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Abstract
Life history and metabolism covary, but the mechanisms and individual traits respon-
sible for these linkages remain unresolved. Dispersal capability is a critical compo-
nent of life history that is constrained by metabolic capacities for energy production. 
Conflicting relationships between metabolism and life histories may be explained by 
accounting for variation in dispersal and maximal metabolic rates. We used female 
wing-polymorphic sand field crickets, Gryllus firmus, selected either for long wings 
(LW, flight-capable) or short wings (SW, flightless) to test the hypothesis that selec-
tion on dispersal capability drives the evolution of metabolic capacities. While resting 
metabolic rates were similar, long-winged crickets reached higher maximal metabolic 
rates than short-winged crickets, resulting in improved running performance. We fur-
ther provided insight into the mechanisms responsible for covariation between life 
history and metabolism by comparing mitochondrial content of tissues involved in 
powering locomotion and assessing the function of mitochondria isolated from long- 
and short-winged crickets. Our results demonstrated that larger metabolic capaci-
ties in long-winged crickets were underpinned by increases in mitochondrial content 
of dorsoventral flight muscle and enhanced bioenergetic capacities of mitochondria 
within the fat body, a tissue responsible for fuel storage and mobilization. Thus, selec-
tion on flight capability correlates with increases in maximal, but not resting metabolic 
rates, through modifications of tissues powering locomotion at the cellular and orga-
nelle levels. This allows organisms to meet high energetic demands of activity for life 
history. Dispersal capability should therefore explicitly be considered as a potential 
factor driving the evolution of metabolic capacities.
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1  |  INTRODUC TION

Life histories and metabolism are fundamentally linked, but the 
nature of the linkages remains opaque. Metabolic rates can be a 
pacemaker for biological processes, such as growth and develop-
ment, thereby setting the pace of life along a fast-to-slow contin-
uum (Brown et al., 2004). While associations between metabolic 
rates and life histories are common both between and within 
species, the strength and direction of these relationships are in-
consistent (Arnold et al., 2021; Glazier, 2015). For example, within 
three separate populations of house sparrows, females with high 
metabolic rates alternately have early and late egg laying dates, 
or no relationship between metabolic rate and egg laying date 
(Chastel et al., 2003; Rønning et al., 2016). Such apparent discrep-
ancies suggest fundamental shortcomings in our understanding of 
the causal mechanisms linking metabolism and life history (Chung 
et al., 2018; Heine & Hood, 2020). Closing this gap in knowledge 
will improve our ability to explain and predict patterns of covaria-
tion between life history and metabolic traits, refining our under-
standing of the factors leading to the pace-of-life continuum that 
shapes population dynamics and structures in a large portion of 
our biodiversity. However, both metabolic and life-history traits 
are multifaceted, making the identification of the causal drivers 
linking metabolism and life-history evolution challenging.

Dispersal is a critical component of life history that depends 
on locomotor performance in many animals, which use powered 
locomotion to find mates, acquire food, escape predators and lo-
cate new habitats (Roff, 1991; Zera & Denno, 1997). Locomotor 
performance is limited by metabolic capacities, determined by 
maximal metabolic rates that set an upper limit on the intensity 
of energy production (Conley, 2016; Harrison & Roberts, 2000; 
Jones & Lindstedt, 1993). Consequently, individuals and species 
with highly active lifestyles have also evolved large metabolic ca-
pacities (Gomes et al., 2004; Harrison & Roberts, 2000; Hayes & 
O'Connor, 1999; Pang et al., 2020; Swallow et al., 1998). The larg-
est metabolic capacities amongst animals are observed in flight-
capable insects, who elevate their metabolic rates more than 
fifty-fold above rest when flying (Beenakkers et al., 1984; Suarez, 
2000). Higher maximal metabolic rates and improved flight per-
formance are correlated with increases in metabolic enzyme ac-
tivity, mitochondrial content and bioenergetic efficiency in critical 
tissues involved in powering locomotion (Anderson & Finlayson, 
1976; Darveau et al., 2005; Hammond et al., 2000; Rauhamäki 
et al., 2014; Wone et al., 2018). Therefore, biochemical and molec-
ular differences of tissues and organelles shape metabolic capaci-
ties in vivo and must be considered to understand the mechanistic 
underpinnings of variation in organismal metabolism and per-
formance (Hulbert & Else, 2000; Konarzewski & Książek, 2013). 
While beneficial for locomotor performance, biosynthesis and 
maintenance of tissues with high densities of mitochondria is how-
ever, energetically costly and raises resting metabolic demands 
(Crnokrak & Roff, 2002; Marden, 2000; Nespolo et al., 2008; Zera 
et al., 1997). When resting metabolic demands are high, individuals 

must allocate more resources to somatic maintenance as opposed 
to growth or reproduction, resulting in energetic constraints and 
life-history trade-offs (Marden, 2000; Nilsson, 2002). Allocations 
to dispersal may thus, couple life-history and metabolic evolution. 
This potential link still remains unresolved, because most studies 
assessing covariation between life history and metabolism do not 
consider variation in dispersal capability or maximal metabolic ca-
pacities (Arnqvist et al., 2017; Ton & Martin, 2016; Trevelyan et al., 
1990; White & Seymour, 2004; Wong et al., 2021).

Here, we begin to fill this knowledge gap by demonstrating 
how divergent capacities for energy production by aerobic me-
tabolism have evolved due to a life-history trade-off between 
dispersal and reproduction, in the wing-polymorphic sand field 
cricket, Gryllus firmus (Scudder, 1902). Adult crickets are either 
long-winged (LW) and flight-capable or short-winged (SW) and 
flightless (Roff, 1984; Zera & Denno, 1997). The wing polymor-
phism is genetically determined and maintained by a trade-off 
between flight and oogenesis: while flight-capable, LW crickets 
delay oogenesis, resulting in a reduced early lifetime fecundity 
compared to SW crickets (King et al., 2011; Mole & Zera, 1993; 
Roff, 1984). Because LW and SW crickets differ in their prioritiza-
tion of resource allocations between dispersal and reproduction 
in early adulthood, this system provides a powerful model to test 
for associations between life-history and metabolic capacities, in-
dependent of other factors influencing metabolism such as age, 
sex, body size and environmental conditions. The flight-oogenesis 
trade-off is underpinned by differences in intermediary metabolic 
pathways that regulate biosynthesis and nutrient allocations: SW 
crickets upregulate protein biosynthesis for vitellogenesis and di-
vert lipids to ovaries instead of the soma for large-scale oogen-
esis, while LW crickets upregulate lipid biosynthesis to generate 
large somatic energy stores that fuel flight (reviewed by Zera 
et al. (2011)). LW crickets are also expected to have biochemical 
adaptions in central metabolic pathways responsible for energy 
production for flight that increase metabolic capacities and daily 
energy expenditures (King et al., 2011; Zera et al., 1997). However, 
LW crickets do not have consistently higher mass-specific resting 
and standard metabolic rates compared to SW crickets in G. firmus 
(Clark et al., 2016; Crnokrak & Roff, 2002; Nespolo et al., 2008) 
and no study to our knowledge has measured maximal metabolic 
rates or mitochondrial bioenergetic capacities. Thus, despite 
wing-polymorphic crickets having been the premier model system 
in elucidating the physiological basis of life-history trade-offs, the 
modifications to metabolism that permit high energy production 
necessary for powered-flight remain unexamined.

We hypothesized that metabolic remodelling increases energy 
production capacities required to meet energetic demands of dis-
persal by active locomotion, resulting in higher maximal metabolic 
rates and correspondingly greater locomotor performance in flight-
capable compared to flightless crickets. To test this hypothesis, 
we first used a treadmill respirometer to simultaneously assess 
metabolic rates (resting and maximal) and running performance of 
individual LW and SW crickets. While running is less energetically 
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costly compared to flight (Butler, 2016; Rothe & Nachtigall, 1989) 
we focused on running performance rather than flight because it is 
a fitness-relevant dispersal behaviour performed by both LW and 
SW crickets. Moreover, a subset of muscles powering flight, the 
dorsoventral muscles (DVM), also power running (Wilson, 1962). 
Subsequently, we linked organismal differences in locomotor per-
formance and metabolism to tissue- and organelle-level variation in 
metabolic function by (1) estimating aerobic capacity of three tis-
sues involved in running: leg muscles, dorsoventral muscles and fat 
body; (2) quantifying functional differences in mitochondrial bioen-
ergetics of fat body tissue; and (3) assessing a potential difference 
in the composition of the electron transport system of fat body mi-
tochondria. Together, our findings provide new insight into the un-
derpinnings of metabolic variation that arises due to a life-history 
trade-off and implicates dispersal capability as a critical life-history 
trait that drives the evolution of metabolic capacities.

2  |  MATERIAL S AND METHODS

2.1  |  Animals and rearing conditions

All experiments were conducted using adult female sand field 
crickets, Gryllus firmus, that came from a genetic stock (Block II) 
selected for wing-length (long-winged (LW) or short-winged (SW)) 
in the 1990s (Zera & Huang, 1999) and thereafter maintained as 
almost true-breeding (~95% per generation) lines of LW and SW 
crickets. Prior to adulthood, crickets were group housed at mod-
erate densities by wing-length and age in clear plastic containers 
(426.72 × 337.82 × 287.02  mm) with ad libitum access to water, 
food (a standard nutritionally complete lab diet of wheat germ, 
wheat bran, nutritional yeast and powdered milk (Zera & Larsen, 
2001)) and pieces of crumpled butcher paper to provide shelter. 
Crickets were reared at the University of California, Berkeley, in 
a room maintained at a temperature of 27 ± 2°C and a 16 h: 8 h 
light: dark cycle. We checked containers with last instar juveniles 
(final juvenile stage before adulthood) daily to identify LW and SW 
females that had entered adulthood within the past 24 h (adult day 
0). All newly enclosed females were removed from group hous-
ing and placed together in a separate smaller plastic bin (346.2 × 
206.5 × 111.25 mm) under the same rearing conditions until physi-
ological measurements were made on the fifth day of adulthood. 
Long-winged crickets histolyse (breakdown) their flight muscles 
when initiating reproduction later in adulthood, rendering them 
flightless (Zera et al., 1997). We conducted all experiments on the 
fifth day of adulthood because physiological differences associ-
ated with the flight-oogenesis trade-off are greatest between LW 
and SW crickets at this age, and muscle histolysis in our selected 
LW line was rare prior to this age (Zera et al., 1997). Muscle status 
of all long-winged crickets (N = 60) used in these experiments was 
visually confirmed (pink and functional or white and histolysed) 
by dissection, and the three long-winged individuals found with 
histolysed muscles were excluded from analysis.

2.2  |  Organismal metabolic rates and running 
performance

Rates of oxygen consumption of crickets (n= 25 SW and n= 30 LW) 
were measured as a proxy for organismal metabolic rates, using 
open-flow respirometry with an electrochemical oxygen analyzer 
(S3-A II Applied Electrochemistry; AEI Technologies, TX, USA); both 
at rest and during running on a treadmill. The respirometry chamber 
encapsulated a miniature treadmill controlled by a motor that set the 
speed and direction of belt movement. The flow rate of air through 
the respirometry chamber was 100 ml·min−1 and controlled by a flow 
meter (Full et al., 1990). Prior to the start of each trial, the oxygen 
analyzer was calibrated on the empty closed metabolic chamber.

After calibration, a cricket was added to the respirometry cham-
ber and allowed to acclimate for ten minutes or until a resting meta-
bolic rate (RMR), defined as a four-minute period of inactivity during 
which the rate of oxygen consumption was constant, was reached. 
Once the cricket reached RMR, the treadmill was turned on at a 
starting speed of 25  rpm. Every three minutes, the speed was in-
creased by 2.5 rpm until the cricket became exhausted. Exhaustion 
was defined as the moment when the cricket began hitting the back 
of the chamber because it stopped running and could no longer keep 
up with the speed of the treadmill. The peak steady state, defined as 
a period in which variation in oxygen consumption rate was less than 
5%, recorded just prior to exhaustion was considered an individu-
al's maximal metabolic rate (MMR). At exhaustion, the treadmill was 
stopped, and the duration of running and maximal speed reached by 
the cricket were recorded as indices of locomotor performance. All 
crickets were frozen following running and stored at −20°C until dis-
section and tissue collection for measurements of citrate synthase 
activity and muscle status determination (see ‘aerobic capacity of tis-
sues involved in running’).

Running trials were conducted across sixteen days and crickets 
tested on a given day always included an equal number of LW and 
SW individuals. Prior to each trial, room temperature was measured 
with a thermometer (ranged between 22°C and 25°C) and cricket 
mass, to the nearest 0.01 g, was recorded using an electronic bal-
ance (Sartorius RC 250S, Sartorius, NY, USA). MATLAB was used 
to monitor, collect and process the respirometry data. Oxygen con-
sumption during resting and maximal states were calculated as (the 
oxygen concentration difference (∆O2) × flow rate (100  ml·h−1) × 
60 min·h−1 × Standard Temperature Pressure Dry)/100.

2.3  |  Aerobic capacity of tissues involved 
in running

Citrate synthase activity is used as an indicator of mitochondria con-
tent and aerobic capacity of tissues (Larsen et al., 2012). To compare 
tissue-specific citrate synthase activities we dissected and collected 
leg muscle, dorsoventral muscle and fat body, from a random subset 
of the crickets used in the treadmill respirometry trials (n = 12 LW 
and n = 12 SW). These three tissues were chosen because of their 
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roles in running; the leg and dorsoventral muscles (DVM) directly 
power leg movement, while the fat body is involved in synthesizing, 
storing and mobilizing nutrients to support muscle activity. For dis-
sections, frozen crickets were thawed, and fine point micro-scissors 
were used to make a midline cut through the cuticle on the ventral 
side. The cricket was pinned open to expose the body cavity and 
fine-tipped forceps were used to collect tissues. All tissues were 
immediately weighed to the nearest mg with an electronic balance 
(Sartorius RC 250S, Sartorius, NY, USA), and homogenized in a 1: 
25 (w: v) of homogenization buffer (5 mM EDTA Dihydrate, 50 mM 
HEPES, 0.1% Triton-X100, pH of 7.4), using a PRO250 homogenizer 
(PRO Scientific Inc., CT, USA). After homogenization, the samples 
were centrifuged (2  min, 10 000  g, 4°C), then supernatants were 
collected and stored at −80°C until enzyme activity measures were 
taken.

Tissue-specific citrate synthase activity was measured spectro-
photometrically based on the production of citrate from the conver-
sion of oxaloacetate and acetyl-CoA, as described by Chung et al. 
(2017). Immediately prior to enzymatic analysis, tissue samples were 
thawed, and the dorsoventral muscle tissue homogenates were fur-
ther diluted five-fold with homogenization buffer. Tissue homoge-
nate (10 μl) was added in triplicate to a 96-well plate. Subsequently, 
assay buffer (12  mM Acetyl-CoA, 2.0  mM DTNB in 95% ETOH, 
50  mM Tris-HCl at pH 8.0) (200  μl) was added to each well, and 
background levels of absorbance at 412  nm was measured kinet-
ically with a SYNERGY H1  microplate reader (BioTek Instruments 
Inc., VT, USA). Next, 5 μl of 21.5 mM oxaloacetate, prepared fresh 
in 50 mM Tris-HCl was quickly added to each well, then absorbance 
was recorded again. The linear slope of the change in absorbance 
averaged across triplicates of each sample was used to calculate the 
rate of citrate production (μmol citrate·min−1).

2.4  |  Mitochondrial function, bioenergetic 
capacities and composition

Mitochondria were isolated from fat body tissue (n = 10 LW and n = 
10 SW) following a modified protocol based on Slocinska et al. (2011) 
and mitochondrial capacities for substrate oxidation were assessed 
employing high-resolution respirometry (Figure S1). For each sam-
ple, three crickets of the same wing-length were sacrificed by de-
capitation and immediately dissected to remove the fat body. Upon 
collection, the fat body was pooled, weighed and homogenized (1: 
25 w: v) in ice-cold isolation medium (250 mM sucrose, 100 mM Tris-
HCl, 10 mM EDTA, 1% fatty-acid-free BSA, pH 7.4) with a Teflon-
glass homogenizer. Whole tissue homogenate was centrifuged at a 
low speed to remove intact cells and cell fragments (10 min, 1000 g, 
4°C). The supernatant was collected and centrifuged at high speed 
(10  min at 10 000  g at 4°C) to obtain a mitochondrial pellet. The 
mitochondrial pellet was re-suspended in ice-cold wash buffer 
(250 mM sucrose, 100 mM Tris-HCl, pH 7.4) and centrifuged again at 
high speed to wash the mitochondria and separate nuclei (10 min at 
12 000 g at 4°C). The final mitochondrial pellet was re-suspended in 

ice-cold wash buffer and the protein concentration was determined 
using a Bicinchoninic Acid (BCA) assay. The BCA assay was con-
ducted following manufacturer's instructions using bovine serum 
albumin (BSA) as the protein standard (0–15 mg·ml−1) (Sigma Aldrich, 
MO, USA).

Oxygen consumption rates of isolated mitochondria were mea-
sured using an Oxygraph-2K high-resolution respirometer (O2K; 
Oroboros Instruments, Innsbruck, Austria). Three respiration trials 
were conducted on every mitochondrial preparation to compare 
mitochondrial performance using different substrate titration pro-
tocols in a randomized order. During respiration trials, mitochon-
dria (0.2 mg) were added to the respirometer chambers maintained 
at 27°C and filled with air-equilibrated respiration buffer (MiRO5; 
110 mM sucrose, 20 mM HEPES, 10 mM KH2PO4, 20 mM taurine, 
3 mM MgCl, 0.5 mM EGTA, 60 mM lactobionic acid, 0.1% fatty-acid-
free BSA, pH 7.1). To stimulate respiration, we first injected satu-
rating amounts of substrates (5 mM pyruvate and 0.5 mM malate; 
10 mM glutamate and 0.5 mM malate; or 40 μM palmitoylcarnitine 
and 0.5  mM malate) and ADP (0.5  mM) into the chamber. Under 
these conditions, the maximal steady state oxygen consumption 
rate reached prior to depletion of ADP was recorded as a measure 
of mitochondrial capacity for oxidative phosphorylation (OXPHOS). 
Depletion of ADP was followed by a decline in respiration only sus-
taining mitochondrial proton leak, proton slip and cation cycling 
(LEAK). We calculated the respiratory control ratio (OXPHOS/LEAK) 
to assess mitochondrial coupling efficiency and sample quality. After 
measurements of LEAK, a chemical uncoupler (carbonyl cyanide 
3-chlorophenyl-hydrazone, CCCP, 0.25 μM per addition) was added 
until maximal rates of oxygen consumption were reached to esti-
mate electron transport system capacity (ETS). Finally, during trials 
with pyruvate and malate as NADH generating substrates, we also 
measured cytochrome c oxidase capacity (COX) through the addi-
tion of N,N,N’,N'-Tetramethyl-p-phenylenediamine dihydrochloride 
(TMPD, 0.5 mM), which directly donates electrons to COX in pres-
ence of ascorbate (2 mM) (Figure S1).

In case of oxygen tension falling below 50  nmol·ml−1 during a 
trial, a gas phase was introduced to re-oxygenate the chamber. 
Prior to data analysis, respiration rates were normalized to pro-
tein concentration and corrected for background levels of oxy-
gen consumption by electrodes across a range of oxygen tensions 
(250–0 nmol·ml−1). A separate background calibration was used for 
measurements of COX to account for auto oxidation of ascorbate 
and TMPD. Oroboros DatLab version 7.4 was used to monitor, col-
lect and process the respirometry data.

Finally, we quantified relative protein abundance of cytochrome 
c oxidase subunit IV (COX-IV) with a modified immunoblot protocol 
(Vázquez-Medina et al., 2019), to determine if the electron trans-
port system composition of mitochondria differed between morphs. 
Mitochondrial protein (50 μg) from a separate set of mitochondrial 
isolates (n = 9 LW and n = 8 SW), was diluted into water and sam-
ple buffer (4X LDS and 10% β-mercaptoethanol) and heated (10 min, 
70°C). Proteins were separated in a 12% Bis–Tris gel for 40 min at 
200  V in 1X MES SDS buffer and transferred to a nitrocellulose 
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membrane (0.45 μm pore size) for 90 min at 35 V in transfer buf-
fer (1X NuPAGE transfer buffer and 20% methanol). Non-specific 
protein interactions were inhibited by blocking the membrane using 
(Pierce Protein Free (PBS) blocking buffer, Thermo Fisher Scientific, 
MA USA) for 1 h at room temperature and membranes were sub-
sequently incubated overnight at 4°C with primary antibody for 
COX-IV (Lot C:4 of NB110-39115, Novus Biologicals, CO USA) di-
luted 1: 1000 (v: v) in blocking buffer. The following day, membranes 
were washed (5 min at room temperature with gentle shaking) five 
times with 0.1% PBS-tween to remove excess primary antibody, 
before incubation (1  h at room temperature with gentle shaking) 
with secondary antibody (IR Dye 800CW Donkey anti-Rabbit IgG 
secondary antibody, LI-COR, NE USA) prepared at a 1: 1000 (v: v) 
dilution in blocking buffer. Prior to visualization, excess secondary 
antibody was removed by washing (5 min at room temperature with 
gentle shaking) the membrane four times with 0.1% PBS-Tween and 
twice with PBS. An Azure c500 imaging system (Azure Biosystems, 
CA USA) was used to visualize the blot. COX-IV abundance was 
quantified based on the optical density (OD) of the band present 
at ~19 kDA using Image J (v. 1.53c). Prior to statistical analysis, OD 
was corrected for variation in total amounts of protein present in 
each lane, which was quantified using Revert 700 total protein stain 
(LI-COR, NE USA) and normalized to average abundances in short-
winged crickets.

2.5  |  Statistics

All statistical analyses were conducted using R version 4.0.4. Prior 
to analysis, data were checked for normality and homogeneity of 
variances. All averages are reported as mean ± standard error of 
the mean, and post hoc pairwise comparisons were performed 
using Tukey's HSD tests with an experiment-wise type I error of 
α = 0.05.

To compare whole organismal metabolic rates and estimate 
metabolic rate-mass scaling coefficients for long- and short-winged 
crickets, we applied a logarithmic transformation to both body mass 
and oxygen consumption rates (RMR and MMR) and conducted an 
ANCOVA with wing-length (LW or SW) as a fixed effect and body 
mass as covariate. As an index of organismal metabolic capacities, 
we calculated (1) Absolute Aerobic Scope (AAS), as the difference 
between an individual crickets’ resting (RMR) and the maximal 
metabolic rate (MMR) during running (AAS = MMR–RMR) and (2) 
Factorial Aerobic Scope (FAS), as the fold increase between an indi-
vidual crickets’ resting (RMR) and the maximal metabolic rate (MMR) 
during running (FAS = MMR/RMR). An ANCOVA with wing-length 
as a fixed effect and body mass as a covariate without transforma-
tion was subsequently used to evaluate differences in absolute and 
factorial aerobic scopes of crickets during running. All linear models 
testing for differences in organismal metabolic traits (RMR, MMR, 
AAS and FAS) between LW and SW crickets also initially included 
ambient room temperature as a covariate, which was removed from 
the final model if not significant (p > 0.05).

During exercise trials running performance was quantified as the 
maximum speed at which running could be sustained, and endurance 
was quantified as the time spent running before exhaustion for indi-
vidual crickets. We then used an accelerated failure time model (sur-
vreg function in the R ‘survival’ package, https://github.com/thern​
eau/survival) to compare locomotor performance of LW and SW 
crickets. A model with a log-logistic error distribution was selected 
based on having the lowest AIC score and included wing-length (LW 
or SW) as a fixed effect. Room temperature during running trials was 
not significantly associated with either running performance or en-
durance (all p > 0.5) and excluded from final models. In addition, we 
used a linear model with wing-length as a fixed effect, to test for a 
significant association between time spent running prior to exhaus-
tion and absolute aerobic scope.

To compare citrate synthase activity rates across tissues (μmol 
citrate·min−1·mg tissue−1) we used a linear mixed model with wing-
length (LW or SW), tissue type (leg muscle, dorsoventral muscle, or 
fat body), and their interaction as fixed effects and cricket identity as 
a random effect to account for individual variation.

For comparisons of mitochondrial function and bioenergetic ca-
pacities, linear mixed models tested for effects of wing-length (LW 
or SW), substrate type (pyruvate, glutamate, or palmitoylcarnitine) 
and the interaction between wing-length and substrate as fixed 
effects for each respiratory measure separately (OXPHOS, LEAK, 
ETS, respiratory control ratio). All initial models also included ran-
dom effects of respirometry chamber, sample ID and trial number. 
A stepwise approach was used to remove random effects that did 
not significantly improve the explanatory power of the model based 
on ∆AIC < 2. Final models for LEAK included both trial number and 
sample ID as random effects, whereas only sample ID was retained 
as a random effect in models testing for differences in OXPHOS 
and ETS between LW and SW crickets. The final linear mixed model 
for the respiratory control ratio included a random effect of trial 
number.

A two-sample t-test was conducted to determine if apparent cy-
tochrome c oxidase capacity (COX) and COX-IV relative abundance 
levels from western blots differed in isolated mitochondria from LW 
and SW crickets. Finally, a linear model that included wing-length 
as a fixed effect was conducted to test for an association between 
OXPHOS and COX, when fueled by pyruvate and malate.

3  |  RESULTS

3.1  |  Organismal metabolic rates and running 
performance

Both resting and maximal metabolic rates increase with increasing 
body mass (RMR: F1,49 = 7.25, p = 0.01; MMR: F1,48 = 45.85, p < 
0.001; Figure 1a, b), with no difference in allometric scaling of met-
abolic rate between LW and SW G. firmus crickets. The estimated 
slope of the relationship between mass and metabolic rate was 0.8 
± 0.3 ml O2·h−1·g−1 for resting metabolic rates and for 1.32 ± 0.2 ml 

https://github.com/therneau/survival
https://github.com/therneau/survival
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O2·h−1·g−1 maximal metabolic rate. Resting metabolic rates did not dif-
fer between LW and SW crickets (F1,49 = 0.26, p = 0.61; Figure 1a). 
However, maximal metabolic rates were greater in LW compared to 
SW crickets (F1,48 = 46.98, p < 0.001; Figure 1b) and LW crickets had 
larger aerobic scopes than SW crickets (absolute aerobic scope: F1,49 
= 37.49, p < 0.001; factorial aerobic scope: F1,49 = 20.70, p < 0.001; 
Figure 1c). In addition to differences in maximal metabolic rates and 
aerobic scope, both running performance and endurance were higher 
in LW compared to SW crickets (max running speed: χ2 = 17.55, p < 
0.001; time to exhaustion: χ2 = 15.66, p < 0.001; Figure 2a), and indi-
vidual variation in endurance was positively associated with absolute 
aerobic scope (F1,48 = 18.04, p < 0.001, r2 = 0.45; Figure 2b).

3.2  |  Aerobic capacity of tissues involved 
in running

Citrate synthase activity was significantly greater in the dorsoventral 
muscle of LW compared to SW crickets, but similar between LW and 
SW crickets in leg muscle and fat body (Morph × Tissue: F2,44 = 262.3, 
p < 0.001; LW vs SW: DVM, p < 0.001; leg, p = 1.0; fat body, p = 0.87; 
Figure 3). For both LW and SW crickets, citrate synthase activity (μmol 
citrate·min−1·mg−1) was greatest in dorsoventral muscle compared to 
the other tissues (all p < 0.01), and similar in leg compared to fat body 
tissue (all p > 0.1) (LW: DVM, 8.6 ± 0.2; leg, 0.40 ± 0.2; fat body, 0.94 
± 0.2; SW: DVM, 1.7 ± 0.2; leg, 0.41 ± 0.2; fat body, 0.66 ± 0.2).

3.3  |  Mitochondrial function, bioenergetic 
capacities and composition

At the organelle level, high-resolution respirometry revealed that maxi-
mal rates of respiration by OXPHOS were nearly twice as high in iso-
lated mitochondria from fat body tissue of LW crickets compared to 

F I G U R E  1  Organismal metabolic rates and aerobic scope of 
Gryllus firmus crickets. (a) Resting metabolic rate (RMR) and (b) 
maximal metabolic rate (MMR) of individual crickets measured 
during running on a treadmill (long-winged crickets (LW)—green 
points; short-winged crickets (SW)—purple points), as a function 
of body mass. Trendlines show significant linear associations with 
ninety-five percent confidence intervals. (c) Absolute aerobic 
scopes (MMR-RMR) measured during running of long-winged 
and short-winged crickets. Semitransparent boxplots denote the 
25th, median and 75th quartiles, with whiskers denoting 1.5× 
the interquartile range, and solid points are individual crickets. 
Asterisk (*) denote significant difference between LW and SW 
crickets (p < 0.001)
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SW crickets, when catabolizing carbohydrates or fatty acids (Morph × 
Substrate: F2,13 = 9.01, p < 0.001; Figure 4a). Pyruvate and palmitoyl-
carnitine sustained comparable rates of oxygen consumption in both 
LW (pyruvate: 213.9 ± 10.9  pmol O2·s−1·mg−1; palmitoylcarnitine: 
205.0 ± 10.9 pmol O2·s−1·mg−1) and SW (pyruvate: 137.4 ± 10.9 pmol 
O2·s−1·mg−1; palmitoylcarnitine: 133.7 ± 10.9 pmol O2·s−1·mg−1) crickets. 
In contrast, when glutamate was provided as a substrate, low oxygen 
consumption rates were observed, reflecting a low capacity for gluta-
mate oxidation and maximal oxygen consumption rates were similar 
in LW and SW crickets (p = 0.91; LW: 44.8 ± 10.9 pmol O2·s−1·mg−1; 
SW: 29.1 ± 10.9 pmol O2·s−1·mg−1). For all substrates, minimum rates of 
oxygen consumption caused by LEAK were similar between LW and SW 
crickets (F1,13 = 1.92, p = 0.18; Figure 4b). Consequently, differences in 
respiratory control ratios (OXPHOS/LEAK) associated with wing morph 
showed similar patterns to those observed for maximal rates of OXPHOS 
(Morph × Substrate: F2,13 = 3.72, p = 0.03; Figure 4c). Together, these re-
sults suggest that fat body mitochondrial capacities for ATP production 
by oxidative phosphorylation are greater in LW compared to SW crickets.

Increased electron transport system capacities could support 
larger capacities for oxidative phosphorylation. Consistent with this 
hypothesis, maximum electron transport system (ETS) and cyto-
chrome c oxidase (COX) activities of mitochondria were also higher 
in LW compared to SW crickets (ETS: F2,13 = 35.17, p < 0.001; COX: 
t17.7 = 4.84, p < 0.001; Figure 5a). Additionally, a very strong positive 
association between COX and OXPHOS activities (F1,17 = 103.97, p < 
0.001; Figure 5b), suggested that differences in COX activity contrib-
ute to variation in oxidative phosphorylation rates. Immunoblotting 
showed a 1.5-fold increase in abundance of COX-IV protein in mito-
chondria isolated from fat body of LW compared to SW crickets (t13.8 
= 2.54, p = 0.02; Figure 5c). Thus, modifications of the mitochondrial 
electron transport chain likely contribute to the higher COX, ETS and 
OXPHOS capacities of mitochondria in fat body of LW crickets.

F I G U R E  3  Citrate synthase activity in tissues of Gryllus firmus crickets. Citrate synthase activity per milligram of tissue in the (a) 
dorsoventral muscle, (b) leg muscle and (c) fat body of long-winged (LW; green points) and short-winged (SW; purple points) crickets. 
Please note that the axes are scaled differently on each plot to prevent overall differences in metabolic activity between tissues obscuring 
differences between LW and SW crickets. Semitransparent boxplots denote the 25th, median and 75th quartiles, with whiskers denoting 
1.5× the interquartile range. Asterisk (*) denote significant difference between LW and SW crickets (p < 0.001)
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F I G U R E  4  Function of isolated fat body mitochondria of 
Gryllus firmus crickets. (a) maximal oxygen consumption rates 
during oxidative phosphorylation (OXPHOS), (b) proton leak 
respiration (LEAK) and (c) respiratory control ratios (RCR) of 
mitochondria isolated from fat body of long-winged (LW) or 
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Semitransparent boxplots denote the 25th, median and 75th 
quartiles, with whiskers denoting 1.5× the interquartile range. 
Asterisk (*) denotes significant difference between LW and SW 
crickets (p < 0.001)
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4  |  DISCUSSION

In artificially selected genetic lines of Gryllus firmus, we show that 
flight capability is associated with larger in vivo metabolic capacities, 
reflected by higher mass-specific maximal metabolic rates and larger 
aerobic scopes in long-winged compared to short-winged crickets. 
Since crickets differed in maximal but not resting metabolic rates, 
our findings suggest that larger metabolic capacities associated with 
a more active lifestyle can arise through selection that acts inde-
pendently on resting and maximal metabolic rates. Flight-capable 
crickets also had more mitochondria in their dorsal ventral muscles 
(DVM), a set of bifunctional muscles used during both flight and run-
ning, as well as mitochondria that could respire at higher maximal 
rates. Thus, our results support the conclusion that dispersal by ac-
tive locomotion drives evolution of maximal capacities for energy 
production, through tissue-specific modifications at the organelle 
and molecular levels.

Within other species with life-history polymorphisms across 
a broad range of taxa, faster life histories, characterized by fast 
growth rates, short development time and short lifespans, are often 
associated with higher metabolic rates (Arnqvist et al., 2017; Auer 
et al., 2018; Chung et al., 2018; Gangloff et al., 2020). However, it 
is challenging to establish which life history demands or trade-offs 
are most critical for driving changes in metabolic rates, because life-
history traits covary in these systems. In our system, long-winged 
(LW) crickets delay reproduction due to the trade-off between flight 
and oogenesis (Roff, 1984), allowing us to pinpoint differences in 
metabolic traits to a single life-history trade-off and the need for 
high rates of aerobic activity. Locomotor performance is often par-
ticularly important for fitness in environments that also select for 
fast ‘pace of life’, such as habitats with high predation pressures. 
Therefore, we suggest that selection on dispersal capability and 
locomotor performance might explain and contribute to individual 
variation in metabolic rates that arises following life-history evolu-
tion (Auer et al., 2018).

Running is an important fitness-related behaviour used by both 
male and female long- and short-winged crickets to forage, escape 
predators and find new habitat in natural environments. Larger 
metabolic capacities were correlated with improved running perfor-
mance of LW compared to SW crickets, consistent with strong pos-
itive associations between maximal metabolic rates and increased 
locomotor performance seen in a broad range of taxa (Darveau et al., 
2005; Davies et al., 1981; Pang et al., 2013; Rauhamäki et al., 2014; 
Skandalis & Darveau, 2012; Swallow et al., 1998). Since metabolic 
rates are typically greater during flight compared to running (Butler, 
2016; Rothe & Nachtigall, 1989), our observations probably under-
estimate the true aerobic scope and maximal activity levels of LW 
crickets. Nonetheless, our findings provide a new perspective, sug-
gesting that LW crickets are adapted for dispersal by multiple modes 
of locomotion. Dispersal by flight or running should provide similar 
adaptive benefits, which can outweigh costs of delayed reproduc-
tion (Harrison, 1980; Roff, 1994). Therefore, dispersal by both fly-
ing and running should contribute to maintaining the polymorphism 
within populations on evolutionary timescales.

Tissue-specific increases in mitochondrial content and bioener-
getic capacities supported larger metabolic capacities in LW crickets. 
Citrate synthase activity demonstrated that mitochondrial content 
was similar per gram of tissue in the leg muscle and fat body, but 
greater in the dorsoventral muscles, of LW compared to SW crickets. 
The dorsoventral muscles of flight-capable crickets are involved in 
mechanical powering of both running and flying (Hustert & Baldus, 
2010; Wilson, 1962). Flight muscle contraction is ATP dependent 
(Harrison & Roberts, 2000; Suarez, 2000), making the elevated mi-
tochondrial content of the dorsoventral muscles in LW crickets es-
sential for flight capability. However, since dorsoventral muscles also 
function in leg movement, physiological adaptations for flight likely 
contributed to the improved running performance in LW crickets as 
well.

In fat body, mitochondrial density was similar between LW and 
SW crickets, but bioenergetic capacities were larger in mitochondria 

F I G U R E  5  Cytochrome c Oxidase activity and expression in 
mitochondria isolated from the fat body of Gryllus firmus crickets. 
(a) Cytochrome c oxidase capacity (COX) of long-winged (LW; 
green) and short-winged (SW; purple) crickets. (b) Association 
between oxidative phosphorylation capacity (OXPHOS) and 
cytochrome c oxidase capacity (COX) for individual mitochondrial 
preparations. Trendline shows significant linear association 
with ninety-five percent confidence intervals (p < 0.001). (c) 
Representative immunoblot and relative cytochrome c oxidase 
subunit IV protein abundance in mitochondria isolated from fat 
body of LW crickets compared to SW crickets. Semitransparent 
boxplots denote the 25th, median and 75th quartiles, with 
whiskers denoting 1.5× the interquartile range. Asterisk (*) denotes 
significant difference between LW and SW crickets (p < 0.05)
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isolated from LW compared to SW crickets. The fat body is a ver-
satile organ in insects, with functions analogous to vertebrate liver 
and adipose tissues combined. We focused on fat body because it is 
present in both LW and SW crickets (unlike functional dorsoventral 
muscle) and supports both flight and reproduction, through its roles 
in nutrient storage, energy mobilization and biosynthesis of repro-
ductive proteins for oogenesis (Arrese & Soulages, 2010; Li et al., 
2019), making fat body a potential tissue in which physiological con-
straints arise. OXPHOS capacities were tightly correlated with COX 
activity, and COX protein was more abundant in isolated mitochon-
dria from LW crickets. Together these findings are consistent with 
recent work demonstrating a major regulatory role of COX for ATP 
production in flying insects (reviewed by Mesquita et al. (2021)) and 
suggest that modifications to electron transport chain composition 
or mitochondrial cristae surface area contribute to enhanced bio-
energetic capacities of mitochondria in the fat body of LW crickets. 
Since fat body is involved in the production and regulation of en-
ergy stores, it is possible that enhanced mitochondrial function of 
fat body facilitates large-scale biosynthesis of triacylglyceride stores 
required to fuel long-distance flight by LW crickets (Zera et al., 2011; 
Zera & Larsen, 2001). Consistent with this hypothesis, lipid-droplet-
associated mitochondria in brown adipose tissue of mice are simi-
larly specialized for supporting lipid synthesis and display enhanced 
bioenergetic capacities compared to non-lipid associated mitochon-
dria (Benador et al., 2018). Furthermore, nutrient stores in insect 
muscles are limited and therefore sustained muscle activity depends 
on the delivery of nutrients from the fat body (Beenakkers et al., 
1984). During activity, endocrine signalling by adipokinetic hormone 
(AKH) and octopamine (invertebrate analogue of norepinephrine) 
regulates the conversion and export of nutrients within the fat body 
(Arrese & Soulages, 2010) and these cellular processes may also be 
facilitated by enhanced mitochondrial function. Future work is re-
quired to determine the functional relevance and potential costs of 
differences in fat body mitochondrial function for cricket locomotor 
performance.

Differences between LW and SW crickets also suggest that 
maintaining large metabolic capacities may be costly, and therefore 
contribute to the functional basis of the flight-oogenesis trade-off. 
Consistent with this idea, bioenergetic capacities of mitochondria 
in the fat body are also larger in LW compared SW crickets in the 
closely related wing-polymorphic variable field cricket (Gryllus lin-
eaticeps) (Treidel, in preparation). Furthermore, if larger ATP pro-
duction capacities are contributing to a physiological constraint, 
we expect those high capacities to be lost in LWs along with flight 
capability, following muscle histolysis. We are currently testing this 
prediction using older LW crickets.

In summary, our work adds to a growing body of evidence sup-
porting the hypothesis that life history and metabolic evolution are 
coupled because metabolism is fine-tuned to appropriately meet 
energetic demands set by life-history strategies. While dispersal ca-
pability is seldom considered in studies linking life history and me-
tabolism, we found that selection on flight capability was associated 
with tissue-specific modifications of mitochondria, which allowed 

long-winged crickets to reach higher maximal metabolic rates during 
aerobic activity. Based on work here, combined with prior studies 
using the same genetic lines of crickets (Zera et al., 2011), we pro-
pose that whole-scale tissue-specific remodelling of both central 
and intermediary metabolic pathways is necessary to support life-
history allocations to either flight or reproduction, providing new in-
sight into the physiological basis of life-history trade-offs. Moreover, 
metabolic differences revealed were both state- (resting vs. active) 
and tissue-specific, potentially explaining discrepancies across 
studies and highlighting the importance of considering changes in 
multiple metabolic phenotypes across levels of the biological hierar-
chy within different physiological systems to understand metabolic 
evolution.
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