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ABSTRACT

The availability of genome-wide epigenomic datasets
enables in-depth studies of epigenetic modifications
and their relationships with chromatin structures
and gene expression. Various alignment tools have
been developed to align nucleotide or protein se-
quences in order to identify structurally similar re-
gions. However, there are currently no alignment
methods specifically designed for comparing multi-
track epigenomic signals and detecting common pat-
terns that may explain functional or evolutionary sim-
ilarities. We propose a new local alignment algorithm,
EpiAlign, designed to compare chromatin state se-
quences learned from multi-track epigenomic signals
and to identify locally aligned chromatin regions. Epi-
Align is a dynamic programming algorithm that nov-
elly incorporates varying lengths and frequencies of
chromatin states. We demonstrate the efficacy of Epi-
Align through extensive simulations and studies on
the real data from the NIH Roadmap Epigenomics
project. EpiAlign is able to extract recurrent chro-
matin state patterns along a single epigenome, and
many of these patterns carry cell-type-specific char-
acteristics. EpiAlign can also detect common chro-
matin state patterns across multiple epigenomes,
and it will serve as a useful tool to group and distin-
guish epigenomic samples based on genome-wide
or local chromatin state patterns.

INTRODUCTION

All tissue and cell types, such as embryonic stem cells
(ESCs), terminally differentiated tissues, and cultured cell
lines, are maintained and controlled by epigenomic regu-

lation and gene expression programs (1–3). An epigenome
encodes information of chemical modifications to DNA
and histone proteins of a genome, and such modifications
may result in changes to chromatin structures and genome
functions. Epigenomic information is represented by multi-
track signals, including DNA methylation, covalent histone
modifications and DNA accessibility, all of which are mea-
sured genome-wide by high-throughput sequencing tech-
nologies such as Bisulfite-seq, ChIP-seq and DNase-seq
(4). In recent years, multiple international consortia, in-
cluding the Encyclopedia of DNA elements (ENCODE)
(5), the NIH Roadmap Epigenomics Mapping Consortium
(6,7) and the International Human Epigenome Consortium
(8), have generated large-scale high-throughput epigenome
sequencing datasets for a broad spectrum of tissue and cell
types, offering an unprecedented opportunity for study-
ing multiple levels of epigenetic regulation across diverse
cell states. Specifically, the NIH Roadmap project has re-
leased public epigenomic data of 127 human tissue and cell
types (7). This database (release 9) contains a total of 2804
genome-wide epigenomic datasets, including 1821 histone
modification datasets, 360 DNase datasets and 277 DNA
methylation datasets.

A series of computational methods, including
ChromHMM (9), Segway (10), GATE (11), TreeHMM
(12), STAN (13), EpiCSeg (14), Spectacle (15), IDEAS
(16) and GenoSTAN (17), have been developed to build a
genome-wide chromatin state annotation, where distinct
chromatin states have demonstrated diverse regulatory and
transcriptional signals (18–20). In these methods, each
epigenome is segmented into non-overlapping regions, and
a single-track chromatin state sequence is constructed by
compressing multi-track epigenetic activities (e.g. DNA
methylation and histone modifications) in various ways.
For example, ChromHMM assigns discrete chromatin
state labels to genomic regions based on signals of multiple
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epigenetic marks using a hidden Markov model (9). The
predicted chromatin states have shown strong biological
relevance and wide applicability in genomic research,
e.g. the identification of enhancers and promoters (20).
Given a chromatin state annotation constructed by any
of these methods, genomic regions of the same chromatin
state are expected to have both consistent epigenomic
patterns and similar regulatory functions.

Based on existing chromatin state annotations, previous
work has studied similarities and differences of human tis-
sue and cell types in terms of epigenomic signals in spe-
cific functional genomic elements (e.g. promoters and en-
hancers), as well as the tissue and cell specificity of these el-
ements, using the Pearson correlation coefficients (7,21) or a
newly developed epigenome overlap measure (EPOM) (22).
The aforementioned methods have shed significant insights
into our understanding of gene regulation on a global scale,
i.e., how promoters and enhancers regulate target genes in
diverse tissue and cell types. However, former epigenome
comparative studies failed to effectively incorporate the se-
quential information of chromatin states, which, however,
we believe are highly likely to contain critical information
on gene regulatory mechanisms.

The comparison of DNA/RNA or protein sequences
is based on the sequential information of nucleotides or
amino acids. Many sequence alignment methods have been
developed over the past decades to measure the similarity
between sequences. Earlier work such as the Needleman-
Wunsch algorithm (23) and the Smith–Waterman algo-
rithm (24) use dynamic programming to search for the best
global or local matches between two sequences. With the
development of these algorithms, sequence alignment tools
have become indispensable in almost all modern biological
research. They are powerful not only in studies that focus
on comparing sequences, such as evolutionary studies, but
also in query-database retrieval studies, which aim to find
regions from a large database that are similar to the query
sequence of interest. However, there is no alignment algo-
rithm designed to assess the epigenetic similarity of long ge-
nomic regions, such as gene regions and long non-coding
regulatory regions. A main challenge lies in the multi-track
nature of epigenomic signals. On the one hand, substantial
information would be lost if we calculate a scalar value (e.g.,
the mean signal averaged over multiple 25 bp windows) to
represent the signal of a long genomic region per track per
tissue/cell. On the other hand, if we directly analyze the
original data (a signal value per 25 bp window per track
per tissue/cell), we would need to evaluate the similarity
of large matrices to compare genomic regions. Specifically,
the matrix of a region has the dimensions as the number
of 25 bp windows in the region × the number of tracks.
Given that different regions almost certainly have different
lengths and thus matrices of different dimensions, how to
evaluate their similarity is a non-trivial task. In addition,
we also need to consider the fact that a long region often
contains multiple functional genomic elements with vary-
ing lengths. Hence, a reasonable approach is to compare
two long regions based on their chromatin state patterns
learned from multiple-track epigenomic signals. Motivated
by the fact that chromatin state sequences provide a bio-
logically meaningful one-track interpretation of multi-track

epigenomic signals (9), we reduce the challenging question
of comparing long multi-track epigenomic signals to a sim-
pler task of comparing two chromatin state sequences.

Given the fast accumulation of large-scale epigenomic
datasets generated in recent years, biological researchers are
in great need of a new bioinformatic tool to efficiently re-
trieve genomic regions similar to an interested query region
in terms of epigenomic signals. Motivated by the enormous
successes of sequence alignment algorithms in comparing
nucleotide and protein sequences (25), here we propose a
novel computational method, Epigenome Alignment (Epi-
Align), to compare two genomic regions by aligning their
chromatin state sequences. To the best of our knowledge,
EpiAlign is the first pairwise alignment-based method that
investigates the sequential patterns of chromatin states and
studies the epigenome similarity based on the patterns. Epi-
Align compares two chromatin state sequences by calculat-
ing a local alignment score. It also allows the search of ge-
nomic regions (i.e. ‘hits’) whose chromatin state sequences
are similar to those of a query region. Aligned chromatin
state sequences are expected to have similar biological func-
tions. EpiAlign is flexible in performing the chromatin state
sequence alignment either within an epigenome, i.e. a tis-
sue or cell, or between two epigenomes. From the alignment
results of EpiAlign, users can identify common chromatin
state patterns to investigate the functional relationship of
interested genomic regions.

METHODS

The EpiAlign algorithm aims to find an optimal local
alignment between two chromatin state sequences. Our al-
gorithm development is motivated by the classic Smith–
Waterman Algorithm (24). We design the mismatch and
deletion score functions based on the weight of each chro-
matin state in each sequence. We first apply a chromatin
state annotation method (e.g. ChromHMM (9)) to encode
multi-track epigenomic signals into single-track chromatin
state sequences, whose different states are represented by
different labels. Second, we compress consecutive occur-
rences of the same state into a state label. For example, a
chromatin state sequence abbcc is represented by a com-
pressed state sequence S = abc. EpiAlign then performs
a local alignment between two genomic regions based on
their compressed state sequences. The motivation of adding
a compression step lies in the fact that most uncompressed
(chromatin state) sequences contain long stretches of a sin-
gle chromatin state, mostly the quiescent/low state (see Sup-
plementary section 2), and including such length informa-
tion would dominate the alignment result, a scenario that
is often undesirable, because the purpose of alignment is
to find similar chromatin state patterns composed of more
than one state. The compression step allows EpiAlign to
focus more on chromatin state patterns instead of a single
chromatin state that spans a long genomic region. We use
an example to demonstrate the effectiveness of adding the
compression step to address this issue: in the brain sample
E071, when we apply EpiAlign with the compression step,
the brain-specific gene NRG3 has the best alignment with
another brain-specific gene GRIA1, among all the protein-
coding genes. This result is reasonable as both genes are
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brain-specific and highly expressed in brain samples. How-
ever, as these two genes have vastly different lengths (NRG3
is three times longer than GRIA1) and their chromatin state
sequences have long stretches of the quiescent/low state,
they are poorly aligned when we apply EpiAlign without the
compression step. This result indicates that the compression
step, which condenses the epigenetic information encoded
in chromatin state sequences, is necessary and effective for
finding similar and biologically meaningful chromatin state
patterns. Additionally, aligning uncompressed sequences is
much more time-consuming (20 times more computation
time on average) than aligning their compressed counter-
parts. Therefore, adding the compression step also increases
the computational efficiency of EpiAlign. In the following
text, unless specified, all the chromatin state sequences refer
to the compressed state sequences.

Modified Smith–Waterman algorithm for chromatin state se-
quence alignment

Given two chromatin state sequences S1 and S2, we char-
acterize a possible alignment between S1 and S2 through
a set of triplets {( fi , u1i , u2i )}N

i=1, where N denotes the to-
tal number of aligned basepairs (including matches, mis-
matches, and gaps), fi gives the alignment status between
two chromatin states whose positions are u1i and u2i in
S1 and S2, respectively. We may equivalently write this set
of triplets as three equal-length sequences: F = f1f2···fN,
U1 = u11u12···u1N, and U2 = u21u22···u2N. Specifically, fi ∈
{m,n,d1,d2} denotes one of the four possible alignment sta-
tus between two chromatin states: m for match, n for mis-
match, d1 for deletion in S1, and d2 for deletion in S2. If
fi = m, there is a match between the u1i-th state of S1 and
the u2i-th state of S2; if fi = n, there is a mismatch between
the u1i-th state of S1 and the u2i-th state of S2; if fi = d1, the
u1i-th state of S1 is aligned to nothing in S2 (u2i is set to 0); if
fi = d2, the u2i-th state of S2 is aligned to nothing in S1 (u1i
is set to 0). In an example with S1 = abca and S2 = aba, if

we consider an alignment
a b c a
| | | |
a b − a

, then F = mmd1m, U1 =

1234, and U2 = 1203. Please note that the two chromatin
state sequences S1 and S2 may have different lengths. Also
given S1 and S2, it is possible to have more than one align-
ment results, i.e. sets of {( fi , u1i , u2i )}N

i=1.
Now we define the alignment score function H( · ) as:

H(F, U1, U2, S1, S2) =
N∑

i=1

h( fi , u1i , u2i , S1, S2) , (1)

where h(fi, u1i, u2i, S1, S2) denotes the score of the alignment
status fi between the u1ith state in S1 and the u2ith state in
S2. Specifically,

• h(m, u1i , u2i , S1, S2) = MF(u1i , u2i , S1, S2);
• h(n, u1i , u2i , S1, S2) = NF(u1i , u2i , S1, S2);
• h(d1, u1i , u2i , S1, S2) = DF(u1i , S1);
• h(d2, u1i , u2i , S1, S2) = DF(u2i , S2).

We will formally define the matching function MF( · ),
the mismatching function NF( · ), and the deletion function

DF( · ) later in this section. To summarize, the function h( · )
takes a form that depends on the value of its first argument
fi.

Then we consider the alignment problem as an optimiza-
tion problem where the goal is to find the optimal alignment
{F∗, U∗

1 , U∗
2 } that maximizes the alignment score H:

{F∗, U∗
1 , U∗

2 } = arg max
{F,U1,U2}

H(F, U1, U2, S1, S2). (2)

This optimization problem can be approached by dynamic
programming, an algorithm that iteratively maintains and
updates a matrix M that stores dynamic alignment results.
The matrix element Mk, l is the maximal alignment score of
the two subsequences S[1,k]

1 and S[1,l]
2 , where S[1,k]

1 denotes
the first k states of S1 and S[1,l]

2 denotes the first l states of
S2. Let n1 and n2 be the length of S1 and S2, respectively.
We update the matrix M using the following rule.

Mk,0 = 0 , for 0 ≤ k ≤ n1 ;

M0,l = 0 , for 0 ≤ l ≤ n2 ;

Mk,l = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mk−1,l−1 + MF (k, l, S1, S2) Match
Mk−1,l−1 + NF (k, l, S1, S2) Mismatch
Mk−1,l + DF(k, S1) Deletion in S1

Mk,l−1 + DF(l, S2) Deletion in S2

,

for 1 ≤ k ≤ n1, 1 ≤ l ≤ n2.

(3)

The algorithm described in Equation (3) achieves the global
alignment, but we instead consider the local alignment ap-
proach in practice since the local alignment would prefer
long continuous alignments with small proportion of mis-
matches, which are more likely to contain the common pat-
terns of interest. In contrast, global alignment would prefer
patterns containing overly scattered short alignments sep-
arated by gaps. To achieve the goal of local alignment, we
propose the following approach to modify the dynamic pro-
gramming algorithm.

Mk,0 = 0 , for 0 ≤ k ≤ n1 ;

M0,l = 0 , for 0 ≤ l ≤ n2 ;

Mk,l = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
Mk−1,l−1 + MF (k, l, S1, S2) Match
Mk−1,l−1 + NF (k, l, S1, S2) Mismatch
Mk−1,l + DF(k, S1) Deletion in S1

Mk,l−1 + DF(l, S2) Deletion in S2

,

for 1 ≤ k ≤ n1, 1 ≤ l ≤ n2.

(4)

The alignment score of EpiAlign is MEpiAlign = Mn1,n2 .

Chromatin state weights

To define the specific forms of the matching function MF(
· ), the mismatching function NF( · ) and the deletion func-
tion DF( · ), we first introduce a weight function W(k, S),
which describes the weight of the kth state in a sequence S.
The weights can be used to distinguish chromatin states of
different importance if we have prior knowledge that some
states have more significant biological functions than oth-
ers at certain positions. We design two sets of weights: (i)
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equal weights mean that all states are treated equally with
the same weight 1 in the sequence S, i.e. W(k, S) = 1 , k = 1,
. . . , |S|; (ii) frequency-based weights assign larger weights to
less common chromatin states (see Supplementary section
1 for details), motivated by the fact that some uncommon
states are likely strong indicators of biological functions.

With the weights defined above, we specify the matching
function, the mismatching function, and the deletion func-
tion as:

MF(k, l, S1, S2) = W(k, S1) + W(l, S2) , (5)

NF(k, l, S1, S2) = −εN · (W(k, S1) + W(l, S2)) , (6)

DF(k, S) = −εD · W(k, S) , (7)

where �N and �D are the penalty parameters for a mismatch
and a deletion in the alignment, respectively. In EpiAlign,
�N and �D can be tuned by users, and the default values are
1.5 and 1, respectively. The choice of �N and �D values de-
pends on how ‘local’ users would like the result to be, i.e. if
we set a larger �N or �D value, it means that we penalize
more on a mismatch or a gap in the alignment, and the final
best alignment result will be shorter or more local. Figure 1
shows the workflow of EpiAlign.

RESULTS

We demonstrate in three aspects that EpiAlign is a use-
ful tool for investigating sequential patterns of chromatin
states. First, we demonstrate that EpiAlign can iden-
tify common chromatin state patterns within the same
epigenome or across different epigenomes. Second, we in-
vestigate biological interpretation of the common chro-
matin state patterns found by EpiAlign. Third, as a tech-
nical verification, we show that EpiAlign is able to distin-
guish real epigenomes from randomized epigenomes. We
also demonstrate the superiority of EpiAlign over a naı̈ve
method that compares two chromatin sequences only based
on chromatin state frequencies. We conduct the above anal-
ysis using simulation and real data studies based on the
Roadmap epigenomic database (7). In this paper, we use
the chromatin state sequences annotated by ChromHMM,
which has been well recognized to provide an informative
compression of multi-track epigenomic signals into a chro-
matin state sequence (7,9,22). It is worth noting that our
method is generally applicable to chromatin state sequences
annotated by other methods.

In this paper, for most analysis, we select ESC, heart and
brain samples from the Roadmap dataset as representative
examples. The reason is that among all the Roadmap tissue
types, these three types are relatively better understood and
have well-annotated tissue-specific genes (26).

Vertical alignment: Comparison of chromatin state sequences
of protein-coding genes across epigenomes

EpiAlign is a powerful local alignment algorithm to quan-
tify the similarity of two chromatin state sequences in terms
of their aligned subsequences. Here we apply EpiAlign to
compare chromatin state sequences of the same genomic re-
gion in two different epigenomes, a strategy we define as the

Figure 1. Workflow of the EpiAlign algorithm.

vertical alignment. The diversity of the same region’s chro-
matin state sequences represents epigenetic characteristics
of various tissues and cell types. As epigenetic characteris-
tics are known to have a strong association with gene ex-
pression characteristics (27), we expect that a cell-type spe-
cific gene, i.e. a gene specifically highly expressed in a cell
type (26), should have similar chromatin state sequences in
epigenomes of that cell type. In contrast, lower similarity
is expected between two chromatin state sequences, one of
that cell type and the other of another cell type (Supplemen-
tary Figures S3 and S4).

In the first study, we divide the Roadmap epigenomes into
two categories: 51 male samples and 38 female samples. In
the second study, we compare the Roadmap epigenomes
of two cell types: 10 brain samples and 5 heart samples.
In both studies, we compare the chromatin state sequences
for each of the 19,935 protein-coding genes between ev-
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ery pair of samples. (Note that we use all protein-coding
genes in GENCODE v10 (28) that are compatible with the
Roadmap database, with the exception of genes on chromo-
some Y.)

We obtain three sets of alignment scores: pairwise scores
within male samples, pairwise scores between male and fe-
male samples, and pairwise scores within female samples.
Since most genes on the X chromosome are associated
with sex-linked traits, we expect to observe higher align-
ment scores between samples of the same sex than those
between samples of different sexes. To quantify the differ-
ence between alignment scores, we perform the two-sample
one-sided Wilcoxon test between male-vs-male scores and
male-vs-female scores for each protein-coding gene. Study-
ing the resulting P-values, we find that out of the top 200
genes that have the smallest P-values, 188 are X chromo-
some genes. (Figure 2A). This result suggests that the major-
ity of the genes that exhibit greater within-sex similarity are
sex linked, a reasonable finding that matches our expecta-
tion. The comparison between female-vs-female and male-
vs-female alignment scores leads to a similar result (Figure
2B). These results together confirm that EpiAlign success-
fully distinguishes same-sex chromatin state sequences from
different-sex ones, suggesting that EpiAlign outputs a rea-
sonable similarity measure of chromatin state sequences.

We also investigate the 12 genes that are not on X chro-
mosome among the top 200 genes with the smallest P-
values (Supplementary Table S1). These genes are poten-
tially sex linked. For example, MFF that controls mitochon-
drial fission has been reported to have sex-specific regula-
tion (29). This result suggests that EpiAlign can serve as a
useful tool for discovering genomic regions with certain epi-
genetic regulation of interest.

In the second study, we investigate if EpiAlign can help
identify cell-type specific genes, which have been previ-
ously discovered from gene expression profiles (26), using
only chromatin state sequences. We perform the two-sample
one-sided Wilcoxon test between brain-vs-brain alignment
scores and brain-vs-heart alignment scores for all the 19,935
protein-coding genes. We next perform the Gene Ontol-
ogy (GO) enrichment analysis (30) on the top 200 genes
that receive the smallest P-values in the Wilcoxon test (Sup-
plementary Table S2). Here we choose the top 200 genes
instead of setting a threshold on multiple-testing-adjusted
P-values, because we found that the most commonly used
threshold 0.05 led to a large number of significant genes. For
our purpose of verifying that the top differentially aligned
genes are biologically meaningful, choosing a smaller num-
ber of top ranked genes is a more reasonable approach. The
top enriched GO terms (P-value < 0.0001) are highly rele-
vant to heart/cardiac processes and brain processes (Table
1). Previously discovered 150 heart-specific genes and 166
brain-specific genes (26) are enriched in the top differential
genes, which have significantly higher within-tissue align-
ment scores than between-tissue scores and are found by
the Wilcoxon text. For example, nine brain-specific genes
and four heart-specific genes are in the top 100 differential
genes (P-values <10−30 in a hyper-geometric test). Figure 3
shows that the top differential genes contain a higher pro-
portion of tissue-specific genes. The above results indicate
that EpiAlign is able to distinguish cell-type specific genes

by assigning them higher alignment scores when compar-
ing the epigenomes of their associated cell types. This again
suggests that EpiAlign effectively captures chromatin state
patterns in epigenomes.

To better illustrate how EpiAlign helps identify com-
mon chromatin state patterns, we study a brain-specific gene
STMN4, which has the lowest P-value from the two-sample
one-sided Wilcoxon test described above (brain-brain align-
ment scores vs. brain-heart alignment scores). Using it as
an example, we investigate the chromatin state sequences of
STMN4 in all brain and heart samples. From Figure 4, we
observe that the brain samples share similar chromatin se-
quences; yet the common pattern in these sequences drasti-
cally differs from the chromatin state sequences in the heart
samples. The fact that EpiAlign captured STMN4 as the top
differentially aligned gene shows that EpiAlign can success-
fully identify regions where chromatin state patterns diverge
or conserve between cell types.

We also analyze the expression profiles of protein-coding
genes. We use DESeq2 (31) and edgeR (32) to do differential
expression (DE) analysis between heart samples and brain
samples on all the 17,784 protein-coding genes included in
the Roadmap RNA-seq datasets. The results show a high
consistency between the resulting differentially expressed
genes and the differential chromatin state sequences found
by EpiAlign (Table 2). This result further validates that the
tissue-specific regions found by EpiAlign are biologically
meaningful and reflect gene expression dynamics, and that
EpiAlign will be a useful tool for identifying tissue-specific
epigenomic regions.

Horizontal alignment: analysis of frequent chromatin state
sequence patterns within an epigenome

Motivated by the fact that similar chromatin state sequences
may encode similar biological functions, here we use Epi-
Align to analyze frequent chromatin state sequence patterns
within an epigenome. We introduce the ‘horizontal align-
ment’, which takes the chromatin state sequence of a re-
gion as the query and searches for its best hit except it-
self within an epigenome. We first divide a given epigenome
into regions of 500 kb length, and then we align the chro-
matin state sequence of each region (i.e. the ‘query’) to those
of other regions to find the best match. It is worth not-
ing that the alignment scores of different query chromatin
state sequences are not directly comparable. To normalize
the alignment scores, we align every query chromatin state
sequence to randomized chromatin state sequences, which
serve as a negative control (see Supplementary section 3 for
details). Then for every region, we define the normalized
alignment score of its best hit except itself (when the region
is used as the query) as its horizontal alignment score. A high
score indicates that the region shares a highly similar and
non-random chromatin state sequence with another region
in the same epigenome, implying that the region’s chromatin
state sequence pattern is likely biologically meaningful.

With horizontal alignment scores, we can represent ev-
ery epigenome by a vector, whose length is the num-
ber of regions and whose entries are the regions’ hori-
zontal alignment scores. As mentioned above, horizontal
alignment scores measure whether their corresponding re-
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Figure 2. Alignment scores of chromatin state sequences of protein-coding genes within a sex versus between sexes. We perform the two-sample one-sided
Wilcoxon test between within-sex alignment scores and between-sex scores to quantify their differences: (A) Manhattan plot of P-values of the test between
male-vs-male and male-vs-female alignment scores for all the protein-coding genes. (B) Manhattan plot of P-values of the test between female-vs-female
and male-vs-female alignment scores for all the protein-coding genes. In the two comparisons, within-sex and between-sex alignment scores differ most
significantly for genes on the X chromosome.

Table 1. Alignment scores of chromatin state sequences of protein-coding genes within a tissue (heart or brain) versus between heart and brain. Displayed
are the enriched GO terms in the top 200 significant genes identified by the Wilcoxon test between brain-vs-brain alignment scores and brain-vs-heart
alignment scores. The top enriched GO terms are highly relevant to heart processes or brain processes (*: terms related to heart; **: terms related to brain).

GO term Description P-value

GO:0051891 *positive regulation of cardioblast differentiation 9.34E-8
GO:0051890 *regulation of cardioblast differentiation 6.42E-7
GO:0007416 **synapse assembly 5.82E-6
GO:0003207 *cardiac chamber formation 5.83E-6
GO:0060413 *atrial septum morphogenesis 1.72E-5
GO:0006928 movement of cell or subcellular component 2.15E-5
GO:0007409 **axonogenesis 2.98E-5
GO:0071625 vocalization behavior 3.07E-5
GO:0032990 cell part morphogenesis 4.63E-5
GO:2000738 positive regulation of stem cell differentiation 6.36E-5
GO:0060043 *regulation of cardiac muscle cell proliferation 6.99E-5
GO:0097104 **postsynaptic membrane assembly 8.69E-5
GO:0048812 **neuron projection morphogenesis 8.79E-5
GO:0051705 multi-organism behavior 9.73E-5

Figure 3. Brain and heart specific genes are enriched in the top differen-
tial genes that have significantly higher within-tissue alignment scores than
between-tissue scores. The horizontal axis shows the number of top differ-
ential genes, and the vertical axis shows the proportion of tissue specific
genes among the top differential genes.

gions contain biologically meaningful chromatin state pat-
terns, which are expected to be largely consistent across
epigenomes of the same tissue. We use the Roadmap sam-
ples to calculate the horizontal alignment scores for all re-
gions in all epigenomes. Then we represent every epigenome
by a horizontal alignment score vector. To verify the bi-
ological meaning of the vector representation, we calcu-

Table 2. Comparison of the 200 genes with differential chromatin state se-
quences identified by EpiAlign and the differentially expressed (DE) genes
identified by DESeq2 or edgeR. DESeq2 and edgeR identify 5906 and 6251
DE genes between all 3 brain samples and all four heart samples from the
17 784 protein-coding genes in the Roadmap RNA-seq datasets. A hyper-
geometric test is used to check the significance of the enrichment of the
top 200 genes identified by EpiAlign in the two sets of DE genes. The two
resulting P-values are both significant.

DESeq2 edgeR

Total number of genes 17,784 17,784
Number of DE genes (P < 0.05) 5906 6251
DE genes in top 200 by EpiAlign 143 146
P-value of hyper-geometric test <10−30 <10−30

late the pairwise Pearson correlations between epigenomes
and perform an average-linkage hierarchical clustering of
epigenomes based on the (1 − Pearson correlation) distance
metric. The clustering result matches our expectation: sam-
ples from the same tissue are clustered together, confirming
that the horizontal alignment scores are indeed consistent
across the samples from the same tissue (Figure 5).

EpiAlign distinguishs real epigenomes from randomized ones.
We further perform a simulation study to technically vali-
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Figure 4. Chromatin state sequences of gene STMN4 in all the 10 brain samples and the 5 heart samples. Different chromatin states are represented by
different colors. The y-axis indicates the genomic locations of various chromatin states across these 15 samples.

Figure 5. Clustering based on the correlation matrix of horizontal alignment scores of Roadmap epigenomes. Samples from the same tissue or cell type
are clustered together, indicating that horizontal alignment scores are highly correlated between samples from the same tissue or cell type.

Figure 6. Horizontal alignment results of ESC sample E003. (A) The distribution of horizontal alignment scores of regions in real and randomized
epigenomes. (B) The top 500 highest horizontal alignment scores (log10 transformed) in real, randomized and hybrid epigenomes. Scores in the real
epigenome are always the highest given the same rank. (C) Locations of the regions with the top 500 horizontal alignment scores in the two hybrid
epigenomes. The three panels together indicate that the real epigenome contains non-random chromatin state sequential patterns captured by EpiAlign.
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date the efficacy of EpiAlign in terms of horizontal align-
ment. Our goal is to check if EpiAlign is able to distin-
guish real epigenomes from randomized epigenomes, which
serve as a negative control. We calculate horizontal align-
ment scores using EpiAlign on all the 127 Roadmap sam-
ples based on the 15-state ChromHMM annotation. In ad-
dition to each real epigenome, we also generate a random-
ized epigenome and two hybrid epigenomes for compari-
son. Here the randomized epigenome is generated in the
same way as in the normalization step for calculating hor-
izontal alignment scores (see Supplementary section 3 for
details). To contrast real and randomized epigenomes, we
also generate a hybrid epigenome as a semi-negative con-
trol by mixing the real and randomized epigenomes of ev-
ery chromosome, so that a hybrid epigenome is composed of
alternating real regions and randomized regions. (see Sup-
plementary section 4 for details)

We use an ESC sample (Roadmap ID E003) as an
example and calculate horizontal alignment scores in
four epigenomes: the real ESC epigenome, a randomized
epigenome, and two hybrid epigenomes. We summarize the
distributions of horizontal alignment scores in the real and
randomized epigenomes in Figure 6A. As expected, the re-
gions in the real epigenome have an average alignment score
higher than 0, while the average score of regions in the ran-
domized epigenome is close to 0. For each of these four
epigenomes, we find the top 500 non-overlapping regions
with the highest horizontal alignment scores. As expected,
the top regions in the real epigenome have scores signif-
icantly higher than those in the randomized and hybrid
epigenomes (Figure 6B), an observation consistent with the
fact that a high score indicates a region likely to have a bio-
logically meaningful chromatin state pattern. Moreover, for
hybrid epigenomes, almost all the top 500 regions are those
generated from the real epigenome (Figure 6C), again con-
firming that real chromatin state patterns are more biologi-
cally meaningful than randomized patterns. Overall, our re-
sults suggest that EpiAlign can powerfully distinguish real
biological epigenomes from randomized epigenomes.

Comparison of EpiAlign with alternatives. We further vali-
date our EpiAlign algorithm with equal weights by compar-
ing it with two alternative approaches. The first is a variant
of EpiAlign using frequency-based weights, which are de-
termined by the frequencies of chromatin states (see Sup-
plementary section 1 for details). The second is a naı̈ve
alignment method, in which we first calculate the propor-
tion of each chromatin state in two regions (chromatin
state sequences) to obtain two proportion vectors P1 =
(p11, p12, . . . , p1Q)T and P2 = (p21, p22, . . . , p2Q)T, where Q
is the number of unique chromatin states in the annota-
tion (e.g., Q = 15 in this case). The naı̈ve alignment score is
a similarity measure defined as Mnaı̈ve= −||P1 − P2||22 =
−∑Q

i=1(p1i − p2i )2. The naı̈ve method directly compares
two chromatin state sequences based on their state propor-
tions, and it does not use a dynamic programming approach
as does in EpiAlign. However, given that similar chromatin
state sequences share similar frequency vectors, the naı̈ve
method is also a biologically meaningful approach.

Note that EpiAlign (with equal weights), the frequency-
based variant of EpiAlign, and the naı̈ve method do not

Figure 7. Comparison of EpiAlign with equal weights, EpiAlign with
frequency-based weights, and the naı̈ve method using 16 Roadmap sam-
ples (5 ESC, 4 heart, and 7 brain samples from the 92 samples with 18-
state ChromHMM annotation). (A) The number of tissue-associated genes
that overlap with the top 500 regions with the highest horizontal alignment
scores found by each approach. (B) The number of annotated genes that
overlap with the same three sets of top 500 regions.

have horizontal alignment scores on the same scale and
cannot be compared directly, so we compare the three ap-
proaches by evaluating the biological meaning of the re-
gions they find with high scores. Since gene regions are
expected to share some common chromatin state patterns
(i.e. promoter, transcription start site, transcribed region,
and transcription ending site), a good alignment method
is expected to assign high horizontal alignment scores to
gene regions. In other words, genes expressed in a tissue
are expected to have high horizontal alignment scores in the
tissue’s epigenome. Hence, we design two evaluation crite-
ria: one is the enrichment of known tissue-associated genes,
i.e. the non-house-keeping genes highly expressed in a tis-
sue (33), in regions with high alignment scores; the other
criterion is the enrichment of annotated genes. The greater
the enrichment, the better the alignment method. We ap-
ply each of the three approaches to do horizontal alignment
and check the overlap between tissue-associated genes or
annotated genes and each approach’s top-aligned regions,
which receive the highest horizontal alignment scores. We
perform this evaluation on 16 samples: 5 ESC, 4 heart and
7 brain samples. For each sample, we collect the top 500 re-
gions with the highest alignment scores found by each ap-
proach and count the numbers of tissue-associated genes
from Yang et al. (33) and annotated genes from Kent et al.
(34) that overlap with these regions. From the results shown
in Figure 7, we see that EpiAlign outperforms the naı̈ve
method in detecting annotated genes and tissue-associated
genes. In addition, we observe that the frequency-based
weights do not have apparent advantages over the equal
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Figure 8. Heatmap of pairwise distances of the top 200 regions, identified
by the horizontal alignment on ESC sample E003. Based on the distance
matrix D, the top 200 regions are grouped into four clusters by average-
linkage hierarchical clustering.

weights, suggesting that we may use EpiAlign with equal
weights as the default.

Motif analysis. As a further investigation, we check if
the regions with top horizontal alignment scores share any
chromatin state patterns in common. We apply EpiAlign
to perform horizontal alignment within the epigenome of
the ESC sample E003, and we select the top 200 regions
with the highest horizontal alignment scores. To investi-
gate whether common chromatin state patterns exist among
these regions, we calculate the pairwise alignment scores be-
tween each pair of these top 200 regions. We normalize the
pairwise alignment scores and store them in a 200 × 200
symmetric matrix A, whose (i, j)th entry Aij represents the
normalized alignment score of regions i and j and is defined
as

Ai j =
{

1 if i = j
alignment score of regions i and j

α(maxk�=r alignment score of regions k and r ) otherwise , (8)

where � = 1.1 ensures that 0 < Aij < 1 for all i �= j. We then
define a distance matrix D, whose (i, j)-th entry is Dij = 1
− Aij. We then perform hierarchical clustering with average
linkage on the top 200 regions based on D, and we display
the clustering result in Figure 8.

From the heatmap in Figure 8, we see that the top 200 re-
gions are well partitioned into four clusters, indicating that
regions in the same cluster share similar chromatin state
patterns (Supplementary Table S3). We inspect each of these
four clusters to identify its representative chromatin state
patterns, which we refer to as motifs in the following text.

For notation simplicity, we use alphabets ‘a’ to ‘o’ to denote
chromatin states 1 to 15.

Using the motif-discovery tool MEME (35), we find that
all the four clusters are characterized by certain motifs. As
annotated by the 15-state ChromHMM model (36), the
state ‘o’ denotes the quiescent state and lacks a good bio-
logical interpretation, so we only consider the motifs with-
out ‘o’. We find that cluster 1 is characterized by the ‘ihih’-
repeat motif; cluster 2 is characterized by the ‘egeg’-repeat
motif; cluster 3 is characterized by ‘eded’ motif; cluster 4 is
characterized by the ‘egeg’ motif and ‘mlml’ motif. Based
on the ChromHMM annotation, the state ‘i’ represents
heterochromatin, while ‘h’ represents ZNF genes and re-
peats. Since existing evidence shows that human heterochro-
matin proteins form large domains containing KRAB-ZNF
genes (37), the ‘ihih’-repeat motif may represent functional
non-coding regions. Since ‘d’ denotes strong transcription,
‘e’ denotes weak transcription and ‘g’ denotes enhancer, the
‘egeg’-repeat motif may be an evidence of transcriptional
enhancers (38) and the ‘eded’-repeat motif may denote
transcriptional regions. In the ‘mlml’-repeat motif, ‘m’ and
‘l’ represent repressed polycomb and bivalent enhancer, re-
spectively. Since polycomb-repressed genes have permis-
sive enhancers that initiate reprogramming (39), the ‘mlml’-
repeat motif may be an indicator of polycomb-repressed
gene regions. All these results show that the motifs discov-
ered from the frequent chromatin state patterns are biolog-
ically meaningful and that EpiAlign can help identify com-
mon chromatin state patterns in epigenomes of specific bi-
ological conditions.

Cross-species application of EpiAlign. We further inves-
tigate the application of EpiAlign to comparing human
and mouse chromtain state sequences. We use the epige-
netic data from Yue et al. (2014), where mouse and human
samples were used together to train a 7-state ChromHMM
model (40). We investigate two liver samples, one from
human and the other from mouse. As homologous genes
are expected to exhibit more similar functions than non-
homologous genes (41), we expect to observe larger align-
ment scores between chromatin state sequences of homol-
ogous genes than those of non-homologous genes of simi-
lar sequence lengths. Our analysis is as follows. We first ob-
tain mouse-human homologous gene pairs from Ensembl
BioMart (Release 95) (42). We sort the mouse genes with
lengths 200–400 kb by gene lengths and divide the homol-
ogous gene pairs into 12 groups each with 50 pairs, so that
the mouse genes within a group have similar lengths. Within
each group, we apply EpiAlign to each mouse-human ho-
molog pair and each non-homolog pair. The results show
that among the 12 groups, on average 16% the human genes
have the highest chromatin state sequence alignment scores
with their corresponding mouse homologs, suggesting that
homologous genes tend to share similar epigenetic patterns.
We also look at the GO terms of the homolog pairs that
have the highest alignment scores in each group. The result
(see Supplementary Table S4) shows that homologous genes
with high alignment scores are also very similar in molecule
functions and biological processes. The result also indicates
that EpiAlign can identify homologous genes whose epige-
netic patterns are more conserved in evolution, shedding
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new insights into translating scientific discoveries in mice
into humans.

WEBSITE

We have implemented the EpiAlign algorithm in an open-
access software package, which is available at GitHub:
https://github.com/zzz3639/EpiAlign

We have also created a user-friendly website to demon-
strate the functionality of EpiAlign and visualize the align-
ment results of the Roadmap epigenomes: http://shiny.stat.
ucla.edu:3838/EpiAlign.

The website includes two main features: cell-type align-
ment scores and pairwise alignment scores. For the cell-type
alignment feature, users can browse the alignment score ma-
trix for a given gene. The columns and rows of this symmet-
ric matrix correspond to the 16 cell types, and each matrix
entry is the average pairwise alignment score between the
gene’s chromatin state sequences of the two corresponding
cell types. For the pairwise alignment feature, users can se-
lect two gene regions and calculate the alignment score be-
tween their corresponding chromatin state sequences. Both
features will help users investigate for a specific gene the
similarity of its chromatin state patterns between Roadmap
epigenomes or users’ custom epigenomic samples.

DISCUSSION

In this article, we propose the EpiAlign algorithm for align-
ing chromatin state sequences learned from multi-track
epigenomic signals. We demonstrate that EpiAlign can be
a powerful tool for studying the epigenetic dynamics along
the same epigenome or across multiple epigenomes, based
on both simulation and real data studies.

First, our current alignment results are based on
ChromHMM, which learns and characterizes from multi-
track epigenomic signals. There are also other tools for
pattern discovery in chromatin structures, such as Segway
(10), which constructs a dynamic Bayesian network instead
of HMM, EpiCSeg (14), which uses natural numbers in-
stead of binarized signals as used by ChromHMM, and
IDEAS (16), which jointly characterizes epigenetic dynam-
ics across multiple human cell types. It would be interest-
ing to compare these tools with ChromHMM to analyze
how the chromatin state annotation affects the alignment
results of EpiAlign. If the output results of ChromHMM
or other segmentation tools can be filtered or improved
based on additional biological experiments, this can also
help EpiAlign obtain more accurate and robust results. Be-
sides, we find likely noisy ChromHMM annotations that
need further biological validation (see Supplementary sec-
tion 12). To account for such possible inaccuracy in chro-
matin state sequences, we may improve EpiAlign by in-
corporating the posterior probabilities of chromatin states
output by ChromHMM into the calculation of alignment
scores. Moreover, ChromHMM is an unsupervised algo-
rithm that requires a pre-specified number of states; thus, its
chromatin state labels may not be fully biologically mean-
ingful. For example, some genomic regions would be as-
signed to different chromatin states given different numbers
of states. This leads to additional noise in ChromHMM an-

notations. To account for such noise, we may correct chro-
matin state labels by using the sequential information in
neighboring states.

Second, in the EpiAlign algorithm, an important step
before alignment is the compression of the chromatin
state sequences. Chromatin states of different regulatory
functions can vary greatly in their lengths (43), but the
length information itself is not always informative of the
change of epigenetic marks along the genome. Specifi-
cally, the quiescent/low states often appear in extremely
long stretches, whose lengths are not useful for comparing
chromatin state sequences (see Supplementary Figure S1).
Therefore, we add a compression step to capture and extract
the dynamics of chromatin states among biological samples.
We have also tested the pre-compression alignment algo-
rithm, but it is not able to distinguish the randomized chro-
mosome from the real one, suggesting that compression is
necessary for detecting biologically meaningful chromatin
state patterns. However, we realize that this compression
step still has room for improvement. For example, several
previous studies have shown that broad/sharp H3K4me3
domains have distinct functions (44–46), implying that the
length information of certain chromatin states is impor-
tant for vertical alignment that compares a region across
samples. Future refinement of the compression step, or re-
finement of length information usage after compression,
should consider multiple aspects: a chromatin state’s con-
fidence (whether it is likely noisy) and importance (whether
its length information is informative), as well as the analysis
needs (vertical or horizontal alignment), among others.

Third, EpiAlign is essentially an unsupervised algorithm,
but the flexibility of the weight function allows EpiAlign
to incorporate prior knowledge into the alignment proce-
dure by assigning different weights to different chromatin
states. For example, the frequency-based weights lead the
algorithm to favor the alignment of less frequent patterns
compared to background patterns, which frequently exist
along the epigenome. In practical applications, one may ad-
just the weight function to reflect the important elements in
specific problems. For instance, the weight can incorporate
the transcription start sites (TSSs) in genome annotation
when transcriptional regulation is of particular importance.

Fourth, EpiAlign depends on two tuning parameters: �N
and �D, for penalizing mismatches and gaps in the align-
ment. Similar parameters are also necessary for classic
alignment algorithms designed for DNA and protein se-
quences such as BLAST. For example, the �D in EpiAlign is
analogous to the gap extend penalty in BLAST. The NCBI
BLAST, an online tool that implements the BLAST algo-
rithm, sets the Gap Extend Penalty to 1 by default. In Epi-
Align, we also set �D to 1 by default. In BLAST, a substitu-
tion matrix is used to score matches/mismatches, and multi-
ple substitution matrices have been constructed for users to
select based on alignment purposes. In EpiAlign, we set �N
to 1.5, which is equivalent to a substitution matrix with di-
agonal entries as 1 and off-diagonal entries as -1.5. Given
that the alignment of epigenetic sequences is new to this
field, how to construct more specialized substitution ma-
trices for chromatin states is an important future research
question.

https://github.com/zzz3639/EpiAlign
http://shiny.stat.ucla.edu:3838/EpiAlign
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Finally, in some computationally efficient sequence align-
ment algorithms, hash tables or tree-based data structures
are utilized to index the database, and these techniques have
greatly increased the efficiency of query retrieval. EpiAlign
can also benefit from similar techniques and further im-
prove its computation efficiency.

Two other computational methods, EpiCompare (47)
and ChromDiff (48), have been developed to compare chro-
matin states between samples. They test for the difference
of a single chromatin state’s frequency in a genomic region
between two groups of samples. EpiCompare restricts the
region of interest to a 200 bp window, which corresponds
to a single chromatin state output by ChromHMM. A use-
ful functionality of EpiCompare is that it searches for the
200 bp windows where the specified chromatin state is en-
riched only under one condition. Compared with EpiCom-
pare, ChromDiff is more flexible and allows the region to
have any length greater than 200 bp. Another advantage
of ChromDiff is that it normalizes the chromatin state fre-
quencies to reduce the effects of confounding covariates. A
common limitation of ChromDiff and EpiCompare is that
they can only compare chromatin state frequencies between
two conditions in the same genomic region, and they re-
quire multiple samples under each condition. In contrast,
EpiAlign can perform pairwise alignment between any two
chromatin sequences, either coming from the same genomic
region in two samples or two different genomic regions in
one sample. In other words, EpiAlign does not pose any
restrictions on the choice of genomic regions or the sam-
ple size. Furthermore, EpiAlign has two unique advantages.
First, it simultaneously uses the sequential information en-
coded in multiple chromatin states. Second, it outputs an
alignment score that integrates this sequential information.
Hence, EpiAlign enables horizontal alignment and query
search, allowing us to extract chromatin state patterns that
carry tissue-associated characteristics. These patterns are
shown to be biologically meaningful in our motif analysis
and have a strong capability in grouping epigenomic sam-
ples of the same cell type in horizontal alignment.

In terms of biological applications, the biggest strength of
EpiAlign is its ability to identify common chromatin state
patterns and how they are conserved or divergent between
cell types. This strength will pave the way for identifying reg-
ulatory domains defined by combinatorial effects of strings
of cis-elements. Specifically, the vertical analysis based on
EpiAlign will reveal tissue-specific genes and regulatory re-
gions that share common chromatin state patterns within a
tissue type, and such patterns will serve as the basis of defin-
ing new regulatory domains. We have also demonstrated
that EpiAlign has found meaningful chromatin state mo-
tifs. Besides, EpiAlign is able to distinguish tissue-associated
genes. These results suggest the potential of EpiAlign as
a useful bioinformatic tool to discover tissue-specific gene
regulation. Moreover, the alignment scores calculated by
EpiAlign can serve as a covariate when constructing func-
tional genomic networks, thus allowing the network to in-
corporate similarities of chromatin structures as a factor.
Further, EpiAlign is applicable to 3D genomic analysis to
address the question if there are chromatin state patterns in
regions with a specific 3D structure such as a loop.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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