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BACKGROUND: Despite the substantial role indoor exposure has played in heat wave–related mortality, few epidemiological studies have examined
the health effects of exposure to indoor heat. As a result, knowledge gaps regarding indoor heat–health thresholds, vulnerability, and adaptive capacity
persist.

OBJECTIVE:We evaluated the role of indoor heat exposure on mortality and morbidity among the elderly (≥65 years of age) in Houston, Texas.
METHODS: Mortality and emergency hospital admission data were obtained through the Texas Department of State Health Services. Summer indoor
heat exposure was modeled at the U.S. Census block group (CBG) level using building energy models, outdoor weather data, and building character-
istic data. Indoor heat–health associations were examined using time-stratified case-crossover models, controlling for temporal trends and meteorol-
ogy, and matching on CBG of residence, year, month, and weekday of the adverse health event. Separate models were fitted for three indoor
exposure metrics, for individual lag days 0–6, and for 3-d moving averages (lag 0–2). Effect measure modification was explored via stratification on
individual- and area-level vulnerability factors.

RESULTS: We estimated positive associations between short-term changes in indoor heat exposure and cause-specific mortality and morbidity [e.g.,
circulatory deaths, odds ratio per 5�C increase= 1:16 (95% CI: 1.03, 1.30)]. Associations were generally positive for earlier lag periods and weaker
across later lag periods. Stratified analyses suggest stronger associations between indoor heat and emergency hospital admissions among African
Americans compared with Whites.

DISCUSSION: Findings suggest excess mortality among certain elderly populations in Houston who are likely exposed to high indoor heat. We devel-
oped a novel methodology to estimate indoor heat exposure that can be adapted to other U.S. locations. In locations with high air conditioning preva-
lence, simplified modeling approaches may adequately account for indoor heat exposure in vulnerable neighborhoods. Accounting for indoor heat
exposure may improve the estimation of the total impact of heat on health. https://doi.org/10.1289/EHP6340

Introduction
Extreme heat is a leading cause of weather-related human mortal-
ity worldwide (Basu 2009; Basu and Malig 2011; Basu and
Samet 2002; Benmarhnia et al. 2015; Braga et al. 2002; Bunker
et al. 2016; Gasparrini et al. 2015; Hajat and Kosatky 2010;
Kovats et al. 2004; Laaidi et al. 2012). Extreme heat is also asso-
ciated with increases in the number of hospital admissions and
emergency visits due to heat-related cardiovascular disease, re-
spiratory disease, and heat stroke/dehydration (Anderson et al.
2013; Cheng et al. 2014; Lin et al. 2009; Michelozzi et al. 2009;
O’Lenick et al. 2017; Winquist et al. 2016; Ye et al. 2012). A
cross-section of this literature reveals that children, the elderly,

and individuals with chronic health conditions are particularly
vulnerable. Studies on heat-related deaths during heat-wave
events have reported that decedents were more likely to succumb
to heat in their own home (CDC 2013a; Fouillet et al. 2006) and
that poor, socially isolated, and elderly populations are at the
greatest risk for heat-related mortality (Fouillet et al. 2006;
Kaiser et al. 2007; Semenza et al. 1996). These findings implicate
indoor environments as a place where exposure to hazardous
temperatures occurs and suggest that the risk of heat-related
health outcomes is not borne equally by all members of society.
However, the vast majority of heat–health studies do not account
for exposure to harmful indoor temperatures and typically assess
health risks among the general population. Given that individuals,
particularly the elderly, spend 80–90% of their time indoors
(Klepeis et al. 2001), health risk analyses that do not include esti-
mates of personal/indoor heat exposure likely underestimate the
impact of heat on health and result in underinformed risk assess-
ments, policies, and intervention measures concerning heat expo-
sure (Kuras et al. 2017).

However, because indoor environments are largely dependent
on outdoor conditions—as well as properties of the built environ-
ment, occupant behavior, and characteristics of individual build-
ings (e.g., construction, design, and the functioning of heating,
ventilation, and air-conditioning systems)—quantifying associa-
tions between indoor heat and human health presents a consider-
able research challenge. Notably, occupant behavior and the ability
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or willingness to use climate control are dominant influences on
indoor thermal comfort (Frey et al. 2014; Klepeis et al. 2017;
Kuras et al. 2017). Therefore, estimating indoor exposure for an
epidemiological study requires either direct measurements in
buildings and information on occupant behavior or simulations of
indoor environments based on a detailed understanding of howout-
door temperatures impact indoor environments for different types
of building construction, high-resolution (temporal and spatial)
meteorological data, and access to large-scale computational
resources. Owing to the analytical challenges and complexity of
estimating indoor thermal comfort, few studies have investigated
relationships between indoor heat and health, and, to date, a
population-based study design has not been used to examine the
effects of modeled indoor heat on human health.

Among the studies that have investigated relationships between
indoor heat and health, results suggest that certain populations ex-
perience elevated indoor temperatures, even in cities with a high
prevalence of central air conditioning (AC) (Uejio et al. 2016;
White-Newsome et al. 2012), and that increases in indoor tempera-
tures may be connected to a variety of health effects, including re-
spiratory emergency calls (Uejio et al. 2016), sleep disturbance
(van Loenhout et al. 2016), and cognitive decline (Cedeño Laurent
et al. 2018), as well as declines in respiratory function
(McCormack et al. 2016). These studies are overwhelmingly
cohort based, with indoor measurements taken directly from the
home of the affected individual. Using a population-based study
design may capture a more complete picture of the impact of heat,
indoors and outdoors, on health. However, there are very real bar-
riers to implementing a population-based design, and they primar-
ily stem from the unique analytical challenge of estimating daily
indoor thermal comfort at the household and neighborhood level.
Thus, there are knowledge gaps in our understanding of the
impacts of heat on health, and this is an area of research with con-
siderable potential for growth.

To address this knowledge gap, the research presented here
introduces a novel methodology that uses building energy mod-
els, parcel-level (building) data, and hourly meteorological data
to estimate daily indoor heat exposure for use in a population
health study. This work is part of a larger interdisciplinary study,
Heat and Ozone in Metropolitan Environments: Assessing Indoor
Risks (HOME-AIR) (Sailor et al. 2015). Here, we integrate mul-
tiple data products generated by the HOME-AIR study to esti-
mate the impacts of indoor heat exposure on mortality and
morbidity among the elderly population in Houston, Texas. The
overall project design and data integration follow a conceptual
and analytical framework developed by our research team for the
HOME-AIR project (O’Lenick et al. 2019).

We selected Houston as the ideal location to develop our meth-
odology because of Houston’s aging population, intensifying
urban heat island effect, and socioeconomic disparity. Our previ-
ous work in Houston reported that the presence/absence of central
AC was a significant determinant of spatial variation in heat vul-
nerability, and that increases in the percentage of the population
>65 years of age led to significant increases in expected heat risk at
the U.S. Census block group (CBG) level (Heaton et al. 2014). In
addition, despite widespread AC prevalence in Houston, a popula-
tion survey on heat vulnerability during the 2011 summer reported
that 37% of respondents felt too hot in their home, and 20% of
respondents reported heat-related symptoms in the summer of
2011 (Hayden et al. 2017). Given these findings, we hypothesized
that indoor heat exposure has a significant influence on negative
health outcomes, particularly for older populations who tend to
spend a considerable amount of time indoors. We also hypothe-
sized that observed associations between heat and health will vary
across health outcome definitions, indoor heat exposure metrics,

lag periods, and vulnerability factors. In this study, indoor heat–
health associationswere estimated using time-stratified case-cross-
over models. Separate models were fitted for three indoor exposure
metrics, for individual lag days 0 through 6, and for 3-d moving
averages (lag 0–2). Effect measure modification was explored via
stratification on individual- and area-level vulnerability factors.
Few studies have estimated the health impacts of indoor heat
among vulnerable populations, and, to our knowledge, this is the
first study to use building energy models to estimate daily indoor
heat exposure for use in an epidemiologicalmodel.

Methods

Study Area
Our study area, Houston, is the largest city in Texas and the
fourth largest in the United States, with a 2018 population of 2.3
million (U.S. Census Bureau 2018). Houston is located in Harris
County on the gulf coastal plain in southern Texas. Coupled with
Houston’s growth, diversity, and hot summer climate come chal-
lenges such as an aging population, educational and income dis-
parities, projected increases in high heat stress days and nights
(Oleson et al. 2015), and heat-related mortality (Marsha et al.
2018; Rohat et al. 2019). For analyses, our study area was limited
to Harris County in Houston, Texas (Figure 1), and the geo-
graphic boundary was determined by the availability of health
outcome data, meteorological data, ozone concentration data, and
Harris County tax assessor data. In 2010, Harris County com-
prised 2,144 CBGs, with an average population of 2,000. CBGs
were included in analyses if they contained any residential build-
ings. Figure 2 shows the percentage of residential and nonresi-
dential buildings within Harris County CBG boundaries. Eighty-
six CBGs were excluded from analyses because all buildings
within these block groups were identified as nonresidential (e.g.,
industrial, church, hospital, university). Sixteen CBGs with resi-
dential buildings were excluded because residential buildings
could not be categorized into one of 108 building archetypes
used in our indoor modeling work. Excluded CBGs with residen-
tial buildings (n=16) appeared to be randomly distributed across
Houston and, based on the 2010–2014 American Community
Survey (ACS) data, were relatively affluent (average median
income was approximately $71,600). Four residential CBGs in
the western part of Harris County were excluded because meteor-
ological data were not available. In total, 2,038 (of 2,144) Harris
County CBGs were represented in our analyses.

Mortality and Morbidity Data
We obtained individual-level mortality data for Harris County
residents from death certificate records provided by the Texas
Department of State Health Services from 2000 to 2015. We
obtained statewide hospital admission data from the Texas
Department of State Health Services from 2004 to 2013. We re-
stricted hospital admission data to only those admissions that
were coded as urgent or emergency. Emergency hospital admis-
sion data were included in analyses if the patient was a Harris
County resident who was admitted to a hospital in Harris County,
Fort Bent County, Montgomery County, Brazoria County,
Galveston County, Liberty County, Waller County, Chambers
County, or Austin County. Texas requires all hospitals to submit
claims on all discharged inpatients. Thus, this data set represents
all eligible residents of Harris County who were admitted to any
hospital between 2004 and 2013 in the aforementioned counties.

Relevant data elements on death certificate and emergency hos-
pital admission records included date of admission or death,
International Classification of Diseases, Ninth Revision, Clinical
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Modification (ICD-9-CM; CDC 2013b) or International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10; WHO 2016) diagnosis codes, age, race, sex,
CBG of patient residence, and longitude/latitude of decedent resi-
dence. Texas Department of State Health Services provided CBG
of residence as a variable for extraction in their hospital admission
records, and this variable was used to identify the CBG of resi-
dence based on 2010 U.S. Census boundaries. To identify the
deceased’s CBG of residence, we spatially overlayed 2010 CBG
boundaries to geocoded addresses. Health outcomes of interest
were identified using primary ICD-9-CM and ICD-10 diagnosis
codes for all circulatory diseases (CIRC; ICD-9-CM codes 390–
459, ICD-10 codes I00–I99), all respiratory diseases (ICD-9-CM
codes 460–519; ICD-10 codes J00–J99), and a broad health out-
come grouping, hereafter referred to as heat related (HEAT), which
was created by combining primary diagnoses for circulatory, respi-
ratory, renal (ICD-9-CM codes 580–593; ICD-10 codes N00–
N20), and heat stroke/heat exhaustion diagnosis sets (ICD-9-CM
codes 992.0–992.9; ICD-10 codes T67.0–T67.9, X30). The HEAT
outcome grouping includes any diagnoses plausibly related to heat
exposure and for which evidence exists in the literature. We re-
stricted our analysis to the summer months (June–September) and
to the elderly population (≥65 years of age). The University
Corporation for Atmospheric Research (UCAR) and the Texas
Department of State Health Services institutional review boards
approved this study and granted exemption from informed consent
requirements. Ethics approval for human subjects research at the
National Center for Atmospheric Research (NCAR) was obtained

by the UCAR IRB (IRB00006222) through the Texas Department
of State Health Services IRB (14-053), and the University of
Texas–Health Science Center Committee for the Protection of
Human Subjects (HSC-SPH-14-0783).

Ambient Ozone Concentration and Meteorological Data
We obtained hourly observations of ozone during the summer sea-
son (June to September, 2000–2015) from the Texas Commission
on Environmental Quality monitoring network for all 86 monitor-
ing sites within the spatial domain of our study area. We then
employed ordinary kriging to generate continuous surfaces of daily
8-h maximum ozone concentrations at a spatial resolution of
1 × 1 km (Michael et al. 2019). Hourly meteorological conditions
for the summer months (June–September) from 2000–2015 in the
Houston Metropolitan area were modeled at 1 × 1 km spatial reso-
lution using the High-Resolution Land Data Assimilation System
(HRLDAS) (Monaghan et al. 2014). Briefly, the HRLDAS model
uses the meteorological monitoring network in Houston and fur-
ther accounts for land surface, soil properties, and urban geometry
(e.g., road surfaces, building types) by coupling an urban canopy
model with an offline version of the Noah land surface model
(Monaghan et al. 2014). Monaghan et al. (2014) compared the
hourly HRLDAS modeled air temperatures to measurements from
17 weather stations across Houston; average biases were ∼+1�C
during afternoon hours and ∼− 1�C during nighttime, and cen-
tered root-mean-square errors (RMSEs) were about ∼ 2�C during
afternoon hours and ∼ 1�C during nighttime. Daily minimum,

Figure 1. Overall map of our study area. Analyses were performed separately for all of Harris County and for City of Houston residents.
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maximum, and mean ambient dry-bulb temperature and maximum
ambient dew point temperature were computed from the hourly
HRLDAS outputs. Ozone and meteorological metrics used in epi-
demiological analyses were estimated for each CBG in our study
area by using the values closest to the centroid of each CBG.
Figure 3 presents summer (June–September) average daily mini-
mum temperature across all CBGs and illustrates the urban heat
island effect in Houston.

Hourly HRLDAS estimates were also used as inputs into the
indoor thermal comfort model, as described in the “Modeling
Exposure to Indoor Heat” section. For this purpose, we divided our
study area into five local climate subregions (Figure S1). Although
we had access to meteorological data through HRLDAS at a
1× 1 km spatial resolution, it would be too computationally expen-
sive to use the full HRLDAS data set for the indoor modeling.
Therefore, we created local climate subregions to resolve spatial
differences in local meteorology based on distance from the shore
as well as potential urban heat island effects in the city center.
Identification of the five local climate subregions was informed by
a Houston-based study that demonstrated that distance to the coast-
line was the most important determinant of daily maximum and
daily mean temperatures, whereas intensity of development was
the greatest determinant for daily minimum temperature (Zhou
et al. 2014).We usedmajor roads to define approximate boundaries
of each subregion and maintained internal structure with the CBGs
(Figure S1). Hourly data from HRLDAS models were aggregated
to each local climate subregion. The result was hourly

meteorological data at the local climate subregion scale for the
summer months (June–September) from 2000 to 2015. Key
weather variables required for the indoor thermal comfort model
are dry-bulb temperature, relative humidity, dew point tempera-
ture, global solar radiation (direct and indirect), andwind speed.

Modeling Exposure to Indoor Heat
Building energy models. Whole-building energy models are
extensively use by engineers, architects, and researchers in the
building science field to assess energy performance and thermal
comfort in buildings (Hensen and Lamberts 2011). These models
use physics-based equations to calculate thermal loads on different
zoneswithin a building in response to outdoor signals and occupant
behavior, and they account for all modes of heat and mass transfer
between indoors and outdoors (e.g., heat transfer throughwalls and
windows, air exchange). EnergyPlus, a whole-building energy
simulation program developed by the U.S. Department of Energy
(https://energyplus.net/) is among the most used tools in the litera-
ture over the last decade (Baniassadi et al. 2018a; Ramakrishnan
et al. 2017). Numerous studies have validated individual modules
of EnergyPlus (Gu 2007; Loutzenhiser et al. 2009; Mateus et al.
2014; Shrestha and Maxwell 2011; Tabares-Velasco et al. 2012;
Witte et al. 2001; Crawley et al 2001; Yu et al. 2014), and the entire
model has been validated based on American National Standards
Institute/American Society of Heating, Refrigerating and Air
Conditioning Engineers (ANSI/ASHRAE) Standard 140 (Crawley

Figure 2. Percentage of residential buildings in Harris County U.S. Census block groups (CBGs) from 2017 Harris County Appraisal District Real and
Personal Property Database. Hatched areas represent CBGs excluded from analyses because all buildings within these CBGs were identified as nonresidential
or because residential buildings could not be categorized into building archetypes used in our indoor modeling.
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et al. 2004; Henninger andWitte 2010). Thus, EnergyPlus was our
preferred building energy model to estimate daily thermal condi-
tions inside buildings across our study area.

Half-hourlymeasurements of indoor and outdoor environmental
conditions (i.e., temperature, humidity, and carbon dioxide) from
the homes of elderlyHoustonians (n=24) during the 2016 and 2017
summer months were used to parameterize EnergyPlus for model-
ing indoor thermal conditions in Houston (Baniassadi et al. 2018c).
We validated EnergyPlus for residential buildings by comparing
EnergyPlus output withmeasured indoor parameters for four homes
in Houston, Texas, and Phoenix, Arizona (Sailor et al. 2019). In our
tests, we measured indoor temperature rise after an interruption to
central AC (intentional or due to power outage) in these four homes.
EnergyPlus models predicted indoor temperature with an RMSE of
0.4°C, 0.4°C, 0.5°C, and 0.6°C for the four buildings. In line with
previous validation studies, this shows that EnergyPlus is capable of
accurately predicting indoor air temperature.

Archetype generation. Simulating daily indoor conditions for
individual buildings was not feasible in this study because of the
large study area. However, results of past studies suggest that the
thermal performance of buildings is mostly determined by a limited
number of variables such as size, building construction and design,
and type of building (detached house vs. apartment building) (Alam
et al. 2016; Baniassadi et al. 2018b; Chvatal and Corvacho 2009;
McLeod et al. 2013; Nahlik et al. 2017; Ramakrishnan et al. 2017;
Ren et al. 2014). This makes it possible to use archetype building
models to represent buildings with relatively similar characteristics.
Accordingly, we used the 2017 Harris County Appraisal District

(HCAD)Real and Personal PropertyDatabase to generate archetype
building models representing the study area’s residential building
stock. TheHCADdatabase included building variables such as prev-
alence of central AC, square footage, number of floors, exterior wall
type, and qualitative descriptions of the construction, which were
used to assess building envelop properties. Building envelop proper-
ties determine to what degree the indoor space is thermally isolated
from the outdoors, and valuations for envelop properties were used
to help us relate the thermal performance of archetype buildings to
air-exchange rates, insulation, and solar transmittance (Table S1).

We created building archetypes based on the following cate-
gories for each of the following variables: we considered four
classes of exterior wall type (brick/masonry, concrete block,
brick/veneer, and wood frame), three classes of height (1-, 2-,
and 3-story buildings), three classes of size (92m2, 140m2, and
185m2), and three classes of construction quality (low, medium,
and high). Although the resulting set of 108 archetypes excludes
some attributes (e.g., 4-story buildings), it represents 97% of resi-
dential buildings within our study domain.

Indoor Thermal Comfort Models
Once the archetypes and EnergyPlus model parameters (Table S2)
were defined, hourly meteorological data from each local climate
subregion was used with EnergyPlus (version 8.8.0) to model
hourly indoor thermal comfort for all archetypes for the entire anal-
ysis period. Occupant behavior regarding window opening and AC
usage was included in the indoor modeling work. However, we did

Figure 3. Average daily minimum ambient temperature across U.S. Census block groups in Houston (June–September, 2000–2015). HRLDAS weather data
were not available in the blank areas. HRLDAS, High-Resolution Land Data Assimilation System.
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not vary behavior across individuals and chose conservative
behaviors that were plausible. For example, in buildings without
AC, active occupants were assumed to open windows when the
outdoor temperature is 2°C cooler than indoors. In buildings with
central AC, we assumed occupants kept their homes at a constant,
comfortable temperature. The result of the EnergyPlus indoor tem-
perature model (∼ 100,000,000 time-steps each summer) was a
time series of hourly indoor temperature and relative humidity data
for all archetypes during the entire analysis period. To estimate
indoor thermal comfort at the CBG level, we calculated the per-
centage of residential buildings that correspond to each archetype
in each CBG.We used these percentages to weight the hourly time
series of indoor dry-bulb temperature and relative humidity for
each CBG. Hourly values of indoor temperature and relative hu-
midity were used to estimate the following daily exposure metrics:
daily maximum indoor temperature, daily minimum indoor tem-
perature, and daily maximum indoor discomfort index (DI).
Because Houston has a humid subtropical climate, we chose to
estimate the DI to account for the effect of humidity on adverse
health outcomes. Although the term heat index is commonly used
to communicate outdoor heat-related health risks, we chose the DI
because it was specifically developed for indoor environments and
was previously determined to be the best available metric for the
indoor environment (Baniassadi et al. 2018a; Baniassadi and
Sailor 2018). DI is the average of dry-bulb and wet-bulb tempera-
ture, and indoorDI was calculated using Equation 1.

DI =0:5× ðTdb + TwbÞ, (1)

where Tdb is the dry-bulb temperature, and Twb is the wet-bulb
temperature reported by (Stull 2011).

CBGs that reported 100% prevalence of central AC (n=494),
were assigned daily indoor temperature values of 23°C and daily
indoor DI values of 20°C. Indoor heat metrics within these CBGs
did not vary over time, and did not contribute to the estimation of
associations between indoor heat and health. Ultimately, our
indoor thermal comfort model outputted a weighted time series of
estimated daily indoor heat exposure for the summer months dur-
ing our study period (2000–2015) for all CBGs in our study area.

Statistical Analyses
Associations between indoor heat exposure and adverse health
events were assessed using conditional logistic regression in single-
exposure, time-stratified case-crossover models, matching on the
CBG of subject (hospital patient or decedent) residence, year,
month, andweekday of the adverse health event.We examined three
metrics of indoor heat exposure for their effect on health outcomes:
daily maximum indoor temperature, daily minimum indoor temper-
ature, and daily maximum DI, described previously. Associations
between indoor heat exposure and health were assessed for single
lag days (lag 0 through lag 6) and for 3-d moving averages for lags
0–2. Separatemodelswerefitted for each exposuremetric and its re-
spective lag day or moving average. Because specific diagnoses
may have different relationships with indoor heat exposure com-
paredwith broader outcome definitions,we alsofitted separatemod-
els for circulatory disease, respiratory disease, and any heat-related
disease processes. In the main analyses, we examined mortality and
emergency hospital admission data separately to evaluate the differ-
ences between these end points. Allmodels controlled formaximum
ambient temperature and maximum ambient dew point temperature
(in degrees Celsius), modeled as cubic polynomials to account for
possible nonlinear relationships with health outcomes. We chose to
control for maximum values of temperature and dew point tempera-
ture because of their known impacts on health and because these
metrics may represent outdoor exposures in Houston that pose a

higher risk for acute heat stress on a given day (Heaton et al. 2015).
Models included additional control for days on which federal holi-
days were observed and day of the warm season, modeled as a
smooth function with monthly knots across the summer season
(June–September). An interaction term between year and day of the
warm seasonwas also included to capture between-year differences.

In stratified analyses, we evaluated whether individual factors
or area-level socio-demographics modified associations between
health outcomes and 3-d moving averages of indoor heat expo-
sure metrics. For the individual factors, models were stratified by
the following strata: male or female sex; White or African
American race, and age group (65–74 y, and ≥75 y). Health
records with missing information on sex, race, or age group were
excluded from stratified analyses. Less than 0.5% of records
within outcome groupings were excluded due to missing demo-
graphic information. For area-level socio-demographic factors,
models were stratified a priori by median cut points of continu-
ous CBG-level percentage of households living below the federal
poverty line (≤15% and >15%), and CBG-level percentage of
the ≥65-y-old population living alone (≤24% and >24%). We
also stratified models by ≤60% and >60% CBG-level African
American population, representing neighborhoods with a concen-
trated minority population. CBG-level socio-demographic data
were obtained from the ACS 5-y (2010–2014) summary file.
Effect measure modification analyses were restricted to health
events among City of Houston residents and to the following
health outcomes: circulatory deaths, circulatory hospitalizations,
heat-related deaths, and heat-related hospitalizations. Evidence of
significant effect modification was assessed by estimating the
degree of heterogeneity between stratum-specific odds ratios
(ORs) in pairwise comparisons (Kaufman and MacLehose 2013).

Primary epidemiological analyses explored health risks across
CBGs that were considered part of the City of Houston in 2010
(1,522 CBGs), whereas secondary analyses explored health risks
across all Harris County CBGs (2,038 CBGs). By design, the
case-crossover approach controls for individual time-invariant
confounders given that case and control days are compared for
the same person. We also note that the above model assumes a)
adverse health events for different individuals are independent,
conditional on the variables in the model; b) all confounder
effects are CBG-specific; and c) a linear association between
indoor heat exposure and the log odds of an adverse health event.
For all models, we estimated ORs and 95% confidence intervals
(CIs) for changes in indoor exposure (e.g., maximum indoor tem-
perature, minimum indoor temperature, and maximum indoor
DI). The primary temperature increment evaluated was a 5°C
increase in indoor heat exposure, representing an approximate
interquartile range increase in indoor heat exposure from the 25th
percentile to the 75th percentile (e.g., 23°C to 28°C).

Attributable deaths. For the purpose of reporting actionable
results to our stakeholders (i.e., the Houston Health Department),
we estimated for each CBG the total number of excess heat-
related deaths that could be plausibly attributable to exposure to
high indoor heat. Heat-related deaths were the broadest health
outcome grouping used in this study and included primary diag-
noses of circulatory, respiratory, renal, and heat stroke/heat
exhaustion diagnosis sets (ICD-9-CM/ICD-10 codes itemized in
Table 1). For each day and each CBG, attributable number (AN)
of heat-related deaths were estimated using Equation 2.

ANct =
�
1− exp ð−b1 ×DIctÞ

�
× nct, (2)

where n is the total number of deaths in CBG c on day t that
could be plausibly related to heat exposure (defined in Table 1 as
heat-related), and b1 represents the log odds from our conditional
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logistic regression models. For the attributable death calculation,
b1 is defined as the log odds between 3-d moving averages of
indoor DI and heat-related deaths. DI represents the difference in
estimated daily indoor DI for each CBG compared with a refer-
ence value of 20°C. The average number of attributable deaths in
each CBG was given by the sum of the contributions from all the
days of the series.

Sensitivity analyses. In sensitivity analyses, we considered
models that controlled for daily 8-h maximum ozone concentra-
tions [modeled using a linear term for the 3-d moving average
(lag 0–2) concentration of ozone]. Results of models controlling
for ozone were compared with primary models using maximum
indoor DI and maximum indoor temperature with the same lag
structure as ozone concentrations. We also performed a series
of sensitivity analyses to assess the evidence for health effects
related to maximum indoor DI compared with models that did
not include indoor exposure data. Specifically, we used likeli-
hood ratio tests (LRTs) to evaluate whether the inclusion of 3-d
moving averages of maximum indoor DI made a significant
contribution to model fit compared with a model that only
included 3-d moving averages of ambient maximum tempera-
ture and ambient maximum dew point temperature. We also
explored the sensitivity of our primary model to covariate con-
trol by fitting models with and without control for ambient me-
teorological factors. Finally, we fitted models with only one
temperature indicator and compared estimated associations
from models with indoor DI only to models with ambient maxi-
mum temperature only. Sensitivity analyses were restricted to
heat-related deaths and heat-related hospitalizations among
City of Houston residents.

In the present article, analyses that produce p-values of ≤0:05
are considered statistically significant. However statistical signifi-
cance was only one factor we considered when interpreting
results. Positive associations are indicative of an OR>1:0. All
analyses were performed using R (version 3.4.0; R Development
Core Team). We executed case-crossover models with strata
based on individual cases using the clogit function of the survival
package in R.

Results
Table 1 presents descriptive statistics of all health outcome group-
ings explored in this analysis. Health outcome groupings were cre-
ated using primary ICD-9-CM and ICD-10 diagnostic codes. This
study included a total of 32,043 deaths (June–September, 2000–
2015) and 54,152 emergency hospital admissions (June–
September, 2004–2013) for any heat-related illnesses among Harris
County residents ≥65 years of age (Table 1). The relatively low
number ofmean daily counts reported in Table 1 reflect the specific-
ity of our outcome groupings and our focus on the ≥65-y-old
population.

During 2000–2015, summer season (June–September) daily
maximum ambient temperatures modeled by HRLDAS ranged
from 21.1°C to 47.8°C. Daily maximum indoor temperatures esti-
mated by our indoor thermal comfort models ranged from 23°C
to 48.5°C (Table 2). On average, CBGs near Houston’s urban
center had higher indoor maximum temperatures (Figure S2) and
greater variability in daily indoor maximum temperatures (Figure
S3). CBGs with no daily variation in indoor heat (n=494) did
not contribute to the estimation of associations between indoor
heat and health.

Daily maximum ambient temperature and daily maximum am-
bient dew point temperature were weakly correlated with daily
indoor heat exposure metrics for the Harris County study area
(Spearman’s q of <0:25; Table S3). To evaluate potential issues
with collinearity in our models, we estimated day-to-day correla-
tions between daily ambient maximum temperature and daily
indoor heat metrics within each CBG. Figures S4–S6 illustrate the
spatial variation and degree of correlation between indoor heat
metrics and ambient maximum temperature within each CBG.
These maps demonstrate that the strength of correlation depended
on the choice of indoor heat metric, the prevalence of central AC
within a CBG, and other characteristics of the built environment that
modify the indoor environment (Figures S4–S6). Within CBGs, the
highest correlations were observed between indoor maximum tem-
perature and outdoor maximum temperature (Spearman’s q of
0:74–0:86; Figure S4). Spearman correlations were moderate to
moderately high for indoorminimum temperature (Spearman’s q of

Table 2. Descriptive statistics for daily meteorological and indoor exposure metrics in Houston (June–September, 2000–2015).
Daily ozone (ppb), meteorological and
indoor exposure metrics (°C) Mean± SD Min p25 Median p75 Max

Max ambient temperature 34:4± 2:78 21.1 32.5 34.3 36.2 47.8
Min ambient temperature 24:1± 2:04 8.7 23.5 24.5 25.3 29.2
Max ambient dew point temperature 24:1± 2:07 7.60 23.4 24.4 25.3 37.2
Indoor max DI 22:1± 3:16 20.0 20.0 20.2 23.4 37.1
Indoor max temperature 25:5± 3:83 23.0 23.0 23.2 27.0 48.5
Indoor min temperature 23:7± 1:10 23.0 23.0 23.1 24.0 30.6

Note: Data are from all valid U.S. Census block groups in the study area (n=2,042). DI, discomfort index; max, maximum; min, minimum; p25, 25th percentile; p75, 75th percentile;
SD, standard deviation.

Table 1. Descriptive statistics for health outcome data for Harris County and the City of Houston (June–September, 2000–2015).

Health outcome groups ICD-9-CM codes ICD-10 codes

Harris Countya City of Houstonb

Total deaths
(n)

Total EHAs
(n)

Total deaths
(n)

Total EHAs
(n)

Mean daily
deaths (n)

Mean daily
EHAs (n)

Heat-related (HEAT) 390–519; 580–593; 992 I00–I99; J00–J99;
N00–N20;

T67.0–T67.9, X30

32,043 54,152 23,809 42,395 12 35

Circulatory (CIRC) 390–459 I00–I99 24,513 34,484 18,330 27,277 9 22
Respiratory (RESP) 460–519 J00–J99 5,806 14,832 4,159 11,320 2 9

Note: CBG, U.S. Census block group; CIRC, diseases of the circulatory system; EHA, emergency hospital admissions; HEAT, heat-related outcomes; ICD-9-CM, International
Classification of Diseases, Ninth Revision, Clinical Modification diagnostic codes; ICD-10, International Classification of Diseases, 10th Revision diagnostic codes; RESP, diseases of
the respiratory system.
aData are from all valid CBGs in the study area (n=2,038).
bData are from all valid CBGs in the study area (n=1,522).

Environmental Health Perspectives 127007-7 128(12) December 2020



0.43–0.74; Figure S5) and indoor maximum DI (Spearman’s q of
0.55–0.76; Figure S6). Indoor heat exposure metrics were found to
beweakly tomoderately correlatedwith common indicators of soci-
oeconomic status (Spearman’s q of <0:6; Table S4) and highly cor-
related with the percentage of households without central AC
(Spearman’s q of 0.92–1.0; Table S4). In addition, indoor tempera-
ture metrics were highly correlated with each other (Spearman’s q
of 0.93–1.00; Table S3).

Overall Analyses
Associations between HEAT and CIRC health outcomes and
indoor heat exposure for our study area are reported in Table 3.
We estimated statistically significant positive associations
between HEAT and CIRC health outcomes and indoor heat, par-
ticularly when health outcomes were defined using mortality data
compared with emergency hospital admission data [e.g., CIRC
deaths, lag 0–2, OR per 5°C maximum indoor DI= 1:31 (95%
CI: 1.10, 1.57)]. Associations were generally positive for earlier
lag periods (lag 0 through lag 2) and weaker across later lag days
(lags 3 through 6). Associations between indoor heat exposure
and emergency hospitalizations were weaker and often not statis-
tically significant compared with associations between indoor
heat exposure and mortality. ORs also tended to be slightly atte-
nuated for Harris County, compared with the City of Houston,
although differences in magnitude were very small and did not
affect overall interpretations (Table 3). Central AC prevalence
was significantly lower (two-sample t-test p<0:001) in City of
Houston neighborhoods (n=1,611) compared with Harris
County neighborhoods that are not in the City of Houston

(n=533). Given our indoor heat modeling approach, City of
Houston residents, on average, would have been assigned a
higher daily indoor heat exposure, which may partially account
for the observed stronger associations. Across all exposure met-
rics, increases in indoor heat were associated with increases in
the odds of death due to circulatory disease (Table 3).
Associations between respiratory mortality and respiratory mor-
bidity and all metrics of indoor thermal comfort were weak and
consistent with the null (Table S5).

Effect Measure Modification Analyses
Table 4 and Figures 4 and 5 present ORs between 3-d moving
averages of maximum indoor DI and health outcomes from effect
measure modification analyses. The results presented in Table 4
and Figures 4 and 5 are largely representative of findings from
effect measure modification analyses that used dry-bulb tempera-
ture metrics (maximum indoor temperature and minimum indoor
temperature) for indoor heat exposure (Figures S7 and S8, Tables
S8 and S9). We did not observe effect modification of indoor heat–
mortality associations by individual or area-level factors.
However, with regard to emergency hospital admissions, stratified
analyses suggested that African American populations were more
likely to be admitted to the hospital after indoor heat exposure com-
pared with White populations. For example, when examining
effect modification by patient race, statistically significant differen-
ces in ORs between White and African American strata were
observed at the 0.05 level for circulatory and heat-related emer-
gency hospital admissions when indoor heat exposure was defined
using 3-d moving averages of maximum DI. This pattern was

Table 3. Odds ratios (95% confidence intervals) between select health outcomes and indoor heat exposure metrics (per 5°C) for City of Houston (COH) and
Harris County residents (June–September, 2000–2015).

Heat metric/lags

HEAT diagnoses (COH) HEAT diagnoses (Harris County) CIRC diagnoses (COH) CIRC diagnoses (Harris County)

Mortality EHA Mortality EHA Mortality EHA Mortality EHA

Indoor max DI (°C)
Lag
0 1.18 (1.05, 1.34) 1.05 (0.96,1.16) 1.13 (1.01, 1.27) 1.05 (0.96, 1.14) 1.27 (1.10, 1.46) 1.04 (0.92, 1.16) 1.19 (1.04, 1.35) 1.04 (0.93, 1.16)
1 1.15 (1.02, 1.30) 1.13 (1.03, 1.24) 1.12 (1.00, 1.26) 1.10 (1.00, 1.20) 1.22 (1.06, 1.41) 1.13 (1.01, 1.28) 1.18 (1.04, 1.35) 1.10 (0.98, 1.23)
2 1.01 (0.89, 1.14) 1.03 (0.94, 1.14) 1.01 (0.90, 1.13) 1.01 (0.92, 1.10) 1.06 (0.92, 1.21) 1.04 (0.92, 1.17) 1.04 (0.92, 1.19) 1.01 (0.91, 1.13)
3 0.98 (0.86, 1.10) 1.04 (0.94, 1.14) 1.01 (0.90, 1.13) 1.02 (0.94, 1.12) 0.99 (0.86, 1.13) 1.04 (0.92, 1.17) 1.02 (0.90, 1.17) 1.03 (0.92, 1.15)
4 0.94 (0.83, 1.06) 0.98 (0.89, 1.07) 0.97 (0.86, 1.09) 0.95 (0.87, 1.04) 0.96 (0.84, 1.10) 0.98 (0.88, 1.10) 0.97 (0.85, 1.11) 0.94 (0.84, 1.05)
5 0.95 (0.84, 1.08) 0.96 (0.88, 1.05) 0.96 (0.85, 1.08) 0.92 (0.85, 1.04) 0.96 (0.83, 1.10) 0.98 (0.87, 1.10) 0.98 (0.86, 1.12) 0.93 (0.84, 1.04)
6 0.90 (0.80, 1.02) 0.95 (0.87, 1.04) 0.90 (0.81, 1.02) 0.94 (0.86, 1.02) 0.90 (0.79, 1.04) 0.97 (0.86, 1.08) 0.91 (0.80, 1.03) 0.93 (0.84, 1.04)
0–2 1.20 (1.02, 1.40) 1.12 (0.99, 1.26) 1.14 (0.99, 1.32) 1.08 (0.97, 1.21) 1.31 (1.10, 1.57) 1.12 (0.96, 1.30) 1.22 (1.04, 1.44) 1.08 (0.94, 1.24)

Indoor max temp (°C)
Lag
0 1.11 (1.02, 1.20) 1.03 (0.97, 1.09) 1.08 (1.00, 1.17) 1.03 (0.97, 1.09) 1.14 (1.04, 1.25) 1.03 (0.95, 1.11) 1.10 (1.01, 1.20) 1.03 (0.96, 1.11)
1 1.08 (1.00, 1.17) 1.08 (1.02, 1.15) 1.07 (0.99, 1.15) 1.07 (1.01, 1.14) 1.12 (1.02, 1.23) 1.10 (1.02, 1.18) 1.10 (1.01, 1.20) 1.08 (1.01, 1.16)
2 0.98 (0.91, 1.06) 1.03 (0.97, 1.10) 0.98 (0.91, 1.06) 1.02 (0.96, 1.08) 1.01 (0.92, 1.11) 1.05 (0.97, 1.13) 1.00 (0.92, 1.09) 1.03 (0.96, 1.11)
3 0.97 (0.89, 1.05) 1.03 (0.97, 1.10) 0.99 (0.92, 1.07) 1.03 (0.97, 1.09) 0.98 (0.89, 1.07) 1.05 (0.97, 1.13) 1.00 (0.92, 1.09) 1.04 (0.97, 1.12)
4 0.94 (0.87, 1.02) 1.00 (0.94, 1.07) 0.95 (0.88, 1.03) 0.99 (0.93, 1.05) 0.96 (0.88, 1.05) 1.01 (0.94, 1.09) 0.96 (0.88, 1.05) 0.99 (0.92, 1.06)
5 0.95 (0.88, 1.03) 0.99 (0.93, 1.05) 0.95 (0.88, 1.03) 0.97 (0.92, 1.02) 0.97 (0.88, 1.06) 0.99 (0.92, 1.07) 0.98 (0.90, 1.06) 0.97 (0.90, 1.04)
6 0.93 (0.86, 1.01) 0.99 (0.94, 1.05) 0.93 (0.86, 1.00) 0.98 (0.92, 1.03) 0.93 (0.85, 1.02) 0.99 (0.92, 1.07) 0.93 (0.85, 1.01) 0.97 (0.90, 1.04)
0–2 1.10 (0.99, 1.22) 1.08 (0.99, 1.17) 1.07 (0.98, 1.18) 1.07 (0.99, 1.15) 1.16 (1.03, 1.30) 1.09 (0.99, 1.21) 1.11 (1.00, 1.24) 1.08 (0.98, 1.19)

Indoor min temp (°C)
Lag
0 1.11 (0.90, 1.36) 1.06 (0.91, 1.23) 1.03 (0.85, 1.24) 1.03 (0.90, 1.18) 1.26 (1.00, 1.58) 0.97 (0.80, 1.16) 1.16 (0.93, 1.44) 0.95 (0.80, 1.13)
1 1.23 (1.01, 1.51) 1.04 (0.90, 1.20) 1.18 (0.97, 1.42) 0.99 (0.86, 1.14) 1.30 (1.03, 1.63) 1.02 (0.85, 1.22) 1.22 (0.98, 1.51) 0.98 (0.83, 1.17)
2 1.08 (0.88, 1.33) 1.07 (0.92, 1.24) 1.08 (0.89, 1.31) 1.03 (0.90, 1.18) 1.13 (0.90, 1.43) 1.05 (0.88, 1.26) 1.13 (0.91, 1.40) 1.01 (0.85, 1.20)
3 1.02 (0.83, 1.25) 0.99 (0.85, 1.14) 1.04 (0.86, 1.25) 0.95 (0.83, 1.09) 1.05 (0.83, 1.32) 0.98 (0.82, 1.18) 1.07 (0.86, 1.33) 0.94 (0.79, 1.11)
4 0.92 (0.75, 1.12) 0.99 (0.86, 1.14) 0.96 (0.80, 1.16) 0.93 (0.81, 1.06) 0.93 (0.74, 1.17) 0.98 (0.82, 1.17) 1.00 (0.81, 1.24) 0.91 (0.77, 1.08)
5 0.93 (0.76, 1.14) 0.98 (0.85, 1.13) 0.95 (0.79, 1.15) 0.95 (0.83, 1.08) 0.90 (0.72, 1.13) 1.02 (0.85, 1.21) 0.93 (0.75, 1.15) 0.99 (0.84, 1.17)
6 1.10 (0.90, 1.35) 1.02 (0.88, 1.17) 1.10 (0.91, 1.33) 1.02 (0.89, 1.17) 1.03 (0.82, 1.29) 1.07 (0.89, 1.28) 1.02 (0.83, 1.27) 1.07 (0.91, 1.27)
0–2 1.22 (0.95, 1.57) 1.09 (0.90, 1.31) 1.15 (0.90, 1.45) 1.02 (0.86, 1.22) 1.37 (1.03, 1.82) 1.02 (0.81, 1.29) 1.26 (0.97, 1.66) 0.97 (0.78, 1.21)

Note: Mortality data were available 2000–2015; EHA data were available 2004–2013. Odds Ratios were derived from single-exposure, time-stratified case-crossover models (condi-
tional logistic regression), that matched on census block group of subject residence, year, month, and weekday of the adverse health event. Models controlled for federal holidays, day
of the warm season, maximum ambient temperature and maximum ambient dew point temperature (in degrees Celsius, modeled as cubic polynomials). CIRC, diseases of the circula-
tory system; COH, City of Houston; DI, discomfort index; EHA, emergency hospital admission; HEAT, heat-related illnesses; max, maximum; min, minimum; temp, temperature.
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Table 4. Odds ratios (95% confidence intervals) between 3-d moving averages of maximum DI and health outcomes stratified by individual and neighborhood
factors for City of Houston residents (June–September, 2000–2015).
Strata CIRC deaths p-Valuea HEAT deaths p-Valuea CIRC EHA p-Valuea HEAT EHA p-Valuea

Sex
Female 1.16 (0.92, 1.47) 1.17 (0.95, 1.44) 1.08 (0.89, 1.31) 1.14 (0.97, 1.33)
Male 1.52 (1.17, 1.99) 0.13 1.23 (0.98, 1.55) 0.72 1.17 (0.92, 1.50) 0.60 1.09 (0.90, 1.32) 0.73

Age group (y)
65–74 1.55 (1.11, 2.17) 1.41 (1.05, 1.90) 1.14 (0.90, 1.44) 1.11 (0.92, 1.34)
>74 1.25 (1.01, 1.53) 0.28 1.14 (0.95, 1.36) 0.22 1.11 (0.91, 1.36) 0.88 1.13 (0.96, 1.32) 0.91

Race
White 1.39 (1.07, 1.81) 1.19 (0.94, 1.49) 0.89 (0.65, 1.20) 0.90 (0.71, 1.15)
African American 1.41 (1.07, 1.86) 0.96 1.36 (1.06, 1.73) 0.43 1.34 (1.05, 1.71) 0.04 1.24 (1.02, 1.51) 0.04

CBG percentage
African Americanb

≤60 1.39 (1.11, 1.73) 1.16 (0.96, 1.41) 1.01 (0.84, 1.22) 1.01 (0.87, 1.17)
>60 1.49 (1.05, 2.12) 0.72 1.59 (1.16, 2.17) 0.1 1.41 (1.04, 1.93) 0.07 1.43 (1.11, 1.84) 0.02

CBG percentage
below povertyc

≤15 1.46 (0.91, 2.33) 1.28 (0.85, 1.93) 1.17 (0.78, 1.76) 1.07 (0.78, 1.49)
>15 1.43 (1.16, 1.76) 0.94 1.29 (1.07, 1.55) 0.9 1.12 (0.93, 1.34) 0.83 1.12 (0.97, 1.30) 0.82

CBG percentage
living aloned

≤24 1.22 (0.93, 1.59) 1.17 (0.93, 1.48) 1.14 (0.92, 1.43) 1.15 (0.96, 1.38)
>24 1.41 (1.12, 1.78) 0.42 1.23 (1.00, 1.51) 0.77 1.09 (0.89, 1.35) 0.78 1.10 (0.93, 1.30) 0.72

Note: Mortality data were available 2000–2015; EHA data were available 2004–2013. Odds Ratios were derived from single-exposure, time-stratified case-crossover models (condi-
tional logistic regression), that matched on U.S. CBG of subject residence, year, month, and weekday of the adverse health event. Models controlled for federal holidays, day of the
warm season, maximum ambient temperature and maximum ambient dew point temperature (in degrees Celsius, modeled as cubic polynomials). CBG, U.S. Census block group;
CIRC, diseases of the circulatory system; EHA, emergency hospital admission; HEAT, heat-related illnesses; OR, odds ratio.
aStatistical evidence for effect modification was assessed by estimating the degree of heterogeneity between stratum-specific ORs in pairwise comparisons (Kaufman and MacLehose
2013). Referent groups for each stratum were female sex, 65- to 74-y-old age group, White race, ≤60% African American, ≤60% poverty, ≤24% live alone.
bCBG-level percentage of households living below the federal poverty line.
cCBG percentage of the ≥65-y-old population living alone.
dCBG percentage of the population that identifies as African American.
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Figure 4. Estimated ORs and 95% CIs per 5°C increase between 3-d moving averages of maximum indoor DI and health outcomes stratified by individual factors
for City of Houston residents (June–September, 2000–2015). ORs were derived from single-exposure, time-stratified case-crossover models (conditional logistic
regression), that matched on U.S. Census block group of subject residence, year, month, and weekday of the adverse health event. Models controlled for maximum
ambient temperature and maximum ambient dew point temperature (°C) with cubic polynomials, federal holidays, day of the warm season, modeled as a smooth
function with monthly knots across the summer season (June–September). An interaction term between year and day of the warm season was also included to cap-
ture between-year differences. Mortality data were available 2000–2015; EHA data were available 2004–2013. See Table 4 for corresponding numeric data. Note:
CI, confidence interval; CIRC, circulatory diagnoses; DI, discomfort index; EHA, emergency hospital admissions; HEAT, heat-related diagnoses; OR, odds ratio.
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not observed when considering mortality outcomes (Figure 4,
Table 4). Likewise, at the neighborhood level, we observed signifi-
cantly stronger associations between 3-d moving averages of
indoor heat exposure and health outcomes in neighborhoods that
were predominantly (>60%) African American compared with
neighborhoods with fewer African Americans (≤60%) (Figure 5;
Table 4; Figures S7 and S8; Tables S8 and S9).We did not find sta-
tistical evidence for effect modification by subject sex (male vs.
female), advanced age (>74 y), percentage living below the fed-
eral poverty level, or the percentage of the elderly population living
alone (Figures 4 and 5; Table 4).

Attributable Deaths and Risk Communication
Although reporting ORs is ideal for summarizing the association
between indoor heat and health, such relative measures of associ-
ation offer limited information on the actual health burden of
indoor heat and are not very useful to HOME-AIR stakeholders
in the City of Houston. Therefore, we report an estimate of
the excess number of heat-related deaths (outcome defined in
Table 1) attributable to indoor heat for each CBG in our study
area. By providing this information, City of Houston public
health practitioners can better understand which populations are
at greater risk of heat-related health effects and which neighbor-
hoods experience the greatest health burden—information that is
critical for the planning and evaluation of public health interven-
tions. Figure 6 shows the average number of excess heat-related
deaths attributable to exposure to high indoor heat for each CBG
in Harris County. This risk map demonstrates that populations

living in neighborhoods that are predominately nonwhite, of
lower socioeconomic status, and with less prevalence of central
AC have the greatest risk of dying due to indoor heat exposure
compared with other populations. Based on Figure 6, neighbor-
hoods in East Houston and North Central Houston appear most
vulnerable to indoor heat. Between 2000 and 2015, we estimate
that ∼ 2,293 excess deaths (95% CI: 358, 6,116) among the
≥65-y-old population were attributable to exposure to indoor
heat during the summer months. This translates to ∼ 143 (95%
CI: 22, 382) excess deaths in the ≥65-y-old population each
summer due to high indoor heat.

Sensitivity Analyses
We performed a series of sensitivity analyses to assess whether
indoor heat effect estimates would change when controlling for
daily ozone concentrations and, importantly, to explore whether
the inclusion of indoor heat exposure made a significant impact
on model fit. Indoor heat exposure effect estimates were not sen-
sitive to the addition of daily 8-h maximum ozone concentrations
to primary models (Table S6), suggesting that ambient ozone (or
unmeasured confounders) were not contributing significantly to
the observed effect estimates between indoor heat and health.
Based on these findings, we did not include control for ambient
ozone in primary epidemiological models.

We used LRTs to compare primary models with models that
did not include a term for indoor heat exposure. Based on LRTs
and p-values, when examining heat-related deaths, primary mod-
els performed marginally better than models without indoor heat
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Figure 5. Estimated ORs and 95% CIs per 5°C increase between 3-d moving averages of maximum indoor DI and health outcomes stratified by U.S. Census
block group (CBG) socio-demographic factors for City of Houston residents (June–September, 2000–2015). ORs were derived from single-exposure, time-
stratified case-crossover models (conditional logistic regression) that matched on CBG of subject residence, year, month, and weekday of the adverse health
event. Models controlled for maximum ambient temperature and maximum ambient dew point temperature (°C) with cubic polynomials, federal holidays, day
of the warm season, modeled as a smooth function with monthly knots across the summer season (June–September). An interaction term between year and day
of the warm season was also included to capture between-year differences. Mortality data were available 2000–2015; EHA data were available 2004–2013. See
Table 4 for corresponding numeric data. Note: CI, confidence interval; CIRC, circulatory diagnoses; DI, discomfort index; EHA, emergency hospital admis-
sions; HEAT, heat-related diagnoses; OR, odds ratio.
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exposure terms (p=0:023). LRTs and p-values from sensitivity
analyses are reported in Table S7.

The primary model used throughout this analysis included an
indicator of indoor heat as the exposure metric and controlled for
ambient maximum temperature, ambient dew point temperature,
and time-varying confounders. We controlled for outdoor heat ex-
posure to compare hypothetical individuals with the same outdoor
temperature to those with higher indoor heat exposure. However
these variables may be highly correlated. To assess any issues due
to possible collinearity, we fittedmodels that removed ambient me-
teorological control and compared estimated associations and con-
fidence intervals. For mortality outcomes, mean ORs from primary
models were larger [e.g., OR per 1°C maximum indoor DI= 1:04
(95% CI: 1.00 1.07) compared with models that removed ambient
temperature control [e.g., OR per 1°C maximum indoor DI= 1:02
(95% CI: 0.99, 1.05), and standard error estimates were very simi-
lar across model configurations (Table S10). When estimating
associations between indoor heat and hospital admissions, mean
ORs and 95% CIs were the same regardless of meteorological con-
trol (Table S10). These findings suggest that potential collinearity
between explanatory variables did not overly influencemean effect
estimates nor their associated uncertainties.

Given that our study population likely spends the majority
of their time indoors at home, we compared estimated associa-
tions from models with an indoor heat metric only (no ambient

temperature control) to models with ambient maximum temper-
ature as the exposure of interest. Table S11 reports ORs and
95% CIs from these analyses. For heat-related mortality and
heat-related hospital admission outcomes, models that included
indoor DI only estimated larger associations [e.g., HEAT
deaths, OR per 1°C maximum indoor DI= 1:023 (95% CI:
0.994, 1.051)] than models that fit ambient maximum tempera-
ture as the exposure of interest [e.g., HEAT deaths, OR per 1°C
maximum ambient temperature = 0:994 (95% CI: 0.987, 1.004)].
These findings suggest that indoor heat metrics may be more rele-
vant for the ≥65-y-old population in Houston compared with am-
bient heat metrics.

Discussion
In the present study, we used a novel methodology to estimate
daily indoor heat exposure and a TS-CCO approach to evaluate
the short-term effects of indoor heat exposure on health out-
comes among older adults in the Houston metropolitan area.
Few studies have estimated the health impacts of indoor heat
among vulnerable populations, and, to our knowledge, this is
the first study to use building energy models to estimate daily
indoor heat exposure for use in an epidemiological model. The
modeling approach presented in this research can help inform
future studies, and the findings add to the small, yet growing

Figure 6. Estimated number of heat-related deaths attributable to exposure to high indoor heat during the summer months (June–September) for each U.S.
Census block group (CBG) in Harris County between 2000 and 2015. To map the estimated number of deaths across our study area, we used effect estimates
between heat and mortality for City of Houston residents. Hatched areas represent CBGs excluded from analyses because all buildings within these CBGs
were identified as nonresidential or because residential buildings could not be categorized into building archetypes used in our indoor modeling.
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body of literature on climate-related health effects among sensi-
tive subpopulations.

Overall Analyses
In overall analyses, we estimated statistically significant associa-
tions between indoor heat and adverse health outcomes, espe-
cially for circulatory and any heat-related deaths among City of
Houston residents ≥65 years of age. Despite some evidence for
increases in respiratory distress due to ambient heat exposure
(Anderson et al. 2013; Gronlund et al. 2014; Lin et al. 2009;
McCormack et al. 2016; Winquist et al. 2016), we did not find
evidence of an association between respiratory diseases and
short-term exposure to indoor heat in the present study. This may
be due to the small number of cases in the respiratory outcome
group (Table 1) and to limited power to detect associations. It is
also possible that ambient exposure is more relevant for respira-
tory disease given that ambient heat exposure may also involve
exposure to outdoor pollutants, many of which are well-known
respiratory irritants.

For all exposure metrics, associations were consistently weaker
for emergency hospital admissions compared with mortality out-
comes. These findings differ from a recent Houston-based study on
the 2011 heat wave that reported stronger associations between heat
waves and emergency department visits compared with mortality
outcomes (Zhang et al. 2015). It is possible that many of the heat-
related deaths occurred at home and would, therefore, have a stron-
ger relationship with indoor conditions. Unfortunately, we do not
have data on where deaths occurred or if a patient admitted to the
hospital was at home or elsewhere prior to the health event. In addi-
tion, earlier lag periods were the most important exposure periods
from a health standpoint. These findings align with the ambient
heat–health literature that often report stronger associations between
heat and mortality/morbidity for earlier lag periods (Anderson and
Bell 2009; Guo et al. 2017; Ye et al. 2012). In the present study,
ORs between indoor heat and mortality were largest on lag day 0
and decreased over subsequent lag days. For emergency hospital
admissions, ORs usually peaked around lag day 1 and decreased
over subsequent lag days. Although estimates from single day lags
likely correlate with one another, and differences may be due to
chance, there also appears to be a robust cumulative effect of indoor
heat onmortality as evidenced by the increasing strength of associa-
tion for 3-d moving average periods. These findings suggest that the
elderly are at risk for increased mortality when temperatures are
high, on average, for several days. For the elderly population in
Houston, Heaton et al. (2019) reported different lagged effects of
heat depending on age: For example, persons closer to 65 years of
age did not appear overly vulnerable to heat across lag days
0 through 3. However, for persons near 78 years of age, high heat
was associated with increases in mortality on lag day 0, and persons
≥85 years of age were impacted by heat at all lag periods examined
(lags 0 through 3) (Heaton et al. 2019). Owing to data limitations,
we could not stratify our models by age; however, the use of a 3-d
moving average (lag day 0–2)metric allowed us to capture exposure
across these earlier lag periods and the cumulative effect of pro-
longed exposure to high heat across the≥65-y-old population.

When comparing our findings to recent U.S.-based studies,
and a Houston study in particular, patterns of association between
indoor heat and mortality (e.g., positive associations at early lag
periods) largely align with associations reported in the ambient
heat–mortality literature (Anderson and Bell 2009; Basu 2009;
Gasparrini and Armstrong 2011). However differences in the
magnitude of the reported associations are noted. For example,
Anderson and Bell (2009) reported a 3.0% (95% CI: 2.4%, 3.6%)
increase in mortality risk across 107 U.S. communities compar-
ing the 99th and 90th percentile temperatures (Anderson and Bell

2009); Basu and Malig (2011) reported an increased risk of 4.3%
(95% CI: 3.4%, 5.2%) per 5.6°C increase in ambient apparent
temperature in California (Basu and Malig 2011). Notably,
Zhang et al. (2015) reported an excess risk of mortality of only
0.1% (95% CI: −7:0%, 7.8%) due to the 2011 heat wave in the
≥65-y-old Houston population. Using stricter heat wave defini-
tions, excess risk of mortality increased to 6.3% (−27:1%,
54.8%) (Zhang et al. 2015) In contrast, excess risks of mortality
per 5°C increase in indoor heat exposure reported here for City of
Houston residents range from 10% (95% CI: −1%, 22%) to 22%
(95% CI: −5%, 57%) depending on the indoor heat metric [e.g.,
an increase in heat-related mortality risk of 20% (95% CI: 2%,
40%) per 5°C indoor DI]. Differences in magnitude between this
study and previous ambient heat–health studies can be attributed
to many factors, including modeling approach, exposure metrics,
scaling factors, and time-period, as well as the generalizability of
the findings to other age groups and locations. Although there are
important differences between this study and the study by Zhang
et al. (2015), we estimated associations between heat and mortal-
ity for a similar population. Thus, differences in magnitude of
excess risk of mortality may reflect the relative importance of
capturing indoor exposure among older adults in Houston who
likely spend the majority of their time indoors and at home.

Indoor Heat Metrics
When comparing findings across three different indoor heat expo-
sure metrics (i.e., indoor maximum DI, maximum indoor temper-
ature, and minimum indoor temperature), we observed several
important similarities across these metrics. Namely, patterns of
association tended to be similar for indoor DI and indoor maxi-
mum temperature and largely tracked with overall findings (i.e.,
weak associations with emergency hospital admissions, stronger
associations in early lag periods) (Table 3). In the ambient heat–
health literature, it is considered best practice to account for the
impact of humidity on health either by including it in the main
exposure metric (e.g., apparent temperature) or by controlling for
it in the model. In the present study, we used indoor DI to
account for the influence of indoor humidity on the association
between indoor heat and health. Although the DI was determined
to be the best available metric for the indoor environment for this
type of analysis (Baniassadi et al. 2018a; Baniassadi and Sailor
2018), it is uncommonly used by the general public to assess per-
sonal heat exposure. However, smart home devices and/or simple
phone or tablet apps can translate dry-bulb temperature and rela-
tive humidity (commonly reported on thermostats or smart home
devices) into more meaningful exposure metrics such as the DI in
real time. If access to a thermostat/outdoor thermometer and
smart phone is limited, it would be challenging for the average
person to determine their indoor heat exposure, both broadly
speaking and in the context of the DI.

With the exception of circulatory deaths, ORs between mini-
mum indoor temperature and health outcomes were weak and
consistent with the null. It is worth noting that one possible ex-
planation for attenuated estimates and wide CIs could be due to
less variability in indoor minimum temperature across time and
space compared with the other indoor heat metrics (standard
deviation of 1.1 compared with 3.8 for maximum indoor temper-
ature; Table 2). For all three exposure metrics, an increase in
indoor heat was associated with an increase in the odds of death
due to circulatory disease (Table 3) and suggest that elevated
indoor temperatures/indoor heat exposure may play a role in dis-
ease processes that lead specifically to circulatory-related deaths.
Disease processes in our circulatory-outcome group included
high blood pressure, ischemic heart disease, myocardial infarc-
tion, heart failure, and stroke. When exposed to extreme heat,
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older adults have an altered response (compared with younger
adults) during passive heating that manifests as attenuated blood
flow and attenuated cardiac output, resulting in excess central
cardiovascular strain, impaired thermoregulation, and attenuated
evaporative heat loss (Kenney et al. 2014). These heat-induced
stressors on the cardiorespiratory system could initiate a cascade
that leads to circulatory mortality or morbidity, particularly for
individuals with underlying circulatory disease. In our data, cir-
culatory diseases made up the majority of total hospitalizations
(64%) and deaths (77%) within the heat-related outcome grouping
(Table 1) and may partially explain why the magnitudes and pat-
terns of association were similar for circulatory and heat-related
mortality/morbidity when comparing ORs for a given indoor heat
metric, lag period, and study area. In the present analysis, only
primary causes of mortality/morbidity were considered. Given
that deaths due to circulatory diseases were statistically signifi-
cant with indoor heat exposure metrics, the use of only primary
causes of death could underestimate associations between indoor
heat and mortality.

Relationship between Indoor Heat, Ozone, and Indoor
Pollutants/Allergens
In the present study we did not consider tropospheric ozone as a
confounder of the ambient temperature–health relationship, rather
we considered it to be along the causal pathway (a causal inter-
mediate) and influenced by ambient temperature (see directed
acyclic graph; Figure S9A). Similar assessments on the role of
tropospheric ozone in studies of temperature and health have
been reported (Buckley et al. 2014; Reid et al. 2012). However,
when evaluating the relationship between indoor heat and health,
we did consider the possibility that ambient ozone may be pene-
trating indoors, especially if occupants are opening their windows
to cool their homes. This may be especially true in CBGs with
low prevalence of central AC. Under this scenario, indoor ozone
levels could be elevated and coincide with high indoor heat, and
this co-occurrence would likely be differential across CBGs and
socioeconomic subgroups and may have differentially impacted
health for population subgroups. Although ozone was not consid-
ered a confounder of the relationship between indoor temperature
and health in the present study, controlling for ozone in health
models may control for confounding by other unmeasured factors
(see directed acyclic graph; Figure S9B). In sensitivity analyses,
we observed nominal changes in effect estimates (Table S6)
when controlling for ambient ozone, indicating that ozone (or
unmeasured confounders) was not contributing significantly to
estimated associations between indoor heat and health.

Related to the discussion above, whereas it is likely that other
indoor environmental factors (e.g., particulate matter, household
allergens, indoor gaseous pollutants) contribute to adverse health
outcomes among our study population, we did not consider them
to be confounders of the indoor heat–health relationship because
they would be unlikely to influence indoor temperatures, either
directly or indirectly. However, ambient temperature, and, by
extension, indoor temperature, may affect particulate matter lev-
els, mold growth, and aerosol chemistry of the indoor environ-
ment. These unmeasured indoor environmental factors could be
considered on the causal pathway (causal intermediates) between
indoor heat and health. Therefore, we assume that the associa-
tions we estimated between indoor heat and health reflect the
total effect of indoor heat on health, including that which may be
mediated by indoor environmental factors. Furthermore, one of
the advantages of using the TS-CCO design is that it inherently
controls for an individual’s time-invariant confounders given that
case and control days are compared for the same person. For
example, we could assume that unmeasured time-invariant

confounders (e.g., proximity to roadway, occupation, cooking
habits) would be relatively stable over time, and thus any poten-
tial confounding effects would be controlled for within the TS-
CCO model.

Effect Measure Modification Analyses
In stratified analyses, associations between indoor heat and emer-
gency hospital admissions were significantly stronger among
African Americans compared with Whites and among residents
of CBGs with higher proportions of African Americans.
However, these differences should be interpreted with care
because they may be at least partly due to differences in hospital
utilization rates between White and African American residents.
Although it is outside the scope of this study to investigate mech-
anisms underlying heat vulnerability by race/ethnicity, previous
studies have reported evidence of heat-related health disparities
between White and African American populations that were
hypothesized to be due in part to AC access (O’Neill et al. 2003,
2005). Gronlund observed that, in the United States, race inter-
sects with additional indicators of vulnerability and argued that
disparities in heat-associated mortality and morbidity may be
attributed to additional factors such as low socioeconomic status,
lack of transportation, preexisting health conditions, and living in
areas of intense urban development (Gronlund 2014). Houston is
considered one of the most diverse cities in the country; a better
understanding of how race and ethnicity intersect with heat-
related health outcomes is critical to public health intervention
efforts and should be an active area of research, particularly in
southern U.S. cities. We were able to compare estimated health
effects between White and African American residents, but there
were too few cases in other race/ethnicity categories. We did not
find statistical evidence for effect modification by sex (male vs.
female), advanced age (>74 years old), percentage living below
the federal poverty level, or the percentage of the elderly popula-
tion living alone. Although we evaluated effect modification by
neighborhood-level percentage below poverty and percentage liv-
ing alone, individual-level measures might have been better indi-
cators of vulnerability. In general, our ability to evaluate effect
modification was limited by the small numbers of outcomes
within the subgroups of interest.

Considerations for Future Analyses
Although LRTs demonstrated some model improvement by
including indoor heat exposure, the differences were marginally
significant. In addition, modeled indoor heat was very highly cor-
related with the percentage of households without central AC
(Spearman’s q of 0.92–1.0; Table S4). This is, in part, because
data on variation in AC functionality and operation was not avail-
able. Nevertheless, one could argue that these findings suggest
that in cities with high AC prevalence, simplified modeling
approaches may adequately account for potential indoor heat ex-
posure in vulnerable neighborhoods and could be employed to
evaluate the impact of indoor heat on health. For example, when
AC prevalence is high, a reasonable alternative to complex
indoor modeling could be to include fine-scale AC prevalence as
an effect modifier of the ambient temperature–health association.
These are important findings given the intensive nature of the
modeling performed for this study and the engineering expertise
needed to inform EnergyPlus models. Although a simplified
approach would greatly reduce the computational burden, and
perhaps be more accessible to a greater number of researchers, it
may not be appropriate for all study locations. For example, in
locations with lower AC prevalence (e.g., Boston, Portland) other
housing characteristics such as insulation level become more
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relevant, and detailed indoor modeling would be more impactful.
Future building energy and indoor heat modeling research could
elucidate alternative modeling approaches and help inform indoor
heat–health analyses, particularly in study locations with low AC
prevalence.

In addition, the indoor modeling approach undertaken for this
study would have benefited greatly from additional data, which
would have allowed indoor heat exposure to vary over time in
neighborhoods with 100% central AC prevalence. Data that could
be used to improve estimation and reduce exposure misclassifica-
tion error include building or area-level window AC prevalence,
the occurrence of any power outages over the study period, AC
functionality and operational status, and occupant behavior and
ability/willingness to use central AC, as well as more detailed
data on housing characteristics and vegetative cover near residen-
ces. Unfortunately, these data are not easily accessible and may
be very challenging to obtain, especially at the household level.

Limitations
Our ability to examine the impact of indoor heat on health among
the elderly population was facilitated by a long 16-y study period;
rich, patient-level data; and a novel methodology to model daily
indoor heat exposure. Importantly, we validated the building mod-
els used in this study against measured data from four residential
units in two cities (Houston and Phoenix) under different outdoor
temperature profiles (Sailor et al. 2019). However, additional con-
siderations should be acknowledged when interpreting results.
First, this study considered many different statistical hypotheses,
and we did not make adjustments to statistical significance to
account for multiple testing. Therefore, it is possible that small dif-
ferences in effect across different lag days and indoor heat metrics
may be the result of chance.We did not consider secondary or terti-
ary causes of mortality/morbidity; magnitudes and patterns of
association could differ with the use of secondary and tertiary diag-
noses. In addition, our indoor heat models used ambient meteoro-
logical data that were averaged to the area level (climate
subregions). Nevertheless, dividing the study area into five subre-
gions for building models provided some spatial variation in the
weather data input for the building energy models and gave us a
higher resolution than the established typical meteorological year
method that is the standard approach in building energy compli-
ance simulations (Bhandari et al. 2012). Related to our indoormod-
eling process, three types of aggregation in this study may have
induced exposure misclassification error: a) aggregating meteoro-
logical data to the local climate subregion scale; b) distilling thou-
sands of different building configurations into 108 building
archetypes; and c) weighting of indoor exposure metrics to the
CBG level. We expect exposure misclassification error from these
sources to be minimal and nondifferential across our study popula-
tion given that our analysis related daily changes in indoor temper-
ature to health outcomes and that day-to-day variation in ambient
and indoor temperature/heat exposure for the entire study area was
well captured by ourmethods.

Although the present study aspired to account for different
types of occupant behavior in our indoor modeling work, we did
not have the necessary data to capture spatial variation in window
operation among different age and income groups, nor did we
have an understanding of how other behaviors that influence
indoor heat exposure (e.g., temperature settings, use of curtains/
blinds, response to power outages) vary for our study population.
However, EnergyPlus is capable of modeling a wide range of
occupant behavior, and detailed household level survey data can
be used to inform operation schemes, and model a variety of
experiences (O’Lenick et al. 2019). Perhaps the most problematic
assumption—resulting in a conservative estimate of the impact of

indoor heat exposure on health—with our indoor heat model is
that a building with central AC will always be adequately cooled.
We know this assumption is not valid because a population-based
survey we performed among the elderly population reported that
approximately 20% of older Houstonians feel too hot in their
homes despite having centralized AC. Undersized AC units
resulting in poor performance, financial constraints, or maladap-
tive behaviors may prevent our study population from using their
central AC to keep their homes adequately cooled. However, this
study was not able to account for different factors influencing AC
utilization and assumed that buildings with central AC were kept
at a constant, comfortable temperature. We expect this type of ex-
posure misclassification to bias toward the null and underestimate
the effect of indoor heat on health. Another impact of this
assumption is that it resulted in no temporal variation in indoor
heat values for CBGs that reported 100% prevalence of central
AC. These CBGs did not contribute to the estimation of associa-
tion between indoor heat and health and may have impacted the
generalizability of our findings. Ongoing work by our research
group is exploring ways to examine stochastic elements in indoor
modeling and capture the effect of AC systems that are under-
sized or otherwise performing poorly (Baniassadi et al. 2020).
Future work will integrate estimates of conditions in homes with
partially functioning AC to more accurately represent indoor
environmental conditions.

Conclusion
Despite findings from heat wave–mortality studies that implicate
indoor environments as a place where hazardous exposure to heat
occurs, very few population-based heat–health studies account for
indoor heat exposure. Thus, the impact of heat on health is likely
underestimated and knowledge gaps regarding indoor heat–health
thresholds, vulnerability, and adaptive capacity remain. In this
analysis, we outline a novel methodology to estimate indoor heat
exposure and explore the impacts of indoor heat on mortality and
morbidity among the elderly population in Houston, Texas. Our
findings suggest that short-term exposures to high indoor heat are
associated with increased adverse health outcomes, especially
deaths, among the older Houston population. Additional key find-
ings from this study include the following: a) in study locations
with high AC prevalence, simpler modeling approaches than the
one presented here may adequately account for potential indoor
heat exposure; b) additional data is necessary to better understand
variation in indoor thermal conditions, particularly for homes with
central AC; and c) certain populations and demographic groups ex-
perience high indoor heat. These exposures are important to con-
sider to develop more informed risk assessments and better
estimate the total impact of heat on health.

In Houston, ambient heat has been associated with increases in
emergency hospitalizations (Zhang et al. 2015), increases in 911
calls (Heaton et al. 2015), and increased mortality (Chien et al.
2016; Heaton et al. 2019). Global and regional climatemodels sug-
gest that Houston will have more heat stress days and nights
(Oleson et al. 2015), and Houston is expected to experience
increases in nonaccidental mortality above historical reference
periods due to future climate and demographic shifts (Marsha et al.
2018; Rohat et al. 2019). Given the projected impacts in Houston
and across the United States, a better understanding of the interac-
tions between indoor and outdoor temperature, population vulner-
ability, and adaptive capacity is necessary to protect human health.
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