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ORIGINAL RESEARCH • NEURORADIOLOGY

Impaired fetal brain development during the third trimes-
ter has been increasingly reported as a contributing factor 

to brain injury and neurodevelopmental disabilities in sur-
vivors of complex congenital heart disease (CHD) (1,2). 
Available evidence suggests that alterations in fetal oxy-
gen delivery may contribute to aberrant brain growth in 
this high-risk fetal population and raises the possibility of 
maternal hyperoxygenation as a potential fetal therapy for 
certain types of CHD (3–5). The role of maternal oxygen 
administration, or maternal hyperoxia (HO), to improve 
fetal outcomes has been studied primarily in pregnancies 
complicated by fetal growth restriction, presumably to sup-
port declining placental function. Most of these studies fo-
cused on the redistribution of placental and cerebral blood 
flow during HO as measured at Doppler US, however, the 
potential impact of this therapy remains unclear (6–9). 

Recent advances in fetal MRI allow for more sophisticated 
and quantitative analyses of fetal hemodynamics and oxy-
genation, including phase-contrast MRI, T2 mapping, and 
blood oxygenation level–dependent (BOLD) functional 
MRI (10,11).

The fetal response to maternal HO has been reported in 
the healthy fetus by using BOLD functional MRI, which 
demonstrated negligible changes in fetal brain oxygenation 
even in the setting of increased placental oxygenation (8). 
In fetuses with CHD, T2* mapping has been studied to es-
timate fetal cerebral tissue oxygenation. These studies have 
revealed significant decreases in blood oxygenation and 
oxygen consumption of the fetal brain in CHD compared 
with healthy control fetuses (12), which was associ-
ated with impaired brain growth (4). In light of these 
findings, it has been proposed that administration of 
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Background: Impaired brain development in fetuses with congenital heart disease (CHD) may result from inadequate cerebral oxygen 
supply in utero.

Purpose: To test whether fetal cerebral oxygenation can be increased by maternal oxygen administration, effects of maternal  
hyperoxia on blood oxygenation of the placenta and fetal brain were examined by using blood oxygenation level–dependent 
(BOLD) functional MRI.

Materials and Methods: In this prospective study, BOLD MRI was performed in 86 fetuses (56 healthy fetuses and 30 fetuses diagnosed 
with CHD) between 22 and 39 weeks gestational age (GA) from May 2015 to December 2017, with the following study design: phase 
I, 2-minute resting state at baseline (room air); phase II, 6-minute maternal hyperoxia with 100% oxygen; and phase III, 5.6-minute 
return to resting state. After motion correction, the signals were averaged over the placenta and fetal brain and converted to the change 
in R2* (R2*). Fetuses with CHD were categorized into those with a single ventricle (SV) or two ventricles (TVs) and those with 
aortic obstruction (AO) or non-AO. Data were analyzed by using generalized linear mixed models controlling for GA and sex.

Results: Placental R2* increased during maternal hyperoxia in healthy fetuses and fetuses with CHD, but it was higher in SV 
CHD (mean R2*, 1.3 sec21 6 0.1 [standard error; P , .01], 1.9 sec21 6 0.2 [P , .01], and 1.0 sec21 6 0.3 [P , .01], respec-
tively, for control fetuses, fetuses with SV CHD, and fetuses with TV CHD). Placental R2* during maternal hyperoxia changed 
with GA in healthy control fetuses and fetuses with SV or AO CHD (R2* per week, 0.1 sec21 6 0 [P , .01], 0.2 sec–1 6 0 [P 
= .01], and 0.2 sec21 6 0 [P = .01], respectively), but not in fetuses with CHD and TV or non-AO. Fetal brain R2* was con-
stant across all phases in healthy control fetuses and fetuses with TV CHD but increased during maternal hyperoxia in fetuses 
with SV or AO CHD (mean R2*, 0.7 sec21 6 0.2 [P = .01] and 0.5 sec21 6 0.2 [P = .02], respectively).

Conclusion: Six minutes of maternal hyperoxia increased placental oxygenation in healthy fetuses and fetuses with congenital heart 
disease, and it selectively increased cerebral blood oxygenation in fetuses with single ventricle or aortic obstruction.

© RSNA, 2019

Online supplemental material is available for this article.
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Pregnant women underwent fetal MRI with a 1.5-T MRI 
system (Discovery MR450; GE Healthcare, Waukesha, Wis). 
We performed gradient-echo planar imaging sequences by using 
an eight-channel receive-only surface coil placed on the maternal 
abdomen in either supine or left-lateral positions. No sedation or 
exogenous contrast agent was used. A total of 408 volumes were 
acquired for each examination on the coronal acquisition plane 
with the following parameters: repetition time msec/echo time 
msec, 2000/60; field of view, 420 3 420 mm; 128 3 128 ma-
trix; 17–18 slices; slice thickness, 7–12 mm; slice gap, 2 mm; and 
flip angle, 90°. Additional fast spin-echo T2-weighted imaging 
was performed with the following parameters: 1095/163; field 
of view, 320 3 320 mm; slice thickness, 2 mm; and flip angle, 
90°; the images served as an anatomical reference to manually 
identify the regions of interest for the fetal brain and placenta.

The maternal HO design consisted of three consecutive 
phases: phase I, a 2-minute resting state at baseline normoxia 
(room air with 21% oxygen); phase II, a 6-minute maternal 
HO with 100% oxygen inhaled through a facial oxygen non-
rebreather mask at 15 L/min (CareFusion, Yorba Linda, Calif ); 
and phase III, return to resting state (RR) at normoxic condi-
tions for 5.6 minutes. The examination was paused for 5 seconds 
between each phase.

The degradation of BOLD signals because of severe fetal mo-
tion was corrected by using the design-optimized motion correc-
tion pipeline (15,16). In this pipeline, after excluding the first 
five volumes in each phase, the inhomogeneous distribution of 
signal intensities produced by MRI bias field was corrected by 
using the four-dimensional nonparametric bias estimator (17).

A volume with minimum variation from other volumes was 
automatically selected as a template for image registration. The 
region-of-interest masks of the fetal brain and placenta were 
manually mapped on the template volume by using ITK-SNAP 
(18), and their anatomic coherence was verified by using the cor-
responding T2-weighted images from MRI. An example of the 
region-of-interest masks is shown in Figure 2.

The between-slice motion artifact was corrected by using a 
straightforward algorithm that decomposes each volume into 
two subvolumes of odd and even slices and aligns the two in-
terleaved subvolumes (19). The between-volume motion artifact 
was corrected separately in the fetal brain and placenta by us-
ing the region-of-interest masks. Both rigid-body and nonrigid-
body image registrations were applied to the fetal brain by using 
the advanced neuroimaging tools (20), whereas nonrigid body 
image registration was applied to the placenta by using the Im-
age Registration Toolkit (21). Volumes that remained misaligned 
after motion correction were automatically eliminated through 
volume outlier rejection and were recovered by using data impu-
tation (15,16).

The BOLD signals were averaged as the median value 
of voxel intensities over each region of interest. The change 
in BOLD signal, S, from the baseline signal, S0, was con-
verted to the change in R2* (R2*) according to the equation  
R2* = –log (S/S0)/TE, where TE is echo time, by using software 
(Matlab 2018a; MathWorks, Natick, Mass) (22). The region-
of-interest–averaged R2* of the fetal brain and placenta were 
separated into 13 phases that were abbreviated to RS (ie, resting 

Abbreviations
R2* = change in R2*, AO = aortic obstruction, BOLD = blood oxy-
genation level dependent, CHD = congenital heart disease, GA = ges-
tational age, HO = hyperoxia, RR = return to resting state, SV = single 
ventricle, TV = two ventricle

Summary
Short-term maternal hyperoxia increased placental oxygenation at 
blood oxygen level2dependent MRI in both normal pregnancies and 
those complicated by congenital heart disease and increased fetal ce-
rebral blood oxygenation in fetuses with either single-ventricle physi-
ologic structure or aortic obstruction.

Key Results
 n During experimental maternal hyperoxia, placental oxygenation 

measured by blood oxygenation level–dependent MRI increased in 
both normal pregnancies (change in R2*[R2*], 1.3 sec21;  
P , .01) and those complicated by congenital heart disease 
(CHD; R2*, 1.3 sec21; P , .01).

 n During maternal hyperoxia, fetal brain oxygenation increased only 
in fetuses with either single-ventricle (R2* = 0.7 sec21, P = .01) 
or aortic obstruction (R2* = 0.5 sec21, P = .02) CHD.

oxygen to a woman carrying a fetus with CHD may improve 
fetal cerebral oxygenation by increasing blood oxygen content. 
To our knowledge, only one study (13) has examined the effects 
of maternal HO in fetuses with hypoplastic left-heart syndrome 
by using Doppler US. However, to our knowledge, the direct 
effects of maternal HO on placental and fetal cerebral blood oxy-
genation in CHD have not been studied.

In our study, we sought to investigate the effects of mater-
nal HO on placental and cerebral oxygenation in fetuses with 
CHD by using BOLD functional MRI. We hypothesized that 
the fetus with CHD will have a significant increase in cerebral 
oxygenation in response to maternal HO compared with healthy 
control fetuses.

Materials and Methods
This prospective study was approved by the institutional re-
view board at Children’s National Hospital (Washington, 
DC), and written informed consent was obtained from all 
study participants. BOLD functional MRI signals were ac-
quired from enrolled pregnant women between May 2015 
and December 2017. Healthy control participants were 
eligible if there were no maternal comorbidities and all 
pregnancy screening evaluations were normal. CHD was 
diagnosed at fetal echocardiogram according to established 
guidelines (14). Mothers with a fetus with CHD that was 
expected to undergo cardiac surgery with cardiopulmonary 
bypass within the first 30 days of life were eligible for enroll-
ment. Exclusion criteria included dysmorphic fetal features 
diagnosed at antenatal US, chromosomal abnormalities 
diagnosed by chorionic villous sampling or amniocentesis, 
multiple gestations, congenital infections, and maternal 
contraindications to MRI (Fig 1). Fetuses with CHD were 
classified as either single-ventricle (SV) or two-ventricle 
(TV) CHD for analysis of CHD subtypes. Fetuses with 
CHD were further classified as either CHD with aortic ob-
struction (AO) or CHD without AO (non-AO).
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analysis was performed on the original 
study whereas no power analysis was 
performed on this secondary study. A 
P value less than .05 was considered to 
indicate statistical significance.

Results

Study Population
We enrolled a total of 86 pregnant 
women (56 with healthy fetuses and 
30 with fetuses with CHD) at a mean 
GA of 31 5/7 weeks (ranging from 22 
1/7 to 39 4/7 weeks). A subset of 53 
pregnant women (33 healthy fetuses 

and 20 fetuses with CHD) underwent two MRI examinations 
after study enrollment: the first MRI examination was per-
formed before 30 weeks GA and the second MRI examination 
was performed after 30 weeks GA, for a total 141 MRI exami-
nations (89 examinations for healthy fetuses and 52 examina-
tions for fetuses with CHD). A flowchart demonstrating the 
selection of study subjects from the enrolled pregnant women 
is shown in Figure 1. No adverse events were noted in the fe-
tuses or mothers at or immediately after MRI. The quality of 
functional MRI data was assessed after data preprocessing; 12 
of 141 examinations were excluded from the placental analy-
sis because of severe MRI artifacts and failure of motion cor-
rection; and 57 examinations were excluded from the analysis 
of the fetal brain because of significant MRI artifact, failure 
of motion correction, and partial data acquisition of the fetal 
brain. The demographic and clinical properties of the remain-
ing study participants are summarized in the Table.

Placental R2*
The R2* values of the placenta and fetal brain are sum-
marized in Tables E1 and E2 (online). Figure 3 shows the 
temporal trends of placental and fetal brain R2* over ma-
ternal HO and RR. Figures 4 and 5 show the local variation 
of placental and fetal brain R2*. The placental R2* in-
creased during HO in both healthy fetuses and fetuses with 
CHD (mean R2* at HO6, 1.3 sec–1 6 0.1 [standard error;  
P , .01], 1.9 sec21 6 0.2 [P , .01], and 1.0 sec–1 6 0.3 
[P , .01], respectively, in healthy control fetuses, fetuses 
with SV CHD, and fetuses with TV CHD). Whereas pla-
cental R2* was higher in fetuses with SV CHD compared 
with healthy control fetuses for the last 2 minutes of HO 
(P = .01), the values were similar in fetuses with TV CHD 
(HO6, P = .10) (Table E1 [online]).

The placental R2* in fetuses with AO CHD were not dif-
ferent in any phases compared with fetuses with non-AO CHD 
(mean R2* at HO6, 1.4 sec21 6 0.3 and 1.2 sec–1 6 0.3, 
respectively, in fetuses with AO CHD and non-AO CHD;  
P = .87) (Table E2, Fig E1 [online]).

Fetal Brain R2*
The fetal brain R2* did not increase during maternal HO 
for healthy fetuses and fetuses with TV CHD (mean R2* at 

state), HO1–HO6 (ie, each minute of phase II), and RR1–RR6 
(ie, each minute of phase III). The R2* phase averages were 
computed as the mean of R2* during each phase.

A one-sample t test was used to evaluate whether R2* was 
significantly different from zero at each phase by subject group. 
To account for within-patient clustering, complex survey analy-
sis techniques were employed by treating repeated patient mea-
sures as individual clusters; standard errors were adjusted by us-
ing Taylor series estimation (23). Subsequently, the generalized 
linear mixed models accounting for repeat patient sampling were 
used to assess differences in R2* in groups with CHD com-
pared with healthy control participants. Gestational age (GA) 
and sex were controlled for all models. Groups by time interac-
tion terms were included in generalized linear mixed model to 
evaluate whether associations across GA differed by group; GA 
was considered to be a continuous variable. Model parameters 
were estimated by using restricted maximum likelihood with ro-
bust standard errors. Fixed-effect R2 estimates for goodness of fit 
were calculated by using an estimation method for linear mixed 
models (24). All analyses were performed by using statistical 
software (SAS 9.4; SAS Institute, Cary, NC). A formal power 

Figure 1: Flowchart for the selection of study subjects from the enrolled pregnant women in the Children’s National 
Hospital. CHD = congenital heart disease.

Figure 2: Coronal image from functional MRI from a normal 
pregnancy of a single female fetus at 35 gestational weeks. The 
red lines show the regions of interest for the placenta and fetal 
brain acquired during maternal hyperoxia.
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Relationship between R2* and GA
The effects of GA on placental and fetal brain R2* in healthy 
fetuses and fetuses with CHD are summarized in Table E3 
(online). The placental R2* between phases HO3 and RR1 
increased with advancing GA for healthy control fetuses and 
fetuses with SV CHD (P , .05 for all), although the increase 
of placental R2* over GA persisted through the RR4 phase 
in healthy control fetuses. Figure 6 shows the relationship 
between placental R2* during terminal HO with advancing 
GA, with a positive association between regional placental oxy-
genation and GA for both healthy control fetuses and fetuses 
with SV CHD (GA, b = .1 sec–1 per week 6 .0 [P , .01] and 
.2 sec–1 per week 6 .0 [P = .01], respectively; fetuses with TV 

HO6, 0 sec21 6 0.1 [P = .55] and 0.1 sec21 6 0.1 [P = .70], 
respectively). However, fetal brain R2* was higher in fetuses 
with SV CHD during maternal HO (mean R2* at HO6, 
0.7 6 0.2 sec21; P = .01). Higher R2* persisted through phase 
III (mean R2* at RR6, 1.0 sec21 6 0.2; P = .01). The fetal 
brain R2* was higher in fetuses with SV CHD compared with 
healthy fetuses throughout all periods in phases II and III (in 
HO6 and RR6, P , .01). Similar to fetuses with SV CHD, the 
fetal brain R2* values for the fetuses with AO CHD increased 
during HO (R2* at HO6, 0.5 sec21 6 0.2; P = .02), and the 
group difference between healthy control fetuses and fetuses 
with AO CHD was statistically significant during HO4 to RR2 
phases (P , .05 for all; Table E2 [online], Fig E1 [online]).

Figure 3: Graphs show the changes in R2* of the, A, placenta and, B, fetal brain at resting state (RS) during maternal hyperoxia (HO) and during return to resting state 
(RR) in normal pregnancies and those complicated by congenital heart disease (CHD) with single ventricle (SV) or two ventricles (2V). Data for R2* are expressed as 
means and standard errors. HO1–HO6 = each minute of HO, RR1–RR6 = each minute of RR.

Study Population Demographic and Clinical Characteristics

Parameter Healthy Control Fetuses (n = 56) Fetuses with CHD (n = 30) P Value
No. of male fetuses 26 (46) 17 (57) .86
Median gestational age (wk)* 32 (24–39) 32 (22–39) .89
No. of fetuses with repeated MRI 33 (59) 20 (67) …
No. of MRI examinations 89 52 …
Type of CHD
 SV physiologic structure … 13 (43) …
  Hypoplastic left-heart syndrome … 7 (23) …
  Complex SV AO … 2 (7) …
  Complex SV non-AO … 4 (13) …
 TV physiologic structure … 17 (57) …
  Tetralogy of Fallot … 4 (10) …
  Transposition of the great arteries … 4 (13) …
  Truncus arteriosus … 3 (10) …
  VSD or CoA … 2 (7) …
  Total anomalous pulmonary venous return … 1 (3) …
  Complex TV AO … 1 (3) …
  Complex TV non-AO … 2 (7) …

Note.—Data in parentheses are percentages unless otherwise indicated. AO = aortic obstruction, CHD = congenital heart disease, CoA = 
coarctation of the aorta, SV = single ventricle, TV = two ventricle, VSD = ventricular septal defect.
* Data in parentheses are range.
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and that fetal brain R2* increased during HO in the fetuses 
with either SV or aortic obstruction (AO) CHD (R2*, 0.7 sec21 
and 0.5 sec21, respectively; P , .01).

The increase in placental R2* during maternal HO 
in both healthy pregnancies and pregnancies that in-
volve CHD may reflect the anatomic nature of placen-
tal vasculature. It has been shown that whereas the con-
centration of oxyhemoglobin in the maternal blood 
entering the placenta remains relatively unchanged with HO, 
maternal arterial partial pressure of oxygen, or PaO2, increases.  
This allows for more oxygen to be diffused into the fetal com-
partment with less saturated blood, thus increasing the oxygen 
saturation in the umbilical vein (10,25,26).

Interestingly, the increase in placental R2* was higher in 
fetuses with SV CHD compared with healthy control fetuses. 
A decrease in oxygen saturation of the ascending aorta in  
SV CHD had been previously demonstrated (4). If SV CHD 
results in the most deoxygenated blood return to the placenta, this  
may explain in part why our study found the most statistically  
significant increase in placental oxygenation in this cohort. 
Moreover, the unique response of the placental R2* in SV 
CHD also might be reflective of distinct placental disease. 

CHD, b = .0 sec21 per week 6 .1 [P = .57]). The fetuses with 
AO CHD also showed an increase in the placental R2* over 
GA between HO3 and RR1 phases (Fig E2 [online]) (GA at 
HO6, AO CHD vs non-AO CHD: b = .2 sec21 per week 6 
.0 [P = .01] and .1 sec21 per week 6 .1, respectively [P = .40]).

The fetal brain R2* at terminal HO did not show any lon-
gitudinal change over advancing GA in both healthy fetuses and 
fetuses with CHD. However, there was a relationship between 
the fetal brain R2* at early HO (HO1 to HO3 phases) and GA 
for SV CHD only (Table E3 [online]) (GA at HO1 phase,  
b = .1 sec21 per week 6 .0; P = .03).

Discussion
In our study, we reported the effects of short-term maternal 
hyperoxia (HO) on the placenta and fetal brain-blood oxygen-
ation in pregnancies complicated by congenital heart disease 
(CHD) by using blood oxygenation level–dependent (BOLD) 
MRI to assess whether maternal HO can be used to improve 
fetal oxygenation in CHD. We demonstrated that placental 
change in R2* (R2*) during HO was higher in the fetuses 
with single-ventricle (SV) CHD compared with healthy con-
trol fetuses (R2*, 1.9 sec21 vs 1.3 sec21, respectively; P = .01), 

Figure 4: Comparison of voxel-wise placental change in R2* (R2*) in resting state (left), after 6 minutes of hyperoxia (middle), and after 
5 minutes of return to resting state (right) between healthy pregnancies and pregnancies complicated by congenital heart disease (CHD) with 
single ventricle (SV) or two ventricles (2V). The color map indicates the magnitude of R2*.
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study that demonstrated reduced T2* values of the placenta in 
the mature pregnancy, suggesting that less placental oxygen-
ation at baseline later in gestation may lead to larger hyperoxic 
increase in R2* (29). However, we did not detect a significant 
association with placental R2* and GA in fetuses with TV or 
non-AO CHD. This may potentially reflect independent pla-
cental pathologic mechanisms that limit oxygen transfer in this 
group, though further investigation is warranted (30).

Pathologic examination of the placenta in CHD has revealed 
high rates of hemorrhage and infarction (27). Placental injury 
may cause larger hyperoxic increase in blood oxygenation in 
isolated regions. Indeed, placental disease in CHD may also be 
a contributing factor to growth restriction, as decreased fetal 
growth has been reported in CHD (3,28).

Placental R2* during maternal HO significantly increased 
over GA in healthy fetuses. This is supported by a previous 

Figure 6: Scatterplots show comparison of placental change in R2* (R2*; after 6 minutes of maternal hyperoxia [HO6] phase) versus gestational age between, 
A, normal pregnancies and those complicated by congenital heart disease with, B, single ventricle or, C, two ventricles. Data points and linear regression lines are 
plotted.

Figure 5: Comparison of voxel-wise change in R2* (R2*) in fetal brain in resting state (left), after 6 minutes of hyperoxia (middle), and after 5 
minutes of return to resting state (right) between healthy pregnancies and pregnancies complicated by congenital heart disease (CHD) with single 
ventricle (SV) or two ventricles (2V). The color map indicates the magnitude of R2*.
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related image degradation). Technical optimization and motion 
compensation tools need to be further developed and optimized.

Our study provided evidence for increased cerebral oxy-
genation in fetuses with single-ventricle and aortic obstruction 
congenital heart disease (CHD) in response to a brief period of 
maternal hyperoxia. Although the underlying mechanism needs 
further investigation, our data suggested that maternal oxygen 
therapy may improve oxygen delivery to the brain in selected 
fetuses with specific CHD subtypes. Future investigations to 
better understand cerebral oxygenation of the fetus can build 
on the blood oxygenation level2dependent studies presented 
here, combined with techniques to measure blood flow, such as 
phase-contrast imaging. Investigating changes to visceral perfu-
sion and oxygenation in CHD will also be important to better 
understand the fetal ability to compensate for altered cardiovas-
cular function. Whether chronic maternal hyperoxia can provide 
a sustained improvement in cerebral oxygenation and improve 
neurodevelopmental outcomes is, to our knowledge, currently 
unknown and beyond the scope of our current study. The safety 
and feasibility of maternal hyperoxia in pregnant women with 
fetal CHD remains to be determined (5,39–41).
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In healthy fetuses, cerebral blood oxygenation remained 
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in R1 (related to the change in partial oxygen pressure). 
There are conflicting studies that reported increasing cere-
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