ
2

ϵ2
log

(
4Tmax

δ

)
= O

[
log(N)

ϵ2
log

(
1

δ

)]
,

where Tmax := log1.5(N) + 2.

Proof. By Lemmas 39 and 40, the total simulation cost of the first part is at most

[log1.5(N) + 1] · 256σ2

ϵ2
log

(
4Tmax

δ

)
≤ [Tmax − 1] · 256σ2

ϵ2
log

(
4Tmax

δ

)
and the simulation cost of the second part is at most

24σ2

ϵ2
log

(
4Tmax

δ

)
.

Combining two parts, we know the total simulation cost is at most

[Tmax − 1] · 256σ2

ϵ2
log

(
4Tmax

δ

)
+

24σ2

ϵ2
log

(
4Tmax

δ

)
≤ 256Tmaxσ

2

ϵ2
log

(
4Tmax

δ

)
.

Finally, we verify the correctness of Algorithm 7 and get an upper bound on T (ϵ, δMC).

Proof of Theorem 54. We denote Tmax := log1.5(N) + 2. We also denote the upper and the
lower bound at the beginning of the k-th iteration as xUk

and xLk
, respectively. We use

the induction method to prove that, for the k-th iteration, at least one of the following two
events happens with probability at least 1− (k − 1) · δ/Tmax:

• Event-I. A solution to problem (5.1) is in {xLk
, . . . , xUk

},

• Event-II. For any x ∈ {xLk
, . . . , xUk

}, it holds f(x) ≤ miny∈X f(y) + ϵ.

When k = 1, all solutions to problem (5.1) are in X = {xL1 , . . . , xU1} and Event-I happens
with probability 1. Suppose the claim is true for the first k − 1 iterations. We consider the
k-th iteration. For the (k − 1)-th iteration, if Event-II happens with probability at least
1− (k− 2) · δ/Tmax, then Event-II happens for the k-th iteration with the same probability.
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This is because the interval {xLk
, . . . , xUk

} is a subset of {xLk−1
, . . . , xUk−1

} and all points in
the new interval satisfy the condition of Event-II.

Hence, we only need to consider the case when only Event-I for the (k − 1)-th iteration
happens with probability at least 1−(k−2)δ/Tmax. We assume Event-I happens and consider
conditional probabilities in the following of the proof. We denote

q1/3 := ⌊2xLk−1
/3 + xUk−1

/3⌋, q2/3 := ⌊xLk−1
/3 + 2xUk−1

/3⌋

and discuss by two different cases.

Case I. Suppose one of the first two conditions holds when the current iteration terminates.
Since the two conditions are symmetrical, we assume without loss of generality that the first
condition holds. Then, the new interval is [q1/3, xUk−1

] and, by the definition of confidence
interval, we know

f(q1/3) ≥ f(q2/3)

holds with probability at least 1− δ/Tmax. We assume the above event and Event-I for the
(k − 1)-th iteration both happen, which has joint probability at least 1 − δ/Tmax − (k −
2)δ/Tmax = 1− (k − 1)δ/Tmax. By the convexity of f(x), it holds that

f(x) ≥ f(q1/3) +
x− q1/3
q1/3 − q2/3

[
f(q1/3)− f(q2/3)

]
≥ f(q1/3), ∀x ∈ {xLk−1

, . . . , q1/3}.

Hence, the minimum of f(x) in {xLk−1
, . . . , xUk−1

} is attained by a point in {q1/3, . . . , xUk−1
}.

Combining with the assumption that there exists a solution to problem (5.1) in

{xLk−1
, . . . , xUk−1

},

we know that there exists a solution to problem (5.1) in {q1/3, . . . , xUk−1
}. Thus, Event-I for

the k-th iteration happens with probability at least 1− (k − 1)δ/Tmax.

Case II. Suppose only the last condition holds when the current iteration terminates.
Since the first two conditions do not hold, we have∣∣∣F̂n(q1/3)− F̂n(q2/3)

∣∣∣ ≤ ϵ/4. (5.13)

In addition, by the definition of confidence interval, it holds∣∣∣f(q1/3)− F̂n(q1/3)
∣∣∣ ≤ ϵ/8,

∣∣∣f(q2/3)− F̂n(q2/3)
∣∣∣ ≤ ϵ/8

with probability at least 1− δ/Tmax. Combining with inequality (5.13), we know∣∣f(q1/3)− f(q2/3)
∣∣ ≤ ϵ/2 (5.14)
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holds with probability at least 1 − δ/Tmax. We assume that the above event and Event-I
for the (k − 1)-th iteration both happen, which has joint probability at least 1 − δ/Tmax −
(k − 2)δ/Tmax = 1 − (k − 1)δ/Tmax. We prove that if Event-I for the k-th iteration does
not happen, then Event-II for the k-th iteration happens. Under the condition that Event-I
does not happen, we assume without loss of generality that solutions to problem (5.1) are
in {xLk−1

, . . . , q1/3 − 1}. Using the convexity of function f(x), we know

f(x) ≥ f(q1/3)−
q1/3 − x

q2/3 − q1/3

[
f(q1/3)− f(q2/3)

]
, ∀x ∈ {xLk−1

, . . . , q1/3}.

Choosing

x ∈
(

arg min
y∈X

f(y)

)
∩ {xLk−1

, . . . , xUk−1
} ≠ ∅,

we get

min
y∈X

f(y) ≥ f(q1/3)−
q1/3 − x

q2/3 − q1/3

[
f(q1/3)− f(q2/3)

]
≥ f(q1/3)−

q1/3 − xLk−1

q2/3 − q1/3
· ϵ/2 ≥ f(q1/3)− ϵ/2,

where the last inequality is from the definition of 3-quantiles. Combining with inequality
(5.14), we get

min
y∈X

f(y) ≥ f(q2/3)− ϵ.

By the convexity of f(x), it holds that

max
x∈{q1/3,...,q2/3}

f(x) = max{f(q1/3), f(q2/3)} ≤ min
y∈X

f(y) + ϵ,

which means Event-II for the k-th iteration happens.
Combining the two cases, we know the claim holds for the k-th iteration. Suppose there

are T iterations in Algorithm 7. By Lemma 39, we have T ≤ Tmax − 1. By the induction
method, the last interval {xLT+1

, . . . , xUT+1
} satisfies the condition in Event-I or Event-II with

probability at least 1 − T · δ/Tmax ≥ 1 − δ + δ/Tmax. If Event-II happens with probability
at least 1− δ + δ/Tmax, then regardless of the point chosen in the sub-problem, the solution
returned by the algorithm has value at most ϵ larger than the optimal value with probability
at least 1 − δ + δ/Tmax ≥ 1 − δ. Hence, the solution satisfies the (ϵ, δ)-PGS guarantee.
Otherwise, we assume Event-I happens with probability at least 1 − δ + δ/Tmax. Then, a
solution to problem (5.1) is in {xLT+1

, . . . , xUT+1
}. We choose

x∗ ∈
(

arg min
x∈X

f(x)

)
∩ {xLT+1

, . . . , xUT+1
}

and suppose the algorithm returns

x∗∗ ∈ arg min
x∈{xLT+1

,...,xUT+1
}
F̂n(x).
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By the definition of confidence interval, it holds

f(x∗∗) ≤ F̂n(x∗∗) + ϵ/2, f(x∗) ≥ F̂n(x∗)− ϵ/2

with probability at least 1− δ/Tmax. Under the above event, we get

f(x∗∗) ≤ F̂n(x∗∗) + ϵ/2 ≤ F̂n(x∗) + ϵ/2 ≤ f(x∗) + ϵ.

Recalling that Event-I happens with probability at least 1 − δ + δ/Tmax, the point x∗∗

satisfies the above relation with probability at least 1 − δ and therefore satisfies the (ϵ, δ)-
PGS guarantee. Combining with the first case, we know Algorithm 7 is an [(ϵ, δ)-PGS,MC]-
algorithm.

Proof of Theorem 55

We first estimate the simulation cost of Algorithm 8.

Lemma 42. Suppose that Assumptions 5-7 hold. The expected simulation cost for Algorithm
8 is at most

25600σ2

ϵ2
log

[
4N

δ

]
= O

[
1

ϵ2
log

(
1

δ

)]
.

Proof. Denote Tmax := N . Suppose that there are T iterations in Algorithm 8. We denote
Sk as the active set at the beginning of the k-th iteration. Since each iteration reduces the
size of Sk by at least 1, it follows that

|Sk| ≥ |ST+1|+ T + 1− k, ∀k ∈ [T + 1].

By the same analysis as Lemma 40, we know that for the k-th iteration, simulating

n(|Sk|) :=
12800σ2

|Sk|2ϵ2
log

(
4Tmax

δ

)
times is sufficient to achieve 1−δ/(2Tmax) confidence half-width |Sk|/80 ·ϵ. By the condition
on Line 6, each point discarded during the k-th iteration is simulated at most n(|Sk|) times.
Hence, the total number of simulations on points discarded during the k-th iteration is at
most

(|Sk| − |Sk+1|) · n(|Sk|) =
|Sk| − |Sk+1|
|Sk|2

· 12800σ2

ϵ2
log

(
4Tmax

δ

)
≤
(

1

|Sk+1|
− 1

|Sk|

)
· 12800σ2

ϵ2
log

(
4Tmax

δ

)
,

where the inequality is because of |Sk| ≥ |Sk+1|. Summing over k = 1, 2, . . . , T , we get the
number of simulations on all discarded points during iterations is at most

T∑
k=1

(
1

|Sk+1|
− 1

|Sk|

)
· 12800σ2

ϵ2
log

(
4Tmax

δ

)
=

(
1

|ST+1|
− 1

|S1|

)
· 12800σ2

ϵ2
log

(
4Tmax

δ

)
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≤
(

1− 1

N

)
· 12800σ2

ϵ2
log

(
4Tmax

δ

)
≤ 12800σ2

ϵ2
log

(
4Tmax

δ

)
.

For points in the last active set ST+1, the number of simulations is bounded by

|ST+1| · n(|ST+1|) =
12800σ2

|ST+1|ϵ2
log

(
4Tmax

δ

)
≤ 12800σ2

ϵ2
log

(
4Tmax

δ

)
.

Combining two parts, we know that the simulation cost of Algorithm 8 is at most

25600σ2

ϵ2
log

(
4Tmax

δ

)
.

Then, we prove the correctness of Algorithm 8. The following lemma plays a critical role
in verifying the correctness of Type-II Operations.

Lemma 43. Suppose function h(x) is convex on [1,M + a], where integer M ≥ 3 and
constant a ∈ [0, 1]. Then, the restriction of function h(x) to [M ], which we denote as h̃(x),
is also convex. Furthermore, given a constant ϵ > 0, if it holds that

max
x∈[M ]

h̃(x)− min
x∈[M ]

h̃(x) ≤M/20 · ϵ, (5.15)

then we know
min
y∈[M ′]

h̃(2y − 1)− min
x∈[1,M+a]

h(x) ≤ ϵ/2.

where we define M ′ := ⌈M/2⌉.

Proof. Since the mid-point convexity of h(x) implies the discrete mid-point convexity of h̃,
we know h̃(x) is also convex. We prove the second claim in three steps.

Step 1. We first prove that

min
x∈[1,M ]

h(x)− min
x∈[1,M+a]

h(x) ≤ ϵ/10. (5.16)

Suppose x∗ is a minimizer of h(x) on [1,M + a]. If x∗ ∈ [1,M ], then inequality (5.16) holds
trivially. We assume that x∗ ∈ (M,M + a]. By the convexity of h(x), we have

h(M)− h(x∗) ≤ x∗ −M

M − 1
· [h(M)− h(1)] ≤ 1

M − 1
· [h(M)− h(1)] ≤ M/20 · ϵ

M/2
= ϵ/10.

Hence, we know

min
x∈[1,M ]

h(x)− min
x∈[1,M+a]

h(x) = min
x∈[1,M ]

h(x)− h(x∗) ≤ h(M)− h(x∗) ≤ ϵ/10.
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Step 2. Next, we prove that

min
x∈[M ]

h̃(x)− min
x∈[1,M ]

h(x) ≤ ϵ/5. (5.17)

Let x∗ be a minimizer of h̃(x) on [M ]. By inequality (5.15), we know

max
x∈[M ]

h̃(x) = max{h̃(1), h̃(M)} ≤ h̃(x∗) + M/20 · ϵ.

By the convexity of h(x), there exists a minimizer x∗∗ ∈ [1,M ] of h(x) in (x∗ − 1, x∗ + 1).
If x∗∗ = x∗, then min h̃(x) = minh(x) and inequality (5.17) holds. Hence, we assume that
x∗∗ ̸= x∗ and, without loss of generality, x∗∗ ∈ (x∗, x∗ + 1). Since (M − x∗ − 1) + (x∗ − 1) =
M − 2, we know max{M − x∗ − 1, x∗ − 1} ≥ ⌈(M − 2)/2⌉. We first consider the case when

M − x∗ − 1 ≥ ⌈(M − 2)/2⌉.

By the convexity of h(x), we have

h(x∗ + 1)− h(x∗∗) ≤ x∗ + 1− x∗∗

M − x∗ − 1
· [h(M)− h(x∗ + 1)]

≤ 1

⌈(M − 2)/2⌉
· [h(M)− h(x∗)] ≤ M/20 · ϵ

⌈(M − 2)/2⌉
.

By simple calculations, we get M/4 ≤ ⌈(M − 2)/2⌉ for all M ≥ 3 and therefore

h(x∗)− h(x∗∗) ≤ h(x∗ + 1)− h(x∗∗) ≤ ϵ/5,

which means inequality (5.17) holds. Now we consider the case when

x∗ − 1 ≥ ⌈(M − 2)/2⌉.

Similarly, by the convexity of h(x), we have

h(x∗)− h(x∗∗) ≤ x∗∗ − x∗

x∗ − 1
· [h(x∗)− h(1)] ≤ 1

⌈(M − 2)/2⌉
· [h(x∗)− h(1)]

≤ M/20 · ϵ
⌈(M − 2)/2⌉

≤ ϵ/5.

Combining the two cases, we know inequality (5.17) holds.

Step 3. Finally, we prove that

min
y∈[M ′]

h̃(2y − 1)− min
x∈[M ]

h̃(x) ≤ ϵ/5. (5.18)
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Let x∗ be a minimizer of h̃(x). If x∗ is an odd number, then miny∈[M ′] h̃(2y − 1) =

minx∈[M ] h̃(x) and inequality (5.18) holds. Otherwise, we assume x∗ = 2y∗ is an even number.

Then, by the convexity of h̃(x), there exists a minimizer of h̃(2y−1) in {y∗, y∗+1}. Without
loss of generality, we assume y∗ + 1 is a minimizer of h̃(2y− 1). Since (M − x∗) + (x∗− 1) =
M − 1, we have max{M − x∗, x∗ − 1} ≥ ⌈(M − 1)/2⌉. We first consider the case when

M − x∗ ≥ ⌈(M − 1)/2⌉.

By the convexity of h̃(x), we have

h̃(2y∗ + 1)− h̃(2y∗) ≤ 1

M − 2y∗
·
[
h̃(M)− h̃(2y∗)

]
≤ M/20 · ϵ
⌈(M − 1)/2⌉

.

We can verify that M/4 ≤ ⌈(M − 1)/2⌉ for all M ≥ 3. Hence, it holds that

h̃(2y∗ + 1)− h̃(2y∗) ≤ ϵ/5.

Then, we consider the case when

x∗ − 1 ≥ ⌈(M − 1)/2⌉.

Similarly, using the convexity of h̃(x), we have

h̃(2y∗ − 1)− h̃(2y∗) ≤ 1

2y∗ − 1
·
[
h̃(2y∗)− h̃(1)

]
≤ M/20 · ϵ
⌈(M − 1)/2⌉

≤ ϵ/5,

which implies that

h̃(2y∗ + 1)− h̃(2y∗) ≤ h̃(2y∗ − 1)− h̃(2y∗) ≤ ϵ/5.

Combining the two cases, we know inequality (5.18) holds.
By inequalities (5.16), (5.17) and (5.18), we have

min
y∈[M ′]

h̃(2y − 1)− min
x∈[1,M+a]

h(x) ≤ ϵ/10 + ϵ/5 + ϵ/5 = ϵ/2.

We denote Sk and dk as the active set and the step size at the beginning of the k-
th iteration, respectively. We define the upper bound and the lower bound for the k-th
iteration as

xxL1
:= 1, xLk+1

:=

{
y + dk if the second case of Type-I Operation happens

xLk
otherwise,

xxU1
:= N, xUk+1

:=

{
y − dk if the first case of Type-I Operation happens

xUk
otherwise.

Although not explicitly defined in the algorithm, the interval {xLk
, . . . , xUk

} plays a similar
role as in the TS algorithm and characterizes the set of possible solutions. In the following
lemma, we prove that the active set Sk is a good approximation to the interval {xLk

, . . . , xUk
}.

We note that the following lemma is deterministic.
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Lemma 44. For any iteration k, we have

xLk
= min Sk and xUk

≤ max Sk + dk. (5.19)

Proof. We use the induction method to prove the result. When k = 1, we know xL1 =
1, xU1 = N,S = [N ] and d1 = 1. Hence, the relations in (5.19) hold. We assume these
relations hold for the first k − 1 iterations. We discuss by two different cases.

Case I. Type-I Operation is implemented during the (k−1)-th iteration. If the first case of
Type-I Operation happens, then we know xLk

= xLk−1
and xUk

= y− dk−1. By the updating
rule, the step size dk−1 is not changed and all points in Sk−1 that are at least y are discarded
from Sk−1. Hence, it follows that max Sk = xUk

and the inequality xUk
≤ max Sk + dk

holds. Moreover, since both xLk
and min Sk−1 are not changed, the equality xLk

= min Sk
still holds.

Otherwise if the second case of Type-I Operation happens, then we know xLk
= y + dk−1

and xUk
= xUk−1

. Similarly, we can prove that xLk
= min Sk. Moreover, since dk = dk−1

and max Sk−1 + dk−1 = max Sk + dk−1, it holds

xUk
= xUk−1

≤ max Sk−1 + dk−1 = max Sk + dk.

Case II. Type-II Operation is implemented during the (k − 1)-th iteration. In this case,
bounds xLk−1

and xUk−1
are not changed. By the update rule, we know the step size dk =

2dk−1 and

min Sk = min Sk−1, max Sk ∈ {max Sk−1 − dk−1,max Sk−1}. (5.20)

Thus, the equality xLk
= min Sk still holds. By the induction assumption, we know that

xUk
≤ xUk−1

≤ max Sk−1 + dk−1.

Combining with the latter relation in (5.20), we get

xUk
≤ max Sk−1 + dk−1 ≤ max Sk + 2dk−1 = max Sk + dk.

Combining the two cases, we know the relations in (5.19) hold for the k-th iteration. By
the induction method, the relations hold for all iterations.

Finally, utilizing Lemmas 43 and 44, we can prove the correctness of Algorithm 8 and
get a better upper bound on T0(ϵ, δ,MC).

Proof of Theorem 55. Denote Tmax := N . We use the induction method to prove that, for
any iteration k, the two events

• minx∈Sk
f(x) ≤ minx∈X f(x) + ϵ/2.
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• minx∈{xLk
,xLk

+1,...,xUk
} f(x) = minx∈X f(x).

happen jointly with probability at least 1 − (k − 1)δ/Tmax. When k = 1, we know S1 = X
and xL1 = 1, xU1 = N . Hence, the two events happen with probability 1. Suppose the claim
is true for the first k − 1 iterations. We assume the two events happen for the (k − 1)-th
iteration and consider conditional probabilities in the following proof. We discuss by two
different cases.

Case I. Type-I Operation is implemented in the (k − 1)-th iteration. In this case, there
exists x, y ∈ Sk−1 such that F̂nx(x) + hx ≤ F̂ny(y) − hy. By the definition of confidence
intervals, we know f(x) ≤ f(y) holds with probability at least 1− δ/Tmax. We assume event
f(x) ≤ f(y) happens jointly with the claim for the (k−1)-th iteration, which has probability
at least 1− (k− 2)δ/Tmax− δ/Tmax = 1− (k− 1)δ/Tmax. If x < y, then using the convexity
of f(x), we know

f(z) ≥ f(y) ≥ f(x), ∀z ∈ [N ] s. t. z ≥ y,

which means all discarded points have function values at least f(x). Hence, the minimums
in the claim are not changed, i.e., we have

min
x∈Sk

f(x) = min
x∈Sk−1

f(x) ≤ min
x∈X

f(x) + ϵ/2

and
min

x∈{xLk
,xLk

+1,...,xUk
}
f(x) = min

x∈{xLk−1
,xLk−1

+1,...,xUk−1
}
f(x) = min

x∈X
f(x).

The two events happen with probability at least 1 − (k − 1)δ/Tmax. If y < x, the proof is
the same and therefore the claim holds for the k-th iteration.

Case II. Type-II Operation is implemented in the (k − 1)-th iteration. Since xLk−1
and

xUk−1
are not changed, the first event happens for the k-th iteration. Hence, we only need to

verify that the second event happens with high probability. Let x∗ and x∗∗ be a minimizer
and a maximizer of f(x) on Sk−1, respectively. By the condition of Type-II Operations, we
know

|F̂n (x∗)− F̂n(x∗∗)| ≤ hx∗ + hx∗∗

and
hx ≤ |Sk−1|/80 · ϵ, ∀x ∈ Sk−1.

By the definition of confidence intervals, it holds

|f(x∗)− F̂n (x∗)| ≤ hx∗ , |f(x∗∗)− F̂n (x∗∗)| ≤ hx∗∗

with probability at least 1− δ/Tmax. Under the above event, we have

|f(x∗)− f(x∗∗)| ≤ |f(x∗)− F̂n (x∗)|+ |F̂n (x∗)− F̂n(x∗∗)|+ |f(x∗∗)− F̂n (x∗∗)| (5.21)
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≤ 2(hx∗) + hx∗∗ ≤M/20 · ϵ.

We assume the above event happens jointly with with the claim for the (k− 1) -th iteration,
which has probability at least 1− (k− 1)δ/Tmax. By the induction assumption, the original
problem (5.1) is equivalent to

min
x∈{xLk−1

,xLk−1
+1,...,xUk−1

}
f(x).

Moreover, if we denote f̃ as the linear interpolation of f(x) defined in (5.2), then the above
problem is equivalent to

min
x∈{xLk−1

,xLk−1
+1,...,xUk−1

}
f(x) = min

x∈[xLk−1
,xUk−1

]
f̃(x). (5.22)

We define the constant M̃ := (xUk−1
− xLk−1

)/dk−1 + 1 and the linear transformation

T (x) := xLk−1
+ dk−1(x− 1), ∀x ∈ [1, M̃ ].

The inverse image T−1
(
[xLk−1

, xUk−1
]
)

is [1, M̃ ]. Defining the composite function

g̃(x) := f̃(T (x)), ∀x ∈ [1, M̃ ],

we know that the problem (5.22) is equivalent to

min
x∈[1,M̃ ]

g̃(x). (5.23)

The inverse image T−1(Sk−1) is [M ], where M := |Sk−1| is the number of points in Sk−1.
Lemma 44 implies that a := M̃ −M ∈ [0, 1]. Recalling inequality (5.21), we get

max
x∈[M ]

g̃(x)− min
x∈[M ]

g̃(x) ≤M/20 · ϵ.

Now, we can apply Lemma 43 to get

min
y∈[M ′]

g̃(2y − 1)− min
x∈[1,M+a]

g̃(x) = min
y∈[M ′]

g̃(2y − 1)− min
x∈[1,M̃ ]

g̃(x) ≤ ϵ/2,

where M ′ := ⌈M/2⌉. We note that the interval [1,M + a] corresponds to the interval [1, N ]
before scaling the x-axis. Since problem (5.23) is equivalent to problem (5.22) and further
equivalent to problem (5.1), it holds that

min
y∈[M ′]

g̃(2y − 1)− min
x∈[1,M̃ ]

g̃(x) = min
y∈[M ′]

g̃(2y − 1)−min
x∈X

f(x) ≤ ϵ/2.

By the definition of Sk, we know T (2[M ′]− 1) is Sk and therefore

min
y∈[M ′]

g̃(2y − 1)−min
x∈X

f(x) = min
x∈Sk

f(x)−min
x∈X

f(x) ≤ ϵ/2,
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which implies that the second case happens for the k-th iteration with probability at least
1− (k − 1)δ/Tmax.

Combining the above two cases, we know the claim holds for all iterations. Suppose there
are T iterations in Algorithm 8. Since each iteration will decrease the active set S by at
least 1, we get T ≤ N − 1. Then after the T iterations, we have

min
x∈ST+1

f(x) ≤ min
x∈X

f(x) + ϵ/2 (5.24)

holds with probability at least 1 − T · δ/Tmax ≥ 1 − δ + δ/Tmax. For the sub-problem,
using the same analysis as Theorem 54, the point returned by Algorithm 8 satisfies the
(ϵ/2, δ/Tmax)-PGS guarantee. Combining with the relation (5.24), we know the algorithm
returns a solution satisfying the (ϵ, δ)-PGS guarantee.

5.C Multi-dimensional Shrinking Uniform Sampling

Algorithm

In this section, we give the multi-dimensional version of the SUS algorithm designed in
Section 5.3. Similar to the one-dimensional case, the asymptotic simulation cost of the multi-
dimensional algorithm is upper bounded by a constant that does not depend on the problem
scale N and the Lipschitz constant of the objective function. Hence, the multi-dimensional
algorithm provides a matching simulation cost to the one-dimensional case. However, the
expected simulation cost is exponentially dependent on the dimension d. Therefore, the
multi-dimensional SUS algorithm is mainly theoretical and only suitable for low-dimensional
problems.

The main idea of the generalization to multi-dimensional problems is to view optimization
algorithms as (usually biased) estimators to the optimal value, which is elaborated in the
following definition.

Definition 16. Given a constant S > 0, we say that an algorithm is sub-Gaussian with
dimension d and parameter S if for any d-dimensional L♮-convex problem, any ϵ > 0 and
small enough δ > 0, the algorithm returns an ϵ-optimal solution x̂ along with an estimate
f̂ ∗ to the optimal value f ∗ that satisfies |f̂ ∗ − f ∗| ≤ ϵ with probability at least 1 − δ using
at most

T (ϵ, δ) := Õ

[
2S

ϵ2
log(

2

δ
)

]
simulation runs.

For example, Theorem 55 shows that the one-dimensional SUS algorithm (Algorithm 8)
returns an (ϵ/2, δ/2)-PGS solution with Õ[ϵ−2 log(1/δ)] simulations. Then, we can simulate
the function value at the solution for O[ϵ−2 log(1/δ)] times such that the 1− δ/2 confidence
half-width becomes smaller than ϵ/4. Then, the empirical mean of function values at the
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solution is at most ϵ distant from f ∗ with probability at least 1 − δ. Hence, we know that
Algorithm 8 is sub-Gaussian with dimension 1. We denote its associated parameter as S.
We note that if we treat algorithms as estimators, the estimators are generally “biased” (but
consistent). This fact implies that the empirical mean of several estimates to the optimal
value does not produce a better optimality guarantee, while the empirical mean of several
unbiased estimators usually has a tighter deviation bound.

Now, we inductively construct sub-Gaussian algorithms for multi-dimensional problems.
We first define the marginal objective function as

fd−1(x) := min
y∈[N ]d−1

f(y, x). (5.25)

Observe that each evaluation of fd−1(x) requires solving a (d − 1)-dimensional L♮-convex
sub-problem. Hence, if we have an algorithm for (d − 1)-dimensional L♮-convex problems,
we only need to solve the one-dimensional problem

min
x∈[N ]

fd−1(x) = min
x∈[N ]

min
y∈[N ]d−1

f(y, x) = min
x∈X

f(x) (5.26)

Moreover, we can prove that problem (5.26) is also a convex problem.

Lemma 45. If function f(x) is L♮-convex, then function fd−1(x) is L♮-convex on [N ].

Based on the observations, we can use sub-Gaussian algorithms for (d − 1)-dimensional
problems and Algorithm 8 to construct sub-Gaussian algorithms for d-dimensional problems.
We give the pseudo-code in Algorithm 13.

Algorithm 13 Multi-dimensional shrinking uniform sampling algorithm

Input: Model X , (Y,BY), F (x, ξx), optimality guarantee parameters ϵ and δ, sub-Gaussian
algorithm A with dimension d− 1.

Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
1: Set the active set S ← [N ].
2: Set the step size s← 1 and the maximal number of comparisons Tmax ← N .
3: Set Ncur ← +∞.
4: while the size of S is at least 3 do ▷ Iterate until S has at most 2 points.
5: if |S| ≤ Ncur/2 then ▷ Update the confidence interval.
6: Record current active set size Ncur ← |S|.
7: Set the confidence half-width h← Ncur · ϵ/160.
8: For each x ∈ S, use algorithm A to get an estimate to fd−1(x) such that∣∣∣f̂d−1(x)− fd−1(x)

∣∣∣ ≤ h

holds with probability at least 1− δ/(2Tmax).
9: end if
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10: if f̂d−1(x) + h ≤ f̂d−1(y)− h for some x, y ∈ S then ▷ Type-I Operation
11: if x < y then
12: Remove all points z ∈ S with the property z ≥ y from S.
13: else
14: Remove all points z ∈ S with the property z ≤ y from S.
15: end if
16: else ▷ Type-II Operation
17: Update the step size s← 2s.
18: Update S ← {xmin, xmin + s, . . . , xmin + ks}, where xmin = minx∈S x and k =
⌈|S|/2⌉ − 1.

19: end if
20: end while ▷ Now S has at most 2 points.
21: For each x ∈ S, use Algorithm A to obtain an estimate to fd−1(x) such that∣∣∣f̂d−1(x)− fd−1(x)

∣∣∣ ≤ ϵ/4

holds with probability at least 1− δ/(2Tmax).
22: Return x∗ ← arg minx∈S f̂d−1(x).

We note that the bound Ncur · ϵ/160 in Line 7 is tighter than the condition in Algorithm
8. This is also because the “algorithm estimators” are usually biased. Therefore, taking the
mean of several algorithm estimators does not necessarily reduce the width of confidence
intervals, and the algorithm needs to generate a new estimator with a better confidence
interval to guarantee the desired PGS criterion (instead of taking the mean of two less
accurate estimators to improve the precision). We prove that Algorithm 13 is sub-Gaussian
with dimension d and estimate its parameter.

Theorem 62. Suppose that Assumptions 5-7 hold, and that Algorithm A is sub-Gaussian
with dimension d − 1 and parameter S. Then, Algorithm 13 is a sub-Gaussian algorithm
with dimension d and parameter MC, where M > 0 is an absolute constant.

If we treat F (x, ξx) as a sub-Gaussian algorithm with dimension 0 and parameter σ2,
then Theorem 62 implies that there exists a sub-Gaussian algorithm with dimension 1 and
parameter σ2M . However, the parameter S of Algorithm 8 is usually smaller than σ2M and
therefore Algorithm 8 is preferred in the one-dimensional case. Using the results of Theorem
62 and the fact that Algorithm 8 is sub-Gaussian with dimension 1, we can inductively
construct sub-Gaussian algorithms with any dimension d.

Theorem 63. Suppose that Assumptions 5-7 hold and Algorithm 8 is sub-Gaussian with di-
mension 1 and parameter S. There exists an [(ϵ, δ)-PGS,MC]-algorithm that is sub-Gaussian
with parameter Md−1S, where M is the constant in Theorem 62. Hence, we have

T (ϵ, δ,MC) = Õ

[
Md

ϵ2
log

(
1

δ

)]
.



CHAPTER 5. STOCHASTIC LOCALIZATION SIMULATION-OPTIMIZATION
METHODS 270

Furthermore, by choosing ϵ = c/2, it holds that

T (δ,MCc) = Õ

[
Md

c2
log

(
1

δ

)]
.

We note that although the upper bound in Theorem 62 is independent of the Lipschitz
constant L and independent of N when δ ≪ 1, the dependence on d is exponential. Hence,
Algorithm 13 is largely theoretical and only suitable for low-dimensional problems, e.g.,
problems with d ≤ 3. On the other hand, if the dimension d is treated as a fixed constant,
Algorithm 13 attains the optimal asymptotic performance under the asymptotic criterion
in [128]. We also mention that Algorithm 13 does not make a full use of the properties of
L♮-convex functions. Actually, Algorithm 13 is an (ϵ, δ)-PGS algorithm for those functions
that are convex in each direction.

Proof of Lemma 45

Proof of Lemma 45. Let k ∈ {2, 3, . . . , N − 1}. By the definition of fd−1(x), there exists
vectors yk−1, yk+1 ∈ [N ]d−1 such that

fd−1(k − 1) = f(yk−1, k − 1), fd−1(k + 1) = f(yk+1, k + 1).

By the L♮-convexity of f(x), we have

fd−1(k − 1) + fd−1(k + 1) = f(yk−1, k − 1) + f(yk+1, k + 1)

≥ f

(⌈
yk−1 + yk+1

2

⌉
, k

)
+ f

(⌊
yk−1 + yk+1

2

⌋
, k

)
≥ 2 min

y∈[N ]d−1
f(y, k) = 2fd−1(k),

which means the discrete mid-point convexity holds at point k. Since we can choose k
arbitrarily, we know function fd−1(x) is convex on [N ].

Proof of Theorem 62

Proof of Theorem 62. We first verify the correctness of Algorithm 13. The algorithm is the
same as Algorithm 8 except the condition for implementing Type-II Operations. Hence, if
we can prove that, when Type-II Operations are implemented, it holds

h ≤ |S| · ϵ/80, (5.27)

then the proof of Theorem 55 can be directly applied to this case. If the confidence interval
is updated at the beginning of current iteration, then we have

h = |S| · ϵ/160 < |S| · ϵ/80.
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Otherwise, if the confidence interval is not updated in the current iteration. Then, we have
|S| > Ncur/2 and therefore

h = Ncur · ϵ/160 < 2|S| · ϵ/160 = |S| · ϵ/80.

Combining the two cases, we have inequality (5.27) and the correctness of Algorithm 13.
Next, we estimate the simulation cost of Algorithm 13. Denote the active sets when we

update the confidence interval as S1, . . . ,Sm, where m ≥ 1 is the number of times when the
confidence interval is updated. Then, we know |S1| = N and |Sm| ≥ 3. By the condition for
updating the confidence interval, it holds

|Sk+1| ≤ |Sk|/2, ∀k ∈ [m− 1],

which implies
|Sk| ≥ 2m−k|Sm| ≥ 3 · 2m−k, ∀k ∈ [m].

Since the algorithm A is sub-Gaussian with parameter S, for each x ∈ Sk, the simulation
cost for generating f̂d−1(x) is at most

2S

h2
log(

2Tmax

δ
) =

2S

160−2|Sk|2ϵ2
log(

2Tmax

δ
) = |Sk|−2 · 51200S

ϵ2
log(

2Tmax

δ
).

Hence, the total simulation cost for the k-th update of confidence intervals is at most

|Sk| · |Sk|−2 · 51200S

ϵ2
log(

2Tmax

δ
) = |Sk|−1 · 51200S

ϵ2
log(

2Tmax

δ
) ≤ 2k−m/3 · 51200S

ϵ2
log(

2Tmax

δ
).

Summing over all iterations, we have the simulation cost of all iterations of Algorithm 13 is
at most
m∑
k=1

2k−m/3 · 51200S

ϵ2
log(

2Tmax

δ
) =

(
2− 21−m

)
· 51200S

3ϵ2
log(

2Tmax

δ
) <

102400S

3ϵ2
log(

2Tmax

δ
).

Now we consider the simulation cost of the last subproblem. Since the algorithm 13 is
sub-Gaussian with parameter S, the simulation cost of the subproblem is at most

2 · 2S

(ϵ/4)2
log(

2Tmax

δ
) =

64S

ϵ2
log(

2Tmax

δ
).

Hence, the total simulation cost of Algorithm 13 is at most

102400S

3ϵ2
log(

2Tmax

δ
) +

64S

ϵ2
log(

2Tmax

δ
) < 17099 · 2S

ϵ2
log(

2Tmax

δ
).

When δ is small enough, we can choose M = 17100 and the asymptotic simulation cost of
Algorithm 13 is at most

2MC

ϵ2
log(

2Tmax

δ
),

which implies that Algorithm 13 is sub-Gaussian with dimension d and parameter MC.
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5.D Deterministic cutting-plane methods

In this section, we give the pseudo-codes of Vaidya’s cutting-plane method [221] and the
random walk-based cutting-plane method [20] for the self-contained purpose.

Vaidya’s Cutting-plane Method

We first give the pseudo-code for Vaidya’s cutting-plane method [221]. We note that ex-
amples of Newton-type methods include the original Newton method, quasi-Newton methods
and the cubic-regularized Newton method.

Algorithm 14 Vaidya’s cutting-plane method

Input: Model X , f(x), optimality guarantee parameter ϵ, Lipschitz constant L, SO oracle
ĝ.

Output: An ϵ-solution x∗ to problem (5.1).
1: Set the initial polytope P ← [1, N ]d.
2: Set the constant ρ← 10−7. ▷ Constant ρ corresponds to ϵ in [221].
3: Set the number of iterations Tmax ← ⌈2d/ρ · log[dNL/(ρϵ)]⌉.
4: Initialize the set of points used to query separation oracles S ← ∅.
5: Initialize the volumetric center z ← (N + 1)/2 · (1, 1, . . . , 1)T .
6: for T = 1, 2, . . . , Tmax do
7: Decide adding or removing a cutting plane by checking σi(z) for i ∈ [T ] [221].
8: if add a cutting plane then
9: Evaluate the SO oracle ĝ at z.
10: if ĝ = 0 then
11: Return z as the approximate solution.
12: end if
13: Add the current point z to S.
14: else if remove a cutting plane then
15: Remove corresponding point z from S.
16: end if
17: Update the approximate volumetric center z by a Newton-type method.
18: end for ▷ There are at most O(d) points in S by Vaidya’s method.
19: Return the solution x̂ to problem minx∈S f(x).

Random Walk-based Cutting-plane Method

Next, we list the pseudo-code for the random walk-based cutting-plane method in [20].
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Algorithm 15 Deterministic random walk-based cutting-plane method

Input: Model X , f(x), optimality guarantee parameter ϵ, Lipschitz constant L, SO oracle
ĝ.

Output: An ϵ-solution x∗ to problem (5.1).
1: Set the initial polytope P ← [1, N ]d.
2: Set the number of iterations Tmax ← O[d log(dLN/ϵ)].
3: Set the number of samples required to calculate the center M ← O(d).
4: Initialize the set of points used to query separation oracles S ← ∅.
5: Initialize the volumetric center z ← (N + 1)/2 · (1, 1, . . . , 1)T .
6: for T = 1, 2, . . . , Tmax do
7: Evaluate the SO oracle ĝ at z.
8: Add the current point z to S.
9: Add the cutting plane using ĝ to P .
10: if P = ∅ then ▷ This step requires solving a linear feasibility problem
11: break
12: end if
13: Uniformly sample M points from the new polytope P via random walk.
14: Update the approximate volumetric center z to the average of all sampled points.
15: end for
16: Return the solution x̂ to problem minx∈S f(x).

5.E Dimension Reduction Algorithm with LLL

Algorithm

In this section, we provide a more detailed description for the dimension reduction algo-
rithm that utilizes the LLL algorithm. More specifically, the LLL algorithm approximately
solves the Shortest Vector Problem (SVP) in lattice to find the hyperplane H in Algorithm
10. Given a lattice Λ and a positive semi-definite matrix Σ that is full-rank on the span of
Λ, the SVP problem is given by

arg min
v∈Λ

vTΣv.

In the statement of the algorithm, we define [x] to be the nearest integer to x ∈ R.

Algorithm 16 Dimension reduction algorithm for the PGS guarantee

Input: Model X , (Y,BY), F (x, ξx), optimality guarantee parameters ϵ and δ, (ϵ, δ)-SO oracle
ĝ.

Output: An (ϵ, δ)-PGS solution x∗ to problem (5.1).
1: Set the initial polytope P ← [1, N ]d.
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2: Set the initial subspace W ← Rd and the initial lattice Λ← Zd.
3: Initialize the set of points used to query separation oracles S ← ∅.
4: for d′ = d, d− 1, . . . , 2 do ▷ The current dimension d′ is gradually reduced.
5: Compute the volumetric center z and covariance matrix Σ by Algorithm 15.
6: repeat Get an approximate solution v of SVP with Λ and Σ. ▷ Use the LLL

algorithm.
7: Take one step of Algorithm 15 with (ϵ/4, δ/4)-SO oracle.

▷ Algorithm 15 decides a suitable cutting plane H.
8: Add the point where the stochastic separation oracle is called to S.
9: Shrink the volume of P using the cutting plane H.
10: Update the volumetric center z and covariance matrix Σ by Algorithm 15.
11: until vTΣv ≤ (10n)−2

12: Find the vector ṽ ∈ Zd such that v is the orthogonal projection of ṽ on hyperplane
−z + W .

▷ The hyperplane −z + W passes through the origin.
13: Construct hyperplane H ← {y ∈ Rd | ⟨y, v⟩ = ⟨z, v − ṽ⟩+ [⟨z, ṽ⟩]}.
14: Project P , W and Λ onto the hyperplane H. ▷ Reduce the dimension by 1.
15: Update the volumetric center z and covariance matrix Σ by Algorithm 15.
16: end for
17: Find an (ϵ/4, δ/4)-PGS solution of the last one-dim problem and add the solution to S.
18: Find the (ϵ/4, δ/4)-PGS solution x̂ of problem minx∈S f(x).
19: Round x̂ to an integral solution by Algorithm 2.

5.F Proofs in Section 5.4

Proof of Lemma 35

Proof of Lemma 35. By the assumption that F (x, ξx)−f(x) is sub-Gaussian with parameter
σ2 for any x, we know that ĝαx(i) − gαx(i) is the difference of two independent sub-Gaussian
random variables and therefore

ĝαx(i) − gαx(i) ∼ subGaussian
(
2σ2
)
, ∀i ∈ [d],

where g is the subgradient of f(x) defined in (4.3). Then, using the properties of sub-
Gaussian random variables, it holds that

ĝnαx(i) − gαx(i) ∼ subGaussian

(
2σ2

n

)
, ∀i ∈ [d].

Recalling that components of ĝn are mutually independent, we know

⟨ĝn − g, y − x⟩ =
∑
i

(ĝnαx(i) − gαx(i)) · (y − x)αx(i) ∼ subGaussian

(
2σ2

n
· ∥y − x∥22

)
.
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Since ∥y − x∥22 ≤ dN2, we know

⟨ĝn − g, y − x⟩ ∼ subGaussian

(
2dN2σ2

n

)
.

By the Hoeffding bound, it holds

|⟨ĝn − g, y − x⟩| ≤

√
4dN2σ2

n
log

(
2

δ

)
with probability at least 1− δ. If we choose

n =

⌈
4dN2σ2

ϵ2
log

(
2

δ

)⌉
≤ 4dN2σ2

ϵ2
log

(
2

δ

)
+ 1,

it follows that

|⟨ĝn − g, y − x⟩| ≤ ϵ. (5.28)

Since f(x) is a convex function and g is a subgradient at point x, we have f(y) ≥ f(x) +
⟨g, y − x⟩ for all y ∈ [1, N ]d. Combining with inequality (5.28) gives

f(y) ≥ f(x) + ⟨ĝn, y − x⟩+ ⟨g − ĝn, y − x⟩ ≥ f(x) + ⟨ĝn, y − x⟩ − ϵ, ∀y ∈ [1, N ]d

holds with probability at least 1− δ. Then, considering the half space H = {y : ⟨ĝn, y−x⟩ ≤
0}, it holds

f(y) ≥ f(x) + ⟨ĝn, y − x⟩ − ϵ ≥ f(x)− ϵ, ∀y ∈ [1, N ]d ∩Hc

with the same probability. Taking the minimum over [1, N ]d∩Hc, it follows that the averaged
stochastic subgradient provides an (ϵ, δ)-SO oracle. Finally, the expected simulation cost of
each oracle evaluation is at most

d · n ≤ 4d2N2σ2

ϵ2
log

(
2

δ

)
+ d = Õ

[
d2N2

ϵ2
log

(
1

δ

)]
.

Proof of Theorem 56

Before we provide the proof of Theorem 56, we show the calculation of the number of
iterations Tmax. With a slight abuse of notations, we use the same notations as [221] only in
this calculation. Before the first iteration, we have the volumetric center as

ω =
N + 1

2
· (1, . . . , 1)T ∈ Rd.
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Therefore, we can calculate that

H(ω) =
8

(N − 1)2
· Id, ρ0 =

d

2
log

(
8

(N − 1)2

)
,

where Id is the d× d identity matrix. By [221], the volume of the polytope at the beginning
of the t-th iteration satisfies

log(πt) ≤ d log

(
2d

ρ

)
− ρ0 − ρ

2
· t = d log

(
2d

ρ

)
− d

2
log

(
8

(N − 1)2

)
− ρ

2
· t

≤ d log

(
2d

ρ

)
+ d log

(
N

2

)
− ρ

2
· t = d log

(
Nd

ρ

)
− ρ

2
· t. (5.29)

The target set consists of points in the set

P (ϵ) :=
{
x ∈ [1, N ]d : ∥x− x∗∥1 ≤ ϵ/L

}
,

where x∗ is the optimal solution of problem (5.1) and L is the Lipschitz constant of f(·). By
a simple analysis, we know that the volume of P (ϵ) satisfies

vol(P (ϵ)) ≥
( ϵ

L

)d
.

Therefore, we can terminate the algorithm when

log(πTmax) ≤ d log
( ϵ

L

)
.

Combining with inequality (5.29), we know

Tmax ≥
2d

ρ
· log

(
NdL

ρϵ

)
is sufficient for ϵ-approximate solutions.

Proof of Theorem 56. We first prove the correctness of Algorithm 9. If ĝ = 0 for some
iteration, the half space H = Rd and the definition of (ϵ/8, δ/4)-SO implies that

f(y) ≥ f(z)− ϵ/8, ∀y ∈ [1, N ]d

holds with probability at least 1 − δ/4, where z is the point that the separation oracle is
called. Hence, we know z is an (ϵ/8, δ/4)-PGS solution and obviously satisfies the (ϵ/2, δ/2)-
PGS guarantee. Then, by Theorem 41, the integral solution after the round process is an
(ϵ, δ)-PGS solution.

In the following of the proof, we assume ĝ ̸= 0 for all iterations. Let x∗ ∈ X be a
minimizer of problem (5.1). We consider the set

Q :=

(
x∗ +

[
− ϵ

8L
,
ϵ

8L

]d)
∩ [1, N ]d.
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We can verify that set Q is not empty and has volume at least (ϵ/(8L))d. Moreover, for any
x ∈ Q, it holds

f(x) ≤ f(x∗) + L∥x− x∗∥∞ ≤ f(x∗) +
ϵ

8
.

By the analysis in [221], the volume of the polytope P is smaller than (ϵ/(8L))d after

Tmax := O

[
d log

(
8dLN

ϵ

)]
iterations. Hence, after Tmax iterations, the volume of P is smaller than the volume of Q
and it must hold Q\P ̸= ∅. Since Q ⊂ [1, N ]d, the constraint 1 ≤ xi ≤ N is not violated for
all i ∈ [d]. Thus, if we choose x ∈ Q\P , there exists a cutting plane −ĝTy ≥ β in P such
that

−ĝTx < β ≤ −ĝT z,
where z is the point that the (ϵ/8, δ/4)-SO oracle ĝ is evaluated and β is the value chosen
by Vaidya’s method. This implies that x is not in the half space

H := {y : ĝTy ≤ ĝT z}.

Then, by the definition of (ϵ/8, δ/4)-SO oracle and the claim that x ∈ [1, N ]d∩Hc, we know

f(x) ≥ f(z)− ϵ/8

holds with probability at least 1− δ/4. On the other hand, the condition x ∈ P leads to

f(x) ≤ f(x∗) + ϵ/8.

Combining the last two inequalities gives that

min
y∈S

f(y) ≤ f(z) ≤ f(x∗) + ϵ/4

holds with probability at least 1 − δ/4. Hence, the (ϵ/4, δ/4)-PGS solution x̂ of problem
miny∈S f(y) satisfies

f(x̂) ≤ f(x∗) + ϵ/2

with probability at least 1− δ/2. Equivalently, the solution x̂ is an (ϵ/2, δ/2)-PGS solution.
Using Theorem 41, the integral solution returned by Algorithm 9 is an (ϵ, δ)-PGS solution.

Now, we estimate the expected simulation cost of Algorithm 9. By Lemma 35, the
simulation cost of each (ϵ/8, δ/4)-SO oracle is at most

O

[
d2N2

ϵ2
log

(
1

δ

)
+ d

]
.

Since at most one separation oracle is evaluated in each iteration, the total simulation cost
of Tmax iterations is at most

O

[(
d2N2

ϵ2
log

(
1

δ

)
+ d

)
· d log

(
8dLN

ϵ

)]
= Õ

[
d3N2

ϵ2
log(

dLN

ϵ
) log

(
1

δ

)]
.
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By the property of Vaidya’s method, there are O(d) cutting planes in the polytope P . Then,
using the same analysis as in Chapter 4, the expected simulation cost of finding an (ϵ/4, δ/4)-
PGS solution of the sub-problem miny∈S f(y) is at most

Õ

[
d2

ϵ2
log

(
1

δ

)]
.

We note that the evaluation of (ϵ/8, δ/4)-SO oracles at points in S provides enough sim-
ulations for the sub-problem and therefore the simulation cost of this part can be avoided.
Finally, the expected simulation cost of the rounding process is bounded by

Õ

[
d

ϵ2
log

(
1

δ

)]
.

Combining the three parts, the total expected simulation cost of Algorithm 9 is at most

Õ

[
d3N2

ϵ2
log(

dLN

ϵ
) log

(
1

δ

)]
.

Proof of Theorem 57

Proof of Theorem 57. We first verify the correctness of Algorithm 10. If the optimal solution
has been removed during the dimension reduction process, we claim that the optimal solu-
tions are removed from the search set by some cutting plane. This is because the dimension
reduction steps will not remove integral points from the current search set [122]. Then, by
the same proof as Theorem 56, it holds

min
x∈S

f(x) ≤ min
x∈X

f(x) + ϵ/4 (5.30)

with probability at least 1 − δ/4. Otherwise if the optimal solution has not been removed
from the search set throughout the dimension reduction process, we know the last one-
dimensional problem contains the optimal solution. Hence, the (ϵ/4, δ/4)-PGS solution to
the one-dimensional problem is also an (ϵ/4, δ/4)-PGS solution to the original problem.
Since the PGS solution is also added to the set S, we also have relation (5.30) holds with
probability at least 1 − δ/4. Then, the (ϵ/4, δ/4)-PGS solution x̄ to problem minx∈S f(x)
satisfies

f(x̄) ≤ min
x∈X

f(x) + ϵ/2

with probability at least 1− δ/2, or equivalently x̄ is an (ϵ/2, δ/2)-PGS solution to problem
(5.1). Using the results of Theorem 41, the solution returned by Algorithm 10 is an (ϵ, δ)-PGS
solution.
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Next, we estimate the expected simulation cost of Algorithm 10. By the results in [122],
(ϵ/4, δ/4)-SO oracles are called at most O[d(d + log(N))] times. Hence, the size of S is
at most O[d(d + log(N))]. By the estimates in Lemma 35, the total simulation cost of the
dimension reduction process is at most

O

[
d3N2(d + log(N))

ϵ2
log

(
1

δ

)
+ d2(d + log(N))

]
= Õ

[
d3N2(d + log(N))

ϵ2
log

(
1

δ

)]
.

Moreover, the one-dimensional convex problem has at most N feasible points and Theorem
55 implies that the expected simulation cost for this problem is at most

Õ

[
1

ϵ2
log

(
1

δ

)]
.

Since the size of S is at most O[d(d + log(N))], the sub-problem for the set S takes at most

O

[
d2(d + log(N))

ϵ2
log

(
1

δ

)
+ d2(d + log(N))

]
= Õ

[
d2(d + log(N))

ϵ2
log

(
1

δ

)]
simulation runs. Finally, Theorem 41 shows that the expected simulation cost of the rounding
process is at most

Õ

[
d

ϵ2
log

(
1

δ

)]
.

In summary, the total expected simulation cost of Algorithm 10 is at most

Õ

[
d3N2(d + log(N))

ϵ2
log

(
1

δ

)]
.

5.G Adaptive Sub-Gaussian Parameter Estimator

In this section, we provide a simple adaptive mean estimator to adaptively estimate the
variance of each choice of decision variable under the assumption that the distribution of the
randomness is Gaussian. The estimator can be used to further enhance our proposed algo-
rithm and we hope the procedure to be useful for other optimization via simulation problems
and algorithms that do not know the variances a priori. Using the adaptive estimator, the
prior knowledge about the upper bound on the variance σ2 is not necessary. In addition, for
the multi-dimensional localization algorithms proposed in this chapter, the simulation cost
for the unknown variance case is at most a constant factor larger than the case when an
upper bound on the variance is known a priori. Therefore, the algorithm using the adaptive
estimator, or the adaptive algorithm, is able to improve the performance of our proposed
algorithms if an estimate of the upper bound σ2 is much larger than the true variance. In
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this case, the original algorithms will implement an unnecessarily large number of simulation
runs to shrink the confidence interval, while the adaptive algorithm is able to automatically
learn the true variance and thus save the computational cost. Another situation where the
adaptive algorithm is useful is when the variance of the system varies a lot at different
choices of decision variable. In this case, the upper bound of the variance is usually attained
at extreme choices of decision variable and is much larger than the variance of a majority
of feasible choices. For example, in queueing systems, the distribution of arrival times usu-
ally follows the Poisson distribution (or the generalizations of Poisson distributions, such as
the jump distribution). The mean and the variance of the Poisson distribution are equal
and, thus, the variance is large at solutions where the mean is large. The queueing system
contains the Poisson process as a part and will also exhibit certain heteroscedasticity in the
variance. Using the upper bound at all points leads to a conservative mean estimator; see
our experiment results in Table 5.G.1.

We now state the proposed adaptive mean estimator. To increase the generality of our
results, we make a weaker assumption than the Gaussian case.

Assumption 12. The distribution of F (x, ξx)− f(x) belongs to the family of sub-Gaussian
distributions Fκ, where κ > 0 is a known constant. For any random variable X whose
distribution belongs to Fκ, it holds that

κσ2
X ≤ Var(X), (5.31)

where σ2
X is the sub-Gaussian parameter of the distribution.

We note that the inverse inequality Var(F (x, ξx)) ≤ σ2
x always holds for all sub-Gaussian

distributions. However, there does not exist a universal constant κ > 0 such that inequality
(5.31) holds for all sub-Gaussian distributions. Therefore, Assumption 12 cannot be implied
by Assumption 5 and additional prior knowledge about the distribution is required for the
estimation of κ. We provide three special cases when the value of κ can be estimated:

1. Suppose that the distribution of F (x, ξx) is Gaussian. In this case, the constant κ = 1,
i.e., we have the relation σ2

x = Var[F (x, ξx)].

2. Suppose that the distribution of F (x, ξx) is the uniform distribution in the interval
[f(x) − ax, f(x) + ax], where the values of f(x) and ax are unknown. In this case,
the variance and the sub-Gaussian parameter of F (x, ξx) − f(x) are a2x/3 and ax,
respectively. Therefore, the parameter κ is equal to 1/3 in this case.

3. Suppose that the distribution of F (x, ξx) is the Bernoulli distribution with the param-
eters (nx, px), where the value of px is unknown. In this case, the variance and the
sub-Gaussian parameter of F (x, ξx) − f(x) are px(1 − px) and 1−2px

2 log[(1−px)/px]
[177], re-

spectively. Therefore, we can show that either the sub-Gaussian parameter is at most
1/2 or the parameter κ is (e − 1)/(2e2 − 4e). The analysis of the Bernoulli case can
be directly extended to a binomial distribution with the parameters (nx, px), where
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an upper bound on the parameter nx is known (for example, we know a priori that
F (x, ξx) belongs to {0, 1, . . . ,M} for some integer M > 0).

Under the above assumption, we propose the adaptive mean estimator.

Definition 17. Let ϵ > 0 be the precision and δ ∈ (0, 1] be the failing probability. We
construct the adaptive mean estimator of f(x) in two steps:

1. Sample 2n independent evaluations F (x, ξi) for i ∈ [2n], where n := ⌈256κ−2 log(2/δ)⌉.
Compute the variance estimator

V̂arx :=
1

n

n∑
i=1

[F (x, ξ2i−1)− F (x, ξ2i)]
2

and the parameter estimator

σ̂2
x :=

1

κ
V̂arx.

2. Let m := max{⌈2ϵ−2σ̂2
x log(2/δ)⌉, 2n} and sample m − 2n independent evaluations

F (x, ξ2n+i) for i ∈ [m− 2n] and compute the empirical mean

F̂ (x; δ) :=
1

m

m∑
i=1

F (x, ξi).

The construction of the adaptive mean estimator has two steps. In the first step, we
estimate an upper bound for the sub-Gaussian parameter, and in the second step, we use
the estimated upper bound to calculate the required number of simulation so that the sub-
Gaussian parameter is less than a known constant. The purpose of the choice of V̂ar is
to utilize the Bernstein bound on the lower tail of sum of squared sub-Gaussian random
variables, i.e., P (

∑n
i=1 Z

2
i ≤ aσ2), where Z1, . . . , Zn are independent sub-Gaussian random

variables with parameter σ2 and a > 0 is a constant. If we use the common estimator
of variance n−1

∑
i(Zi − Z̄)2, where Z̄ is the empirical mean, the random variables Z1 −

Z̄, . . . , Zn − Z̄ are not necessarily independent and the Bernstein bound cannot be applied.
We note that the adaptive mean estimator is an online estimator. To be more concrete, if a
smaller precision ϵ′ < ϵ is required, it suffices to add

⌈2(ϵ′)−2σ̂2
x log(2/δ)⌉ − ⌈2ϵ−2σ̂2

x log(2/δ)⌉

more evaluations into the empirical mean in step 2. The following theorem verifies that
F̂ (·; δ) is an unbiased mean estimator for f(x) and its tail is sub-Gaussian with a small
failing probability.
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Theorem 64. Suppose that Assumption 12 holds. Let δ ∈ (0, 1] be the failing probability.
For all ϵ ≥ 0, the adaptive mean estimator satisfies

P
[
|F̂ (x; δ)− f(x)| ≥ ϵ

]
≤ δ, (5.32)

In addition, the expected simulation cost of the adaptive mean estimator is

O[(κ−2 + κ−1ϵ−2σ2
x) log(1/δ)].

Remark 6. We note that the estimator σ̂2
x in Definition 17 is the sum of squared sub-Gaussian

random variables and may have a heavy tail. Thus, the simulation cost of F̂ (x; δ) may
also have a heavy tail. To deal with this issue, we can utilize the Median-of-Mean (MoM)
estimator [142] of the random variable

Gx := κ−1[F (x, ξ1)− F (x, ξ2)]
2,

where ξ1 and ξ2 are independent. Choosing b := ⌈215κ−2⌉ and K := ⌈2 log(2/δ)⌉ in the MoM
estimator, we define the alternative estimator (σ̂MoM

x )2 by

(σ̂MoM
x )2 := κ−1median

{
1

b

b∑
j=1

Gx,ib+j, i ∈ [K]

}

where Gx,1, . . . , Gx,Kb are independent samples of Gx. The estimator (σ̂MoM
x )2 also has

simulation cost O[κ−2 log(1/δ)]. Using Proposition 12 in [142], we know that the estimator
(σ̂MoM

x )2 satisfies
P
[
σ2
x ≤ (σ̂MoM

x )2 ≤ (2 + κ−1)σ2
x

]
≥ 1− δ/2.

Using this MoM estimator, we are able to bound the simulation cost of F̂ (x; δ) in high
probability.

If the sub-Gaussian parameter σ2
x is known, the Hoeffding bound shows that

O[ϵ−2σ2
x log(1/δ)]

samples are sufficient to generate an estimator for inequality (5.32). Therefore, the relative
efficiency of the adaptive mean estimator is

ϵ−2σ2
x

κ−2 + ϵ−2κ−1σ2
x

=
1

κ−1 + κ−2ϵ2σ−2
x

.

If the precision ϵ is small or the parameter σ2
x is large, the adaptive mean estimator is only

a constant (κ) time less efficient than the known variance case.
Now, we estimate the expected simulation cost of our proposed simulation-optimization

algorithms combined with the adaptive estimator. Intuitively, we need to implement the
first step in Definition 17 once for all simulated choices of decision variable. Suppose that a
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simulation-optimization algorithm simulates N(ϵ, δ) different choices of decision variable in
expectation and the expected simulation cost is T (ϵ, δ). Then, the expected simulation cost
of the adaptive simulation-optimization algorithm is

O
[
κ−1T (ϵ, δ) + κ−2N(ϵ, δ) log (N(ϵ, δ)/δ)

]
.

For the localization algorithms, we usually have T (ϵ, δ) = O[N(ϵ, δ) log (N(ϵ, δ)/δ)]. There-
fore, the expected simulation cost of the localization algorithms is O[T (ϵ, δ)]. More con-
cretely, we have the following corollary.

Corollary 6. Suppose that Assumptions 6-12 hold. The following estimates hold:

• The expected simulation cost of the adaptive TS algorithm (Algorithm 7) is

O

[
(κ−2 + κ−1σ2ϵ−2) log(N) log

(
log(N)

δ

)]
= Õ

[
(κ−2 + κ−1σ2ϵ−2) log(N) log

(
1

δ

)]
.

• The expected simulation cost of the adaptive SUS algorithm (Algorithm 8) is

O

[
(κ−2N + κ−1σ2ϵ−2) log

(
N

δ

)]
= Õ

[
(κ−2N + κ−1σ2ϵ−2) log

(
1

δ

)]
.

• The expected simulation cost of the adaptive stochastic cutting-plane algorithm (Algo-
rithm 9) is

O
[(

κ−2 +
κ−1σ2dN2

ϵ2

)
· d2 log

(
dLN

ϵ

)
log

(
1

δ

)
+ κ−2d2 log

(
dLN

ϵ

)
log

(
d2 log

(
dLN

ϵ

))]
=Õ

[(
κ−2 +

κ−1σ2dN2

ϵ2

)
· d2 log

(
dLN

ϵ

)
log

(
1

δ

)]
.

• The expected simulation cost of the adaptive dimension reduction algorithm (Algorithm
10) is

O
[(

κ−2 +
κ−1σ2dN2

ϵ2

)
d2(d + log(N)) log

(
1

δ

)
+ κ−2d2(d + log(N)) log

(
d2(d + log(N))

) ]
=Õ

[(
κ−2 +

κ−1σ2dN2

ϵ2

)
d2(d + log(N)) log

(
1

δ

)]
.
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We can see that the expected simulation cost of the stochastic cutting-plane method and
the dimension reduction algorithm is only increased by a factor. Therefore, the adaptive
mean estimator is useful in dropping the requirement of known parameter σ for the multi-
dimensional case. For the one-dimensional case, the expected simulation cost of the tri-
section algorithm is also increased by a constant factor. On the other hand, the cost of
the adaptive SUS algorithm is larger than the original version, especially when ϵ−2 ≪ N .
Therefore, in the one-dimensional unknown variance case, we need to consider the size of
ϵ to decide whether to use the TS algorithm or the SUS algorithm, More specifically, if
ϵ = O(

√
logN/N), then the SUS algorithm is preferred; otherwise the TS algorithm is

preferred.
Now, we briefly discuss how to apply the dimension reduction algorithm and the adaptive

sub-Gaussian parameter estimator to the two examples in Section 5.5, and we present the
effects of the adaptive sub-Gaussian parameter estimator on the optimal allocation problem.
We first consider the estimation of the parameter κ. For the synthetic example, the noise
is Gaussian and, thus, we have κ = 1. For the queueing example, the dimension reduction
algorithm will simulate Θ[σ̂2

xdN
2/ϵ2 log(1/δ)] independent samples at each iteration point

x (more rigorously, the neighbouring points of point x) to estimate the expected value
f(x), where σ̂2

x is chosen to be 30
√
N ≫ 1 in the numerical experiments. Define n :=

dN2/ϵ2 log(1/δ) and

G(x, ξ̄x) :=
1

n

n∑
i=1

F (x, ξx,i),

where ξx,1, . . . , ξx,n are independently sampled and ξ̄x := (ξx,1, . . . , ξx,n). Then, the sub-
Gaussian parameter of F (x, ξx)−f(x) should be at most n times larger than the sub-Gaussian
parameter of G(x, ξ̄x) − f(x); the same relation also holds for the variances. Hence, we
can instead estimate the constant κ of random variable G(x, ξ̄x). Using the Central Limit
Theorem (CLT), the asymptotic behavior of the empirical mean of F (x, ξx) is Gaussian.
Indeed, with our choice of n, the distribution of G(x, ξ̄x) is already very close to the Gaussian
distribution. To verify this claim, we plot the Quantile-Quantile plot for 200 independent
samples of G(x0, ξ̄x0) and quantiles of the Gaussian distribution, where x0 = (N+1

2
, N +

1, . . . , d(N+1)
2

). The results of (d,N) = (4, 10), (4, 50), (24, 10) are plotted in Figure 5.G.1
and we can see that the distributions in all cases are very close to the Gaussian distribution.
Therefore, the parameter κ is approximately equal to 1 for G(x, ξ̄x). Hence, we use the first
50n ≤ 30

√
Nn samples of F (x, ξx) to generate 25 pairs of evaluations of G(x, ξ̄x). Here,

the sample size 25 is derived from the estimate that κ−2 log[d2(d + logN)/δ] = log[d2(d +
logN)/δ] ≤ 25. The sub-Gaussian parameter of F (x, ξx)− f(x) is then estimated by

σ̂2
x :=

n

25

25∑
i=1

[
G(x, ξ̄x,2i−1)−G(x, ξ̄x,2i)

]2
.

Finally, since the failing probability in Theorem 64 is bounded by the union bound, we only
need to take max{σ̂2

x−50, 0}n extra samples of F (x, ξx) to generate the mean estimator with
the desired confidence level.
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Figure 5.G.1: The Quantile-Quantile plots of the distribution of G(x, ξ̄x) in the cases when
(d,N) = (4, 10), (4, 50), (24, 10).

We test the dimension reduction algorithm with the adaptive sub-Gaussian parameter
estimator on the optimal allocation example under the same setting as in Section 5.5 and
the results are summarized in Table 5.G.1. From the numerical results, we can see that the
adaptive sub-Gaussian parameter estimator is able to reduce the expected simulation cost in
most cases. This is because the maximum variance is usually attained by decisions around
the global minimum. Thus, during the early stage of the optimization process, the true sub-
Gaussian parameter is relatively small and is overestimated by our estimation σ̂2 = 30

√
N .

Using the adaptive estimator, we are able to estimate the sub-Gaussian parameter and reduce
the expected simulation cost.
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Params. No adaptive estimator With adaptive estimator
d N Cost Obj. Cost Obj.

4 10 2.42e4 2.40e1 1.22e4 2.42e1
4 20 1.40e4 3.44e1 1.06e4 3.42e1
4 30 9.21e3 4.59e1 8.21e3 4.15e1
4 40 6.31e3 5.75e1 4.31e3 5.75e1
4 50 4.03e3 6.67e1 6.03e3 6.70e1

8 10 1.48e5 2.12e1 1.55e4 2.21e1
12 10 6.10e5 2.01e1 4.72e4 2.11e1
16 10 1.59e6 1.91e1 3.65e5 1.92e1
20 10 3.21e6 1.81e1 7.83e5 1.88e1
24 10 8.54e6 1.76e1 1.81e6 1.81e1

Table 5.G.1: Simulation cost of the dimension reduction algorithm with and without the
adaptive variance estimator on the resource allocation problem.

Proof of Theorem 64

We first prove that σ̂ serves as an upper bound on the sub-Gaussian parameter. The
proof is based on the property that the lower tail of a squared sub-Gaussian random variable
is sub-Gaussian.

Lemma 46. Let δ ∈ (0, 1] be the failing probability. The parameter estimator σ̂2 in Definition
17 satisfies

P
(
σ̂2 ≤ σ2

x

)
≤ δ/2.

Proof of Lemma 46. By the definition of V̂ar and σ̂2, we only need to prove that

P

(
1

n

n∑
i=1

[F (x, ξ2i−1)− F (x, ξ2i)]
2 ≤ κσ2

x

)
≤ δ/2. (5.33)

By the independence between ξ2i−1 and ξ2i, the random variable Fi := F (x, ξ2i−1)−F (x, ξ2i)
is zero-mean and sub-Gaussian with parameter 2σ2

x for all i ∈ [n]. Using the fact that
−F 2

i ≤ 0 almost surely and the one-sided Bernstein’s inequality, we have

P

[
1

n

n∑
i=1

(
−F 2

i + E(F 2
i )
)
≥ κσ2

x

]
≤ exp

[
− nκ2σ4

x

2/n
∑n

i=1 E(F 4
i )

]
.
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Since {Fi, i ∈ [n]} are i.i.d. and zero-mean random variables, the above inequality is equiv-
alent to

P

[
1

n

n∑
i=1

F 2
i − Var(F1) ≤ −κσ2

x

]
≤ exp

[
− nκ2σ4

x

2E(F 4
1 )

]
.

Now, recalling the assumption in (5.31) and Var(F1) = 2Var(F (x, ξ1)), we get

P

[
1

n

n∑
i=1

F 2
i − 2κσ2

x ≤ −κσ2
x

]
≤ P

[
1

n

n∑
i=1

F 2
i − Var(F1) ≤ −κσ2

x

]
≤ exp

[
− nκ2σ4

x

2E(F 4
1 )

]
.

(5.34)

To estimate the fourth moment of F1, we calculate that

E(F 4
1 ) =

∫ ∞

0

tP(F 4
1 ≥ t) dt =

∫ ∞

0

4s3P(F 4
1 ≥ s4) ds =

∫ ∞

0

4s3P(|F1| ≥ s) ds

≤
∫ ∞

0

4s3 · 2 exp[−s2/(8σ2
x)] ds = 128σ4

x,

where the second equality is from the substitution t = s4 and the last inequality is from the
fact that F1 is 2σ2

x-sub-Gaussian. Substituting into inequality (5.34), we get

P

[
1

n

n∑
i=1

F 2
i ≤ κσ2

x

]
≤ exp

(
−nκ2σ4

x

256σ4
x

)
= exp

(
−nκ2

256

)
≤ δ

2
,

where the last inequality is from the choice of n. The above inequality is equivalent to
inequality (5.33) and the proof is done.

With the help of Lemma 46, we now prove the theorem.

Proof of Theorem 64. By Lemma 46, we know that the event E := {σ2
x ≤ σ̂2} happens with

probability at least 1 − δ/2. By the Hoeffding’s inequality and the definitions of n and m,
we have

P
[
|F̂ (x; δ)− f(x)| ≥ ϵ, E | σ̂2

]
≤ exp

[
−mϵ2

2σ2
x

]
≤ exp

[
−2ϵ−2σ̂2 · log(2/δ)ϵ2

2σ2
x

]
≤ exp

[
− log(2/δ)ϵ2

]
=

δ

2
.

Taking expectation over σ̂2 leads to

P
[
|F̂ (x; δ)− f(x)| ≥ ϵ, E

]
≤ δ

2
.

Therefore, we get

P
[
|F̂ (x; δ)− f(x)| ≥ ϵ

]
= P

[
|F̂ (x; δ)− f(x)| ≥ ϵ, E

]
+ P

[
|F̂ (x; δ)− f(x)| ≥ ϵ, Ec

]
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≤ P
[
|F̂ (x; δ)− f(x)| ≥ ϵ, E

]
+ P [Ec] ≤ δ,

where Ec is the complementary set of E .
The estimation of the expected simulation cost is from the fact that V̂ar is an unbiased

estimator of Var[f(x, ξx)]. Therefore, we get the bound

E[m] ≤ max{⌈2ϵ−2E(σ̂2) log(2/δ)⌉, ⌈512κ−2 log(2/δ)⌉} ≤ ⌈(512κ−2 + 2κ−1ϵ−2σ2
x) log(2/δ)⌉.

5.H Additional Numerical Experiments

Comparison to Industrial Strength COMPASS

In this subsection, we compare the dimension reduction algorithm (Algorithm 10), the
subgradient descent algorithm (Algorithm 3), and the Industrial Strength COMPASS (ISC)
algorithm [236] on multi-dimensional optimization via simulation problems. For the di-
mension reduction algorithm and the subgradient descent algorithm, we use the results in
Section 5.5. For the ISC algorithm, our experiments are based on the source codes provided
by the authors of [236]. We implemented the ISC codes on a C++17 compiler and used
the LpSolve package with version 5.5.0.3. Since the ISC algorithm does not support the
PGS criterion, we empirically set the value of the CLEANUP DELTA parameter so that the
ISC algorithm finds a comparable solution to other algorithms. To be more concrete, we
choose CLEANUP DELTA to be d/10 in the separable convex function minimization prob-
lem and N/100 in the optimal allocation problem. Other parameters are set to their default
values. We test the performance of the ISC algorithm on 100 independent experiments for
the separable convex function minimization and 5 independent experiments for the optimal
allocation problem.

The results are summarized in Tables 5.H.1 and 5.H.2. For the separable convex function
minimization problem, the coverage rate in all settings is equal to 100%, and the proposed
dimension reduction methods is always better than the ISC algorithm. For the optimal
allocation problem, we can see that the proposed dimension reduction methods is better when
the scale is large (e.g., when N ≥ 20) or when the dimension is large (e.g., when d ≥ 20). This
is consistent with the main contribution of this chapter, i.e., efficient simulation-optimization
algorithms for large-scale problems. However, the ISC algorithm achieves better simulation
costs for high-dimensional problems with a relatively small scale or dimension. There are
two possible reasons for this phenomenon.

First, the ISC algorithm only finds “locally optimal solutions”. Specifically, in [236], a
solution x ∈ X is called a locally optimal solution if f(y) ≥ f(x) for all y ∈ X such that
∥y−x∥1 ≤ 1. For L♮-convex functions, a locally optimal solution is not necessarily a globally
optimal solution. Instead, a solution x ∈ X is a global optimum of a L♮-convex function
if and only if f(y) ≥ f(x) for all y ∈ X such that ∥y − x∥∞ ≤ 1. Therefore, to check the
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Params. SubGD Dim Reduction ISC R-SPLINE
d N Cost Cost Cost Cost

2 50 1.08e3 1.56e2 8.73e2 4.50e1
2 500 2.54e4 2.08e2 9.00e2 9.00e1
2 5000 3.97e5 4.66e2 1.05e3 1.84e2
6 50 5.00e3 4.05e2 4.06e3 1.60e2
6 500 4.75e4 6.45e2 8.86e3 3.20e2
6 5000 2.72e6 8.25e2 1.20e4 8.25e2
10 50 8.46e3 8.34e2 3.69e4 3.32e2
10 500 6.32e4 1.48e3 6.71e4 8.88e2
10 5000 7.76e6 2.02e3 1.08e5 1.62e3
15 50 1.23e4 2.18e3 2.19e5 8.72e2
15 500 2.83e5 3.19e3 4.26e5 1.94e3
15 5000 1.85e7 4.85e3 1.16e6 3.40e3

Table 5.H.1: Simulation cost of different algorithms on separable convex functions.

global optimality of a solution, the algorithm needs to estimate the objective values of 3d−1
neighbouring points. This requires considerably more computational efforts compared to the
ISC algorithm that only checks 2d neighbouring points to verify the local optimality. Even in
the case when d = 8, this will lead to 400 times more simulations. For the optimal allocation
example, the ISC algorithm simulates the neighbouring points of each potential solution at
least 20 times to guarantee the targeted confidence level of statistical tests, which will lead
to 1.31× 105 extra simulations for each potential solution. On the other hand, our proposed
algorithms are able to find globally optimal solutions for L♮-convex functions and, thus, our
proposed algorithms provides a stronger theoretical guarantee.

Second, the implementation of the ISC algorithm is highly optimized to reduce the sim-
ulation costs in large-scale industrial applications. As a comparison, our implementation of
the algorithms proposed in this chapter are not optimized to achieve the best performance,
since the purpose of our codes is to compare the performance of our algorithms and verify
our theoretical analysis. We believe that the simulation costs of our proposed algorithms can
be further reduced by using an improved implementation. For example, we can use different
estimated variances at different solutions to reduce the simulation costs (since the simulation
costs can be lower at solutions whose simulation output has a lower variance).

In summary, the ISC algorithm achieves a better empirical performance on some experi-
ments but provides a weaker theoretical guarantee. Our proposed algorithms, on the other
hand, may be inferior in certain cases but have a better performance in the large-scale case
and provide a stronger theoretical guarantee.
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Params. SubGD Dim Reduction ISC R-SPLINE
d N Cost Obj. Cost Obj. Cost Obj. Cost Obj.

4 10 3.06e5 2.13e1 2.42e4 2.40e1 1.01e5 2.18e1 1.21e4 2.23e1
4 20 1.08e5 3.41e1 1.40e4 3.44e1 6.47e4 3.41e1 2.80e4 3.43e1
4 30 7.79e4 4.59e1 9.21e3 4.59e1 7.27e4 4.79e1 1.66e4 4.71e1
4 40 5.06e4 5.73e1 6.31e3 5.75e1 8.95e4 5.63e1 1.07e4 5.73e1
4 50 4.50e4 6.91e1 4.03e3 6.67e1 9.79e4 6.66e1 6.86e3 6.75e1

8 10 1.20e6 2.01e1 1.48e5 2.12e1 1.54e5 2.13e1 5.33e5 2.17e1
12 10 2.69e6 1.90e1 6.10e5 2.01e1 3.02e5 2.09e1 1.71e6 5.84e1
16 10 4.78e6 1.83e1 1.59e6 1.91e1 1.16e6 1.88e1 4.29e6 7.13e1
20 10 7.45e6 1.78e1 3.21e6 1.81e1 6.51e6 1.78e1 9.95e6 8.05e1
24 10 1.43e7 1.71e1 8.54e6 1.76e1 2.42e7 2.67e1 2.48e7 8.42e1

Table 5.H.2: Simulation cost and objective value of different algorithms on the resource
allocation problem.

Comparison to R-SPLINE

In this subsection, we compare the dimension reduction algorithm (Algorithm 10), the
subgradient descent algorithm (Algorithm 3), and the R-SPLINE algorithm [226]. For the
R-SPLINE algorithm, we choose the maximal number of retrospective iterations to be the
maximal budget, the initial sample size to be 10 and the initial spline budget to be 10. Other
parameters are chosen to be their default values. For the separable convex function opti-
mization problem, we require that the returned solutions of all experiments have objective
function values at most d; for the optimal allocation problem, we require that the average
of the estimated objective function value of the returned solution not be larger than that of
the dimension reduction algorithm. Since the R-SPLINE algorithm only supports the fixed-
budget optimization via simulation, we set the budget of the R-SPLINE algorithm to be the
minimum multiple of ⌊0.1B⌋ such that the aforementioned condition is satisfied, where B
is the average simulation cost of the dimension reduction algorithm in this setting. In addi-
tion, we cap the maximum budget at 5B. We implement 100 independent experiments for
the separable convex function minimization and 20 independent experiments for the optimal
allocation problem. The R-SPLINE codes are implemented using MATLAB 2020a.

The results are summarized in Tables 5.H.1 and 5.H.2. For the separable convex function
minimization problem, the R-SPLINE algorithm achieves the best performance. Similar to
the ISC algorithm, this is because the R-SPLINE algorithm only checks the local optimality
by estimating the objective function values of 2d neighbouring points. In the separable convex
function minimization problem, the locally optimal solution happens to be the globally
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optimal solution and, thus, the R-SPLINE algorithm can achieve the best performance. We
note that the growth of the simulation cost of the R-SPLINE algorithm is faster than that
of the dimension reduction algorithm when the scale N becomes larger. Hence, we expect
that the dimension reduction algorithm will be better when the problem scale is very large.

For the optimal allocation problem, the R-SPLINE algorithm has a difficulty in reaching
a global solution when the dimension is larger than 4. This is also because the R-SPLINE
only checks the local optimality condition and may get stuck at locally optimal solutions
that are not global optimal. By comparing with the performance of the dimension reduc-
tion algorithm, we can see that our proposed algorithms can provide a stronger theoretical
guarantee for L♮-convex functions.

Numerical Results with Small Precision Parameter

In this subsection, we consider the optimal allocation problem and compare the simulation
cost of different algorithms with a smaller precision parameter ϵ. In Section 5.5, we choose
ϵ to be N/2, which is at least 20% of the optimal objective function value. To show the
performance of algorithms when the precision parameter is small, we consider the case when
ϵ = N/10 + 1. This choice of the precision parameter is approximately 10% of the optimal
objective function value. With this smaller choice of ϵ and dimension d ≥ 8, the simulation
cost may be prohibitively large (longer than 24 hours) on a personal computer. Therefore,
we focus on the case when d = 4 and N = 10, . . . , 50. The results are summarized in Table
5.H.3. Compared with the results of large precision parameter in Table 5.5.2, we can see
that the algorithms perform similarly and the dimension reduction algorithm also achieves
the best performance. With a smaller precision parameter, the objective function value of
the solution returned by different algorithms is closer to each other compared with the large
precision parameter case. This indicates that our algorithms may have achieved a much
better optimality gap than ϵ.

Search Methods Localization Methods (this chapter)
Params. SubGD Vaidya’s Random Walk Dim Reduction
d N Cost Obj. Cost Obj. Cost Obj. Cost Obj.

4 10 5.61e6 2.13e1 7.41e5 2.18e1 9.88e5 2.13e1 1.93e5 2.25e1
4 20 3.53e6 3.42e1 4.67e5 3.41e1 5.27e5 3.41e1 1.53e5 3.42e1
4 30 2.43e6 4.52e1 3.48e5 4.59e1 3.81e5 4.53e1 1.24e5 4.51e1
4 40 1.80e6 5.62e1 2.17e5 5.68e1 2.76e5 5.63e1 1.06e5 5.65e1
4 50 1.66e6 6.67e1 1.53e5 6.74e1 1.68e5 6.81e1 9.81e4 6.66e1

Table 5.H.3: Simulation cost and objective value on the allocation problem with smaller
precision parameter.
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Chapter 6

Uniqueness of Power Flow Solutions
Using Graph-theoretic Notions

6.1 Introduction

The AC power flow problem plays a crucial role in various aspects of power systems, e.g.,
the daily operations in contingency analysis and security-constrained dispatch of electricity
markets. In essence, the goal of the AC power flow problem is to solve for the complex
voltage of each bus that determines the power system set-point. However, the nonlinear
nature of the AC power flow equations makes it difficult to analytically solve the equations,
if not impossible. Moreover, the uniqueness of the AC power flow solution is not guaranteed,
even when either voltage magnitudes or phase angle differences are limited to the “physically
realizable” regime [184, 51, 99, 175]. Hence, unexpected operating points may appear for
some system conditions and can jeopardize the normal operations of power systems. Con-
ditions that ensure the existence of a unique “physically realizable” power flow solution are
important but not fully understood.

For a special case of the AC power flow problem, the uniqueness property of the P -Θ
power flow problem [113] has been studied in [184]. In the P -Θ power flow problem, the
magnitude of the complex voltage at each node is given and the objective is to find a set of
voltage phases such that the power flow equations are satisfied. The “physically realizable”
constraint requires that the angular difference across every line lies within the stability limit
of π/2 for lossless networks. Sufficient conditions (on the angular differences) that depend
on the topological properties of the power network are established in [184]. Specifically,
the authors proposed the notion of monotone regime and an upper bound on the angular
differences based on the power network topology, which together can ensure the uniqueness
of solutions. However, due to the nonlinear property of sinusoidal functions and the low-rank
structure of angular differences, it is unclear to what extent the sufficient conditions given
in [184] are necessary.

The goal of this chapter is to provide more general necessary and sufficient conditions
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for the uniqueness, using the notion of maximal eye defined in Section 6.3 and the notion
of maximal girth introduced in [184]. The paper also designs algorithms to compute these
graph-theoretic parameters.

Main results

In this chapter, we extend the uniqueness theory of P -Θ power flow problem proposed
in [184]. We focus on the uniqueness of the power flow problem in a stronger sense and derive
general necessary and sufficient conditions that depend only on the choice of the monotone
regime and network topology. Under certain circumstances, the general conditions can be
simplified to obtain tighter sufficient conditions. In addition, some algorithms for computing
the maximal eye and the maximal girth of undirected graphs are proposed. A reduction
method is designed to reduce the size of graphs and accelerate the computation process.
More specifically, the contributions of this chapter are three-fold:

• We extend the uniqueness theory of the P -Θ problem to a stronger sense. The new
uniqueness property is named strong uniqueness. and a constant called the maximal
eye is developed to classify all network topologies that ensure the strong uniqueness.
Numerical results show that the maximal eye gives more reasonable conditions com-
pared to its counterpart for the weak uniqueness defined in [184] and is known as the
maximal girth.

• We propose general necessary and sufficient conditions for both the strong and the
weak uniqueness. The conditions are derived by Farka’s Lemma, which are associated
with the dual to the negation of the uniqueness problem. Sufficient conditions for the
strong and the weak uniqueness are derived directly from the general conditions. In
the special case when the power network is a single cycle or is lossless, necessary and
sufficient conditions that do not contain sinusoidal functions are derived.

• Finally, we develop a reduction method, named the ISPR method, that can accelerate
the computation of the maximal eye and the maximal girth. The ISPR method is
proved to reduce 2-vertex-connected Series-Parallel graphs to a single line, independent
of the choice of the slack bus. The relationship between the maximal eye (girth) of
graphs before and after the reduction is unveiled. When applying the ISPR method
to real-world examples, the maximal eye is usually not changed over the reduction
process, while the maximal girth is computed during the reduction process. We also
design search-based algorithms for computing the maximal eye and the maximal girth,
which are able to compute the exact value for graphs with up to 100 nodes before
reduction in a reasonable amount of time.

In summary, this chapter constitutes a substantial generalization of the uniqueness theory
in [184]. A stronger notion of uniqueness is proposed and general necessary and sufficient
conditions are proposed. These two combined provides a tool for analyzing large-scale power
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networks and enables a deeper understanding of the uniqueness of the P -Θ power flow
problem.

Related Work

The study of solutions to the power flow problem has a long history dating back to [134],
which gave an example showing the general non-uniqueness of solutions for the power flow
problem. Then, the number of solutions of the power flow problem was estimated in [13],
which also characterized the stability region for the power flow problem. However, these
early works only considered lossless transmission networks consisting of PV buses.

The fully coupled AC power flow equations are extremely difficult to analyze and the
theoretical results that can be obtained are often highly conservative or complicated to
interpret. One approach to overcoming this difficulty is to study two decoupled power flow
problems (the P -Θ problem and the Q-V problem) as in [113]. The intuition comes from the
fact that the sensitivity of real power with respect to the change in angle differences outweighs
the sensitivity with respect to the change in voltage magnitudes when angle differences are
small and voltage magnitudes are close to 1 p.u. (the opposite relationship holds for reactive
power). This simplification should be differentiated from the DC approximations, which
greatly simplifies the AC power flow equations by linearizing the equations and discarding
all of the non-linearities in the problem. Note that the P-Theta problem is still highly
nonlinear. Under the assumption that resistive losses are negligible, conditions for the
existence and uniqueness of both real power-phase (P -Θ) problem, and reactive power-
voltage (Q-V ) problem were derived in [214, 113].

In another line of work, the topology structure of the power network was also considered
to derive stronger conditions for the uniqueness. The number of solutions was estimated for
radial networks in [51, 165], and later for general networks. Moreover, a more recent work [64]
gave several algorithms to compute the unique high-voltage solution. [59] established upper
bounds on the number of linearly stable fixed point solutions for locally coupled Kuramoto
models, which can be applied towards a lossless power flow problem. In this chapter, we
consider the P -Θ problem [113] for general lossy power networks and utilize the topology
information. We refer to [184] for a more detailed review of the existing literature.

The fixed-point technique is often used for proving the existence and uniqueness of equa-
tions. For the power flow problem, the fixed-point technique was first utilized in [234] and
was further developed by several works [195, 225, 202, 203, 19, 55]. Another more recently
applied approach is to treat the P -Θ power flow problem as a rank-1 matrix sensing problem
and solve its convex relaxation counterpart [162, 251]. The work [65] also considered the
domain of voltages over which the power flow operator is monotone. However, the relation
between the rank-1-constrained problem and its convexification is not clear for general power
networks.

The work [116] presented a unifying framework for network problems on the n-torus. The
framework applies to the AC power flow problem when the power networks are lossless. The
idea of considering the regime when the power flow on each line is monotone was extended
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to lossy power networks in [184]. The regime where the power flow on a line increases
monotonically with the angle difference across the line – called the monotone regime in this
chapter – was proposed. In [184], it was also shown that the solution of P -Θ problem is
unique under the assumption that angle differences across the lines are bounded by some
limit related to the maximal girth of the network, which is defined in [185]. We refer the
reader to the survey paper [62] for an overview.

The existing algorithms in the literature cannot be directly used to compute maximal
eye (introduced in Section 6.3) or maximal girth. A related problem is computing the max-
imal chordless cycle as an upper bound to these parameters. The computation of maximal
chordless cycles was proved to be NP-complete in [84]. Efficient algorithms for enumerating
chordless cycles were proposed in [61, 220] and both take linear time to enumerate a sin-
gle chordless cycle. The algorithms for enumerating maximal chordless cycles can be easily
modified to compute the minimal chordless cycle containing a given edge. Series-parallel
reduction method was introduced as an alternative definition of Generalized Series-Parallel
(GSP) graphs in [133]. Under the assumption that the slack bus is the last bus to be reduced,
all GSP graphs can be reduced to a single line [184]. However, whether the series-parallel
reduction method can still reduce GSP graphs without the assumption on the slack bus is
not known. In this chapter, we show that 2-vertex-connected1 Series-Parallel graphs can be
reduced to a single line without the assumption.

Organization

The remainder of this chapter is organized as follows. Section 6.2 gives the necessary
background knowledge about the P -Θ power flow problem and the existing uniqueness the-
ory for the P -Θ problem. The notions of strong uniqueness and weak uniqueness are also
introduced. In Section 6.3, we propose the general analysis framework of the uniqueness the-
ory that only depends on the monotone regime and the topological structure. We show that
necessary and sufficient conditions can be fully characterized by a feasibility problem, which
has fewer variables than the P -Θ problem. Sufficient conditions for uniqueness are derived
and it is shown that the uniqueness conditions in [184] follow as a natural corollary. Then,
we consider three special cases in Section 6.4 by assuming specific topological structures for
the underlying graph or a specific monotone regime. In these special cases, the necessary
and sufficient conditions are simplified and the intricate sinusoidal functions are avoided in
the verification of those conditions. Furthermore, the sufficient conditions proposed in Sec-
tion 6.3 are proved to be tight when no information beyond the monotone regime and the
topological structure is available. Finally, a reduction method and search-based algorithms
for computing the maximal girth and maximal eye are given in Section 6.5. We provide
numerical illustrations in Section 6.6. Proofs are delineated in the appendix.

1A graph is called 2-vertex-connected if it is connected after the deletion of any single vertex.
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6.2 Preliminaries

P -Θ Problem Formulation

As mentioned in the introduction, we focus our attention to the P -Θ problem, which
describes the relationship between the voltage phasor angles and the real power injections.
We first make the following assumptions.

Assumption 13. The slack bus and the reference bus are bus 1. All other buses except the
slack bus are PV buses.

Recall that the following injection operator describes the P -Θ problem, where the shunt
elements are assumed to be purely reactive.

Definition 18. Given G = (V,E, Y ), define P̂k : {0} × Rn−1 → R as the map from the
vector of phasor angles to the real power injection at bus k:

P̂k(Θ) := ℜ{(Y v)Hk vk}, ∀Θ ∈ {0} × Rn−1.

Moreover, define the injection operator P̂ : {0} × Rn−1 → Rn−1 as

P̂ (Θ) := [P̂2(Θ), . . . , P̂n(Θ)].

The goal of the P -Θ problem is, given P ∈ Rn−1, to find the voltage phasor angles
Θ ∈ {0} × Rn−1 such that

P̂ (Θ) = P. (6.1)

Monotone Regime and Allowable Sets

We are interested in the uniqueness property of the solution to problem (6.1). In general,
the number of solutions to problem (6.1) is hard to estimate because of the periodic behavior
of sinusoidal functions, especially when there is no symmetrical structure in the power net-
work. Thus, we limit the phase angle vectors to the monotone regime, within which the real
power flow from bus k to bus ℓ increases monotonically with respect to the phase difference
Θkℓ for each line {k, ℓ} ∈ E. The monotone regime is defined in [184] as follows.

Definition 19. The monotone regime of a power network (V,E, Y ) is the set

{Θ ∈ Rn | Θ1 = 0,Θkℓ ∈ [−γkℓ, γkℓ],∀{k, ℓ} ∈ E},

where γkℓ := tan−1(Bkℓ/Gkℓ) ∈ [0, π/2] for all {k, ℓ} ∈ E.
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Due to the periodicity of sinusoidal functions, the solution to the P -Θ problem is trivially
non-unique if there is no constraint on the phase angles. In this chapter, we consider the
case when the voltage phase angles are within the monotone regime. It is noted in [206]
that γkℓ is generally larger than 2π/5 while Θkℓ is rarely larger than π/6 due to stability
and thermal limits. The constraint that the angular difference across every line lies within
the stability limit of [−γkℓ, γkℓ] is equivalent to the steady-state stability limit if each line
is considered individually. As shown in [184], the phase angle vectors of leaf buses except
the slack bus are uniquely determined by the phase angle vectors of non-leaf buses in the
monotone regime. Hence, we assume that all vertices in the underlying graph except vertex
1 have degree at least 2.

Assumption 14. The graph (V,E) is connected. All vertices except vertex 1 in the graph
(V,E) have degree at least 2.

We focus on finding a neighborhood of a solution in which there is no other solution to
the P -Θ problem. The neighborhood is defined as follows.

Definition 20. The set of allowable perturbations is defined as

W := {ωkℓ ≥ 0 | ∀{k, ℓ} ∈ E}.

Suppose that Θ is a solution to the P -Θ problem in the monotone regime. Then, the set of
neighboring phases is defined as

N (G,Θ,W) := {Θ̃ ∈ Rn | Θ̃1 = 0,

Θ̃kℓ ∈ [−γkℓ, γkℓ] ∩ [Θkℓ − ωkℓ,Θkℓ + ωkℓ],∀{k, ℓ} ∈ E}.

We note that Θ̃kℓ refers to the value of Θ̃k − Θ̃ℓ modulo 2π.

Without loss of generality, we assume that ωkℓ ≤ 2γkℓ for all {k, ℓ} ∈ E, since the width
of the monotone regime is 2γkℓ, setting ωkℓ > 2γkℓ will not enlarge the set of neighboring
phases compared to setting ωkℓ = 2γkℓ.

Assumption 15. The perturbation width satisfies ωkℓ ≤ 2γkℓ for all {k, ℓ} ∈ E.

It is desirable to analyze the uniqueness of the solution in the neighborhood N (G,Θ,W).
In [184], the authors considered the set of allowable angles, which is defined as

{Θ̃ ∈ Rn|Θ̃1 = 0, Θ̃kℓ ∈ [−ωkℓ/2, ωkℓ/2],∀{k, ℓ} ∈ E}.

Note that the set of allowable angles is a special case of the set of allowable perturbations,
since any two phase vectors in the set of allowable angles are in the corresponding sets of
neighboring phases of each other. In this chapter, we use the set of allowable perturbations
but the sufficient conditions we derive can be naturally applied to using the set of allowable
angles.



CHAPTER 6. UNIQUENESS OF POWER FLOW SOLUTIONS USING
GRAPH-THEORETIC NOTIONS 299

Notions of Weak and Strong Uniqueness

Informally, we say that the P -Θ problem (6.1) has a unique solution Θ under the allowable
perturbation setW , if there exists at most one solution in the set N (G,Θ,W). We give two
different definitions of uniqueness. Firstly, we introduce the uniqueness in the weak sense.

Definition 21. We say that a solution Θ to the P -Θ problem (6.1) is weakly unique with
the given set of allowable perturbationsW , if for any solution Θ̃ ∈ N (G,Θ,W), there exists
a line {k, ℓ} ∈ E such that Θkℓ = Θ̃kℓ.

In other words, two solutions are different according to Definition 21 if and only if they
have different phase differences for every line. Next, we extend the definition of weak unique-
ness to a stronger sense that is also more useful and usual.

Definition 22. We say that a solution Θ to the P -Θ problem (6.1) is strongly unique
with the given set of allowable perturbations W , if for any solution Θ̃ ∈ N (G,Θ,W) and
any {k, ℓ} ∈ E, we have Θkℓ = Θ̃kℓ.

In other words, two solutions are different according to Definition 22 if and only if the
phase differences are different on at least one line.

6.3 Uniqueness Theory for General Graphs

In this section, we derive necessary and sufficient conditions on the set of allowable
perturbationsW such that the solution to problem (6.1) becomes strongly or weakly unique.
In particular, we aim to analyze the impact of the power system topology and the size of the
monotone regime on the uniqueness property. Namely, given the topological structure and
the monotone regime, we aim to find conditions on W such that the uniqueness of solutions
holds. To achieve this, we need to derive conditions under which all power networks with
the same topological structure and monotone regime have unique solutions. To formalize the
problem, we fix the underlying graph (V,E) and the angles specifying the monotone regime
Γ := {γkℓ ∈ (0, π/2] | {k, ℓ} ∈ E}. We define the set of possible admittances with the same
monotone regime as

S(γ) := {(C cos(γ), C sin(γ)) | C > 0}, , ∀γ ∈ [0, π/2].

The set of complex admittance matrices with the same monotone regime is defined as

Y(V,E,Γ) := {Y is an admittance matrix |
Ykℓ = Gkℓ − jBkℓ, (Gkℓ, Bkℓ) ∈ S(γkℓ), {k, ℓ} ∈ E}.

Then, we define the set of power networks with the same topological structure and same
monotone regime as

G(V,E,Γ) := {G = (V,E, Y ) | Y ∈ Y(V,E,Γ)},
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or simply G if there is no confusion about V, E and Γ. Hence, the problem under study in
this chapter can be stated as follows:

• What are the necessary conditions and sufficient conditions on the allowable perturba-
tions W such that the solution to problem (6.1) is unique within the set of allowable
perturbations for any power network G ∈ G?

The necessary conditions and the sufficient conditions provide two sides on the uniqueness
theory. The sufficient conditions give a guarantee for the uniqueness of solutions for any
single power network with the given topological structure and monotone regime, while the
necessary conditions bound the optimal conditions we can derive only using the knowledge
of topological structure and monotone regime. We first give an equivalent characterization
of strong and weak uniqueness.

Lemma 47. (Necessary and Sufficient Conditions for Uniqueness) Given the set of power
networks G(V,E,Γ) and the set of allowable perturbations W, the following two statements
are equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power injection P ∈ R|V|−1 such that
problem (6.1) is feasible in the monotone regime, the solution to problem (6.1) in the
monotone regime is strongly unique in N (G,Θ,W).

2) For any power network G ∈ G(V,E,Γ) and any two phase angle vectors Θ1,Θ2 in the
monotone regime with the property Θ2 ∈ N (G,Θ1,W), there exists a vector y ∈ R|V|

such that y1 = 0 and

sin(γkℓ + Θ1
kℓ/2 + Θ2

kℓ/2) · yk (6.2)

≥ sin(γkℓ −Θ1
kℓ/2−Θ2

kℓ/2) · yℓ,
∀{k, ℓ} ∈ E s. t. Θ1

kℓ −Θ2
kℓ > 0,

where at least one of the inequalities above is strict.

The equivalence between statements 1 and 2 still holds true even after replacing strong unique-
ness with weak uniqueness in statement 1, provided that the phase angle vector Θ2 in state-
ment 2 is required to satisfy Θ1

kℓ ̸= Θ2
kℓ for all {k, ℓ} ∈ E.

Intuitively, the above lemma studies the uniqueness of solutions through its dual form.
The existence of multiple solutions can be formulated as a linear feasibility problem. Then,
the strong duality of linear programming allows us to equivalently consider the dual of the
feasibility problem. The dual form is preferred since the dual problem has fewer variables
and its solution is easier to construct. We then derive several sufficient conditions using
Lemma 47. We first show that we only need to verify statement 2 in Lemma 47 for two
phase angle vectors Θ1 and Θ2 that induce a (weakly) feasible orientation, which we will
define below. We define the orientation induced by two phase angle vectors.
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Definition 23. Suppose that Θ1 and Θ2 are two phase angle vectors of the graph. Then,
we define the induced orientation of ∆ := Θ1 −Θ2 as Akℓ := sign(∆kℓ) for all {k, ℓ} ∈ E,
where the sign function sign(·) is defined as

sign(x) :=


+1 if x > 0

0 if x = 0

−1 if x < 0

.

In the definition of induced orientations, we assign one of the three directions +1,−1, 0
to each edge. The first two directions are “normal” directions for directed graphs. An edge
with direction +1 or −1 is called a normal edge. Edges with direction 0 are viewed as an
undirected edge and reachable in both directions. In addition, edges with direction 0 are
not considered when computing the in-degree and the out-degree. We only need to consider
orientations induced by two different phase angle vectors Θ1,Θ2 such that P̂ (Θ1) = P̂ (Θ2).
However, a precise characterization of those orientations is difficult and we consider a larger
set that contains those orientations.

Definition 24. An orientation assigned to an undirected graph is called a feasible orien-
tation if all edges are normal and each vertex except vertex 1 has nonzero in-degree and
out-degree.

According to the analysis in [184], the induced orientation of two solutions Θ1 and Θ2

in the monotone regime that are different according to Definition 21 must be a feasible
orientation. Then, we give the definition of weakly feasible orientations as the counterpart
for strong uniqueness.

Definition 25. An orientation assigned to an undirected graph is called a weakly feasible
orientation if two properties are satisfied: (i) there exists at least one normal edge, and
(ii) the in-degree and the out-degree of any vertex except vertex 1 are both zero or both
nonzero.

Edges with direction 0 are lines with the same angular difference for the two phase angle
vectors Θ1 and Θ2. By the same discussion as in Section 6.2, we can view a weakly feasible
orientation as a feasible orientation for the sub-graph that only has normal edges. The
next lemma shows that we only need to consider weakly feasible orientations or feasible
orientations when checking the conditions in statement 2 of Lemma 47.

Lemma 48. If two different phase angle vectors Θ1 − Θ2 in the monotone regime satisfy
Θ2 ∈ N (G,Θ1,W) and the induced orientation of Θ1 −Θ2 is not weakly feasible, then there
exists a vector y ∈ R|V| such that statement 2 of Lemma 47 holds. The result holds true for
the weak uniqueness property as well, provided that the induced orientation of Θ1,Θ2 is not
a feasible orientation.

Combining Lemmas 47 and 48, we obtain sufficient conditions for strong uniqueness and
weak uniqueness.
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Theorem 65. (Sufficient Conditions for Uniqueness) Given the set of allowable perturbations
W, suppose that for any two different phase angle vectors Θ1 and Θ2 in the monotone regime
satisfying Θ2 ∈ N (G,Θ1,W), the induced orientation of Θ1 − Θ2 is not a weakly feasible
orientation. Then, the solution to problem (6.1) is strongly unique for all power networks in
G. The result holds true for the weak uniqueness as well, provided that the induced orientation
of Θ1 −Θ2 is not a feasible orientation.

The sufficient condition given above is a generalization of Theorem 4 in [184], which
ensures the weak uniqueness of solutions in the set of allowable phases. Using Theorem 65,
we can derive a corollary similar to Theorem 4 in [184].

Corollary 7. Consider an arbitrary set of allowable perturbations W. The solution to
problem (6.1) in the monotone regime is strongly unique for any power network G ∈ G
if for any weakly feasible orientation of the underlying graph (V,E), there exists a directed
cycle (k1, . . . , kt) containing at least one normal edge such that the allowable perturbations
satisfy the inequality ∑

{ki,ki+1} is normal

ωkiki+1
< 2π,

where kt+1 := k1. The same result holds true for the weak uniqueness if we substitute weakly
feasible orientations with feasible orientations.

Now, we consider a special case where all constants ωkℓ in the set of allowable perturba-
tions are equal, i.e., there exists a constant ω ≥ 0 such that the set of allowable perturbation
is

Wω := {ωkℓ = ω,∀{k, ℓ} ∈ E}.

The problem we consider in this case is:

• What is the sufficient condition on ω such that the solution to problem (6.1) is unique
with the allowable perturbation set Wω?

We derive an upper bound on the constant ω to guarantee the uniqueness. We first define
the maximal eye and the maximal girth of an undirected graph.

Definition 26. Consider an undirected graph (V,E). For any weakly feasible orientation
assigned to the graph (V,E), we define the minimal length of directed cycles that contain
at least one normal edge as the size of eye of this orientation, where edges with direction
0 are considered as bi-directional edges. We define the maximal eye of the graph (V,E) as
the maximum of the size of eye over all possible weakly feasible orientations. We denote the
maximal eyes of the graph (V,E), a power network G and a group of power networks G as
e(V,E), e(G) and e(G), respectively.

Remark 7. There always exists a directed cycle containing normal edges when the underlying
graph is under a weakly feasible orientation. To understand this, we first choose an arbitrary
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normal edge (k1, k2) ∈ E. Since the vertex k2 has nonzero in-degree, it also has nonzero
out-degree. Hence, there exists another vertex k3 such that (k2, k3) ∈ E. Continuing this
procedure will result in the existence of a vertex kt such that vt = ks for some s < t. This
generates a directed cycle (ks, ks+1, . . . , kt−1) containing only normal edges. Hence, the size
of eye is well-defined.

The counterpart of the maximal eye, known as the maximal girth, is defined in [184] and
we restate the definition below.

Definition 27. Consider an undirected graph (V,E). For any feasible orientation assigned
to the underlying graph (V,E), we define the minimal size of directed cycles as the girth of
this feasible orientation. We define the maximal girth of the graph (V,E) as the maximum
of the girth over all feasible orientations. We denote the maximal girths of the graph (V,E),
a power network G and a group of power networks G as g(V,E), g(G) and g(G), respectively.

Remark 8. Similar to the discussion in Remark 7, there exists at least one directed cycle
when the graph is under a feasible orientation. The maximal eye can be equivalently defined
as the maximum of the maximal girth over all sub-graphs that do not have degree-1 vertices.

We provide an upper bound for ω using the maximal eye and the maximal girth, which
follows from Corollary 7.

Corollary 8. If the inequality

ωkℓ <
2π

e(G)
, ∀{k, ℓ} ∈ E, (6.3)

is satisfied, then the solution to problem (6.1) in the monotone regime is strongly unique for
any power network G ∈ G. The same result holds true for weak uniqueness, provided that
e(G) in (6.3) is substituted by g(G).

In Section 6.5, we design search-based algorithms to calculate the maximal eye and the
maximal girth. However, computing the maximal eye or the maximal girth is challenging
for graphs with more than 100 nodes. Hence, we seek upper bounds and lower bounds for
the maximal eye and the maximal girth. In this chapter, we obtain a simple upper bound
for both the maximal girth and the maximal eye. We define κ(G) and κ(G) as the sizes of
the longest chordless cycles of the underlying graph of the power network G and any power
network in the power network class G, respectively. The upper bound on the maximal girth
and eye will be provided below.

Theorem 66. For any power network G, it holds that

g(G) ≤ e(G) ≤ κ(G) (6.4)

and that g(G) ≤ e(G) ≤ κ(G).

We note that although computing the longest chordless cycle is NP-complete [84], the
computation of the longest chordless cycle is faster than the computation of the maximal
eye and the maximal girth in practice.
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6.4 Uniqueness Theory for Three Special Cases

In this section, we consider three special cases. For each case, the power network either
has a special topological structure or a special monotone regime. In the first two cases,
the underlying graph of the power network is a single cycle or a 2-vertex-connected Series-
Parallel (SP) graph. When the underlying graph is a single cycle, the sufficient conditions in
Corollary 7 are also necessary. If the underlying graph is a 2-vertex-connected SP graph, we
prove that the sufficient conditions for the weak uniqueness in Corollary 8 also ensure the
strong uniqueness. In the last case, the power network is assumed to be lossless. In this case,
the monotone regime of each line reaches the maximum possible size [−π/2, π/2]. Sinusoidal
functions can then be avoided in statement 2 of Lemma 47, and therefore the verification of
conditions is easier.

Single Cycles

We first consider the case when the underlying graph (V,E) is a single cycle. We first
show that the weak uniqueness is equivalent to the strong uniqueness in this case.

Lemma 49. Suppose that the underlying graph is a single cycle with the edges (1, 2), (2, 3),
. . . , (n, 1). Then, given the set of allowable perturbations W, the solution to problem (6.1)
in the monotone regime is weakly unique if and only if it is strongly unique.

Next, we prove that the sufficient conditions derived in Corollary 7 are also necessary for
a single cycle with non-trivial monotone regime.

Theorem 67. Suppose that the underlying graph is a single cycle with the edges (1, 2),
(2, 3), . . . , (n, 1), and that the set of allowable perturbations satisfies 0 < ωi,i+1 ≤ γi,i+1 for
all i ∈ [n], where γn,n+1 := γn,1 and ωn,n+1 := ωn,1. The solution to problem (6.1) in the
monotone regime is strongly unique for any power network G ∈ G(V,E,Γ) and any power
injection P ∈ Rn−1 that makes problem (6.1) feasible if and only if the set of allowable
perturbations W satisfies

n∑
i=1

ωi,i+1 < 2π,

where ωn,n+1 := ωn,1.

In contrast to requiring ωi,i+1 > 0 in the above theorem, the condition that ωi,i+1 =
0 for some i is sufficient but not necessary for the uniqueness of solutions. Under this
condition, two solutions Θ1 and Θ2 in the monotone regime such that Θ2 ∈ N (G,Θ1,W)
must satisfy Θ1

i,i+1 = Θ2
i,i+1. Hence, any solution is strongly unique with this set of allowable

perturbations. However, by Theorem 67, this condition is not necessary for the uniqueness
of solutions.
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Series-Parallel Graphs

In this subsection, we consider another special class of graphs, namely, the 2-vertex-
connected SP graphs. The objective is to find an upper bound on the constant ω to guarantee
that the solution to problem (6.1) is unique. Corollary 8 shows that the solution is strongly
unique if ω < 2π/e(G) and is weakly unique if ω < 2π/g(G). However, for a 2-vertex-
connected SP graph, we can prove a stronger theorem. We first prove that the maximal eye
is equal to the maximal girth for a 2-vertex-connected SP graph. The main tool is the ear
decomposition of an undirected graph [72].

Definition 28. An ear of an undirected graph (V,E) is a simple path or a single cycle. An
ear decomposition of an undirected graph (V,E), denoted as D := (L0, . . . , Lr−1), is a
partition of E into an ordered sequence of ears such that one or two endpoints of each ear
Lk are contained in an earlier ear, i.e., an ear Lℓ with ℓ < k, and the internal vertices of
each ear do not belong to any earlier ear. We call D a proper ear decomposition if each
ear Lk is a simple path for all k = 1, . . . , r − 1. A tree ear decomposition is a proper
ear decomposition in which the first ear is a single edge and for each subsequent ear Lk,
there is a single ear Lℓ with ℓ < k, such that both endpoints of Lk lie on Lℓ. A nested ear
decomposition is a tree ear decomposition such that, within each ear Lℓ, the set of pairs
of endpoints of other ears Lk that lie within Lℓ forms a set of nested intervals.

The following theorem provides an equivalent characterization of 2-vertex-connected SP
graphs through the ear decomposition.

Theorem 68 ([130]). A 2-vertex-connected graph is series-parallel if and only if it has a
nested ear decomposition.

With the help of the nested ear decomposition, we will prove that the maximal girth is
equal to the maximal eye for 2-vertex-connected SP graphs. The intuition behind the proof
is that we first choose two vertices as the “source” and the “sink” for the power flow network.
For each edge with direction 0, we first consider the directed path that contains this edge
and goes from the “source” to the “sink” and then assign a normal direction (±1) to this
edge according to the directed path. This step ensures that the first inequality in (6.4) holds
as equality.

Lemma 50. Suppose that (V,E) is a 2-vertex-connected SP graph. Then, the following
equality holds true:

g(V,E) = e(V,E).

Therefore, combining the above lemma with Corollary 8, we obtain a stronger sufficient
condition for 2-vertex-connected SP graphs. This result implies that the sufficient conditions
for the weak uniqueness in Corollary 8 also guarantee the strong uniqueness.
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Theorem 69. Suppose that the underlying graph (V,E) is a 2-vertex-connected SP graph.
The solution to problem (6.1) is strongly unique for any power network G ∈ G in the mono-
tone regime if

ω <
2π

g(G)
.

Lossless Networks

Finally, we consider the case when the power network is lossless, namely, when γkℓ = π/2
for all {k, ℓ} ∈ E. In this case, we prove that the strong uniqueness holds if and only if
there does not exist another solution in the set of neighboring phases such that the induced
orientation has strictly more strongly connected components than weakly connected compo-
nents. This results makes it possible to avoid nonlinear sinusoidal functions in statement 2
of Lemma 47, and therefore the uniqueness of solutions becomes easier to verify. We first
define the sub-graph induced by two phase angle vectors.

Definition 29. Suppose that Θ1 and Θ2 are two different phase angle vectors, and that
the orientation A is the induced orientation of Θ1 −Θ2. Then, the induced sub-graph of
Θ1 − Θ2 is constructed as a directed sub-graph of (V,E, A) by first deleting all edges with
direction 0 and then deleting all degree-1 vertices.

In what follows, we establish a necessary and sufficient condition for the uniqueness of
the solution that does not contain sinusoidal functions.

Theorem 70. Consider a that the set of allowable perturbations W. If the monotone regime
satisfies γkℓ = π/2 for all {k, ℓ} ∈ E, then the following two statements are equivalent:

1) For any power network G ∈ G(V,E,Γ) and any power injection P ∈ R|V|−1 such
that problem (6.1) is feasible, the solution to problem (6.1) in the monotone regime is
strongly unique in N (G,Θ,W).

2) For any power network G ∈ G(V,E,Γ) and any two phase angle vectors Θ1 and Θ2

in the monotone regime with the property Θ2 ∈ N (G,Θ1,W), the induced sub-graph
of Θ1 − Θ2 has strictly more strongly connected components than weakly connected
components.

The equivalence between statements 1 and 2 still holds true even after replacing strong unique-
ness with weak uniqueness in statement 1, provided that the phase angle vectors Θ2 in state-
ment 2 is required to satisfy Θ1

kℓ ̸= Θ2
kℓ for all {k, ℓ} ∈ E.

The result of the above theorem is stronger than the sufficient conditions in Theorem
65. This is because any (weakly) infeasible orientation has strictly more strongly connected
components than weakly connected components. Hence, the sufficient conditions in Theorem
65 ensure that all induced orientations are (weakly) infeasible. Then, statement 2 of this
theorem holds true and the solution becomes strongly (weakly) unique.
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6.5 Iterative Series-Parallel Reduction

In the preceding sections, we have shown that the maximal eye and the maximal girth
play important roles in the uniqueness theory. However, computing the maximal eye or
maximal girth is cumbersome for large graphs. Hence, we develop an iterative reduction
method to design a reduced graph, and then prove the relationship between the maximal
eye or the maximal girth of the original graph and those of the reduced graph. Next, we
test the performance of those algorithms on real-world problems. Search-based algorithms
for computing the maximal eye and the maximal girth are given in the appendix.

Iterative Series-Parallel Reduction Method

In this subsection, we propose an iterative reduction method, named as the Iterative
Series-Parallel Reduction (ISPR) method, that can reduce the size of the underlying graph
for computing the maximal eye and maximal girth. The ISPR method is different from
the Series-Parallel Reduction (SPR) method introduced in [184] in two aspects. First, the
purpose of the ISPR method is to accelerate the computation of the maximal eye and the
maximal girth, while the focus of SPR method is to facilitate the verification of uniqueness
conditions. Second, we prove that all 2-vertex-connected SP graphs can be reduced to a
single edge (K2) without the assumption in [184] that the slack bus is the last to be reduced.

Before introducing the ISPR method, we extend the definition of the maximal eye and
the maximal girth to weighted graphs with “multiple slack buses”. This generalized class of
graphs appear during the reduction process. By defining the length of a cycle as the sum
of the weights of the edges on the cycle, the maximal eye and the maximal girth can be
generalized to weighted graphs. Next, we define (weakly) feasible orientations for graphs
with “multiple slack buses”, namely, the slack nodes.

Definition 30. For a weighted undirected graph (V,E,W ), a subset of vertices Vs ⊆ V is
called the set of slack nodes. An orientation A assigned to the graph is called a weakly
feasible orientation if each edge has one of the directions {+1,−1, 0} and each vertex not
in Vs either has nonzero in-degree and nonzero out-degree, or has zero in-degree and zero
out-degree. An orientation A assigned to the graph is called a feasible orientation if each
edge has one of the directions {+1,−1} and each vertex not in Vs has nonzero in-degree and
nonzero out-degree.

Now, we can define the maximal eye for graphs with slack nodes by taking the maximum
of the size of eye over weakly feasible orientations. The maximal girth can be defined in a
similar way. For power networks, the only slack node is the slack bus of the power network.
Hence, the extended definitions of the maximal eye and the maximal girth are consistent
with their original definitions. The ISPR method is based on three types of operations:
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• Type I Operation. Replacement of a set of parallel edges with a single edge that
connects their common endpoints. The weight of the new single edge is the minimum
over the weights of the deleted parallel edges.

• Type II Operation. Replacement of the two edges incident to a degree-2 vertex with
a single edge, if the vertex has exactly two neighboring vertices and is not a slack node.
The weight of the new edge is the sum of the weights of the two deleted edges.

• Type III Operation. Deletion of a vertex that has only a single neighboring vertex.
If the deleted vertex is a slack node, or if the deleted vertex has degree at least 2 for
the problem of computing the maximal girth, then we define its neighboring vertex as
a slack node.

The update scheme of weights and slack nodes is designed to control the change of the
maximal eye or the maximal girth. The ISPR method successively reduces the size of the
graph by applying Type I-III Operations; the pseudo-code of the ISPR method is given in
Algorithm 17. We note that after the reduction process, there is no parallel edge or pendant
(degree-1) vertex in the reduced graph. Ignoring the weights of the edges and the set of the
slack nodes, the operations in the ISPR method can cover the operations in the classical
series-parallel reduction [133], which are defined as

• Type I’ Operation. Replacement of parallel edges with a single edge that connects
their common endpoints.

• Type II’ Operation. Replacement of the two edges incident to a degree-2 vertex
with a single edge.

• Type III’ Operation. Deletion of a pendant vertex.

Hence, the ISPR method can be viewed as a generalization of the classical series-parallel
reduction. We first consider the change of the maximal eye after each operation.

Lemma 51. Given a weighted undirected graph (V,E,W ), let e denote its maximal eye.
Assume that one of Type I-III Operations is implemented on the graph. By denoting the new
graph and its maximal eye as (Ṽ, Ẽ, W̃ ) and ẽ, the following statements hold:

• If Type I Operation is implemented, then

ẽ ≤ e ≤ max{ẽ,Wmax + Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

• If Type II Operation is implemented, then e = ẽ.

• If Type III Operation is implemented and the deleted vertex has degree 1, then e = ẽ.



CHAPTER 6. UNIQUENESS OF POWER FLOW SOLUTIONS USING
GRAPH-THEORETIC NOTIONS 309

Algorithm 17 Iterative Series-Parallel Reduction method

Input: Undirected unweighted graph (V,E), slack bus k
Output: Reduced undirected weighted graph (VR,ER,WR), two constants α1, α2 defined in

Theorems 71 and 72, set of slack nodes Vs

Set the initial weight for each edge to be 1.
Set the initial set of slack nodes as Vs ← {k}.
while at least one operation is implementable do

if Type I Operations are implementable then
Implement Type I Operation.
Update values α1, α2 according to their definitions in Theorems 71 and 72.
continue

end if
if Type II Operations are implementable then

Implement Type II Operation.
continue

end if
if Type III Operations are implementable then

Implement Type III Operation.
Update values α1, α2 according to their definitions in Theorems 71 and 72.
Update the set of slack nodes Vs.
continue

end if
end while
Return reduced graph (VR,ER,WR), set of slack nodes Vs and values α1, α2.

• If Type III Operation is implemented and the deleted vertex has degree larger than 1,
then

e = max{ẽ,Wmax + Wmin},
where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

Using the above lemma, we have the following theorem.

Theorem 71. Given a power network with the underlying graph (V,E), let e denote the max-
imal eye of the graph. Denote the graph after reduction and its maximal eye as (VR,ER,WR)
and eR, respectively. Then, we have

max{eR, α2} ≤ e ≤ max{eR, α1, α2},

where α1 and α2 are the maximum of Wmax + Wmin over Type I and Type III Operations,
respectively. Here, Wmax,Wmin are defined in Lemma 51. If Type I or Type III Operations
is never implemented, then we set α1 or α2 to 0.
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Similarly, we can prove the relation between the maximal girth of the original graph
and that of the reduced graph. We first show the change of the maximal girth after each
operation.

Lemma 52. Given a weighted undirected graph (V,E,W ), let g denote its maximal girth.
Assume that one of Type I-III Operations is implemented on the graph. By denoting the new
graph and its maximal girth of new graph as (Ṽ, Ẽ, W̃ ) and g̃, the following statements hold:

• If Type I Operation is implemented, then

g̃ ≤ g ≤ max{g̃,Wmax + Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

• If Type II Operation is implemented, then g = g̃.

• If Type III Operation is implemented and the deleted vertex has degree 1, then g = g̃.

• If Type III Operation is implemented, the deleted vertex is a slack node and has degree
larger than 1, then

g̃ ≤ g ≤ max{g̃,Wmax + Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

• If Type III Operation is implemented, the deleted vertex is not a slack node and has
degree larger than 1, then

g = min{g̃,Wmax + Wmin},

where Wmax and Wmin are the maximal and minimal weights of the deleted parallel
edges, respectively.

By the above lemma, the relationship between the maximal girth of the original graph
and that of the reduced graph will be discovered below.

Theorem 72. Given a power network with the underlying graph (V,E), let g denote its the
maximal girth. By denoting the graph after reduction and its maximal girth as (VR,ER,WR)
and gR, we have

min{gR, α2} ≤ g ≤ min{max{gR, α1}, α2},

where α1 is the maximum of Wmax + Wmin over Type I Operations and the second case of
Type III Operations, and α2 is the minimum of Wmax +Wmin over the third case of Type III
Operations. Here, Wmax,Wmin are defined in Lemma 51. If operations for computing α1 or
α2 are never implemented, then we set α1 to 0 or α2 to +∞.
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Based on the numerical results in Tables 6.6.1 and 6.6.2 for large power networks, the
values of α1 and α2 in Theorems 71 and 72 are usually smaller than eR and gR. Hence, we
have the approximation

e ≈ eR, g ≈ α2. (6.5)

The above relations imply that for large power networks, computing the maximal eye is
equivalent to computing the maximal eye of a reduced graph, while the maximal girth is
already computed during the reduction process. Finally, we prove that 2-vertex-connected
SP graphs can be reduced to a single edge by the ISPR method.

Theorem 73. If the underlying graph (V,E) of a power network is a 2-vertex-connected SP
graph, then the ISPR method reduces the underlying graph to a single edge.

For an undirected graph without slack nodes, the classical series-parallel reduction (Type
I’-III’ Operations) can reduce the graph to a single edge if and only if the graph is a Gener-
alized Series-Parallel (GSP) graph [133]. We note that 2-vertex-connected SP graphs are a
special class of GSP graphs and it is unclear whether the reduction guarantee for theISPR
method can be extended to any GSP graphs in the presence of slack nodes.

6.6 Numerical results

In this section, we verify the theoretical results of this chapter and test the performance
of the proposed algorithms. First, we show that, using the ISPR method, the computation
of the maximal eye can be reduced to a smaller graph, while the computation of the maxi-
mal girth is finished during the process of reduction. Then, we show that Corollary 8 gives
a valid sufficient condition for strong uniqueness. We use IEEE power networks in MAT-
POWER [259] to perform experiments. Finally, the proximity between the P -Θ problem
and the AC power flow problem is numerically illustrated.

Computation of the Maximal Eye and the Maximal Girth

We first consider the computation of the maximal eye. The results are listed in Table
6.6.1. Here, we use ‘-’ to denote the case when this value does not exist, and use ‘TLE’ (Time
Limit Exceeded) to denote the case when the algorithm does not find any leaf node in two
days. The lower bounds for the maximal eye are derived by stopping the algorithm before
it terminates. It can be observed that the ISPR method can largely reduce the size of the
graph, and therefore can accelerate the computing process. Moreover, the values of α1 and
α2 are small compared to the maximal eye of the reduced graph. Hence, the approximation
in equation (6.5) holds and the maximal eye of the original graph is equal to the maximal
eye of the reduced graph. Although the algorithm achieves acceleration compared to the
brute-force search method, we are only able to compute the maximal eye for graphs with up
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Power Network Original Size Reduced Size α1 α2 eR
Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (8,13) 4 3 8
Case 39 (39,46) (8,12) 4 5 8
Case 57 (57,78) (22,39) 4 - 23
Case 118 (118,179) (44,83) 5 - 13
Case 300 (300,409) (109,196) 8 4 ≥10
Case 1354 (1354,1710) (263,500) 9 8 TLE
Case 2383 (2383,2886) (499,949) 11 5 TLE

Table 6.6.1: Comparison of graph sizes before and after the ISPR method for maximal eye.
Number of vertices and edges before and after the ISPR method for maximal eye along with
values computed during the reduction process.

to 118 vertices. Note that since graph problems have exponential complexities, solving them
for graphs having as low as 200 nodes is still beyond the current computational capabilities.
However, this does not undermine the usefulness of the introduced graph parameters, since
it is shown in this chapter that those parameters accurately decide whether the power flow
problem has a unique solution.

Next, we consider the computation of the maximal girth. We use the same algorithms
and the results are listed in Table 6.6.2. In this case, it can be observed that α2 is equal to
3 for large power networks. This is because the underlying graphs of large power networks
considered in the table have “pendant triangles”. Pendant triangles are triangles that have
only one vertex connected to the rest of the graph. Furthermore, the approximation in
Theorem 72 holds and the maximal girth of the original graph is equal to α2 = 3. Hence, the
maximal girth can be computed during the reduction process. This shows that the conditions
for the weak uniqueness is significantly loose and requiring ωkℓ to be at most 2π/3 for all
edges {k, ℓ} is enough. However, for 2-vertex-connected SP graphs, we have shown that the
maximal girth is equal to the maximal eye and the requirement for the weak uniqueness is
the same as that for the strong uniqueness.

Verification of Corollary 8

In this subsection, we validate the results in Corollary 8, i.e., showing that there does
not exist a different solution in the monotone regime with the set of allowable perturbations
being W2π/e(G).

A random power flow set point is generated by first choosing a random vector of volt-
ages. The voltage magnitudes and angles are randomly sampled from a uniform distribution
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Power Network Original Size Reduced Size α1 α2 gR

Case 14 (14,20) (2,1) 6 3 0
Case 30 (30,41) (9,14) 4 3 3
Case 39 (39,46) (10,14) 4 3 3
Case 57 (57,78) (22,39) 4 - 23
Case 118 (118,179) (44,83) 5 - 4
Case 300 (300,409) (110,197) 8 3 ≥7
Case 1354 (1354,1710) (271,509) 9 3 ≥3
Case 2383 (2383,2886) (500,950) 11 3 ≥3

Table 6.6.2: Number of vertices and edges before and after the ISPR method for maximal
girth along with values computed during the reduction process.

ranging from user-set min/max values:

|v0i | ∼ U(Vmin, Vmax) for all i ∈ V,
|Θ0

i | ∼ U(Θmin,Θmax) for all i ∈ V,

where U(a, b) is the uniform distribution on [a, b]. The voltage angles are rejected and dis-
carded if they do not belong to the monotone regime. A new random sample is chosen
until the angles belong to the the monotone regime. Finally, once we have a voltage profile
belonging to the monotone regime, we use the information to calculate the real power in-
jections, namely P 0. The values of |v0| and P 0 are provided as an input to the power flow
algorithm. Note that Θ0 is always a solution to the P -Θ problem P̂ (Θ) = P 0. In this sense,
we refer to Θ0 the ground truth solution. There are usually other solutions and the goal of
this experiment is to analyze where those other solutions are situated with respect to the
ground truth solution.

In order to explore different parts of the solution space, we randomly sample an initial
point around the ground truth Θ0 and feed it into MATPOWER. The current setting is
to consider a normal distribution around the ground truth, with some specified standard
deviation. Intuitively, if the random initial point is close enough to the ground truth solution,
then the algorithm will converge to the ground truth solution. However, if we start the
algorithm with a suitably far initial point, then the power flow algorithms may converge to
a different solution. Note that initializing too far away can lead to convergence issues of the
algorithm.

Next, we define a metric that can capture the distance between two solutions to the P -Θ
problem. Consider a solution of the P -Θ problem, Θi, where i corresponds to the random
initialization number (i ∈ R := {1, . . . , 10, 000}). Let Θi

k denote the voltage angle at bus
k for the i-th experiment. We define dist(Θi) to be the distance between the particular
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Power Networks distm 2π/e
Case 14 ∞ ∞
Case 30 71.8 45
Case 39 53.8 45
Case 57 37.8 15.7
Case 118 66.1 27.7

Table 6.6.3: Distance measure for different test cases.

solution Θi and the ground truth solution, characterized in terms of their angle differences:

dist(Θi) := max
{k,ℓ}∈E

|Θi
kℓ −Θ0

kℓ|.

Now, define distm(G) to be the smallest nonzero distance among all solutions in the
monotone region for a given power system G. More concretely, we let the symbolM represent
the set of indices i such that the solution Θi belongs to the monotone region defined in the
paper and define

distm(G) := min
i∈M∩R

dist(Θi) s.t. dist(Θi) ̸= 0.

As a specific scenario, we consider the case when all the line properties are the same and
the voltage magnitudes are fixed to be one. In other words, Vmax = Vmin = 1. Furthermore,
the lines are close to being lossless. We note that when we experimented with significantly
lossy lines, different solutions were not found within the monotone region. This is because
the monotone regime is small when the lines are very lossy.

The values of dist(Θi) and distm are calculated for different networks and are summarized
in Table 6.6.3. The results in the table are two-folds. First, the distance distm provides
an upper bound on the allowable perturbations such that the solution is strongly unique.
On the other hand, the results in the last column are the theoretical lower bound on the
allowable perturbations to guarantee the strong uniqueness. We can see that the numerical
results verify our theoretical findings, although there exists a gap between the maximal
possible allowable perturbations that ensure the uniqueness and the bounds obtained from
our theoretical results.

Implication for AC Power Flow Problem

The P -Θ problem discussed in this chapter makes the assumption that all buses are PV
buses. In order to show the connection between the P -Θ problem and the full AC power flow
problem, we numerically demonstrate the proximity of the power flow solutions under the two
problem settings. A random set point is generated, as we did in the previous subsection, by
producing a random voltage profile (|v0|,Θ0) and computing the corresponding real/reactive
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powers. Then, this set point is utilized as input parameters to solve for the AC power
flow problem (without the assumption that all buses are PV buses) with random initial
points around |v0|,Θ0. Note that |v0|,Θ0 (call it the reference solution) obviously comprise
one solution to the AC power flow problem, but there are potentially other solutions that
satisfy the AC power flow equations. Let us define the distance between two solutions as
we did in the previous subsection. Figure 6.6.1 shows that none of the other solutions
are within the allowable perturbation bound obtained in Corollary 8 when compared to
the reference solution. Furthermore, the voltage magnitude distance shows that these are
unrealistic solutions, since voltage magnitudes are usually maintained to be within 5 percent
of the nominal value. Similar experiments conducted for various set points and all the power
networks mentioned in Table 6.6.3 lead to the same results.
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Figure 6.6.1: Distance between AC power flow solutions for IEEE-39.
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Appendix

6.A Algorithms for Computing the Maximal Girth

and Eye

In the appendix, we propose search-based algorithms for computing the maximal eye
and the maximal girth. Our approach is based on the Depth-First Search (DFS) method
and utilized the pruning technique to accelerate the computing process. We first describe a
common sub-procedure that will be used in both algorithms. The sub-procedure computes
the minimal directed chordless cycle containing a given edge. Given a truncation length
T ≥ 1, the sub-procedure returns the truncation length if there does not exist a directed
chordless cycle that contains the given edge and has length at most T . The sub-procedure is
also based on the DFS method with pruning and borrows the idea of blocking from [215] to
accelerate the searching process. The pseudo-code of the sub-procedure is listed in Algorithm
18.

The search space of the sub-procedure is the set of directed chordless paths with length at
most T . When the current directed chordless path is a directed chordless cycle, the length of
the cycle is recorded and the minimal length of known directed chordless cycles is updated.
By searching over all chordless paths, we find the length of the minimal directed chordless
cycle. The DFS method is initialized with the given edge, denoted as (k, ℓ), and extends the
directed chordless path by adding a neighbouring vertex of the end point other than k to
the path. The pruning technique becomes effective and delete the end point other than k
from the path if one of the following cases occurs:

• The length of the directed chordless path is larger than T or the known minimal length
of directed chordless cycles;

• All neighbouring vertices have been searched or will introduce a chord if added to the
path.

Using the idea of blocking, one can efficiently check whether adding a vertex to the path
will introduce a chord. This approach is based on the following observation: if the path
(k1, . . . , kt) is chordless, then any vertex ks can only be in the neighborhood of ks−1, ks+1.
We construct an array and, for each vertex, we record the number of vertices on the path
that are in the neighborhood of the vertex. The array is updated whenever the path is
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updated. If there are at least two vertices on the path in the neighbourhood of a vertex not
on the path, then adding the vertex to the path will introduce a chord. Hence, the cost of
checking this condition for each potential vertex not on the path is a single evaluation of an
array.

Next, we propose the algorithms for computing the maximal eye and the maximal girth.
Since the algorithm of maximal girth is similar to the algorithm for maximal eye, we only
discuss the algorithm for computing the maximal eye. The algorithm is also based on the
DFS method with pruning, and the pseudo-code is provided in Algorithm 20. We first order
all edges and gradually assign one of the directions {0,−1,+1} to each edge following the
ordering of the edges. The search space consists of the orientations for the first several edges
(intermediate states) and the orientations for the entire graph (final states). One can verify
that all intermediate states and final states form a trinomial2 tree, since each orientation for
the first k < |E| edges leads to three different orientations for the first k + 1 edges. Then,
the algorithm for computing the maximal eye searches in the same way as the classical DFS
method on a directed tree. For each node, we consider the sub-graph consisting of those
edges that have been assigned a direction. We compute the length of the minimal directed
chordless cycle in the sub-graph, which contains the last edge in the sub-graph, using the
sub-procedure (Algorithm 18). The truncation length can be decided as follows. Since a
DFS method is implemented on a trinomial tree, there exists a directed path from the root
node of the trinomial tree to the current node. The truncation length can be chosen as the
minimal length computed on the preceding nodes of the path. When the search reaches a
leaf node, we obtain an orientation for the entire graph, and the size of the eye becomes
the minimal length on the path to the root node. By searching over all leaf nodes, we find
the maximal eye. Similarly, one can use the pruning technique to reduce the search space.
The current node is pruned if it can not be extended to a weakly feasible orientation for the
entire graph, or the size of the eye of the sub-graph is smaller than the known maximal size
of the eye.

Algorithm 18 Truncated Minimal Chordless Cycle

Input: Directed weighted graph (V,E,W ), selected edge (k, ℓ), truncation length T
Output: Length of minimal chordless cycle c

Construct the neighbourhood of each vertex N : V 7→ 2V.
Initialize blocked array block[i]← 0 for all vertices i ∈ V.
Set the length of minimal cycle recorded c← T .
Set current length Lcur ← Wkℓ.
Set the path P ← [k, ℓ].
Set block[k]← 1, block[ℓ]← 1.
if Lcur ≥ T then ▷ Already longer than truncation length

return c

2A directed tree is called a trinomial tree if there is a root node and each non-leaf node has exactly three
descendant nodes.
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end if
while the length of P is at least 2 do

Get the endpoint i← P [−1].
Increase block for vertices in N [j] by 1.
Get the minimal vertex j ∈ N [i] such that block[j] ≤ 1 and Lcur + WP [−1]j < v.
if no such vertex j exists then

▷ Recursion: no next unblocked vertex
Find the maximal index h such that P [h] /∈ {k, ℓ, i} and P [h+1] is not the maximal

vertex in N [P [h]].
if no such h exists then ▷ Search finished

break
else

Remove P [h + 1], . . . , P [−1] from path P .
Decrease block of N [P [h]], . . . , N [P [−1]] by 1.
Add the next smallest vertex in N [P [h]] to P .
Update Lcur to be the length of path P .
continue

end if
else ▷ Add a new vertex

Add vertex j to P and update Lcur.
if k ∈ N [j] then ▷ find a cycle

Calculate length ccur ← Lcur + Wjk.
if ccur > 0 then

Update c← min{c, ccur}.
end if
Recursion similarly as above.

else
continue

end if
end if

end while
return c
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Algorithm 19 Algorithm for Computing the Maximal Girth

Input: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal girth g

Set the maximal girth g← 0.
Assign an order to the set of edges E and denote edges as

{k1, ℓ1}, . . . , {km, ℓm}.

Initialize the set of edges E0 ← {{k1, ℓ1}}.
Initialize the set of orientations Ak1,ℓ1 ← −1.

loop
Check the feasibility with current orientation.
if feasibility fails then

▷ Recursion
Get the maximal index j such that Akj ,ℓj ̸= 1.
if no such j exists then ▷ Terminate the algorithm

break
else

Remove {kj+1, ℓj+1}, . . . , {km, ℓm} from E0.
Change orientation Akj ,ℓj ← −Akj ,ℓj .
continue

end if
end if
Compute the girth gcur under E0 and A using Algorithm 18. The truncation length is

set to be the girth of the precedent state.
if gcur < g then ▷ Smaller than known girth

Recursion in the same way.
end if
Get the next edge {ki, ℓi} that is not in E0.
if no such edge then ▷ Leaf node reached

Update g← max{g, gcur}.
Recursion in the same way.

else
Add the next edge {ki, ℓi} that is not in E0.
Assign Akj ,ℓj ← −1.
continue

end if
end loop
return g
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Algorithm 20 Algorithm for Computing the Maximal Eye

Input: Undirected weighted graph (V,E,W ), slack bus k
Output: Maximal eye e

Set the maximal eye e← 0.
Assign an order to the set of edges E and denote edges as

{k1, ℓ1}, . . . , {km, ℓm}.

Initialize the set of edges E0 ← {{k1, ℓ1}}.
Initialize the set of orientations Ak1,ℓ1 ← −1.
loop

Check the weak feasibility with current orientation.
if weak feasibility fails then ▷ Recursion

Get the maximal index j such that Akj ,ℓj ̸= 1.
if no such j exists then ▷ Terminate the loop

break
else

Remove {kj+1, ℓj+1}, . . . , {km, ℓm} from E0.
Change orientation Akj ,ℓj ← Akj ,ℓj + 1.
continue

end if
end if
Compute the size of eye ecur under E0 and A using Algorithm 18. The truncation

length is set to be the size of eye of the precedent state.
if ecur < e then ▷ Smaller than known size of eye

Recursion in the same way.
end if
Get the next edge {ki, ℓi} that is not in E0.
if no such edge then ▷ Leaf node reached

Update e← max{e, ecur}.
Recursion in the same way.

else
Add the next edge {ki, ℓi} that is not in E0.
Assign Akj ,ℓj ← −1.
continue

end if
end loop
return e
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6.B Proof for General Graphs

Proof of Lemma 47

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. For a given power network, we define the real power flow along the line {k, ℓ} ∈ E
from bus k in the direction of bus ℓ as

p̃kℓ(Θ) := −Gkℓ|vk||vℓ| cos(Θkℓ) + Bkℓ|vk||vℓ| sin(Θkℓ).

By definition, it follows that

P̂k(Θ) =
∑

ℓ:{k,ℓ}∈E

p̃kℓ(Θ), ∀k ∈ V.

Proof of sufficiency. We first show by contradiction that statement 2 of the lemma is
sufficient for statement 1. In particular, suppose that statement 2 holds, but the solution is
not strongly unique for some graph G ∈ G and some real power injection P while problem
(6.1) is feasible. Then, there exist two different phase angle vectors Θ1,Θ2 such that Θ2 ∈
N (G,Θ1,W) and P̂ (Θ1) = P̂ (Θ2). For each line {k, ℓ} ∈ E, there exists a constant Ckℓ > 0
such that

Bkℓ = Ckℓ sin(γkℓ), Gkℓ = Ckℓ cos(γkℓ).

We calculate the change of power flow from k to ℓ as

p̃kℓ(Θ
1)− p̃kℓ(Θ

2)

= −Gkℓ|vk||vℓ|[cos(Θ1
kℓ)− cos(Θ2

kℓ)]

+ Bkℓ|vk||vℓ|[sin(Θ1
kℓ)− sin(Θ2

kℓ)]

= −Ckℓ cos(γkℓ)|vk||vℓ|[cos(Θ1
kℓ)− cos(Θ2

kℓ)]

+ Ckℓ sin(γkℓ)|vk||vℓ|[sin(Θ1
kℓ)− sin(Θ2

kℓ)]

= (− cos(γkℓ)[cos(Θ1
kℓ)− cos(Θ2

kℓ)]

+ sin(γkℓ)[sin(Θ1
kℓ)− sin(Θ2

kℓ)]) · |vk||vℓ|Ckℓ

= 2[cos(γkℓ) sin(Θ1
kℓ/2 + Θ2

kℓ/2)

+ sin(γkℓ) cos(Θ1
kℓ/2 + Θ2

kℓ/2)]

· sin(∆kℓ/2)|vk||vℓ|Ckℓ

= 2 sin(γkℓ + Θ1
kℓ/2 + Θ2

kℓ/2) · sign(sin(∆kℓ/2))

· | sin(∆kℓ/2)||vk||vℓ|Ckℓ

:= δkℓ · | sin(∆kℓ/2)vkvℓ|Ckℓ,

where

∆kℓ := Θ1
kℓ −Θ2

kℓ, (6.6)
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δkℓ := 2 sin(γkℓ + Θ1
kℓ/2 + Θ2

kℓ/2)sign(sin(∆kℓ/2)).

Note that the third equality in (6.6) is due to the following triangular identities:

cos(η)− cos(φ) = −2 sin[(η − φ)/2] sin[(η + φ)/2],

sin(η)− sin(φ) = 2 sin[(η − φ)/2] cos[(η + φ)/2].

Since P̂k(Θ1) = P̂k(Θ2) for all k ̸= 1, we obtain

P̂k(Θ1)− P̂k(Θ2) =
∑

ℓ:{k,ℓ}∈E

[
p̃kℓ(Θ

1)− p̃kℓ(Θ
2)
]

=
∑

ℓ:{k,ℓ}∈E

δkℓ · | sin(∆kℓ/2)vkvℓ|Ckℓ = 0

for all k ̸= 1. Let the set E0 be the subset of edges such that ∆kℓ ̸= 0 for all {k, ℓ} ∈ E0; we
assign an order to elements in E0. Define the matrix M ∈ R|V|×|E0| and the vector g ∈ R|E0|

as

Mki := δkℓ, Mℓi := δℓk, gi := | sin(∆kℓ/2)vkvℓ|Ckℓ,

where {k, ℓ} is the i-th edge in the set E0. Since ∆kℓ ̸= 0 for all {k, ℓ} ∈ E0 and ∆kℓ ≤
2γkℓ ≤ π, it holds that

| sin(∆kℓ/2)| > 0, ∀{k, ℓ} ∈ E0.

Then, the vector g is a solution to the linear feasibility problem

find x ∈ R|E0| s. t. (Mx)2:|V | = 0, x > 0.

where (y)i:j := (yi, yi+1, . . . , yj) includes the i-th to the j-th entries of the vector y and
inequality x > 0 means that xk > 0 holds for all entries of the vector x. The notation x ≥ 1
is defined in the same way. The above feasibility problem is equivalent to

find x ∈ R|E0| s. t. (Mx)2:|V | = 0, x ≥ 1.

Then, by Farka’s Lemma, the dual feasibility problem

find y ∈ R|V| s. t. MTy ≥ 0, 1TMTy > 0, y1 = 0

is infeasible. However, the conditions in the dual problem are the same as the conditions
in statement 2 of Lemma 47. This contradicts the claim in statement 2 that there exists a
vector y satisfying these conditions. Thus, statement 1 must hold true.
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Proof of necessity. Next, we again show by contradiction that statement 2 of the lemma
is necessary for statement 1. Assume that statement 1 holds true, and that there exist two
different phase angle vectors Θ1,Θ2 in the monotone regime such that Θ2 ∈ N (G,Θ1,W)
while there does not exist y satisfying the conditions in statement 2. We define E0 as the
set of edges such that ∆kℓ ̸= 0, where ∆kℓ := Θ1

kℓ−Θ2
kℓ for all {k, ℓ} ∈ E0. We construct the

matrix M ∈ R|V|×|E0| as
Mki := δkℓ, Mℓi := δℓk,

where {k, ℓ} is the i-th edge in the set E0 and

δkℓ := sin(γkℓ + Θ1
kℓ/2 + Θ2

kℓ/2)sign(sin(∆kℓ/2)).

By the same analysis, the conditions in statement 2 turn out to be equivalent to the feasibility
of the linear feasibility problem

find y ∈ R|V| s. t. MTy ≥ 0, 1TMTy > 0, y1 = 0.

By our assumption, the above problem is infeasible. By Farka’s Lemma, there exists a
solution g ∈ R|E0| to the feasibility problem

find x ∈ R|E0| s. t. (Mx)2:|V | = 0, x ≥ 1

and also to the feasibility problem

find x ∈ R|E0| s. t. (Mx)2:|V | = 0, x > 0.

We define the matrix C ∈ R|V|×|V| as

Ckℓ := | sin(∆kℓ/2)vkvℓ|−1gi, ∀{k, ℓ} ∈ E0,

where {k, ℓ} is the i-th edge in the set E0, and

Ckℓ := 1, ∀{k, ℓ} ∈ E\E0, Ckℓ := 0, ∀{k, ℓ} /∈ E.

By the definition, it follows that Ckℓ > 0 for all {k, ℓ} ∈ E. We construct a graph G with
the complex admittance matrix

Ykℓ := Ckℓ cos(γkℓ)− jCkℓ sin(γkℓ), ∀{k, ℓ} ∈ E.

Then, for all k ̸= 1, we have

P̂k(Θ1)− P̂k(Θ2) =
∑

ℓ:{k,ℓ}∈E

[
p̃kℓ(Θ

1)− p̃kℓ(Θ
2)
]

=
∑

ℓ:{k,ℓ}∈E

δkℓ · | sin(∆kℓ/2)vkvℓ|Ckℓ = (Mg)k = 0.

This implies that Θ1 and Θ2 are both solutions to problem (6.1) in the monotone regime
when the real power injection is

P := P̂ (Θ1).

This contradicts statement 1 that the solution is strongly unique for any real power injection.
Hence, the conditions in statement 2 must be satisfied.
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Proof of Lemma 48

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. Since the induced orientation A is not a weakly feasible orientation, there exists
a vertex i ̸= 1 such that it has nonzero out-degree and zero in-degree, or it has nonzero
in-degree and zero out-degree. Without loss of generality, assume that the vertex i has
nonzero out-degree and zero in-degree. We prove that the i-th unit vector y := ei satisfies
the conditions in statement 1 of Lemma 47. It is straightforward that y1 = 0. We only need
to show that the inequalities in (6.2) hold and at least one of them is strict. We consider
any edge (k, ℓ) such that ∆kℓ > 0. First, if k ̸= i and ℓ ̸= i, then both sides of the inequality
(6.2) are zero. Next, if k ̸= i and ℓ = i, then the condition ∆ki > 0 implies that Aki = +1,
which contradicts the assumption that i has zero in-degree. Finally, if k = i and ℓ ̸= i, the
goal is to prove that

sin(γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2) · yi
> sin(γiℓ −Θ1

iℓ/2−Θ2
iℓ/2) · yℓ.

Since yi = 1 and yℓ = 0, the above inequality is equivalent to

sin(γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2) > 0.

Recalling the assumption that Θ1
iℓ and Θ2

iℓ are in the monotone regime [−γiℓ, γiℓ], one can
write

γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2 ∈ [0, 2γiℓ] ⊂ [0, π].

Hence, it is enough to show that

γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2 ∈ (0, 2γkℓ) ⊂ (0, π).

If γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2 = 0, then it holds that

Θ1
iℓ = Θ2

iℓ = −γiℓ.

This contradicts the inequality ∆iℓ = Θ1
iℓ − Θ2

iℓ > 0. If γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2 = 2γkℓ, then it
holds that

Θ1
iℓ = Θ2

iℓ = γiℓ,

which also contradicts the inequality ∆iℓ > 0. Combining the two cases, we obtain that
sin(γiℓ + Θ1

iℓ/2 + Θ2
iℓ/2) > 0 and the inequality

sin(γiℓ + Θ1
iℓ/2 + Θ2

iℓ/2) · yi
> sin(γiℓ −Θ1

iℓ/2−Θ2
iℓ/2) · yℓ.

holds strictly. It follows that y = ei satisfies the conditions in statement 2 of Lemma 47.
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Proof of Theorem 65

Proof. Suppose that Θ1 and Θ2 are in the monotone regime and Θ2 is in the neighbourhood
of Θ1. Then, the condition in the theorem implies that Θ1 − Θ2 is not weakly feasible. By
Lemma 48, there exists a vector y ∈ R|V| such that statement 2 in Lemma 47 is satisfied.
Since this is true for every Θ2, Lemma 47 implies that the solution to problem 6.1 is strongly
unique.

Proof of Corollary 7

Proof. We only prove the strong uniqueness part since the proof for weak uniqueness is
similar. Suppose that Θ1 and Θ2 are two solutions to problem (6.1) in the monotone regime
such that Θ2 ∈ N (G,Θ1,W). Using the results of Theorem 65, we only need to show that
the induced orientation of Θ1−Θ2 is not weakly feasible. Assume conversely that the induced
orientation A is a weakly feasible orientation. Then, by hypothesis, there exists a directed
cycle (k1, . . . , kt) containing at least one normal edge such that∑

kiki+1 is normal

ωkiki+1
< 2π, (6.7)

where kt+1 := k1. We denote ∆kℓ := Θ1
kℓ −Θ2

kℓ and it follows that

0 < ∆kiki+1
≤ ωkiki+1

∀i s. t. {ki, ki+1} is normal, (6.8)

∆kiki+1
= 0 ∀i s. t. {ki, ki+1} is not normal,

where the right part of the first inequality is because Θ2 ∈ N (G,Θ1,W). Combining in-
equalities (6.7) and (6.8) yields that

0 <
t∑

i=1

∆kiki+1
=

∑
kiki+1 is normal

∆kiki+1
(6.9)

≤
∑

kiki+1 is normal

ωkiki+1
< 2π.

However, by the definition of ∆kℓ and Θkℓ, one can write

t∑
i=1

∆kiki+1
=

t∑
i=1

Θ1
kiki+1

−
t∑

i=1

Θ2
kiki+1

=
t∑

i=1

[
Θ1

ki
−Θ1

ki+1

]
−

t∑
i=1

[
Θ2

ki
−Θ2

ki+1

]
= 0,

where the second last equality is the congruence relation module 2π and the last equality is
because (k1, . . . , kt) is a cycle. This contradicts equation (6.9). Thus, the induced orientation
is not a weakly feasible orientation and the strong uniqueness holds.
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Proof of Corollary 8

Proof. Suppose that condition (6.3) is satisfied. Then, for every directed cycle (k1, . . . , kt)
containing at least one normal edge, it must hold that t ≤ e(G). Therefore, using condition
(6.3), we know ∑

{ki,ki+1} is normal

ωkiki+1
< 2π.

By Corollary 7, we obtain the desired conclusion.

Proof of Theorem 66

Proof. To prove the first inequality, we only need to notice that any feasible orientation is
also a weakly feasible orientation and the size of eye is equal to the girth when all edges are
normal.

Then, we consider the second inequality. Assume conversely that the maximal eye is
attained by a directed cycle with chords in the weakly feasible orientation A. Without loss
of generality, assume that the directed cycle (1, . . . , t) attains the maximal eye with fewest
chords, where t ≥ e(G) and {1, i} ∈ E is a chord for some i ∈ {3, . . . , t − 1}. We consider
four different cases:

1. A1,i = 0: Consider the directed cycle

(1, i, i + 1, . . . , t),

which has at most e(G) normal edges and strictly fewer chords than (1, . . . , t). This
contradicts the assumption that the cycle (1, . . . , t) is a directed cycle that attains the
size of eye with fewest chords.

2. A1,i = +1: and there exists at least one normal edge among {1, 2}, . . . , {i− 1, i}: The
directed cycle

(1, i, i + 1, . . . , t)

has at most e(G) normal edges and strictly fewer chords than (1, . . . , t). This also
contradicts the assumption on (1, . . . , t).

3. A1,i = +1 and edges {1, 2}, . . . , {i− 1, i} are not normal: Consider the directed cycle

(1, i, i− 1, . . . , 2),

which has exactly one normal edge and strictly fewer chords. By the definition of the
maximal eye, we know e(G) ≥ 1 and the cycle (1, i, i− 1, . . . , 2) has at most e(G) ≥ 1
normal edges. Hence, this contradicts the assumption on (1, . . . , t).
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4. A1,i = −1: Consider the orientation Ã defined as

Ãkℓ := −Akℓ, ∀{k, ℓ} ∈ E

and use the discussion in the first three cases.

Combining the above four cases concludes that the maximal eye of the power network G
must be attained by a chordless cycle. Hence, the maximal eye is upper bounded by the
longest chordless cycle.

6.C Proof for Three Special Cases

Proof of Lemma 49

Proof. By the definition of strong uniqueness and weak uniqueness, if a solution to prob-
lem (6.1) is strongly unique, than it is also weakly unique. We only need to consider
the other direction. Assume conversely that there exists a solution Θ1 in the monotone
regime that is weakly unique but not strongly unique. Then, there exists another solution
Θ2 ∈ N (G,Θ1,W) that is different from Θ1 according to Definition 22. Then, the phase
difference of some line is different for the two solutions. Considering the power injection
balance at each bus, we know that the phase difference is different at all lines. This means
that the two solutions Θ1 and Θ2 are different according to Definition 21, which contradicts
the assumption that Θ1 is weakly unique.

Proof of Theorem 67

Proof. The sufficient part is proved in Corollary 7 and we only prove the necessary part. In
this proof, bus n + 1 is defined as bus 1. We assume that

n∑
i=1

ωi,i+1 ≥ 2π

We construct a power network G ∈ G and power injection P such that there exist two
different solutions Θ1,Θ2 in the monotone regime and Θ2 ∈ N (G,Θ1,W). Without loss of
generality, assume that

n∑
i=1

ωi,i+1 = 2π.

This is because the construction for

W̃ :=

{
2π∑n

j=1 ωj,j+1

· ωi,i+1 : i ∈ [n]

}
.
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also works for the original W = {ωi,i+1 : i ∈ [n]} if
∑n

j=1 ωj,j+1 ≥ 2π. We define two phase
angle vectors as

Θ1
1 := 0, Θ1

i :=
i∑

j=2

ωj,j+1, ∀i ∈ {2, . . . , n},

Θ2
i := 0, ∀i ∈ [n].

Then, it follows that
Θ1

i,i+1 = ωi,i+1, Θ2
i,i+1 = 0, ∀i ∈ [n],

which means that Θ1 and Θ2 are both in the monotone regime. Since ωi,i+1, γi,i+1 ∈ (0, π/2],
we know that γi,i+1 + ωi,i+1 ∈ (0, π] and therefore, by the monotonicity of cos(·) in [0, π], we
have

cos(γi,i+1 + ωi,i+1) < cos(γi,i+1).

For each line {i, i + 1}, we define the positive constant

Ci,i+1 := |vivi+1|−1 [− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)]
−1

and the complex admittance

Bi,i+1 := sin(γi,i+1)Ci,i+1, Gi,i+1 := cos(γi,i+1)Ci,i+1.

We use p̃i,i+1(Θ) to denote the real power flow from bus i to bus i+ 1 given the phase angle
vectors Θ. Then, we can calculate that

p̃i,i+1(Θ
1)− p̃i,i+1(Θ

2)

= −Gi,i+1|vivi+1|[cos(Θ1
i,i+1)− cos(Θ2

i,i+1)]

+ Bkℓ|vivi+1|[sin(Θ1
i,i+1)− sin(Θ2

i,i+1)]

= − cos(γi,i+1)Ci,i+1|vivi+1|[cos(ωi,i+1)− 1]

+ sin(γi,i+1)Ci,i+1|vivi+1| sin(ωi,i+1)

= Ci,i+1|vivi+1| · [− cos(γi,i+1 + ωi,i+1) + cos(γi,i+1)]

= 1.

It follows that

P̂i(Θ
1)− P̂i(Θ

2)

=
[
p̃i−1,i(Θ

1)− p̃i−1,i(Θ
2)
]
−
[
p̃i,i+1(Θ

1)− p̃i,i+1(Θ
2)
]

=1− 1 = 0.

If we choose P := P̂ (Θ1), then Θ1 and Θ2 are two different solutions to problem (6.1) in
the monotone regime such that Θ2 ∈ N (G,Θ1,W) and that the strong uniqueness does not
hold.
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Proof of Lemma 50

Proof. For the notational simplicity, we denote the maximal eye and the maximal girth of
the graph (V,E,W ) as e and g, respectively. Since the graph is 2-vertex-connected, there
does not exist a degree-1 vertex. By Lemmas 51 and 52, Type II Operations do not change
the maximal eye and the maximal girth of the graph. Moreover, the graph has a nested
ear decomposition {L0, L1, . . . , Lr−1} by Theorem 68. Hence, we can assume that there is
no degree-2 vertex except the slack bus. Assume conversely that graph (V,E,W ) is the 2-
vertex-connected SP graph with minimal number of ears such that e > g. We will show that
there must exist another graph with fewer ears in the ear decomposition and e > g. This
will lead to a contradiction with our assumption that this graph has the minimal number
of ears. If the graph has at most two ears, then the graph is a single line of a cycle and we
know e = g. Hence, there exist at least three ears in the graph (V,E,W ).

Step 1. In this step, we prove that the graph has a pair of parallel edges that contains
a leaf ear, which we will define below. Since a nested ear decomposition is also a tree
decomposition, we can assign a directed tree structure to ears in the decomposition. Here,
we call an ear Lk a descendant ear of Lℓ if Lk is a descendant node of Lℓ on the directed
tree, or equivalently, both endpoints of ear Lk are on Lℓ and at least one of them is different
from the endpoints of Lℓ. We also call ear Lℓ the precedent ear of Lk. For any ear Lℓ,
we say that ear Lk is a smallest descendant ear of Lℓ if Lk is a descendant ear of Lℓ

and there does not exist another ear Li such that Li is also a descendant ear of Lℓ and the
interval formed by the endpoints of Li on Lℓ is a strict subset of the interval formed by the
endpoints of Lk. We note that each ear may have multiple smallest descendant ears. We
say that an ear is a leaf ear if it is the smallest descendant ear of some ear and has no
descendant ear. We denote the set of leaf ears as L. Considering the directed tree structure
of the ear decomposition, we know that the set L is not empty.

Suppose that Lk is a leaf ear with the endpoints k1, k2 and that Lℓ is the precedent ear of
Lk. Since we have deleted all degree-2 vertices except the slack bus, ear Lk is either a single
line {k1, k2} or two edges {k1, k3} and {k2, k3} connecting the endpoints to the slack bus k3.
Similarly, the path connecting the two endpoints of Lk on the precedent ear Lℓ, which we
denote as Pk, is either a single line or contains the slack bus. Considering the ear Lk and the
path Pk, there are two cases: two parallel edges with endpoints {k1, k2}, or one is a single
line and the other is two edges with the slack bus. If the first case occurs, we have a pair of
parallel edges containing a leaf ear. Now, we consider the second case. If we exchange the
two paths, i.e., let Pk be a leaf ear and Lk be a path on the precedent ear, then the structure
of nested ear decomposition is not changed. Hence, without loss of generality, assume that
Lk is a single line and Pk contains the slack bus. If there exists an ear Lj different from Lℓ

that also contains leaf ears, then by the uniqueness of slack bus, the first case occurs for leaf
ears on ear Lj.

Hence, we simply need to consider the case when Lℓ is the only ear that contains leaf
ears. We consider the root ear L0. By the definition of tree ear decomposition, we know
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that L0 is a single line; let ℓ1, ℓ2 be the two endpoints of L0. Since all vertices except the
slack bus have degree at least 3 and the slack bus is not an endpoint of ears, both ℓ1 and
ℓ2 have degree at least 3. This implies that the root ear L0 has at least 2 descendant ears
and all descendant ears have endpoints ℓ1, ℓ2. Let Lk1 , Lk2 , . . . , Lkm be the descendant ears
of L0. For each Lki , we define a sub-graph of (V,E,W ) consisting of ear L0 and ears that are
descendant nodes of Lki in the directed tree of ears. We can verify that each sub-graph also
has a nested ear decomposition and therefore contains at least one leaf ear, which implies
that ear Lℓ belongs to all sub-graphs. On the other hand, due to the tree structure, the
intersection of two different sub-graphs is ear L0 and is not a leaf ear. Hence, the leaf ears
in different sub-graphs are different and Lℓ = L0. It follows that all descendant ears of L0

are leaf ears and they form at least a pair of parallel edges containing a leaf ear.

Step 2. In this step, we construct a nested ear decomposition of the graph (V,E,W ) such
that there exists a pair of parallel edges that contains the root ear L0 and that all edges are
ears in the ear decomposition. According to Step 1, there exists a pair of parallel edges that
contains a leaf ear. We denote the leaf ear in the pair of parallel edges as Lk. We consider
the (undirected) cycle containing L0 and Lk. Suppose that the cycle has a non-empty edge
intersection with ears Lk0 , . . . , Lkt , where k0 = 0, kt = k and Lks+1 is a descendant ear of
Lks for s = 0, 1, . . . , t− 1. Notice that the endpoints of each ear Lks are on the cycle. Now,
we construct a new nested ear decomposition L̃0, . . . , L̃m−1 such that Lk = L̃0 is the root
ear. We define L̃0 := Lk and L̃k as the remaining part of the cycle. For ears Lks with
1 ≤ s ≤ t− 1, we define L̃ks as the ear Lks with edges on the cycle deleted. For ears that do
not intersect with the cycle, we define L̃i := Li. It is desirable to show that with the new
set of ears still forms a nested ear decomposition. To this end, we analyze three cases:

• Case I. First, it can be verified that ears L̃k1 , . . . , L̃kt−1 are nested ears on L̃kt . Hence,

ears L̃k0 , . . . , L̃kt still form a nesting structure.

• Case II. Next, we consider an ear L̃i = Li that is not changed and has both endpoints
on Lks for some s ∈ {0, 1, . . . , t − 1}. Since Lks+1 is a descendant ear on Lks , by the

definition of nested ear decomposition, we know that the endpoints of L̃i are either
both on L̃ks or both on L̃kt . For the first case, Li is an ear on L̃ks and ears on L̃ks have
the same nesting structure as Lks . For the second case, both endpoints of Lk locate
on L̃kt and are nested between the endpoints of L̃ks and L̃ks−1 . We note that for the
case when s = 0, both endpoints are equal to the endpoints of L0 and they form the
smallest possible interval on L̃kt . Hence, ears on L̃kt also have a nested structure.

• Case III. Finally, we consider ears that are not changed and do not have endpoints
on Lks for any s = 0, . . . , t. These ears still form a nested structure on the original
precedent ear and the nested ear decomposition structure is not changed.

Combining the above three cases concludes that the new set of ears is also a nested ear
decomposition. Moreover, the topological structure of the graph is not changed. Hence, in
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the new ear decomposition, the root ear L̃0 = Lk has parallel edges. Finally, we observe that
the parallel edges of the root ear are also ears in the ear decomposition.

Step 3. Suppose that the maximal eye is achieved by the weakly feasible orientation A.
In this step, we show that we can modify A such that each edge with direction 0 is incident
to a degree-0 vertex and the size of eye is not changed. Here, the degree is calculated for the
directed graph with orientation A and all edges with orientation 0 are not counted towards
the degree. We define a partition of vertices as

V1 := {k ∈ V | deg(k) > 0 or k is the slack bus},
V2 := {k ∈ V | deg(k) = 0 and k is not the slack bus}

and a partition of edges as

E1 := {{k, ℓ} ∈ E | Akℓ ∈ {+1,−1}},
E2 := {{k, ℓ} ∈ E | Akℓ = 0, k ∈ V1 and ℓ ∈ V1},
E3 := {{k, ℓ} ∈ E | Akℓ = 0, k ∈ V2 or ℓ ∈ V2}.

Then, the objective is to show that there exists a weakly feasible orientation such that the
size of eye is still e and the set E2 is empty. For any edge {k, ℓ} ∈ E2, we can arbitrarily
assign direction +1 or −1 to the edge and the orientation is still weakly feasible. This is
because for vertices in V1, the requirement on in-degree and out-degree is satisfied by other
edges. More specifically, if the degree of k or ℓ is nonzero, then by the definition of weakly
feasible orientation, the vertex already has nonzero in-degree and out-degree. Otherwise,
if k or ℓ is the slack bus, then the in-degree and out-degree can be arbitrary. Thus, we
can arbitrarily assign directions +1 or −1 to all edges in E2 and the new orientation is still
weakly feasible. We define a new orientation as

Ãkℓ :=

{
+1 if k > ℓ

−1 otherwise
, ∀{k, ℓ} ∈ E2,

Ãkℓ := Akℓ, ∀{k, ℓ} ∈ E1 ∪ E3.

We prove that with orientation Ã, the size of eye is not changed. Let (k1, . . . , kt) be a
directed cycle in the graph with orientation Ã. If some edges of this cycle are in E1 ∪ E3,
then this cycle also exists in the graph with A. By assigning directions ±1 to edges with
direction 0, the lengths of the cycles are not decreased and therefore the length of (k1, . . . , kt)
is at least e under the orientation Ã. If all edges of this cycle are in E2, then we choose the
minimal index in {k1, . . . , kt}, which is assumed to be k1 without loss of generality. By the
definition of Ã, the edge {k1, k2} has orientation Ãk1k2 = −1, which contradicts the fact that
(k1, . . . , kt) is a directed cycle with Ã. Combining the above two cases, it can be inferred
that the size of eye with orientation Ã is at least e. On the other hand, e is defined to be
the maximal eye. Hence, the size of eye with orientation Ã is equal to e.
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Step 4. In this step, we prove that the maximal eye is equal to the maximal girth. Suppose
that the maximal eye is achieved by the weakly feasible orientation A and orientation A
satisfies the conditions in Steps 2-3. We consider the set of parallel edges containing the root
ear, which we denote as {k, ℓ, 1}, . . . , {k, ℓ, t} for some t ≥ 2. We analyze two different cases:

• Case I. If there exists at least one parallel edge having direction 0, then by the
conditions in Step 3, we know that at least one of the endpoints k, ℓ has degree 0. This
means that all parallel edges have direction 0. We construct another graph (Ṽ, Ẽ, W̃ ),
where the parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} are substituted by a single edge {k, ℓ}
and the weight of the new edge is the minimal weight among all parallel edges, i.e.,

W̃kℓ := min
s∈[t]

Wk,ℓ,s.

Other edges are the same as those in the original graph. We construct a weakly feasible
orientation Ã for the new graph. For the edge {k, ℓ}, we define

Ãkℓ := 0.

For other edges, we define

Ãk1ℓ1 := Ak1ℓ1

∀{k1, ℓ1} ∈ E\{{k, ℓ, 1}, . . . , {k, ℓ, t}}.

Since the orientations Ã and A have the same degree at each node, Ã also becomes
weakly feasible. Moreover, the size of eye of the graph with Ã is also equal to e, which
implies that the maximal eye of the new graph ẽ is at least e. Since the new graph
(Ṽ, Ẽ, W̃ ) has t − 1 fewer ears, the induction assumption implies that the maximal
girth of the new graph g̃ satisfies

g̃ = ẽ ≥ e.

Hence, we can choose a feasible orientation Ãg such that the girth is equal to g̃. Now,
we extend the feasible orientation Ãg to be a feasible orientation of the original graph
(V,E,W ). We define

Ag
k1ℓ1

:= Ãg
k1ℓ1

∀{k1, ℓ1} ∈ E\{{k, ℓ, 1}, . . . , {k, ℓ, t}}

and
Ag

k,ℓ,s := Ãg
kℓ, ∀s ∈ [t].

Since the in-degree and out-degree at points k, ℓ are still nonzero for the orientation Ag,
it can be concluded that Ag is a feasible orientation for the original graph. Moreover,
the girth of the original graph with orientation Ag is equal to g̃. It follows that the
maximal girth g is at least g̃ ≥ e. This contradicts the assumption that e > g.
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• Case II. Next, we consider the case when all parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} are
normal edges. In this case, the goals is to construct a feasible orientation with the
same size of eye by assigning directions to edges with direction 0. We first construct a
feasible orientation Ã. Assume that L0 = {k, ℓ, 1} is the root ear, and define

Ãk,ℓ,1 := Ak,ℓ,1,

Ãk,ℓ,s := −Ak,ℓ,1, ∀s ∈ {2, . . . , t}.

Then, we inductively define the directions of other ears using the directed tree structure
of ears. For any ear Lk that has been assigned a direction, we assign its descendant ear
Lℓ with the parallel direction as the path formed by the endpoints of Lℓ on Lk. In this
way, the orientation Ã is defined for all ears and the definition is unique because of
the directed tree structure. Considering the structure of the nested ear decomposition,
we also know that all directed cycles in orientation Ã must contain the root ear. In
addition, the orientation Ã is feasible. This is because all internal vertices of ears
have nonzero in-degree and nonzero out-degree. The only vertices that are not internal
vertices of ears are the endpoints of the root ear. For the endpoints of the root ear,
they also have nonzero in-degree nonzero and out-degree by the definition of directions
on parallel edges. Hence, the constructed orientation Ã is feasible.

We then define an orientation that combines orientations A and Ã as follows:

Ag
kℓ :=

{
Akℓ if Akℓ ∈ {+1,−1}
Ãk,ℓ if Akℓ = 0,

, ∀{k, ℓ} ∈ E.

We prove that Ag is a feasible orientation and the girth of orientation Ag is at least e.
For any vertex k that has a nonzero degree in orientation A, the vertex k has nonzero
in-degree and out-degree by the definition of weakly feasible orientation. Hence, the
vertex k also has nonzero in-degree and out-degree in the new orientation. If the vertex
has degree 0 in the orientation A, then all edges incident to the vertex k has the same
direction as in Ã. Since the orientation Ã is feasible, the vertex k has nonzero in-
degree and nonzero out-degree in the new orientation Ag. Combining the two cases,
it can be concluded that the orientation Ag is feasible. Now, we estimate the girth of
orientation Ag. We consider any directed cycle C in Ag. If the cycle C has normal
edges in the original orientation A, then the length of cycle C is not decreased in the
new orientation and therefore is at least e. If the cycle C does not have normal edges
in the original orientation A, then all edges of C have the same direction as in Ã and
therefore is also a cycle in in Ã. This implies that the root ear L0 is on the cycle
C. However, the root ear is a normal edge in orientation Ã and this contradicts the
assumption that none of the edges of the cycle C are normal. Thus, the girth of Ag

is at least e. On the other hand, the girth of a feasible orientation is bounded by the
maximal girth g. This contradicts the assumption that e > g.
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Combining the above two cases and using the induction method, it can be concluded that
the maximal eye of a 2-vertex-connected SP graph is equal to its maximal girth.

Proof of Theorem 70

Proof. We only prove the strong uniqueness part since the proof for the weak uniqueness is
similar. We only need to show that statement 2 of this theorem holds if and only if statement
2 of Lemma 47 holds.

Proof of sufficiency. We assume conversely that there exist two sets of phase angle vectors
Θ1 and Θ2 satisfying statement 2 of Lemma 47 such that the induced sub-graph of Θ1 −Θ2

denoted as (V0,E0, A0) has the same number of strongly connected components and weakly
connected components. Let y be a vector that satisfies conditions in statement 2 of Lemma
47. We prove that if vertices k and ℓ are in the same connected component, then yk = yℓ.
By the definition of strongly connected components, there exist directed paths from k to
ℓ and from ℓ to k. We first consider the directed path from k to ℓ, which we denote as
(k, k1, . . . , kt, ℓ). Considering the edge {k, k1} and inequality (6.2), one can write

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) · yk (6.10)

≥ sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) · yk1 .

By the same analysis in Lemma 48, the condition ∆k,k1 > 0 implies that Θ1
k,k1

/2 + Θ2
k,k1

/2 ∈
(−π/2, π/2), which leads to

sin(π/2 + Θ1
k,k1

/2 + Θ2
k,k1

/2) (6.11)

= sin(π/2−Θ1
k,k1

/2−Θ2
k,k1

/2) > 0.

Combining the relations in (6.10) and (6.11), we obtain yk ≥ yk1 . Considering edges
{k1, k2}, . . . , {kn, ℓ} and using the same analysis, we have

yk ≥ yk1 ≥ yk2 ≥ · · · ≥ ykt ≥ yℓ,

and therefore yk ≥ yℓ. Similarly, the existence of a directed path from yℓ to yk implies that
yℓ ≥ yk. Combining the two directions, we obtain yk = yℓ. If we further assume {k, ℓ} ∈ E0

and ∆kℓ > 0, then the relation in (6.11) implies that inequality (6.2) holds with equality for
{k, ℓ}. By the definition of weakly connected components, there does not exist any edge in
E0 connecting different connected components. Hence, the endpoints of all edges in E0 are
in the same connected component and therefore inequality (6.2) holds with equality for all
{k, ℓ} ∈ E0 such that ∆kℓ > 0. Finally, by the definition of induced sub-graph, E0 contains
all edges {k, ℓ} ∈ E such that ∆kℓ > 0. It follows that inequality (6.2) holds with equality
for all {k, ℓ} ∈ E such that ∆kℓ > 0. This contradicts statement 2 of Lemma 47 that there
exists at least one strict inequality in the set of inequalities (6.2). Hence, statement 2 of this
theorem holds.
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Proof of necessity. Assume that the conditions in statement 2 of this theorem hold. We
denote the strongly connected components as C1, . . . , Cm. Now, we define a tree structure
for the set {C1, . . . , Cm}. For two different strongly connected components Cs and Ct, if there
exists a directed path from Cs to Ct, we define a directed edge from Ct to Cs. Considering
all strongly connected components pairs, we obtain a directed graph with the vertex set
{C1, . . . , Cm}. By the definition of strongly connected components, we know that there does
not exist directed cycle in this directed graph and therefore this directed graph is a directed
tree. Using the directed tree structure, we can choose m real numbers c1, . . . , cm such that
if there exists a directed path from Ct to Cs, then it holds that ct > cs. Moreover, if vertex 1
belongs to some strongly connected component Cs, then we can shift ct for all t ∈ [m] such
that cs = 0 and the relation between all ct’s is not changed. If vertex 1 does not belong to
any strongly connected component, we do not change the value of ct.

We construct a vector y ∈ R|V| by

yk :=

{
cs if k is in Cs
0 if k ∈ V\V0.

Note that the set of strongly connected components gives a disjoint partition of the set V0.
Hence, the vector y is well-defined. By the choice of {c1, . . . , cm}, the vector y satisfies
y1 = 0. Suppose that the edge {k, ℓ} belongs to E and ∆kℓ > 0. We verify that inequality
(6.2) holds for {k, ℓ}, namely,

sin(π/2 + Θ1
kℓ/2 + Θ2

kℓ/2) · yk
≥ sin(π/2−Θ1

kℓ/2−Θ2
kℓ/2) · yℓ.

Recalling that the relation (6.11) holds for all {k, ℓ} such that ∆kℓ > 0, we only need to
verify

yk ≥ yℓ, ∀{k, ℓ} ∈ E0 s. t. ∆kℓ > 0. (6.12)

By the definition of induced sub-graph, the condition ∆kℓ > 0 implies that {k, ℓ} ∈ E0. Thus,
vertices k and ℓ must belong to certain strongly connected components. If k and ℓ belong to
the same strongly connected component Cs, then yk = yℓ = cs and inequality (6.12) holds.
Otherwise, we assume that k and ℓ belong to two different strongly connected components
Cs and Ct, respectively. Since (k, ℓ) is a directed path from Cs to Ct, one can write

yk = cs > ct = yℓ

and inequality (6.12) holds strictly. By the assumption that there are strictly more strongly
connected components than weakly connected components, there exists at least one edge
{k, ℓ} ∈ E0 such that k and ℓ belong to different strongly connected components. Without
loss of generality, assume that ∆kℓ > 0. Then, the inequality (6.12), or equivalently the
inequality (6.2), holds strictly for {k, ℓ}. This shows that y is a vector that satisfies conditions
in statement 2 of Lemma 47.
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6.D Proof for Iterative Series-Parallel Reduction

Method

Proof of Lemma 51

Proof. We prove the four claims separately.

Type I Operation. We first consider the inequality on the right. We denote the two
endpoints as k, ℓ and the parallel edges connecting them as {k, ℓ, 1}, . . . , {k, ℓ, t} for some
t ≥ 2. Without loss of generality, assume that the weights of parallel edges satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.

Suppose that the maximal eye of graph (V,E,W ) is achieved by the weakly feasible orien-
tation A. If there exist different directions among these parallel edges when orientation A
is assigned, then we choose the first edge {k, ℓ, 1} and another edge {k, ℓ, s} such that the
direction of {k, ℓ, s} is different from the direction of {k, ℓ, 1}. Hence, {k, ℓ, 1} and {k, ℓ, s}
form a directed cycle and two edges have different directions. Then, at least one edge is a
normal edge, i.e., an edge with direction +1 or −1. The weight of the cycle is bounded by
Wk,ℓ,1 + Wk,ℓ,s ≤ Wmax + Wmin. Thus, it holds that e ≤ Wmax + Wmin in this case. Other-
wise, assume that all parallel edges have the same direction when orientation A is assigned.
Considering a directed cycle that contains the edge {k, ℓ, s} for some s ∈ {2, . . . , t}, we can
substitute the edge {k, ℓ, s} with edge {k, ℓ, 1} and the length of the directed cycle is not
increased. Hence, if we delete edges {k, ℓ, 2}, . . . , {k, ℓ, t}, the size of eye is not changed.
On the other hand, the deletion of edges {k, ℓ, 2}, . . . , {k, ℓ, t} is equivalent to the Type I
Operation on the set of parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}. Hence, we obtain e = ẽ in this
case. Combining the two cases, it follows that e ≤ max{ẽ,Wmax + Wmin}.

We now prove the inequality on the left. Suppose that the maximal eye of the new
graph (Ṽ, Ẽ, W̃ ) is achieved by the weakly feasible orientation Ã. By the definition of Type I
Operations, the weight W̃k,ℓ is equal to the weight Wk,ℓ,1. We consider the inverse operation
of Type I Operation. Namely, we add parallel edges {k, ℓ, s} with weight Wk,ℓ,s to the new
graph and define the direction Ãk,ℓ,s := Ãk,ℓ,1 for all s ∈ {2, . . . , t}. Then, the orientation
Ã becomes a weakly feasible orientation for the original graph. By the discussion for the
inequality on the right, the inverse operation will not change the size of eye. Therefore, we
have a weakly feasible orientation for (V,E,W ) and the size of eye is ẽ, which implies that
e ≥ ẽ.

Type II Operation. We consider the case when a Type II Operation is implemented. We
denote the deleted degree-2 vertex as k. By the definition of Type II Operations, vertex k
has two neighbouring vertices and we denote the two neighbouring vertices as ℓ1 ̸= ℓ2. If
A is a weakly feasible orientation for (V,E,W ), then the direction Aℓ1,k must be equal to
the direction Ak,ℓ2 . Hence, treating the two edges {ℓ1, k} and {k, ℓ2} as a single edge with
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weight Wℓ1,k + Wk,ℓ2 will not change the size of eye. Noticing that the claim is true for any
weakly feasible orientation A, we know that e = ẽ.

Type III Operation with a pendant vertex. Removing a pendant vertex will not
affect the maximal eye, since any directed cycle does not contain pendant vertices. Thus,
we conclude that e = ẽ.

Type III Operation with a non-pendant vertex. Finally, we consider the case when
the deleted vertex has degree at least 2. We denote the deleted vertex as k and denote
the only neighbouring vertex as ℓ. The parallel edges connecting k and ℓ are denoted as
{k, ℓ, 1}, . . . , {k, ℓ, t} for some t ≥ 2. Similar to the Type I Operation case, assume that the
weights of parallel edges satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.

We can split the deletion of vertex k into two operations. We first substitute parallel edges
{k, ℓ, 1}, . . . , {k, ℓ, t} with a single edge {k, ℓ} with weight Wk,ℓ,1. Then, we delete the pendant
vertex k. The two operations can be viewed as Type I and Type III Operations, respectively.
Using the results in the first case and the third case, one can write

ẽ ≤ e ≤ max{ẽ,Wmax + Wmin}.

Hence, it remains to prove that e ≥ Wmax + Wmin. We can construct a weakly feasible
orientation such that size of eye is Wmax + Wmin. Specifically, we define

Ak,ℓ,s := +1, ∀s ∈ {1, . . . , t− 1}, Ak,ℓ,t := −1

and all other edges are assigned the direction 0. Then, vertices k and ℓ have nonzero in-
degree and out-degree, while other vertices have zero in-degree and out-degree. Hence the
orientation A is weakly feasible. Now, consider directed cycles with at least one normal edge.
Since parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} are the only normal edges, the directed cycle must
contain at least one of these parallel edges. Using the facts that ℓ is the only neighbouring
vertex of k and directed cycles do not have repeated vertices, vertices k and ℓ are the only
two vertices of the directed cycle. Hence, the size of eye should be the the minimal length
of such directed cycles, which is Wk,ℓ,1 + Wk,ℓ,t = Wmax + Wmin. Thus, it follows that
e ≥ Wmax + Wmin.

Combining the two parts yields that e = max{ẽ,Wmax + Wmin}.

Proof of Theorem 71

Proof. We first consider the upper bound. Using Lemma 51, the upper bound on the maximal
eye can be either the maximal eye of the reduced graph or Wmax + Wmin, where Wmax and
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Wmin are defined in Lemma 51. Since max{α1, α2} is the maximal value of Wmax + Wmin

appeared during the reduction, we know the upper bound is given by max{eR, α1, α2}.
Then, we consider the lower bound. If Type-III operation is implemented, the maximal

eye is changed to be the maximum of the maximal eye of the new graph and Wmax + Wmin.
In addition, since the maximal eye is not decreased after each reduction, we get the lower
bound max{eR, α2}.

Proof of Lemma 52

Proof. The first three claims can be proved in the same way as Lemma 51 and we only prove
the last two claims. We denote the deleted vertex as k and its only neighboring vertex as ℓ.
The parallel edges connecting k and ℓ are denoted as {k, ℓ, 1}, . . . , {k, ℓ, t} for some t ≥ 2.
Without loss of generality, assume that the weights of parallel edges satisfy

Wmin = Wk,ℓ,1 ≤ · · · ≤ Wk,ℓ,t = Wmax.

Type III Operation for slack node. We first consider the case when the deleted vertex
is a slack node. By discussing whether parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t} have the same
direction as in the first claim in Lemma 51, it holds that g ≤ max{g̃,Wmax + Wmin}.

We prove the other inequality g̃ ≤ g by constructing a feasible orientation A such that
the girth is g̃. Suppose that the maximal girth of the new graph (Ṽ, Ẽ, W̃ ) is achieved
by the feasible orientation Ã. We define directions for deleted parallel edge such that the
orientation Ã becomes a feasible orientation of the original graph (V,E,W ). We note that,
by the definition of Type III Operations, the vertex ℓ is a slack node in the new graph and it
may not satisfy the condition on in-degree and out-degree. If the vertex ℓ in the new graph
with orientation Ã has nonzero in-degree, then we define

Ãk,ℓ,s := −1, ∀s ∈ {1, . . . , t}.

Then, the vertex ℓ has both nonzero in-degree and nonzero out-degree. Since the vertex
k is a slack node, the orientation Ã becomes a feasible orientation for the original graph
(V,E,W ). By the construction of Ã, the vertex k only has nonzero in-degree and therefore
there does not exist any directed cycle containing parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}. It
follows that the girth is not changed and is equal to g̃. If the vertex ℓ in the new graph with
orientation Ã has nonzero out-degree, then we can similarly define

Ãk,ℓ,s := +1, ∀s ∈ {1, . . . , t}.

The orientation Ã also becomes a feasible orientation for the original graph and the girth is
g̃. Combining the two cases concludes that e ≥ g̃.
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Type III Operation for non-slack node. We then consider the case when the deleted
vertex is not a slack node. Suppose that the maximal girth of the original graph (V,E,W ) is
achieved by the feasible orientation A. Since the vertex k has nonzero in-degree and nonzero
out-degree, there must exist different directions among parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}.
Hence, by the same analysis as the first claim in Lemma 51, it holds that g ≤ Wmax +Wmin.
Now, we consider restricting the orientation A to the new graph(Ṽ, Ẽ, W̃ ). Since the vertex
ℓ is a slack node in the new graph and the orientation A is not changed for other vertices,
the orientation A becomes a feasible orientation for the new graph. Then, by the definition
of the maximal girth, there exists a directed cycle in the new graph with length at most
g̃. Hence, we conclude that g ≤ g̃. Combining the two inequalities, it follows that g ≤
min{g̃,Wmax + Wmin}.

Now, it remains to prove g ≥ min{g̃,Wmax + Wmin}. Suppose that the maximal girth of
the new graph (Ṽ, Ẽ, W̃ ) is achieved by the feasible orientation Ã. We extend the orientation
Ã to be an orientation for the original graph by defining

Ak,ℓ,s := +1, ∀s ∈ {1, . . . , t− 1}, Ak,ℓ,t = −1.

Since both vertices k, ℓ have nonzero in-degree and nonzero out-degree and the orientation
at other vertices is not changed, the orientation A becomes a feasible orientation for the
original graph. Now, we calculate the girth of the original graph. For any directed cycle that
does not contain parallel edges {k, ℓ, 1}, . . . , {k, ℓ, t}, it is also a directed cycle in the new
graph and has length at least g̃. For any directed cycle that contains at least one of those
parallel edges, vertices k and ℓ are the only two vertices of the directed cycle, since there
does not exist repeated vertices on directed cycles. Hence, the length of the directed cycle
is at least Wk,ℓ,1 + Wk,ℓ,t = Wmax + Wmin. Combining the two cases yields that the girth is
at least min{g̃,Wmax + Wmin} and therefore g ≥ min{g̃,Wmax + Wmin}.

Proof of Theorem 72

Proof. The proof is similar to that of Theorem 71 and we omit it.

Proof of Theorem 73

Proof. We prove that Type I-II Operations are enough for reducing a 2-vertex-connected
SP graph to a single edge. Since Type I-II Operations do not introduce new slack nodes,
there exists at most one slack node in the graph throughout the reduction process. By the
assumption that the graph is a 2-vertex-connected SP graph, Theorem 68 implies that there
exists a nested ear decomposition (L0, . . . , Lr−1) of the graph. We use the induction method
on the number of ears in the ear decomposition. If there are only one ear or two ears in the
ear decomposition, then the result holds trivially. We assume that any 2-vertex connected
SP graphs with at most r− 1 ears in the ear decomposition can be reduced to a single edge
with Type I-II Operations.
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Now, we consider the case when there are r ears in the ear decomposition. We first
implement Type II Operations until there is no degree-2 vertices except the slack bus. Since
Type II Operations will not change the structure of the nested ear decomposition, the new
graph still has a nested ear decomposition with at most r ears in the decomposition. By the
first step in the proof of Theorem 50, there exists a set of parallel edges containing the root
ear or a leaf ear. We analyze two different cases:

Case I. Assume that there exists a set of parallel edges containing a leaf ear. We denote
the leaf ear as Ls = {k, ℓ}. Let Lt be the precedent ear of Lt. Then, then set of parallel ears
consists of the segment kℓ on ear Lt and leaf ears on Lt. We can apply a Type I Operation
to substitute the set of parallel edges with a single edge. We can view the new edge as the
segment kℓ on ear Lt. Then, at least leaf ear is deleted and the new graph has a nested ear
decomposition with at most r− 1 ears. By the induction assumption, the new graph can be
reduced to a single edge with Type I-II Operations. Thus, the original graph can be reduced
to a single edge with Type I-II Operations.

Case II. Assume that there exists a set of parallel edges containing the root ear. Then
by the same construction in the second step in the proof of Theorem 50, we can change the
root ear to a leaf ear. Hence, we obtain a set of parallel edges containing a leaf ear and we
can apply the discussion in Case I.

Combining the two cases, it follows that the result is true when there are r ears in the
ear decomposition. By the induction method, the result is true for any r ≥ 1 and the ISPR
method can reduce a 2-vertex-connected SP graph to a single edge.
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Chapter 7

Distributionally Robust Optimization
for Chance-Constrained Optimal
Power Flow

7.1 Introduction

Developing resilient algorithms for the Optimal Power Flow (OPF) problem is fundamen-
tal to efficient and reliable decision-making in large-scale energy systems. The OPF problem
consists of minimizing some objective, including but not limited to generation costs, subject
to the physics of the power network as well as additional constraints on power quality, safety,
and reliability. Independent system operators solve OPF at several timescales, from hours
to minutes ahead of the dispatch time, in order to manage the market and match supply to
demand. Traditionally, the primary source of uncertainty in OPF was stochastic loads. This
uncertainty was handled through forecasts which were accurate enough that mismatches be-
tween supply and demand could be handled in real-time without a significant deviation from
nominal network and market conditions. However, given the ongoing emergence of inter-
mittent renewable generation, more sophisticated methods will be necessary to ensure that
decisions can be made as efficiently as possible while being robust to large forecast errors.

The randomness in the constraints prohibits the application of optimization algorithms
for deterministic problems and most stochastic optimization algorithms, which are often
applicable to optimization problems that only contain randomness in the objective function.
The robust optimization approach was proposed in [115] and [151] to find the worst-case
solution, namely, the optimal decision that satisfies all constraints for all possible realizations
of the randomness in the system. The robust optimization approach produces the most
conservative solution and results in a high operational cost.

To improve the efficiency of the operation of power systems, it is often preferable to
allow a small user-specified probability of violating the constraints in the OPF solution in
exchange for a much better operational cost (small violations will later be handled via a
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real-time control mechanism). Chance-constrained OPF (CCOPF) is a natural formulation
for balancing the trade-off between efficiency and robustness [194]. In CCOPF, system
operators attempt to find the minimum-cost solution which violates the constraints with
a probability at most equal to a pre-defined parameter named the violation probability.
Chance-constrained methods avoid the conservativeness associated with robust optimization,
which insures an operating point that is feasible for all possible realizations of a system’s
forecast errors. Please refer to [194] and [223] for popular formulations of CCOPF.

A challenge for CCOPF is that the true underlying distribution of the random parameters
is generally unknown and must be inferred from historical data. A conventional approach is
the sample average approximation [178], which is easily applicable but may lead to a high-
variance estimate of the true distribution. The scenario approach lower-bounds the number
of samples required to achieve a given degree of confidence in the probability of satisfying
the chance constraints [31] and is employed for CCOPF in [194] and [223]. However, the
scenario approach is sample-intensive, may be overly conservative, and is often computa-
tionally complex. Additionally, more sample-efficient methods allow for samples over larger
time horizons (i.e., a day instead of an hour) to be aggregated into a single realization of a
random vector, which could reduce bias if forecast errors follow temporal patterns.

Distributionally robust optimization (DRO) alleviates the issue of unknown true distribu-
tions by enforcing the chance constraints for all distributions in an ambiguity set centered, in
the sense of some characteristic metric of probability distributions, around the empirical dis-
tribution [190]. The idea is that, given enough samples, the true distribution is highly likely
to fall inside the ambiguity set. A number of papers have applied distributionally robust
optimization to OPF or related problems in energy systems. The authors of [154, 250, 231,
235] employ moment-based ambiguity sets containing probability distributions with the first
and second moments close to those of the empirical distribution. Li et al. [144] add a uni-
modality assumption to the moment-based sets to reduce the conservatism. Moment-based
ambiguity sets often yield exact tractable reformulations of the chance-constrained program,
but they lose information about the true distribution revealed through other features of the
data. Metric-based ambiguity sets, by contrast, are constructed using measures of distance
between probability distributions, most often the Wasserstein metric, and are more expres-
sive. The metric-based approach has the advantage that various statistical consistency and
convergence guarantees can be established for DRO estimators [166, 222]. To reformulate
the chance constraints as tractable constraints, inner approximations of Wasserstein metric-
based ambiguity sets, such as hyper-cubes [63] and polytopes [255], have previously been
studied. However, these inner approximations are overly conservative in practice and lead
to pessimistic estimations.

All of the aforementioned DRO approaches are designed for disjoint chance constraints,
in which each constraint individually must be satisfied with a given probability. The chance
constraints in CCOPF are formulated disjointly for each two-sided constraint [255, 235, 63]
or separately for each upper and lower bound [154, 144, 250]. Joint chance constraints, by
contrast, require that a solution be feasible, that is, satisfies all constraints simultaneously,
with a given probability. Given the same violation probability, joint chance constraints are
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clearly stronger than disjoint chance constraints. Joint chance constraints can be guaranteed
by applying the Boole inequality to appropriately scaled disjoint chance constraints; see [16].
However, this approach is highly conservative and does not exploit the potential correlation
between random variables in different constraints. Intuitively, when the randomness between
constraints is highly correlated, joint chance constraints can be satisfied at a cost that is only
slightly higher than that of the chance constraint of a single stochastic constraint. Yang et
al. [240] build on the Boole inequality approach and achieve an inner approximation of a
moment-based ambiguity set for the joint case.

The particularly interesting line of work [93, 92, 186, 12] is inspired by [166], which
provides a reformulation of Wasserstein metric-based DRO problems using conditional value-
at-risk (CVaR). The two-part work [93]-[92] is the first to apply the CVaR reformulation to
OPF by penalizing constraint violations in the objective function; however, this is not a
chance-constrained approach and cannot guarantee the satisfaction of the constraints in any
well-defined sense. Poolla et al. [186] approximate the joint chance constraints using the
Boole inequality and reformulate them using CVaR. To achieve the reformulation, the authors
use an inner approximation of the ambiguity set via a hyper-rectangle in the parameter space.
Arab et al. [12] improve on [186] by using an ellipsoidal approximation, which reduces the
conservativeness by exploiting the correlation between random variables. While the ellipse
approximation improves on the hyper-rectangle approximation, the method in [12] remains
overly conservative as a consequence of mismatch between the inner approximation and the
ambiguity set; see Section 7.4 for numerical illustrations. To address the above issues, we
build upon our conference paper [27] tailored to a class of non-convex problems using DRO
to study the CCOPF problem. Compared to [27], we develop strong theoretical results in the
context of power systems for both the joint and disjoint cases, and we numerically illustrate
the performances of our approach on benchmark IEEE power systems.

In this chapter, we expand upon the existing findings related to the DRO approach
for CCOPF. Inspired by [222], we use a relative entropy-based ambiguity set in our DRO
formulation and establish stronger theoretical guarantees than those in existing literature.
Then, we apply the approximation of the chance-constraints from Roald et al. [194] and the
semi-definite relaxation from Low et al. [153] to reformulate the problem as a mixed-integer
program, which can be handled by existing optimization solvers. Moreover, we implement
the algorithms on benchmark OPF problem instances, showcasing the advantages of our new
formulation. We summarize our contributions in the following:

• Instead of the commonly used Wasserstein metric, our DRO formulation utilizes a
relative entropy-based ambiguity set. We prove that the relative entropy-based for-
mulation admits the least conservative DRO solution in the sense that the solution
achieves the minimum possible generation cost under a certain asymptotic bound on
out-of-sample performance.

• We provide the first exact reformulation of joint distributionally robust chance con-
straints over the ambiguity set. By comparison, existing works construct an approxi-
mation set of the ambiguity set and/or only consider disjoint chance constraints, which
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Chance-constrained Joint Metric-based Exact Reformulation
[154] ✓ ✗ ✗ ✓
[255] ✓ ✗ ✓ ✗
[235] ✓ ✗ ✗ ✓
[63] ✓ ✗ ✓ ✗
[250] ✓ ✗ ✗ ✓
[144] ✓ ✗ ✗ ✓
[240] ✓ ✓ ✗ ✗

[93, 92] ✗ - ✓ ✓
[186] ✓ ✓ ✓ ✗
[12] ✓ ✓ ✓ ✗

Chapter 7 ✓ ✓ ✓ ✓

Table 7.1.1: Comparison of relevant chance-constrained OPF literature.

makes it challenging to control the trade-off between the efficiency and robustness of
the solution. In our formulation, the balance can be effectively controlled by an input
parameter. In addition, our reformulation always leads to a feasible problem, while
existing approaches cannot guarantee the feasibility.

• We empirically compare the performance of our DRO approach with the state-of-the-art
approach in [12] on the IEEE 14- and 118-bus test cases. We show that our approach is
able to find more reliable and efficient solutions satisfying the joint chance constraints,
while the approximation algorithm in [12] leads to overly conservative solutions.

Table 7.1.1 summarizes the relevant existing literature on DRO for power systems (most,
but not all, of the listed papers focus on OPF) and illustrates our contributions. It is
worth mentioning that all works in Table 7.1.1 except [12] use the common linearized DC
approximation of the nonlinear power flow equations, though this approximation is not
always coupled to the specific handling of chance constraints. In comparison, we consider
the full ACOPF problem in this chapter.

The remainder of the chapter is organized as follows. In Section 7.2, we first introduce
the AC OPF problem and the corresponding joint chance constraint. Reformulations of
the chance-constrained AC OPF problem, including the distributionally robust optimization
approach, are derived in Section 7.3. Finally, in Section 7.4, we implement the proposed
algorithm to verify the theory and illustrate the superior empirical performances compared
with existing algorithms. The proofs are provided in the appendix.

7.2 AC OPF Problem and Chance Constraints

In this section, we first introduce the notation for system variables and parameters in
power flow equations. Then, we formulate the deterministic AC OPF problem as a quadrati-
cally constrained quadratic program (QCQP). Finally, we consider the stochastic OPF prob-
lem, where the system status is subject to random power injections. We formally define the
joint and disjoint chance constraints and formulate the chance-constrained OPF problem.
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QCQP Formulation of Deterministic AC OPF

Here, we present the deterministic AC OPF problem, namely, the AC OPF problem
without unforecasted power injections, as a QCQP. Our formulation and most of our notation
is based on [137]. Consider a power system with the set of buses N := [n]. Define the system
variables and parameters:

• V ∈ Cn: Vector of complex bus voltages.

• I ∈ Cn: Vector of complex nodal current injections.

• Y ∈ Cn×n: Network admittance matrix, constructed such that I = YV.

• PD, QD ∈ Rn: Vectors of active and reactive loads, respectively. If bus k has no load,
the k-th components are zero.

• P
G
, PG ∈ Rn: Vectors of upper and lower active generation limits, respectively. If bus

k has no generator, the k-th components are zero.

• Q
G
, QG ∈ Rn: Vectors of upper and lower reactive generation limits, respectively. If bus

k has no generator or dispatchable reactive compensation device, the k-th components
are zero.

• V , V ∈ Rn: vectors of upper and lower voltage magnitude limits, respectively.

• ckd: The d-th degree coefficient of the quadratic cost function for the k-th generator,
where d ∈ {0, 1, 2}.

Conventional OPF formulations consider fixed loads and dispatchable generators. To sim-
plify the notation, the formulation used in this chapter incorporates renewable generators
(without curtailment) into the load vectors as negative loads. Conversely, centrally dispatch-
able demand responses can be incorporated into the generator limits through appropriate
adjustments.

To formulate the OPF problem as an optimization problem with real variables, we define
the real vector

X :=

[
ℜ{V}
ℑ{V}

]
∈ R2n.

Additionally, for each k ∈ N, we define the following matrices:

Yk := eke
T
k Y,

Yk :=
1

2

[
ℜ{Yk + Y T

k } ℑ{Y T
k − Yk}

ℑ{Yk − Y T
k } ℜ{Yk + Y T

k }

]
,

Yk := −1

2

[
ℑ{Yk + Y T

k } ℜ{Yk − Y T
k }

ℜ{Y T
k − Yk} ℑ{Yk + Y T

k }

]
,
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Mk :=

[
eke

T
k 0

0 eke
T
k

]
.

While the OPF problem can accommodate different choices of the objective function, we
focus on a common total generation cost f : R2n×2n → R as follows:

f(W) :=
∑

k∈N

[
ck0 + ck1

(
⟨W,Yk⟩+ PD

k

)
+ ck2

(
⟨W,Yk⟩+ PD

k

)2 ]
.

We can now write the deterministic AC OPF problem as a real-valued QCQP in terms of
X:

min
X∈R2n

f(XXT )

s. t. PG
k − PD

k ≤ ⟨XXT ,Yk⟩ ≤ P
G

k − PD
k , (7.1a)

QG

k
−QD

k ≤ ⟨XXT ,Yk⟩ ≤ Q
G

k −QD
k , (7.1b)

V 2
k ≤ ⟨XXT ,Mk⟩ ≤ V

2

k, (7.1c)

∀k ∈ N ,

where constraints (7.1a) and (7.1b) are the real and reactive power balance equations, re-
spectively. These are hard constraints imposed by the laws of physics and cannot be violated.
Moreover, for buses without generators, the lower and upper bounds in (7.1a) and (7.1b)
are equal. Constraint (7.1c) limits the voltage magnitude at each bus. This is a soft con-
straint imposed by regulation or operator preference. It is physically possible to violate
these constraints, and small violations may be tolerated if they are sparse and/or low in
magnitude.

In our analysis, we neglect line flow limits to streamline the presentation and mathemat-
ical derivation. However, since such constraints are in the form of (7.1a), our method can
readily handle a more detailed formulation of AC OPF.

System Response to Unforecasted Power Injections

We now turn to rigorously formulating an approximate OPF problem based on the anal-
ysis in [194]. For the purposes of solving the OPF problem, the complex voltage vector
serves as the decision variable as it fully specifies the operating point of the system; that is,
given the complex voltage at each bus, the current and power injections can be computed.
However, in practice, system operators cannot directly actuate voltage magnitudes and an-
gles at all buses in the system. Instead, they control voltage magnitudes and active power
injections at generator buses. Combined with the active and reactive demand from loads,
the system naturally resolves to the complex voltage profile obtained as the OPF solution if
the forecast is accurate.

We consider a random active power injection vector ξ ∈ Rn, realized after the OPF
decision is made. The random vector ξ represents the forecast error associated with either
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loads or intermittent renewable energy generators, such as wind turbines or solar panels.
For simplicity, we will assume that the active power injection induces a proportional reactive
power injection according to a constant power factor cosϕ.

If the system operator leaves non-slack generator setpoints unchanged after the realization
of the random variable, then the following variables are held constant:

1. Voltage magnitude and active power injection from generators at the set of generator
buses PV .

2. Active and reactive loads at the set of load buses PQ.

3. Voltage magnitude and angle at the slack bus Pθ.

Under this response mechanism, the full aggregate active power imbalance induced by ξ is
offset by the slack bus. Instead, we assume that an Automatic Generation Control (AGC)
scheme is used to distribute the burden among the generators. The imbalance is divided
among buses according to participation factors α ∈ Rn, where 1T

nα = 1 and αk = 0 for all
k /∈ PV . In summary, the known change of the post-contingency system state is given by:

∆Pk = ξk − αk1
T
nξ, ∀k ∈ PQ ∪ PV , (7.2)

∆Qk = γξk, ∀k ∈ PQ,
∆|Vk| = 0, ∀k ∈ PV ∪ {Pθ}, ∆θPθ = 0,

where we use symbol ∆ to denote the change of corresponding system state variable, γ is
equal to

√
cos−2 ϕ− 1 and θk is the voltage angle at bus k. After applying these changes,

we can determine 2n of the post-contingency power flow variables and the other 2n variables
are determined by solving the power flow equations.

Remark 9. In [12], the participation factors in α account for the mismatch from forecast
errors and the difference in resistive losses induced by the forecast errors. For simplicity,
we do not adopt this approach as the difference in losses is small relative to the errors. In
practice, the participation factor at the slack bus may be artificially lowered to offset the
burden associated with resistive losses.

Given voltage profile X ∈ R2n and forecast error ξ ∈ Rn, denote the change in active
power injections, reactive power injections and squared voltage magnitude, respectively, as

∆P (X, ξ), ∆Q(X, ξ), ∆|V |2(X, ξ).

Hence, the constraints in the OPF problem (7.1) become

PG
k − PD

k ≤ ⟨XXT ,Yk⟩ −∆Pk(X, ξ) + ξ ≤ P k − PD
k ,

QG

k
−QD

k ≤ ⟨XXT ,Yk⟩ −∆Qk(X, ξ) + γξ ≤ Qk −QD
k ,

V 2
k ≤ ⟨XXT ,Mk⟩+ ∆|V |2k(X, ξ) ≤ V

2

k,
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∀k ∈ N . (7.3)

Notice that we include the forecast error explicitly in the active and reactive power balance
equations. This is necessary because the bounds also change with the forecast error. For the
notational simplicity, we write the constraints in (7.3) in the compact form:

A(XXT ) + ∆(X, ξ) ≤ 06n, (7.4)

where A : R2n×2n 7→ R6n is an affine operator, ∆ : R2n×Rn 7→ R6n characterizes the response
to the random power injections, and the inequality is enforced componentwise.

Chance-constrained OPF

The randomness of ξ prohibits the application of most stochastic optimization algo-
rithms to problems that involve constraint (7.4). As an alternative formulation, the chance
constraints provide a practical way to enforce the stochastic constraint and quantify the
satisfaction rate. Intuitively, the chance constraint requires that the stochastic constraint
of (7.4) be satisfied with high probability. Let P0(·) be the probability with respect to the
distribution of ξ and ϵ ∈ (0, 1] be the desired maximum violation probability. The joint
chance constraint is defined as

P0

[
A(XXT ) + ∆(X, ξ) ≤ 06n

]
≥ 1− ϵ. (7.5)

Now, we can formulate the joint chance-constrained OPF (CCOPF) problem:chap6-

minX∈R2n f(XXT ) s. t. chance constraint (7.5), (7.6)

The parameter ϵ effectively controls the trade-off between the reliability and efficiency of the
solution to problem (7.6). With a smaller ϵ, the chance constraint becomes more restrictive
and the operational cost becomes higher; and vice versa. Another similar chance constraint,
named the disjoint chance constraint, can be written as

P0

[
Ak(XXT ) + ∆k(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀k ∈ [6n]. (7.7)

In the main manuscript, we focus on the joint chance constraint and leave the analysis of
the disjoint case, as well as their generalizations, to the appendix.

7.3 Reformulations of CCOPF

Although the CCOPF problem (7.6) is mathematically well-defined, the presence of un-
certainty presents two challenges. First, since the change in the power system status is im-
plicitly decided by the active power injection ξ through power flow equations, the function
∆(·, ·) cannot be written in closed form. In Section 7.3, we derive a linear approximation of
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∆(·, ·) and develop an efficient fixed-point iteration algorithm to find approximate solutions
to the original non-linear formulation.

Second, the true distribution of ξ is unknown in most applications. Hence, it is not
possible to enforce or verify the chance constraint (7.5). In Section 7.3, we propose DRO-
based reformulations of CCOPF, which only rely on historical samples of ξ. We show that
the chance constraint is satisfied by the DRO solutions with high probability in terms of the
sample complexity.

Linearization and Fixed-point Iteration Algorithm

To avoid the computation cost of solving ∆(·, ·) via power flow equations, we construct
linear approximations to the implicit function and design an iterative algorithm that con-
verges to a reliable approximation solution in practice. First, we utilize the prior information
that the forecast errors are relatively small in practice and approximate ∆(X, ξ) with the
first-order Taylor expansion around point ξ = 0n. Namely, we have

∆(X, ξ) ≈ ∆(X,0n) + D∆(X)ξ = D∆(X)ξ,

where D∆(X) ∈ R6n×n is the Jacobian of ∆(·, ·) with respect to the second input at point
(X,0n). Given vector X, the Jacobian can be computed in closed form; see the appendix
for the derivation of D∆(X). Then, the approximate joint chance constraint is given by

P0

[
A(XXT ) + D∆(X)ξ ≤ 06n

]
≥ 1− ϵ. (7.8)

The approximate disjoint chance constraint is defined in a similar way and we focus on the
joint chance constraint in the remainder of this subsection. We note that this linearization
approach is commonly used in CCOPF literature [194, 12].

Moreover, as proposed in [194], we further decouple the interaction between X and ξ
through the fixed-point iteration. To be more specific, in the t-th iteration of the algorithm,
the Jacobian D∆(Xt) is fixed and we compute the new point Xt+1 by solving problem
(7.9). Note that we apply DRO-based algorithms in Section 7.3 to find solution Xt+1 that
satisfies the chance constraint with high probability. Then, the Jacobian at point (Xt+1,0n)
is computed and used in the next iteration.

The pseudo-code of the heuristic algorithm is provided in Algorithm 21. Intuitively, if
the initialization is close to the solution, the fixed-point iteration enjoys fast convergence.
In most applications, the forecast errors are small relative to the forecasted power injections
and thus, our approximation scheme is considerably accurate in the following sense:

1. The first-order approximation ∆(X, ξ) ≈ D∆(X)ξ is acceptable under a wide range of
operating conditions.

2. The robust solution to the chance-constrained problem is expected to be not too far
from to the deterministic solution (i.e., the solution with ξ = 0).
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Algorithm 21 Fixed-point iteration for joint CCOPF problem.

1: Input: tolerance µ, maximum violation probability ϵ.
2: Output: robust solution X.
3: Initialization:

X0 ← arg minX∈R2n f(XXT ) s. t. A(XXT ) ≤ 06n.

4: for t = 0, 1, . . . do
5: Update Xt+1 to be the optimizer of

min
X∈R2n

f(XXT ) (7.9)

s. t. P0

[
A(XXT ) + D∆(Xt)ξ ≤ 06n

]
≥ 1− ϵ.

▷ Solved by DRO-based algorithms.
6: If ∥Xt+1 −Xt∥ ≤ µ, return Xt+1.
7: end for

As a consequence, although there is no convergence guarantee, the fixed-point iteration
exhibits efficient and robust convergence in practice; see the numerical experiments in Section
7.4 and [194]. We also numerically illustrate the approximation quality for benchmark power
systems instances in the appendix.

Distributionally Robust Optimization Approach

In this subsection, we develop exact reformulations of the approximate chance constraints
in Section 7.3, including but not limited to the joint chance constraint (7.8), based on DRO
techniques. To preserve the generality of our results, we consider the general objective
function and constraint function

g(X) : Rd 7→ R, h(X, ξ) : Rd × Rn 7→ Rm,

where random vector ξ ∈ Rn obeys the distribution P0, and integers d and m are the size of
input variable X and the number of constraints, respectively. In this subsection, we consider
the optimization problem with stochastic constraints:

minX∈Rd g(X) s.t. h(X, ξ) ≤ 0m. (7.10)

Note that our theory can be extended to the case when the randomness ξ also incurs in the
objective function g or the feasible set is a convex subset of Rd. We focus on the simpler
problem (7.10) since our target is to solve the CCOPF problem (7.9). We make the following
assumption:
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Assumption 16. The support of P0 belongs to a compact set Ξ ⊂ Rn. Both functions
g(·) and h(·, ·) are continuous. In addition, for every positive integer S and all realizations
ξ1, . . . , ξS ∈ Rn, problem

minX∈Rd g(X) s.t. h(X, ξj) ≤ 0m, ∀j ∈ [S]

is feasible and has a finite optimal value.

In our formulation of the CCOPF problem (7.9), Assumption 16 is satisfied unless, for
instance, the reserve capacity of the conventional generators is insufficient to compensate for
some realizations of the forecast error. In this case, CCOPF would be infeasible.

In practice, the true distribution P0 is unknown and only limited historical samples may
be available. Suppose that there are S independently and identically distributed samples,
ξ1, . . . , ξS, generated from the distribution P0. We define the empirical distribution of ξ as

P̂S :=
1

S

∑
k∈[S]

δξk ,

where δξ is the Dirac measure at ξ. The goal of the DRO approach is to find robust solutions

that satisfy the chance constraint with high probability using empirical distribution P̂S.
Define the ambiguity set

Dr (P) := {P′ ∈ P | I (P,P′) ≤ r} , ∀P ∈ P ,

where I(·, ·) is the relative entropy [54], r > 0 is the radius and P is the family of Borel
distributions with support in Ξ. The robustness of DRO solutions is guaranteed by the
satisfaction of chance constraints under all distributions in the ambiguity set Dr(P̂S). Other
distributional metrics, such as the Wasserstein metric, are considered in CCOPF literature
[186, 12]. In this chapter, however, we use the relative entropy due to the strong optimality
guarantees it can provide; see Theorems 75-76 and [54, 222]. Intuitively, the large deviation
theory guarantees that the relative entropy between the true data-generation distribution
and the empirical distribution can be bounded by a value that depends on the sample size
[54]. Hence, the true distribution is contained in the ambiguity set with high probability and
the relative entropy-based ambiguity set is the “smallest” ambiguity set with such property
[222].

For problem (7.10), the joint chance constraint is given by

P0 [h(X, ξ) ≤ 0m] ≥ 1− ϵ. (7.11)

Remark 10. More generally, our results can be extended to the case when the joint constraints
are defined by a convex cone

P0

[
ωTh(X, ξ) ≤ 0, ∀ω ∈ W

]
≥ 1− ϵ, (7.12)

whereW is the convex cone spanned by weight vectors1 ω1, . . . , ωL. Constraint (7.12) reduces
to the cardinal case (7.11) when L = m and ωℓ = eℓ for all ℓ ∈ [m].

1A vector ω ∈ Rm is called a weight vector if ω ≥ 0m and 1T
mω = 1.
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Define the α-quantile

qα(F,P) := sup {q | P [F (ξ) ≤ q] ≤ α}

for all α ∈ [0, 1], function F (·) : Rn 7→ R and distribution P ∈ P . Then, the chance constraint
(7.11) can be equivalently written as

P0 [hℓ(X, ξ) ≤ 0, ∀ℓ ∈ [m]] ≥ 1− ϵ

⇐⇒ P0

[
h̄X(ξ) ≤ 0

]
≥ 1− ϵ

⇐⇒ q1−ϵ

(
h̄X,P0

)
≤ 0, (7.13)

where we define
h̄X(ξ) := maxℓ∈[m] hℓ(X, ξ).

Adopting language from [222], we first introduce the distributionally robust predictor of the
α quantile.

Definition 31 (Distributionally Robust Predictor). For all ϵ ∈ [0, 1], r > 0, X ∈ Rd and
P ∈ P , the distributionally robust predictor is defined as

q̂1−ϵ,r,P(X) := supP′∈Dr(P) q1−ϵ

(
h̄X,P′) .

For notational simplicity, when there is no confusion about P̂S, we denote predictor q̂1−ϵ,r,P̂S

as q̂1−ϵ,r,S.

Intuitively, the distributionally robust predictor is the worst-case α-quantile over all
distributions in the relative entropy ball Dr(P). In the following lemma, we prove that the
distributionally robust predictor is either a quantile of h̄X under the empirical distribution
P̂S or the maximum value

h∗
X := maxξ∈Ξ h̄X(ξ).

Lemma 53. For all ϵ ∈ [0, 1] and r > 0, there exists an integer k(ϵ, r, S) ∈ [S + 1] such that

q̂1−ϵ,r,S(X) = h̄k(ϵ,r,S),P̂S
(X) , ∀X ∈ Rd,

where h̄k,P̂S
(X) is the k-th smallest value in {h̄X(ξj), j ∈ [S]} ∪ {h∗

X}. When there is no
confusion, we denote for the notational simplicity

k := k(ϵ, r, S) and h̄k(X) := h̄k(ϵ,r,S),P̂S
(X) .

In the case when k = S + 1, the evaluation of h̄S+1(X) requires the knowledge of h∗
X,

which may be unknown in practice. Hence, we focus on the case when k ∈ [S], which can
be guaranteed by choosing suitable values of ϵ and r. Furthermore, the value of k can be
computed by solving a convex optimization problem; see problem (7.28) in the appendix.

Then, we define the distributionally robust prescriptor.
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Definition 32 (Distributionally Robust Prescriptor). For all ϵ ∈ [0, 1] and r > 0, the
distributionally robust prescriptor X̂1−ϵ,r,P is a quasi-continuous function of P that solves

minX∈Rd g(X) s. t. q̂1−ϵ,r,P(X) ≤ 0. (7.14)

Similarly, when there is no confusion about P̂S, we denote prescriptor X̂1−ϵ,r,P̂S
as X̂1−ϵ,r,S.

By Lemma 53, the feasible set of problem (7.14) is a subset of {X ∈ Rd | h̄k(X) ≤ 0}.
Thus, combining with Assumption 16, problem (7.14) has a finite optimal value and the
distributionally robust prescriptor X̂1−ϵ,r,S is well-defined.

Now, we provide a mixed-integer reformulation of (7.14) to compute the distributionally
robust prescriptor. Choosing C > 0 to be a sufficiently large constant, we show that the
distributionally robust prescriptor is a solution to

min
X∈Rd,b∈ZS

g(X) (7.15)

s. t. hℓ(X, ξj) ≤ Cbj, ∀ℓ ∈ [m], j ∈ [S],

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

Intuitively, the constraints in (7.15) enforce the joint chance constraint under the empirical
distribution P̂S. Namely, the constraint h(X, ξj) ≤ 0m is satisfied by at least k samples. In
the next theorems, we show that the chance constraint under the true distribution P0 can
also be guaranteed by choosing k to be slightly larger than (1− ϵ)S.

Theorem 74. The solution to (7.15) is a distributionally robust prescriptor.

For the CCOPF problem (7.9), the problem (7.15) is equivalent to a mixed-integer QCQP.
In Section 7.3, we apply the semi-definite relaxation to the QCQP and when the relaxation is
exact, problem (7.9) is equivalent to a mixed-integer semi-definite program (MISDP), which
can be handled by off-the-shelf convex optimization solvers.

Finally, we establish the theoretical properties of the distributionally robust prescriptor.
First, we prove that the distributionally robust prescriptor satisfies joint chance constraint
(7.13) with high probability in terms of the sample complexity S.

Theorem 75. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0
]
≥ 1− exp [−rS + o(S)] , (7.16)

where P∞ is the probability measure of the sample path space of ξ under distribution P0.
Furthermore, we have

P∞

[
hℓ

(
X̂1−ϵ,r,S, ξ

)
≤ 0, ∀ℓ ∈ [m]

]
≥ 1− ϵ− exp [−rS + o(S)] . (7.17)
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In the regime when the support Ξ is a finite set, we can apply the strong large deviation
principle [222] and derive the following finite-sample bound in the same way as Theorem 75:

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0
]
≥ 1− (S + 1)de−rS. (7.18)

Moreover, we show that the distributionally robust prescriptor achieves the minimum oper-
ational cost over all decisions that asymptotically satisfy the joint chance constraint (7.13).

Theorem 76. Suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a quasi-continuous function of P
and satisfies constraint (7.16). Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.

Compared with existing DRO formulations [186, 12], our formulation provides stronger
guarantees in the following two senses. First, the DRO solution X̂1−ϵ,r,S achieves the min-
imum possible generation cost over all robust solutions that satisfy the joint chance con-
straint (7.16). This optimality property arises from the choice of the relative entropy for
the ambiguity set, and such property cannot be established by other distributional metrics,
although the Wasserstein metric can provide similar high-probability bounds [166]. Second,
the mixed-integer reformulation (7.15) is exact. In contrast, existing literature considered
parameterized approximations to the ambiguity set, such as the hyper-rectangle [186] and
the ellipsoid [12]. In practice, however, there is no guarantee that the ambiguity set is of the
specified shape and thus, the approximate DRO solution is usually overly conservative; see
the comparison results in Section 7.4.

In practice, it is preferable for the user to first specify k and then compute the optimal
ϵ and r to maximize the right-hand side of (7.17). Given k ∈ [S] and ϵ ∈ [1 − k/S, 1], the
maximal radius r such that k(ϵ, r, S) = k is given by

r = − k

S
log

(
S(1− ϵ)

k

)
− S − k

S
log

(
Sϵ

S − k

)
,

where we define 0 log 0 = 0. Therefore, when the sample size S is sufficiently large, we ignore
the o(S) term on the right-hand side of (7.17) and solve the maximization problem

ϵ∗k,S := arg max
ϵ∈[1−k/S,1]

1− ϵ− SS

kk(S − k)S−k
(1− ϵ)kϵS−k, (7.19)

where we define 00 = 1. The solution to the above problem maximizes the right-hand side
of (7.17) and can be found by the bi-section algorithm.
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Semi-definite Relaxation

In the last part of this section, we deal with the non-convexity of problem (7.9) induced by
the quadratic parameterization XXT . In the context of CCOPF problem, even with a fixed
integer vector b, problem (7.15) is still a non-convex QCQP and can be NP-hard to solve in
the worst case. To achieve the efficient and reliable operation of large-scale power systems,
various techniques have been proposed to reduce the optimization complexity by utilizing
the special structures of real-world power circuits. In literature, the semi-definite relaxation
is widely applied to transform the non-convex QCQP to a semi-definite program (SDP);
see [137] and [153] for semi-definite relaxations of OPF. More specifically, after making the
change-of-variables W := XXT and dropping the rank constraint rank(W ) = 1, we can
apply the distrubutionally robust reformulation (7.15) to solve problem (7.9) by

min
W∈S2n+ ,b∈ZS

f(W) (7.20)

s. t. A(W) + D∆(Xt)ξ
j ≤ Cbj · 16n, ∀j ∈ [S],

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

Note that the SDP part of (7.20) can be further written in the standard form using the
Schur complement [137]. We denote problem (7.20) as the distributionally robust CCOPF
(DRCCOPF) problem. With the rank constraint dropped, problem (7.20) is a MISDP, which
can be solved efficiently by various solvers (e.g., YALMIP [150]).

The graphical structures of practical power networks, reflected in the algebraic properties
of operator A, guarantee the exactness of the semi-definite relaxation [153, 208, 207]. In this
chapter, we make the assumption that the network admits an exact semi-definite relaxation,
and our method can be readily extended to other formulations including DC OPF. Under
the exact relaxation assumption, we are able to recover the rank-1 solution from the MISDP
solution [137]. Therefore, in Step 5 of Algorithm 21, we first solve the relaxation (7.20) to
find Wt+1 and then generate the rank-1 solution Xt+1 for the next iteration.

To further reduce the computational complexity of solving problem (7.20), we develop
a heuristic algorithm that finds approximate solutions by solving a small number of SDPs.
Intuitively, the proposed algorithm searches for the optimal integer vector b in a greedy
way and avoids the mixed-integer part in problem (7.20). With a given k, the algorithm
removes the “most restrictive sample” among the k+ 1 samples selected in the case of k+ 1.
The heuristic algorithm is able to find nearly optimal approximate solutions for benchmark
power systems and requires a much shorter running time; see Section 7.4 and the appendix
for more details.

7.4 Demonstration on IEEE Test Cases

In this section, we apply our results to solve the joint CCOPF problem (7.6) on the
IEEE 14- and 118-bus test cases. All system parameters are taken from the case data in
MATPOWER [259, 258]. We make the following modifications to the system parameters:
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1. As suggested in [137], a small resistance of 10−4 per-unit is added to each transformer
to insure an exact semi-definite relaxation.

2. Wind generators are installed at nW buses randomly chosen from load buses with
nonzero active loads. The forecasted output of a generator is equal to a proportion η
of the pre-installation load at that bus.

Note that wind generators could also have been installed at slack or generator buses. In our
model, wind generator forecast errors account for the entire random power injection; that is,
we assume loads are deterministic. Wind output forecast errors are taken from hour-ahead
forecast errors from the National Renewable Energy Laboratory’s Wind Integration National
Dataset, which contains simulated forecast and output data for over 120,000 sites in the
United States over seven years [100]. Specifically, each load bus chosen for a wind generator
is assigned to a randomly selected site in Alameda County, California. The forecast errors
are then scaled appropriately, assuming that the forecasted output is half of the installed
capacity of the turbine. Turbines are selected from a single county and thus, their outputs
are correlated; exploiting the correlations between random variables in different constraints
is an important feature of joint chance-constrained methods.

For each network, we implement Algorithm 21 and use the DRO formulation (7.20)
to solve (7.9). We use Ŝ training samples drawn independently from the full path of S
samples. For comparison, we also solve (7.9) using the method from [12], which approximates
a Wasserstein metric-based ambiguity set using a minimum-volume ellipsoid in the parameter
space. To the best of our knowledge, this is the least conservative approximation of a metric-
based ambiguity set for joint chance constraints in the literature (with ours being the first
exact reformulation). The MISDP solver, the greedy algorithm and the method from [12]
is called DRCCOPF-KL, DRCCOPF-G and DRCCOPF-E, respectively. For benchmarking,
we also compare with the robust optimization (RO) approach, where all constraints satisfied
for all S available samples, and the deterministic OPF approach, where each wind generator
simply outputs its forecasted value. As the forecast errors are approximately zero-mean
in practice, deterministic OPF essentially enforces the constraints in expectation. The RO
approach gives the most conservative solution.

We simulate the IEEE 14- and 118-bus systems with parameters η = 0.9, cosϕ = 1, and
nW = 6 for the 14-bus system and nW = 45 for the 118-bus system. We generate S = 2185
samples and Ŝ = 200 samples are used as training samples. Our hour-ahead forecast errors
were taken from June 1 to August 31, 2007. To evaluate the performance under different
robustness requirements, we performed a sweep over k from 180 to 200. Recall that for a
given k and Ŝ, the optimal ϵ can be computed from (7.19).

All simulations are performed in MATLAB 2023b. The MISDP problem (7.20) is solved
using YALMIP [150] and all convex problems are solved using CVX [89]. We note that all
simulation results in this section describe the performance of the voltage setpoint recovered
from the solution to the MISDP (7.20) after applying Corollary 1 of [137].
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Figure 7.4.1: Ratio between the second and third largest eigenvalues for IEEE 118-bus
system.

Solution Recovery

First, we analyze the exactness of the semi-definite relaxation in Section 7.3. Molzahn et
al. [167] proposed the ratio between the second and third largest eigenvalues of the solution
to the relaxed problem as a metric for exactness. If the eigenvalue ratio is high, the true
power injections and voltage magnitudes at each bus will be close to those computed from
the solution to the relaxed problem. We compute the eigenvalue ratio of solutions generated
by DRCCOPF-G and DRCCOPF-E for the 118-bus system. As seen in Figure 7.4.1, both
approaches produce solutions with eigenvalue ratios higher than, in the logarithmic sense,
to the benchmark value of 107 from [167]. However, DRCCOPF-G often leads to slightly
higher-quality solutions with ratios closer to 109 or 1010. This is a promising feature of the
method proposed here.
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Figure 7.4.2: Performance comparison for 14-bus system.

Efficiency and Robustness

Now, we compare the generation cost (efficiency) of different solutions under the same
maximum allowable violation rate (robustness). For the DRCCOPF-G and DRCCOPF-
KL approach, the violation rate can be effectively controlled by parameter k, while the
DRCCOPF-E approach controls the robustness by parameters ϵ and ρ. We use the RO
approach as the benchmark, which corresponds to the most conservative setting, and other
costs are given as a proportion of the RO cost for reference. As another benchmark, we also
illustrate the cost of deterministic OPF approach. All reasonable robust methods should
always have higher costs than the deterministic approach, which, as a result, represents a
lower bound on the achievable efficiency.

The results of the 14- and 118-bus systems are plotted in Figures 7.4.2 and 7.4.3, re-
spectively. The left subplots compare the cost of the solution of DRCCOPF-G with that of
DRCCOPF-E for several different Wasserstein radii ρ. The right subplots give the realized
constraint violation rates for both methods on all of the S available samples. Note that the
deterministic OPF method violates the constraints at a rate of more than 97%. This is a
result of joint chance constraints, since violating even a single constraint constitutes a vio-
lation. Notice that DRCCOPF-E never violates the joint chance-constraint for any radius.
For the 14-bus case, we also compare with the solutions of DRCCOPF-KL. We can observe
that the solutions of DRCCOPF-KL and DRCCOPF-G exhibit very similar behaviors, which
imply that the greedy algorithm finds nearly optimal solutions. Therefore, we focus on the
DRCCOPF-G approach in the following discussion.

First, DRCCOPF-E is qualitatively more conservative than DRCCOPF-G in the sense
that it fails to exploit the tolerance provided by non-zero values of ϵ to achieve lower objective
values. In fact, for small ϵ and large ρ, DRCCOPF-E is even more inefficient than RO as a
consequence of its approximation of the ambiguity set. By contract, distributionally robust
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Figure 7.4.3: Performance comparison for 118-bus system.

methods are generally less conservative than RO. As shown in our results, the DRCCOPF-
G approach closes a significant fraction of the gap between the robust and deterministic
optimizations by approaching but never exceeding the prescribed maximum violation rate.

Moreover, the running time of DRCCOPF-G is comparable with that of DRCCOPF-E.
For the 118-bus system, DRCCOPF-G takes an average of 412 seconds to find the solution
using a single 3.79-GHz CPU, while the DRCCOPF-E finishes in 235 seconds on average.
However, the greedy search structure of DRCCOPF-G approach allows the application of
parallel computing techniques, which will significantly improve the computational efficiency
of the algorithm.

Furthermore, the DRCCOPF-G approach always generates a feasible solution as long as
the deterministic problem is feasible for every sample (that is, as long as Assumption 16 is
satisfied). This is because DRCCOPF-G basically requires satisfaction of the constraints for
a subset of k samples. DRCCOPF-E and other existing approximate methods, by contrast,
compute uncertainty margins indirectly using training samples, possibly rendering the prob-
lem infeasible. Indeed, we have observed that DRCCOPF-E is only feasible for a limited
range of parameters and fail to find a solution for relatively large values of η (more renewable
penetration) and small values of ϵ.

Demonstration on Selected Constraints

Finally, we select a few constraints to highlight the difference in performance. We focus on
the generator outputs of three selected buses in the 14-bus system and plot the distribution
of post-contingency generator outputs of DRCCOPF-G and DRCCOPF-E solutions. The
results are shown in Figure 7.4.4, where the deterministic setpoint and lower bound are
included for reference. Since the upper bound is not violated, it is not included in the
histograms. From the results, we can see that DRCCOPF-G is significantly closer to the
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Figure 7.4.4: Distribution of selected generator outputs for DRCCOPF-G and DRCCOPF-E
for the 14-bus system.

lower bound for real or reactive power for three selected generators, while DRCCOPF-E
produces overly conservative power outputs.
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Appendix

7.A Heuristic Algorithm for MISDP

In this section, we describe a heuristic algorithm for the MISDP problem (7.20). Com-
paring with the internal algorithm of the YALMIP solver, the proposed algorithm achieves
a much better computational complexity and is able to find solutions of the same quality, in
terms of the objective function value and the constraint satisfaction rate.

Intuitively, the heuristic algorithm searches for the optimal integer vector b in a greedy
way by gradually reducing the value of k. The algorithm starts with the most conservative
case when k = S. In this case, the only feasible vector b is the zero vector 0S and problem
(7.20) reduces to a SDP problem, which can be efficiently solved by a variety of optimization
solvers. Then, for each integer k0 < S, the algorithm searches for the optimal b for the case
k = k0 from that for the case k = k0 + 1. More specifically, suppose that we have obtained
an approximate solution (Wk0+1,bk0+1) for the case when k = k0 + 1. For each index ℓ ∈ [S]
such that bk0+1

ℓ = 0, we construct the vector bk0,ℓ ∈ RS by

bk0,ℓ
ℓ = 1, bk0,ℓ

j = bk0+1
j , ∀j ∈ [S]\{ℓ}, (7.21)

and we solve the following SDP problem:chap6-

min
W∈S2n+

f(W) (7.22)

s. t. A(W) + D∆ξ
j ≤ Cbk0,ℓ

j · 16n, ∀j ∈ [S].

Let f ∗
ℓ be the optimal objective function value of the above SDP problem. Then, the greedy

algorithm chooses the most restrictive sample ξℓ
∗

by

ℓ∗ := arg minℓ∈[S]f
∗
ℓ , s. t. bk0+1

ℓ = 0.

After removing the most restrictive sample, the approximate solution for the case k = k0
is given by (Wk0 ,bk0,ℓ∗), where Wk0 is the solution to problem (7.22) with ℓ = ℓ∗. To
further reduce the computational cost, we only need to consider indices ℓ ∈ [S] such that
bk0+1
ℓ = 0 and problem (7.20) has active constraints with sample ξℓ. Namely, the following

componentwise inequality holds with equality for some components:

A(Wk0+1) + D∆ξ
ℓ ≤ Cbk0+1

ℓ · 16n. (7.23)
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Algorithm 22 Greedy algorithm for MISDP problem (7.20).

1: Input: samples ξ1, . . . , ξS, integer k0.
2: Output: robust solution X.
3: Initialization: let bS ← 0S.
4: for k = S − 1, S − 2, . . . , k0 do
5: Let L ⊂ [S] be the set of indices such that:

1. bk+1
ℓ = 0;

2. inequality (7.23) does not hold strictly with sample ξℓ.

6: for ℓ ∈ L do
7: Construct vector bk0,ℓ ∈ RS by (7.21).
8: Apply Algorithm 21 to solve problem (7.22).
9: Let f ∗

ℓ be the optimal objective value.
10: end for
11: Let ℓ∗ ← arg minℓ∈L f

∗
ℓ and bk ← bk,ℓ∗ .

12: end for
13: Apply Algorithm 21 to solve problem (7.21) with b = bk0 .
14: Return the solution X to the above problem.

This is because otherwise if the above inequality holds strictly, the optimal objective value
will be the same with sample ξℓ (i.e., b = bk0+1) and without sample ξℓ (i.e., b = bk0,ℓ).
Therefore, the value f ∗

ℓ will not be the minimum among all choices of ℓ. The pesudo-code
of the greedy is provided in Algorithm 22. We note that Algorithm 22 operates in the “top-
down” style in the sense that it gradually decreases the value of k from S. Similarly, we
can develop the “bottom-up” version of the greedy algorithm, which gradually increases the
value of k from 0. In practice, the top-down algorithm is preferred since a large value of
k is usually chosen to ensure a high constraint satisfaction rate. Therefore, the top-down
algorithm requires fewer iterations to reach the targeted value of k.

Since the greedy algorithm approximates the solution to MISDP (7.20) with a small
number of SDP problems, the running time of the greedy algorithm is much better than
that of the off-the-shelf solvers, e.g., YALMIP. For example, using a single 3.79-GHz CPU,
the greedy algorithm takes an average of 412 seconds to solve the 118-bus case for each
k ∈ {180, . . . , 200}, while the YALMIP solver takes more than two hours for a single iteration
of Algortihm 21, which includes solving a single MISDP problem instance. In addition, we
compare the solutions generated by the greedy algorithm and the YALMIP solver for the
14-bus system. The YALMIP solutions are shown to be optimal up to a small gap between
the lower and upper bounds. The results are plotted in Figure 7.4.2. We can see that the
greedy algorithm is able to find solutions of almost the same quality as the global optima.
To be more concrete, the objective function values and constraint satisfaction rates of the
two solutions are very close.



CHAPTER 7. DISTRIBUTIONALLY ROBUST OPTIMIZATION FOR
CHANCE-CONSTRAINED OPTIMAL POWER FLOW 363

Figure 7.B.1: Actual and approximate post-contingency generator outputs.

In summary, although there is no theoretical optimality guarantee, the heuristic greedy
algorithm is able to find near-optimal solutions in an efficient and robust way for benchmark
power systems.

7.B Linearization Accuracy

To evaluate the accuracy of the first-order approximation presented in Section 7.3 for
our test case, we compare the actual and first-order approximate post-contingency system
responses for the 14-bus system. The responses are computed for all available samples. The
operating point is obtained by DRCCOPF-KL with k = Ŝ = 100. Actual system responses
are computed by running the MATPOWER power flow solver. The generator outputs (on
separate subplots) and squared voltage magnitudes (on a single plot, with a different color
for each bus) are given in Figures 7.B.1 and 7.B.2, respectively. As shown by the figures,



CHAPTER 7. DISTRIBUTIONALLY ROBUST OPTIMIZATION FOR
CHANCE-CONSTRAINED OPTIMAL POWER FLOW 364

Figure 7.B.2: Actual and approximate post-contingency squared voltage magnitudes.

the approximation is quite accurate and appears appropriate for our problem instance. In
Section 7.4, the approximate system response will be used to compute violation rates.

7.C Derivation of Sensitivity Factor

In this section, we derive the sensitivity factor D∆(X), which is defined as the Jacobian of
∆(X, ξ) with respect to ξ. More specifically, by the definition of D∆(X) and the constraints
(7.3), we have

D∆(X) =


∂ξ∆P (X, ξ)− In
−∂ξ∆P (X, ξ) + In
∂ξ∆Q(X, ξ)− γIn
−∂ξ∆Q(X, ξ) + γIn

∂ξ∆|V |2(X, ξ)
−∂ξ∆|V |2(X, ξ)

 ∈ R6n×n. (7.24)

Therefore, the problem reduces to the calculation of the partial derivatives of ∆P , ∆Q and
∆|V |2 with respect to ξ.
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We begin with the first-order approximation of the power flow equations around an
operating point X:

J

[
∆Θ

∆|V |

]
=

[
∆P
∆Q

]
, (7.25)

where Θ ∈ Rn is the vector of voltage angles and J ∈ R2n×2n is the Jacobian matrix,
which can be computed by the implicit function theorem. For convenience, we provide the
expression of J:

J = 2(In ⊗XT )



Y1
...

Yn

Y1
...

Yn


·
[
− diag(|V |) diag(sin Θ) diag(cos Θ)
diag(|V |) diag(cos Θ) diag(sin Θ)

]
,

where ⊗ denotes the Kronecker product and the magnitude, sine, and cosine operators are
elementwise. Note that J depends on X; we do not write this dependence to avoid clutter.

Then, applying the forecast error and AGC response (7.2), the equations (7.25) can be
rewritten as:

J

[
∆Θ

∆|V |

]
=

[
In − α1T

n

γIn

]
ξ +

[
δP
δQ

]
, (7.26)

where δP and δQ are the additional changes in active and reactive power injections after
non-slack generator setpoints are changed, respectively. Applying knowledge of different bus
types (slack, generator, and load), many components in equations (7.26) are zero and we
only need solve the sub-systems

J1

[
∆ΘPV∪PQ
∆|V |PQ

]
=

[
(In − α1T

n )PV∪PQ
(γIn)PQ

]
︸ ︷︷ ︸

:=G1

ξ,

J2

[
∆ΘPV∪PQ
∆|V |PQ

]
=

[
(In − α1T

n ){Pθ}
(γIn){Pθ}∪PV

]
︸ ︷︷ ︸

:=G2

ξ +

[
δP{Pθ}

δQ{Pθ}∪PV

]
,

where (·)S denotes the rows indexed by members of S. Solving the above sub-systems gives[
∆ΘPV∪PQ
∆|V |PQ

]
= J−1

1 G1ξ,[
δP{Pθ}

δQ{Pθ}∪PV

]
= (J2J

−1
1 G1 −G2)ξ.
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Equivalently, we get the following rows of sensitivity factors

(∂ξδP ){Pθ} = (J2J
−1
1 G1 −G2)1,

(∂ξδQ){Pθ}∪PV = (J2J
−1
1 G1 −G2)2:1+|{Pθ}|+|PV|,

(∂ξδ|V |)PQ = (J−1
1 G1)|PV|+|PQ|+1:|PV|+2|PQ|,

where on the right-hand side, we use the MATLAB-style of row indexing. All other rows are
zero.

Finally, combining the above results with (7.26), we can compute the sensitivity factors
of the constraint functions on active power, reactive power, and squared voltage magnitude,
respectively:

∂ξ∆P (X, ξ) = In − α1T
n + ∂ξδP (X, ξ),

∂ξ∆Q(X, ξ) = γIn + ∂ξδQ(X, ξ),

∂ξ∆|V |2(X, ξ) = 2|V | ◦ ∂ξ∆|V |(X, ξ),

where ◦ denotes the elementwise product. Substituting the partial derivatives into the ex-
pression (7.24), we get the sensitivity factor D∆(X).

7.D Proof of Lemma 53

Proof of Lemma 53. We first show that in the definition of predictor q̂1−ϵ,r,S, the supremum

can be restricted to the set of distributions in Dr(P̂S) that are absolutely continuous with
respect to P̂S except on the set

Ξ∗(X) :=
{
ξ | h̄X(ξ) = h∗

X

}
.

The proof is the same as that of Lemma 2 of [222] except the bound on the expectation, i.e.,
the second last inequality in the proof. To deal with this issue, we only need to prove that
for all X ∈ Rd, p ∈ [0, 1], ξ∗ ∈ Ξ∗(X), and Pc,P⊥ ∈ P such that Pc ≪ P̂S and P⊥ ⊥ Pc

2, it
holds that

q1−ϵ

(
h̄X,P′) ≥ q1−ϵ

(
h̄X,P′′) , (7.27)

where
P′ := p · Pc + (1− p) · δξ∗ , P′′ := p · Pc + (1− p) · P⊥.

Let F ′(h) and F ′′(h) be the cumulative distribution function of h̄X(ξ) under distribution P′

and P′′, respectively. By the definition of quantile, to prove inequality (7.27), it is sufficient
to show that

F ′(h) ≥ F ′′(h), ∀h ∈ R,
2For distributions P,P′ ∈ P, we use P≪ P′ and P ⊥ P′ to denote the case when P is absolutely continuous

and singular with respect to P′, respectively.
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which is equivalent to

Eξ∼P′
[
1(h̄X(ξ) ≤ h)

]
≥ Eξ∼P′′

[
1(h̄X(ξ) ≤ h)

]
, ∀h ∈ R,

where 1(γ(ν, ξ) ≤ γ) is the indicator function. This can be proved in the same way as
the proof in [222]. As a result, there exists a distribution that attains q̂1−ϵ,r,P̂S

(X) and has

support in {ξj, j ∈ [S]} ∪ Ξ∗(X), which implies the existence of an integer k ∈ [S + 1] such
that

q̂1−ϵ,r,P̂S
(X) = h̄k,P̂S

(X) .

Next, we prove that integer k does not depend on X and P̂S. Let P1−ϵ,r,S be the afore-
mentioned worst-case distribution that attains q̂1−ϵ,r,S(X). Assume without loss of generality
that

h̄X(ξ1) ≤ · · · ≤ h̄X(ξS).

Define vector p ∈ RS+1 as

pj := P1−ϵ,r,S(ξj), ∀j ∈ [S], pS+1 := P1−ϵ,r,S [Ξ∗(X)] .

Then, by problem (33) in [222], the integer k is the solution to

max
k∈[S],p∈RS+1

k (7.28)

s. t.
∑

j∈[k]
pj ≤ 1− ϵ, 1T

S+1p = 1, p ≥ 0S+1,

− 1

S

∑
j∈[S]

log(Spj) ≤ r,

which is independent of X and P̂S. Intuitively, k is the largest integer such that the proba-
bility P1−ϵ,r,S on the smallest k samples is at most 1− ϵ and the relative entropy constraint
is not violated.

7.E Proof of Theorem 74

Proof of Theorem 74. The formulation (7.15) is based on the big-M method [233]. If the
variable bj = 1, since the constant C is sufficiently large, there is no constraint on hℓ(X, ξj).
Otherwise if the variable bj = 0, the first constraint becomes

hℓ(X, ξj) ≤ 0, ∀ℓ ∈ [m],

which is equivalent to the condition h̄X(ξj) ≤ 0. With a given X ∈ Rd, the constraint
1T
Sb ≤ S − k requires that the above condition holds for at least k samples. To achieve the

minimum over X, the condition bj = 0 should hold for the k indices that correspond to the k
smallest values in {h̄X(ξj), j ∈ [S]}. In other words, the constraints in (7.15) are equivalent
to

h̄k(X) ≤ 0.

Combining with Lemma 53, we get the desired result.
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7.F Proof of Theorem 75

Proof of Theorem 75. By the definition of the prescriptor X̂1−ϵ,r,S, we have

q̂1−ϵ,r,S

(
X̂1−ϵ,r,S

)
≤ 0.

By a similar technique to the proof of Lemma 53, the results of Theorem 10 of [222] also
holds for the predictor q̂1−ϵ,r,S and we have

lim sup
S→∞

1

S
logP∞

[
q̂1−ϵ,r,S

(
X̂1−ϵ,r,S

)
< q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

) ]
≤ −r.

Combining the above two inequalities, we get

P∞

[
q1−ϵ

(
h̄X̂1−ϵ,r,S

,P0

)
≤ 0
]
≥ 1− exp [−rS + o(S)] .

By the definition of the quantile and applying the union bound, it follows that

P∞

[
hℓ

(
X̂1−ϵ,r,S, ξ

)
≤ 0, ∀ℓ ∈ [m]

]
≥ 1− ϵ− exp [−rS + o(S)] .

which is the desired result of this theorem.

7.G Proof of Theorem 76

Proof of Theorem 76. We first construct a set where the distributionally robust predictor
q̂1−ϵ,r,S takes positive value. Assume conversely that

pS := P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
> 0.

Since the prescriptor X̂1−ϵ,r,S attains the minimal objective value under the constraint
h̄k(X) ≤ 0, we have

P∞

[
h̄k

(
X̃1−ϵ,r,S

)
> 0
]
≥ pS.

Since P∞(b > z) is a right-continuous function of z ∈ R for every random variable b, there
exists a sufficiently small constant τ > 0 such that

P∞

[
h̄k

(
X̃1−ϵ,r,S

)
> τ
]
≥ pS/2 > 0.

Consider the set

XS :=
{(

X̃1−ϵ,r,S, P̂S

)
| h̄k

(
X̃1−ϵ,r,S

)
> τ
}
⊂ Rd × P .
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Since X̃1−ϵ,r,S is a quasi-continuous function of the empirical distribution P̂S, the set XS is
a non-empty quasi-open set [174, Prop. 1.2.4] under the product topology of the Euclidean
topology on Rd and the weak topology on P . Therefore, the interior of XS, denoted as X ◦

S ,
is non-empty.

Now, we construct a data-driven predictor q̃1−ϵ,r,P that is continuous and does not domi-
nate the distributionally robust predictor q̂1−ϵ,r,P. For every point (X,P) ∈ XS, we define

d(X,P) := min {dist [(X,P),X c
S] , τ} ,

where X c
S := (Rd×P)\XS is the complementary set of XS and the distance function is induced

by the Euclidean 2-norm on Rd and the Prokhorov metric [187] on P . Since the distance
function is continuous, the function d(·, ·) is also continuous and takes positive values on X ◦

S .
We define

q̃1−ϵ,r,P(X) := q̂1−ϵ,r,P(X)− d(X,P), ∀(X,P) ∈ Rd × P .

It follows from the definition of d and XS that

0 ≤ q̃1−ϵ,r,P(X) ≤ q̂1−ϵ,r,P(X), ∀(X,P) ∈ XS, (7.29)

where the second inequality holds strictly on X ◦
S . Note that the predictor q̃1−ϵ,r,S := q̃1−ϵ,r,P̂S

is a data-driven predictor since it only relies on the empirical distribution P̂S.
Finally, we show that q̃1−ϵ,r,P is feasible for problem (5) in [222], namely,

lim sup
S→∞

1

S
logP∞

[
q̃1−ϵ,r,S(X) < q1−ϵ

(
h̄X,P0

)]
≤ −r. (7.30)

Since condition (7.30) is satisfied by q̂1−ϵ,r,S and

q̃1−ϵ,r,S(X) = q̂1−ϵ,r,S(X), ∀X ∈ Rd s. t. X ̸= X̃1−ϵ,r,S,

we only need to show

lim sup
S→∞

1

S
logP∞

[
q̃1−ϵ,r,S

(
X̂1−ϵ,r,S

)
< q1−ϵ

(
h̄X̃1−ϵ,r,S

,P0

) ]
≤ −r. (7.31)

Since prescriptor X̃1−ϵ,r,S satisfies condition (7.16), it holds that

lim sup
S→∞

1

S
logP∞

[
q1−ϵ

(
h̄X̃1−ϵ,r,S

,P0

)
< 0
]
≤ −r.

Combining with the property (7.29), we get the desired result (7.31).

In summary, we have constructed a predictor q̃1−ϵ,r,S

(
X̂1−ϵ,r,P

)
that is continuous and

feasible for problem (5) in [222], but it does not dominate the distributionally robust predictor

q̂1−ϵ,r,S

(
X̂1−ϵ,r,P

)
. However, this is contradictory with Theorem 10 in [222], which claims

that the distributionally robust predictor is the strong solution to problem (5).
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7.H Disjoint Chance Constraint

In this section, we extend the theory in Section 7.3 to disjoint chance constraints. Using
the same notation as Section 7.3, the disjoint chance constraint (7.7) can be written as

P0 [hℓ(X, ξ) ≤ 0] ≥ 1− ϵ, ∀ℓ ∈ [m]. (7.32)

With the same violation probability ϵ, the disjoint chance constraint is less restrictive than
the joint counterpart (7.11). On the other hand, if we choose ϵ to be ϵ/m in (7.32), Boole’s
inequality leads to

P0 [h(X, ξ) > 0m] ≤
∑

ℓ∈[m]
P0 [hℓ(X, ξ) > 0] ≤ ϵ,

which implies that the joint chance constraint holds with violation probability ϵ. More
generally, with the disjoint chance constraint, we are able to bound the probability that at
least s constraints are violated for all s ∈ [m]. More specifically, define the indicator function

1ℓ(X, ξ) :=

{
1 if hℓ(X, ξ) > 0

0 otherwise,
∀ℓ ∈ [m].

Then, it holds that
E0 [1ℓ(X, ξ)] = P0 [hℓ(X, ξ) > 0] ≤ ϵ,

where E0 is the expectation under the true distribution P0. Using Markov’s inequality, we
get

P0 [hℓ(X, ξ) > 0 for at least s indices ℓ] = P0

[∑
ℓ∈[m]

1ℓ(X, ξ) ≥ s

]

≤
E0

[∑
ℓ∈[m]1ℓ(X, ξ)

]
s

≤ mϵ

s
.

In the following, we consider two different generalizations of chance constraint (7.32), which
we denote as the finite case and the infinite case.

We first define the finite case of disjoint chance constraint. Given L weight vectors
ω1, . . . , ωL ∈ Rm, the disjoint chance constraint is defined as

P0

[
ωT
ℓ h(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀ℓ ∈ [L]. (7.33)

The cardinal case (7.32) is a special case with L = m and ωℓ = eℓ for all ℓ ∈ [m]. Basically,
the reformulation of the finite case can be derived in a similar way as that of the joint
chance constraint. Therefore, we omit the proofs for the disjoint chance constraint and use
the same notation as Section 7.3. Choosing C > 0 to be a sufficiently large constant, the
distributionally robust prescriptor X̂1−ϵ,r,S is a solution to

min
X∈Rd,B∈ZS×L

g(X) (7.34)
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s. t. ωT
ℓ h(X, ξj) ≤ CBj,ℓ,

1T
SB:,ℓ ≤ S − k, Bj,ℓ ∈ {0, 1}, ∀ℓ ∈ [L], j ∈ [S],

where the integer k ∈ [ℓ] is defined in Lemma 53 as a function of ϵ, r and S. Problem
(7.34) is the disjoint counterpart of problem (7.15) and can be formulated as a MISDP for
the CCOPF problem if the semi-definite relaxation is exact. Similarly, we can prove that
the distributionally robust prescriptor achieves the optimal cost among solutions that satisfy
disjoint chance constraint (7.33) with high probability.

Theorem 77. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
ωT
ℓ h(X̂1−ϵ,r,S, ·),P0

)
≤ 0
]
≥ 1− exp [−rS + o(S)] , ∀ℓ ∈ [L], (7.35)

which leads to

P∞

[
ωT
ℓ h
(
X̂1−ϵ,r,S, ξ

)
≤ 0
]
≥ 1− ϵ− exp [−rS + o(S)] , ∀ℓ ∈ [L].

Furthermore, suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a quasi-continuous function of P and
satisfies constraint (7.35). Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.

Next, we extend the disjoint chance constraint to a more general case. Instead of a finite
number of weight vectors, the infinite case is defined by a set of weight vectors W , which
can contain an infinite number of elements. The infinite case of disjoint chance constraint is
then formulated as

P0

[
ωTh(X, ξ) ≤ 0

]
≥ 1− ϵ, ∀ω ∈ W . (7.36)

Hence, the finite case can be viewed as a special example of the infinite case, where the set
W only contains a finite number of weight vectors. As an example of the infinite case, the
set W can be the set of all weight vectors:

W =
{
ω ∈ Rm | 1T

mω = 1, ω ≥ 0m

}
.

In this case, the constraint (7.36) enforces that all convex combinations of stochastic con-
straints are satisfied with high probability. More generally, in certain applications, the
constraints can be divided into several groups. We can choose the set W to be the union of
weight vectors of a subset of indices:

W =
⋃
k∈[L]

{
ω ∈ Rm | 1T

mω = 1, ω ≥ 0m, ωℓ = 0,∀ℓ /∈ Ik
}
,
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where Ik ⊂ [m] are disjoint subsets. Similar to the finite case, the chance constraint (7.36)
can be reformulated as a MISDP. However, the MISDP contains an infinite number of con-
straints and thus, is considerably more challenging to solve. More specifically, for each
ω ∈ W , the constraint requires that there exists a vector bω ∈ ZS such that

ωTh(X, ξj) ≤ Cbω
j , 1T

Sb
ω ≤ S − k, bω

j ∈ {0, 1}, ∀j ∈ [S]. (7.37)

To deal with this challenge, we develop an iterative algorithm to approximate the constraint
(7.37). In the t-th iteration, we use a finite set of weight vectors Wt to approximate the set
W . The algorithm proceeds in two stages:

1. With a fixed set Wt, the algorithm generates an approximate distributionally robust
prescriptor X̂t by solving problem (7.34) with weight vectors in Wt;

2. With a fixed solution X̂t, the algorithm finds the weight vector ωt that violates con-
straint (7.37) by the largest margin. If there does not exist such weight vectors, we
know that the constraint (7.37) is satisfied and the algorithm is terminated. Otherwise,
we add vector ωt to set Wt.

The pseudo-code of the aforementioned algorithm is provided in Algorithm 23. For the
CCOPF problem, if the setW is a polyhedral, problem (7.38) becomes a MISDP and problem
(7.39) becomes a MIP. In this case, the algorithm runs efficiently in practice and exhibits
good empirical performances; see more details in Section III of [27]. If the setW has certain
special structure, the initial set W1 can be chosen based on the prior information about W .
For example, if W is a polyhedral, we can initialize W1 to contain all extreme points of the
polyhedral. In the general case when the set W is not a polyhedral or even non-convex,
problem (7.39) can be more challenging to solve.

Problem (7.39) is also based on the big-M method. If the variable bj = 1, since the
constant C is sufficiently large, there is no constraint on s. Otherwise if the variable bj = 0,
the constraint requires that

ωTh
(
X̂t, ξ

j
)
≥ s.

This means that s should be the minimal value of the left-hand side over all indices j such
that bj = 0. With a given ω ∈ Rm, to maximize the value of s, variable bj is equal to
one for indices with the k largest values of the left-hand side. Then, the optimal value of s
should be the k-th largest value of the left-hand side over all samples. If we further minimize
over the weight vector ω, the condition (7.37) holds if and only if the optimal value st is
non-positive. In addition, if st > 0, the corresponding vector ωt provides a weight vector
such that condition (7.37) is violated by the largest margin.

Since problem (7.38) usually involves cone constraints, such as the semi-definite constraint
in the CCOPF case, Algorithm 23 does not fit into the framework of classical cutting-plane
methods, e.g., [221]. Therefore, the convergence of Algorithm 23 cannot be directly derived
from those of existing cutting-plane methods and we leave the theoretical analysis to future
works.
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Algorithm 23 Algorithim for the infinite case of disjoint chance constraints.

1: Input: Set of weight vectors W , empirical distribution P̂S, number of iterations tmax,
parameters ϵ, r.

2: Output: Approximate prescriptor X̂1−ϵ,r,S.
3: Compute k by solving (7.28).
4: Initialize W1 ← ∅.

▷ Alternatively, initialize with a finite subset of W .
5: for t = 1, 2, . . . , tmax do
6: Let X̂t be a solution to:

min
X∈Rd,B∈ZS×Lt

g(X) (7.38)

s. t. ωT
ℓ h(X, ξj) ≤ CBj,ℓ,

1T
SB:,ℓ ≤ S − k, Bj,ℓ ∈ {0, 1}, ∀ℓ ∈ [Lt], j ∈ [S],

where we define Lt = |Wt| and Wt = {ω1, . . . , ωLt}.
7: Let (st, ωt,bt) be a solution to:

max
s∈R,ω∈W,b∈ZS

s, (7.39)

s.t. ωTh
(
X̂t, ξ

j
)
≥ s + Cbj,

1T
Sb ≤ S − k, bj ∈ {0, 1}, ∀j ∈ [S].

8: if solution st ≤ 0 then ▷ condition (7.37) is satisfied.
9: break
10: end if
11: Update Wt+1 ←Wt ∪ {ωt}.
12: end for
13: Return the last iterate of X̂t as X̂1−ϵ,r,S.

In this chapter, we assume that the minimum-cost solution X̂1−ϵ,r,S can be found, namely,
it is a solution to the following optimization problem:chap6-

min
X∈Rd,bw∈RS

g(X)

s. t. constraint (7.37) is satisfied for all ω ∈ W .

The next theorem claims that the solution X̂1−ϵ,r,S satisfies a similar optimality condition as
the finite case.

Theorem 78. For all ϵ ∈ [0, 1] and r > 0, it holds that

P∞

[
q1−ϵ

(
ωTh(X̂1−ϵ,r,S, ·),P0

)
≤ 0
]
≥ 1− exp [−rS + o(S)] , ∀ω ∈ W , (7.40)
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which leads to

P∞

[
ωTh

(
X̂1−ϵ,r,S, ξ

)
≤ 0
]
≥ 1− ϵ− exp [−rS + o(S)] , ∀ω ∈ W .

Furthermore, suppose that prescriptor X̃1−ϵ,r,P ∈ Rd is a quasi-continuous function of P and
satisfies constraint (7.40). Then, we have

P∞

[
g
(
X̃1−ϵ,r,S

)
< g

(
X̂1−ϵ,r,S

)]
= 0,

where we denote X̃1−ϵ,r,S := X̃1−ϵ,r,P̂S
.

We omit the proof due to its similarity to the proof of Theorems 75 and 76.
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Chapter 8

Conclusions and Future Directions

This dissertation aims at exploring and developing practical solutions by providing scal-
able, reliable and resilient optimization algorithms. The solutions to the computational
challenges will significantly change both everyday technologies and the frontiers of advanced
research areas. It may take life-long work to address the challenges in these fields and this
dissertation serves as important initial attempts towards achieving this goal. With the intro-
duction of advanced analysis and computation techniques, we develop and analyze algorithms
that are able to effectively utilize the underlying benign structure of real-world problems.
Our contributions are classified into three parts, namely, low-rank matrix optimization, con-
vex discrete optimization via simulation, and power systems. In the following, we summarize
the contributions of each part and discuss potential future research directions.

8.1 Low-rank Matrix Optimization

In Chapter 2, we analyze the geometric properties of low-rank optimization problems via
the non-convex factorization approach. We prove novel necessary conditions and sufficient
conditions for the non-existence of spurious second-order critical points in both symmetric
and asymmetric cases. We show that these conditions lead to sharper bounds and greatly
simplify the construction of counterexamples needed to study the sharpness of the bounds.
The developed bounds significantly generalize several of the existing results. In the rank-1
case, the bound is proved to be the sharpest possible. In the general rank case, we show
that there exists a positive correlation between second-order critical points and the global
minimum for problems whose RIP constants are higher than the developed bound but lower
than the fundamental limit obtained by the counterexamples. Finally, the strict saddle
property is proved with a weaker requirement on the RIP constant for asymmetric problems.
This chapter develops the first strict saddle property in the literature for nonlinear symmetric
problems.

In Chapter 3, we propose a new complexity metric for an important class of the low-rank
matrix optimization problems, which has the potential to generalize major existing recovery



CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 376

guarantees and is applicable to a much broader set of problems. The proposed complexity
metric aims to measure the complexity of the non-convex optimization landscape of each
problem and quantifies the likelihood of local search methods in successfully solving each
instance of the problem under a random initialization. We focus on the rank-1 generalized
matrix completion problem (3.4) to mathematically prove the usefulness of the new metric
from three aspects. Namely, we show that the complexity metric has a small value if the
instance satisfies the RIP condition or the incoherence condition. The results in these two
scenarios are consistent with the existing results on the RIP condition and the incoherence
condition. In addition, we analyze a one-parameter class of instances to illustrate that
the proposed metric captures the true complexity of this class as the parameter varies and
has consistent behavior with the aforementioned two scenarios. This consistency implies
that our proposed complexity metric is able to characterize the optimization landscapes of
different applications, which the RIP condition and the incoherence condition fail to capture.
Finally, we provide strong theoretical results on the generalized matrix completion problem
by showing that a small value for the proposed complexity metric guarantees the absence of
spurious solutions, whereas a large value for a slightly modified complexity metric guarantees
the existence of spurious solutions. This also shows the superiority of this metric over the
RIP condition and the incoherence condition since those notions cannot offer any necessary
conditions on having spurious solutions.

Given the gap between the empirical and the theoretical results, there are numerous fu-
ture research directions to pursue for low-rank matrix optimization problem. The existing
geometric analysis of the low-rank optimization problem mostly relies on restrictive assump-
tions, which only hold approximately, if are not violated, in practice. Aiming at developing
new tools and algorithms, we need to extend the theory to settings that are more pertinent
to real-world applications.

For example, most existing works assumed that the rank of the underlying low-rank
matrix is known or can be estimated from prior information. However, in practice, the
rank is usually unknown and an over-parameterized factorization model is commonly used.
Instead of overfitting, it is observed that the gradient descent algorithm exhibits robust
convergence to the global solution with the lowest rank starting from a small initialization.
This phenomenon is known as the implicit regularization of the gradient descent algorithm
and also appears in other machine learning models, such as linear regression and neural
networks. The theoretical explanation of the implicit regularization is far from complete.
Due to the similarity with linear neural networks, understanding the implicit regularization
phenomenon of the factorization approach serves as a very important intermediate step
towards that of deep neural networks. Moreover, establishing the convergence guarantees
through the implicit regularization justifies the application of the over-parameterized model.

Moreover, the ℓ2-loss function is considered extensively in literature. It may be beneficial
to use other loss functions, such as the ℓ1-loss function and the Sigmoid function, especially
when the underlying data generation distribution is not from Gaussian. For example, when
the measurements contain a small number of outliers, the ℓ1-loss function is more robust
to the outliers. However, since the ℓ1-loss function is not smooth, most existing analysis
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techniques cannot be directly applied and the optimization landscape is less well-understood.
Establishing the convergence results for general loss functions, especially non-smooth loss
functions, is another important future research direction.

In summary, the field of low-rank matrix optimization still contains lots of important
open questions. The research progress on those open questions will extend our understand-
ing on non-convex optimization algorithms and have significant impact on a wide range of
application areas.

8.2 Convex Discrete Optimization via Simulation

In Chapter 4, we propose computationally efficient simulation-optimization algorithms
for large-scale simulation optimization problems that have high-dimensional discrete decision
space in the presence of a convex structure. For a user-specified precision level, the proposed
simulation-optimization algorithms are guaranteed to find a choice of decision variables that
is close to the optimal within the precision level with desired high probability. We provide
upper bounds on simulation costs for the proposed simulation-optimization algorithms. In
Chapter 4, we mainly focus on algorithm design and theoretical guarantees. In future work,
we seek to design better simulation-optimization algorithms that provide simulation costs
with matching upper and lower bounds.

In Chapter 5, algorithms based on the idea of localization are proposed for large-scale con-
vex discrete optimization via simulation problems. The simulation-optimization algorithms
are theoretically guaranteed to identify a solution whose corresponding objective value is
close to the optimal objective value up to a given precision with high probability. Moreover,
the efficiency of the developed algorithms is evaluated by obtaining upper bounds on the
expected simulation cost. We summarize the performances of our algorithms in Table 5.5.3.
Specifically, in the one-dimensional case, we propose the SUS method, which has an expected
simulation cost as O[ϵ−2(log(N) + log(1/δ))], which attains the best achievable performance
under the asymptotic criterion [128], i.e., when δ → 0. For the multi-dimensional case, we
combine the idea of localization with subgradient information. The dimension reduction al-
gorithm is designed using a new framework to extend deterministic cutting-plane methods.
The expected simulation cost is proven to be upper bounded by a constant that is inde-
pendent of the Lipschitz constant. In addition, the dimension reduction algorithm does not
require prior knowledge about the Lipschitz constant. Finally, an adaptive algorithm (de-
scribed in 5.G) is designed to avoid the requirement that the variance of the noise should be
estimated a priori. Numerical results on both synthetic and queueing models demonstrate
that the proposed algorithms have better performances compared to benchmark methods
especially when the problem scale is large. In summary, the stochastic localization algo-
rithms are preferred when either (i) the problem scale is large or (ii) the Lipschitz constant
is large or difficult to estimate. On the other hand, if the problem scale is moderate but the
dimension is high, the subgradient-based search methods are preferred.
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Looking ahead, there are various ways to extend the results on the convex Discrete Op-
timization via Simulation (DOvS) problem. First, we can consider other structures of the
objective function. In continuous non-convex optimization, several different geometric struc-
tures were identified and proved to be able to guarantee the polynomial-time convergence of
saddle-avoiding algorithms. One of the most famous structure is the strict saddle property
[244], which is satisfied by a number of non-convex optimization problems. In the case of
discrete optimization, we can study other geometric structures, besides the L♮-convexity,
that can also be utilized to develop new algorithms and reduce the optimization complexity
of the DOvS problem.

Moreover, the algorithm design can be improved with more sophisticated computation
techniques. For example, the parallel DOvS algorithms can greatly reduce the computation
time of large-scale problems, when the computation cluster is available. In many DOvS
problems, the common random number technique can be utilized to reduce the joint simula-
tion cost of several similar decisions. More advanced statistical computing methods can also
be applied to improve the statistical guarantees of the developed algorithms.

In summary, the area of utilizing hidden structures in discrete optimization is newly
chopped and has lots of future directions to pursue. The research progress in this area will
lead to non-trivial impacts on many application fields of the DOvS problem.

8.3 Power Systems

In Chapter 6, we extend the uniqueness theory of P -Θ power flow solutions developed
in [184] for an AC power system. The notion of strong uniqueness is introduced to charac-
terize the uniqueness in the common sense. We propose a general necessary and sufficient
condition for the uniqueness of the solution, which depends only on the monotone regime
and the network topology. These conditions can be greatly simplified in certain scenar-
ios. When the underlying graph of the power network is a single cycle, sufficient conditions
in [184] are proved to be necessary. For 2-vertex-connected SP graphs, we show that the
maximal eye is equal to the maximal girth, which means that the sufficient condition for the
weak uniqueness also implies the strong uniqueness. When the power network is lossless,
we derive a necessary and sufficient condition that does not contain sinusoidal functions and
its sufficient part is stronger than the general sufficient conditions. A reduction method,
named the ISPR method, is proposed to reduce the size of power network and accelerate
the computation of the maximal eye and the maximal girth. The ISPR method is proved to
reduce a 2-vertex-connected SP graph to a single edge and the relation between the graphs
before and after the reduction is analyzed. Some algorithms based on the DFS method with
pruning are designed to compute the maximal eye and maximal girth.

In Chapter 7, we focus on the distributionally robust approach for the CCOPF problem.
We propose a new DRO formulation based on the relative entropy, which achieves the op-
timal generation cost given the maximum violation rate. In addition, we provide an exact
reformulation of the joint chance constraint, which guarantees the feasibility of the reformu-
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lated problem and leads to significantly better efficiency compared with existing approaches
based on inner approximation. Finally, numerical results on IEEE benchmark power sys-
tems are exhibited to show the superior performance of our approach compared to existing
state-of-the-art approaches.

As a potential extension, we can study the OPF problem from the perspective of low-rank
matrix optimization. We consider the case when the power systems suffer from adversarial
outliers. In the adversarial setting, the ℓ1-loss function is known to be robust to outliers in
several applications, e.g., LASSO regression and robust principle component analysis. We
are interested in establishing similar theoretical guarantees for the factorization model with
ℓ1-loss function.
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[14] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. “Convergence of descent meth-
ods for semi-algebraic and tame problems: proximal algorithms, forward–backward
splitting, and regularized Gauss–Seidel methods”. In: Mathematical Programming
137.1 (2013), pp. 91–129.

[15] Brian Axelrod, Yang P Liu, and Aaron Sidford. “Near-optimal approximate discrete
and continuous submodular function minimization”. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2020, pp. 837–853.

[16] Kyri Baker and Andrey Bernstein. “Joint Chance Constraints in AC Optimal Power
Flow: Improving Bounds Through Learning”. In: IEEE Transactions on Smart Grid
10.6 (Nov. 2019), pp. 6376–6385. issn: 1949-3053, 1949-3061.

[17] Robert E Bechhofer. “A single-sample multiple decision procedure for ranking means
of normal populations with known variances”. In: The Annals of Mathematical Statis-
tics (1954), pp. 16–39.

[18] Alexandre Belloni et al. “Escaping the local minima via simulated annealing: Op-
timization of approximately convex functions”. In: Conference on Learning Theory.
2015, pp. 240–265.

[19] Andrey Bernstein et al. “Load-Flow in Multiphase Distribution Networks: Existence,
Uniqueness, Non-Singularity and Linear Models”. In: IEEE Transactions on Power
Systems 33.6 (Apr. 2018), pp. 5832–5843.

[20] Dimitris Bertsimas and Santosh Vempala. “Solving convex programs by random
walks”. In: Journal of the ACM (JACM) 51.4 (2004), pp. 540–556.

[21] Srinadh Bhojanapalli, Anastasios Kyrillidis, and Sujay Sanghavi. “Dropping convex-
ity for faster semi-definite optimization”. In: Conference on Learning Theory. PMLR.
2016, pp. 530–582.

[22] Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro. “Global optimality of
local search for low rank matrix recovery”. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems. 2016, pp. 3880–3888.

[23] Yingjie Bi and Javad Lavaei. “On the absence of spurious local minima in nonlin-
ear low-rank matrix recovery problems”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2021, pp. 379–387.

[24] Yingjie Bi, Haixiang Zhang, and Javad Lavaei. “Local and Global Linear Convergence
of General Low-rank Matrix Recovery Problems”. In: Proceedings of 36th AAAI Con-
ference on Artificial Intelligence (AAAI), Vancouver, Canada. 2022, pp. 1–9.



BIBLIOGRAPHY 382

[25] P Borjesson and C-E Sundberg. “Simple approximations of the error function Q (x)
for communications applications”. In: IEEE Transactions on Communications 27.3
(1979), pp. 639–643.

[26] Nicolas Boumal. “Nonconvex phase synchronization”. In: SIAM Journal on Optimiza-
tion 26.4 (2016), pp. 2355–2377.

[27] Eli Brock et al. “Distributionally Robust Optimization for Nonconvex QCQPs with
Stochastic Constraints”. In: 2023 62th IEEE Conference on Decision and Control
(CDC). IEEE, 2023, pp. 1–7.

[28] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization”. In: Mathematical Program-
ming 95.2 (2003), pp. 329–357.

[29] James V Burke and Michael C Ferris. “Weak sharp minima in mathematical pro-
gramming”. In: SIAM Journal on Control and Optimization 31.5 (1993), pp. 1340–
1359.

[30] Apostolos N Burnetas and Michael N Katehakis. “Optimal adaptive policies for se-
quential allocation problems”. In: Advances in Applied Mathematics 17.2 (1996),
pp. 122–142.

[31] Marco C. Campi, Simone Garatti, and Maria Prandini. “The scenario approach for
systems and control design”. en. In: Annual Reviews in Control 33.2 (Dec. 2009),
pp. 149–157. issn: 13675788.

[32] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. “Phase retrieval via
Wirtinger flow: Theory and algorithms”. In: IEEE Transactions on Information The-
ory 61.4 (2015), pp. 1985–2007.

[33] Emmanuel J Candes and Yaniv Plan. “Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements”. In: IEEE Trans-
actions on Information Theory 57.4 (2011), pp. 2342–2359.

[34] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion via convex op-
timization”. In: Foundations of Computational mathematics 9.6 (2009), pp. 717–772.

[35] Emmanuel J Candès and Terence Tao. “The power of convex relaxation: Near-optimal
matrix completion”. In: IEEE Transactions on Information Theory 56.5 (2010), pp. 2053–
2080.

[36] Emmanuel J Candès et al. “Robust principal component analysis?” In: Journal of the
ACM (JACM) 58.3 (2011), pp. 1–37.

[37] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. “Adaptive cubic regulari-
sation methods for unconstrained optimization. Part I: motivation, convergence and
numerical results”. In: Mathematical Programming 127.2 (2011), pp. 245–295.



BIBLIOGRAPHY 383

[38] Vasileios Charisopoulos et al. “Low-rank matrix recovery with composite optimiza-
tion: good conditioning and rapid convergence”. In: Foundations of Computational
Mathematics 21.6 (2021), pp. 1505–1593.

[39] Ji Chen and Xiaodong Li. “Model-free Nonconvex Matrix Completion: Local Minima
Analysis and Applications in Memory-efficient Kernel PCA.” In: J. Mach. Learn. Res.
20.142 (2019), pp. 1–39.

[40] Ji Chen, Dekai Liu, and Xiaodong Li. “Nonconvex Rectangular Matrix Completion
via Gradient Descent Without ℓ2,∞ Regularization”. In: IEEE Transactions on Infor-
mation Theory 66.9 (2020), pp. 5806–5841.

[41] Jie Chen and Ronny Luss. “Stochastic gradient descent with biased but consistent
gradient estimators”. In: arXiv preprint arXiv:1807.11880 (2018).

[42] Lijie Chen, Anupam Gupta, and Jian Li. “Pure exploration of multi-armed bandit
under matroid constraints”. In: Conference on Learning Theory. 2016, pp. 647–669.

[43] Xi Chen, Bruce E Ankenman, and Barry L Nelson. “Enhancing stochastic kriging
metamodels with gradient estimators”. In: Operations Research 61.2 (2013), pp. 512–
528.

[44] Xi Chen, Enlu Zhou, and Jiaqiao Hu. “Discrete optimization via gradient-based adap-
tive stochastic search methods”. In: IISE Transactions 50.9 (2018), pp. 789–805.

[45] Xin Chen and Menglong Li. “Discrete convex analysis and its applications in opera-
tions: A survey”. In: Production and Operations Management (2020).

[46] Yudong Chen and Yuejie Chi. “Harnessing structures in big data via guaranteed low-
rank matrix estimation: Recent theory and fast algorithms via convex and nonconvex
optimization”. In: IEEE Signal Processing Magazine 35.4 (2018), pp. 14–31.

[47] Yuxin Chen et al. “Bridging convex and nonconvex optimization in robust PCA:
Noise, outliers and missing data”. In: The Annals of Statistics 49.5 (2021), pp. 2948–
2971.

[48] Yuxin Chen et al. “Gradient descent with random initialization: Fast global conver-
gence for nonconvex phase retrieval”. In: Mathematical Programming 176.1 (2019),
pp. 5–37.

[49] Yuxin Chen et al. “Noisy matrix completion: Understanding statistical guarantees
for convex relaxation via nonconvex optimization”. In: SIAM journal on optimization
30.4 (2020), pp. 3098–3121.

[50] Yuejie Chi, Yue M Lu, and Yuxin Chen. “Nonconvex optimization meets low-rank
matrix factorization: An overview”. In: IEEE Transactions on Signal Processing 67.20
(2019), pp. 5239–5269.

[51] Hsiao-Dong Chiang and Mesut E. Baran. “On the Existence and Uniqueness of Load
Flow Solution for Radial Distribution Power Networks”. In: IEEE Transactions on
Circuits and Systems CAS-37.3 (Mar. 1990), pp. 410–416.



BIBLIOGRAPHY 384

[52] Stephen E Chick. “Subjective probability and Bayesian methodology”. In: Handbooks
in Operations Research and Management Science 13 (2006), pp. 225–257.

[53] Hung-Hsu Chou et al. “Gradient descent for deep matrix factorization: Dynamics and
implicit bias towards low rank”. In: Applied and Computational Harmonic Analysis
68 (2024), p. 101595.

[54] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[55] Bai Cui and Xu Andy Sun. “Solvability of power flow equations through existence and
uniqueness of complex fixed point”. In: (2019). available online at https://arxiv.

org/pdf/1904.08855.pdf.

[56] Aris Daniilidis and Dmitriy Drusvyatskiy. “Pathological subgradient dynamics”. In:
SIAM Journal on Optimization 30.2 (2020), pp. 1327–1338.

[57] Damek Davis and Dmitriy Drusvyatskiy. “Stochastic subgradient method converges
at the rate O(k−1/4) on weakly convex functions”. In: arXiv preprint arXiv:1802.02988
(2018).

[58] Damek Davis et al. “Stochastic subgradient method converges on tame functions”.
In: Foundations of computational mathematics 20.1 (2020), pp. 119–154.

[59] Robin Delabays, Tommaso Coletta, and Philippe Jacquod. “Multistability of phase-
locking in equal-frequency Kuramoto models on planar graphs”. In: Journal of Math-
ematical Physics 58.3 (2017), p. 032703.

[60] Olivier Devolder, François Glineur, and Yurii Nesterov. “First-order methods of smooth
convex optimization with inexact oracle”. In: Mathematical Programming 146.1-2
(2014), pp. 37–75.
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[170] Arkadĭı Semenovich Nemirovsky and David Borisovich Yudin. “Problem complexity
and method efficiency in optimization.” In: (1983).

[171] Yurii Nesterov. Lectures on convex optimization. Vol. 137. Springer, 2018.

[172] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. “Phase retrieval using al-
ternating minimization”. In: Advances in Neural Information Processing Systems 26
(2013).

[173] Praneeth Netrapalli et al. “Non-convex robust PCA”. In: Advances in Neural Infor-
mation Processing Systems 27 (2014).

[174] Tibor Neubrunn. “Quasi-continuity”. In: Real Analysis Exchange 14.2 (1988), pp. 259–
306.

[175] Hung D Nguyen and Konstantin S Turitsyn. “Appearance of multiple stable load
flow solutions under power flow reversal conditions”. In: 2014 IEEE PES General
Meeting— Conference & Exposition. IEEE. 2014, pp. 1–5.

[176] Eric C. Ni et al. “Efficient ranking and selection in high performance computing
environments”. In: Operations Research 65.3 (2017), pp. 821–836.

[177] Eugene Ostrovsky and Leonid Sirota. “Exact value for subgaussian norm of centered
indicator random variable”. In: arXiv preprint arXiv:1405.6749 (2014).

[178] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. “Sample Average Approximation
Method for Chance Constrained Programming: Theory and Applications”. en. In:
Journal of Optimization Theory and Applications 142.2 (Aug. 2009), pp. 399–416.
issn: 0022-3239, 1573-2878.

[179] Ioannis Panageas and Georgios Piliouras. “Gradient descent only converges to mini-
mizers: Non-isolated critical points and invariant regions”. In: arXiv preprint arXiv:1605.00405
(2016).

[180] Zhan Pang, Frank Y Chen, and Youyi Feng. “A note on the structure of joint
inventory-pricing control with leadtimes”. In: Operations Research 60.3 (2012), pp. 581–
587.

[181] Chuljin Park and Seong-Hee Kim. “Penalty function with memory for discrete op-
timization via simulation with stochastic constraints”. In: Operations Research 63.5
(2015), pp. 1195–1212.



BIBLIOGRAPHY 393

[182] Chuljin Park et al. “Designing an optimal water quality monitoring network for river
systems using constrained discrete optimization via simulation”. In: Engineering Op-
timization 46.1 (2014), pp. 107–129.

[183] Dohyung Park et al. “Finding low-rank solutions via nonconvex matrix factoriza-
tion, efficiently and provably”. In: SIAM Journal on Imaging Sciences 11.4 (2018),
pp. 2165–2204.

[184] SangWoo Park et al. “Uniqueness of power flow solutions using monotonicity and
network topology”. In: IEEE Transactions on Control of Network Systems 8.1 (2020),
pp. 319–330.

[185] Sriram Pemmaraju and Steven Skiena. Computational Discrete Mathematics: Com-
binatorics and Graph Theory with Mathematica®. Cambridge university press, 2003.

[186] Bala Kameshwar Poolla et al. “Wasserstein Distributionally Robust Look-Ahead
Economic Dispatch”. In: IEEE Transactions on Power Systems 36.3 (May 2021),
pp. 2010–2022. issn: 0885-8950, 1558-0679.

[187] Yu. V. Prokhorov. “Convergence of Random Processes and Limit Theorems in Prob-
ability Theory”. en. In: Theory of Probability & Its Applications 1.2 (Jan. 1956),
pp. 157–214. issn: 0040-585X, 1095-7219.

[188] Huashuai Qu and Michael C Fu. “Gradient extrapolated stochastic kriging”. In: ACM
Transactions on Modeling and Computer Simulation (TOMACS) 24.4 (2014), pp. 1–
25.

[189] Prasanna K Ragavan et al. “Adaptive Sampling line search for local stochastic op-
timization with integer variables”. In: Mathematical Programming 196.1-2 (2022),
pp. 775–804.

[190] Hamed Rahimian and Sanjay Mehrotra. “Distributionally robust optimization: A
review”. In: arXiv preprint arXiv:1908.05659 (2019).

[191] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization”. In: SIAM review
52.3 (2010), pp. 471–501.

[192] James Renegar. “Condition numbers, the barrier method, and the conjugate-gradient
method”. In: SIAM Journal on Optimization 6.4 (1996), pp. 879–912.

[193] James Renegar. “Linear programming, complexity theory and elementary functional
analysis”. In: Mathematical Programming 70.1 (1995), pp. 279–351.
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