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Artificial Intelligence Assessment of Renal Scarring
(AIRS Study)
Chanon Chantaduly,1 Hayden R. Troutt,2 Karla A. Perez Reyes,2 Jonathan E. Zuckerman,3 Peter D. Chang,1 and
Wei Ling Lau 2

Key Points

� In this pilot study, two AI algorithms showed approximately 85% accuracy in predicting kidney fibrosis severity
(using kidney biopsies as ground-truth).

� Machine learning algorithms are a promising noninvasive diagnostic tool to quantify kidney fibrosis from CT
scans.

Abstract
Background The goal of the Artificial Intelligence in Renal Scarring (AIRS) study is to develop machine learning
tools for noninvasive quantification of kidney fibrosis from imaging scans.

Methods We conducted a retrospective analysis of patients who had one or more abdominal computed
tomography (CT) scans within 6 months of a kidney biopsy. The final cohort encompassed 152 CT scans from 92
patients, which included images of 300 native kidneys and 76 transplant kidneys. Two different convolutional
neural networks (slice-level and voxel-level classifiers) were tested to differentiate severe versus mild/moderate
kidney fibrosis ($50% versus,50%). Interstitial fibrosis and tubular atrophy scores from kidney biopsy reports
were used as ground-truth.

Results The two machine learning models demonstrated similar positive predictive value (0.886 versus 0.935)
and accuracy (0.831 versus 0.879).

Conclusions In summary, machine learning algorithms are a promising noninvasive diagnostic tool to quantify
kidney fibrosis from CT scans. The clinical utility of these prediction tools, in terms of avoiding renal biopsy and
associated bleeding risks in patients with severe fibrosis, remains to be validated in prospective clinical trials.

KIDNEY360 3: 83–90, 2022. doi: https://doi.org/10.34067/KID.0003662021

Introduction
Ultrasound-guided percutaneous kidney biopsy remains
the standard of care when histologic diagnosis is
needed to guide management of proteinuria, micro-
scopic hematuria, transplant rejection, or unexplained
kidney dysfunction (1,2). The degree of kidney fibrosis
or CKD severity is often unknown at the time of kid-
ney biopsy (3). A kidney biopsy that reveals severe
(.50%) fibrosis may clarify disease diagnosis but is
unlikely to change clinical management and places
patients at risk of procedure-related bleeding (4). Post-
biopsy complications range from transient hematuria
to life-threatening hemorrhage, and correlate with risk
factors that include elevated blood pressure, advanced
age, anemia, low platelet count, reduced kidney
function, and hemostasis abnormalities (5). A recent
meta-analysis of 118,064 ultrasound-guided kidney
biopsies reported incident rates for blood transfusions,

angiographic intervention, and death at 2%, 0.3% and
0.06%, respectively (6).
Assessing CKD severity is critical when considering

the risks and benefits of a kidney biopsy, but non-
invasive tools to evaluate degree of fibrosis are under-
developed (7). Studies that explored ultrasound
techniques (including shear wave velocity imaging,
transient elastography, real-time elastography, Dopp-
ler sonography, and ultrasound corticomedullary
strain) have noted inconsistent correlation with degree
of fibrosis on kidney histology (3,8,9). Furthermore,
these methods are strongly dependent on external fac-
tors, such as blood pressure, kidney weight, body
weight, and the applied transducer force, not to men-
tion high intra- and interobserver variability (3). A
recent report found close correlation between
ultrasound-determined kidney size with estimated
kidney function (eGFR) but did not assess kidney
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fibrosis (10). Kirpalani et al. reported that magnetic reso-
nance imaging elastography was promising in terms of cor-
relating stiffness scores with kidney fibrosis (11), but did
not explore machine learning tools as a means to optimize
predictive accuracy.
Computed tomography (CT) allows high-resolution

imaging of renal tissue with minimal radiation exposure to
the patient (7). Machine learning technology in combina-
tion with CT imaging is a promising avenue for non-
invasive assessment of kidney fibrosis, in lieu of the current
histologic standard of care. Deep learning convolutional
neural networks (CNN) are a novel form of machine learn-
ing, with the capacity to isolate relevant patterns from his-
tology, imaging, or other clinical data useful for disease
characterization (12,13). CNN technology for diagnostics
has been explored in a variety of settings, ranging from
intracranial hemorrhage and cancer to pneumonia and
appendicitis (14–17).
The goal of the Artificial Intelligence in Renal Scarring

(AIRS) study is to develop CNN tools to quantify kidney
fibrosis as a computer-aided diagnostic alternative to renal
biopsy. Two CNN algorithms (slice-level and voxel-level
classifiers) were trained to analyze CT imaging of native
and transplant kidneys to classify degree of fibrosis, on the
basis of ground-truth fibrosis scores from kidney biopsies
in the same patients. In this pilot analysis, we focused on
delineating mild/moderate versus severe (,50% versus
$50%) fibrosis as a clinically relevant dichotomy that may
be useful for a nephrologist considering kidney biopsy for
their patient. We demonstrate that the CNN algorithms are
able to differentiate severe from mild/moderate kidney
fibrosis with a high degree of accuracy.

Materials and Methods
Patient Database
This was a retrospective analysis of kidney biopsies car-

ried out at the University of California Irvine Medical Cen-
ter between 2014 and 2019. We identified patients with $1
abdominal CT scans completed within 6 months of the kid-
ney biopsy. After the initial screen of the medical records
system, 42 patients who underwent imaging were excluded
for the following reasons: CT scan conducted outside the
inclusion period (.6 months from biopsy date, n53);
abdominal magnetic resonance imaging but no CT found
in the system (n56); patients inadvertently skipped in the
annotation process (n52); native kidneys not segmented in
a patient who had undergone a transplant (n51); low-
quality scan with hardware artifact (n51); and outside
imaging studies that were not stored in the long-term
imaging archives (n529). The remaining 152 CT scans from
92 patients were downloaded and the axial soft-tissue
reconstructed volume was extracted for further analysis.
The majority of the CT scans (79%) were conducted with-
out intravenous contrast; 129 scans were conducted on a
Philips scanner, 22 on a Siemens scanner, and one on a GE
Medical Systems scanner.
A pathologist (J.E.Z.) reviewed a random selection of

patients to confirm the degree of fibrosis was accurately
documented in kidney biopsy reports. In discordant
patients, a second pathologist reviewed the slides to deter-
mine ground-truth (see Acknowledgments). Ground-truth

degree of kidney fibrosis from biopsy reports was treated
as a binary outcome: mild/moderate versus severe (inter-
stitial fibrosis and tubular atrophy ,50% versus $50%).
Native kidneys in CT scans from patients who were trans-
planted were automatically scored as severe fibrosis. Dem-
ographics and comorbid conditions were compiled in a
REDCap database, and CT images were accessed as
described below. All research procedures were approved
by the University of California Irvine Institutional Review
Board.

Annotation
The CT scans were transferred from our hospital’s Pic-

ture Archiving and Communication System to a secure
in-house database. A custom proprietary web-based anno-
tation tool was used to create ground-truth three-dimen-
sional binary masks corresponding to the native right and
left kidneys, and any renal transplants, if present. The
annotation tool was implemented as a simple brush utility
without any thresholding or advanced contouring func-
tionality. Two student researchers (H.R.T., K.A.P.R.) served
as the main annotators, and a senior radiologist (P.D.C.)
subsequently reviewed each patient and refined region of
interest annotations where needed.

Image Preprocessing
Using the annotated kidney volume masks as a template,

each individual kidney was cropped and resampled to an
isotropic 963 96396 voxel volume. This resampling opera-
tion was required to ensure all model inputs were of the
same matrix size and to accommodate the limitations of
graphics processing unit memory. Given the volumes were
first cropped to the right and left kidneys, and that the
kidneys constitute only a small portion of the original CT
volume, the final resampled voxel sizes were similar in res-
olution to the original data. Each cropped volume was then
normalized by clipping all voxel values to a range of 2150
to 250 Hounsfield Units and scaled by a factor of 1:50. Any
single exam in this dataset may contain up to three individ-
ual cropped kidneys used for algorithm training: (native)
left, (native) right, and transplant. For any individual kid-
ney, a total of 96 two-dimensional (2D) images (of size
96396) were used for training.

CNN Approach
Two different custom 2D CNN networks were tested

and compared, to differentiate severe from mild/moderate
kidney fibrosis. The first algorithm is a standard global
slice-by-slice CNN classifier, designed to predict one of
three mutually exclusive categories for each 2D image:
no-kidney, mild/moderate fibrosis, and severe fibrosis. The
second algorithm is a pixel-level CNN classifier imple-
mented through a fully convolutional U-Net architecture to
perform simultaneous segmentation and classification. In
both models, the final classification ignores slices or voxels
without kidneys, and a majority rule is aggregated on the
remaining predictions. Both algorithms are implemented
using the state-of-the-art squeeze-and-excitation network
architecture, the top-performing model of the ImageNet
Large Scale Visual Recognition Challenge in 2017 (18).
The squeeze-and-excitation network approach enables
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networks to adaptively recalibrate channel-wise feature
responses on the basis of different model inputs by learn-
ing interdependencies between channels (Figure 1).

Global Slice-by-Slice Classifier
The global CNN classifier is a custom VGG-derived

architecture implemented with squeeze excitation modules
at each layer . The model input is a single 2D (96396) slice
and the model output is a three-element logit vector repre-
senting a three-class prediction. The CNN consists of four
convolutional blocks, where each block is defined as a 333
convolution, batch normalization, and ReLU repeated three
times in total. Subsampling is performed at the end of each
block through a convolution with a stride of two. After
four convolutional blocks (12 layers), the final feature map
is flattened and used as an input into a single fully con-
nected layer.

Voxel-Level Classifier
The voxel-level CNN classifier is a custom U-Net-

derived architecture implemented with squeeze excitation
modules at each layer (19). The model input is a single 2D
(96396) slice and the model output is a single 2D (96396)
segmentation mask with a three-class prediction at each
voxel location. The CNN consists of four contracting con-
volutional blocks, where each block is defined as a 333
convolution, batch normalization, and Leaky ReLU
repeated three times total. Subsampling is performed at
the end of each block through a convolution with a stride
of two. After four convolutional blocks (12 layers), the
operations are reversed through an identical network archi-
tecture, with the replacement of strided convolutions (sub-
sampling) with convolutional transposes (upsampling).

Neural Network Implementation
A softmax crossentropy loss function is used to optimize

both models. Optimization was performed using the Adam
technique (20) with exponential decay rates, b1 and b2, set
to 0.9 and 0.999, respectively. The learning rate is set to
131023. The batch size is set to eight, with a total of 25,000

training iterations. Xavier normalization is used to initialize
the weights before training (21).
Algorithm code was written in Python 3.6, TensorFlow

2.1.0 library, and Keras 1.0.8 library. The network is trained
on our in-house graphics processing unit cluster, which
contains 48 Nvidia GeForce RTX 2080 Ti and 12 GeForce
RTX Titans. On average, the global classifier trained in 30
minutes per experiment, whereas the voxel-based classifier
trained in 2–4 hours per experiment.

Evaluation
A five-fold cross-validation strategy was used to evaluate

the training process. Although up to three different kidneys
from each patient were treated individually during the
training process, all volumes from a single patient are strat-
ified into the same crossvalidation group to prevent data
leakage. The dataset was split 80:20 and then trained on the
80%, whereas the other 20% was used for validation. The
training was repeated five times total with different 80:20
splits until the entire dataset was fully validated.
In addition to experiments on the entire data cohort, addi-

tional subcohort analyses were performed to evaluate for
potential confounding variables. Stratification was applied
on the basis of intravenous contrast status and exclusion of
atrophic native kidneys in patients who received a trans-
plant. Furthermore, to evaluate model generalizability, mod-
els trained exclusively from Philips and GE scanners were
validated exclusively with data from Siemens scanners.

Statistics
Our study goal was to distinguish between mild/moder-

ate fibrosis from severe fibrosis on kidney CT imaging.
Majority rule was used in both approaches (global slice-by-
slice and voxel-based) to determine the severity of fibrosis.
To evaluate the performance between the two approaches,
accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were calcu-
lated and compared. Area under the receiver operating
curve (AUC) was also calculated by varying the softmax

0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

Figure 1. | Prediction heatmaps generated by the deep learning algorithm identifying areas of suspected “severe” fibrosis within the kid-
ney. From left to right, kidneys ranging from normal to severe fibrosis are shown with progressive degrees of estimated fibrotic paren-
chyma. Final mean softmax normalized predictions for the entire kidney are shown in the bottom row, ranging from 0.0 to 0.2; 0.2–0.4;
0.4–0.6; 0.6–0.8; and 0.8–1.0.
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score threshold for the fibrosis classification and the result-
ing curve drawn for both approaches to compare. Descrip-
tive statistics are reported as mean6SD.

Results
Both models were trained and validated on a total of 152

CT scans from 92 patients, which contained 148 left kid-
neys, 152 right kidneys, and 73 transplant kidneys. Patient
characteristics are summarized in Table 1; 55 patients had
minimal or mild (,25%) fibrosis, 14 patients were classified
as moderate (25%–50%) fibrosis, and 23 patients had severe
(.50%) fibrosis. Average eGFR was 37626 versus 25618
versus 16613 ml/min per 1.73 m2, respectively, in the mild
versus moderate versus severe fibrosis groups. Patients
with mild/moderate fibrosis were grouped for analysis
against patients with severe fibrosis on kidney CT imaging;
average kidney volume was 217 cm3 (range 48–668) versus
76 cm3 (range 3–347) in the mild/moderate versus severe
(,50% versus $50%) fibrosis groups. There was one
patient biopsy that yielded discordant fibrosis scores (com-
paring medical chart report with current pathologist
review), and ground-truth was determined via blinded
review by a second pathologist (see Acknowledgments).
On crossfold validation, the slice-by-slice model yielded

an overall AUC of 0.917, whereas the voxel-based approach
yielded an overall AUC of 0.922 (Figure 2). The model
accuracy, sensitivity, specificity, PPV, and NPV at various
thresholds evaluated across both of the CNN algorithms
are summarized in Table 2. At a prediction threshold of 0.5,
the slice-by-slice approach gave us an accuracy of 0.831,
sensitivity of 0.817, specificity of 0.852, PPV of 0.886, and
NPV of 0.767. At the same prediction threshold of 0.5, the
voxel-based approach yielded similar results with an accu-
racy of 0.879, sensitivity of 0.853, specificity of 0.916, PPV
of 0.935, and NPV of 0.816. The voxel-based approach
when compared with ground-truth pathology reports yield
13 false positives (mild/moderate fibrosis classified as
severe), 32 false negatives (severe fibrosis not detected; 15%
miss rate), 187 true positives, and 141 true negatives.
Results from stratified subcohort analyses are shown in

Table 3. Overall performance across both models was simi-
lar after exclusion of postcontrast exams and/or the
exclusion of atrophic native kidneys in patients who have
undergone a transplant. A minor decrease in performance
(0.86 accuracy) was noted specifically for the voxel-based
CNN strategy after removing postcontrast exams; all other
permutations demonstrated an accuracy of $0.90. Addi-
tionally, overall model generalizability was preserved after
stratification of training set (Philips, GE) and validation set
(Siemens) exclusively by manufacturer.
A comparison of our prediction tools and other CNN

studies that evaluated kidney disease parameters is sum-
marized in Table 4.

Discussion
We initiated the AIRS study to develop machine learning

tools to quantify kidney fibrosis as a noninvasive diagnos-
tic alternative to renal biopsy. In a cohort of 92 patients, we
analyzed 300 native kidney images and 73 transplant

kidneys from 152 abdominal CT scans. We found the
global slice-by-slice and voxel-based CNN models were
similar in differentiating severe from mild/moderate kid-
ney fibrosis, with AUC 0.917 versus 0.922, and PPV 0.886
versus 0.935, when compared with the ground-truth from
kidney biopsy reports. Both CNN models performed con-
sistently when tested against different CT scanners and
when atrophic native kidneys in patients who have under-
gone a transplant were excluded; the global slice-by-slice
model had slightly better prediction accuracy when only
noncontrast CT scans were tested.

Diagnostic kidney biopsy remains the standard of care
when histologic diagnosis is needed to guide management

Table 1. Patient characteristics in the Artificial Intelligence in
Renal Scarring study

Variable Patients, n (%)

Sex
Male 45 (49)
Female 47 (51)

Ethnicity
Non-Hispanic White 16 (17)
Hispanic White 31 (33)
Black 4 (4)
Asian 24 (26)
Other/mixed race 17 (19)

Native versus transplant kidney biopsy
Native 45 (49)
Transplant 47 (51)

Kidney function, eGFR ml/min per 1.73 m2

Degree of fibrosis on biopsy
Mild (n555)
eGFR ,15 14 (25)

15–29 12 (22)
30–44 9 (16)
45–60 6 (11)
.60 14 (25)

Moderate (n514)
eGFR ,15 4 (29)

15–29 7 (50)
30–44 1 (7)
45–60 1 (7)
.60 1 (7)

Severe (n523)
eGFR ,15 15 (65)

15–29 6 (26)
30–44 0
45–60 2 (9)
.60 0

Etiology of kidney disease diagnosed
on biopsya

Interstitial fibrosis and tubular atrophy
Acute tubular necrosis
Lupus nephritis
Membranous nephropathy
Glomerulosclerosis
IgA nephropathy
Diabetic nephropathy
Focal segmental glomerulosclerosis
Transplant rejection

Mean age (6SD) was 50620 years.
aSome patients had .1 kidney disease etiology.
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Figure 2. | Area under the receiver operating curve (AUC) was calculated by varying the softmax score threshold for kidney fibrosis
classification. On crossfold validation, the slice-by-slice model yielded an overall AUC of 0.917, whereas the voxel-based approach
yielded an overall AUC of 0.922.

Table 2. Summary of inference thresholds for predicting severe patients of kidney fibrosis in the two models

Two-Dimensional Global Slice-by-Slice Threshold Two-Dimensional U-Net Voxel-Based Threshold

Threshold Accuracy Sensitivity Specificity

Positive
Predictive
Value

Negative
Predictive
Value Threshold Accuracy Sensitivity Specificity

Positive
Predictive
Value

Negative
Predictive
Value

.0.1 0.753 0.940 0.490 0.722 0.854 .0.1 0.818 0.936 0.652 0.791 0.878

.0.2 0.810 0.913 0.665 0.793 0.844 .0.2 0.847 0.917 0.748 0.837 0.866

.0.3 0.826 0.894 0.729 0.823 0.831 .0.3 0.847 0.881 0.800 0.861 0.827

.0.4 0.839 0.867 0.800 0.859 0.810 .0.4 0.871 0.867 0.877 0.909 0.824

.0.5 0.831 0.817 0.852 0.886 0.767 .0.5 0.879 0.853 0.916 0.935 0.816

.0.6 0.831 0.794 0.884 0.906 0.753 .0.6 0.869 0.835 0.916 0.933 0.798

.0.7 0.831 0.775 0.910 0.923 0.742 .0.7 0.861 0.807 0.935 0.946 0.775

.0.8 0.839 0.757 0.955 0.959 0.736 .0.8 0.839 0.766 0.942 0.949 0.741

.0.9 0.802 0.679 0.974 0.974 0.683 .0.9 0.815 0.720 0.948 0.952 0.707

Table 3. Sub-cohort analyses to test performance of the two convolutional neural networks models by type of computed
tomography scanner, noncontrast versus contrast scans, and exclusion of native kidneys from patients who have undergone a
transplant

Model

2D global slice-by-slice model
Training set: Philips and GE scanner Validation set: Siemens scanner Correctly predicted normal or

severe fibrosis
All data (n5320) All data (n553) 49/53 (92%)
Exclude contrast CT scans (n5286) Exclude contrast CT scans (n543) 40/43 (93%)
Exclude contrast CT scans, exclude native

kidneys in transplant patients (n5159)
Exclude contrast CT scans,
exclude native kidneys in
transplant patients (n529)

26/29 (90%)

2D U-Net voxel-based model
Training set: Philips and GE scanner Validation set: Siemens scanner Correctly predicted normal or

severe fibrosis
All data (n5320) All data (n553) 49/53 (92%)
Exclude contrast CT scans (n5286) Exclude contrast CT scans (n543) 37/43 (86%)
Exclude contrast CT scans, exclude native

kidneys in transplant patients (n5159)
Exclude contrast CT scans,
exclude native kidneys in
transplant patients (n529)

26/29 (90%)

2D, two-dimensional; CT, computed tomography.
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of proteinuria, transplant rejection or unexplained kidney
dysfunction (1,2). However, the decision to pursue a native
kidney biopsy may be complex, especially if the patient is
on anticoagulation therapy or has anemia or thrombocyto-
penia, which may increase the risk for major complications,
including blood transfusions, angiographic intervention,
and death (overall incident rates 2%, 0.3% and 0.06%,
respectively) (6). Noninvasive tools to evaluate the degree
of kidney fibrosis are lacking (7), and to date have not uti-
lized machine learning tools to minimize subjectivity and
bias. These tools can prove useful when assessed in the
context of other markers of chronic kidney impairment
(e.g., elevated parathyroid hormone and phosphate). In par-
ticular, prediction of severe (.50%) fibrosis may justify
avoidance of kidney biopsy because the patient would not
be a candidate for immune-modulating therapy (i.e., the
biopsy would not change clinical management). This infor-
mation is valuable, for example, when patients present
with advanced kidney failure and unknown medical his-
tory. Additional passes with the biopsy needle to optimize
sampling of glomeruli for histology from a fibrotic kidney
may lead to an increased risk of bleeding (22). If severe
degree of fibrosis is predicted on CNN analysis of a CT
scan, the medical team may decide to limit biopsy sam-
pling or avoid kidney biopsy altogether, after shared deci-
sion making with the patient. Of note, a diagnostic native
kidney biopsy may still be indicated in a seemingly end-
stage kidney per nephrologist discretion to guide the evalu-
ation of transplant candidacy or to determine the etiology
of a systemic disease.
We noted that a prediction threshold of 0.5 performed

the best with respect to future applicability in clinical deci-
sion making, whereby the goal is to identify patients with
advanced kidney fibrosis, and thus avoid invasive biopsy
and its potential bleeding complications discussed above.
With the voxel-based CNNmodel, a threshold of 0.5 would
identify 85% of individuals with advanced kidney fibrosis
with a PPV of 94% (Table 2). Raising the threshold to 0.9
would marginally improve PPV to 95% but would drasti-
cally decrease sensitivity from 85% to 72% (i.e., would miss
28% of individuals with severe fibrosis).
Currently, the primary limitation of the proposed algo-

rithm is the requirement for a manual region of interest to
be defined for each kidney before deep learning prediction.
It should be noted, however, that although three-
dimensional kidney contours were generated as part of this
study, the prediction for each new patient (i.e., separate
from training) required only a coarse bounding-cube
around the kidney(s) to be defined. Algorithms for deep
learning–based whole kidney segmentation are being
developed, which would facilitate a fully automated end-
to-end process (23,24). Another limitation is that heteroge-
neity in the degree of fibrosis across a single kidney may
be a source of error in algorithm ground-truth and valida-
tion. In this study, we decided to prioritize the trade-off of
including more potentially noisy data (entire kidneys were
segmented) rather than utilizing a small amount of clean
data; empirically, this strategy is common in big data deep
learning tasks, and our observation of an algorithm predic-
tion AUC of 0.911 suggests the degree of noise introduced
by this strategy is modest. Future refinement of these CNN
prediction algorithms will be explored via incorporation of

clinical laboratory values relevant to CKD, such as creati-
nine, parathyroid hormone, and hemoglobin. Pending
larger datasets, the algorithm output can be further opti-
mized to include more expansive quantitative binning
(degree of fibrosis ,25%, 25%–50%, 50%–75%, and .75%).
Finally, given the current algorithm is trained and vali-
dated on data from a single institution, further work is
needed to evaluate generalizability beyond the studied
patient cohort.
To our knowledge, the AIRS study is the first to utilize

CNN models to predict the degree of kidney fibrosis from
imaging scans. The results are promising and provide a
basis for testing these CNN tools in prospective trials, to
validate their utility in clinical decision making when it is
unclear whether a patient’s kidney disease is acute versus
chronic.
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