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Summary. A key component in controlling the spread of an epidemic is deciding where, when
and to whom to apply an intervention.We develop a framework for using data to inform these de-
cisions in realtime.We formalize a treatment allocation strategy as a sequence of functions, one
per treatment period, that map up-to-date information on the spread of an infectious disease
to a subset of locations where treatment should be allocated. An optimal allocation strategy
optimizes some cumulative outcome, e.g. the number of uninfected locations, the geographic
footprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategy
for an emerging infectious disease is challenging because spatial proximity induces interfer-
ence between locations, the number of possible allocations is exponential in the number of
locations, and because disease dynamics and intervention effectiveness are unknown at out-
break. We derive a Bayesian on-line estimator of the optimal allocation strategy that combines
simulation–optimization with Thompson sampling.The estimator proposed performs favourably
in simulation experiments. This work is motivated by and illustrated using data on the spread of
white nose syndrome, which is a highly fatal infectious disease devastating bat populations in
North America.

Keywords: Infectious disease control; Optimal allocation strategy; Thompson sampling;
Treatment allocation; White nose syndrome

1. Introduction

Dynamical systems on networks and more general spatial domains have proved to be an effective
modelling tool in many areas of science (Strogatz, 2001). Applications include ecological food
webs (Williams and Martinez, 2000), electrical power grids, cellular and metabolic networks
(Kohn, 1999), the World Wide Web (Broder et al., 2000) and human mobility (Truscott and
Ferguson, 2012). Interest in network anatomy and function underlies the greater movement
towards research on complex systems. Recently, there has been increased interest in trying to
understand dynamical systems on networks with the objective of administering control over
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some process evolving over the network. An important example is the control of an epidemic
evolving on a network of individuals. Fatal emerging diseases such as West Nile virus (Kilpatrick,
2011), white nose syndrome (WNS) (Maher et al., 2012), foot-and-mouth disease (Tildesley
et al., 2006) and severe acute respiratory syndrome (Hufnagel et al., 2004) represent a serious
threat to ecological and environmental systems and to human health. The effect of bat loss
due to WNS is projected to produce several billions of dollars of agricultural costs per year
(Subcommittee on Fisheries, Wildlife, and Oceans, 2011). Understanding the dynamics of these
epidemics and providing tools to control them efficiently and effectively are of paramount
importance.

A key component in controlling the spread of an epidemic is deciding where, when and
to whom to apply an intervention. A treatment allocation strategy formalizes this process as
a sequence of functions, one per treatment period, that map up-to-date information on the
epidemic to a subset of locations to receive treatment. An optimal treatment allocation strategy
optimizes the expectation of some cumulative outcome, e.g. the cumulative number of infected
individuals, the geographic footprint of the disease, the estimated total cost of the disease or
a composite of several important outcomes. Estimation of an optimal treatment allocation
strategy for an emerging epidemic presents several major challenges:

(a) scarcity of data—at the onset of the epidemic there is little information about disease
dynamics and typically no information on the effectiveness of potential treatments;

(b) scalability—the number of possible allocations is exponential in the number of locations;
for example, in the problem of WNS, there are more than 1100 locations leading to
more treatment allocations than can possibly be enumerated by using existing computing
resources;

(c) interference—dependence between locations violates the no interference between experi-
mental units assumption (Sobel, 2006; Hudgens and Halloran, 2008);

(d) a long time horizon—an epidemic can persist for decades before eradication, and thus
an optimal treatment allocation strategy must adapt to evolving logistical constraints,
technologies and system dynamics.

We propose an on-line estimator of the optimal treatment allocation strategy designed to over-
come these challenges. At each time point, the method proposed draws a model from the pos-
terior distribution over system dynamics models and the estimated optimal allocation strategy
is the maximizer over a prespecified class of strategies of the mean outcome under this model.
The system dynamics model and estimated optimal allocation strategy are updated each time
new data are collected to provide a continually evolving strategy. Furthermore, the class of po-
tential allocation strategies is chosen to reduce computational complexity when scaling to large
decision problems and to ensure that logistical or feasibility constraints are satisfied. We show
that the estimator proposed can scale to problems with more than 1000 nodes, four covariates
per node, 15 treatment periods and about O.10150/ possible allocations at each time period.

The methodology proposed is related to the idea of a dynamic treatment regime in person-
alized medicine. A dynamic treatment regime is a sequence of decision rules, one per treatment
stage, that map up-to-date patient information to a recommended treatment (Murphy, 2003;
Robins, 2004; Schulte et al., 2014). Thus, like a treatment allocation strategy, a dynamic treat-
ment regime is a sequence of functions that is used to dictate treatment decisions over time.
Furthermore, one approach to estimating a dynamic treatment regime is to model the mean
outcome as a function of each regime in a prespecified class and then to take the maximizer
over this class as the estimated optimal regime (Robins et al., 2008; Orellana et al., 2010; Zhao
et al., 2012, 2014, 2015; Zhang et al., 2012a, b, 2013; Zhao et al., 2014, 2015; Kang et al., 2014).
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However, despite these similarities, the challenges that were mentioned previously prevent direct
application of methodology for dynamic treatment regimes to the problem of spatiotemporal
treatment allocation. Methods for dynamic treatment regimes assume that the data comprise
a large number of independent and identically distributed trajectories observed over time. In
contrast, in the allocation problem, we observe a single observation over the spatial domain at
each time point; hence there is no independent replication. Furthermore, existing methods for
dynamic treatment regimes are designed for settings with a small number of treatment options
at each treatment stage, e.g. between two and five, whereas, in the spatial allocation problem,
there are an astronomically large number of potential treatments. There has been some research
on continuous treatments in dynamic treatment regimes (Rich, 2013; Rich et al., 2014; Laber
and Zhao, 2015); however, these methods heavily rely on smoothness of an outcome regression
model across treatment values which does not apply in the treatment allocation problem.

Both estimation of dynamic treatment regimes and estimation of an optimal treatment allo-
cation fall under the umbrella of reinforcement learning problems (Bertsekas, 1996; Sutton and
Barto, 1998; Powell, 2007; Sugiyama, 2015). Our proposed estimator is an approximate variant
of Thompson sampling (Thompson, 1933) wherein allocations are chosen with probability that
is proportional to the posterior probability that they are optimal. Thompson sampling has been
studied in the reinforcement learning literature primarily in its application to bandit problems
(Scott, 2010; Chapelle and Li, 2011; Agrawal and Goyal, 2011, 2012, 2013; Kaufmann et al.,
2012; Korda et al., 2013; Gopalan et al., 2014; Russo and Van Roy, 2014). Osband et al. (2013)
and Gopalan and Mannor (2015) applied Thompson sampling to sequential decision problems
modelled as Markov decision processes. However, these estimators require

(a) a finite set of system states and
(b) that a fixed allocation strategy be applied without adjustment for potentially long periods

of time.

In the settings that we consider, the system state is continuous and high dimensional (making
discretization impractical) and the application of a fixed suboptimal allocation strategy for
a prolonged period is neither ethical nor feasible. For a comprehensive survey of Bayesian
reinforcement learning see Ghavamzadeh et al. (2015).

The work proposed adds to the large literature on mathematical spatial transmission models
for disease modelling and control. Within this literature, a common approach is to postulate a
mathematical model of disease spread and then to use simulation experiments to evaluate and
compare candidate intervention strategies (see Anderson et al. (1992), Hufnagel et al. (2004),
Riley (2007), Hollingsworth (2009), Ma et al. (2009), Keeling and Rohani (2011) and references
therein). These models have generated new insights into disease transmission and control strate-
gies across a wide range of application domains including avian influenza (Le Menach et al.,
2006; Jung et al., 2009), Chagas disease (Barbu et al., 2009, 2011), Ebola virus disease (Lekone
and Finkenstädt, 2006; Kramer et al., 2016; Li et al., 2017); foot-and-mouth disease (Ferguson
et al., 2001a, b; Keeling, 2005; Tildesley et al., 2006), human immunodeficiency virus and ac-
quired immune deficiency syndrome (Jacquez et al., 1988; Korenromp et al., 2000), severe acute
respiratory syndrome (Huang et al., 2004; Bauch et al., 2005; Hollingsworth et al., 2006) and
smallpox (Kaplan et al., 2002; Bozzette et al., 2003; Ferguson et al., 2003; Kretzschmar et al.,
2004), among others. The proposed Thompson sampling estimator relies on a working model
for the underlying disease dynamics and thereby benefits from this rich literature on disease
modelling. However, the estimator proposed is distinct from these approaches in that it

(a) considers on-line estimation of an optimal allocation strategy which requires balancing
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the choice of treatment allocations that lead to maximal model improvement with the
choice of treatment allocations that are optimal under the current estimated model,

(b) optimizes over a large (possibly infinite) class of allocation strategies and
(c) accommodates evolving resource and logistical constraints.

Thus, where much of the focus of mathematical disease modelling has been on building and
validating high quality transmission models, our focus is on how to incorporate these models
in optimal on-line treatment allocation.

In Section 2, we discuss one of the motivating problems for the work proposed: controlling the
spread of WNS in bats. In Section 3, we formally define an optimal treatment allocation strategy
by using potential outcomes and discuss the problem of interference. In Section 4, we develop
our estimator of the optimal treatment allocation strategy and construct a class of strategies
that are flexible but highly scalable. In Section 5, we evaluate the performance of the method by
using simulation experiments. In Section 6, we apply the methodology to data on the spread of
WNS. Future work and open problems are discussed in Section 7.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. White nose syndrome in bats

WNS is a disease that is caused by the fungus Pseudogymnoascus destructans (formerly Geomyces
destructans) and predominately affects hibernating bats in North America (Blehert et al., 2009).
An infected bat will present with a white fungus on its muzzle, ears and/or wings, and erratic
behaviour during hibernation. The erratic behaviour during hibernation depletes fat reserves and
expends valuable energy, resulting in low survival and death (Blehert et al., 2009). Mortality
rates exceed 90% in some areas and more than 5.7 million bats have died because of WNS
(Blehert et al., 2009; US Fish and Wildlife Service, 2015).

WNS was first recorded in Schoharie County, New York State, in 2006 (Blehert et al., 2009)
and is now found in 25 states, five Canadian provinces, as far south as the Mississippi, and as far
west as Missouri; Fig. 1. More than half of the 47 species of bats in the USA hibernate, making
them vulnerable to exposure. Currently, two endangered species, the Gray bat, Myotis grisescens,
and the Indiana bat, Myotis sodalis, as well as one threatened species, the Northern Long-eared
bat, Myotis septentrionalis, are infected with WNS (Blehert et al., 2009). The ecological damage
due to loss of bats and the speed of spread are unprecedented and the long-term damage is still
considered to be immeasurable (Blehert et al., 2009). Short-term estimates of economic damage
hover around $3:7 billion year−1 mainly due to agricultural loss (Boyles et al., 2011). The
estimated value of bats to the entire agricultural industry is $22.9 billion year−1 not including
many secondary effects and impacts, e.g. downstream effects of increased use of pesticides,
predation effects on evolved resistance of insects to pesticides and genetically modified crops
(Boyles et al., 2011).

Because of the economic and ecological effects, there is a tremendous need for a comprehensive
national plan to control the spread of WNS. In 2009, the US Fish and Wildlife Service, along
with state agencies and universities, convened to create a national plan for the control of WNS
(US Fish and Wildlife Service, 2015). This plan outlines necessary actions for co-ordination
and provides an overall template to prevent further spread of WNS. Although the national plan
puts forth the first steps in co-ordination between states and other agencies, it does not explicitly
provide a treatment plan or strategy to control WNS (Szymanski et al., 2009). Each state is left to
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implement treatments at its own discretion. Potential treatments include antifungal biological or
non-chemical agents for bats at risk, modifying cave environmental variables, e.g. temperature
and humidity, to slow fungus growth and to improve bat survival, vaccines to boost resistance
and artificial caves (Cornelison et al., 2014; Hoyt et al., 2015). Unfortunately, many of these
have not been tested in the field and their efficacy is currently unknown. Additional challenges
exist because the disease has a highly complex nature of spread including a large spatial range
(Maher et al., 2012). Therefore, to maximize what benefits these treatments may provide, it
is essential to develop a principled, adaptive and data-driven control strategy that addresses
the full potential range of WNS before further devastation occurs. We estimate such a control
strategy and demonstrate that, if implemented, it may have a profound effect on the course of
the current epidemic.

3. Defining an optimal treatment allocation strategy

We consider a decision problem evolving over a countably infinite set of treatment periods
and a finite number of locations. The locations may represent physical locations in space, e.g.
parcels of land identified as candidates for an intervention, or the locations may be nodes in a
network, e.g. individuals in a social network. In the application to WNS, the data are provided
at the county level, and thus cave bearing counties compose the locations of interest. At each
time point, a decision maker observes information describing the current state of each location
and subsequently uses this information to decide which locations should receive treatment. In
the control of epidemics, location information would include information on the spread of the
disease, e.g. infection status and time since infection among the infected, as well as features
that are related to susceptibility or contagiousness. In WNS, for each county we observe the
infection status, time since infected, number of caves, average winter temperature and a measure
of species richness. For simplicity, our development considers the setting in which there are two
possible choices at each location: apply a treatment or do nothing. However, the methodology
proposed can be extended to handle settings in which several treatment options are available
at each location. A treatment allocation strategy formalizes the treatment allocation process
as a map from current information on all locations to a probability distribution over possible
allocations. An allocation strategy is said to be optimal if it maximizes the mean cumulative
utility over a prespecified class of strategies (minimizing cost can be handled in the obvious way).

Let L={1, : : : , L} denote the set of locations and T ={1, 2, : : :} the set of treatment stages.
The treatment stages may be dictated by the evolving decision process. Define St

l ∈ Rp to be a
summary of the information that is collected at location l ∈L up to and including time t ∈T
and let St be {St

l}l∈L; we assume that St is completely observed and measured without error.
Let At

l ∈{0, 1} denote an indicator that location l received treatment at time t and At ={At
l}l∈L

is the allocation at time t. Let BL denote the set of all probability distributions over {0, 1}L;
and for a random variable U write supp.U/ to denote the support of U. A treatment allocation
strategy π is a function from S = supp.St/ into BL so that, under π, a decision maker who is
presented with St = st will select allocation at with probability π.at ; st/. Allocation strategies of
this type are termed stochastic strategies to contrast them with deterministic strategies which
map states to allocations rather than to a distribution over allocations (Sutton and Barto,
1998). In the context of on-line estimation and optimization, the use of stochastic allocation
strategies is critical to ensure consistent estimation of an optimal strategy (Kaelbling et al., 1996;
Cesa-Bianchi and Lugosi, 2006) much in the same way that randomization is critical in adaptive
clinical trials to ensure consistent estimation of an optimal treatment (Berry and Fristedt, 1985);
see the on-line supplemental materials for an illustrative example. Let Yt

l ∈R denote an outcome
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measured at location l at time t and let Yt ={Yt
l }l∈L. For a prespecified constant γ ∈ .0, 1/, the

goal is to choose an allocation strategy that maximizes the mean of the discounted total utility
Σt�1γ

t−1u.Yt/, where u.·/ is a scalar utility function and the constant γ balances proximal
and distal outcomes. In some settings, it may be desirable to choose an alternative measure of
cumulative utility, e.g. limT→∞ T −1ΣT

t=1u.Yt/; our methodology can be directly extended to
handle such alternatives. We formalize the notion of an optimality allocation strategy by using
potential outcomes (Rubin, 1978; Neyman, 1990).

Let Π denote a class of allocation strategies of interest; throughout, we implicitly assume that
all allocation strategies under consideration belong to Π. Hence, the definition of optimality
depends on Π. This class can be used to enforce logistical constraints, e.g. a limit on the number
of locations that can be treated at each time point. Because our estimation algorithm is on
line, this class of allocation strategies can be changed in realtime to reflect changing constraints.
Define F ={a∈{0, 1}L : a∈ supp.π/ for some π∈Π} to be the set of feasible allocations. We use
overline notation to denote past history, e.g. āt ={av}t

v=1, and an asterisk superscript to denote
potential outcomes. For example, YÅt.āt/ denotes the outcome that would be observed under
treatment sequence āt . Define WÅ = {YÅt.āt/, SÅt.āt−1/ : at ∈F}t∈T to be the set of potential
outcomes under {at}t∈T , i.e. the states and outcomes that would be observed under actions
{at}t∈T , where we have defined SÅ1.ā0/≡S1 for convenience.

For any π∈Π, let {ξt
π.s/}t∈T ,s∈S denote a collection of independent random variables so that

P{ξt
π.st/=at}=π.at ; st/. Define

YÅt.π/�
∑
āt

YÅt.āt/
t∏

v=1
I[ξv

π{SÅv.āv−1/}= āv]

to be the potential outcome under allocation strategy π, where SÅ1.ā0/ = S1. An allocation
strategy πopt ∈Π is optimal if

E
[ ∑

t�1
γt−1u{YÅt.πopt/}

]
�E

[ ∑
t�1

γt−1u{YÅt.π/}
]

for allπ∈Π. If there are multiple optimal strategies within Π there is no loss by choosing between
them arbitrarily. Thus, for brevity, we assume hereafter thatπopt is unique. To estimateπopt from
the observed data, we require assumptions about the data-generating mechanism. At time t, the
available data to estimate πopt are H1 =S1 if t =1 and Ht = .S1, A1, Y1, : : : , St−1, At−1, Yt−1, St/

if t �2. We make the following assumptions.

Assumption 1 (sequential ignorability (Robins, 2004)). At ⊥⊥WÅ|Ht for all t ∈T .

Assumption 2. The observed outcomes are the potential outcomes under treatment actually
received, Yt =YÅt.Ā

t
/ and St =SÅt.Ā

t−1
/ for all t ∈T .

Assumption 3 (positivity). There exists ε> 0 so that P .At =a|Ht/ > ε for all a ∈F and t ∈T
with probability 1.

Although we have stated assumption 2 as an assumption, there is some debate about whether
this should instead be taken as an axiom (Pearl, 2010; VanderWeele and Hernan, 2013; Keele,
2015); in addition, we implicitly assume throughout that there are no hidden forms of treatment.
Given a data-generating process which satisfies assumptions 1–3, for any π∈Π it follows that

E
[ ∑

t�1
γt−1u{YÅt.π/}

]
= lim

T→∞

∫ {
T∑

t=1
γt−1u.yt/

}
T∏

v=1
{fv.yv|hv, av/π.av; sv/

×gv.hv|yv−1, hv−1/}dλ.ȳT , āT , h̄
T

/, .1/
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where fv is the conditional density for Yv given Hv and Av, gv is the conditional density for Hv

given Yv−1, Hv−1 with g1.h1|y0, h0/=g1.h1/ and λ is a dominating measure (in our applications,
this will be a product of Lebesgue and counting measures corresponding to the continuous
and discrete components of Ȳ

T
, Ā

T
and H̄

T ). Thus, result (1) shows how the expected cumulative
utility can be expressed by using the data-generating model.

The foregoing assumptions along with the assumption of no interference between experimen-
tal units are standard in causal inference for non-spatial sequential decision-making problems
(Chakraborty and Moodie, 2013; Schulte et al., 2014). However, in spatiotemporal decision
problems, the proximity of the locations can induce spillover effects thereby causing inter-
ference between experimental units (locations) (Halloran and Struchiner, 1995; Diez Roux,
2004; Hong and Raudenbush, 2006; Hudgens and Halloran, 2008; VanderWeele and Tchet-
gen Tchetgen, 2011; Ogburn and VanderWeele, 2014). Furthermore, in many settings, there
are cost constraints of the form Σl∈Lυt

l a
t
l � ct , where υt

l is the cost of applying treatment at
location l at time t and ct is a total budget at time t. Constraints of this form are another
reason why the decision to treat one location requires consideration of all others, i.e. apply-
ing treatment at one location reduces the available budget for applying treatments elsewhere.
Standard methods for estimating optimal decision rules, e.g. Q- and A-learning (Murphy, 2003,
2005; Robins, 2004; Blatt et al., 2004; Goldberg and Kosorok, 2012; Schulte et al., 2014; Laber
et al., 2014) and policy search (Robins et al., 2008; Orellana et al., 2010; Zhang et al., 2012a, b,
2013; Zhao et al., 2012, 2014, 2015), are based on independent application of treatment to each
unit. Thus, to apply these methods without additional assumptions, it would be necessary to
treat the collection of all locations as a single experimental unit. In this case, there are O.2L/

available allocations at each time and a single observation available for estimation. Further-
more, existing methods rely on estimation of part or all of the conditional distribution of Yt

given .S̄
t
, Ā

t
/ treating Ā

t
as a categorical variable with 2L levels. Fitting such a model, even

if sufficient replications were available to identify the distribution, would be computationally
infeasible.

4. Estimating an optimal allocation strategy

In the context of an emerging epidemic, there is typically little or no data that can be used to
form reliable estimators for some (or all) components of the system dynamics model. Thus, it
is essential to add information from scientific theory to the estimation process. We integrate
scientific theory with the estimation process by taking a Bayesian perspective on parameter
uncertainty and allowing the use of informative priors on some (or all) of the parameters indexing
our postulated system dynamics model.

An overview of our estimation procedure is as follows. Let D denote a class of deterministic,
i.e. non-stochastic, allocation strategies. Under d ∈D, a decision maker who is presented with
state S = s will select allocation d.s/. At each time t, we draw a system dynamics model from
the posterior distribution over dynamics models and subsequently use simulation–optimization
(Law et al., 1991; Banks, 1998; Gosavi, 2003) to compute a maximizer, say d̂

t
, of equation (1) over

D where equation (1) is computed with respect to the sampled dynamics model. Given state St =
st , the selected allocation at time t is d̂

t
.st/. This implicitly defines a stochastic allocation, π̂t.st/,

as a mixture over {d.st/ : d ∈D} with mixture probabilities equal to the posterior probability
that d is the maximizer of equation (1); thus, the implied class of stochastic strategies, Π, is the
class of all mixtures over strategies in D. A schematic diagram for this procedure is displayed in
Fig. 2(a).

This approach can be viewed as a version of Thompson sampling wherein allocations are
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selected according to the posterior probability that they maximize the mean discounted cu-
mulative utility (Thompson, 1933). Although Thompson sampling has been in print for more
than 80 years it has only recently re-emerged in the computer science literature as a powerful
tool for on-line decision making and has been shown to have several optimality properties in
special cases (Chapelle and Li, 2011; Agrawal and Goyal, 2011; Kaufmann et al., 2012; Korda
et al., 2013). Intuitively, a stochastic allocation strategy should balance exploration of the space
of potential allocations with choosing allocations that are estimated to produce high expected
utility; the proposed version of Thompson sampling achieves this balance through the posterior
of mean utility under each d ∈D which becomes increasingly concentrated on the maximizer as
data accumulate.

To describe the implementation of our estimator we make several assumptions in addition
to assumptions 1–3. We assume that the system is Markov and homogeneous in time so that,
for any v, the densities in equation (1) become fv.yv|hv, av/ = f.yv|sv, av/ and gv.sv|hv−1/ =
g.sv|sv−1, av−1/. Recall that the state sv is a summary of the complete history up to time
v, including past states, outcomes and allocations; see remark 1 for additional discussion.
Furthermore, we assume parametric models f.yv|sv, av/=f.yv|sv, av;β/ and g.sv|sv−1, av−1/=
g.sv|sv−1, av−1; θ/ where β and θ are unknown parameters; under the model assumed, the sys-
tem dynamics are completely determined by β and θ. If allocations are selected under the
sequence of stochastic strategies .π1,π2, : : : ,πT /, then the likelihood for .β, θ/ given observed
data .S̄

T
, Ȳ

T
, Ā

T
/ is

LT .β, θ/=
T∏

v=1
{f.Yv|Sv, Av;β/πv.Av; Sv/g.Sv|Sv−1, Av−1; θ/},

where we define g.s1|s0, a0/=g.s1/ to be the distribution of the initial state.
For any deterministic strategy d and fixed T> 0, define

CT .d;β, θ/=
∫ {

T∑
t=1

γt−1u.yt/

}
T∏

v=1
[f{yv|sv, d.sv/;β}g{sv|sv−1, d.sv−1/; θ}] dλ.ȳT , s̄T /,

and for t � T define π̂t,T = arg maxd∈DCT .d; β̃
t
, θ̃

t
/ where β̃

t
and θ̃

t
are distributed according

to the posterior of β, θ given Ht . If the parametric densities are correctly specified, i.e.
f.yt|st , at/ = f.yt|st , at ;βÅ/ and g.st|st−1, at−1/ = g.st|st−1, at−1; θÅ/ for ‘true’ parameters βÅ

and θÅ, then, under standard regularity conditions (Gelman et al., 2014), πopt =
arg maxπ∈Π limt→∞{limT→∞ CT .d; β̃

t
, θ̃

t
/} with probability 1.

Algorithm 1 in Table 1 shows the procedure for estimating πopt by using policy search with
a system dynamics model and Thompson sampling; Fig. 2(b) displays a schematic diagram for
this algorithm. The computational complexity of this algorithm depends on

(a) the class of strategies D,

Table 1. Algorithm 1: policy search algorithm for an optimal allocation strategy

Input: T<∞, S1

1 draw β̃
1
, θ̃

1
from the prior

2 compute π̂1 =arg maxd∈D CT .d; β̃
1
, θ̃

1
/ (via algorithm 2 in Section 4.1)

3 for j �1 do
4 apply allocation Aj = π̂j.Sj/; observe Yj and Sj+1

5 draw β̃
j+1

and θ̃
j+1

from the posterior of .β, θ/ given Hj+1

6 compute π̂j+1 =arg maxd∈D CT .d; β̃
j+1

, θ̃
j+1

/ (via algorithm 2 in Section 4.1)
7 end
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(b) the complexity of posterior distribution for β and θ, and
(c) the desired accuracy of the numerical integration that is used to compute CT .d;β, θ/.

In Section 4.1, we provide a class of strategies under which sampling from π.a; s/ scales linearly
in the number of locations, L, making it feasible even when L is of the order of tens of thousands.
In most ecological applications, the dimensions of β and θ are orders of magnitude smaller than
L, e.g. the ‘gravity model’ for WNS (Maher et al., 2012) is determined by 13 parameters; thus,
integrating over the posterior of these parameters is typically not a computational bottleneck. As
detailed in the next section, we use stochastic approximation to compute arg maxπ∈Π CT .d;β, θ/;
the number of Monte Carlo replicates in the numerical integration that is used to approximate
CT .d;β, θ/ is generally smaller than L.

Remark 1. The Markov dynamics assumption that was used above is always trivially true if
St =Ht for all t (more formally, let St ∈R∞ and define St = .t, Ht , 0/, where 0 is the zero element
in R∞). However, this choice of state is rarely useful in large systems as the growing dimension
makes modelling difficult. Thus, the Markov assumption can be viewed as an assumption about
the ability of domain experts and analysts to construct a concise summary of the past that
captures all salient features of the decision problem. One approach is to construct the state by
concatenating information from the past k time points where k is dictated by domain knowledge
or estimated from historical data. State construction for Markov decision processes is currently
an active area of research (Mahadevan, 2009; Sugiyama, 2015).

Remark 2. The assumption of a low dimensional parametric model for the transition may
seem overly restrictive in some settings. However, this can be relaxed through sieves (e.g. Newey
(1997)) or Bayesian non-parametric models (Xu et al., 2016a, b; Ghosal and van der Vaart,
2017).

4.1. A scalable class of allocation strategies
The class of allocation strategies D has a large influence on the quality of the estimated optimal
decision strategy and the computational complexity of algorithm 1. We propose a flexible but
computationally efficient class of allocation strategies that is designed to scale to large decision
problems with potentially tens of thousands of locations. However, as we demonstrate in the
next section, this class of strategies is also useful for problems with as few as 100 locations.
Throughout, we assume that at time t exactly ct locations can be treated; although ct is allowed
to depend on the state St we suppress this in the notation.

The proposed class of allocation strategies is based on a parametric scoring function that
assigns to each location a scalar priority score with high values indicating a greater need for
treatment. Because of spatial interference, the priority score at a given location must take into
account the state of that location, the states of nearby locations and the configuration of treat-
ments at nearby locations. The optimal allocation for a given scoring function assigns treatment
to the locations with highest priority scores with the number of treated locations dictated by
resource constraints. Each value of the parameter vector indexing the priority score corresponds
to a different scoring function and hence a different optimal allocation. However, for a given
value of this parameter, computing the optimal allocation requires jointly optimizing over all
allowable treatment allocations, which is computationally infeasible in all except the smallest
problems. Instead, for each parameter indexing the priority score, we use a greedy batch updating
algorithm to approximate the optimal allocation as follows. For simplicity, assume that resource
constraints allow treatment of bm locations where m is the batch size and b is the number of
batches (a formal description is given below). At the first stage of the batch optimization algo-
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rithm the priority scores are calculated at each location by assuming that no other locations will
be treated and the m locations with highest priority scores are selected to be treated. The priority
scores are then recomputed at each location by assuming that those m locations selected at the
first step will be treated and the m locations with highest priority scores (required to be distinct
from those selected in the first step) are selected to be treated. Then, at each subsequent step
the priority scores are updated assuming that those locations selected at previous steps will be
treated and the m locations with highest priority scores are selected to be treated. This procedure
is applied b times until there are a total of mb locations selected for treatment. After these mb lo-
cations have been selected the procedure either terminates or can continue iterating by selecting
m of the selected mb locations to be set to untreated and recomputing the priority scores and
subsequently selecting m new locations for treatment. The preceding procedure requires com-
puting a parametric score at each location for each batch update; thus, the batch size dictates
how computationally expensive the updates are. In applications, the batch size can be chosen to
be large initially and reduced experimentally to see whether there is any change in the solution.

The class of allocation strategies that we propose depends on a parametric class of func-
tions from supp.St/ × {0, 1}L into RL, R = {R.st , at ;η/ : η ∈ E}, where E ⊆ Rq. Given η ∈ E,
the function R.st , at ;η/ is a vector of priority scores, one per location, so Rl.st , at ;η/ represents
the priority for treating location l at time t if the observed state is St = st and assuming that the
locations {j : at

j =1} are certain to be treated. If at
l =1 then Rl.st , at ;η/=−∞ so each location

is selected for treatment at most once per time point. For each non-negative integer m, define
the binary vector

U t
l .s

t , at ;η, m/=
{

1 if Rl.st , at ;η/�R.m/.st , at ;η/,
0 otherwise,

where l ∈ L and R.k/.st , at ;η/ denotes the kth order statistic of {Rl.st , at ;η/}l∈L. Let k � ct

be a non-negative integer and 0 be a vector of 0s. Define d.1/.st ;η/ to be the binary vector
that selects the �ct=k	 locations with the highest priority scores. Let w.1/ denote d.1/.st ;η/.
Recursively, for j = 2, : : : , k, set w.j/ = d.j/.st ;η/, Δj =�jct=k	−�.j − 1/ct=k	 and d.j/.st , η/ =
U t{st , w.j−1/;η, Δj}+ w.j−1/. The final decision rule is d.st ;η/ = d.k/.st ;η/; the dependence of
this rule on t occurs only through ct .

The parameter k in the above class of strategies governs the number of locations that are
selected each time that the priority scores are updated. If k = 1 then the priority scores are
computed once, under no treatments, and the top ct locations are treated; if k =ct then the algo-
rithm updates the priority scores after every location selection. In large problems, we anticipate
choosing k 
L, e.g. k =O{log.L/}. If the computational complexity of computing Rl.st , at ;η/

is N, then the complexity of computing d.st ;η/ is O.kLN/. Thus, if k = O{log.L/} and N is
negligible relative to L, then evaluating the strategy is O{L log.L/} which is feasible even for
large values of L.

Let D denote the class of policies {d.s;η/ : η ∈ E}. Algorithm 1 requires maximization of
CT .d;β, θ/ over d ∈ D (or, equivalently, over η ∈ E). Thus, the order of computation for this
step depends on the complexity of evaluating the function CT .d;β, θ/. Obtaining a high quality
approximation for CT .d;β, θ/ for any fixed strategy d may require a large number of expensive
Monte Carlo replications; this is particularly wasteful when evaluating allocation strategies that
are far from a maximizer. Thus, we use a stochastic approximation algorithm which is known
as simultaneous perturbation (e.g. Spall (2005)) to approximate arg maxd∈D CT .d;β, θ/. The
algorithm relies on a sequence of non-negative step sizes {αj}j�1 and a sequence of non-negative
perturbation magnitudes {ζj}j�1 that satisfies ζj →0 as j →∞. Convergence guarantees require
that Σj�1αj =∞, Σj�1α

2
j <∞ and ζj → 0 as j →∞ (Kushner and Yin, 2003; Borkar, 2008);
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Table 2. Algorithm 2: stochastic approximation

Input: T<∞, St , η0 ∈E, f.yt |st , at−1;β/, g.st |st−1, at ; θ/,
{αj}j�1, {ζj}j�1 and tol > 0

1 set k =1, S̃
t =St

2 do
3 draw Zk ∼uniform{−1, 1}d

4 for m=0,: : : , T −1 do
5 set At+m =d.St+m;ηk + ζkZk/
6 draw St+m+1 ∼g.st+m+1|St+m, At+m; θ/
7 draw Yt+m ∼f.yt+m|St+m, At+m;β/

8 set Ã
t+m =d.S̃

t+m
;ηk − ζkZk/

9 draw Ỹ
t+m ∼f.yt+m|S̃t+m

, Ã
t+m

;β/

10 draw S̃
t+m+1 ∼g.st+m+1|S̃t+m

, Ã
t+m

; θ/
11 end
12 set ηk+1 =GE[ηk +{αk=.2ζk/}{Zk1T

L.Yt+T−1 − Ỹ
t+T−1

/}]
13 set k =k +1
14 while αk � tol

Output: ηk

however, in our simulation experiments, we use αj =τ=.ρ+j/1:25 and ζj =100=j, where τ ,ρ>0
are tuning parameters. We used a double-bootstrap procedure to select τ and ρ; details on the
double-bootstrap tuning procedure are in the on-line supplemental materials. Let GE denote
the orthogonal projection onto E, i.e. GE.ρ/ = arg minη∈E ||ρ− η||, where || · || denotes the
Euclidean norm. Algorithm 2 in Table 2 shows the stochastic approximation algorithm for
computing arg maxd∈D CT .d;β, θ/; it can be seen that each iteration of this algorithm requires
simulating trajectories under only two parameter values, rather than O.d/ parameter values
as would be required by classic stochastic gradient descent methods using a difference-based
approximation for the gradient (Spall, 2005; Bhatnagar et al., 2013).

Remark 3. The choice of priority functions R will, of course, depend on features of a given
application. However, for concreteness, we describe a class of linear priority functions that may
be useful in practice. We use linear priority functions in our application to WNS. For each l∈L
let φl.st , at/ ∈ Rp denote a fixed and known feature vector. Linear priority functions RLin =
{Rl.st , at ;η/=φl.st , at/Tη : l ∈L, η∈ Rp, ||η||= 1} are appealing because the priority scores are
interpretable and computationally simple. The featuresφl.st , at/ can be local smooths of location
covariates, e.g. measures of susceptibility or contagiousness, predictions of the disease process
based on one or more postulated models for the underlying system dynamics or structural
characteristics (Kolaczyk, 2009).

5. Simulation experiments

We evaluate the finite sample performance of our estimator in a suite of simulation experiments.
We consider the spread of an infectious disease over two spatial domains:

(a) points in two-dimensional Euclidean space and
(b) nodes in a network.

5.1. Spread of an infectious disease in Euclidean space
In the Euclidean space setting, each location l ∈{1, : : : , L} is a point in the unit square [0, 1]2.
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For each location l, we generate four static covariates Xl by using a mean 0 Gaussian process
with a multivariate separable isotropic covariance matrix that is exponential in space and auto-
regressive across the four covariates at each location. To mimic our motivating example of the
spread of WNS, we assume that each location has a fixed number of caves; in more general spatial
epidemic models, this variable represents the gravity that is associated with the location (e.g.
Bossenbroek et al. (2001), Xia et al. (2004), Drake and Lodge (2004) and Sen and Smith (2012)).
We generate the number of caves, Zl, by using the first covariate and subtracting the minimum
value to force non-negative values (see the on-line supplemental materials for details). The
outcome Yt

l is 1 if location l becomes infected at or before time t and 0 otherwise. The process
is initialized at time t = 1 by randomly selecting 1% of the locations to be infected. Define
St

l = .Xl, Zl, Yt−1
l / and let ωl,k denote the distance between locations l and k. We standardize the

distance to have a standard deviation of 1 for computational stability. The model assumes that
disease transmission is independent across locations given (St , At), with Yt

l = 1 if Yt−1
l = 1 so

that locations never shed the disease, and P.Yt
l =1|St = st , At =at/=1−Πk∈I t {1−ql,k.st , at/} if

Yt−1
l =0, where I t ={k :Yt−1

k =1} is the set of sites that are infected before time t, and ql,k.st , at/

is the probability that the disease spreads from location k to location l. The local dynamics are
governed by the following spatial gravity model (Maher et al., 2012):

logit{ql,k.st , at/}=θ0 +xT
l θ1 +xT

k θ2 −θ3at
l −θ4at

k −θ5ωl,k=.zlzk/θ6 , .2/

where θ0 is an intercept, θ1 captures effects of the uninfected location, θ2 captures effects of
the infected location, θ3 and θ4 govern the strength of treatments to uninfected and infected
locations, θ5 >0 controls the spatial range of infection and θ6 >0 controls the amount of gravity
that is induced by the number of caves per location. We chose θ = .θ0, θT

1 , θT
2 , θ3, : : : , θ6/T to

match the maximum likelihood estimator fit using data on WNS but adjusted θ0 so that in each
simulation setting an average 70% of locations become infected after T =15 years in the absence
of any interventions. An algorithm for constructing θ for each simulation setting is provided in
the on-line supplemental materials.

We assume that treatments can be applied to at most only ςL locations at each time t where
ς ∈ .0, 1/ (in all settings considered, ςL is an integer). To form a baseline for comparison, we
also consider the following allocation strategies:

(a) no treatment, do not apply treatment at any location;
(b) myopic, rank uninfected locations by their estimated probability of becoming infected in

the next time step, rank infected locations by the weighted average infection probability of
uninfected locations by usingλl,k (defined below) as weights and then allocate treatment to
the .ς=2/L highest ranked uninfected locations and to the .ς=2/L highest ranked infected
locations;

(c) proximal, rank uninfected locations by their proximity (inverse distance) to the nearest
infected location and rank infected locations by their proximity to uninfected locations,
allocate treatment to the .ς=2/L highest ranked infected locations and to the .ς=2/L

highest ranked uninfected locations;
(d) treat all locations to provide a performance ceiling if infinite resources were available

and, by contrast with the no-treatment strategy, to provide a sense of the strength of
treatment.

In the simulations that we present here, we set ς= 0:12; additional simulations with other set-
tings of ς are qualitatively similar and have thus been omitted. Because the number of possible
treatment allocations is exponential in the number of locations, it is not computationally feasi-
ble to compute the optimal allocation strategy as a ‘gold standard’ even though the generative
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(a) (b) (c)

Fig. 3. (a) S1, regular lattice layout with 1000 locations, (b) S2, uniformly distributed layout with 1000
locations, and (c) S3, clustered layout with 1000 locations

distribution is known; for example in the smallest setting that we consider there are
( 100

12

)≈1015

possible allocations at each time point.
We consider three spatial location layouts: S1, a regular lattice layout, S2, a uniformly dis-

tributed layout, and S3, a clustered layout. Instances of these three layouts with L = 1000
locations are displayed in Fig. 3. Our simulation experiments consider location sets of size
L=100, 500, 1000; algorithms for generating these layouts are in the on-line supplemental ma-
terials. The infection is allowed to spread from t = 1 to t = 8 with no interventions. At time
points t =8, : : : , 15, each strategy under consideration is used to choose a treatment allocation.
Performance of the allocation strategies is measured in terms of the average proportion infected
after T =15 time points. Because there is a fixed and finite time horizon, in the implementation
of our algorithm we set γ=1.

To study the effects of model misspecification, we also consider the case when the true data-
generating model is model (2) and the allocation strategies proposed are based on the postulated
model (2) with logit{qt

l,k.s, a/} replaced with θ̃0 + θ̃1ωk,l − θ̃2at
l − θ̃3at

k if site l is uninfected at time
t and 0 otherwise. Thus, the misspecified model assumes that under no treatment the probability
of spread from an infected to susceptible location is dictated by distance only.

We use linear priority functions as in remark 3: RLin = {Rl.st , at ;η/ =φl.st , at/Tη : l ∈L, η ∈
Rp, ||η||=1}. Let mt

l,k.st , at/ denote the, possibly misspecified, postulated model for qt
l,k.st , at/;

write Pm to denote probabilities that are evaluated under the model postulated. Let cl denote the
half-plane data depth of location l (i.e. the minimum number of points that are contained in a
hyperplane passing through l; Liu (1990)) and define λl,j =exp.λωl,j/=Σj =l exp.λωl,j/ where the
constant λ is chosen so that 80% of the total weight is placed on the log.L/ nearest neighbours
of location l. Recall that I t denotes the set of locations that were infected before time t; let Ĩ t

denote the complement of this set. For uninfected locations, at time t, define

ψl,1.st , at/=Pm.Yt
l =1|St = st , At =at/,

ψl,2.st , at/=ψl,1.st , at/
∑

j∈I t

{1−ψj,1.st , at/}ml,j.st , at/λl,j,

ψl,3.st , at/= clψ
t
l,1.st , at/:

Thus, for uninfected locations, ψl,1.st , at/ is the probability that location l becomes infected at
the next time point; ψl,2.st , at/ is the effect of treating location l on the infection probabilities
of all other locations. The third feature, ψl,3.st , at/, is the probability that location l becomes
infected at the next time point weighted by the data depth of location l. For infected locations,
define
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Fig. 4. Estimated average proportion infected based on 100 Monte Carlo replications under correct spec-
ification of the system dynamics model (—, 2 standard errors): (a) LD100; (b) LD500; (c) LD1000

φl,1.st , at/= ∑
j∈Ĩ t

λl,jψj,1.st , at/,

φl,2.st , at/= ∑
j∈Ĩ t

ψj,2.st , at/mt
l, j.st , at/,

φl,3.st , at/= ∑
j∈Ĩ t

cjmt
l,j.st , at/:

Thus, for infected locations, φl,1.st , at/ is the weighted average infection probability over all
uninfected locations at time t;φl,2.st , at/ is a measure of expected secondary infections stemming
from location l; φl, 3.st , at/ is data depth weighted by probability of infection by l.

To reduce the computational burden, we approximate the posterior distribution of θ by using
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Fig. 5. Estimated average proportion infected based on 100 Monte Carlo replications under misspecification
of the system dynamics model (—, 2 standard errors): (a) LD100; (b) LD500; (c) LD1000

the plug-in estimator of the sampling distribution of the maximum likelihood estimator θ̂n;
however, at the first intervention period, the treatment effects are not estimable so we sample
them from the prior distribution. Additional simulations (which are not shown here) suggested
that this approximation reduced the computation time by two orders of magnitude and did not
affect the quality of the solution.

Simulation results under a correctly specified dynamics model are presented in Fig. 4. In
all settings, the policy search algorithm proposed resulted in a smaller average proportion of
infected locations than those of competing methods. Results for the misspecified dynamics
model are presented in Fig. 5. As expected, the performance of policy search is worse under
the incorrectly specified dynamics model; however, it still performed favourably relatively to
competing methods.
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(a) (b) (c)

Fig. 6. (a) N1, a regular lattice network with 1000 locations, (b) N2, a random k-nearest-neighbour network
with 1000 locations, and (c) N4, a small world network with 1000 locations

5.2. Spread of an infectious disease across a network
In the network setting, each location represents a node in a network with an adjacency matrix
Ω, i.e. Ωl,k =1 if locations l and k are adjacent and Ωl,k =0 otherwise. Define Nl ={k :Ωl,k =1}
to be the set of adjacent locations to location l. We assume that the infection can only spread
along edges in the network. Thus, if uninfected location l has zero infected neighbours at time
t, so that Nl ∩ It = ∅, then location l will remain uninfected at time t + 1 with probability 1.
The probability of infection is P.Yt

l = 1|St = st , At = at/ = 1 − Πk∈Nl∩I t {1 − ql,k.st , at/} where
the product is now over only infected locations adjacent to location l. We define Πk∈∅ =� 1 so
that the probability of infection for an uninfected node is 0 when none of its neighbours are
infected. The distance between any two locations is defined as the number of edges along the
shortest path between them. Thus, we set θ5 =0 in the gravity model as only neighbours of an
uninfected location can influence its probability of infection. The generative model is

logit{ql,k.st , at/}=θ0 +xT
l θ1 +xT

k θ2 −θ3at
l −θ4at

k: .3/

As in the preceding section, we chose θ to mimic the spread of WNS and adjusted the intercept
θ0 so that 70% of locations will be infected on average after T =15 if no interventions are applied.
Parameter values that were used in the simulation and details about fitting a network spread
model to the observed WNS data can be found in the on-line supplementary materials. For
misspecification of the system dynamics model, we remove covariate information, leaving an
intercept and treatment effects. The misspecified model has the form

logit{ql,k.st , at/}= θ̃0 − θ̃1at
l − θ̃2at

k: .4/

We consider the following network structures: N1, a lattice, N2, a random three-nearest-
neighbour graph, and N3, a small world network. Instances of these networks are displayed in
Fig. 6. We use the same class of treatment strategies based on linear priority scores as in the
preceding section. However, we redefineψl,3.st , at/ andφl,3.st , at/ to reflect distance as measured
along paths in the network. In the spatial setting, we set cl to the half-plane data depth of location
l; as locations are now nodes in a network, we set cl to be the subgraph centrality of location
l (Estrada and Rodriguez-Velazquez, 2005). Additionally, because infection can spread only
between adjacent nodes, we set λl,k =Ωl,k for all l and k.

Our simulations for the spread over a network use the same competing methods and perfor-
mance measures as the spread over Euclidean space. Fig. 7 shows the result when the dynamics
model is correctly specified and Fig. 8 shows the results when the model is incorrectly specified.
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Fig. 7. Estimated average proportion infected based on 100 Monte Carlo replications under correct spec-
ification of the network spread dynamics model (—, 2 standard errors): (a) LD100; (b) LD500; (c) LD1000

As in the preceding section, policy search performs favourably to competitors even when the
dynamics model is misspecified.

6. Controlling the spread of white nose syndrome

One motivation for this work is the need to design a treatment allocation strategy to inform
the management of WNS. Fig. 1 shows the current (at the time of writing) reported spread of
WNS. The locations in this example are cave bearing counties that are known to house bats
that are susceptible to WNS. This disease is still emerging; thus the nature of the contagion and
potential treatments are still under study (e.g. Field et al. (2014), O’Donoghue et al. (2015),
Turner et al. (2015) and Bernard et al. (2015)). Our goal is to use existing data on the spread
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Fig. 8. Estimated average proportion infected based on 100 Monte Carlo replications under misspecification
of the network spread dynamics model (—, 2 standard errors): (a) LD100; (b) LD500; (c) LD1000

of WNS to construct an allocation strategy that could be deployed as soon as viable treatments
are available. We evaluate the performance of the estimated allocation strategy by simulating
the spread of WNS from 2015 to 2022 under a postulated system dynamics model.

6.1. A system dynamics model for white nose syndrome under no interventions
We begin by fitting the gravity model (2) to the WNS data that are plotted in Fig. 1. We use
four static (centred and scaled) covariates in Xl: the number of caves in the county, Zl, the
average number of days per year with temperature below 10 ◦C; area (in square kilometres)
and species richness (the number of bat species that are thought to occupy the county). No
treatments have been applied and thus At

l = 0 for all l and t, and the distance ωk,l is measured
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Fig. 9. Posterior distribution of the regression parameters associated with (a) uninfected (θ1) and (b)
infected (θ2) counties in the gravity model (2) applied to the WNS data: the covariates are the number of
caves in the county (‘caves’), the average number of days per year below 10 ıC (‘cold days’), area in kilometres
squared (‘Area’) and species richness (‘SR’)
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Table 3. Estimated coefficients and 95% credible intervals (CIs) for
the gravity model fit using WNS data from 2006 to 2014†

Parameter Posterior 95% credible Value used
mean interval in simulation

θ0 −8:35 [−10:42,−6:62] −8:35
θ1,0 0.13 [0.03, 0.22] 0.13
θ1,1 0.99 [0.51, 1.45] 0.99
θ1,2 0.30 [−0:31, 0:77] 0.30
θ1,3 −0:10 [−0:53, 0:33] −0:10
θ2,0 0.48 [0.23, 0.69] 0.48
θ2,1 3.76 [2.18, 5.44] 3.76
θ2,2 −5:45 [−8:66,−2:67] −5:45
θ2,3 −0:19 [−1:53, 1:13] −0:19
θ3 —‡ —‡, —‡ 1.77
θ4 —‡ —‡, —‡ 1.77
θ5 24.21 [15.56, 35.86] 24.21
θ6 0.22 [0.17, 0.28] 0.22

†Rows for θ3 and θ4 correspond to intervention effects which are not iden-
tifiable in the WNS data as these data do not contain any interventions.
‡Not applicable.

Table 4. Average proportion of infected counties in 100 Monte Carlo
simulations of the spread of WNS from 2015 to 2022 under the gravity
model†

No treatment Proximal Myopic Treat all Policy search

0.43 (0.006) 0.39 (0.006) 0.36 (0.005) 0.17 (0.001) 0.22 (0.002)

†Policy search resulted in markedly fewer infected counties than did the
next best estimator.

as kilometres between county centroids. We assume an N.0, 102/ prior for θ0 and independent
N.0, 10/ priors for the elements of θ1 and θ2, and standard independent normal priors for
log.θ5/ and log.θ6/. We sample from the posterior by using Metropolis sampling with Gaussian
candidate distributions tuned to give an acceptance probability around 0.4; 100000 samples are
generated and the first 20000 are discarded as burn-in.

The posterior is summarized in Fig. 9. As expected, the transmission probability is high
when the infected and uninfected counties have many caves and many days below 10 ◦C. These
factors increase the space and time for hibernation, and it is believed that the disease spreads
primarily via contact between bats hibernating in a cave. Also, the transmission probability
is high when the infected county is small, presumably because the disease can rapidly spread
through the infected county and thus move quickly to nearby counties. The on-line supplemental
materials include model comparisons and posterior predictive model checks which suggest that
this relatively simple model is adequate for our purposes.

6.2. Simulating management of white nose syndrome
The parameter values that were used in the generative model are given in Table 3. We set θ3 =θ4
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Fig. 10. Boxplots for each feature coefficient at the final time point during the WNS simulation experiment

and chose the magnitude of the treatment effect so that, if every location were treated at every
time point during the management period, there would be a 95% reduction in the spread.
However, when we simulate management of the disease, the strategies under consideration
are limited to treating no more than 67 infected counties and 67 uninfected counties at each
time point (which corresponds to treating at most 12% of the total locations). To evaluate the
performance of the algorithm proposed, we simulate management of the disease from 2015 to
2022. As in Section 5, in addition to policy search, we also implement the proximal and myopic
strategies. We use the same features for policy search as we did in Section 5. Also as in Section
5, in our implementation of Thompson sampling, we used draws from the estimated sampling
distribution of the maximum likelihood estimator of θ to approximate draws from the posterior;
at the first time point at which interventions are applied, the parameters θ3 =θ4 are not identified
from the data so we sample them independently from an informative prior N.4θ3, 1/. Table 4
displays the average proportion of infected counties in the WNS simulation based on 100 Monte
Carlo replications. The policy search algorithm resulted in significantly fewer infected counties
than did competing methods. The myopic strategy is representable as in terms of the linear
priority score using η= .1, 0, 0/; thus, one way to gain insight into the differences between the
myopic policy and that of policy search is to examine the posterior distribution of η. Fig. 10
shows this posterior distribution. It can be seen that policy search puts large positive weights
on η3, suggesting that it is putting a high priority on the secondary effects of infection relative
to the myopic strategy.
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The policy search algorithm, running on an Intel Xeon Server with 64 threads (3.4 GHz; 512
Gbytes DDR4 random-access memory), took an average of 20.4 min per Monte Carlo replica-
tion. This simulation demonstrates that policy search is a feasible and potentially powerful tool
that can be used to inform the management of emerging infectious diseases like WNS.

7. Discussion

We proposed a statistical framework to study sequential treatment allocation in the context of
managing emerging infectious diseases. On the basis of this framework, we identified several
major computational and theoretical challenges that are associated with constructing an op-
timal treatment allocation strategy using accumulating data on disease spread. Among these
challenges is interference between locations and subsequently exponential growth in the number
of allocations as a function of locations. We used a low dimensional system dynamics model
to impose (implicitly) structure on the nature of treatment interference and a prespecified class
of strategies to reduce the computational complexity of searching for an optimal strategy. The
proposed policy search estimator performed well in simulated experiments and shows promise
as a means to inform management of emerging infectious diseases.

The framework proposed used some simplifying assumptions about the nature of the spa-
tiotemporal treatment allocation problem that could be relaxed at the expense of additional
modelling and/or computational complexity. We assumed that the state St was completely ob-
served, without error at each location at each time point. In some applications, state observations
may be sparse, noisy and irregularly spaced in time. Furthermore, the sampling design may be
dependent on the evolution of the disease; for example, states might be sampled only at loca-
tions where an infection had been reported. Depending on the nature of the sampling design,
it may be possible to combine sampling weights or imputation methods with policy search to
estimate an optimal allocations strategy. Another important simplifying assumption is that of
complete compliance of the decision maker, i.e. that the recommended allocations will actually
be followed. Partial compliance, which is also known as partial controllability, could be incorpo-
rated in the framework proposed by adding a compliance model that described the distribution
over allocations selected by the decision maker given the allocation recommended by policy
search.

As indicated in our discussion of simplifying assumptions, we believe that the area of data-
driven spatiotemporal treatment allocation is rife with important and exciting open problems.
We briefly review several of the most pressing of these. Our proposed estimation algorithm relies
on a postulated system dynamics model; an important extension is to construct semiparametric
or non-parametric estimators of the optimal allocation strategy which are robust to misspec-
ification of the system dynamics model. One potential approach to construct such estimators
is to convert the Bellman equation for the optimal allocation strategy into an estimating equa-
tion (Maei et al., 2010; Ertefaie, 2014). Another important direction for additional research
is scaling spatiotemporal allocation algorithms to very large problems. Our current algorithm
scales readily to settings with thousands of locations; however, additional computational con-
siderations (both in terms of central processor unit clock cycles and memory) are needed to
scale to larger problems. Finally, we believe that there is the potential for rich theoretical
developments regarding the difference between cumulative expected utility under an estimated
allocation strategy and the optimal strategy; this difference is known as the regret in the bandit
algorithm literature (Robbins, 1952). Inspired by recent theoretical developments for Thompson
sampling (Korda et al., 2013), we believe that it will be possible to derive minimax-type regret
bounds for algorithms that are similar to our proposed policy search algorithm.
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Maei, H. R., Szepesvári, C., Bhatnagar, S. and Sutton, R. S. (2010) Toward off-policy learning control with

function approximation. In Proc. 27th Int. Conf. Machine Learning, pp. 719–726.
Mahadevan, S. (2009) Learning Representation and Control in Markov Decision Processes. Breda: Now.
Maher, S. P., Kramer, A. M., Pulliam, J. T., Zokan, M. A., Bowden, S. E., Barton, H. D., Magori, K. and Drake,

J. M. (2012) Spread of white-nose syndrome on a network regulated by geography and climate. Nat. Communs,
3, article 1306.

Murphy, S. A. (2003) Optimal dynamic treatment regimes (with discussion). J. R. Statist. Soc. B, 65, 331–366.
Murphy, S. A. (2005) A generalization error for Q-learning. J. Mach. Learn. Res., 6, 1073–1097.
Newey, W. K. (1997) Convergence rates and asymptotic normality for series estimators. J. Econmetr., 79, 147–168.
Neyman, J. (1990) On the application of probability theory to agricultural experiments: essay on principles, section

9 (Engl. transl. D. M. Dabrowska and T. P. Speed). Statist. Sci., 5, 465–472.
O’Donoghue, A. J., Knudsen, G. M., Beekman, C., Perry, J. A., Johnson, A. D., DeRisi, J. L., Craik, C. S.

and Bennett, R. J. (2015) Destructin-1 is a collagen-degrading endopeptidase secreted by pseudogymnoascus
destructans, the causative agent of white-nose syndrome. Proc. Natn. Acad. Sci. USA, 112, 7478–7483.

Ogburn, E. L. and VanderWeele, T. J. (2014) Vaccines, contagion, and social networks. Preprint arXiv:1403.
1241.

Orellana, L., Rotnitzky, A. and Robins, J. (2010) Dynamic regime marginal structural mean models for estimation
of optimal dynamic treatment regimes, part i: main content. Int. J. Biostatist., 6, no. 2, 1–49.

Osband, I., Russo, D. and Van Roy, B. (2013) (More) efficient reinforcement learning via posterior sampling. In
Advances in Neural Information Processing Systems, pp. 3003–3011.

Pearl, J. (2010) On the consistency rule in causal inference: axiom, definition, assumption, or theorem? Epidemi-
ology, 21, 872–875.

Powell, W. B. (2007) Approximate Dynamic Programming: Solving the Curses of Dimensionality. New York: Wiley.
Rich, B. (2013) Optimal dynamic treatment regime structural nested mean models: improving efficiency through

diagnostics and re-weighting and application to adaptive individualized dosing. Dissertation. McGill University,
Montreal.

Rich, B., Moodie, E. E. M., Stephens, D. A. and Platt, R. W. (2014) Simulating sequential multiple assignment
randomized trials to generate optimal personalized warfarin dosing strategies. Clin. Trials, 11, 435–444.

Riley, S. (2007) Large-scale spatial-transmission models of infectious disease. Science, 316, 1298–1301.
Robbins, H. (1952) Some aspects of the sequential design of experiments. Bull. Am. Math. Soc., 58, 527–535.
Robins, J. M. (2004) Optimal structural nested models for optimal sequential decisions. In Proc. 2nd Seattle Symp.

Biostatistics, pp. 189–326. New York: Springer.
Robins, J., Orellana, L. and Rotnitzky, A. (2008) Estimation and extrapolation of optimal treatment and testing

strategies. Statist. Med., 27, 4678–4721.
Rubin, D. (1978) Bayesian inference for causal effects: the role of randomization. Ann. Statist., 6, 34–58.
Russo, D. and Van Roy, B. (2014) An information-theoretic analysis of Thompson sampling. J. Mach. Learn.

Res., 17, 1–30.
Schulte, P., Tsiatis, A., Laber, E. and Davidian, M. (2014) Q- and a-learning methods for estimating optimal

dynamic treatment regimes. Statist. Sci., 29, 640–661.



770 E. B. Laber, N. J. Meyer, B. J. Reich, K. Pacifici, J. A. Collazo and J. M. Drake

Scott, S. L. (2010) A modern bayesian look at the multi-armed bandit. Appl. Stochast. Modls Bus. Indstry, 26,
639–658.

Sen, A. and Smith, T. (2012) Gravity Models of Spatial Interaction Behavior. New York: Springer Science and
Business Media.

Sobel, M. E. (2006) What do randomized studies of housing mobility demonstrate?: Causal inference in the face
of interference. J. Am. Statist. Ass., 101, 1398–1407.

Spall, J. C. (2005) Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. New
York: Wiley.

Strogatz, S. H. (2001) Exploring complex networks. Nature, 410, 268–276.
Subcommittee on Fisheries, Wildlife, and Oceans (2011) Why We Should Care about Bats: Devastating Impact

White-nose Syndrome is having on One of Nature’s Best Pest Controllers. Washington DC: US Government
Printing Office.

Sugiyama, M. (2015) Statistical Reinforcement Learning: Modern Machine Learning Approaches. Boca Raton:
CRC Press.

Sutton, R. and Barto, A. (1998) Reinforcment Learning: an Introduction. Cambridge: Massachusetts Institute of
Technology Press.

Szymanski, J. A., Runge, M. C., Parkin, M. J. and Armstrong, M. (2009) White-nose syndrome management:
report on structured decision making initiative. Report. Department of the Interior, US Fish and Wildlife
Service, Fort Snelling.

Thompson, W. R. (1933) On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, 25, 285–294.

Tildesley, M. J., Savill, N. J., Shaw, D. J., Deardon, R., Brooks, S. P., Woolhouse, M. E., Grenfell, B. T. and
Keeling, M. J. (2006) Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature,
440, 83–86.

Truscott, J. and Ferguson, N. M. (2012) Evaluating the adequacy of gravity models as a description of human
mobility for epidemic modelling. PLOS Computnl Biol., 8, no. 10, article e1002699.

Turner, J. M., Warnecke, L., Wilcox, A., Baloun, D., Bollinger, T. K., Misra, V. and Willis, C. K. (2015) Conspecific
disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiol. Behav., 140,
71–78.

US Fish and Wildlife Service (2015) White-nose syndrome: a coordinated response to the devastating bat disease.
US Fish and Wildlife Service, Fort Snelling.

VanderWeele, T. J. and Hernan, M. A. (2013) Causal inference under multiple versions of treatment. J Causl Inf.,
1, 1–20.

VanderWeele, T. J. and Tchetgen Tchetgen, E. J. (2011) Effect partitioning under interference in two-stage ran-
domized vaccine trials. Statist. Probab. Lett., 81, 861–869.

Williams, R. J. and Martinez, N. D. (2000) Simple rules yield complex food webs. Nature, 404, 180–183.
Xia, Y., Bjørnstad, O. N. and Grenfell, B. T. (2004) Measles metapopulation dynamics: a gravity model for

epidemiological coupling and dynamics. Am. Natlst, 164, 267–281.
Xu, X., Kypraios, T. and O’Neill, P. D. (2016a) Bayesian non-parametric inference for stochastic epidemic models

using Gaussian processes. Biostatistics, 17, 619–633.
Xu, Y., Müller, P., Wahed, A. S. and Thall, P. F. (2016b) Bayesian nonparametric estimation for dynamic treatment

regimes with sequential transition times. J. Am. Statist. Ass., 111, 921–950.
Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M. and Laber, E. (2012a) Estimating optimal treatment regimes

from a classification perspective. Stat, 1, 103–114.
Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2012b) A robust method for estimating optimal treatment

regimes. Biometrics, 68, 1010–1018.
Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2013) Robust estimation of optimal dynamic treatment

regimes for sequential treatment decisions. Biometrika, 100, 681–694.
Zhao, Y.-Q., Zeng, D., Laber, E. B. and Kosorok, M. R. (2015) New statistical learning methods for estimating

optimal dynamic treatment regimes. J. Am. Statist. Ass., 110, 583–598.
Zhao, Y.-Q., Zeng, D., Laber, E. B., Song, R., Yuan, M. and Kosorok, M. R. (2014) Doubly robust learning for

estimating individualized treatment with censored data. Biometrika, 102, 151–168.
Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012) Estimating individualized treatment rules using

outcome weighted learning. J. Am. Statist. Ass., 107, 1106–1118.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplementary material’.



Discussion on the Paper by Laber, Meyer, Reich, Pacifici, Collazo and Drake 771

Discussion on the paper by Laber, Meyer, Reich, Pacifici, Collazo and Drake

Theodore Kypraios (University of Nottingham)
I congratulate the authors for a thought-provoking paper and I am delighted to open the discussion.

Understanding the spread of communicable infectious diseases is of great importance to prevent major
future outbreaks. Therefore, enormous attention has been devoted to the development of methods for
fitting models to data; see, for example, O’Neill (2010) for a review. However, to control the spread of an
outbreak while it is in progress we need to know where and when to apply any interventions.

It has already been demonstrated in the literature that, once a model has been fitted to the available data
to date, then realizations of the (fitted) model can be simulated and hence provide us with information
about how the epidemic might unfold in the future (see Jewell et al. (2009a), for example). However, in
my opinion, the key contribution of this paper is that it introduces a formal framework to inform such
decisions (in realtime) by formalizing a treatment allocation strategy. Although the methodology proposed
is closely related to the idea of dynamic treatment regimes in personalized medicine, there are several chal-
lenges, such as scarcity of data, scalability and dependence between locations, that prevent the latter’s direct
application to the problem of spatiotemporal treatment allocation. However, the authors have successfully
addressed these challenges and opened up new avenues for further research.

I shall focus my discussion around the modelling assumptions of the system dynamics. The authors
consider a spatial gravity model (Maher et al., 2012) which has a generalized linear model flavour and is
concerned with modelling the probability that the disease spreads from location k to location l at time t.
Given observed data up to time t the model can be fitted by using either maximum likelihood or within a
Bayesian framework. However, it is natural to model the spread of infectious diseases by using mechanistic
(deterministic or stochastic) models whose key aspect is the rate at which new infections occur and how
long a unit remain infectious for. Therefore a natural question of interest is how easy and/or practical
is it to adapt the proposed methodology if we were to consider a (heterogeneously mixing) stochastic
susceptible–infected–removed (SIR) model, such as that, for example, in Jewell et al. (2009b)?

In the white nose syndrome in bats application, the authors assume that, for each county, the infection
status and time since infected as well as other covariates (the number of caves, average winter temperature
etc.) are observed. But let us consider instead modelling a foot-and-mouth outbreak in UK farms by using a
heterogeneously mixing SIR model (Jewell et al., 2009b; Deardon et al., 2010). The framework developed
appears ideal to guide the design of control strategies during the course of an outbreak. However, in
contrast with the white nose syndrome application, at any particular time during the outbreak,

(a) there might be farms that are infected but we have not noticed yet and
(b) the times at which infected farms were infected are not observed.

In consequence the likelihood of the observed data (e.g. culling dates and the onset symptoms) is intractable
and, often, computationally intensive methods are employed to make inference for the model parameters
(Jewell et al., 2009b; Deardon et al., 2010). Would the algorithm proposed be feasible in practice within
such a modelling framework?

The method proposed, at each time point, draws a model from the posterior distribution over the
system dynamics models considered and the estimated optimal allocation strategy is the maximizer over a
prespecified class of strategies of the mean outcome under this model. I wonder whether the mean outcome
is the right quantity to look at, especially when stochastic transmission models are used. For example,
let us consider a homogeneously mixing stochastic SIR model in a closed population. This model has a
threshold behaviour which can be described in terms of the distribution of its final size which is the number
of individuals that ultimately become infected. Fig. 11 demonstrates that the mean final size may mislead
the estimation of the treatment. Perhaps, instead of the mean outcome, one possibility is to look at the
probability of the epidemic being minor or major.

The authors have done a great job in developing a framework that scales well with the number of
locations or units. The (class of) model(s) that they have considered is (are) amenable to direct maximum
likelihood estimation and I understand that this plays a key role in being able to explore a large class of
strategies. Nevertheless, I believe that further computational challenges still remain to be addressed when
the models of the disease dynamics are not that straightforward or quick to fit to the observed data. How
to deal with fitting such models of varying complexity, some of which may offer a better fit, is, in my
opinion, an important question. Perhaps, fitting a non-parametric model (Kypraios and O’Neill, 2018)
might enable us to bypass the need to do model selection in realtime.

Concluding my discussion I congratulate the authors once again for a very interesting paper that brings
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Fig. 11. Final size distribution of a Markov SIR epidemic model in which there are 250 individuals in a closed
population, one of which is initially infected and the rest are susceptible; the person-to-person infection rate is
2/250 and each individual remains infectious for some time which is distributed according to an exponential
distribution with mean 1 unit

ideas from personalized treatment medicine into developing effective control strategies in spatiotemporal
applications.

It therefore gives me great pleasure to propose the vote of thanks.

Daniel Farewell (Cardiff University)
I have very much enjoyed reading this paper. I am struck by the complexity of what has been achieved
and put in mind of the work of the great radio pioneer Guglielmo Marconi, who brought together many
existing components and his own innovations to make a functional system for wireless telegraphy. The
authors of this paper have assembled and refined a piece of machinery that, like Marconi’s, may save many
lives—human, and bat.

I shall attempt to highlight the impressive complexity by way of a little mathematical abstraction. In such
problems, I often find it advantageous to employ the notation of stochastic processes, which seem to me
ideally suited to both causal reasoning and dynamic control (Dawid and Didelez, 2010). Let (Ω, F , {Ft}, P)
be a filtered probability space on which we define adapted stochastic processes X = {Xt} recording our
treatment actions, and Y = {Yt} recording the outcomes of interest. Crucially, we can exert partial or total
control over the stochastic process X ; by contrast, it is only through X that we can exert any control over
Y. The evolution of Y also depends on unknown parameters θ governing the system. Since the authors
take a Bayesian approach we understand θ as a random variable defined on the same probability space,
and as a variable that covaries with X and Y.

The probability measure P can be decomposed into three main components. For a given intervention
strategy σ and at every time t, Pσ specifies the transition measures from the observed information Ft

to increased information Gt that includes knowledge of our next action Xt+1 but not its corresponding
outcome Yt+1. For a given systems dynamics model θ and at each time t, Pθ governs the transitions from
Gt to Ft+1. Finally, Q is the prior distribution on θ.

Let us consider the enormous complexity of the parameter σ, which specifies at baseline our treatment
strategy for all time: at every future time t, how shall we react to the information Ft in allocating Xt+1?
Because of its sequential conditioning on available information, the set of possible values of σ is vast. The
authors aim to optimize over some subset Σ of this space and compute

arg max
σ∈Σ

Eσ{f.Y/} .5/

for some function f of Y. We index the expectation operator by σ to emphasize its fundamental dependence
on the choice of intervention strategy. The daunting complexity of specifying a strategy σ is nonetheless
necessary to compute this mean utility; we must fully characterize the distribution under which we are
computing expectations. Given this, would the authors agree that an optimal strategy σ is not so much
estimated as computed? Thinking of it as arising sequentially, a realization of X is of course data dependent,
but the expectation in expression (5) is not; it is simply a property of Pσ, Pθ and Q.
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An ingenious aspect about making expression (5) our objective is the marginalization over θ. The authors
write about balancing

‘exploration of the space of potential allocations with choosing allocations that are estimated to produce
high expected utility’,

yet this balance is far from evident in expression (5), which focuses entirely on the marginal mean utility. It
is a truly remarkable feature of the authors’ approach that an application-specific objective combined with
a realistic assessment of our uncertainty about θ designs and carries out both experiment and treatment
automatically.

A degenerate prior on θwould mean that no stochastic elements remained in the optimal Pσ, comprising
at each t a deterministic map from the information Ft to the known optimal Xt . Thompson sampling
exploits this degeneracy and, at time t, samples from current posterior (θ |Ft). It then computes

σ̂.θ/=arg max
σ∈Σ

Eσ{f.Y/ |Ft , θ}, .6/

although only its most immediate recommendation is needed in practice. As a large part of the paper
demonstrates, computing σ̂.θ/ is far from straightforward! Fully specified Pσ—the implications of which
extend far into the future—are again needed to compute and rank such expectations. Can the authors clarify
how this is done? More generally, I would be grateful if they could indicate how we might demonstrate
that sampling and optimizing as in equation (6) in fact optimize expression (5), which must depend on the
choice of f.

The subset Σ over which we search for optimality can incorporate dynamic constraints: for an Ft-
measurable constraint such as the number of treatments currently allowed, we insist that all strategies
σ∈Σ assign no probability to allocations not satisfying this constraint. Implicit in this, though, is some
form of model for how such constraints or, more positively, new technologies may be expected to develop
in future. Given this, can the authors comment on their suggestion that the class of allocation strategies
can adapt to as-yet-unknown treatments becoming available? Does this not require some model for the
likelihood of such treatments appearing, and for their hypothetical effectiveness?

G. K Chesterton wrote that ‘thanks are the highest form of thought; and that gratitude is happiness
doubled by wonder’ (Chesterton, 1917). The authors of this paper have given us much to wonder at, and
of course a little to wonder about. I am indeed most grateful to them for their wonderful paper, and it is
with great happiness that I second the vote of thanks.

The vote of thanks was passed by acclamation.

Bibhas Chakraborty (National University of Singapore and Duke University, Durham)
The paper proposes a novel spatiotemporal treatment allocation strategy for controlling an emerging
infectious disease by using on-line reinforcement learning. It extends the existing framework of dynamic
treatment regimes (DTRs) by incorporating a spatial element into decision making. However, there are
some distinctions between the two. First, learning here needs to happen on line, as opposed to mostly
off-line, batch mode learning in the case of DTRs (e.g. using ‘sequential multiple-assignment randomized
trial’ clinical trial data). Second, whereas there is scarcity of data for learning at the onset of an epidemic,
the number of possible allocations is exponential in the number of locations; this is the inherent ‘curse of
dimensionality’ in the problem. Third, unlike the case of DTRs, independent replications of the data are not
available for learning; this resembles the setting of N-of-1 trials. Fourth, there is interference between the
spatial locations, violating Rubin’s stable unit treatment value assumption for causal inference. Finally,
the time horizon can be very long with evolving logistical constraints, resulting in evolving classes of
strategies.

The authors have taken a Bayesian approach here, in contrast with the predominantly frequentist DTR
literature. The key methodology involves policy search via Thompson sampling. The other methodological
innovation is a clever computation of arg maxdCT .d;β; θ/ without computing CT .d;β; θ/ for each d within
a class, via stochastic approximation; this is critically important for managing the computational burden.

I want to highlight two points that may be missed by some readers. First, even though the approach
proposed requires a parametric working model, the focus is solely on finding the optimal strategy, and
not on understanding the underlying disease dynamics per se. This is precisely where the current approach
differs from mathematical modelling. Second, as the authors pointed out, one possible future work is
to develop a semiparametric approach based on estimating equations without relying on a parametric
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working model. In the case of DTRs (e.g. Q-learning with shared decision rule across time points), we
have successfully done something similar (Chakraborty et al., 2016). So I think this research direction is
promising.

I would like to pose two questions for the authors’ feedback.

(a) The underlying system has been assumed to be time homogeneous. However, in a long horizon
problem, the underlying system itself may evolve (e.g. serotypes of the disease-causing virus or
bacteria). How would you tackle such a problem? Is it simply a matter of computational scalability,
or is it more fundamental like the convergence of the algorithm itself ?

(b) The methodology proposed works only for completely observed states. The authors mentioned that
sampling weights or imputation strategies in conjunction with policy search can handle allocation
problems with partially observed states. How different are these from the partially observable Markov
decision process approaches (Kaelbling et al., 1998) in artificial intelligence?

I conclude by congratulating the authors for a very nice paper.

Robin Henderson (University of Newcastle, Newcastle-upon-Tyne)
I congratulate the authors on their fine contribution, which is highly original, impressively broad and
thoughtfully practical.

One of the several significant features is the focus on on-line learning concurrent with treatment appli-
cation: for an emerging epidemic there is just one shot at both finding out what is going on and doing
something about it. Do the authors have a view on whether such an updating strategy should also be
explored for more standard applications of optimal treatment allocation? I am thinking of personalized
medicine, where we can assume independent and identically distributed responses and, so far as I know, the
distinction between decision rule determination from training data and subsequent application of policy
has always been sharp. Blurring the boundary may be advantageous in some circumstances, e.g. where
there are patient-specific parameters, i.e. random effects. A Bayesian approach that starts with population
assumptions and then refines posteriors as information for an individual accrues may be beneficial, at
least when there are a reasonable number of decision times. Another possibility is to recognize that point
estimates obtained from modelling training data are subject to error and to allow continued learning via a
stochastic allocation strategy in subsequent practice. Of course this might raise exploration–exploitation
ethical issues related to what policy seems to be best right now for a particular patient not necessarliy being
better longer term at the group level.

I want to mention also that there are conceptual similarities between the authors’ aim of balancing
model improvement and optimal treatment choice (item (a) near the end of Section 1) and some of the
ideas behind the adaptive model-predictive control procedures that have been developed in the engineering
literature, at least for independent data. Control and dynamic treatment researchers often consider very
similar types of problem, though from quite different perspectives. More communication between these
communities may be beneficial in both directions.

Again, I thank and congratulate the authors for their stimulating paper.

Peter F. Thall (University of Texas MD Anderson Cancer Center, Houston)
Laber and his colleagues propose a dynamic strategy for allocating treatments to locations during an
epidemic, to limit spread of the disease in space over time, by optimizing a cumulative outcome, such as
the number of infected locations or total cost. It is edifying to see a prominent frequentist adopting a
Bayesian approach to this challenging problem. Sequentially optimizing functions of accumulated data
enables existing dynamic treatment regime machinery to be applied to locations, rather than to individ-
uals, such as patients in a medical setting, except that spatial proximity may introduce interdependence
between locations (‘interference’). The methodology has several appealing features, including ‘Thompson
sampling’ to avoid becoming stuck at suboptimal strategies, and simulation to validate the methodology.
For modelling, in my opinion a Bayesian non-parametric approach should provide the most flexible and
robust toolkit.

My main comments pertain to application of the methodology to human epidemics, where the number of
deaths and financial cost both should be parts of any pay-off function. As with application of any complex
statistical method, numerous general structures must be made specific. The sets of locations and treatment
strategies, and data structure to be collected must be determined. Practicalities include the process of
data recording, storage, quality control, acquisition and computing the updated optimal allocation rule,
all in realtime. Ideally, this could be done via an Internet-based graphical user interface. Since this, and
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all other computer software, must be tailored to the application, software development undoubtedly will
be a non-trivial, time-consuming process. The methodology certainly will be required to pass political
and administrative hurdles involving individuals from multiple regions, states or countries, and these
negotiations are likely to involve intensive discussions of pay-offs and resource use. Since multiple decision
makers with different utilities must reach a consensus, this in turn will affect key model components.
Some combination of elicited expert opinion and historical data may be used to construct priors, and a
prior-to-posterior sensitivity analysis will be useful to obtain consensus. This entire process must either

(a) precede the epidemic, which may be unrealistic,
(b) be carried out at some time during a multiyear epidemic, as the authors note in Section 4.

I encourage the authors to think about these issues in the context of applying their methodology to
mitigate recurrent annual global influenza epidemics, for which copious data are available. Otherwise,
developing this useful methodology seems a little batty.

Marco A. R. Ferreira (Virginia Tech, Blacksburg)
I congratulate Dr Laber and his colleagues for their valuable contribution to the area of optimal spatiotem-
poral treatment allocation for controlling infectious diseases. I have two main concerns that are related
to the objective of controlling an infectious disease epidemic and I have a suggestion for possible future
research. From the point of view of conservation of the species being affected, I think the main objective
should be to ensure the long-term existence of the species. Consequently, my first concern is that I think
the long-term existence should have a higher priority than the consistent estimation of an optimal control
strategy. Thus, I think we would want to learn as fast as possible about how bad the disease may be, and
then we would take action as fast as possible to ensure the long-term survival of the species. With that in
mind, observational data (as opposed to stochastic allocation strategies) may provide biased estimates of
parameters of disease dynamics but may be sufficiently good for making timely decisions on how to control
the disease. An alternative way to look at this first concern would be that the amount of time needed to
make a decision (including time for data collection) should be part of the total utility function. My second
concern is related to the discounted total utility that depends on a discount parameter γ∈ .0, 1/; this utility
function discounts the future, and as such would weigh more heavily the near future than the long-term
existence of the species. The authors mention that their methodology can be extended to handle a cumu-
lative utility function such as limT→∞ ΣT

t=1u.YT / which I think would be more in line with ensuring the
long-term existence of the species. It would be helpful if the authors could elaborate on how to accomplish
such an extension. Finally, the problem of finding an optimal allocation strategy belongs to the class of
optimal Bayesian design problems and, as such, requires a maximization of a multi-dimensional integral.
In light of this, a possible avenue for future research may be the extension of currently available stochastic
algorithms that perform joint maximization and integration such as the inhomogeneous Markov chain al-
gorithm (Müller et al., 2004) and the inhomogeneous evolutionary Markov chain Monte Carlo algorithm
(Ferreira and Sanyal, 2014; Ferreira, 2015) to the context of optimal allocation strategies for controlling
infectious diseases.

Chengchun Shi, Rui Song and Wenbin Lu (North Carolina State University, Raleigh)
We congratulate the authors for their very thoughtful paper on on-line decision making for infectious
diseases. In addition to Thompson sampling, many other algorithms such as the ε-greedy algorithm (Sutton
and Barto, 1998) and the upper confidence bound type algorithm (Agrawal, 1995) can be applied to on-line
decision making as well. Taking the ε-greedy algorithm as an example, at the jth treatment stage, given the
current parameter estimators β̃

j
and θ̃

j
and some 0< εj <1, we may set πj =arg maxd∈DCT .d; β̃

j
, θ̃

j
/ with

probability 1− εj , and randomly sample πj from D with probability εj . It might be interesting to compare
Thompson sampling with these algorithms.

In step 6 of algorithm 1, the authors use policy search to compute π̂j+1 by maximizing the estimated value
function among a class of treatment allocation strategies indexed by a finite dimensional vector. Policy
search (Zhang et al., 2012, 2013) is a recent popular method for estimating the optimal treatment rule. We
wonder whether classical reinforcement learning methods such as Q-learning (Watkins and Dayan, 1992)
could be used to estimate the optimal allocation strategy. From a practical perspective, it will be helpful
if the authors could compare policy search with Q-learning under the set-up of controlling emerging
infectious diseases.

Under assumptions 1–3, the authors show in equation (1) that the average discounted utility function
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under a given policy π can be expressed by using the data-generating model. We are curious whether the
authors can present more details on this equation. Why does it hold under the given assumptions?

In algorithm 2, the authors use a stochastic approximation algorithm to approximate arg maxdCT .d;β,θ/.
The algorithm relies on a sequence of non-negative step sizes {αj}j�1 and the authors comment that con-
vergence guarantees require Σjαj =∞. However, in the implementation, the authors use αj =τ=.ρ+j/1:25.
We note that Σjτ=.ρ+ j/1:25 <∞ for any τ , ρ> 0. As a result, the algorithm may not converge under such
choices of {αj}j . Is it possible to use αj = τ=.ρ+ j/ to improve the convergence of the algorithm?

M. Elizabeth Halloran (Fred Hutchinson Cancer Research Center and University of
Washington, Seattle) and Michael G. Hudgens (University of North Carolina at Chapel Hill)
Laber and his colleagues are to be congratulated for developing this fine framework for realtime data-driven
decisions for managing emerging infectious diseases. Motivated by the white nose syndrome epidemic in
bats, they develop methods for determining optimal on-line treatment allocation in space and time. The
methods allow for interference, i.e. treatment of a location can affect the potential outcomes in another
location (Cox, 1958).

Historically, interference can be placed in the context of what Ross (1916) called dependent happenings.
In his ‘theory of happenings’, Ross differentiated independent from dependent happenings. Dependent
happenings are those in which the frequency depends on the number already affected. To this class belong

‘infectious diseases, membership of societies and sects with propagandas, trade-unions, political parties,
etc., due to propagation from within, that is, individual to individual’

(Ross (1916), page 211).
In this paper the propagation of infection is transmission from one spatial location to another. In-

terference and spillover effects are governed by a gravity model describing the probability of spread of
white nose syndrome between cave-bearing counties. A challenge is that the complexity of determining
the optimal treatment allocation grows quite large with the number of locations because the number of
potential treatment allocations grows exponentially. The situation is similar when studying effects of vac-
cination of individuals in populations in the presence of interference. Laber and his colleagues use a clever
combination of theory and computational methods to reduce the complexity by constructing a class of
flexible strategies that are highly scalable. The cumulative expected utility at a time t, e.g. the proportion of
locations infected at time t, is compared under different strategies, where their proposed optimal strategy
slows spread better than two other rather rote strategies they call proximal and myopic.

Intervention effects are defined within the gravity model describing the local dynamics. Treatment can
reduce the transmission probability both from a treated infected location (reduced infectiousness) and
to a treated uninfected location (reduced susceptibility). However, treatment does not cure an infected
location but only slows a process wherein every location becomes infected eventually, which is a depressing
prospect for the bats. A simple extension would include that treatment could cure an infected site, allowing
for elimination. We agree with the authors that one important avenue of future research will be developing
methods that are robust to misspecification of the system dynamics model, e.g. perhaps by using Bayesian
model averaging over multiple system dynamics models.

Daniel J. Lizotte (University of Western Ontario, London)
This work is an excellent example of applied statistics as the ‘art of the possible’. Starting from well-
established formalisms of sequential decision making, the authors develop practical methodology, and
along the way they contribute to our understanding of how to bring these formalisms to practical applica-
tion. Their work is also an important reminder, perhaps more salient to the computer science community
than the statistics community, that not all important problems are ‘big data’ problems, and not all ‘small
data’ problems have trivial solutions. I would like to discuss an additional application area that may benefit
from this work.

There is significant interest in health research on the topic of multimorbidity, defined as the presence
of multiple chronic diseases in the same individual. Such diseases often share a complex web of causes,
and their associated treatments often interact with each other as they shape an individual’s future health.
However, thinking about a ‘joint treatment plan’ for several diseases simultaneously in many areas of
medicine is still cutting-edge research and often has little data-driven evidence to support its practice
directly. The formalism developed by the authors—particularly the assumption of independent action
control but dependent effects across units in the future—is well suited to this problem. At the same time,
the multimorbidity treatment problem is qualitatively a little different. We might think of different diseases
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as ‘regions’, each with a repertoire of actions that may be complex in and of itself. However, the number of
diseases or regions would typically be small (fewer than 10), and the propagation of treatment effects across
and among them could be very complex. This would require additional methodology to capture effectively.
There are important ‘art of the possible’ considerations in this domain that must be addressed as well. The
output of any system for the multimorbidity treatment problem can only be decision support rather than
decision making, which in part means that uncertainty over different courses of action must be exposed in a
way that end-users understand. This might be accomplished by using the authors’ framework and somehow
conveying the posterior distribution over optimal allocations. Furthermore, any recommended treatment
may or may not be followed—an issue alluded to by the authors in their discussion of a ‘compliance
model’. I am interested to know the authors’ opinions on their work’s relevance to other such sequential
decision-making problems with complex action spaces.

The following contributions were received in writing after the meeting.

Anna L. Choi (Chinese University of Hong Kong in Shenzhen and Shenzhen Research Institute of Big
Data) and Tze Leung Lai (Stanford University)
Section 2 of this interesting paper gives a comprehensive review of white nose syndrome in north American
bats. Section 3 formulates the authors’ proposal to control the spread of white nose syndrome by using
optimal treatment allocation. For each time point and each location, the decision is to ‘apply a treatment
or to do nothing’. It considers only one treatment with unknown treatment effects. However, there are
already many treatments that are yet to be tested (Cornelison et al., 2014; Hoyt et al., 2015), and the
(economic) cost of the treatment(s) should also be considered. In this connection, a relatively economical
and ease-to-use new treatment has just emerged at the beginning of 2018. Science Daily, January 2nd,
2018, announced that

‘scientists with the USDA Forest Service and the University of New Hampshire have found what may
be an Achilles’ heel in the fungus that causes white-nose syndrome: UV-light’,

citing a study by Palmer et al. (2018). This adds new challenges to the optimal treatment allocation problem
as new treatments can enter the treatment pool during the course of the study.

We next comment on the more general problem of optimal allocation of a (single) treatment ‘over a
countably infinite set of treatment periods and a finite number of locations’. The solution is described
as ‘estimating an optimal allocation strategy’ in Section 4, following the framework of optimal dynamic
regimes in the statistics literature. In control engineering, there is a counterpart called stochastic adaptive
control; in computer science, the counterpart is reinforcement learning. The fascinating sequential treatment
allocation problem over a dynamic network system, with covariate and outcome information from relevant
nodes of the network, considered in this paper also arises in many other interdisciplinary applications on
which we are writing a monograph (Choi et al., 2019). In this connection, we want to point out that the
authors’ remarks near the end of Section 7 fall under the framework of contextual bandits, for which it
is shown that Thompson sampling is not optimal because it is myopic whereas a much simpler ε-greedy
strategy can be shown to be asymptotically optimal.

Dean Eckles (Massachusetts Institute of Technology, Cambridge) and Maurits Kaptein (Tilburg
University)
Laber and his colleagues impressively model intervening to prevent epidemic spread as a multiarmed
bandit problem, using Thompson sampling to add exploration to the choice of sites to treat. We wish to
highlight how

(a) the method could be made more robust by use of a bootstrap and
(b) how less exploration will often be preferable with such a short horizon.

The authors approximate Thompson sampling by using a plug-in estimator of the sampling distribution
of the maximum likelihood estimates (Section 5.1). One could further depart from trying to approximate the
posterior of the posited parametric model by using a non-parametric bootstrap distribution (see Newton
and Raftery (1994) and Efron (2012)). Bootstrap Thompson sampling (Eckles and Kaptein, 2014) samples
from replicates formed by an on-line bootstrap, which can be easily parallelized or distributed, can account
for dependent observations and is more robust to common forms of model misspecification. This method
and related greedier variations have been used in multiple application areas and compared favourably with
other methods (e.g. Agarwal et al. (2014), Osband et al. (2016), Lu and Van Roy (2017) and Bietti et al.
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(2018)). In the context of the present application, this could enable the authors to avoid Markov chain
Monte Carlo sampling altogether while being robust to, for example, heteroscedastic errors or within-
region dependence.

We have already mentioned the popularity of greedier variations of bootstrap Thompson sampling,
More generally, recent work has demonstrated that methods that explore less (i.e. are greedier) perform
extremely well in contextual multiarmed bandit problems (Chapelle and Li, 2011; May et al., 2012; Bastani
et al., 2018; Bietti et al., 2018) with common characteristics. First, in many applications the horizon T
is small; in the present application, actions are taken for eight periods only. With such a small horizon,
it is not obvious that substantial exploration is preferable—at least for minimizing regret. In contrast,
some other recent results in favour of exploration-free methods based on the distribution of context (e.g.
Bastani et al. (2018)) do not obviously apply to the present setting with dependence due to contagion and
with combinatorial actions. Nonetheless, we expect that a policy that is more greedy than the presented
implementation of Thompson sampling would lead to an even smaller proportion of infections.

The best reason for introducing exploration may not be minimizing regret up to the horizon. Rather,
introducing relatively low cost exploration might be motivated by the desire to make reuse of collected
data possible for other purposes. In standard contextual multiarmed bandit and dynamic treatment regime
settings, reuse of such data for evaluation of other polices is routine (Murphy et al., 2001; Dudı́k et al.,
2014; Agarwal et al., 2016). It would be interesting to see how readily data from a setting with dependence
induced by contagion could be reused.

Seongho Kim (Wayne State University, Detroit) and Weng Kee Wong (University of California at
Los Angeles)
We congratulate the authors on their detailed and interesting work in this important area of research.

Assumptions 1 and 2 would seem to imply that At⊥Wt |Ht for all t ∈T and so At is independent of Yt ,
St+1 given Ht for all t ∈T . Further, by the Markov homogeneity assumption,

(a) the observed data St and allocation At at time t are sufficient to predict the outcome at time t, Yt ,
and

(b) the data at time t, St , depend only on the observed data, St−1, and the allocation At−1 at time t −1.

Fig. 12 depicts this time-dependent homogeneous Markov system but suggests that the conditional inde-
pendence assumption between At and .Yt , St+1/ given Ht may be questionable because of the edges with
asterisks and, if so, will appear to contradict assumptions 1 and 2. To avoid this discordance, it seems that
either assumption 1 may be eliminated or needs to be modified to YÅt⊥SÅt+1|.At , Ht / for all t ∈T .

At March 14th, 2018, white nose syndrome (WNS) had spread to Washington, but not to
Florida (https://www.whitenosesyndrome.org/sites/default/files/wnsspreadmap 3
14 2018.jpg). Florida, near to the contaminated regions, has not reported WNS yet, whereas Washing-
ton has been infected without neighbouring infected regions. Can the spatial gravity model incorporate
such information in equation (2) and, if so, how does the model proposed update the parameters by using
a Bayesian framework with the latest WNS data? These are likely to be challenging tasks. It is also possible
that symptoms from bats in Florida are temporary because of the relatively high average temperatures

Fig. 12. Graphical representation of the dependence between St, At, Yt and Ht where t�1, Ht D .S1, A1,
Y1,. . . , St�1, At�1, Yt�1, St/ and H1 DS1
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(Verant et al., 2012) and so WNS in bats cannot be confirmed without direct microscopy and culture anal-
yses. If so, Florida would have neither uninfected nor infected areas. Having models with three statuses for
each outcome Y, uninfected, symptomatic infected and asymptomatic infected status, may be helpful. An-
other possibility is to extend the model to have a parallel pathogen model with New York and Washington
as parallel pathogens, and/or a model with multiple transmission pathways (Tien and Earn, 2010).

There are a few covariates in equation (2) and having more covariates might improve the model predic-
tive ability. With the additional covariates, the number of parameters will increase, which may result in
singularity problems. We would like to know whether the authors have tried using lasso-type penalization
in equation (2) and their thoughts on global optimization and identifiability, which are two critical issues
working with high dimensional non-linear models.

Johan Koskinen (University of Manchester)
This very thorough and welcome contribution demonstrates the use of simulation in modern inference
and engages with several academic traditions, one of which, social network analysis, I would like to add
some reflections on. Spread on networks has a long history in social network analysis (Coleman et al.,
1957) and, particularly in health sciences, much recent attention has been paid to interventions (Valente,
2012; Morris, 2004). Estimating these processes has prompted the development of statistical models (such
as Greenan (2015)) and simulation routines (e.g. Jenness et al. (2016)). Rolls et al. (2012) investigated the
behaviour of hepatitis C transmission on an empirical network (Aitken et al., 2008) and demonstrated
effects of different types of network topologies on disease outcomes. Information on these disease relevant
networks is by necessity patchy but can be learned through sampling techniques such as in Rolls et al.
(2013a) or Handcock and Gile (2010). In fact, key features can to some extent even be estimated from
respondent interviews (Krivitsky and Morris, 2017). Many of these methods rely on exponential random-
graph models (Lusher et al., 2013), a class of log-linear models that model interactions between links
that correspond to features such as the prevalence of hubs and the tendency towards clustering of ties.
Fig. 13 illustrates potential consequences of such features in a ‘realistic’ network (Fig. 13(b)) relative to
an ‘unrealistic’ network (Fig. 13(a)) with the same number of links. The local clustering of network (b)
means that links, rather than carrying the disease further from the seed node (black), out into the network,
are used up linking to nodes that are already connected. Real life networks—both human and animal
(even bats; see for example Willis and Brigham (2004)—typically demonstrate high clustering (not merely
artefacts of geography; Daraganova et al. (2012)) and relatively short path lengths. The example network
N3 is meant to have these features (Robins et al., 2005) but to the naked eye appears to have rather long
pathways. In fact the results, pairwise for S1 and N1, S2 and N2, and S3 and N3, seem to reflect the fact
that the network topologies are more stringent forms of linkage than their spatial equivalents, resulting in
similar behaviour but with lower uncertainty. How would the spread and interventions be affected by the
more distinct network features? Obviously, these are difficult and complex questions (Rolls et al., 2013b)
but the proposed allocation scheme is also very flexible.

Michael T. Lawson, Hunyong Cho, Arkopal Choudhury, Yifan Cui, Xiaotong Jiang, Teeranan
Pokaprakarn and Michael R. Kosorok (University of North Carolina at Chapel Hill)
We present brief explorations of three topics in the paper that we believe may lead to interesting future
research.

The authors’ use of the rank-based priority function R heightens the importance of the constraint ct

in estimating π. Although this paper assumes ct is given, in practice ct may be more flexible, and different

(a)

(b)

Fig. 13. Two schematic network structures with the same number of nodes and ties but different numbers
of closed triads
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specifications of ct may greatly alter the course of disease. We think this resource allocation problem—
determining how much of a pool of resources to spend at each time point—provides an important and
challenging direction for future research in the context of infectious diseases. One possible approach is to
include the number of caves to treat at each time point in the action space and to incorporate the cost of
the actions in the utility function.

Approximate Bayesian computation (ABC) based on sequential Monte Carlo (SMC) sampling (Rubin,
1984; Toni et al., 2009) may prove a faster alternative for estimating the posterior distribution of (β, θ).
ABC SMC sampling draws large groups of candidate predictors simultaneously to avoid local minima
and to speed up computation. ABC SMC sampling offers several attractive features of Bayesian analysis,
including the ability to quantify the uncertainty in predictions (McKinley et al., 2018) and to account for
missing data with data augmentation methods that add potentially unobserved states to the parameter
space (O’Neill and Roberts, 1999), or faster alternatives to data augmentation such as modified ‘poor
man’s data augmentation’ algorithms (Sweeting and Kharroubi, 2005). Sufficient statistics can be of key
importance in ABC methods, and finding the correct such statistic in spatial epidemic models may provide
a fruitful avenue for future research.

In white nose syndrome, measurements are costly but prone to error, and individual observations can
have a substantial downstream effect. As such, although measurement accuracy is of paramount concern, a
‘measure until sure’ approach is likely to be infeasible. A more realistic approach is targeted remeasurement:
only remeasure in the locations where it is most crucial to do so. We propose a measurement influence
statistic, whose rationale is akin to that of predictive inference methods (Geisser, 2017). Adopting the
notation from the paper we calculate the influence for location l at time t as follows.

(a) Perturb Yt
l to the opposite disease status.

(b) Calculate R.l/.s
t , aa;η/, the vector of priority scores when l is perturbed.

(c) Calculate Δt
l = δ{R.st , at/, R.l/.s

t , at/}, where δ is an appropriate distance metric.

Observations with the largest Δt
l disrupt the priority scores the most when they are mismeasured, assum-

ing that all other locations are measured correctly, meaning that they are important targets to remeasure.

Jorge Mateu (University Jaume I, Castellón)
The authors are to be congratulated on a valuable contribution and thought-provoking paper on optimal
allocation strategies for control of emerging infectious deseases. I shall focus my discussion on several
aspects of dynamical systems on networks, as these are one of the main supports for the evolution of epi-
demics on individuals. The authors propose a statistical framework to study sequential treatment allocation
identifying several major computational and theoretical challenges.

Recently a new algorithm for sampling posteriors of unnormalized probability densities, called ‘ABC
shadow’, was proposed in Stoica et al. (2017). In the optimal treatment allocation within the context
of dynamical systems, we have a probability density p.y|q/ which is strictly positive and continuously
differentiable with respect to q. Stoica et al. (2017) introduced a global optimization procedure based on the
ABC shadow simulation dynamics. They proposed a simulated annealing method to maximize probability
densities with unknown normalizing constants that are not available in analytic closed forms. Thus, special
strategies are required to sample from the posterior distribution of such probabilities. A combination of
simulated annealing with the ABC shadow dynamics is easily adapted to dynamical systems on networks,
reducing both computational complexity and time.

The authors introduce an allocation strategy combining simulation optimization with Thompson sam-
pling. Their method could be improved by using the two-step method in Khavarzadeh et al. (2018) that
performs spatiotemporal balanced sampling in a design-based approach making use of a three-dimensional
Voronoi tessellation. This method fits particularly well under the presence of spatiotemporal trends and/or
anisotropic effects in the variable of interest: cases often found in dynamical systems.

One prominent topic in the analysis of complex structures is the relationships in network structures,
where the object of interest lies in the investigation of structures between different entities of the
network. Eckardt and Mateu (2018) consider an alternative formalism that allows taking undirected,
directed or partially directed graph structures as well as temporal dynamics into consideration. This
alternative approach highlights the possibility of achieving several different graph-based intensity formu-
lations and related statistics for network structures. Eckardt and Mateu (2018) assume that a point pattern
appears randomly between pairs of georeferenced nodes whose location within a planar region is treated
as fixed. Graphical models appear as a natural choice to explore conditional interrelationships between
spatial observations, and we claim they can play a big role in this context of dynamical systems on networks.
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James McGree and Kerrie Mengersen (Queensland University of Technology, Brisbane)
Effective control measures are important for minimizing the effect that infectious diseases can have on
human and animal welfare, and we congratulate the authors on a very interesting paper. We also stress,
as the authors quite rightly point out, the importance of understanding the dynamics of epidemics for
developing effective control measures. Unfortunately, through adopting utility functions based only on,
for example, the number of infected individuals or locations, little provision is made for learning about
the process which is being controlled, limiting the information that can be obtained about the epidemic.
This can significantly hamper the development of optimal control strategies, and the future development
of detection and prevention measures, all of which are important components of managing infectious
diseases.

Decision theoretic approaches in Bayesian design provide the methodology to control and learn about an
epidemic simultaneously; see Ryan et al. (2016) for a recent review. In the context of controlling infectious
diseases, this could include learning about

(a) how the disease spreads spatially and temporally,
(b) what subpopulations exist within the population and how individuals transition between them, and
(c) important parameters such as transmission probabilities and how these may vary depending on

individual or location information.

Learning about (b), for example, could provide a mechanistic understanding of the disease which can
be exploited in the development of more targeted control strategies. This should significantly reduce the
uncertainty within the set of competing models, leading to more effective treatment allocations. Such
understanding would enable health authorities to be more proactive rather than reactive in controlling
infectious diseases.

Considering such a decision theoretic approach would require extending the author’s utility function to
encapsulate information-based utilities appropriately such as mutual information for parameter estimation
and model discrimination (Shannon, 1948; Box and Hill, 1967; Borth, 1975). This will result in a utility
function which is no longer a summary of prior predictive data but rather a functional of the posterior
distribution resulting from prior predictive data. This imposes considerable computational challenges
which could be addressed in the future through the development of fast and/or approximate inference
methods, and may also require the further development of optimization algorithms that can handle noisy
and expensive utility functions. Such challenges reside at the intersection of optimal control and Bayesian
design, and would be an interesting area to pursue into the future with the developments proposed by the
authors of this paper.

Erica E. M. Moodie and David A. Stephens (McGill University, Montreal)
We read with great interest Laber and his colleagues’ on-line dynamic treatment allocation strategy. The
majority of the statistical literature on dynamic decision making has focused on binary treatment decisions
with the observed units independent and many relative to the number of parameters to be estimated.
Although some methods are amenable to continuous doses (Murphy, 2005; Robins, 2004; Rich et al.,
2016; Chen et al., 2016) or multiple treatment options (Tao and Wang, 2016; Tao et al., 2018; Zhou et al.,
2018), the information relative to the complexity of the problem is still typically large.

The approach that Laber and his colleagues have taken allows for new treatments to be incorporated in
the on-line procedure as they become available and allows for constraints to be imposed on the treatment
process. This approach has enormous potential implications for the control of illness in human populations.
Consider, for example, modelling treatment to contain the spread of nosocomial infections where network
edges could be defined by, for example, patients seen by the same physician (room-to-room spread), or
by ward centroid. To tackle this problem, further statistical refinements are needed: space may be three
dimensional if floor-to-floor transmission is possible, or it may have discontinuities if it is deemed a priori
to be unlikely. Further, there will be a need to decide not only which patients to treat, but with which drugs
(e.g. narrow or wide spectrum antibiotics). Drawing on related literature such as the dose finding trials of
Lee et al. (2015) may prove a good starting point.

We congratulate Laber and colleagues on their innovation addition to the dynamic decision-making
methodology, and we encourage researchers in the field to consider the additional statistical challenges
that we have noted. We are approaching an era where algorithms are routinely used to decide patients’
treatment, though most are static in time (e.g. the software platforms used to determine warfarin dosing,
or a recently developed suicide risk predictor (Simon et al., 2018)). As on-line algorithms move into clinical
practice, many practical details must first be in place: consistent electronic recording of information at
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clinical encounters and meticulous and explicit documentation of which treatment rule is being used at a
given point in time so that—in the event of litigation or for research—the particular instance of the learned,
on-line algorithm being used is known. As statisticians, we cannot hope to solve all of these problems,
but continued dialogue with end-users is more important than ever as the statistical study of precision
medicine is moving ever more rapidly into real world implementation.

The authors replied later, in writing, as follows.

We are immensely grateful to the Royal Statistical Society for the opportunity to present and discuss this
work. We are also indebted to all those who provided feedback on our work including the reviewers and the
discussants. This feedback has deepened our understanding and raised some interesting open problems.
In this rejoinder, we discuss some of these problems which we have organized by topic rather than by
individual discussant.

The exploration–exploitation trade-off
Several discussants suggested ε-greedy or upper confidence bound (UCB) sampling as alternative ap-
proaches to managing the so-called exploration–exploitation trade-off (Chakraborty; Choi and Lai; Shi
and his colleagues). These approaches have been used to great success in a wide variety of application do-
mains (see Kaelbling et al. (1996), Si et al. (2004), Wiering and van Otterlo (2012) and references therein);
however, in the context of controlling an emerging infectious disease, Thompson sampling (TS) is appealing
for the following reasons.

(a) TS avoids pure exploration steps: at the time of outbreak, when the disease is confined to a small
subset of a large spatial domain, effective allocations are often tightly clustered around the infected
locations. However, the set of such allocations can be a vanishingly small fraction of the O.2L/
set of all possible allocations. In these settings, drawing an allocation uniformly at random can
lead to poor disease control with high probability while yielding little information to improve the
underlying model Fig. 14 shows the schematic diagram for an infectious disease spreading across
a 30 × 30 grid of locations. At onset, there are two infected locations denoted by the filled cells in
the lower left-hand side of the grid. Under a diffusive disease model where it is very unlikely for
the disease to spread more than, say, one or two squares during the next time step, and assuming
that treatment is effective only while it is being applied, one should limit allocations to those near
the infection, e.g. inside the 5 × 5 square outlined, as treatments outside this region are unlikely to
slow the spread of the disease or to generate information about the underlying treatment effect. If
resources allow for the treatment of 10 locations, then an allocation sampled uniformly at random
(as in an exploration step of an ε-greedy algorithm) will treat five or more locations within this
square with probability approximately 2:5×10−6.

In addition, the prospect of sampling treatment locations independently from available informa-

Fig. 14. Schematic diagram for an infectious disease spreading across a 30 � 30 grid: at onset, the disease
has infected the two filled cells in the lower left-hand corner; under the assumption that at most 10 locations
can be treated at each time step, the probability that a uniformly sampled allocation will have five or more
treatments inside the 5 � 5 square outlined is approximately 2:5�10�6
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tion about the underlying disease dynamics may not be acceptable to (nor considered to be ethical
by) policy makers. However, in the context of an on-going human epidemic, even unequal random-
izations like those used in TS may also be unpalatable (Thall). Below we discuss tuning the degree
of randomization in TS.

(b) TS leverages scientific theory: data are scarce at the time of outbreak and the states and allocations
are high dimensional. Thus, it is critical to impose sufficient structure on the disease dynamics
model and the class of allocation strategies to make the problem tractable. As noted above, ε-greedy
algorithms ignore both domain knowledge and any accumulated data during exploration steps by
sampling allocations uniformly at random. UCB sampling makes use of the underlying postulated
model in computing the confidence bounds as follows. As in the main paper let CT .d;β, θ/ denote
the (truncated) utility associated with strategy d ∈D under a generative model indexed by .β, θ/ and
{ν t}t�1 denote a non-increasing sequence in (0, 1). Define Dt

νt .d/ to be the 100.1 − ν t / percentile
of the posterior distribution of CT.d;β, θ/ given the data accumulated at time t � 1; then UCB
sampling selects the allocation strategy

ď
t =arg max

dεD
Dt
νt .d/, .7/

and subsequently chooses allocation At = ď
t
.St /. Because the bound Dt

νt .d/ captures both the esti-
mated mean utility under d and the uncertainty of this estimator, it thereby manages the exploration–
exploitation trade-off (Lai and Robbins, 1985; Audibert et al., 2009). The primary challenge asso-
ciated with UCB algorithms in the context of emerging infectious diseases is the computational
burden that is associated with computing equation (7). A naive approach to estimating Dt

νt .d/ is

(i) to sample a large number of draws from the posterior over the parameters .β, θ/,
(ii) for each sampled parameter value to use Monte Carlo sampling to estimate the mean discounted

utility under d and
(iii) to estimate the 100.1−ν t / percentile of the posterior distribution mean discounted utility.

Steps (ii) and (iii) would need to be repeated at each iteration of a stochastic optimization algorithm
which could be costly in large problems. However, it may be possible to use parallelization, emu-
lation or other approaches to reduce the computational cost.

(c) TS is a general and highly extensible framework: the Bayesian underpinnings of TS can gracefully
handle accumulating spatiotemporal data. Although we considered susceptible–infected models in
our applications, as several discussants note (Kypraios; Halloran and Hudgens), these models can
be generalized to susceptible–infected–removed or even more general models (e.g. non-parametric
Bayesian models as suggested by Thall). Furthermore, although we used the discounted marginal
mean utility as our objective one could instead use the average outcome over a finite or indefinite
time horizon or more generally any real-valued function of the accumulated history (Kypraios;
Ferreira).

In terms of implementation, that TS requires only a single draw from the posterior at each time
point provides some computational gain relative to UCB or other Bayesian reinforcement learning
methods (Ghavamzadeh et al., 2015). This computational gain comes at the expense of potentially
worse performance relative to a less myopic (fully) Bayesian procedure that attempts to account for
how the posterior will change in the future as the result of current actions (Choi and Lai; Guez et al.
(2014)). At the extreme, as Farewell suggests, one can attempt to optimize over the entire space of
possible learning algorithms given only the prior and class of allocation strategies, though it is not
clear how to optimize over this space.

The preceding advantages were among the motivating factors for developing and applying a spatiotem-
poral variant of TS to the management of white nose syndrome. We envisioned a continually adapting
allocation strategy that could be used indefinitely as a decision support tool for policy makers. However,
Eckles and Kaptein note that, in some settings, it may be more realistic to plan for a finite time horizon in
which case TS may be exploring too much. This is easily seen in the extreme case of a single decision point
wherein exploration provides no benefit. Eckles and Kaptein also suggest the bootstrap as an approach
to managing on-line exploration (Eckles and Kaptein, 2014). We discuss one approach to balancing the
amount of exploration by using a multiplier bootstrap (Praestgaard, 1990; Van der Vaart and Wellner,
1996; Kosorok, 2008). The score function for .β, θ/ given data up to time t is

σt .β, θ/=
t∑

v=1
∇β,θlog{f.Yv|Sv, Av;β/g.Sv|Sv−1, Av−1; θ/};
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thus, the maximum likelihood estimators .β̂
t
, θ̂

t
/ solve σt .β, θ/ = 0. Let Mt = Mt

1, : : : , Mt
t denote non-

negative independent and identically distributed (IID) random variables with mean and variance 1, and
define

σt
Mt .β, θ/=

t∑
v=1

Mt
v∇β,θ log{f.Yv|Sv, Av;β/g.Sv|Sv−1, Av−1; θ/};

let .β̂
t

Mt , θ̂
t

Mt / solve σt
Mt .β, θ/=0; then the conditional distribution of .β̂

t

Mt , θ̂
t

Mt / given the observed data is a
multiplier bootstrap approximation to the sampling distribution of .β̂

t
, θ̂

t
/: Using the estimated sampling

distribution as a surrogate for the posterior, we obtain the following bootstrap analogue of TS:

(a) sample Mt ;
(b) solve σt

Mt .β, θ/=0 to obtain .β̂
t

Mt , θ̂
t

Mt /;
(c) set d̄

t = arg maxdεDCT .d; β̂Mt , θ̂t
Mt /.

To control the exploration–exploitation trade-off one might consider adjusting the distribution of the
bootstrap weights, Mt ; for example, we could select these to follow a gamma distribution with mean 1 and
variance τ � 0: Setting τ =1 corresponds to the Bayesian bootstrap whereas setting τ =0 corresponds to
greedy allocation selection (i.e. no exploration). Thus, values of τ ∈ [0, 1] represent a spectrum of TS-like
algorithms with varying degrees of exploration. One can imagine adaptive variants of such algorithms
wherein the variance decreases to 0 as t approaches a finite time horizon. Computing such a sequence
as a function of the prior, the class of strategies and the time horizon would be a special case of the
framework suggested by Farewell. We think that the study of such algorithms is an exciting direction for
future research.

Methodological extensions
Several discussants mentioned ways in which the modelling framework proposed might be extended
(Kypraios; Chakraborty; Thall; Halloran and Hudgens). As noted above, a benefit of the underlying
Bayesian framework is the ability to deal with accumulating data that may be subject to missingness (Little
and Rubin, 2014), measurement error (Carroll et al., 2006), partial observability (Poupart and Vlassis,
2008; Ross et al., 2008) and non-stationarity (West and Harrison, 2006); Lawson and his colleagues pro-
posed an interesting alternative to deal with measurement error that might be particularly effective in the
context of white nose syndrome. However, our proposed methodology and the foregoing extensions sup-
pose that the postulated models for the underlying data-generating process are correctly specified. Thus,
another natural question is to what extent the methodology proposed is sensitive to misspecification (Hal-
loran and Hudgens) and whether semiparametric methods, e.g. Q-learning (Murphy, 2005; Schulte et al.,
2014), might provide a more robust alternative (Chakraborty). Here we describe a semiparametric variant
of TS based on the Q-learning algorithm (this development follows that of Ertefaie (2014), Luckett et al.
(2016) and Meyer et al. (2017)). We implicitly assume that the causal conditions and the homogeneous
Markov conditions that are stated in the main paper hold; however, we do not assume that the postulated
parametric models for the disease dynamics are correctly specified.

For any allocation strategy d ∈D write Ed to denote expectation with respect to the trajectory distribution
that is induced by assigning allocations according to d ; an omitted superscript, i.e. E, indicates expectation
with respect to the underlying data-generating model. For each time t, allocation strategy d ∈D and state
allocation pair .st , at / define the Q-function

Q.st , at , d/=Ed

{ ∑
k�0

γku.Yt+k/|St = stAt =at

}
,

so that Q.st , at / measures the expected discounted utility if the epidemic status is St = st , allocation At =at

is chosen at time t and allocation strategy d is followed thereafter. Using the law of the iterated expectation
(and some algebra), it can be seen that the Q-function satisfies

E.[u.Yt /+γQ{St+1, d.St+1/, d}−Q.St , At , d/]φ.St , At //=0, .8/

where φ is an arbitrary function defined on dom St × At . The expectation in equation (8) is with respect
to the data-generating model and thus will form the basis of an estimating equation. Let {Q.st , at , d;λ/ :
λ∈Λ⊆ Rq} be a class of parametric models for Q.st , at , d/ which are assumed to be differentiable with
respect to λ. Let φ.st , at , d/=∇λQ.st , at , d;λ/; then the sample analogue of equation (8) is

t−1∑
v=1

.[u.Yv/+γQ{Sv+t , d.Sv+1/, d;λ}−Q.Sv, Av, d;λ/]∇λQ.Sv, Av, d;λ//=0:
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Let λ̂
t
.d/ denote a solution to this estimating equation. To obtain a draw from the sampling distribution

of λ̂
t
.d/ we use the multiplier bootstrap. As in the preceding section, let Mt−1 = Mt−1

1 , : : : , Mt−1
t−1 denote

IID non-negative random variables with mean 1 and variance 1. Define λ̂
t

Mt .d/ to be the solution to the
perturbed estimating equation

t−1∑
v=1

Mt−1
v .[u.Yv/+γQ{Sv+1, d.Sv+1/, d;λ}−Q.Sv, Av, d;λ/]∇λQ.Sv, Av, d;λ//=0:

At each time t, the TS Q-learning estimator draws an allocation strategy

d̆t =arg max
d∈D

Q{St , d.St /, d; λ̂
t

Mt }:

As described previously, one could tune the amount of exploration through the variance of the resampling
weights.

Because Q-learning imposes less structure on the underlying generative model it may be more robust to
misspecification than TS as we proposed it; however, imposing less structure may lead to higher variability
especially early in the intervention process where data are scarce. An interesting research direction is the
combination of the two methods; for example, one might use the estimated dynamics model to augment
the estimating equation or to simulate the exploration–exploitation trade-off.

Extensions to other applications
The methodology proposed was designed to manage the spread of a replicating agent across space and
time. Henderson and Lizotte identified novel applications of the methodology in the context of precision
medicine. Henderson points out that the exploration–exploitation trade-off arises in adaptive clinical trials
and asks whether the methodology might be extended to this setting. Indeed, TS was originally designed for
sequential treatment allocation across a stream of IID patients (Thompson, 1933). However, this original
formulation of TS considered only a single decision point and did not account for patient covariates.
Furthermore, whereas there is a large literature on adaptive clinical trials (see Berry and Fristedt (1985),
Thall and Wathen (2007), Berry (2012), Berry et al. (2010), Yin (2012) and references therein), the work
on sequential adaptive treatment allocation within patients over time is less well developed (see Nahum-
Shani et al. (2014), Cheung et al. (2015) and Klasnja et al. (2015)). An extension to IID data based on the
Q-learning algorithm that was described above is as follows.

Suppose that we have data on n patients of the form {.S1
i , A1

i , Y1
i , : : : , STi

i , ATi
i , YTi

i /}n
i=1 where St

i ∈Rp is the
state of patient i at treatment stage t, At

i ∈A is the treatment that is assigned to patient i at treatment stage t,
Yt

i ∈Rq is a vector of outcomes for patient i at treatment stage t and Ti is the number of treatment stages that
patient i has completed. We assume that the state is Markov and homogeneous in that P.St+1

i |Ȳi

i, Ā
t

i, S̄
t

i/=
P.St+1

i |St
i, At

i/ and that this probability does not depend on the subject i or the time t. Similarly, we
assume that P.Yt

i|Ȳ
t−1
i , Ā

t

i, S̄
t

i/=P.Yt
i|St

i, At
i/ and that this probability does not depend on i or t. Consider

a patient presenting with state S= s; this may be one of the existing i=1, : : : , n patients visiting the clinic
for the (Ti + l)st stage of treatment or a new patient. Let D denote the set of possible treatment regimes,
i.e. deterministic mappings from states to treatments. To assign their treatment by using TS, for each
i=1, : : : , n, draw MTi−1

i =M
Ti−1
1, i , : : : , M

Ti−1
Ti−1, i IID non-negative random variables with mean and variance

1 and solve the estimating equation

n∑
i=1

Ti−1∑
t=1

M
Ti−1
t, i .[u.Yt

i/+γQ{St+1
i , d.St+1

i /, d;λ}−Q.St
i, At

i , d;λ/]∇λQ.St
i, At

i , d;λ//=0

to obtain λ̂n,m.d/ and subsequently d̃n =arg maxd∈D Q{S, d.S/, d; λ̂n,m.d/} and treatment assignment d̃.S/.
On observing their response to treatment, the set of available data can be updated and the process repeated
at each subsequent treatment decision. Deriving the operating characteristics of this procedure, e.g. power
and sample size calculation, is an interesting direction for interesting future work (see Laber et al. (2016)
for a description of technical issues that are associated with sizing a study for estimation of an optimal
treatment regime).

Decision support
Data-driven decision making in health seeks to provide decision support, i.e. to inform decisions rather
than to dictate them. Thus, as stated by Lizotte and Thall, the goal should be to build systems that
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extract information from accumulating data that is meaningful and actionable in a domain context. The
methodology proposed falls short of this goal in that the recommended allocations are the output of
a rather complicated algorithm that is attempting to satisfy the dual objective of managing short-term
disease spread with information gathering for better long-term control. However, we view the methodology
proposed as first steps in building the back-end of a deployable decision support system. As noted by Thall
and Lizotte, an effective system would provide an easy-to-use user interface to model-fitting routines and
visualizations, as well as qualitative and quantitative descriptions of the fitted models and recommended
allocations. We believe that research in this direction is among the most important and most neglected in
statistical data-driven decision making.
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