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ABSTRACT OF THE THESIS 

 

Video Segmentation for Cardiac Analysis in Embryonic Zebrafish Using Deep Learning 
by 

Amir mohammad Naderi 

Doctor of Philosophy in Electrical Engineering and Computer Science 

University of California, Irvine, 2023 

Professor Hung Cao, Chair 

 

 

Deep learning-based models have revolutionized biomedical image and video 

segmentation, enabling precise and automated analysis of complex structures. This 

advancement is particularly critical in the study of zebrafish cardiovascular videos, where 

accurate segmentation of the heart is essential for understanding cardiac function and 

development. In this work, we focus on the Zebrafish Automated Cardiac Analysis 

Framework (ZACAF), utilizing the U-net architecture to achieve high-accuracy 

segmentation of the zebrafish heart from video frames to calculate important 

cardiovascular parameters. 

After multiple collaborations with researchers studying different phenotypes in zf using 

ZACAF, to enhance the generalizability of our model across varying datasets and 

conditions, we employed transfer learning techniques, leveraging pre-trained models to 

adapt to new data efficiently. Additionally, we incorporated Test-Time Augmentation (TTA) 

to further improve model robustness and accuracy by applying various transformations to 

the input data during inference. This approach proposed a systematic solution for adopting 
ZACAF in broader genetic studies using deep learning algorithms. 

Recognizing the importance of temporal dynamics in video data, we extended our work to 

integrate temporal features into the segmentation model. By analyzing changes between 

consecutive frames, we aim to capture the heartbeat dynamics more effectively, providing a 

comprehensive tool for cardiac analysis in zebrafish embryos. Our approach not only 

advances the field of biomedical video segmentation but also contributes to the broader 

understanding of cardiac function in developmental biology. 
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INTRODUCTION 

 Examining a bright field microscopic image of a zebrafish (zf) embryo yields a 

wealth of information. Figure 1 presents such an image, showcasing the intricate details of 

a zf embryo. In the study of zebrafish embryos, the measurement of blood flow velocities 

serves as a key determinant of cardiovascular function. This task is achieved by tracking 

the movements of red blood cells (RBCs) within the embryo's body, facilitated by its 

transparent skin. The acceleration, deceleration, and peak velocity of RBC movements, 

indicative of blood flow dynamics, can be precisely quantified for analysis. To this end, the 

motions of RBCs within the dorsal aorta and the cardinal vein, two primary blood arteries, 

are observed. Individual cell positions are determined using consecutive frames, and RBC 

Figure 1:A frame in a video recorded from a 3-dpf zebrafish with segmentation for ventricle 
border and long and short axes. 
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velocity is calculated by considering the coordinates of the cell's location and the time 

interval between frames, as outlined below: 

𝑅𝐵𝐶 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
√(𝑥2−𝑥1)2−(𝑦2−𝑦1)2

∆𝑡
           (1) 

Embryonic zebrafish, particularly those up to three days post-fertilization (dpf), boast 

transparency, allowing for clear observation of internal organs, such as the heart and 

circulatory system. During this developmental stage, bright field microscopic videos serve 

as valuable tools for quantifying both the mechanism and morphology of the heart. 

Typically, two-dimensional (2D) movies are captured to facilitate cardiovascular analysis. 

Throughout the cardiac cycle, the continual shifts in ventricular wall position are 

meticulously monitored, beginning with the selection of a linear region of interest defining 

the ventricle's borders. 

The measurement of myocardial thickness holds significance, especially in assessing the 

extent of induced defects in hypertrophic cardiomyopathy. In zebrafish embryos, fractional 

area change (FAC) stands as a well-established metric for evaluating ventricular function 

and contractility. This metric can be estimated utilizing 2D still frames of the ventricle 

captured at end-diastole (ED) and end-systole (ES). The fully dilated ventricle corresponds 

to ED, while the fully contracted ventricle corresponds to ES. At these distinct positions, the 

ventricular areas (EDA and ESA) are determined, subsequently allowing for the calculation 

of FAC through the following formula: 

𝐹𝐴𝐶 =
(𝐸𝐷𝑉−𝐸𝑆𝑉)

𝐸𝐷𝑉
× 100         (2) 

Another measure of ventricular contractility is fractional shortening (FS), which can be 

calculated using the ventricular diameters at ED and ES (Dd and Ds) as follows: 
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𝐹𝑆 =
(𝐷𝑑−𝐷𝑠)

𝐷𝑑
         (3) 

To determine stroke volume, ejection fraction, and cardiac output, ventricular volumes 

must be computed. The long- and short-axis diameters (DL and DS) are initially measured 

from 2D still images. The following volume formula can be employed if the ventricle has a 

prolate spheroidal shape: 

𝑉𝑎𝑙𝑢𝑚𝑒 =
1

6
× 𝜋 × 𝐷𝐿 × 𝐷𝑆

2         (4) 

However, if we consider that the shape of the ventricle is unknown while having the 2D 

shape of the ventricle, the volume can be calculated using the formula bellow: 

𝑉𝑜𝑙𝑢𝑚𝑒 =
8

3𝜋𝐷𝐿
× 𝐴2 (5) 

In this formula A is the area of the segmented 2D ventricle [1].  

The blood volume pumped from the ventricle for each beat is called stroke volume (SV), 

and it is easily determined using the ventricle volumes at ED (EDV) and ES (ESV): 

𝑆𝑉 = (𝐸𝐷𝑉 − 𝐸𝑆𝑉)         (6) 

The fraction of blood evacuated from the ventricle with each heartbeat is known as ejection 

fraction (EF), and it may be computed using the formula: 

𝐸𝐹(%) =
(𝐸𝐷𝑉−𝐸𝑆𝑉)

𝐸𝐷𝑉
× 100 =

𝑆𝑉

𝐸𝐷𝑉
× 100         (7) 

The following formula can be used to compute cardiac output (CO) from SV and heart rate 

(HR): 

𝐶𝑂 (
𝑛𝑎𝑛𝑜𝑙𝑖𝑡𝑒𝑟

𝑚𝑖𝑛
) = 𝑆𝑉 × 𝐻𝑅         (8) 

The time between two identical subsequent points (i.e., ED or ES) in the captured images is 

used to calculate HR. 
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Chapter 1: Overview  

1.1. Different image processing methods  

Various methods have been discussed in the literature for calculating the heart rate (HR) of 

zebrafish from videos. Among these, frequency transforms such as fast Fourier transform, 

filtering techniques, and tracking pixel intensity changes are commonly utilized for 

quantifying both HR and heart rate variability. These methods can be broadly categorized 

into three groups: time domain analysis, frequency domain analysis, and blind source 

separation techniques. Ling et al, has a review paper on Quantitative measurements of 

zebrafish heartrate and heart rate variability.[2] However, most of the methods for HR 

measurement cannot measure the other cardiovascular like heart contractibility measures 

like EF and FS. On the other hand, most methods used for quantification of heart 

contractibility can be used to measure HR. Hence, those methods are more general and 

here we focus on them. 

The general idea for quantification of ventricular function metrics for evaluating 

contractility is sematic segmentation of the heart and more specifically ventricle. By 

segmenting the ventricle in a series of consecutive frames, ES and ED frames can be found 

and after that the metrics discussed earlier can all be calculated easily. In colored 

microscopic videos, segmenting the heart becomes considerably easier by filtering the red 

color, given its heightened intensity in the heart region. However, in black and white 

recordings, more intricate approaches are required. Upon initial examination of a beating 

heart video, two distinct features stand out: the identification of borders and the periodic 

movement of the heart. These features are pivotal for manual segmentation of the ventricle. 

Background subtraction can effectively capture movement features, while a range of 
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methods aimed at enhancing and automatically segmenting borders can be employed to 

tackle border features. 

1.2. Background subtraction 

Background subtraction is a widely used technique for segregating the moving elements of 

a scene in a stationary camera setup by distinguishing between background and 

foreground elements. This method involves subtracting continuous frames from a video to 

identify moving objects. In the case of zebrafish videos, static pixels representing the 

immobile parts of the fish body can be removed, as the primary moving components are 

typically blood cells and the heart. Several background subtraction approaches exist, 

including frame difference, Gaussian mixture model, kernel density estimation, and 

codebook methods. Each method offers varying degrees of accuracy in identifying moving 

objects. In scenarios where the fish remains completely static with minimal noise, 

background subtraction can be particularly useful for segmenting the ventricle. However, 

it's important to note that dynamic features such as blood cells, vessels, respiratory-

induced gale movement, and noisy pixels may also be detected in the output of this method. 

Nevertheless, these extraneous elements can be filtered out using different techniques, 

ensuring accurate segmentation of the ventricle. 

Large moving objects detected that are not a part of ventricle can be removed using 

specifying a region of interest (ROI) and thresholding the size of the object. Small, detected 

particles and noise can be removed by filtering. For example, arithmetic mean filter can be 

used for smoothening and geometric mean filter can be used for removing salt and paper 

noise. Morphological filters are useful for smoothing binary images, especially for removing 

small structures and border detection. The morphological filter's concept is a shrink and let 
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grow procedure. The term "shrink" refers to the use of a median filter to round off large 

structures and remove small structures, with the surviving structures being grown back by 

the same amount during the grow process[3]. In zebrafish videos, employing background 

subtraction often leads to detecting the ventricle as a region containing a group of multiple 

objects that form the shape which represents ROI. Applying morphological filters can be 

helpful because we need to have a single object to represent the ventricle. Nevertheless, 

background subtraction can result in inaccurate results that cannot be guaranteed.  

On the other hand, if we want to detect borders there are several algorithms that can 

enhance or detect the edges. Enhancing the image in a way that ventricular border can be 

more visible can be beneficial to researchers for manual and automatic segmentation. 

1.3. High pass filter   

High-pass filters operate by extracting the derivative of a signal in the time domain. When 

applied to images, these filters accentuate rapid changes, such as edges, earning them the 

moniker "sharpening filters." Common examples of high-pass filters include the Laplacian 

and Sobel filters, both renowned for their ability to sharpen images. Furthermore, Gaussian 

and Butterworth filters can also be tailored to function as high-pass filters, providing 

additional flexibility in image enhancement techniques. 

1.4. Thresholding 

Histogram-based thresholding stands as one of the fundamental techniques in image 

segmentation. This method entails using thresholding to convert a grayscale image into a 

binary representation. In its simplest form, each pixel's intensity is altered to black if it falls 

below the predefined constant threshold or white if it surpasses it. Various histogram 
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thresholding models exist, each employing distinct approaches to ascertain the threshold 

value for segmentation. 

A. Global thresholding: 

Global thresholding entails the selection of a threshold value that effectively separates the 

foreground and background regions across the entire image. This method operates under 

the assumption that the image's histogram exhibits a bimodal distribution, implying that 

pixel intensities can be segregated into two discernible groups representing the foreground 

and background. The threshold value is commonly determined through an iterative 

process, with Otsu's method being a notable example. Otsu's method aims to maximize the 

inter-class variance between these two groups, thus ensuring optimal threshold selection. 

B. Adaptive thresholding: 

Adaptive thresholding is a variation of global thresholding that adjusts the threshold value 

locally based on the intensity values of the neighboring pixels. This approach is useful for 

images with non-uniform illumination or shading, as it can adapt to changes in the local 

intensity values. The threshold value is typically computed for each pixel using a local 

region, such as a square or circular neighborhood, and can be based on methods such as the 

mean, median, or Gaussian distribution of the local intensity values. 

C. Iterative thresholding: 

Iterative thresholding is a method that involves iteratively adjusting the threshold value 

based on the intensity values of the pixels within the foreground and background regions. 

This approach can be used to segment images with complex histograms that do not have 

clear separations between the foreground and background regions. The threshold value is 
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typically initialized using a global or adaptive thresholding method and then iteratively 

refined based on the mean or median intensity values of the pixels within each region. 

     D. Edge-based thresholding: 

Edge-based thresholding is a method that involves detecting the edges or boundaries 

between the foreground and background regions and using these edges to determine the 

threshold value. This approach can be useful for images with complex structures or 

textures that do not have clear separations between the foreground and background 

regions. The threshold value is typically selected based on the gradient magnitude or edge 

strength of the image and can be determined using methods such as the Canny edge 

detector or the Laplacian of Gaussian filter. 

There are algorithms like Otsu that find the best threshold automatically. For example, Otsu 

finds a threshold that segments the background and foreground classes of the histogram by 

minimizing intra-class intensity variance. 

1.5. Histogram equalization  

Discussing histogram equalization is indeed pertinent in the context of image enhancement 

techniques. This method is particularly effective in enhancing the global contrast of an 

image, especially when the original image is represented by a narrow range of intensity 

values. By redistributing pixel intensities across the histogram, histogram equalization 

ensures a more uniform utilization of the entire intensity range, thereby improving 

contrast throughout the image. This process is especially beneficial in zebrafish videos, 

where the region of interest often appears excessively dark due to various factors such as 

microscope positioning or tissue characteristics. The increased dynamic range of contrast 

facilitated by histogram equalization significantly aids both manual and automated 
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segmentation of the heart. However, it's important to note that histogram equalization 

works best when the distribution of pixel values is relatively uniform across the image. In 

cases where the image contains regions with significantly lighter or darker intensities 

compared to the rest of the image, the improvement in contrast may not be as pronounced. 

This is particularly true in zebrafish videos captured using light sheet microscopy, where 

the background often exhibits the highest intensity and different sections of the fish may 

have varying levels of transparency, leading to uneven contrast enhancement. Hence, 

Adaptive Histogram Equalization (AHE) solves the problem by transforming each pixel 

with a transformation function consequent to a neighborhood region. Finally, Contrast 

Limited AHE (CLAHE) is a variant of adaptive histogram equalization, which doesn’t have 

the issue of over amplification of noise in regular AHE. [4]    

1.6. Edge detection 

Edge detection serves as a foundational technique in image processing, crucial for 

identifying the boundaries or edges delineating objects within an image. The primary 

objective of edge detection is to differentiate between regions of uniform intensity or color 

and those characterized by sharp transitions or gradients. Various approaches exist for 

edge detection, but a common strategy involves identifying abrupt changes in intensity or 

color indicative of object boundaries. These changes can be discerned by analyzing the first 

derivative of the image along different directions or by employing filters designed to 

accentuate high-frequency components of the image. 

One of the most prevalent filters utilized for edge detection is the Sobel filter, a convolution 

filter adept at estimating horizontal and vertical gradients within the image. The Sobel 

filter employs two 3x3 kernels to compute derivatives along the x and y axes, respectively. 
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These derivatives are then combined to yield estimations of gradient magnitude and 

direction at each pixel location. 

Another common approach to edge detection is to use the Canny algorithm, which was 

introduced by John Canny in 1986. The Canny algorithm involves several steps, including 

smoothing the image with a Gaussian filter, calculating the gradient magnitude and 

direction of the smoothed image, performing non-maximum suppression to thin the edges, 

and applying hysteresis thresholding to connect weak edges to strong edges. The Canny 

algorithm, which is one of the most prominent edge detection methods, has a multi-stage 

algorithm to detect a wide range of edges in images[5]. For fully automated heart 

segmentation in zebrafish microscopic videos, edge detection algorithms like Canny are 

usually not robust. The most important problem is that in the zebrafish videos have 

numerous edges and tissues therefore the canny algorithm detects many different edges 

next to each other. This makes it imposable to tell which edge belongs to the heart. 

However, edge detection can be used as preprocessing or one of the steps in an automatic 

segmentation framework.  

1.7. Color filtering  

Color filtering can indeed be a valuable tool in processing zebrafish videos, even if not all 

recordings are in color. Given that blood is red and the heart along with most vessels 

exhibit red coloration in colored microscopic videos, leveraging this characteristic can aid 

in segmentation. A straightforward method involves setting a threshold for red intensity, 

wherein pixels falling outside of a specified range for red are assigned to black, while those 

within the range are assigned to white. This approach effectively highlights the heart, blood 

vessels, and some accompanying noise in a binary image. 



 

11 
 

In existing literature, transgenic animals expressing myocardial-specific fluorescent 

reporters have been extensively utilized. These videos often involve manual feature 

selection, which enhances both manual and automated segmentation processes. However, 

for fully automated quantification of cardiovascular metrics such as ejection fraction (EF), 

precise segmentation of the ventricle is essential. In such cases, a simple color filtering 

method targeting the specific coloration of the heart can effectively segment the entire 

heart, providing a viable solution for automated analysis. Akerberg, et al proposed a 

Convolutional Neural Network (CNN) framework that automatically segments the 

chambers from the videos and calculates the EF [6]. In this paper a CNN architecture has 

been used to segment the ventricle and atrium individually in a video where the heart is 

highlighted. In conclusion, color filtering alone can only be employed as a feature selection 

method to increase the accuracy of segmentation.  

1.8. Machine learning  

Indeed, traditional methods like edge detection, color filtering, and background subtraction 

may lack robustness across different zebrafish videos, especially when ventricle edges 

exhibit varying shades of gray. To address this challenge, researchers have turned to 

machine learning approaches to develop fully automated frameworks. 

Unsupervised learning segmentation methods, such as K-means clustering and Gaussian 

mixture models (GMM), have been explored. These methods aim to partition the image into 

distinct clusters based on pixel intensities without requiring labeled training data. K-means 

clustering iteratively assigns pixels to clusters based on their proximity to cluster 

centroids, while GMM models the distribution of pixel intensities as a mixture of Gaussian 

distributions. 
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Additionally, supervised deep learning methods have gained traction in automated 

segmentation tasks. Deep learning models, particularly convolutional neural networks 

(CNNs), are trained on labeled data to learn intricate patterns and features directly from 

the images. These models can efficiently capture complex relationships between image 

pixels and their corresponding labels, making them highly effective for tasks such as 

ventricle segmentation in zebrafish videos. 

Overall, both unsupervised and supervised machine learning approaches offer promising 

avenues for building robust and fully automated frameworks for zebrafish video analysis.  

1.8.1. K-means 

Clustering algorithms, including the unsupervised K-Means algorithm, play a crucial role in 

data analysis by uncovering hidden structures, clusters, and groupings within datasets. 

Unlike classification algorithms, clustering algorithms do not require predefined categories 

or labels, making them particularly useful for exploring unlabeled data. 

In the context of image processing, the K-Means clustering algorithm can effectively 

separate the region of interest from the background by partitioning the image into K 

clusters based on similarity. Each cluster represents a distinct color range in colored 

images or grayscale intensity range in black and white videos. The K-Means algorithm 

proceeds in two phases: first, it determines K centroids, and then it assigns each data point 

to the cluster with the nearest centroid based on Euclidean distance. After grouping the 

data points, the algorithm recalculates the centroids and iteratively assigns data points to 

clusters until convergence. The centroid of each cluster represents the center point where 

the sum of distances between all data points in the cluster is minimized. This iterative 

process aims to minimize the overall sum of distances between each data point and its 
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assigned cluster centroid. To further refine the segmentation results and generate a noise-

free image, median filtering is commonly employed as a noise removal technique. Median 

filtering replaces each pixel value with the median value of its neighboring pixels, 

effectively reducing noise and preserving image details. In summary, the K-Means 

clustering algorithm, coupled with median filtering, offers an effective approach for 

segmenting regions of interest in images and removing noise, facilitating clearer and more 

accurate analysis of image data. The segmented image may still have some undesired 

regions or noise after it has been segmented. As a result, the median filter is applied to the 

segmented image to improve its quality.[7] 

1.8.2. Gaussian mixture model 

Gaussian mixture-based segmentation is a prominent image processing technique rooted in 

histogram thresholding, a widely used method for image segmentation. In histogram 

thresholding, an image is partitioned into two distinct regions or classes: the target region 

and the background region, each exhibiting its own uni-modal gray level distribution. 

Consequently, the challenge in segmentation lies in selecting an appropriate threshold to 

delineate the image into these regions effectively. Gaussian mixture-based segmentation 

extends this concept by modeling the distribution of image pixels as a mixture of Gaussian 

distributions. Each pixel is then classified into different segments based on the Gaussian 

distribution it most closely aligns with. The fundamental premise of Gaussian mixture-

based segmentation is that each segment within an image can be characterized by a 

probability distribution, reflecting the statistical properties of the pixels within that 

segment.  
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By leveraging Gaussian mixture modeling, this segmentation technique offers a more 

nuanced and probabilistic approach to image segmentation, enabling finer delineation of 

regions based on their underlying statistical properties. Specifically, the pixel intensities 

within each segment are assumed to be normally distributed, and the goal of the 

segmentation algorithm is to estimate the parameters of the Gaussian distributions that 

best fit the observed data [8]. To accomplish this, the Gaussian mixture-based 

segmentation algorithm first initializes a set of Gaussian distributions with random 

parameters and then iteratively refines these parameters to better fit the observed data. 

During each iteration, the algorithm computes the likelihood that each pixel belongs to 

each of the Gaussian distributions and then assigns each pixel to the segment 

corresponding to the Gaussian distribution with the highest likelihood. The parameters of 

the Gaussian distributions are then updated based on the pixels assigned to each segment. 

This process is repeated until the parameters of the Gaussian distributions converge to a 

stable solution. Once the segmentation is complete, each pixel in the image is assigned to a 

specific segment, which can be used for further analysis or processing. The accuracy of 

model parameter estimations and how closely the histogram of an image approximates a 

Gaussian mixture determine the effectiveness of Gaussian-mixed-based segmentation 

techniques.[9]  

Here, the mentioned methods have been implemented not only to compare with the 

approach using deep learning described in the next section but also to use for 

preprocessing. All these are shown in Figure 2, a-d panels.  
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Figure 1: Ventricle segmentation using different methods. Panel a-d: A frame from the video of a 3 dpf zebrafish 
with 40X zoom undergoing different HBS algorithms. a. Original frame. b. Manual histogram thresholding. c. 
CLAHE. d. Otsu thresholding. Panel e-g: A frame from the video of a 3 dpf zebrafish with 10X zoom undergoing 
GMM and K-means approaches. e. Original frame f. GMM. g. K-means. 

The abovementioned methods, namely edge detection, color filtering, and background 

subtraction, are not robust with different videos since ventricle edges might have multiple 

shades of gray. Therefore, we also attempted to use machine learning approaches to 

compare. First, unsupervised learning segmentation methods like K-means and Gaussian 

mixture model (GMM) were applied to the videos. As shown in Figure 2e, f, and g, although 

these methods improve the visibility of the ventricle borders, the heart's automatic 

segmentation is not possible. Moreover, much of the unnecessary information (pixels) in 

the image, particularly in the image generated using K-means, remains. 

These methods improve the visibility of the ventricle borders, while the heart's automatic 

segmentation is not possible. Moreover, much of the unnecessary information (pixels) in 
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the image, particularly in the image generated using K-means, is remaining. However, 

manual segmentation is extremely tedious work and in most practical research scenarios 

there are numerus videos recorded and manual segmentation can be time consuming as 

well. In conclusion, for a fully automated framework a more robust method is required. For 

achieving this goal, a few recent papers proposed using deep learning methods. 

1.8.3. Semantic image segmentation 

Semantic segmentation, also known as image segmentation, involves clustering portions of 

an image that belong to the same object class together, thus categorizing every pixel in the 

image. This pixel-level prediction task is often supervised, where a mask of the object 

portions serves as ground truth data. 

Supervised classification algorithms for pixel-level prediction include fuzzy measures, 

decision trees, support vector machines, and artificial neural networks (ANNs). Among 

these, ANNs have demonstrated remarkable performance and accuracy, particularly in 

biomedical images. In the context of zebrafish ventricle segmentation, semantic-level image 

classification aims to assign distinct semantic classes to each scene image, with the 

ventricle as the object of interest and the background as the other class. 

To represent these classes in the mask, a specific color scheme is employed, typically with 

black representing the background class and white representing the ventricle class. This 

color choice is crucial for aligning with evaluation metrics like the Dice coefficient and 

Intersection over Union (IoU) coefficient. The Dice coefficient and IoU coefficient are 

widely used metrics for evaluating the performance of image segmentation algorithms or 

classification models. These metrics measure the overlap between the predicted 

segmentation or classification result and the ground truth mask. By convention, the 
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background is assigned the value of 0 (black), and the object of interest is assigned the 

value of 1 (white) when computing these metrics. Following this convention allows for an 

accurate assessment of the algorithm's accuracy in capturing the ventricle and 

discriminating it from the background. Higher coefficients indicate better performance in 

accurately segmenting the ventricle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

Chapter 2: ZACAF model and its method  

2.1. Semantic image segmentation validation metrics 

In the quantification of cardiovascular metrics from videos using deep learning methods, 

our primary goal is to accurately predict the geometrical shape of the ventricle, including 

its position, size, and shape, in alignment with the manually created masks serving as 

ground truth. The predicted shape should ideally closely resemble or match the ground 

truth mask. To validate the performance of automatic segmentation, it is essential to 

employ metrics that effectively evaluate the accuracy of the segmentation results. In 

semantic image segmentation, the most used metrics comprise pixel-wise accuracy, Dice 

coefficient, and Intersection over Union (IoU). 

a. Pixel-wise Accuracy  

In segmentation of the ventricle, since the mask indicating the ventricle is either white or 

black, there are only two classes so that we can use the binary case of pixel accuracy. The 

accuracy is defined as the percent of pixels classified correctly as 

𝑝𝑖𝑥𝑒𝑙 − 𝑤𝑖𝑠𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝐴𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
   (9) 

In these videos the ventricle has a much smaller area compared with the rest of the frame 

so this metric alone can be misleading. However, the correct identification of white pixels 

(which are the pixels creating the background) is essential because they ensure the 

position, and the shape of the ventricle is also correct.    

b. Dice coefficient  
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The dice coefficient is a widely used metric for determining how similar two objects are. It 

has a scale of 0 to 1, with 1 indicating perfect match or complete overlap. For a binary case, 

the coefficient is calculated as  

𝐷𝑖𝑐𝑒 =  
2|(𝐴∩𝐵)|

|𝐴|+|𝐵|
  (10) 

where A is the predicted image and B is the ground truth (manually created mask). 

c. Intersection over union  

It's also known as the Jaccard Index, which is just the area of overlap between the predicted 

segmentation and the ground truth divided by the area of union between both. This 

measure runs from 0 to 1, with 0 indicating no overlap and 1 indicating complete overlap. 

For the binary case, it can be calculated as: 

𝐽 =  
|𝐴∩𝐵|

|𝐴∪𝐵|
  (11) 

2.2. Literature review 

The heart of a framework like ZACAF is its deep learning-based segmentation model that 

inputs the video frames and outputs corresponding binary masks of the ventricle. Among 

the most commonly utilized segmentation architectures are U-net, FCN (Fully 

Convolutional Network), and SegNet. U-net, known for its symmetric encoder-decoder 

architecture with skip connections, has gained widespread adoption in biomedical image 

segmentation tasks due to its ability to capture fine-grained spatial details effectively [10]. 

FCN replaces fully connected layers with convolutional layers, enabling end-to-end pixel-

wise predictions and providing flexibility in handling images of variable sizes [11]. SegNet, 

similar to U-net in its symmetric structure, utilizes an encoder-decoder architecture 

without skip connections, relying on max-pooling indices for up-sampling [12]. Each of 
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these architectures offers distinct advantages in different segmentation tasks, catering to 

specific requirements such as spatial detail capture, flexibility, or precise localization. 

To date, the majority of existing studies have primarily focused on basic heart rate 

detection methods, such as edge tracing [13]. Nasrat et al. introduced a semi-automatic 

approach for quantifying fractional shortening (FS) in zebrafish embryo heart video 

recordings [14]. Their software offers automated visual insights into end-systolic (ES) and 

end-diastolic (ED) stages by displaying color-coded lines on a motion-mode display. 

However, the manual marking of ventricle diameters during ES and ED stages, followed by 

FS calculation, proves to be highly laborious, time-intensive, and prone to inconsistencies 

when dealing with a large number of frames. Akerberg et al. proposed a SegNet beased 

framework to automatically segment chambers from videos and calculate ejection fraction 

(EF) [6]. Nonetheless, their approach relies on specific transgenic animals expressing 

myocardial-specific fluorescent reporters and high-end fluorescence microscopes, limiting 

its widespread applicability within the research community, especially for those lacking 

access to such resources. Furthermore, Huang et al. highlighted potential issues with 

transgenic fluorescence protein expression leading to dilated cardiomyopathy [15], 

underscoring concerns regarding the use of foreign proteins that may impact myocardial 

function. Additionally, Akerberg et al. utilized frames from only four videos, raising 

concerns about potential overfitting when video features such as fish position, lighting 

conditions, or lens focus on the ventricle differ from the training set. Zhang et al. proposed 

a U-net based framework similar to ZACAF however, similar to Akerberg’s study, they used 

a transgenic zf line expressing reporters and high-end fluorescence microscopes [16]. 

Suryanto et al used DeepLabCut for labeling the ventricle to facilitate automatic zf cardiac 
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assessment. DeepLabCut is a software toolbox that employs deep learning techniques to 

enable markerless pose estimation and tracking in videos of animals or humans [17]. 

Nonetheless, this framework only marks 8 points on the ventricle which limits the 

resolution and accuracy of the predicted ventricle. This will significantly limit the 

robustness of the framework, especially with mutant types.   

For a more Inclusive and available example of a fully automatic cardiovascular 

segmentation for zf, Naderi et al. proposed a framework using U-net to segment 

monochromic light sheet microscopy videos. [18] In this framework, after preprocessing 

using sharpening filter and CLAHE, 50 videos of wild and mutant type zf have been 

manually segmented to be used for the training dataset. The U-net was then trained and 

validated using the dataset and the deep learning model showed 99.1% for pixel-wise 

accuracy, 95.04% for Dice coefficient, and lastly 91.24% and for the IoU. They created a 

graphical user interface to provide an end-to-end platform so researchers can use it 

conveniently. The framework inputs raw videos and segments the ventricle in each frame 

of it. The output for each frame is a binary mask of the ventricle. From there diameters of 

the ventricle in each frame can be calculated. The frames with the largest and smallest area 

are going to represent ED and ES respectively. Having the ED and ES frames important 

cardiovascular parameters namely EF, FS, CO, and SV can be quantified. The EF 

quantification has been validated using 8 videos that haven’t been included in the training 

set. The averages of absolute errors and standard deviations for the automatically 

calculated EF of the 8 wild type test videos compared to the expert’s manual calculation 

were 6.13% and 3.68%, respectively.  
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2.3. U-net architecture 

The U-net architecture, a convolutional neural network (CNN) originally designed for 

biomedical image segmentation tasks, has seen widespread adoption in various areas of 

computer vision due to its effectiveness. Its architecture is specifically tailored to address 

the challenges inherent in semantic segmentation, where each pixel in an image is assigned, 

a label based on its context and relationships with neighboring pixels. 

U-net comprises two primary components: an encoder network and a decoder network. 

The encoder network is responsible for extracting high-level features from the input image, 

while the decoder network utilizes these features to generate a segmentation map. These 

networks are linked by skip connections, facilitating direct information flow between them. 

The encoder network typically consists of multiple convolutional layers that apply filters to 

the input image, extracting features at varying levels of abstraction. Each convolutional 

layer's output undergoes a nonlinear activation function, such as ReLU, introducing 

nonlinearity into the network. Additionally, pooling layers within the encoder downsample 

the feature maps, reducing spatial dimensions to capture abstract features efficiently while 

minimizing computational complexity. 

Conversely, the decoder network generates the segmentation map using features extracted 

by the encoder. It comprises transposed convolutional layers, also known as 

deconvolutional layers, which upsample the feature maps to their original dimensions. Like 

the encoder, each layer's output is passed through a nonlinear activation function to 

introduce nonlinearity. 

The skip connections in U-net facilitate direct information transfer from the encoder to the 

decoder, bypassing intermediate layers. This helps retain spatial information and enhances 



 

23 
 

segmentation accuracy, particularly in regions with intricate foreground or background 

elements. Overall, U-net's architecture enables robust and accurate semantic segmentation 

in diverse image datasets. 

To summarize, U-net is a powerful architecture for image segmentation that is designed to 

capture high-level features of an image and retain spatial information through the use of 

skip connections. It has been widely used in biomedical image analysis and has also shown 

promising results in other areas of computer vision, such as natural language processing 

and robotics. [10] A similar architecture has been employed by Decourt et al. to segment 

the human left ventricle from magnetic resonance imaging (MRI) images [19]. The main 

idea of the U-net is to complement a traditional contracting network by successive layers, 

where pooling operations are replaced by up-sampling operators. Besides, a subsequent 

convolutional layer can then be trained to assemble a precise output based on this 

information. The training of the network uses the original image as an input and the mask 

of the corresponding image as the output, and the objective is to minimize the error of the 

estimation and the mask. In the next part ZACAF details will be discussed. 

2.4. Experimental animals 

Zebrafish (Danio rerio; WIK strain) were maintained under a 14 h light/10 h dark cycle at 

28.5°C. All animal study procedures were performed in accordance with the Guide for the 

Care and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH 

Publication No. 85-23, revised 1996). Animal study protocols were approved by the Mayo 

Clinic Institutional Animal Care and Use Committee (IACUC #A00002783-17-R20). 

2.5. Video imaging of beating zebrafish hearts at the embryonic stage 
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Zebrafish in the embryonic stages were anesthetized using 0.02% buffered tricaine 

methane sulfonate (MS222 or Tricaine) (Ferndale, Washington, US) for 2 minutes and then 

placed lateral side up with the heart facing the lower-left corner. The specimens were held 

in a chamber with 3% methylcellulose (Thermo Fisher Scientific, Massachusetts, US). The 

videos were recorded using a Zeiss Axioplan 2 microscope (Carl Zeiss, Oberkochen, 

Germany) with a 10X lens and differential interference contrast (DIC) capacity. The used 

Zeiss’ Axiocam 702 mono Digital Camera 426560-9010-000 records videos with 60 fps; 

however, using the Zeiss computer software, videos get stored in 5 fps, 10 fps, and 20 fps. 

Video clips were processed using ImageJ for manual quantification of cardiac functional 

indices, including heart rate and fraction shortening, as detailed in the following sections. 

2.6. ZACAF 

Figure 3 illustrates the architecture of the proposed U-net model with details. 
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Figure 2: The process flow and the U-net architecture. Each rectangle represents a layer and the number above it 
shows the number of neurons inside. A trained model can estimate a mask of the ventricle from all the extracted 
frames of the input video. When all the frames have a predicted mask, by determination of ES and ED frames, 
important cardiac indices like EF, FS, and stroke volume can be automatically calculated and saved in a desired 
format. 

The network consists of a contracting path and an expansive path, which gives it a U-

shaped architecture.  

The contracting path is a typical convolutional network that consists of repeated 

convolutions, each followed by a rectified linear unit (ReLU) and a max-pooling operation. 

Dropouts have been used to prevent overfitting. The architecture has been optimized to 

obtain the best result. For training, NVidia’s T4 GPU from Google Collaboratory was 

employed. The most commonly used loss functions for semantic image segmentation were 

deployed to evaluate the model, namely Binary Cross-Entropy and Dice loss function. 
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Cross-entropy can be defined as a measure of the difference between two probability 

distributions for a given random variable or set of events. It is extensively used for 

classification problems, and since segmentation is the classification at a pixel level, cross-

entropy has been widely used. Binary Cross-Entropy is defined as: 

𝐿𝑜𝑠𝑠𝐵𝐶𝐸(𝑦, �̂�) = −(𝑦log(�̂�) + (1 − y)log(1 − �̂�))       (12) 

where y is the true value and �̂� is the predicted outcome. 

The Dice coefficient is a commonly used metric in computer vision problems for calculating 

the similarity between two images. In 2016, it was also adapted as a loss function, namely 

Dice Loss [20]. 

𝐿𝑜𝑠𝑠𝐷𝑖𝑐𝑒(𝑦, �̂�) = 1 −
2𝑦�̂�+1

𝑦+�̂�+1
     (13) 

The U-net model has been trained with both models, and the performance has been 

assessed using validation and test sets. Further, the calculation of EF has also been 

evaluated using both loss functions. 

2.7. Titin truncated Mutants 

Dilated cardiomyopathy (DCM) is a hereditary, progressive disease, which eventually leads 

to heart failure [21]. Thus, it is essential to evaluate the early cardiac functions associated 

with DCM. Dozens of pathogenic genes have been found in the genetic studies of 

cardiomyopathy, and the incidence rate of DCM is about 1/250 [22]. Titin truncated 

variants (TTNtv) are the most common genetic factor in DCM, accounting for 25% of DCM 

cases [23]. Therefore, we have recently restated the allelic heterogeneity in zebrafish 

segments and established a stable mutation system to assess mutant zebrafish’s cardiac 



 

27 
 

functions systematically and accurately. In order to study the mechanobiology of induced 

defects of these disease models, heart functions need to be reliably evaluated [24]. 

2.8. Dataset 

A training dataset was created employing raw microscopic videos of zebrafish containing 

800 pixel-wise annotated images. 50 videos of the lateral view from 50 different 3-dpf 

zebrafish were analyzed for creating the dataset. 10 of these videos are from the TTNtv 

mutant line. From each video, 10 to 30 frames were extracted. A total number of 850 

frames were extracted for the training set. Each training set has a frame from the video, and 

a mask manually created showing only the ventricle with ImageJ software. After making 

the masks, all image and mask sets have been organized into folders. Each set has two 

folders inside, one for the original extracted frame and the other for its corresponding 

mask. Finally, all sets were shuffled to avoid overfitting. The validation set with the 10% of 

the data's size has been split from the dataset before training.   

2.9.  Preprocessing 

In the preprocessing stage, a region of interest is defined, knowing all recordings have the 

same positioning for the zebrafish. Although this cropping improves the accuracy by 

removing unnecessary information, it can be avoided to make the framework robust to 

different video types. Additionally, a sharpening filter accomplished by performing a 

convolution between a custom weighed kernel and an image is used to make edges more 

visible. After training, the U-net architecture was able to predict the ventricle segment. The 

model has been trained several times by applying the mentioned image processing 
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methods to the training images. The method with the best results was CLAHE thresholding 

which was added to the preprocessing section. 

2.10. Quantification of the diameters of the predicted ventricle 

The ventricle's diameters are measured for all extracted frames automatically with the 

contour tool from OpenCV (an open-source computer vision library). The maximum and 

minimum measured areas of the ventricle in different frames show the ES and ED stages, 

respectively. Using the measurement of ES and ED frames, we can calculate the ejection 

fraction (EF), fractional shortening (FS), and stroke volume (SV). Also, the time between 

two ES (or ED) frames could be used to derive heart rate (HR). The predicted ventricle is 

assumed to be an ellipsoid. For quantification of EF, the ventricle area can be used (Eq (5)) 

by counting the pixels inside the predicted shape. Since the frames are 2D, we are 

estimating the ventricle volume to its area. For FS, measurements of the short axis in ES 

and ED frames are needed. As the ventricle is not a perfect ellipsoid, estimation of the short 

and long axes can be carried out in two different ways. In the first method, an ellipsoid 

could be fitted in the predicted shape, and then the axis of the fitted ellipsoid would be 

measured. The second way is to find the longest line as the long axis of the estimated 

ellipsoid, which could be found in the geometrical shape; then, the short axis of the 

ellipsoid is the short axis of the ventricle. In this framework, the 2-D area of the ventricle 

directly measured from the mask has been used for EF since it is more accurate.  

2.11. Graphical User Interface (GUI) 

This framework was developed in Python, and thus, for researchers who are not familiar 

with programming, working with it can be challenging. To address this, a Graphical User 
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Interface (GUI) has been designed to provide a user-friendly interface to facilitate 

researchers' process. Moreover, after training the U-net, the trained model can be saved, 

which means the most computationally heavy part could be done only once. The GUI saves 

the output files in the CSV format, along with information about EF, FS, diameter readings 

of the area, short and long axis, and frame numbers. Therefore, each video's data can be 

easily accessed at anytime and anywhere with the expandable cloud feature. Our ZACAF 

provides an end-to-end interface to researchers to automatically calculate, classify, and 

record various cardiac function indices reliably. ZACAF can work with multiple videos 

simultaneously and output the results in a fraction of the time compared to that of manual 

segmentation. The deep learning model in the ZACAF can easily be updated and optimized 

with a new model and data.  

2.12.  Assessment of the accuracy of the framework with the defined metrics   

The model’s performance can be seen in Figure 4. The model has been trained with two 

loss functions discussed in section 2.6, and the best results with parameter tuning are 

illustrated. The metrics mentioned above resulted in 99.1% for pixel-wise accuracy, 

95.04% for Dice coefficient, and lastly 91.24% and for the IoU.  

 

Figure 3: The proposed model’s performance plotted with the metrics commonly used in semantic image 
segmentation. a. Pixel-wise accuracy b. Dice coefficient c. IoU metric. This plot shows the performance of the 
framework with the training and validation sets during the process of training of the deep learning model. 
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All mentioned metrics are evaluating the best performing model that had a Dice loss 

function with an Adam optimizer and a 0.001 learning rate along with decay steps of 240 

and a decay rate of 0.95. The validation split was 10% which means 80 sets. Following the 

training, we visually assessed the framework’s ability to correctly segment ventricular 

chambers and the periodic pulsating movement of it within series of frames of a test video. 

This process was used in parameter tuning for the deep learning model. 

2.13.  Assessment of the performance of the framework for EF 

The framework was evaluated by comparing the results obtained by manual assessment of 

EF from an experienced biologist with those using the software since one of the primary 

purposes of this framework is EF calculation. In this calculation, finding the area in all 

frames of a video is important because we want to find the ED and ES areas. Hence, 

assessment should involve the series of frames in a test video rather than having random 

images in a validation set. For this reason, we assess the performance of ZACAF with EF 

calculation. First, 8 videos of wildtype zebrafish embryos and another 8 from TTNtv mutant 

embryos were used as the framework's input. These videos are the test set and have not 

been used in training. Second, manual processing and estimation were performed for each 

video to derive EF by an expert to use as the ground truth. The program saves the predicted 

ventricle masks for every frame of a video, and the ED and ES frames are simply the frames 

with a maximum and minimum area of the segmented ventricle, respectively. After 

automatically finding ES and ED frames, the EF of the fish in the input video would be 

calculated and saved in a CSV file along with other indices calculated. The averages of 

absolute errors and standard deviations for the calculated EF of the 8 wild type test videos 

compared to the expert’s manual calculation were 6.13% and 3.68%, respectively. 
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As ED and ES frames are the most important parameters to quantify cardiovascular indices, 

we plotted the correlation of the automated and manual measurements (Figure 5 a,b).  

Moreover, Bland–Altman analysis was then used to assess the agreement in manual and 

automatic ventricle segmentation. Bland–Altman demonstrates the difference that were 

measured at the same time plotted against the average of the EF with two methods. Larger 

differences would specify larger disagreement between the two calculations [25]. From 16 

test videos two different sets of ES and ED frames (meaning 4 frames from each video) 

have been manually and automatically segmented. As it can be seen in Figure 6 c the Bland-

Altman has been plotted for all pairs of measurements in the same figure with blue and red 

dots representing mutant and wild fishes respectively.  
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Figure 4: After finding and measurement of the ventricle area in ED and ES frames of 8 wild type and 8 TTNtv 
mutant fish with both manual and automated methods, the results are demonstrated in a correlation plot while the 
calculated EF for the wild and mutant types is plotted in Bland-Altman to demonstrate the agreement of measured 
values. Linear relation of the measurements with slopes close to 1 shows the accuracy of the ZACAF. (a) ED frame 
area. (b) ES frame area. (c) Bland-Altman plot for 64 sets of measurements of the segmented ventricle using 
manual and ZACAF methods. Both mutant and wild have 32 pairs each represented in the plot. Red and blue dots 
represent wild and mutant fishes respectively. The measurements are in pixels. 
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Figure 5: Validation of U-net image segmentation framework. The sequential frames from a wild type zebrafish 
recorded video with fps of 5 are extracted. The respective ventricle mask of each frame is shown in each panel via 
manual and automatic segmentation. The area of each ventricle is measured and written above its own box. 
Considering the fps of the videos and the average heart rate of the zebrafish, 6 consecutive frames have been 
shown in this figure to ensure having at least one full cycle. 

Figure 6 presents the comparison of manual and automatic segmentation of the ventricle in 

6 continuous frames to cover an entire cardiac cycle for both wild type (a) and TTNtv (b). 

In manual segmentation, measures were done using the freehand selection tool in the 

ImageJ software.  



 

34 
 

Chapter 3: Expanding the work to new datasets 

Similar to ZACAF, several image processing frameworks have been proposed to automate 

the process of automatic quantification of zf cardiovascular parameters. However, most of 

these works rely on supervised deep learning architectures. However, supervised methods 

tend to be overfitted on their training dataset. This means that applying the same 

framework to new data with different imaging set up and mutant types can result in severe 

decrease of the performance. Here, we take Nrap genotype, and Zebrafish Automatic 

Cardiovascular Assessment Framework (ZACAF) as an example to demonstrate a modified 

framework. In this modification we apply data augmentation, Transfer learning, and test 

time augmentation to ZACAF to improve the general performance and propose a protocol 

for other researchers to be able to apply the available frameworks for their own data.     

Nebulin Related Anchoring Protein (NRAP) is a protein coding gene expressed in cardiac and 

skeletal muscle. NRAP is a member of the Nebulin family of proteins and promotes myofibril 

assembly by colocalization with actin during myoblast fusion in early stages of development in 

skeletal muscle [26]. Previous studies in zebrafish have shown that overexpression of Nrap results 

in severe skeletal muscle myopathy. Additionally, reducing levels of Nrap in a Klhl41 deficient 

zebrafish model resulted in a less severe phenotype, as klhl41 is a regulator of NRAP ubiquitination 

[27]. In cardiac muscle, NRAP plays a role in myofibril assembly and is localized at cardiac 

intercalated discs [28]. In mouse models of dilated cardiomyopathy, NRAP is overexpressed early in 

development [28]. Thus, downregulation of NRAP suggests therapeutic advantages in multiple 

model organisms. Interestingly, a homozygous truncating mutation of NRAP was found in a human 

dilated cardiomyopathy patient. However, the variant was not detected in a cohort of 231 dilated 

cardiomyopathy patients, and the patient’s unaffected brother carries the same mutation, 

suggesting a low penetrance and allele risk [29]. Due to the potential therapeutic advances of NRAP 
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downregulation found in Zebrafish and Mice, as well as a report of an NRAP truncating variant in a 

dilated cardiomyopathy patient, we aimed to investigate the cardiac effects, specifically ejection 

fraction and fractional shortening, of NRAP downregulation in embryonic zebrafish with ZACAF 

deep learning model. Despite a report of NRAP downregulation associated with cardiomyopathy in 

a human patient, we see no significant differences in ventricle shape, ejection fraction and fractional 

shortening between genotypes in embryonic Zebrafish.    

3.1. Considerations for zebrafish age and use of anesthesia 

The use of anesthesia is necessary for fish greater than 2 days post fertilization, as the fish become 

mobile at 3dpf as their swim bladder inflates. Tricaine anesthesia, commonly used in zebrafish, may 

impact the animal’s cardiac system. Thus, it is necessary to record the animal no later than 2dpf or 

deliver anesthesia in a standardized way where each fish receives the same dose. For 5dpf 

zebrafish, we placed the zebrafish in a separate dish of 16mg/L of Tricaine anesthesia in egg water 

for exactly 5 minutes prior to transferring the zebrafish to a glass slide emended in 3% methyl 

cellulose for image acquisition. This method proved to be time consuming, so we opted to record 

animals at 2dpf instead. At 2dpf, the zebrafish cardiac system is fully developed and functional (5). 

Additionally, at 2dpf, the zebrafish begin to hatch from their chorion, allowing for their bodies to 

become straight. It is important that the animal is in this stage before recording, so there is a 

narrow window for acquisition – the fish must have hatched from the chorion but are not yet 

mobile. To appropriately time this, dividers should be used at the time of crossing. Additionally, 

movement of egg water in the dish via transfer pipet will stimulate chorion hatch in the morning 

and recordings should be made shortly after in the afternoon.  An additional consideration besides 

the use of anesthesia for the age of fish is the pigmentation of the animal. At 2dpf, the animal is 

transparent, while at 5dpf, skin pigmentation may hinder the ability to acquire a clear image of the 

ventricle.  
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3.2. Considerations for image acquisition  

Accurate calculations of ejection fraction require a frame of the organism’s ventricle in a true 

systolic and diastolic position. Assuming a resting heart rate of 60 to 100 beats per minute, a high-

speed recording camera is necessary. Initially, videos were recorded on a Leica K3 camera (Leica, 

Germany) with a maximum frame rate of 30 frames per second attached to a Leica S9D microscope 

at 5x magnification. Videos were processed with the Leica LASX software. However, with this speed, 

we were unable to visualize the heart in a true diastolic and systolic position. Thus, on the 

improved setup, we used a FastCam-PCI high-speed digital camera (Photron, USA) with a frame rate 

of 250fps attached to a Zeiss upright microscope at 10X and processed with the FastCam-PCI image 

capture board. Additionally, at 5X, we were unable to visualize the boundaries of the ventricle, 

while at 10X, there is a clear visualization of the ventricle boundaries and red blood cells which can 

be seen in figure 3. In order to maximize video quality while reducing file size, videos were acquired 

in greyscale with a resolution of 512 × 480 pixels and recorded for only roughly 4.35 seconds, 

enough time to capture roughly 8 cardiac cycles and 1,088 frames with a 0.004 shutter speed (5). 

An additional consideration for recording is that fluorescent lights illuminating the microscope 

room (or the microscope light bulb itself) have a specific frequency. Fluorescent lights can result in 

horizontal lines, banding, or flickering in the video, depending on the shutter speed that was 

utilized to capture the footage. Although it is advised to shoot in varied lighting conditions, 

changing the camera's shutter speed can also help resolve this problem. 

One other important factor that needs to be considered for imaging is the placement of the fish 

under the microscope. Firstly, in most literature for quantification of cardiac function using 2D 

imaging the ventricle is assumed to be an ellipsoid. Hence, during image acquisition it is important 

to make sure the fish is properly positioned to its side. improper placement of the fish under the 

microscope can result in the ventricle having a pear-shaped structure which can be observed in 

figure 3 on the left. This will eventually result in inaccuracy in the quantification of EF. 
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Furthermore, it is important to know that the placement of the fish under the microscope is a 

feature in deep learning models. Uniform placement of the fish across the videos recorded for the 

data set can affect the model into only responding accurately to test videos with similar placement. 

To train a robust framework Data augmentation must be used in the process of training the deep 

learning model. Using data augmentation will make the framework less prone to placement of the 

fish.  

 

Figure 6: Comparing the visibility of the zf ventricle using 10x and 5x zoom and a pear-shaped ventricle, 
respectively from left to right. As can be seen, in the 5x zoom image the borders of the ventricle cannot be 
identified. However, in the 10x image in the middle both chambers can be seen. The rightest image is an example 
of a pear-shaped ventricle. 

3.3. Dataset 

In this study, a training dataset was constructed using raw microscopic videos of zebrafish, 

comprising a total of 410 pixel-wise annotated images. To create this dataset, 41 videos of the 

lateral view from 41 different 2-dpf zebrafish were analyzed. Specifically, 9 of these videos were 

obtained from the Nrap mutant line, 19 from the Heterozygous line, and the remaining 9 from the 

wild type variant. It is noteworthy that during the process of manual segmentation, the experts 

responsible for the task were provided with videos with randomly generated names which hide the 

label identifying the fish’s genotype. This will make sure that they would not have a bias while 

performing the segmentation.  From each video, 10 sequential frames were extracted, resulting in a 

total of 410 frames for the training set. Each training set consisted of an original frame extracted 

from the video and a manually created mask showing only the ventricle, using ImageJ software. 

Following mask creation, all image and mask sets were organized into folders, with each set 
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containing two folders: one for the extracted original frame and the other for its corresponding 

mask. For the validation set, two end-systolic (ES) and two end-diastolic (ED) frames were 

extracted and manually segmented from each video, resulting in a total of 82 images with their 

corresponding masks. This will make sure that the validation set is independent from the training 

set. 

3.4. Data augmentation 

In semantic segmentation, data augmentation is a technique used to increase the size of the training 

dataset by creating new training examples from the existing ones [30]. This is achieved by applying 

a range of transformations to the original training images, resulting in new images that are still 

representative of the same underlying scene or object, but with variations in appearance. Data 

augmentation is commonly used in deep learning-based computer vision tasks, including semantic 

segmentation, to prevent overfitting and improve the generalization capability of the model. By 

augmenting the training data, the model is exposed to more variations in the input data, leading to 

improved performance on new data. Some common image transformations used for data 

augmentation in semantic segmentation include horizontal and vertical flipping, rotation, scaling, 

cropping, and color jitter [31]. These transformations can be applied randomly or systematically 

during the training process to generate a diverse set of training examples. 

In the original ZACAF implementation no augmentation was used since all the videos were 

recorded with a uniform placement under the camera. However, in this dataset the orientation of 

the fish was random. This augmentation assures that the framework is less prone to the manner 

that the fish is placed under the microscope and cameras setup, which gives the user more freedom 

while recording. Additionally, data augmentation is one of the methods used for improving the 

performance with limited data and reducing overfitting. Lastly, using data augmentation enables 

Test Time Augmentation (TTA) which is discussed in the next section. Here only horizontal and 
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vertical flipping transformations have been used to imitate all the possible fish placements during 

the recording process.  

3.5. Transfer learning  

Transfer learning is a machine learning technique where a pre-trained model, typically trained on a 

large dataset, is used as a starting point for a new task or problem [32]. The pre-trained model has 

already learned a set of feature representations that are applicable to a wide range of problems, and 

these learned features can be transferred and fine-tuned to the new problem with a smaller dataset. 

This allows for faster training and better performance than training a model from scratch on the 

new dataset. If transfer learning is not utilized, the model will be initialized with random weights. 

In this case, the original ZACAF model was trained on a dataset of zebrafish recorded by a different 

group using a different microscope setup. The dataset included less mature fish and different 

mutant types. However, the features learned during the original model's training for ventricle 

segmentation from zebrafish are expected to improve the training for the new dataset. Therefore, 

we employed the pre-trained weights from the original model for the new model. 

3.6. Test Time Augmentation 

Test-time augmentation (TTA) is a technique used in computer vision, including semantic 

segmentation, to improve the accuracy of models during inference. In semantic segmentation, TTA 

involves applying various image transformations or augmentations to the test images and feeding 

them through the model multiple times to obtain an ensemble of predictions. These predictions are 

then combined, typically by averaging or voting, to obtain a final segmentation map. TTA helps to 

account for variability in the test data and reduces the risk of overfitting to the training data. By 

using TTA, a model can be more robust and accurate on previously unseen data. Some common 

image augmentations used in TTA for semantic segmentation include flipping, rotating, scaling, and 
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cropping. These transformations create multiple versions of the same image, which can be fed 

through the model to obtain a diverse set of predictions. 

It is important to note that TTA can increase the computational cost of inference since the model 

needs to be run multiple times for each image. However, the benefits in terms of accuracy 

improvement can often outweigh this cost. Moshkov et al incorporated TTA in the task of semantic 

segmentation of single-cell analysis of microscopy images based on U-net and Mask R-CNN deep 

learning models which showed improvement in the prediction accuracy [33]. A set of test time 

augmentation techniques was then applied to the test image to generate multiple predictions, 

which were subsequently combined to obtain a final prediction. Specifically, horizontal flipping, 

vertical flipping, and a combination of both were utilized to create three additional variations of the 

original test image. For each of these variations, a prediction was obtained using the semantic 

segmentation model. The four predictions were then combined by taking their element-wise 

average and thresholding the result with a value of 0.2.  

 

Figure 7: Implementation of the test time augmentation techniques. The U-net architecture is trained by 

augmented dataset composed of images and their corresponding masks and the TTA will be applied to the test 

set’s output. The transforms used in TTA are horizontal and vertical flipping and their combination. These 

transformations along with the original prediction make 4 images which then would be subjected to an element-
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wise average. On the far left of the figure the final prediction resulted from the TTA can be compared with the 

original manually segmented mask.  

3.7. Assessment of the EF in Nrap deficient zebrafish 

N=41 Zebrafish were recorded and genotyped via qPCR with TaqMan Custom SNP Genotyping 

Assays, resulting in 19 heterozygotes (46%), 9 wild type (22%), and 13 mutants (31%).  After 

measurement of EF using the modified ZACAF a one-way ANNOVA test revealed no significant 

differences between Ejection Fraction and Fractional Shortening in all three genotypes. (Figure 9) 

Observations of “pear shaped” ventricles were made at the time of image processing (figure 7) and 

we found no significant correlation. Out of n=41 zebrafish, 11 abnormal ventricles were observed 

yielding a frequency of 0.27. Within the group of abnormal ventricles, 18% were mutant, 36% were 

heterozygous and 45% were wild type.  
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Figure 8: NRAP Zebrafish Model 2dpf Ejection Fraction and Fractional Shortening From 9.29.22 with one-way 

ANOVA 

3.8. Assessment of the performance of the model with the defined metrics 

The IoU metric serves as a performance assessment for the best-performing model, trained utilizing 

a Dice loss function, an Adam optimizer, and a learning rate of 0.001 with decay steps of 240 and a 

decay rate of 0.95. The validation split encompassed 20% or 80 sets. The identical model 

underwent training on both ZACAF original data and the new nrap dataset, with and without the 

application of TL. For TL, the training continued the original ZACAF model using only half of the 

nrap data, demonstrating the efficacy of TL in the context of a limited dataset. Figure 10 depicts the 

training and validation Dice loss and IoU metric for five different training regimens: ZACAF trained 
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on its original data with and without data augmentation, trained on the nrap data, and ZACAF 

original fine-tuned on half of the nrap dataset. To ensure model integrity, a model checkpoint was 

implemented as a callback to retain the model with the highest validation IoU coefficient. In Figure 

10, the training and validation IoU rates for the original ZACAF were 88.1% and 85.1%, 

respectively, increasing to 92.4% and 91.8%, respectively, after applying data augmentation to the 

training data. Further, a minor overfitting is observed with the metrics being close. This 

underscores the positive impact of data augmentation on the model. Additionally, training the 

model on half of the nrap data resulted in IoU rates of 91.9% and 87.6% for training and validation, 

respectively. Comparatively, employing TL on half of the data with the original ZACAF model 

yielded rates of 91.6% and 85.9%, respectively. Notably, the model trained solely with the complete 

nrap dataset exhibited similar performance. The figure 10 highlights that utilizing a small dataset 

(around 200 sets) with TL yielded comparable results to a much larger nrap dataset, emphasizing 

the potential of TL as a framework for easy access to ZACAF while simultaneously enhancing its 

performance. 
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Figure 9 Comparison of the performance of the models in their dice loss and IoU metric during training and 
validation. a) ZACAF model trained on its original data. b) ZACAF model trained on its original data with data 
augmentation. c) model trained on half of the nrap data only. d) model trained on half of the nrap data using TL by 
taking the ZACAF model pretrained weights. e) model trained only on the complete nrap dataset.   
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3.9. Assessment of the performance of the framework for EF in the test set 

To evaluate the framework's effectiveness in calculating EF, we compared the results 

obtained from manual assessment by an expert with those generated by the software. As 

EF calculation requires finding the area in all frames of a video to determine the ED and ES 

areas, the framework's performance was assessed using a series of frames from a test 

video, rather than random images from a validation set. To this end, we evaluated the 

framework's performance with EF calculation, using 2 wild-type zebrafish embryos and 2 

nrap mutant embryos as inputs for the test set, without using them in training. We first 

performed manual processing and estimation for each video to derive EF as the ground 

truth. Then, the model predicted ventricle masks for each frame of the input video, and the 

frames with the maximum and minimum area of the segmented ventricle were identified as 

the ES and ED frames, respectively. It is worth mentioning that the outer edge of the 

ventricles was identified in the manual segmentation process that created the training 

dataset, thus the model evaluation and results were also based on that fact. The framework 

subsequently computed EF and saved it, along with other indices, in a CSV file. Among the 

five models discussed in the preceding section, three were selected for testing on videos. 

These models were trained on half of the nrap data, trained on the full nrap data, and the 

TL model using half of the nrap data on the original ZACAF weights. Each of these models 

was independently employed to calculate three sets of EF and FS. Additionally, test-time 

augmentation (TTA) was applied to all three model predictions in a separate experiment, 

resulting in a total of six sets of results. In Figure11, two distinct plots illustrate the 

cumulative error in four test videos during the calculation of EF and FS.  
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Figure 11: EF (a) and FS (b) were calculated from 4 test videos and the error with the manual calculation from 
all videos was added. This error can be seen within different models and the colors show the test video so the 
performance of each model can be seen for each video. model trained on half of the nrap data only, model 
trained on only on the complete nrap dataset, model trained on half of the nrap data using TL, with and 
without TTA can be seen on the X axis of the plot, respectively. The legend shows the contribution of each video 
to the cumulative error compared to the manual calculation.  

Firstly, the model trained with half of the nrap data exhibited the highest error, which was 

expected given the limited training data (200 sets) for a complex convolutional neural 

network (CNN). Conversely, the model trained on the complete nrap dataset demonstrated 

significantly lower error. Secondly, the TL model, utilizing the original ZACAF model as 

pretrained weights and continuing training with half of the nrap dataset, showcased the 

effectiveness of TL and the feasibility of utilizing such a small dataset. This finding suggests 

that new users of ZACAF can leverage it by creating a small dataset. Additionally, test 

videos from the original ZACAF dataset were tested using all models, with only the TL 

model successfully segmenting the ventricle. Notably, Figure 11 highlights that TTA has 

substantially reduced the error. TTA not only enhances edge accuracy but also proves 

beneficial when the model mistakenly detects the atrium or other tissues. Maintaining 

focus on the ventricle is challenging in the microscopic recording of zebrafish heart. TTA 
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can address scenarios where both chambers are partially in focus, ensuring only the 

ventricle is detected. Figure 12 provides an example of TTA's application in improving 

segmentation in videos where both chambers are in focus. Therefore, a notable advantage 

of employing TTA is that it facilitates the recording of future datasets with greater ease, 

reducing the need for extensive cleaning and supervision. The model incorporating TL and 

TTA demonstrated the best performance in the test set, with average errors of 2% and 

1.7% in EF and FS, respectively, in test videos. Additionally, an intriguing observation from 

Figure 11 indicates that mutant nrap fishes exhibit higher error.[34]

 

Figure 12: a frame from nrap fish video recording where the ventricle and atrium are both visible. a) prediction 
without TTA. b) prediction after TTA. c) original video frame with an arrow showing the ventricle  
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Chapter 4: Video segmentation and temporal information 

Zebrafish has emerged as a prominent model organism in various biological studies, 

particularly in cardiovascular research and genetic screenings. However, the current 

methods for quantifying and monitoring cardiac functions in zebrafish embryos often entail 

laborious manual efforts and yield inconsistent estimations. In response to this challenge, 

the development of automated assessment frameworks holds significant promise. 

Leveraging video segmentation methods and harnessing temporal information can offer 

valuable enhancements to the Zebrafish Automatic Cardiovascular Assessment Framework 

(ZACAF). This fact particularly shows itself during manual creation of the dataset, where it 

becomes clear that looking at the image in context of the neighboring frames significantly 

helps the manual segmentation task. Considering virtually all deep learning-based models 

proposed for zf heart function assessment analyze the problem in a single image based 

method.  

Heart beating videos captured from zebrafish embryos exhibit periodicity, making them 

inherently rich in temporal information. Utilizing video segmentation methods enables the 

extraction of dynamic spatial and temporal features, which are crucial for accurate 

assessment of cardiovascular indices such as ejection fraction (EF) and fractional 

shortening (FS). While manual segmentation techniques require expert annotation and 

meticulous attention to temporal features, automated segmentation frameworks 

empowered by deep learning models offer a more efficient and consistent alternative. 

By incorporating temporal information into the segmentation process, ZACAF can 

capitalize on the inherent rhythmic nature of heart beating videos, facilitating precise 

delineation of cardiac structures across frames. This not only streamlines the assessment 
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process but also ensures robustness and reliability, particularly when dealing with large 

volumes of video data. Furthermore, the versatility of ZACAF, capable of operating with 

black and white microscopic recordings at varying frame rates, underscores its 

applicability across diverse laboratory settings and research infrastructures. 

In this chapter, we explore the potential synergies between video segmentation methods 

and temporal information in enhancing ZACAF's capabilities for automated cardiovascular 

assessment in zebrafish embryos. The methods for capturing and learning temporal 

features in deep learning models proposed here can be beneficial not only for zf videos but 

for all video segmentation or object recognition tasks. Through systematic validation and 

comparison with manual processing, we demonstrate the efficacy and accuracy of our 

approach, laying the foundation for efficient, consistent, and reliable analysis of temporal 

features in video segmentation. 

4.1.  Literature review for video segmentation 

Temporal consistency in video segmentation is a crucial aspect of advancing applications 

such as self-driving cars, robotics, and augmented reality. The process of creating a 3D 

semantic map from video sequences starts with generating 2D semantic maps for each 

frame, where each pixel is assigned a label that defines its semantic category. While the 

accuracy of individual frame predictions is essential, the consistency of these predictions 

across consecutive frames is equally important. Consistent semantic labeling across frames 

facilitates more accurate and efficient fusion of these maps, leading to a more reliable 3D 

representation of the environment. 

Deep learning models have made significant improvements in improving the temporal 

consistency of video segmentation. Traditionally, optical flow has been employed to 
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capture the movement of pixels across frames, thus maintaining coherence in the 

segmentation results. However, computing optical flow is computationally demanding and 

its accuracy directly impacts the segmentation model's performance. To overcome these 

limitations, researchers have developed sophisticated methods that leverage temporal 

information from past frames without solely depending on optical flow. These methods 

include using temporal consistency losses, integrating memory modules, and designing 

architectures that can inherently handle temporal information. By incorporating these 

advanced techniques, the goal is to ensure that the segmentation models produce stable 

and coherent results over time, thereby enhancing the overall effectiveness of video-based 

applications. 

Below is a literature review for temporal consistency in video semantic segmentation. In 

each subsection below one of the recent papers addressing temporal consistency in video 

segmentation is discussed along with its downside.  

1) An Unsupervised Temporal Consistency (TC) Loss to Improve the 

Performance of Semantic Segmentation Networks 

This study[35] focuses on enhancing the performance of semantic segmentation networks 

by introducing an Unsupervised Temporal Consistency (TC) Loss. Leveraging a sequential 

and unlabeled dataset comprising video sequences, they employ optical flow functions to 

gauge the stability of network predictions and estimate apparent motion within the video 

sequence. Optical flow enables the estimation of pixel displacement between consecutive 

frames, providing crucial insights into temporal dynamics essential for improving 

segmentation network performance. 
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Downsides: This framework uses optical flow which is susceptible to computational 

complexity and to errors in scenarios with fast motion, occlusions, or texture less regions, 

which can negatively impact the accuracy of temporal consistency in video segmentation. 

Also, temporal consistency (TC) is derived from a separate task and dataset, resulting in 

video segmentation and optical flow estimation being treated as distinct processes rather 

than an integrated solution. 

2) Every Frame Counts: Joint Learning of Video Segmentation and Optical Flow 

This paper[36] introduces a pioneering framework for concurrent video semantic segmentation 

and optical flow estimation. The model takes a pair of sequential images, randomly selected from 

adjacent video frames, as input. It employs a shared encoder for both decoders: one dedicated to 

segmentation and the other to optical flow. Consequently, two predictions are generated for 

segmentation, alongside two pseudo-predictions obtained by applying flow features to the encoded 

feature maps in each segmentation decoder block—essentially wrapping feature maps with flow 

information. Subsequently, a temporal consistency loss is defined, leveraging the segmentation 

feature map and the feature map resulting from the fusion of flow and current frame subtraction. 

Additionally, an occlusion map is utilized to prevent penalizing occluded pixels, enhancing the 

model's robustness and accuracy. 

Downsides: This paper again uses optical flow which is vulnerable to the mentioned issues 

like computationally challenging and non-robustness.  

3) Frame Difference-Based Temporal Loss for Video Stylization 

Neural style transfer models have proven effective in stylizing regular videos according to 

specific styles. However, maintaining temporal consistency between frames has been a 

challenge. In addressing this issue, a simpler temporal loss, termed the frame difference 
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based (FDB) loss, has been proposed[37]. This loss function aims to mitigate temporal 

inconsistencies by quantifying the disparity between stylized frames and original frames. It 

computes the distance between the differences observed in both pixel space and feature 

space, as defined by convolutional neural networks, thereby ensuring more coherent 

stylization across successive frames. 

Downsides: a separate video stylization model is needed.  Also, it is not suitable for when 

stylization is not needed. 

4) AuxAdapt: Stable and Efficient Test-Time Adaptation for Temporally 

Consistent Video Semantic Segmentation 

The approach[38] incorporates a small auxiliary segmentation network, referred to as 

AuxNet, which fine-tunes the decisions made by the original segmentation network (Main-

Net) by incorporating its own estimations alongside those of MainNet. During each frame 

iteration, only AuxNet undergoes updates via back-propagation, while MainNet remains 

fixed. The rationale behind this strategy lies in addressing temporal inconsistency 

attributed to uncertainty. By training the network based on its own challenging decisions, it 

strengthens its confidence in predictions, particularly for image regions resembling those 

encountered previously. Furthermore, AuxNet is trained via test-time adaptation while 

Main-Net remains frozen, facilitating improved adaptability and robustness in real-world 

scenarios. 

Downside: In this network an additional network is needed. Also, two separate training 

stages are needed.  

5) Efficient Semantic Video Segmentation with Per-Frame Inference 
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 Here a novel approach is proposed[39] for transferring temporal consistency knowledge 

from large models to smaller ones through Temporal Consistency Knowledge Distillation 

(TCKD). This method leverages previous predictions as supervised signals to assign 

consistent labels to each corresponding pixel along the time axis. Termed Motion Guided 

Temporal Consistency, this approach utilizes a temporal loss mechanism, subtracting 

predictions at time from wrapped predictions on a motion estimation network. This 

process aligns segmentation maps between two input frames by leveraging motion 

guidance. Additionally, an occlusion mask was introduced to mitigate noise stemming from 

warping errors. In this implementation, a pre-trained optical flow prediction network as 

the motion estimation net was proposed. Moreover, attention operators to assess similarity 

between pairs and multiple frames were integrated, thereby facilitating the training of a 

compact student network. This comprehensive framework aims to distill temporal 

consistency knowledge effectively, enabling smaller models to achieve comparable 

performance to larger counterparts in dynamic environments. 

Downside: This has the mentioned issues of using optical flow. Here, the optical flow 

network is pretrained and might show errors with new domains of video.  

6) Domain Adaptive Video Segmentation via Temporal Consistency 

Regularization  

This paper [40]introduces DA-VSN, a domain adaptive video segmentation network 

designed to bridge domain gaps in videos through Temporal Consistency Regularization 

(TCR) across consecutive frames in the target domain. DA-VSN comprises two innovative 

and complementary components: cross-domain TCR and intra-domain TCR. 
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In the cross-domain TCR framework, the network leverages adversarial learning to guide 

predictions of target frames towards achieving temporal consistency akin to that observed 

in source frames, learned from annotated source data. This involves employing a GAN 

architecture where the generative model learns to predict two consecutive frames from 

both target and source domains. Dual discriminator structures are employed: one focuses 

on spatial alignment of single video frames across different domains, while the other 

concentrates on temporal alignment of consecutive video frames from different domains. 

To ensure consistency across spatial losses, a divergence loss is introduced between the 

two losses. 

Conversely, the intra-domain TCR framework propagates predictions from previous frames 

forward using frame-to-frame optical flow estimates. It then enforces consistency in 

unconfident predictions of the current frame with confident predictions propagated from 

the previous frame. 

In summary, the paper presents distinct frameworks for enhancing temporal consistency: 

one for cross-domain adaptation and another for intra-domain refinement. These 

frameworks collectively contribute to the robustness and adaptability of DA-VSN in 

addressing domain gaps and enhancing the accuracy of video segmentation tasks. 

Downsides: In the cross-domain segment, the superiority of using a dual discriminator 

network over transfer learning remains ambiguous. Considering the computational 

intensity and complexity involved, it begs the question of whether the marginal gains 

justify such an investment. Additionally, the absence of metrics showcasing enhancement 

in temporal features, apart from mIoU, leaves room for improvement. Intra-domain 
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analysis employs optical flow yet encounters conventional challenges. The absence of 

temporal metrics to demonstrate improvements further underscores this concern. 

7) Learning to Associate Every Segment for Video Panoptic Segmentation 

This paper[41] with the objective of simultaneously learning coarse segment-level 

matching and fine pixel-level matching. A deep Siamese model is designed, employing two 

identical networks to assess similarities between inputs, trained on pairs of frames where 

the neighboring reference frame is randomly sampled from a wide range relative to the 

current target frame. This setup encourages the model to acquire representations 

conducive to optimal content association across input frames. 

For segment-level correspondence, the authors introduce a temporal associative 

embedding loss, encompassing class-wise and instance-wise contrast mechanisms. This 

facilitates the learning of meaningful associations between segments across frames. 

Additionally, at the pixel level, optical flow is utilized to enhance matching precision, aiding 

in fine-grained alignment between frames. 

By integrating both segment-level and pixel-level matching strategies within a unified 

framework, the proposed method offers a comprehensive solution for video panoptic 

segmentation, enabling robust and accurate segmentation across consecutive frames. 

Downsides: This will not work as suitable for binary classification. For pixel-wise 

correspondence they are still using optical flow which still has the mentioned problems.  

8) Simultaneously Short- and Long-Term Temporal Modeling for Semi-

Supervised Video Semantic Segmentation 
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This paper[42] aims to leverage both short- and long-term inter-frame correlations 

effectively. Here's how the method accomplishes this: 

Spatial-Temporal Transformer (STT) Module: This module is dedicated to handling short-

term temporal modeling. It operates on the feature maps of the query frame and its 

adjacent frames (up to n frames). By integrating spatial and temporal information, the STT 

module enables accurate modeling of short-term correlations between consecutive frames. 

Reference Frame Context Enhancement (RFCE): The RFCE module is designed to capture 

long-term temporal correlations by optimizing the context for both the query frame and 

the reference frame. It ensures that frames distant from each other within the same video 

are appropriately accounted for, enhancing the model's ability to understand temporal 

dynamics over longer durations. 

In addition to RFCE, the paper introduces the Global Category Context (GCC) module to 

address potential deficiencies in categorical information present in reference frames 

compared to query frames. By compensating for these discrepancies, the GCC module 

further enhances the effectiveness of the RFCE module in modeling long-term temporal 

correlations. 

By integrating these components, the proposed approach offers a comprehensive solution 

for semi-supervised video semantic segmentation, effectively capturing both short- and 

long-term temporal dependencies for improved segmentation accuracy and robustness. 

Downsides: downside of this approach is the extensive use of transformers, which leads to 

high computational cost and increased complexity of the proposed model. This can make 

the method less efficient and more challenging to deploy in real-time applications or on 

resource-constrained devices. 
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4.2. Approaches for capturing temporal consistency   

Here we expand on some of the methods already discussed in the literature for leveraging 

temporal features in video object segmentation. 

4.2.1. Optical Flow 

Optical flow is a fundamental technique in computer vision used to estimate the motion of 

objects between consecutive frames of a video. By capturing the apparent motion of 

brightness patterns, optical flow provides a dense vector field representing the 

displacement of pixels over time. This section delves into the principles, algorithms, and 

applications of optical flow in the context of temporal analysis for heartbeat video 

segmentation.[43] 

Optical flow assumes that the intensity of a pixel remains constant as it moves from one 

frame to the next. Mathematically, if I (x, y, t) denote the intensity of a pixel at position (𝑥, 

𝑦) and time t, the optical flow constraint can be expressed as: 

𝐼 (𝑥, 𝑦, 𝑡) =𝐼 (𝑥+Δ𝑥, 𝑦+Δ𝑦, 𝑡+Δ𝑡) (14) 

For small displacements, this can be approximated using a Taylor series expansion, leading 

to the optical flow equation: 

𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 0  (15) 

Where 𝑢 and 𝑣 are the horizontal and vertical components of the optical flow vector, 

respectively. The partial derivatives 
𝜕𝐼

𝜕𝑥
 and 

𝜕𝐼

𝜕𝑦
 represent the spatial gradients, while 

𝜕𝐼

𝜕𝑡
 

represents the temporal gradient. Several algorithms have been developed to solve the 

optical flow equation, each with its own strengths and limitations. Two widely used 

methods are the Lucas-Kanade and Horn-Schunck algorithms. Optical flow can be 
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leveraged to capture the dynamic movements of the heart, ensuring temporal consistency, 

and improving segmentation accuracy. 

Additionally deep learning based methods have been also proposed for capturing optical 

flow. FlowNet [44]is a deep learning architecture designed to estimate optical flow, which 

represents the apparent motion of objects between consecutive video frames. The 

architecture uses an encoder-decoder structure: the encoder extracts hierarchical features 

from the input frames, and the decoder gradually upsamples these features to produce a 

dense optical flow map. By effectively capturing motion dynamics, FlowNet enhances the 

accuracy and efficiency of video segmentation tasks, where understanding object 

movement is essential. 

4.2.2.  Frame Differencing 

Frame differencing is a straightforward and effective technique used in video processing to 

detect motion by calculating the difference between consecutive frames. This method is 

particularly useful in scenarios where the objective is to identify changes or movements 

within the video, such as the beating of a heart in medical imaging. Frame differencing is 

based on the principle that significant changes in pixel values between consecutive frames 

indicate motion or activity. By computing the absolute difference between the 

corresponding pixels of successive frames, regions of change can be highlighted, which 

often correspond to moving objects or dynamic structures within the scene. 

Mathematically, let 𝐼𝑡(𝑥, 𝑦) represent the intensity of a pixel at position (𝑥, 𝑦) in frame t. 

The frame difference 𝐷𝑡(𝑥, 𝑦) between frame 𝑡 and frame 𝑡+1 is given by: 

𝐷𝑡(𝑥, 𝑦) = |𝐼𝑡(𝑥, 𝑦) − 𝐼𝑡+1(𝑥, 𝑦)| (16) 
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Where ∣⋅∣ denotes the absolute value. If 𝐷𝑡(𝑥, 𝑦) exceeds a predefined threshold θ, the pixel 

is considered to be part of a moving region. 

4.2.3.  Temporal correlation 

Temporal correlation is a statistical technique used to measure the similarity between 

consecutive frames in a video. By quantifying how closely related frames are over time, 

temporal correlation helps in maintaining the temporal coherence of segmented regions, 

which is particularly important in the dynamic context of heartbeat videos. 

Temporal correlation measures the degree to which pixel values or extracted features in 

one frame are similar to those in the subsequent frame. A high correlation indicates that 

the frames are similar, suggesting minimal motion or change, while a low correlation 

indicates significant differences, corresponding to motion or activity within the scene. 

Mathematically, the temporal correlation coefficient 𝜌 between two frames 𝐼𝑡 and 𝐼𝑡+1  at a 

specific pixel (𝑥, 𝑦) can be calculated using the Pearson correlation formula: 

𝜌(𝐼𝑡, 𝐼𝑡+1) =
∑

(𝐼𝑡(𝑥,𝑦)−𝑢𝑡)(𝐼𝑡+1(𝑥,𝑦)−𝑢𝑡+1)
𝑖,𝑗

√∑
(𝐼𝑡(𝑥,𝑦)−𝑢𝑡)

𝑖,𝑗

2
∑

(𝐼𝑡+1(𝑥,𝑦)−𝑢𝑡+1)2

𝑖,𝑗

  (17) 

where 𝑢𝑡  and 𝑢𝑡+1 are the mean pixel values of frames 𝐼𝑡 and 𝐼𝑡+1, respectively, and (x, y) 

denotes the pixel coordinates. Temporal correlation helps ensure that segmented regions 

remain consistent over time by identifying areas with high correlation. This reduces the 

likelihood of sudden changes or flickering in the segmentation results. 

4.2.4.  Architecture for conserving temporal consistency 

Aside from auxiliary networks designed for learning temporal features, Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) networks are powerful tools for 

modeling sequential data and capturing temporal dependencies.[45] Their ability to 
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process sequences of frames makes them particularly suitable for analyzing dynamic 

phenomena such as the beating of a heart in medical videos. RNNs are designed to handle 

sequential data by maintaining a hidden state that captures information from previous time steps. 

This enables RNNs to model temporal dependencies and patterns over time. However, standard 

RNNs suffer from limitations such as the vanishing gradient problem, which makes it difficult for 

them to learn long-term dependencies. 

LSTM networks are a specialized type of RNN designed to overcome these limitations. 

LSTMs introduce memory cells and gating mechanisms (input gate, forget gate, and output 

gate) that regulate the flow of information, allowing them to maintain and update long-

term dependencies effectively. 

On the other hand, using transformers for learning temporal features in video 

segmentation involves employing their ability to model relationships across an entire 

sequence of frames through self-attention mechanisms. Transformers can effectively 

capture long-range dependencies, allowing the model to consider contextual information 

from distant frames, which is crucial for maintaining temporal consistency in video 

segmentation. By processing video frames as sequences, transformers can learn intricate 

temporal dynamics and spatial-temporal correlations, leading to more coherent 

segmentation across frames. This can significantly improve the accuracy of the 

segmentation results, especially in complex scenes where temporal information is critical. 

4.3.  Frame similarity methods  

Here, we proposed an alternative approach to temporal feature extraction. Instead of using 

a separate deep learning network for extracting temporal connections like optical flow, we 

try to use frame based statistical correlation to measure similarities between a series of 
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sequential frames like what was proposed for stylized videos and the use of frame 

subtraction. Using a metric for image similarity our final aim here is to propose a temporal 

loss function that does not require an auxiliary deep learning model and can be applied to 

most existing segmentation models.   

4.3.1.  Correlation of Fast Fourier Transform (FFT)   

FFT, a mathematical tool, facilitates the transformation of images from the spatial domain 

to the frequency domain. By applying FFT to consecutive frames in a video sequence, 

temporal frequency information can be extracted. This enables the detection of temporal 

patterns, motion, and dynamics across frames. The comparison of FFT representations 

between frames reveals similarities and differences in frequency content, which in turn, 

aids in identifying regions of motion and temporal coherence over time. 

Correlation, on the other hand, measures the similarity between two signals or images. 

When applied to consecutive frames, correlation elucidates the degree of resemblance 

between corresponding pixels. By computing the correlation between adjacent frames, one 

can discern regions of similarity or change over time. Utilizing correlation in either the 

spatial or frequency domain allows for the detection of motion and temporal dependencies, 

thereby facilitating more robust video segmentation. 

 The 2D Fast Fourier Transform (FFT) of an image 𝐼 (𝑥, 𝑦) can be expressed as: 

F(u, v) = ∑ ∑  I(x, y) ⋅ e−2πi(
ux

𝑀
+

vy

N
)y=0

N−1
x=0
M−1  (18) 

Where, M and N are the dimensions of the image in the horizontal and vertical directions, 

respectively. 
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To show if FFT correlation can act as a temporal similarity measure between two images, a 

python script was written to get FFT of every frame of a video and then calculate the 

correlation between the first frame to rest of the frames of the video.  

 

Figure 13 FFT of two consecutive frames from a video along with the difference of the two FFTs and their 
correlation. The information of edges and objects can be extracted using FFT.  

As can be seen in figure 14, a periodic trend can be seen in the plot of FFT correlation of 

frames with the first frame however, it is not very consistent, and the difference of 

correlation is not significant.  
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Figure 14 Plot of FFT correlation of the sequence of frames with the first frame. As it can be seen in the figure 
multiple local maximus are present which have correlation with the heartbeat of the zf in the video. However, there 
are also multiple outlier points that can be seen which are noise.  

4.3.2.  The Structural Similarity Index 

The Structural Similarity Index metric (SSIM) is a widely used metric for assessing the 

similarity between two images, aiming to model the human visual perception more closely 

than traditional metrics such as Mean Squared Error (MSE) or Peak Signal-to-Noise Ratio 

(PSNR). SSIM evaluates the structural information in an image by comparing three 

components: luminance, contrast, and structure. These components are designed to 

capture the perceptual differences that human eyes are more sensitive to. 

The SSIM index between two images 𝑥 and 𝑦 is defined as follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(2𝜇𝑥+𝜇𝑦2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (19) 

𝐶1 and 𝐶2 are small constants to stabilize the division. By comparing these components, SSIM 

provides a comprehensive measure that accounts for changes in structural information, luminance, 
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and contrast. The SSIM value ranges from -1 to 1, where 1 indicates perfect similarity and -1 

indicates complete dissimilarity.[46] 

SSIM is particularly useful in image quality assessment, where it outperforms traditional 

metrics in capturing perceptual differences. Its application extends to various fields 

including image compression, transmission, and enhancement, where preserving 

perceptual quality is crucial. By focusing on structural information, SSIM aligns more 

closely with the human visual system, making it a valuable tool for evaluating image 

similarity in a manner that is both robust and perceptually meaningful. 

We apply the same process we did with FFT here with SSIM. We get SSIM of every frame of 

a video and the first frame. Then we plot it through all frames in a video sequence. In figure 

15 it can be seen that SSIM worked much better than FFT correlation for our intended task 

of measuring temporal consistency.  

 

Figure 15 SSIM of the sequence of frames with the first frame. As it can be seen in the figure multiple local maximus 
are present which have correlation with the heartbeat of the zf in the video. Compared to the similar figure that 
was achieved by FFT correlation this signal shows more correlation with the heartbeat signal and less noise is 
observed.   
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4.4.  Video based measurement using SSIM 

As it can be seen in figure 15, the plot has a direct relation with the area of the ventricle. 

The background subtraction-based occlusion mask focuses on the movement in the video, 

and since the ventricle has the majority of the pixels involved in the movement, the plot 

represents the measurement of the area changes in the video. This shows that this 

framework using SSIM can be used for measuring movement changes in a video. However, 

the zf videos are very complicated in terms of noise and borders of the moving ventricle. 

Here, to show the ability of SSIM based framework we create an animation. In this 

animated video, we have a 256×256 video that has a black background with a white circle 

in the middle. This circle changes size periodically and considering that we created the 

animation we have the area of the circle over frames.  Two frames of this animation are 

brought in figure 16 to demonstrate how the video looks.  

The same SSIM based framework was applied to the created animation and figure 17 

shows the correlation of the known area of the circle to SSIM of the first frame to all other 

Figure 16 animation of the binary circle that changes in size periodically. We created this 
animation, so the size of the object is known. 
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frames. 

 

Figure 17 SSIM of the frames compared to the actual area of the circle. In the first panel the area of the circle 
throughout the video is plotted. The second panel shows the same SSIM method applied to the frame with the 
largest circle.  As can be seen, the second panel shows correlation to the area of the circle. The top of the peaks is 
saturated when the circle being too large compared to the background.  

4.5.  Detection of Occlusions and Artifacts 
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Background subtraction with occlusion masks can help identify and mitigate occlusions or 

artifacts in heart beating videos. Occlusions such as debris or bubbles can obscure cardiac 

structures, leading to inaccuracies in segmentation. By applying background subtraction as 

occlusion masks, we can suppress the effects of occlusions, revealing the underlying cardiac 

structures more clearly. This improves the accuracy of segmentation and ensures that the 

deep learning model receives cleaner input data, leading to more reliable cardiovascular 

quantification results. 

 

Figure 18 Workflow of the SSIM based framework for area measurement where we apply background subtraction 
as an occlusion mask to minimize the noise. The result is multiplied by 1000 arbitrary to make the resulting 
numbers easier to read. On the bottom section, panel (a) shows a frame of a video. panel (b) shows the mask 
resulting from applying background subtraction to the video. panel (c) shows the result of applying morphological 
filters to the mask in panel (b).   

Enhanced Feature Extraction: Background subtraction with occlusion masks enables the 

extraction of dynamic spatial and temporal features from heart beating videos. By 

subtracting the background and focusing only on the foreground (i.e., cardiac structures), 

we can highlight the motion and changes occurring in the video over time. These dynamic 

features can be valuable inputs for the deep learning model, allowing it to learn the 
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temporal dynamics of cardiac activity and make more accurate predictions of 

cardiovascular indices such as ejection fraction (EF) and fractional shortening (FS). 

4.6.  Improving Model’s temporal consistency using SSIM  

SSIM can be used to measure the structural similarity between consecutive frames in heart 

beating videos captured from zebrafish embryos. By calculating SSIM values between 

frames, we can assess the temporal consistency of the video sequence. High SSIM values 

indicate that the frames are similar, implying stable temporal characteristics such as 

regular heartbeat intervals. This information can be utilized to ensure the robustness and 

reliability of the segmentation process across frames. 

By pre-processing heart beating videos with background subtraction with occlusion masks, 

we can provide the deep learning model with cleaner, more consistent input data. This can 

improve the model's training process by reducing noise and variability in the training data, 

leading to better generalization and performance on unseen data. Additionally, 

incorporating temporal information through SSIM and background subtraction can help 

the model capture the temporal dependencies inherent in heart beating videos, enhancing 

its ability to accurately quantify cardiovascular parameters. 

Overall, leveraging SSIM and background subtraction with occlusion masks in the ZACAF 

framework can enhance the extraction of temporal information from heart beating videos, 

leading to more accurate and reliable automated cardiovascular assessment in zebrafish 

embryos. This approach can streamline the analysis process, improve the consistency of 

results, and facilitate advancements in cardiovascular research and genetic screenings 

using zebrafish models. 
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In the last section, we showed that SSIM can be used as a great tool for extracting temporal 

features. Now a framework is proposed to use SSIM as a temporal loss, to improve 

temporal consistency.  

4.6.1. Dataset with temporal annotation   

Researchers often utilize benchmark datasets to evaluate and compare the performance of 

video segmentation models. Benchmark datasets provide a standardized platform that 

ensures the consistency and reliability of experimental results. A well-constructed 

benchmark dataset for video segmentation should possess several key characteristics to 

effectively demonstrate a model's accuracy and temporal consistency. Firstly, it should 

include a diverse range of video sequences that cover various scenarios, including different 

lighting conditions, object motions, and occlusions, to test the model's robustness. 

Secondly, the dataset should provide high-quality, accurately annotated ground truth labels 

for each frame, enabling precise evaluation of segmentation accuracy. Temporal 

annotations are also crucial, as they allow the assessment of the model’s ability to maintain 

consistency across consecutive frames. Additionally, the dataset should be large enough to 

train deep learning models effectively and validate their performance statistically. By 

meeting these criteria, a benchmark dataset can serve as a critical tool for advancing video 

segmentation research, offering a clear measure of how well a model performs in both 

spatial accuracy and temporal coherence. The zf datasets created in this work are 

temporally annotated as a sequence of 10 frames were selected and manually annotated 

during creation of the dataset. However, because we want to show the robustness and 

accuracy of our proposed model for learning temporal features, we use a popular 

benchmark dataset.  
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The DAVIS (Densely Annotated VIdeo Segmentation)[47] dataset is a widely recognized 

benchmark in the field of video segmentation. Introduced to provide a comprehensive and 

challenging platform for evaluating video object segmentation algorithms, DAVIS includes 

high-quality video sequences with densely annotated ground truth masks for each frame. 

This dataset is specifically designed to test a model’s ability to accurately segment moving 

objects while maintaining temporal coherence across frames. 

DAVIS stands out due to its meticulous annotation and diverse range of video sequences. 

The dataset encompasses various real-world scenarios, including dynamic backgrounds, 

occlusions, and complex object interactions, which are essential for testing the robustness 

and generalizability of segmentation models. The annotations provided in DAVIS are pixel-

accurate, ensuring that the ground truth masks are of the highest quality, which is crucial 

for precise performance evaluation. Moreover, DAVIS includes several subsets, such as 

DAVIS-2016 and DAVIS-2017, each catering to different aspects of video segmentation 

challenges. DAVIS-2016 focuses on single-object segmentation, while DAVIS-2017 extends 

to multi-object segmentation, reflecting more complex and realistic scenarios. Researchers 

utilize the DAVIS dataset not only for benchmarking the accuracy of their models but also 

to assess temporal consistency, which is the model's ability to produce stable and coherent 

segmentations across consecutive frames. This makes DAVIS an indispensable resource for 

developing and validating advanced video segmentation techniques, driving progress in the 

field through its rigorous and diverse evaluation framework. 

To further advance the segmentation capabilities of the U-net framework, we propose 

training the model using the DAVIS dataset, renowned for its high-quality, densely 

annotated video sequences. Initially, we will train the U-net model in a conventional 
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manner, optimizing for pixel-wise accuracy using standard loss functions such as cross-

entropy or Dice loss. This will establish a baseline performance in segmenting objects 

within the challenging and diverse video sequences provided by DAVIS. 

4.6.2.  Training U-net with an additional SSIM based loss function 

To enhance temporal consistency in our segmentation results, we will subsequently retrain 

the U-net model using a novel approach that incorporates Structural Similarity Index 

Measure (SSIM) based loss. Our strategy involves feeding two consecutive frames from the 

video into the U-net model simultaneously. For each pair of consecutive frames, we will 

calculate the SSIM between the ground truth segmentations to capture the temporal 

coherence of the actual object movements. Similarly, we will calculate the SSIM between 

the predicted segmentations for these frames. The SSIM-based loss will then be designed to 

minimize the error between the SSIM of the ground truth and the SSIM of the predicted 

segmentations. By incorporating this temporal consistency loss, we aim to ensure that the 

segmentation predictions not only remain accurate on a frame-by-frame basis but also 

exhibit smooth and coherent transitions over time, closely mirroring the true dynamics of 

the video sequences. This approach leverages the rich temporal information inherent in 

video data, promoting more stable and reliable segmentation outputs in practical 

applications. For comparison, we also train the same U-net without using SSIM loss. Figure 

19 shows the diagram for the proposed U-net that incorporates Dice coefficient and SSIM 

loss. We can compare the spatial metrics we used to use like IoU or Dice coefficient, to 

evaluate the model. However, to show the performance of the method in terms of temporal 

consistency we must propose new metrics as the aforementioned metrics are image based. 

Since we used SSIM as a loss we can also propose a way to utilize it a a temporal metric. 
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One way of showing temporal consistency could be measured by showing the SSIM 

between every pair of consecutive frames. Averaging the SSIM measured for all pairs, can 

present us with a score to show temporal consistency for a video. Figure 19 shows the 

mentioned workflow in a diagram.  

 

Figure 19 diagram for showing the proposed temporal consistency score for a video prediction. Like SSIM the 
average score is a number between 0 and 1 and a score closer to 1 shows better temporal consistency. An odd 
number of frames need to be chosen for this task. 

Using the proposed SSIM score, the models trained with and without temporal loss 

respectively scored 0.96 and 0.92 which shows the benefit gained from using SSIM based 

temporal loss.   

After training the proposed U-net based segmentation model with the DAVIS dataset, once 

with and once without the SSIM based temporal loss function below we can compare their 

Dice, IoU, and SSIM score. Also figure 20 demonstrates the inference of a series of frames of 
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the test set. As can be seen in the figure the model trained with the SSIM temporal loss 

shows better results.  

 

 

Figure 20 The diagram of the proposed U-net based model where two consecutive frames 𝐼𝑡, 𝐼𝑡+1and their 
corresponding ground truth masks 𝐺𝑡, 𝐺𝑡+1 represent the training phase and the 𝑃𝑡, 𝑃𝑡+1are the resulted prediction 
masks. Total loss is calculated by adding the dice coefficient loss and SSIM loss.   

Another way of evaluating the models is visually comparing their predicted results. Figure 

21 shows the visual comparison between the models and as it can be seen the model that 

was trained with SSIM based loss has more accurate predictions spatially. The edges are 

conserved better in these predictions, and it is more consistent. Obviously, these 

predictions are both not comparable to the state-of-the-art models for video object 

segmentation that were mentioned in the literature review. That is because those works 

have used much more complicated and customized for this task. While we used a simple U-

net that is usually used for image segmentation. Our purpose here was just to demonstrate 

the benefits of using SSIM based temporal loss in video segmentation. In the future works 

we plan to benchmark this loss function’s improvement with the state of the art 
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architecture like PSP-net[48] that are specifically proposed for video segmentation task. 

Also, it is worth noting that for simplification we merged all classes of the ground truth into 

binary background and foreground.  

 

Figure 21 The visual representation of the performance of models that were trained with and without SSIM loss. 
Four consecutive frames have been shown with their manual ground truth, and two predications from models. As It 
can be seen the model trained with SSIM loss has captured more details and better edges. Note that GT has been 
binarized before training for simplification.  

In our future work we want to implement this temporal loss in ZACAF as well and show its 

benefits for periodic heart beating videos. Additionally, we want to use this temporal loss in 

the latest state of the art for video image segmentation models like PSPnet.   
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Chapter 5: Discussions and Conclusion 

5.1. Estimations in 2-D videos 

The approach with microscopic videos relies on 2D videos to derive 3D volume estimation 

assuming the ventricle as a perfect ellipsoid. This assumption will result in accuracies in 

the measurements. Especially in mutant type where the shape of the chambers is not close 

to being ellipses this is going to be influential. However, the only solution to this problem is 

3D imaging. In literature there are several studies that have extensively used 3D imaging 

technics like Z-stack imaging. In segmentation of the chambers using deep learning the 

third dimension is just going to be an extra layer of input. Granted the model is going to be 

more complicated but the concept is the same. 

5.2. Consistency of measurement 

Looking at the two frameworks that used deep learning for automatic segmentation of the 

zf heart, this method shows to be promising. The fully automated frameworks do the 

manual quantification of the cardiovascular metrics in a fraction of the time that it takes to 

do it manually. Additionally, manual segmentation is not consistent. Segmentation of the 

ventricle in these videos is a challenging task, even manually. The small size, ambiguous 

edges, and partial obstruction of the heart in the videos can also add complications to 

manual detection. We have investigated this quantitatively. We asked two experts to 

segment and measure the ventricle area in single frames of 12 sample videos. They were 

instructed to do the measurement twice for each frame manually with a short break 

between each try. The results were 12 frames, each measured 4 times. The standard 

deviation for each frame measurement was calculated, and the average of standard 

deviations of the measurements in these 12 frames was about 150 pixels with 50 pixels 
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standard deviation. This is approximately 8% of the average size ventricular area in our 

setting’s scale. This shows the inconsistency in the manual segmentation. This could be 

especially significant with mutant embryos whose EF is usually very small. However, due to 

the nature of neural networks, trained models like ZACAF are consistent, which means that 

the measurement of a frame multiple times will always result in only one consistent 

measurement. 

5.3. Frame rate issue 

It is noteworthy to mention since the ground truth is created using the same frames for 

segmentation of the ventricle, the frame rate isn’t assessable. The ES and ED frames are the 

most important frames when it comes to the quantification of parameters like HR, EF, and 

FS. While recording the videos, the camera shutter takes a sequence of images with a 

certain fps. The higher the video's fps, the higher chance for exact ES and ED stages being 

recorded. This fact cannot be proved using the metrics because the prediction is only being 

compared with the existing manually segmented ground truth, and if the low fps causes the 

loss of ED or ES frames, there is no way to show it with the metrics.  

5.4. Mutant fish lines challenges 

From the segmentation point of view, there are two significant differences between the 

mutant and wildtype fish. The ventricle and the heart, in general, have abnormal shapes in 

several mutant types. In TTNtv case here, EF is much lower in the TTNtv model as the 

shape as well as the contractility are significantly affected. Thus, the ventricle area 

difference in ES and ED frames in TTNtv mutants is very low. Figure 22 provides examples 
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to compare wild and TTNtv zebrafish. In some cases, the ventricle is barely beating so that 

the area difference in ED and ES frames is lower than the segmentation error.  

 

Figure 22: Comparison of the shape and size of wildtype (a) and TTNtv mutant zebrafish (b). Besides the 
abnormal shape of the heart with the swollen ventricular wall, the smaller size of the ventricle is also found with 
TTNtv mutants. Further, the swollen chest can be also noticed. 

In other words, the ventricle area hardly changes to the point that occasionally, the 

nominator of the formula of EF is lower than the estimation error. That is the primary 

source for the inaccuracies with the TTNtv mutants, and further improvements of 

preprocessing or optimization of the framework will not affect the result with the mutant 

significantly. The videos used in this work have low resolution in order to demonstrate the 

capability of our framework. Although this is beneficial for researchers to reduce required 

storage capacity, higher resolution would help resolve this issue, thus improving the 

robustness and accuracy for TTNtv mutant and wildtype fish in general.  

Here, our framework can help researchers quantify the cardiac functions and parameters of 

studied zebrafish with minimum manual engineering efforts. In EF derivation, counting the 
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pixels is more relevant and accurate than finding the long axis, which can be complicated 

since the ventricle is not a perfect ellipse. Further, the tool that most researchers use in the 

ImageJ software is a freehand ruler, which could introduce inaccuracy, especially with the 

small size of heart chambers. 

5.5. Pear shape of the ventricle in some videos 

The pear-shaped ventricles showed no significant correlation to the genotypes. We 

speculate that this shape is observed due to the improper placement of the fish under the 

microscope. Hence it might be caused by the fish not being placed perfectly on its side. 

Considering that the ventricle is not a perfect ellipsoid, this shape could be the result of the 

perspective of the camera from the ventricle which can be imaged as the 2D shape similar 

to a pear instead of being closer to an ellipse.    

5.6. Comparison between EF formulas 

In formula (3), A is the 2D area calculated directly from the segmented ventricle and 𝐷𝐿 is 

the long axis. This way of calculation of the volume does not assume the shape of the 

ventricle to be a prolate spheroidal unlike formula (2). This formula is useful specifically 

for mutant fish where the long and short axis might not change significantly however the 

abnormal shape of the heart might contribute to an abnormal EF measurement. The results 

were calculated using both formulas. The average difference between the EF 

measurements using the two formulas was 3.34% which is negligible. However, some 

videos showed significant differences of up to 19.5%. 

5.7. Discussion on transfer learning 
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The use of transfer learning in the ZACAF model has proved to be a successful technique for 

improving the model's performance for ventricle segmentation in zebrafish. By utilizing 

pre-trained weights from the original model, the new model was able to benefit from the 

features learned during the previous training, resulting in faster training and better 

performance than training the model from scratch on the new dataset. Additionally, the use 

of callbacks such as the model checkpoint helped to ensure that the best-performing model 

was saved and used for further analysis, allowing for the model to continue improving its 

performance. 

5.8. Discussion on TTA 

In this case, TTA was beneficial because it increased the variability of the test data and 

helped to reduce the effect of any biases in the original dataset. Since the ZACAF model was 

trained on a different dataset and microscope setup, there could be some differences in the 

characteristics of the new dataset that were not present in the original dataset. By applying 

TTA, the model was able to generate additional test data that had different characteristics, 

which helped to reduce the impact of any biases in the original dataset. Another benefit of 

TTA is that it can help to increase the robustness of the model to variations in the input 

data. Since the model is exposed to a larger variety of test data during inference, it is less 

likely to overfit to a particular type of input and more likely to generalize well to new data. 

However, TTA also has some potential drawbacks. One of the main drawbacks is that it can 

increase the computational cost of making predictions since the model needs to process 

multiple versions of the test data. Depending on the complexity of the model and the 

number of test data versions generated, the computational cost can be significant. Another 

potential drawback of TTA is that it can introduce some variability into the predictions, 
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which can make it difficult to interpret the results. Since the final prediction is based on an 

average of multiple predictions, it may not be clear which version of the test data was 

responsible for a particular prediction. This can make it challenging to identify specific 

areas of the input data that the model is struggling with. 

5.9. Discussion of temporal consistency  

The integration of video segmentation techniques and temporal information significantly 

enhances the Zebrafish Automated Cardiovascular Assessment Framework (ZACAF). By 

leveraging deep learning models for automated segmentation, we address the limitations of 

manual methods, providing more efficient and consistent results. The rhythmic nature of 

heart beating in zebrafish embryos makes them ideal for temporal analysis, enabling 

precise delineation of cardiac structures across frames. The incorporation of temporal 

information not only streamlines the assessment process but also ensures robustness and 

reliability, crucial for handling large volumes of video data. This chapter underscores the 

potential of combining spatial and temporal features to improve cardiovascular function 

assessment, highlighting the broader applicability of these methods to various video 

segmentation and object recognition tasks. 

5.10. Conclusion 

This thesis presents a comprehensive exploration of deep learning-based frameworks for 

video segmentation, particularly in the context of cardiac function assessment in 

embryonic zebrafish. Through the development and enhancement of the Zebrafish 

Automated Cardiac Analysis Framework (ZACAF), this work demonstrates the 

effectiveness of U-net architecture in achieving high-accuracy segmentation of zebrafish 
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hearts. By incorporating transfer learning and test-time augmentation (TTA), the model's 

robustness and generalizability across different datasets were significantly improved. 

Furthermore, the integration of temporal features into the segmentation model enabled a 

more precise capture of the dynamic nature of cardiac function. This research not only 

advances the field of biomedical video segmentation but also provides valuable insights 

into the developmental biology of cardiac function, paving the way for future applications 

in both research and clinical settings. 
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