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VARYING THE SPHERICAL SHELL GEOMETRY

IN ROTATING THERMAL CONVECTION

F.M. AL-SHAMALIa,*, M.H. HEIMPELa and J.M. AURNOUb,*

aDepartment of Physics, University of Alberta, Edmonton, T6G 2J1, Canada;
bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC, USA

(Received 20 February 2003; In final form 30 October 2003)

The effect of spherical shell geometry on rapidly-rotating thermal convection is studied in a suite of high
resolution three-dimensional numerical simulations. The geometry is characterized by the radius ratio,
� ¼ ri=ro, where ri is the inner shell radius, and ro is the outer shell radius. In this study, � is varied over
the broad range 0.10 to 0.92 in calculations of Boussinesq rotating convection subject to isothermal, rigid
boundary conditions. Simulations are performed at Prandtl number Pr ¼ 1 and for Ekman numbers
E ¼ 10�3, 3� 10�4 and 10�4. Near the onset of convection, the flow takes the form of rolls aligned parallel
to the rotation axis and situated adjacent to the inner shell equator. The dimensionless azimuthal wavelength,
�c, of the rolls is found to be independent of the shell geometry, only varying with the Ekman number.
The critical wave number, mc, of the columnar rolls increases in direct proportion to the inner boundary
circumference. For our simulations the critical Rayleigh number Rac at which convection first occurs
varies in proportion to E�1:16; a result that is consistent with previous work on rotating convection.
Furthermore, we find that Rac is a complex function of �. We obtain the relation Rac E

1:16 ¼ 0:21=�2þ

22:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þð1þ �Þ

p
, which adequately fits all our results. In supercritical convection calculations the flows

form quasi-geostrophic sheet-like structures that are elongated in the radial direction, stretching from the
inner boundary toward the outer boundary.

Keywords: Thermal convection; Rotation; Shell geometry; Radius ratio

1 INTRODUCTION

Understanding thermal convection in a rapidly rotating spherical shell is of great
importance in studying the dynamo processes that occur in planetary cores. In particu-
lar, how convection is affected by planetary core spherical shell geometry, which can
vary due to planetary size, composition and cooling history, has not been well quanti-
fied. Self-sustained planetary dynamos appear to be driven by fluid motions in their
electrically conducting cores. Indeed, it is likely that the planets and planetary satellites
with large observed intrinsic magnetic fields have vigorously convecting cores with
Ra � Rac, where Ra is the Rayleigh number and Rac is the critical Rayleigh number
for the onset of convection. Although it may appear that the applicability of studying
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the onset of rotating (nonmagnetic) convection is limited, it is, in practice, crucial to
establish how the conditions that govern the onset of convection vary for different
planetary core geometries. Thus a purpose of this study is to obtain critical Rayleigh
numbers for a broad range of spherical shell geometries, and to provide a baseline by
which to scale rotating convection and dynamo models with more vigorous convection.

A great deal of previous work has focused on understanding rotating convection
relevant to flows in planetary cores and in the solar convection zone. Recent theoretical
studies include those of Yano (1992), Zhang and Jones (1993), and Jones et al. (2000).
Numerical work includes studies by Zhang (1992), Glatzmaier and Olson (1993),
Dormy (1997), Tilgner and Busse (1997), Christensen et al. (1999), and Miesch et al.
(2000). Experimental studies include Busse and Carrigan (1975), Cardin and Olson
(1992, 1994), Sumita and Olson (2000) and Aubert et al. (2001). The general pattern
of convection in all these studies takes the form of columnar convection rolls that
are aligned parallel to the axis of rotation. The columnar structure of the rolls results
because strong Coriolis forces act to rigidify the fluid parallel to the rotation axis
(Proudman, 1916). Thus, in the high rotation rate regime, rotation stabilizes the fluid
such that the critical Rayleigh number tends to vary with the Ekman number E as
Rac / E�4=3 (Chandrasekhar, 1961; Roberts, 1968).

The geometry of the Earth’s core (� ¼ 0:35) and that of the solar convection zone
(� ¼ 0:7) have been the focus of the vast majority of previous studies. Exceptions include
Jones et al. (2000), the strongly-truncated, two and a half dimensional models of rotating
convection and dynamo action by Drew (1991) and Morrison and Fearn (2000), as well
as the kinematic dynamo study of Schubert and Zhang (2001). Additionally, Sakuraba
and Kono (1999) and Roberts and Glatzmaier (2001) modeled convection driven
dynamo action in fully three-dimensional models with differing inner core sizes.

Here we present a systematic study of rotating convection between spherical shells
for a broad range of radius ratio values. Results are obtained from high resolution,
fully three-dimensional and weakly truncated numerical models. In Section 2 we discuss
the relevant equations of motions and the numerical techniques employed in their
solution; the results of the numerical simulations are presented in Section 3; further
discussion of the results and comparisons with previous work are presented Section 4;
in Section 5 we summarize our findings. In a following paper, we will discuss how sphe-
rical shell geometry affects dynamo action.

2 METHOD

2.1 Governing Equations

In this study, we perform a series of three-dimensional numerical simulations of
thermal convection in rotating spherical shells. The governing equations are

E
@u

@t
þ uEJu� r2u

� �
þ 2 ẑzTuþ JP ¼

ERa

Pr

� �
g

go
T r̂r, ð1Þ

@T

@t
þ uEJT ¼

1

Pr

� �
r2T , ð2Þ

JEu ¼ 0, ð3Þ
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which are solved simultaneously to determine the fluid velocity vector u and the
temperature field T.

The calculations are performed subject to a constant temperature difference, �T ,
that is maintained between isothermal, mechanically rigid, inner and outer boundaries,
ri and ro, respectively. The boundaries of the shell co-rotate with angular velocity �ẑz.
Convection is driven by central gravity g(r) which increases linearly with radius and
has a value go at the outer surface.The fluid is Boussinesq and its physical properties
are characterized by �, the thermal expansion coefficient, �, the kinematic viscosity,
and �, the thermal diffusivity.

2.2 Nondimensional Parameters

Equations (1)–(3) have been nondimensionalized using the spherical shell thickness
D ¼ ro � ri for length, D2=� for time, �=D for velocity, ��� for pressure and �T for
temperature. The controlling nondimensional parameters for this system are the
following: the Rayleigh number

Ra ¼
�go�TD3

��
, ð4Þ

which is the ratio of buoyancy to viscous forces; the Ekman number

E ¼
�

�D2
, ð5Þ

which is the ratio of the viscous to Coriolis forces; and the Prandtl number

Pr ¼
�

�
, ð6Þ

which is the ratio of the viscous and the thermal diffusivities of the working fluid.
In the calculations presented here, the Prandtl number is held fixed at Pr ¼ 1.

The radius ratio

� ¼
ri

ro
, ð7Þ

which is the focus of this study, defines the geometry of the spherical shell. In planetary
cores, the radius ratio describes the size of the solid inner core relative to the fluid outer
core. Thus, the nondimensionalized values of ri and ro are given by the relations

ri ¼
�

1� �
and ro ¼

1

1� �
. ð8Þ

In our calculations, we studied the effects of varying the radius ratio �, on the onset of
convection, at three different Ekman numbers (E ¼ 10�3, 3� 10�4 and 10�4).

Note that for a fixed value of D, the radii of the inner and outer shells both increase
with � (see Table I). Alternatively, ro may be held constant so that the shell thickness D
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decreases as ri and � increase. This parameterization applies directly to a planet
with a growing inner core. In this case, the Ekman number would increase as a function
of decreasing shell thickness D for constant fluid viscosity � and planetary rotation
rate �. However, the limitations of present-day computational resources force us to
use rather large E values. Thus, we argue that further increasing the Ekman number
with increasing � does not provide a good analogue to a planetary core, where E
remains small even at very high � values. Consider that in the Earth’s core the
Ekman number is estimated to be of order E � 10�15, using D ¼ 2260 km (i.e.,
� ¼ 0:35), � ¼ 7:27� 10�5 s�1 and � � 10�6 m2/s. If the thickness of the Earth’s fluid
outer core were to decrease to D ¼ 100 km (i.e., � ¼ 0:97), the Ekman number would
increase to a value of E � 5� 10�14. Although E has increased by a factor of � 500,
the rotational forces in the fluid are still dominant relative to viscous forces.
Therefore, little qualitative change in the flow regime should result. In contrast, were
we to do this in our simulations, the Ekman number would increase, from 3� 10�4

up to 1:5� 10�1. For such a large final value of E, the fluid dynamics are no longer
dominated by rotational forces and the results are not relevant to planetary core
flows. So that this does not occur in our present calculations, we choose to define
the Ekman number as E ¼ �=�D2 based on a fixed shell thickness D¼ 1, while chang-
ing the value of �.

2.3 Description of the Model and Calculations

The spherical dynamo code used here was originally developed by Glatzmaier and has
been modified by Christensen and Wicht. We are presently running Wicht’s version
MAGIC 2.0 (Wicht, 2002). The numerical technique is described in Glatzmaier and
Olson (1993) and Olson and Glatzmaier (1995) and uses the spectral transform
method to solve Eqs. (1)–(3) simultaneously. The fields are expanded in the radial direc-
tion using Chebyshev polynomials and in the latitudinal and longitudinal directions
using spherical harmonics. No hyperdiffusivities are used in any of our calculations.

In this study, we perform calculations at three different values of the Ekman number.
The largest group of calculations are performed at E ¼ 3� 10�4. Smaller groups of
calculations are performed at E ¼ 10�3 and 10�4. Several sets of calculations are
made using differing numerical grids in the radial r, latitudinal � and azimuthal � direc-
tions. We impose longitudinal symmetry in many of the calculations. Periodic
conditions are employed on the bounding meridional planes of the truncated numerical
domains used in these cases. For example, calculations with 4-fold longitudinal symme-
try require 1/4 the number of points in the �-direction and tend to run roughly 4 times
faster than the full sphere calculations. Most of the runs are initialized to zero velocity

TABLE I Spherical shell dimensions for various values of �

� ri ro D

0.15 0.176 1.176 1
0.35 0.538 1.538 1
0.55 1.222 2.222 1
0.75 3.000 4.000 1
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field and a radial conductive temperature gradient (l ¼ 0, m ¼ 0) with random thermal
noise imposed as a perturbation. Time-stepping in these calculations continues until
the convection has reached steady state. In thin shells, larger grids with maximum
spherical harmonic degree lmax up to 192 are found to be necessary in order to resolve
the high wave number flow features that are produced in such high � shells. The
detailed attributes of the calculations are given in Table II.

3 RESULTS

3.1 Critical Rayleigh Number

The onset of convection occurs at the critical Rayleigh number, Rac. For Ra<Rac, any
initial perturbations decay and the heat transfer is maintained through conduction only.
For Ra>Rac, convective motions can be sustained and the fluid’s kinetic energy tends
to grow monotonically as a function of ðRa� RacÞ. For asymptotically small E the
linear stability theory predicts that the critical Rayleigh number Rac will vary in propor-
tion to E�	 , where 	 ¼ 4=3; for larger E, outside the asymptotic regime, 	 can take on
values between 0 and 4/3 (Chandrasekhar, 1961).

Figure 1 shows the steady-state kinetic energy density plotted as a function of Ra.
Here the kinetic energy density is defined as the total kinetic energy divided by the
spherical shell volume. The tag on each line shows the corresponding radius ratio
value. Note that for Ra close to Rac, the kinetic energy density varies linearly with
the Rayleigh number. This allows us to make precise extrapolations to the critical
Rayleigh number.

In Fig. 2 we present estimates of Rac determined by extrapolating the results shown
in Fig. 1 to zero kinetic energy density. These Rac estimates are also presented

TABLE II Parameters for the calculations in this study. Column 1: radius ratio; Columns 2, 3 and 4:
numbers of grid points in the radial r, longitudinal � and latitudinal � directions, respectively; Column 5:
imposed longitudinal symmetry; Column 6: maximum spherical harmonic degree and order; Column 7: initial
temperature perturbation to the conductive state

� r-Levels �-Levels �-Levels �-Symmetry lmax Initial temp.

E ¼ 10�3

(0.10) 41 160 80 Full sphere 53 Random
(0.15 and 0.35) 33 128 64 Full sphere 42 Random
(0.55) 33 160 80 Full sphere 53 Random
(0.75) 41 256 128 Full sphere 85 Random
(0.85 and 0.90) 49 640 320 8-fold 213 Random

E ¼ 3� 10�4

(0.10–0.35) 49 256 128 Full sphere 85 Random
(0.15–0.60) 49 320 160 4-fold 106 Random
(0.65–0.90) 49 576 288 4-fold 192 l, m¼ 4
(0.35) 49 640 320 8-fold 213 Random
(0.80, 0.90 and 0.92) 49 960 480 8-fold 320 Random

E ¼ 10�4

(0.15 and 0.25) 49 192 96 Full sphere 64 Random
(0.35) 49 256 128 Full sphere 85 Random
(0.55) 49 480 240 4-fold 160 Random
(0.65, 0.75 and 0.80) 49 576 288 4-fold 192 Random
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FIGURE 2 The critical Rayleigh number Rac, for the onset of convection in a rotating spherical shell, as
a function of the radius ratio � at Pr ¼ 1 using three different Ekman numbers. Filled circles represent fully
spherical calculations, open circles represent calculations with imposed 4-fold longitudinal symmetry and
squares represent calculations with imposed 8-fold longitudinal symmetry. The three solid grey curves
are produced using Eqs. (9) and (10) for the three different Ekman numbers. The dashed lines connect
E ¼ 3� 10�4 cases where convection onsets as an m¼ 4 or as an m¼ 8 instability.
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in Tables III and IV. The filled circles in Fig. 2 represent values obtained from full
sphere calculations without any imposed symmetry. Open circles and squares represent
values obtained from calculations with 4-fold and 8-fold imposed longitudinal symme-
tries, respectively. Two dashed lines are also shown in Fig. 2. The dashed line with the
m¼ 4 tag connects all the E ¼ 3� 10�4 cases where convection onsets as an m¼ 4
instability (irrespective of imposed symmetry). The dashed line with the m¼ 8 tag
connects the E ¼ 3� 10�4 cases that onset as an m¼ 8 instability.

The Rac values corresponding to the three Ekman numbers in Fig. 2 form three
separate groups that vary similary with �. This indicates that the dependence of Rac
on E and � is separable, and may be described by an equation of the form
RacE

	 ¼ f ð�Þ, where the value of 	 and the function f ð�Þ must be determined. Thus,
we fit all our Rac results (excepting the first two points in the 4-fold symmetry
column in Table III and the first point in the 8-fold symmetry column in Table III)

TABLE III Critical Rayleigh numbers and wavenumbers determined for the E ¼ 3� 10�4 calculations
using full sphere, 4-fold and 8-fold symmetries

Radius ratio
�

Full sphere 4-Fold symmetry 8-Fold symmetry

Rac � 105 mc Rac � 105 mc Rac � 105 mc

0.10 4.44 1
0.15 3.19 2 4.40 4
0.20 2.76 3 3.06 4
0.25 2.44 3 2.46 4
0.30 2.23 4 2.20 4
0.35 2.00 5 2.10 4 2.34 8
0.40 1.93 8
0.45 1.76 8
0.50 1.70 8
0.55 1.54 12
0.60 1.45 16
0.65 1.39 16
0.70 1.29 20
0.75 1.16 28
0.80 1.05 36 1.03 40
0.85 0.91 52
0.90 0.74 92 0.72 88
0.92 0.63 104

TABLE IV Critical Rayleigh numbers and wave numbers determined for the E ¼ 10�3

and E ¼ 10�4 calculations

Radius ratio E ¼ 10�3 E ¼ 10�4

� Rac � 105 mc Rac � 105 mc

0.10 1.41
0.15 1.03 2 10.71 3
0.25 8.15 5
0.35 0.56 4 7.00 7
0.55 0.41 9 5.56 16
0.65 4.95 24
0.75 0.29 20 4.26 40
0.80 3.84 56
0.85 0.22 40
0.90 0.18 64
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with the following relationship

Rac E
	 ¼

C1

�2
þ C2

1� �

1þ �

� �1=2

, ð9Þ

where

	 ¼ 1:16, C1 ¼ 0:21 , and C2 ¼ 22:4 ð10Þ

are obtained from the fitting process.
Figure 3 shows our results plotted in terms of a modified critical Rayleigh number

Rac E
	 , where 	 ¼ 1:16, as determined by the fit to (9). With this rescaling of the

y-axis, our results collapse from three distinct curves in Fig. 2 onto one curve in
Fig. 3. The solid grey curve is produced using (9) and (10).
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FIGURE 3 Modified critical Rayleigh number Rac E
1:16 plotted as a function of radius ratio �. Points

plotted are the same as in Fig. 2. Here, shaded circles, filled circles, and open circles represent results from
numerical calculations with Ekman numbers E ¼ 10�3, 3� 10�4 and 10�4, respectively. The solid grey curve
is produced using (9).
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The right-hand side of (9) describes the � variation of Rac. The first term models the
Rac results in the low �, thick shell regime while the second term models the Rac results
in the high �, thin shell regime.

In the thick shell regime, Rac E
	 varies approximately as 1=�2. We argue that this

behavior is due to the product of two effects. First, gravity varies linearly with radius
in our simulations. Therefore, gravity at the inner shell boundary is proportional
to �. Convection columns first form just outside the tangent cylinder (defined as the
imaginary cylinder that is aligned with the rotation axis and circumscribes the inner
core equator). Although the gravitational acceleration at the inner shell, gi, decreases
with decreasing � value, the Rayleigh number Ra, which is defined in terms of go,
does not account for this effect. It follows that Rac must vary as 1=� in response to
the dependence of gi on �. Second, the studies of Busse (1970) and Tilgner and Busse
(1997) found that varying spherical boundary curvature also leads to a factor of 1=�
variation in Rac. Thus, the first term in (9) is obtained as a product of two 1=� contri-
butions, scaled by C1.

In the thin shell regime described by �0 0:70, Rac E
	 varies roughly asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �Þ=ð1þ �Þ
p

. This relation has been adapted from the results of the study of
Zhang and Greed (1998). They found that, for a rapidly rotating cylinder with flat,
mechanically rigid ends and cylindrically radial gravity, the critical Rayleigh number
varies as the inverse of the cylinder aspect ratio H /D, where H is cylinder height
and D is the shell width. Thus, convection occurs most easily in cases with large
aspect ratio, such that the fluid volume in the Ekman boundary layers is small
compared to the total fluid volume. In our spherical shell results, we treat H as the
height along the tangent cylinder, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o � r2i

p
. This term adequately predicts the

decrease in Rac for �0 0:70 where H /D becomes increasingly large (see Fig. 2).
No contribution from spherical shell curvature is required to explain our RaC results
in this regime. This agrees with the previous findings of Zhang (1992) where it is
argued that curvature effects are second order in E in the vicinity of the equator.

3.2 Flow Patterns

Figure 4 shows instantaneous patterns of the temperature field and the radial velocity
field from calculations close to the onset of convection at Ra ¼ 1:1Rac and E ¼

3� 10�4. The rows, from top to bottom, show results from cases at � ¼ 0:25, 0.50
and 0.75, respectively. The left and middle columns show, respectively, color images
of the temperature and radial velocity fields in the equatorial plane. The right-hand
column shows radial velocity isosurfaces in the shell and color images in the equatorial
plane. Blue colors represent low or negative values and red indicate high or positive
values.

Near the onset of convection, the convecting fluid forms ordered convection rolls
parallel to the rotation axis. The rolls are produced in pairs with opposite vorticity,
transporting hot fluids from the inner toward the outer shell surfaces and vice versa.
The columns in Fig. 4 tilt slightly in the prograde direction and extend from the edge
of the tangent cylinder to roughly mid-shell, ðri þD=2Þ, for all three � values shown.
The columns form adjacent to the tangent cylinder in all our calculations because the
temperature gradient is steepest adjacent to the inner shell boundary. The fluid is
convectively stable for r > ðri þD=2Þ irrespective of the value of �. This occurs because
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the temperature gradient decreases as 1=r2 away from its maximum value at ri (see
Kono and Roberts, 2001).

3.3 Critical Wavenumber

The critical azimuthal wavenumber, mc, represents the number of azimuthally-periodic
columnar flow structures that form at the onset of convection. Figure 5 and Tables III
and IV contain the values of mc obtained in our calculations for different spherical shell

FIGURE 4 Temperature and radial velocity, calculated at Ra ¼ 1:1Rac and E ¼ 3� 10�4 for spherical
shells with different geometries: � ¼ 0:25 in the first row, � ¼ 0:50 in the second row and � ¼ 0:75 in
the third row. The first and second columns show temperature and radial velocity fields, respectively, in the
equatorial plane. The third column shows radial velocity isosurfaces as well as radial velocity contours in the
equatorial plane. The color scheme ranges from red for high or positive values to blue for low or negative
values.
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radius ratios. These are fit by the relationship

mc ¼
1

�c

2
ri
D

¼
2


�c

�

1� �

� �
, ð11Þ

where �c is defined here as the dimensionless azimuthal wavelength of instability along
the inner shell boundary. The values of �c that produce the best fits to our results are
presented in Table V. In Fig. 5, these fits are shown as the three solid grey curves.

Equation (11) can be understood on the basis of a simple geometrical relationship.
For fixed values of E, the critical column length-scale, �c D, is constant. However,
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FIGURE 5 The critical azimuthal wavenumber, mc, as a function of �. The three continuous curves repre-
sent the best fits to (11).

TABLE V Dimensionless azimuthal wavelengths, �c, obtained from
the best fits (second column) to the azimuthal wavenumbers. The third
column contains the values of �c for convection columns in a rapidly
rotating sphere, as predicted by Busse (1970)

E Azimuthal wavelength �c

Best fit Busse (1970)

10�3 0.89 0.86
3� 10�4 0.65 0.57
10�4 0.46 0.40
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the inner shell circumference 2
ri increases with �. Thus, the critical wavenumber
increases in proportion to the circumference of the inner shell boundary.

3.4 Supercritical Convection

Figure 6 shows instantaneous patterns of the temperature field and the radial velocity
field from calculations at Ra ¼ 5:0Rac, E ¼ 3� 10�4 and � ¼ 0:25, 0.50 and 0.75.
The planform of convection is no longer purely periodic. Convection now fills the
entire region outside the tangent cylinder, whereas the region inside the tangent cylinder
is still subcritical to convective motions. For all three radius ratios, the convective
motions occur along quasi-geostrophic sheets that extend nearly radially outward
from ri to ro. This demonstrates that meridional motions are dominant relative
to zonal motions. The convective wavenumbers along the inner boundary are
m ’ 20 � 7mc at �¼ 0.25; m ’ 32 � 4mc at �¼ 0.50 and m ’ 80 � 3mc at �¼ 0.75.

FIGURE 6 Temperature and radial velocity calculated at Ra ¼ 5:0Rac and E ¼ 3� 10�4 for � ¼ 0:25,
0:50, and 0:75. The same plotting conventions are used in Fig. 4.
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Furthermore, some of the sheet-like flows bifurcate in radius such that the wavenumber
increases at around mid-shell. Similar sheet-like, quasi-geostrophic, outwellings have
been observed in supercritical rotating convection laboratory experiments by Sumita
and Olson (2000) and have been inferred from experimental acoustic Doppler velocime-
try measurements made by Aubert et al. (2001). Those experiments were both made in
� � 0:35 devices and at Ekman numbers on the order of 5� 10�6. At those lower E
values, they found higher wavenumber flows than we find in comparable numerical
cases (e.g., Figure 4 in Sumita and Olson, 2000).

4 DISCUSSION

4.1 Effects of Imposed Symmetry

The Rac values determined for thick shells are dependent on the imposed longitudinal
symmetry in the calculations. This dependence can be explained as follows. As Ra is
increased, starting from subcritical values, steady state convection in the fluid is first
achieved when Ra ¼ Rac, characterized by mc convection columns. In the full sphere
calculations, all azimuthal wavenumbers up to lmax are allowed, which results in a
more accurate prediction of Rac and mc. In Table III, the critical azimuthal wave
number is less than 4 in cases with � � 0:25. However, when 4-fold symmetry is
imposed, the allowed azimuthal wavenumbers must be multiples of four. This requires
Rac to increase to the value at which convection first occurs as an m¼ 4 instability.
Similarly, the Rac value calculated using 8-fold symmetry for � ¼ 0:35 represents the
critical Rayleigh number for the onset of the m¼ 8 mode. At higher � values, Rac
is still affected by the imposed symmetry but less so as the percent difference between
the full sphere mc-value and the 4- and 8-fold symmetry mc-values converge. The quasi-
parabolic dashed curves in Fig. 2 also illustrate this behavior. These parabolic shapes
demonstrate that a minimum Rac exists for solutions at each individual wavenumber.

4.2 Comparisons with Previous Work

4.2.1 Critical Rayleigh Number

In this section we compare our calculated values of the critical Rayleigh number (Rac),
which are based on models with constant temperature at the inner and outer core
boundaries, to the models of Jones et al. (2000) and Zhang (1992), which used internal
heating.

Jones et al. (2000), calculated the critical Rayleigh number for the onset of convection
in a rapidly rotating sphere (with no inner core) filled with a Boussinesq fluid and
containing a uniform distribution of heat sources. Five different values of the Taylor
number (T ¼ 4=E2) were used. The authors converted their Rayleigh number, referred
to here as RaJ, into a new Rayleigh number, referred to here as RaJZ, for comparison
to Zhang’s (1992) results for convection in a rapidly rotating spherical shell with
a uniform distribution of heat sources. Equation 5.3 in Jones et al. (2000) is given by

RaJZ ¼ ð1� �Þ10=3RaJ : ð12Þ
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In Jones et al.’s (2000) study of flow in a full sphere, RaJ depends only on the Taylor
number T. Therefore, in the equation given above, RaJZ is a function of both � and T.

Using the RaJ values calculated at Pr¼ 1 in Jones et al. (2000), we calculate the
corresponding RaJZ values using (12). These values are represented by the open circles
in Fig. 7. Each dashed line in the figure corresponds to a different radius ratio
(represented by a tag) and describes the asymptotic behavior of the critical Rayleigh
number. With the slope of each dashed line equal to 2=3, we see that the critical
Rayleigh number RaJZ is proportional to T2=3 (or alternatively E�4=3) for all the
radius ratios shown.

To see how our results fit in Fig. 7, we must relate Ra to RaJZ. In our models Ra
is defined in terms of the temperature difference, �T , between the inner and outer
spherical shells. However, in Zhang’s formulation, the Rayleigh number was defined
in terms of the parameter �, related to the conductive temperature gradient
(JT ¼ ��r). For a given temperature difference between the inner and outer shells,
it can be shown that

� ¼
2�T

D2

ð1� �Þ

ð1þ �Þ
: ð13Þ

By rewriting RaJZ in terms of �T and comparing the buoyancy term in the equations
of motion, we arrive at the following relation

RaJZ ¼
2ð1� �Þ2

ð1þ �Þ
Ra: ð14Þ
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FIGURE 7 A log–log plot of RaJZ vs T. Open circles correspond to the critical Rayleigh numbers (RaJ),
defined and calculated by Jones et al. (2000), transformed using (12) to RaJZ . Solid circles correspond to the
critical Rayleigh numbers (Rac), defined and calculated in this work, transformed using (14) to RaJZ. Each
dashed line corresponds to a different radius ratio and describes the asymptotic behavior of the critical
Rayleigh number. All dashed lines have slopes equal to 2/3.
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The RaJZ values corresponding to our calculated critical Rayleigh numbers are repre-
sented by the solid circles in Fig. 7.

We can see that, in general, our values are a continuation of Jones et al.’s (2000)
values extending to high Ekman number (i.e., low Taylor number) values. Our values
do not lie exactly on the asymptotic dashed line, especially for the lowest and highest
radius ratios. There are two explanations for such deviations. First, our results are
not yet in the asymptotic regime. Second, the temperature profile of our model
differs from that of Zhang’s model. The temperature gradient in our models is
proportional to 1=r2 causing the sharpest temperature drop to be close to the inner
shell boundary. In Zhang’s model, on the other hand, the temperature gradient is
proportional to r causing the sharpest temperature gradient to be close to the outer
shell boundary.

In Fig. 7, the average slope of the five continuous lines at T ¼ 1:1� 107 is
0:58� 0:04. This average slope, which approximates 	=2, agrees well with our fit of
	 ¼ 1:16 in (10).

4.2.2 Critical Wave Number

The values of �c, obtained here as a function of the radius ratio �, may be compared
with approximations for the critical azimuthal wavelengths of convection columns
in a rapidly rotating, uniformly heated sphere with no inner core. In the notation
of Busse (1970), the values of �c at Pr¼ 1, which are presented in the third column
of Table V show satisfactory agreement with our best fitting results. This implies
that neither heating mode nor the radius ratio have significant effect on the critical
azimuthal wavelength, �c, of the convection. However, the critical azimuthal wave-
number, mc, is a strong function of the radius ratio �. In the studies of Roberts
(1968) and Busse (1970), they found convection to onset at a cylindrical radius
of s ’ ro=2. We find that convection always onsets adjacent to the inner boundary.
It follows that for � ’ 0:5 (i.e., ri ¼ ro=2), our spherical shell calculations produce
convective planforms nearly identical to that of an internally heated sphere near Rac.

5 CONCLUSIONS

We have investigated the effects of varying spherical shell geometry over a broad range
of radius ratios, �, in a suite of three-dimensional rotating convection calculations. The
calculations have been performed using co-rotating, isothermal, mechanically rigid
boundaries at Prandtl number Pr ¼ 1, over the radius ratio range 0:10 < � < 0:92,
for Rayleigh numbers Ra < 5Rac, and at the three Ekman numbers E ¼ 10�3,
3� 10�4 and 10�4. Our results show that the convection always onsets via columnar
motions adjacent to the inner boundary equator. The azimuthal wavelength of colum-
nar convection is found to be nearly independent of the style of thermal forcing and
the shell geometry, such that the number of columns is proportional to ri. We have
derived a relation that describes the variation of the critical Rayleigh number over
the entire range 0:1 � � � 0:92 and at the three values of the Ekman number. The
dependence of Rac on � and on E was found to be broadly consistent with previous
studies of rotating convection in spheres and spherical shells. Finally, our results
provide a baseline for future studies of rotating convection and dynamo action where
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the radius ratio is a critical parameter. Examples include studies comparing the
convective dynamics of planets with different convective shell geometries and studies
of planetary evolution with a growing inner core.
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