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Abstract

Electroencephalogram (EEG) signals are physiological indi-
cators of brain activity, offering the advantage of high tem-
poral resolution for capturing subtle emotional changes and
providing rich information for emotion recognition. How-
ever, extracting effective features from EEG data with a low
signal-to-noise ratio poses a significant challenge that hinders
progress in this research field. To address this issue, we propose
a multi-view time-frequency contrastive learning framework
called MV-TFCL to enhance the information representation
capability of EEG signals from multiple perspectives. Firstly,
we introduce a recursive neural network based on multi-scale
time-frequency consistency, which integrates global semantic
information across different scales through gated units. To
our knowledge, this is the first proposal of the theory of multi-
scale time-frequency consistency applied in emotion recogni-
tion research. Subsequently, we design a tree-structured time-
frequency encoder to capture local semantic information within
the time-frequency domain. Finally, we incorporate semantic
consistency constraints from both global and local perspec-
tives to learn more generalizable and robust features. Extensive
experimental results on two publicly available datasets demon-
strate the effectiveness and superiority of our proposed method.
Keywords: Emotion recognition; Contrastive-learning; Multi-
scale Time-Frequency Representation

Introduction
Electroencephalogram (EEG) signals serve as a direct reflec-
tion of brain activity, offering inherent advantages such as
non-invasiveness, real-time monitoring, and portability. Con-
sequently, they have become an indispensable tool for investi-
gating human emotions and consciousness (Guo, Zhu, Zhang,
Jin, & Wei, 2023).EEG signals can be directly acquired from
the cerebral cortex, rendering them arduous to disguise or
conceal, thereby enhancing their authenticity and reliability
in comparison to behavioral signals. By harnessing EEG sig-
nals, we can explore numerous cutting-edge applications in
the realm of emotion recognition, such as EEG-based sys-
tems for computing emotions (Liu, Sourina, & Nguyen, 2011),
EEG-driven emotional robots (Liu, Habibnezhad, & Jebelli,
2021), and EEG-assisted emotional interventions (Tian et al.,
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2023). Hence, the accurate recognition of emotions based on
EEG signals is a fundamental prerequisite for realizing these
applications. Although the contrast learning paradigm has
demonstrated some success in enhancing model generaliza-
tion ability, there remains substantial room for improvement
in emotion recognition tasks.

Firstly, the entanglement of time-frequency semantics in
EEG signals presents a formidable challenge for achieving
universal representation learning. Currently, emotion recogni-
tion approaches based on contrastive learning strategies, such
as SeqCLR (Mohsenvand, Izadi, & Maes, 2020) and SGMC
(Kan et al., 2023), enhance the generalization ability of models
through data augmentation and positive sample constraints.
However, these methods still possess certain limitations. One
concern pertains to the low signal-to-noise ratio (SNR) of EEG
signals due to potential interference from brain activity unre-
lated to the task at hand, which can be attributed to equipment
or environmental factors. This results in traditional data aug-
mentation methods further reducing the amount of effective
information in the data. Another crucial aspect is the com-
position of EEG signals, which consist of sinusoidal waves
with varying frequencies (Sanei & Chambers, 2013), Each
frequency component corresponds to a distinct brain rhythm
associated with different cognitive functions and states, such
as sleep, attention, and emotions. Conventional approaches
often overlook the extraction of key frequency domain signals,
thereby compromising the ultimate recognition performance.
Therefore, we believe that fully utilizing the time-frequency
characteristics of EEG signals can aid in the capture of effec-
tive information.

Secondly, the integration of information from different tem-
poral scales constitutes a pivotal factor in constructing an
efficacious model for emotion recognition. Numerous studies,
such as GMSS (Li et al., 2022), MSTGCN (Jia, Lin, Wang,
Ning, et al., 2021), and HetEmotionNet (Jia, Lin, Wang, Feng,
et al., 2021), employ a multi-view and multi-task framework to
extract comprehensive features from EEG signals by amalga-
mating diverse pieces of information. However, the annotation
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process for EEG data is extremely time-consuming and re-
quires extensive medical training or intricate experimental
design. As a result, supervised multi-perspective construc-
tion incurs additional costs in terms of human and other data
resources and often lacks broader generality. In contrast, self-
supervised multi-view semantic capture, leveraging the inher-
ent characteristics of EEG signals themselves, presents a more
cost-effective approach to explore the interdependence and
specificity of each scale.

To address the aforementioned challenges, this paper pro-
poses a multi-view time-frequency contrastive learning frame-
work, termed MV-TFCL, which enhances the information
representation capability of EEG signals from multiple per-
spectives. Specifically, we initially employ a recursive down-
sampling strategy to divide the data into multiple scales, con-
sidering global information at different scales. Next, we design
a TF-Block module for capturing global time-frequency rep-
resentations at each scale and constructing time-frequency
consistency constraints within the module to enhance the sta-
bility of these representations. Simultaneously, we connect
TF-Blocks of different scales through gated units to achieve
cross-scale dynamic perception. Following this, we adopt a
tree-structured time-frequency encoder for extracting local
semantic information of time-frequency. Each node (Local-
Block) consists of a one-dimensional convolutional layer and
a frequency enhancement layer, which are responsible for
extracting local time-frequency representations. Finally, we
further construct consistency constraints from a global-local
perspective to improve the robustness of learned representa-
tions.

The main contributions of our MV-TFCL can be summa-
rized as follows:

• We propose a multi-view time-frequency contrastive learn-
ing framework. To our knowledge, we are the first to in-
troduce and apply the theory of multi-scale time-frequency
consistency in the field of emotion recognition.

• We have successfully developed a global-local contrastive
learning perspective, unifying the learned global and local
representations through consistency constraints, thereby
enhancing the robustness of the model.

• Extensive empirical evidence demonstrates that our model
achieves optimal performance in emotion recognition tasks.

Related Work
Electroencephalogram (EEG) signals, which reflect brain ac-
tivity, can be sampled from multiple areas of the cerebral cor-
tex through multi-channel electrodes, providing information
in three dimensions: time, space, and frequency. Traditional
machine learning approaches often employ handcrafted fea-
tures, such as statistical measures, discrete wavelet transforms,
or power spectral density (Lin et al., 2010), to characterize
the temporal and spectral properties of EEG signals. Subse-
quently, linear or nonlinear classifiers, such as Support Vector
Machines (SVM) (Hearst, Dumais, Osuna, Platt, & Scholkopf,

1998), Linear Discriminant Analysis (LDA) (Xanthopoulos
et al., 2013), or Logistic Regression (LR) (LaValley, 2008),
are utilized for feature classification. while these methods are
straightforward and easy to implement, they overlook the spa-
tial dimension of EEG signals, i.e., the interactions between
different brain regions, as well as the nonlinearity and high-
dimensionality of EEG signals, making it difficult to capture
the complex and variable features of EEG signals.

To address these limitations, recent deep learning-based
methods have employed multi-layer neural networks to extract
high-level and abstract features from EEG signals, thereby
enhancing the accuracy of emotion recognition. For instance,
Li et al. (Li, Zheng, Wang, Zong, & Cui, 2019) proposed
a hierarchical spatio-temporal neural network (R2G-STNN)
based on Bidirectional LSTM (BiLSTM) networks, which ef-
fectively capture long-term dependencies of EEG signals and
consider spatial relationships among different brain regions,
resulting in remarkable performance improvements in EEG-
based emotion recognition. Song et al. (Song, Zheng, Song,
& Cui, 2018) proposed a multi-channel EEG emotion recogni-
tion method based on a novel Dynamic Graph Convolutional
Neural Network (DGCNN), which can dynamically learn the
correlations between different EEG channels, thereby enhanc-
ing the expressiveness of the features. Zhong et al. (Zhong,
Wang, & Miao, 2020) proposed a Regularized Graph Neural
Network (RGNN) with two regularizers, which can handle
both the variations in cross-subject EEGs and the problem
of noisy labels, thereby improving the robustness of EEG
emotion recognition.

Whether employing machine learning or deep learning
methods, a large amount of annotated data is essential for
training the model. However, acquiring labelled EEG data
in real-world scenarios is often costly and challenging, thus
self-supervised learning methods have greater potential and
practical value in this field. For instance, Kan et al. (Kan et
al., 2023) utilized a group projector and devised a new genetic-
based data augmentation technique to address the limited la-
beled data issue in emotion recognition. Zeng et al. (Zeng et
al., 2022) extracted deeper and more valuable features using
a deep attention layer implemented with multi-head attention
mechanisms, and used a Siamese network to cluster the out-
puts of the GNN based on Euclidean distance, ensuring that
the learned information has certain class separability.

Methodology
In this section, we initially provide a concise introduction
to the definitions employed in this work. Subsequently, we
present both an overview and a comprehensive explanation of
the architecture.

Problem Definition
Given a time series X ∈RTx×V , where Tx represents the length
of the input sequence and V represents the number of vari-
ables, our goal is to learn a nonlinear function fθ that maps
the input sequence X to a representation Z ∈ RFe, where Fe is
the dimension of the representation vector. To capture global
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Figure 1: Overview of the proposed MV-TFCL architecture. Specifically, the original time series undergoes recursive down-
sampling to obtain {X1,X2, · · · ,XK}, which serves as the input for the (a) TF-Block at the corresponding scale. Then, multiple
TF-Blocks are connected by gating units, recursively forming a multi-scale global recurrent neural network (MGRNN). Each
TF-Block uses a T-Encoder and an F-Encoder to learn the time-frequency representation at the corresponding scale and completes
the calculation of the time-frequency consistency contrast loss. Subsequently, (b) TreeRL learns local representations through a
tree decomposition structure. Finally, (c) completes the calculation of the global-local contrast loss.

information at different scales, we first use a recursive down-
sampling strategy to downsample the data Xk−1 at the k− 1
scale along the time dimension every other time step, resulting

in Xk ∈ R
Tx
2k ×C. We then use MGRNN and TreeLR to capture

the global representation ZG ∈RFe and the local representation
HL ∈ RFe, respectively. Finally, we have Z = ZG +HL.

Multi-Scale Global Recurrent Neural Network
In time series data, capturing global information often im-
plies the need to directly model a time series with a long time
span, which poses a significant challenge to the modeling ca-
pability of the model. Firstly, substantial noise interference
hampers the extraction of representations containing sufficient
information content. Secondly, when modeling multiple time
steps simultaneously, the model frequently gets trapped in
local features, thereby overlooking global information. To
address these challenges, we propose a multi-scale global
recurrent neural network (MGRNN). Specifically, we first re-
cursively downsample the original time series X along the
time dimension, resulting in K time series {X1,X2, · · · ,XK} at
different scales. Next, we design a time-frequency recursive
neural network, where each TF-Block is used to learn the time-
frequency representation at the corresponding scale. Different

TF-Blocks are connected through gated units, thereby inte-
grating time-domain and frequency-domain representations at
different scales. Finally, the final global representation is ob-
tained by concatenating the output representations from both
time-domain and frequency-domain at the last scale.
Encoder The TF-Block is composed of a T-Encoder, an F-
Encoder, and time-frequency consistency constraints. Specif-
ically, the T-Encoder and F-Encoder are used to learn the
global time-frequency representations Z̃T

k ∈RFe and Z̃F
k ∈RFe

at the k-th scale, respectively, where Fe is the dimension of
the feature vector. The T-Encoder is constructed by stacking
one-dimensional convolutions and linear layers:

Z̃T
k = Fck(vec(Conv1dk(Xk))), (1)

where Fck and Conv1dk represent the linear layer and one-
dimensional convolutional layer, respectively.

The F-Encoder is used to capture the frequency domain

information of EEG signals. For the sample Xk ∈ R
Tx
2k ×C at

the k-th scale, we first map it to the frequency domain through
the Fast Fourier Transform (FFT), i.e., F (Xk) ∈ RI×C, where
I = ⌊ Tx

2k+1 ⌋+1. Subsequently, we complete the extraction of

95



frequency domain information through a linear mapping:

Z̃F
k = AvgPool(F −1(F (Xk)⊙QF

k )), (2)

where, QF
k is a parameterized kernel that is initialized ran-

domly, F represents the FFT, and F −1 is its inverse. Finally,
considering the aggregation of multi-scale time-frequency
representations, we use a gating unit to aggregate the time-
frequency representations ZT

k+1 and ZF
k+1 corresponding to the

previous scale:

ηT = Sigmoid(W T
η · [ZT

k+1, Z̃
T
k ]+bT

η),

ZT
k = ηT ⊙ZT

k+1 +(1−ηT )⊙ Z̃T
k ,

ηF = Sigmoid(W F
η · [ZF

k+1, Z̃
F
k ]+bF

η ),

ZF
k = ηF ⊙ZF

k+1 +(1−ηF)⊙ Z̃F
k ,

(3)

where W T
η , W F

η , bT
η , and bF

η are trainable parameters. We ob-
tain the gating aggregation signals ηF and ηT in the frequency
domain and time domain, respectively, through a sigmoid
function. We initially set ZT

K+1 and ZF
K+1 to be zero vectors.

Multi-Scale Time-Frequency Consistency The core idea
of time-frequency consistency lies in fully exploiting the inher-
ent attributes of temporal data and leveraging its potential for
consistent characteristics to accomplish unsupervised learning
tasks. Multi-scale global modeling helps to further enhance
the information modeling and capture at various levels. In
the task of emotion recognition, the time-domain information
of EEG signals captures subtle variations in human emotions,
such as instantaneous transitions between happiness and sad-
ness, while the frequency-domain information reveals neural
activity patterns associated with emotional processing in the
human brain, such as high-frequency oscillations during anger
or low-frequency fluctuations during calmness. The utilization
of both time and frequency domains ensures effective invari-
ance irrespective of the distribution characteristics inherent to
time series data based on signal processing theory. (Flandrin,
1998; Papandreou-Suppappola, 2018). However, existing re-
search relies solely on time-domain modeling and is difficult
to capture the richer frequency-domain features of EEG sig-
nals. Therefore, we continue the time-frequency modeling
idea of TF-C (X. Zhang, Zhao, Tsiligkaridis, & Zitnik, 2022)
and further propose multi-scale time-frequency consistency.

Specifically, under the framework of contrastive learning,
we regard the time-frequency representation under each scale
as a positive sample pair to ensure that the time-frequency
representation under the same scale is close to each other. In
order to ensure that the distance between representations is
measurable, we map the time-frequency representation ZT

k and
ZF

k corresponding to the k-th scale to the time-frequency joint
space through the projector RT

k and RF
k , and get eT

k and eF
k :

eT
k = RT

k (Z
T
k ),

eF
k = RF

k (Z
F
k ),

(4)

where RT
k and RF

k are linear mappings. We adopt the con-
trastive learning variant of MoCo (He, Fan, Wu, Xie, & Gir-
shick, 2020) to construct the time-frequency contrast loss.

Algorithm 1 The pre-training process of MV-TFCL.
Input: The entire training set; max epoch E poch; batch size

B.
1: Use the uniform distribution to initialize model parameters

θ ∼U(−1,1).
Output: Well-trained MV-TFCL.

2: for epoch = 1,2, · · · ,E poch do
3: Recursive downsampling is performed along the time

dimension on the original sequence X , resulting in K
time series {X1,X2, · · · ,XK} at different scales;

4: for k = K,K −1, · · · ,1 do
5: Z̃T

k = T -Encoder(Xk);
6: Z̃F

k = F-Encoder(Xk);
7: ZT

k = Gating(ZT
k+1, Z̃

T
k );

8: ZF
k = Gating(ZF

k+1, Z̃
F
k );

9: end for
10: Calculate the time-frequency consistency contrastive

loss at each scale using Eq.(5);
11: {h1

C,h
2
C, · · · ,h2C

C }= TreeRL(X);
12: Calculate the global-local contrastive loss using Eq.(7);
13: Update model parameters by optimizing the loss func-

tion in Eq.(8);
14: end for

Negative pairs are obtained through a dynamic dictionary with
a queue. We define the sets of negative sample vectors in the
time domain and frequency domain under the k-th scale as Dk

T
and Dk

F , respectively. The time-frequency contrast loss can be
expressed as:

LT F =
1
K

K

∑
k=1

− log
exp(eT

k · eF
k /τT F )

∑e′k∈Dk
F

exp(eT
k · e′k/τT F )+∑e′k∈Dk

T
exp(eF

k · e′k/τT F )
, (5)

where τT F is an adjustable hyperparameter.

Tree Local Representation Learning
Inspired by the multi-head concept in Transformer, we further
adopt a tree-structured time-frequency encoder with a total
of C layers to extract more fine-grained local semantic infor-
mation of time-frequency. In TreeRL, we define each node
as a Local-Block, which consists of a Feed-Forward Neural
Network (FFN) and a Frequency Enhancement Layer (FEL).
The FFN is used to capture the time-domain information of
each timestamp, and the FEL is used to capture the frequency-

domain information. For the input hi
c ∈ R

Tx
2c−1 ×Fe of the i-th

node in the c-th layer, we sum up the local time-frequency
features extracted by each Local-Block, split it in half along
the time dimension, and transmit it to the corresponding two
leaf nodes. The i-th Local-Block in the c-th layer can be
represented as:

h2i
c+1,h

2i+1
c+1 = Split(FFNi

c(h
i
c)+F −1(F (hi

c)⊙Qi
c)), (6)

where Qi
c is a parameterized kernel initialized randomly, and

Split() represents the subsequence splitting function. Ulti-
mately, at the C-th layer, we obtain 2C local representations
{h1

C,h
2
C, · · · ,h2C

C }.
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Global-Local Contrast Loss
Ultimately, we further construct the contrast loss from a global-
local perspective. In the task of emotion recognition, EEG
signals possess emotional continuity. Therefore, global and
local representations have semantic associations. Similarly, we
project the global and local representations into a joint space
through the projectors RG and RL. We express the global-local
contrast loss as:

LGL =
1

2C

2C

∑
i=1

− log
exp(RG([ZT

1 ,ZF
1 ]) ·RL(hi

C)/τGL)

exp(RG([ZT
1 ,ZF

1 ]) ·RL(hi
C)/τGL)+∑h′∈DL

exp(RG([ZT
1 ,ZF

1 ]) ·RL(h′)/τGL)
,

(7)
where DL represents the set of negative local representation

samples randomly drawn, [·, ·] denotes the concatenation oper-
ation of two variables, and τGL is an adjustable hyperparameter.
Ultimately, we define the loss function as:

L = LT F +LGL. (8)

Table 1: Performances on DEAP dataset.

Methods Accuracy(%)
Valence Arousal Four

CNN-LSTM 90.82 86.13 -
CDCN 92.24 92.92 -

MMResLSTM 92.87 92.30 -
ARCNN 93.72 93.38 -

MCLFS-GAN - - 81.32
GANSER 93.52 94.21 89.74

SGMC 95.31 95.79 93.42
MV-TFCL 96.19 96.59 94.82

Experiments
To comprehensively evaluate the performance of MV-TFCL,
we conducted a series of experiments and extensively com-
pared it with state-of-the-art deep learning algorithms. In ad-
dition, we also validated the effectiveness of each component
of the model through ablation experiments and representation
visualization.

Settings
Datasets In our study, we aimed to validate the effectiveness
of our method in the task of emotion recognition. To this
end, we selected two publicly available emotion recognition
datasets, namely DEAP (Koelstra et al., 2011) and SEED
(Zheng & Lu, 2015; Duan, Zhu, & Lu, 2013).

The DEAP dataset is a rich repository that includes 32 chan-
nels of EEG signals and 8 channels of peripheral physiological
signals from 32 subjects while they were watching emotional
videos. This dataset covers 40 video trials, each of which
includes 3 seconds of resting signals and 60 seconds of signals
related to emotional video clips. These EEG signals were
downsampled to 128 Hz and processed through a bandpass
filter of 4-45 Hz. Finally, each subject rated the videos. When
the rating exceeded 5.0, the corresponding EEG signals were

labeled as high arousal or high valence. Otherwise, these sig-
nals were labeled as low arousal or low valence. Based on
these labels, we performed binary classification tasks on the
dimensions of emotion and arousal, and combined these two
dimensions to perform four-class classification tasks.

The SEED dataset, on the other hand, recorded the EEG
signals of 15 subjects while they were watching 15 movie
videos, with emotion labels being positive, neutral, and nega-
tive. Each video trial lasted approximately 4 minutes. Each
subject watched the same videos three times with an interval
of more than a week. These EEG signals were recorded by
62 electrodes, sampled at 1000 Hz, then resampled to 200 Hz,
and filtered within the range of 0-75 Hz.

Baselines To validate the effectiveness of our proposed MV-
TFCL method, we conducted comparative experiments with
the current state-of-the-art deep learning models. On the
DEAP dataset, we selected four supervised models based on
deep neural networks, namely CNN-LSTM (Yang, Wu, Qiu,
Wang, & Chen, 2018), MMResLSTM (Ma, Tang, Zheng, &
Lu, 2019), CDCN (Gao et al., 2020), and ACRNN (Tao et al.,
2020). In addition, we also selected three models based on
self-supervised learning, namely MCLFS-GAN (Dong & Ren,
2020), GANSER (Z. Zhang, Zhong, & Liu, 2022), and SGMC
(Kan et al., 2023). On the SEED dataset, we likewise selected
four supervised models, including GRSLR (Li, Zheng, Cui,
Zong, & Ge, 2019), DGCNN (Song et al., 2018), BiHDM (Li
et al., 2020), and ResNet18 1D kernel (Cheah et al., 2021).
Furthermore, we also compared SGMC (Kan et al., 2023) as a
self-supervised model.

Implementation Details We optimized our method using
the Adam optimizer, with a batch size set to 64, a learning
rate of 0.001, and a feature vector dimension of 1024. We
set the sampling times K to 6, corresponding to the 6 TF-
Blocks contained in MGRNN. Both τT F and τGL were set to
0.07. The height C of TreeRL was set to 4. All models were
trained/tested on an NVIDIA Tesla V100 32G GPU.

Table 3: Ablation study of each module of MV-TFCL on the
DEAP dataset.

Methods Accuracy(%)
Valence Arousal Four

MV-TFCLMulti-scale− 95.43 95.29 93.66
MV-TFCLMGRNN− 92.01 92.81 91.26
MV-TFCLTreeRL− 93.39 93.83 92.34

MV-TFCL 96.19 96.59 94.82

Performance Comparison

To verify the generalization ability of our model on different
datasets, we conducted experiments on two publicly available
EEG emotion recognition datasets, DEAP and SEED, with the
results shown in Table 1 and Table 2. Our model, MV-TFCL,
adopts a multi-view representation joint modeling method,
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Table 2: Performances on SEED dataset.

Methods Accuracy(%)
Percentage of labels 1% 10% 50% 100%

GRSLR - - - 87.39
DGCNN - - - 90.40
BiHDM - - - 93.12

ResNet18 1D kernel - - - 93.43
SGMC 92.58 94.28 94.63 94.96

MV-TFCL 92.94 95.37 95.88 96.03

Figure 2: Visualization analysis of different emotional representations on the SEED dataset.

which can effectively extract and fuse emotional information
in EEG signals. During the pre-training stage, we used a fine-
tuning strategy similar to SGMC to improve the performance
of emotion classification. The experimental results show that
our model significantly outperforms the current state-of-the-art
self-supervised pre-training model, SGMC, on all datasets and
tasks. Specifically, on the DEAP dataset, our model improved
the accuracy of emotion, arousal, and four-class classifica-
tion tasks by 0.9%, 0.8%, and 1.5% respectively compared to
SGMC. On the SEED dataset, when using all the annotated
data, our model improved the accuracy by 1.1% compared to
SGMC. In addition, when using part of the annotated data,
our model also demonstrated strong robustness, improving the
accuracy by 0.4%, 1.2%, and 1.3% respectively when using
1%, 10%, and 50% of the annotated data compared to SGMC.

Ablation Study
To investigate the contribution and role of each module in the
framework to the performance of the model, we conducted
three types of ablation experiments on the DEAP dataset and
presented the results in Table 3. First, we simplified the over-
all Multi-scale Global Recurrent Neural Network module to
a single TF-Block to learn the global time-frequency repre-
sentation, resulting in the MV-TFCLMulti−scale− model. This
was done to verify the importance of multi-scale modeling for
the extraction of information from EEG signals. Second, we
removed the MGRNN and multi-scale time-frequency consis-
tency constraints, and used a simple linear mapping to obtain
the global representation, resulting in the MV-TFCLMGRNN−
model. This was done to assess the necessity of multi-scale
time-frequency representation modeling and time-frequency
consistency constraints. Finally, we replaced TreeRL with 2C

linear layers, resulting in the MV-TFCLTreeRL− model. This
was done to verify the local representation capture capability
of TreeRL. From Table 3, it can be clearly seen that each
module in the framework is meaningful and effective, playing
a key role in enhancing the performance of the model.

Representation Visualization
To evaluate the ability of MV-TFCL to learn representations of
different emotions, we used the t-SNE algorithm to visualize
the representations of three emotions (Positive, Neutral, Neg-
ative) in the SEED dataset. Figure 2 shows the distribution
of EEG features of four subjects on a two-dimensional plane.
From the figure, we can clearly see that MV-TFCL can effec-
tively distinguish the representations of the three emotions,
forming a clear boundary in space. At the same time, we can
also find that the representations of the same emotion category
have strong clustering, indicating that MV-TFCL can capture
the inherent consistency of emotions.

Conclusion
This paper presents a novel framework for emotion recogni-
tion tasks based on EEG signals, termed Multi-View Time-
Frequency Contrastive Learning (MV-TFCL). The proposed
MV-TFCL framework everages multi-scale time-frequency
features along with a global-local contrastive loss to effectively
extract emotional information from EEG signals. Experimen-
tal results on two public datasets demonstrate that MV-TFCL
outperforms existing algorithms in terms of accuracy and ro-
bustness in emotion recognition. In the future, we intend to
apply MV-TFCL to more intricate non-stationary EEG data to
further enhance its performance and generalization capabili-
ties.
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