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Abstract 

This paper presents a qualitative description of the evolution of traffic congestion 
during the morning rush hour in a long freeway leading to a single destination. 
Traffic is generated at the freeway’s many on-ramps during a short period of time 
and then is assumed to subside. Capacity limitations create queues on the ramps 
and the freeway, which is assumed to evolve according with the hydrodynamic theory 
of traffic flow. A special case that can be described with just a few parameters is 
analyzed in detail. 

The simplicity of our scenario allows the results to be easily verified indepen- 
dently; they can then be used to check whether ‘the existing traffic assignment 
models are consistent with the basic laws of traffic flow. We found that unreason- 
able results are obtained with “point queue’’ models, currently a favored approach 
in the dynamic traffic assignment literature. A computer program, based on the 
cell transmission model (Daganzo, 1992), is put to the same test. 

The note also discusses briefly the effect that a slower parallel arterial would have 
on the system’s traffic. It is found that a route choice mechanism where drivers do 
not anticipate the system’s evolution leads to unreasonable traffic patterns; i.e. pat- 
terns that would not be expected in reality. The anticipation phenomenon, thus, 
must be incorporated into any realistic model of dynamic network flows; unfortu- 
nately this increases the difficulty of developing detailed control strategies. 



1 Introduction 

This paper considers an important component of an urban region’s transportation 

network: a freeway leading to  its CBD and the parallel set of surface streets. It attempts 

to  explain how traffic conditions and travel times evolve over time and space during the 

morning rush. 
We assume that traffic behaves as predicted by the hydrodynamic theory of traffic 

flow without random incidents, and that all the traffic is headed for a unique destination 

at the end of the freeway. Instead of a numerical model based on detailed information, 

we seek general properties of the system and its behavior, which may lead to improved 

control schemes and future models. For example, if the demand is such that queues persist 

at  all the ramps until they are dissipated, then our analysis shows that ramp metering 

cannot decrease the number of vehicle-hours spent in the system, although it can affect 

the distribution of delay across origins. 

Our approach will use a simple idealized scenario that can be described with few input 

parameters so as to make the discussion transparent. The qualitative conclusions reached 

will extend beyond the scenario, and this will be justified as needed; the scenario and 

simple formulas that result are only used as vehicles for our discussion. 

The following section describes the freeway, its demand and the traffic flow rules. The 

next two sections, the core of this note, describe the evolution of traffic on the freeway with 

the hydrodynamic model and with the “point queue” model. The last section introduces 

the arterial and examines the implications of route choice phenomena. 

2 A Single Freeway 

We consider here a freeway with a series of on-ramps leading to a major destination. 

Each origin is connected with the freeway by one on-ramp. The origins and on-ramps 

are consecutively numbered i = 1,2 ,3 ,  ..., starting from the destination. The index i also 

refers to the freeway link directly upstream of ramp i. Note that off-ramps are ignored in 

our network since they have little effect on the scenario considered in this paper. 

2.1 The demand 

We assume that the freeway is empty and that the rush commences at time t = 0, 
when Ai vehicles suddenly leave each origin and form a queue at their respective on-ramp. 

As a result of our model we will determine, among other things, the approximate time di 
when the queue on ramp i dissipates. 
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kj 
density, k 

Figure 1: The piece-wise linear q-k relation 

It should be clear that the behavior of traffic on the freeway would not change if some 

of the A; vehicles on ramp i had left the origin after time t = 0, but not so late that 

they would avoid queuing at the ramp. As long as some vehicles are waiting to leave the 

ramp at all times in (0, &), the actual size of the queue is irrelevant to the behavior of 

the freeway. (Although the focus of this report is freeway behavior, ramp delay is briefly 

considered in Secs. 3.3 and 4.) Thus our traffic generation assumption is not as restrictive 

as it may seem; it represents any arrival pattern where the queues at every ramp would 

build at about the same time and dissipate only once. 

2.2 The traffic flow rules 

Traffic on the freeway will be assumed to behave according to the hydrodynamic 

theory of traffic flow (Lighthill & Whitham, 1955, and Richards, 1956). Further, it will 

be assumed that the equation of state (the relationship between density k and flow q that  

holds at every point in space-time, q ( k ) )  is triangular. A triangular relationship is defined 

by three constants (see Figure 1): the free flow speed, vf, the optimum density, ko (or 

alternatively the maximum flow, qmaz = vfko), and the wave speed for k > ko , w > 0. 
The expression is: 
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q = { v f k  if k 5 ko 
v f k o  - w ( k  - ko) if ko < IC < ko( 1 + z )  

' ,  

The parameter w represents the unique speed at which flow disturbances propagate in 

the upstream direction within any (moving) queue. The ratio V U ~ / W  is approximately 6 
for most freeways. The expression ko(1 + v f / w )  represents the jam density. Triangular 

g(k) relations have been proposed by Newell (1991) for their simplicity of analysis and 

reasonable realism. Experiments to measure the accuracy of all these assumptions are 

being planned. 

In order to  predict traffic behavior on the freeway with the hydrodynamic theory, the 

above is not sufficient. Boundary conditions must also be defined at the location of each 

non-empty ramp, to  reflect the amount of ramp traffic that is allowed to enter, depending 

on conditions. If the freeway is congested at  the ramp location, the ramp flow might be 

restricted. This phenomenon can be captured by means of mixing constants that indicate 

the fraction of ramp vehicles (a) and freeway vehicles (I - a) that will flow immediately 

downstream of the junction, assuming that the flow of ramp vehicles does not exceed the 

ramp capacity. 

Although a could depend on the freeway density, it is reasonable to  assume that it is 

constant for our purposes; perhaps close to &, where m is the number of freeway lanes 

(Yagar, 1993). If a is constant and the freeway is in a congested steady state during part 

of the rush hour, its link flow will decrease geometrically by a factor of ( 1  - a) in the 

upstream direction. This means that downstream ramps will discharge more flow than 

their upstream counterparts, essentially giving the commuting advantage to downstream 

inhabitants. 
This qualitative observation is also true if one assumes that a = 1 (and that the ramp 

flow is limited to a fixed amount). The main difference is that the freeway link flows 

would now decrease arithmetically instead of geometrically, and the ramp flows would 

vary more drastically. 

The remainder of this paper assumes that Q = 1 because the same qualitative conclu- 

sions are reached, and the model with CY = 1 leads to  a graphical presentation that only 

involves a few traffic states and exhibits more contrast; it is better suited for comparison 

with graphical computer output. The theoretical and numerical results for a < 1 are 

summarized in the Appendix. 
In the following section the evolution of traffic on the freeway is examined. Subsection 

3.1 provides a qualitative description of traffic behavior for general condtions regarding 

freeway geometry and demand. Subsection 3.2 provides quantitative formulae for a spe- 

cial case that can be described with just a few parameters. Subsection 3.3 explains the 
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implications of the  above results for control, considering the impact that a control scheme 

would have on ramp queueing delay. 

3 The Traffic Evolution 

Let us assume that the flow from every ramp is metered at  a rate 9,. > 0 (while there is 

a queue) and that a = 1. Then, as long as on-ramp traffic is not blocked by downstream 

freeway congestion, on ramp queues will discharge at a rate g7. 

3.1 Qualit at ive description 

Immediately after t = 0, as vehicles from upstream ramps travel downstream, flow 

on each freeway link will increase. The hydrodynamic model adopted here predicts that 

it should do so in steps. The time between steps is the time it takes a vehicle to travel 

between ramps; and the size of each step is 47. 
Flow will have reached capacity in a freeway section upstream of a ramp in the time 

that it takes a vehicle to travel qmax/qr freeway links. Since the maximum freeway flow 

that can get past an active ramp is gmaz - q,., capacity flows will be precluded from 

advancing from then on. Our hydrodynamic model predicts that under these conditions 

queues of slow moving vehicles will form upstream of every ramp and that those queues 

will grow spatially at  rate w .  When the queues reach the next upstream ramp, (in the 

time that it takes for the shock wave to travel between ramps; e.g. 5 min) the freeway 

flow immediately downstream of ramps 2, 3, ... will decrease to qmax - qp from q,.. As 

ramps 2, 3, ... continue to  emit vehicles a t  rate g,., the freeway flow directly upstream 

of these ramps will be further restricted to gmax - 2q,; another set of shockwaves will be 

generated. 

Consideration shows that in the time that it takes a wave to travel the length of 

q,,Jq,. freeway links (about 30 min) the system will have reached an equilibrium state 

as depicted in Figure 2, assuming of course that no ramp queues have dissipated. Link 

flows would be 

{ - iqr 

if i I q m a x f  gr 
if i > qmaxf  qr 

qi = 

This occurs because priority downstream origins block upstream traffic. This stable pat- 

tern will persist until some of the downstream ramps dissipate their queues. 

The stable pattern is characterized by certain link occupancies, n;, and link travel 

times,-ti. The freeway link occupancy is a linearly decreasing function of the link flow, 

4 



FREEWAY 
LINK i 

gmax - (i + 1)qr ... ... . 
Qi = QmGx - ZQr 

I '  , 

f-ia 
RAMP i + 1 

FREEWAY FREEWAY FREEWAY 
LINK 2 LINK 1 LINK 0 

OCCUP = 

F L O W  = F L O W  = F L O W  = 

no nl n2 
OCCUP = OCCUP = 

.. : : r -  I -  C 

QZ = qmax - 2qr QO = Qmax Q1 = Qmax - Qr 

R3 ' R2 ' R1 ' 
RAMP 3 RAMP 2 RAMP 1 



given the equation of state (Figure 1). If I?; is the length of link i, the relationship is: 

The link travel times for a vehicle traversing link i during the stable pattern is: 

The stable pattern will persist until one of the downstream ramp queues dissipates. 

Upstream of such a ramp freeway flow will then increase by qr units and after a suit- 

able delay the first ramp to  have been blocked will commence to discharge. If no other 

ramps dissipate their queues during this delay, another stable pattern will then have been 

reached. 
As time progresses other stable patterns may arise. They all have in common that the 

first qmax/qr ramps with queues remain emitting vehicles and the rest are either empty or 
blocked. Flow on link 0 remains at capacity throughout - during the stable patterns and 

the transition periods. Note as well that ramps close to the destination clear before those 

far away. When the last qmax/qr  ramps are emitting vehicles freeway speeds will have 

returned to normal and the downstream portion of the freeway will still be at capacity. 

As the queues on these ramps dissipate, downstream freeway flows will decrease. 

3.2 Quantitative results 

Here we develop quantitative results for an idealized case that can be described with 

few parameters and is easy to  analyze: we assume that the freeway ramps are evenly 

spaced I distance units apart and that qmax/qr is an integer, m. If we let t o  denote the 

sum of the times that it takes for a vehicle to travel one link ( I ? / v f )  and for a wave to do 

the same (I?/zu),  t o  = + i) the first stable pattern is reached at time t b  = mto. This is 

also the time when ramps such that i > qmax/qr  become blocked: 
Vf 

t b  = m t o  = - 9max 
QT 

The number of vehicles initially discharged by one of these ramps is: 

which - is also the maximum number of vehicles that fit in a freeway link. 

Assuming that A; > A b  (the usual case if there is a congestion problem during the 

morning rush), the last ( A ;  - A b )  vehicles on the ramp will have to wait until (i - q m a x / q r )  
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downstream ramps have discharged and the clearing signal has had the time to reach ramp 

i. The specific times when ramp i begins to discharge again, t,;, and ends to discharge, 

t d i ,  will depend on the downstream Ai’s, but the formula is not particularly important 

for our purposes. The simplest case where all the A; are equal, A; = A ,  will suffice to 

illustrate some issues. 
The time-space diagram for this problem is displayed in Figure 3 for a case with m = 4 

and v f / w  = 2,’ and with only 12 on-ramps. The figure does not depict vehicle trajecto- 

ries; the solid lines represent time-space interfaces between the traffic states prevailing in 

various regions of the time-space plane. These traffic states, labeled “0, A ,  B ,  C,  D, C’, 
B‘, A’, Of”, correspond to the points on the q (K)  curve also displayed in the Figure.2 Since 

our q ( k )  relation exhibits only two wave speeds ( v j  and w ) ,  the hydrodynamic solution is 
easy to  construct using the following two well known facts: 

(i) Because there is a change in freeway flow at the ramp’s location whenever 
the ramp is emitting vehicles a stationary interface must be located there. The 
flow on the upstream side of the interface must be q, flow units less than the 
downstream flows. 

(ii) Non-stationary interfaces must move with a speed equal to the ratio of the 
change in flows on both sides of the interface to the change in density. If the 
scales of representation are chosen appropriately (as we have done) interfaces 
are parallel to the q - IC diagram line that joins the two states. 

In the figure, a horizontal interface corresponds to an active ramp; a blocked ramp is 

identified by an interruption in a horizontal line at the ramp’s position. The figure also 

displays explicitly the times t,; and t d i  for ramp i = 8. The first and last set of 4 ramps 

behave a little differently from the 4 in between, since the former are affected by upstream 

boundary conditions. The expression for t d i  - t , i ,  obvious from the figure, applies to the 

middle ramps (excluding the first and last m in general cases): 

It  should also be clear from the geometry of the figure that: 

which can be approximated by a smooth function of i: 

‘A value close to 6 would be more reasonable, but the figure would be less clear, 
2The reader is encouraged to verify this. 
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The first two terms of (2b) represent the time that it takes to discharge the queues blocking 

ramp i (including ramp i itself). The third term represents the time for the clearing signal 

to travel back to ramp i. Because t b  = qmaxtO/q, and m = qmax/qr we can write: 

t d i * - - . $  -- 
A 

( q t x  
t o  + 1) i if m < i < i,,, - m 

w (3) 2 4 T  

which increases with i at rate: (A/qmax - t o  + Z/w). 

Because the difference between t d i  and t,; is constant, t,; also increases at the same 

rate with i. Figure 4 displays graphically the relationship between i and the times when 

the ramp actually discharges vehicles, including i E (1,m). 
The times t d i  represent the times when an additional vehicle could conceivably enter 

the freeway at ramp i and travel at the free flow speed all the way to the destination. As 

such, it can be viewed as the time of return to normalcy for origin i. 

t d i  
independent of qT 

I rn i 

Figure 4: Periods of activity for the different ramps 

3.3 Implications for control 

Except for an initial time, m / u f ,  the bottleneck remains at capacity throughout the 

rush hour. This observation is true independent of q7 and therefore independent of a 
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ramp metering strategy if we assume (plausibly) that changes in qr don’t change qmar. 

(It is also true if Q < 1.) This indicates that the imaXA vehicles that use the systems are 

removed at a maximum rate that is independent of qr. It  follows that the total number 

of vehicle-hours in the system cannot be reduced by ramp metering. 

Ramp metering cannot even influence the number of vehicle-hours on the freeway 

(metering one ramp simply allows vehicles from other ramps to spend time on the freeway). 

To illustrate this we show that vehicles enter the freeway from all ramps at a combined 

rate which varies cyclically around a long term average that is independent of the metering 

rate. 

At any given time, t’, the number of ramps discharging (at rate qr)  into the freeway 

is given by the number of horizontal lines that would be intersected by the line t = 

t’ in Figure 3. During any stable pattern, without moving interfaces, the number is 

m = qmax/qr ,  but the number is less during a transition period. The number fluctuates 

periodically. 

For a freeway with i,,, --+ 00, the number of active ramps is on a ~ e r a g e : ~  

. 
W 

The average flow discharged into the freeway before the end of the rush also varies cycli- 

cally around an average which is the product of the above and qr: 

This quantity is independent of qr.  

4 Traffic Evolution With Point Queues 

The term “point queue” is used here to refer to  the limiting case of the hydrodynamic 

model with kjam -+ 00 (or w -+ 0).  This limiting case exhibits the feature that queues 

never grow to be so long that they restrict entry into a link. 
This limiting model is becoming popular in the dynamic traffic assignment literature 

because it is somewhat tractable and (since it includes transient queuing phenomena) gives 
~~ 

3This can be easily seen from the figure if we imagine that there are m “on/off’ moving switches that 
control the ramp flows; a ramp emits flow when it has an on switch. During any stable period there is 
one “on” switch on each of the rn active ramps. Whenever a ramp queue dissipates, its switch is turned 
off and sent to  the first upstream ramp that is blocked a t  the speed of the interface. The trip takes % 
time un_its; see Figure 3. Upon arrival it is turned on until the queue dissipates; i.e. it stays on for a time 
A - d o .  For a very long freeway, the average number of active ramps is equal to the average number 
:i “on” switches, which in turn is equal to the product of m and the fraction of time that a switch is on. 
This is the formula that is presented. 
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the illusion of realism. Unfortunately, the assumption w t 0 cannot properly capture the 

real life processes that can grind traffic to  a halt; with point queues, the upstream end 

of every link is always ready t o  admit vehicles. As the material in this subsection shows, 

the consequences of this assumption can be drastic indeed. 
First we note that with the point queue model all the ramp queues will have dissipated 

by time max;{A;/q , } .  If the A; are not too different, this is roughly the same time at 
which the queues on ramps 1 through m clear with the hydrodynamic model. The two 

times coincide for the idealized case with A; = A.  With point queues, the freeway does 

not return to  normalcy at that time, however. Large queues will have formed on every 

freeway link that is away from the upstream system b ~ u n d a r y . ~  

Unfortunately these queues don’t dissipate quickly. Without any ramp flow, all the 

queues will receive the same number of vehicles as they emit in a unit time (qmaz)  and 

therefore will remain fixed in size. All the queues, that is, except the last non-zero 

upstream queue which will decline in size at rate qma2. 
The specific times at which the individual queues dissipate can be found graphically 

with a construction as in Figure 3 (with w t 0), or (more easily) with time versus 

cumulative count diagrams at every freeway link. This is not done here, however, because 

the qualitative properties of the result for A; = A are rather obvious as we now explain. 

As explained in the prior footnote, the m links at the upstream end of the freeway do 

not develop queues; queues only grow on the remaining links after a delay of (m  + l)Z/vf 
time units. The build up will take place at the same rate (q+) for all links, since links 

can emit a flow qmaz but receive the sum of a flow qmas, emitted by the upstream freeway 

link, and the ramp flow 4,. If -4 is so large that the initial delay ((m+ l ) l / v f )  is negligible 

compared with A/q , ,  then the maximum freeway queues will be reached approximately 

at time A / q ,  and will be of size A on each link for the ideal case. (Essentially, the ramp 

queues will have been transferred to the freeway). From then on the freeway occupancy 

will decline. 

The last upstream queue will dissipate first as it receives no traffic, but discharges 

it at rate qmaz; its dissipation will reduce arrivals to the downstream queue, which will 

dissipate next, etc, . . . . Interestingly, the result of the point queue assumption is that 

freeway links return to normalcy from the upstream end to the downstream end. That 

is, in the reverse order as would occur in reality! 
Figure 5 displays the predictions of the point queue and the hydrodynamic model for 

41f the Ai /q ,  are large relative to the time it takes to travel m links, which is the case of interest as 
explainid earlier, then queues must begin to grow after time (rn + l ) i / v  on any freeway link that is more 
than m ramps away from the upstream system boundary. These queues continue to grow until the ramp 
flows are exhausted. If the Ai are large and the freeway has many ramps, the queues will be very large. 

11 



Time of 
return 
to 
normalcy 
for 
link i 

A 

qmar 

hydrodynamic model 

point queue model 

I 

0 i zmax Link index 

Figure 5 :  Comparison of point queue model and hydrodynamic model 

a limiting case with A/qr) imax + 00. Note that both models predict the same clearing 

time for the system as a whole: imaxA/qm,,. This should not be surprising, since both 

models keep link 0 saturated throughout the rush. 

Constant saturation flow through link 0 also implies that the number of vehicle-hours 

in the system is the same as for the hydrodynamic model. However, the number of freeway 

vehicle-hours is overestimated, since vehicles are assumed to enter the freeway at a rate 

qrimax, which is much larger than (4). (In the limiting case with i,,, and A -, CM, the 

fractional overestimation error is unbounded.) This overestimation is a direct consequence 

of the absence of freeway link-to-link interactions (blocking) in the point queue model. 

5 A Freeway And A Parallel Arterial 

With the goal of assessing the reasonableness of a simple model of driver route choice 

behavior, we now allow people to travel on a slower one-way arterial road and choose the 
most convenient ramp. We do not allow them, however, to  postpone or cancel their trips; 

e.g. as per the use of an alternative mode of transportation. 

The arterial/freeway problem is easy to analyze if we assume that people evaluate 

routes continuously as they travel without anticipating future changes in link travel times. 

That is, the route travel time used in their decision at time t is the sum of the “current” 
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link travel times, defined to be the projected link travel times under current conditions 

for a vehicle just entering each link.5 It will be assumed that speed on the arterial is 
independent of flow; this is reasonable since arterial flows should be modest and in real 

life there may be a system of parallel streets ready to handle the flow. As part of our 

solutions, we seek the queue lengths on each ramp as a function of time, R;(t). 
With our route choice model, a driver on the arterial at time t will compare two 

active adjoining ramps by considering the projected ramp queuing times, Ri+l(t)/qr and 

R;(t)/qT, and the current travel time on the intervening freeway link, t ; ( t )  = n;(t)/qi(t). 
The travel time difference between the two choices ( using ramp i and ramp i + 1) is then: 

Note that an inactive ramp (one with qr = 0) would never be selected. 

Because the flow from the first m ramps eventually blocks all flow from the remaining 

ramps as we have discussed in Sec. 3, it follows that the demand from origins i = 
m + 1,m + 2, ... , will eventually reject these ramps, moving on the arterial to one of the 

active ramps (i 5 m). Thus, a pattern of ramp queues will develop where &(t) = 0 if 
i > m, and R;( t )  > 0, otherwise. The positive &(t)  will decrease in size with time, but 

as long as R;(t) > 0 for all i 5 m, the freeway will behave as if there was no arterial and 

the stable pattern of Figure 2 prevailed; as explained in Sec. 3.1: 

On substituting this relation for t ;( t)  in Eq. ( 5 ) ,  for the ideal case with 1; = 1,  we obtain: 

At ' ame = + . , 1 i i < m ,  
Qr Qmax -.Zqr 

R;+1(t) - R;(t) (% + ko) 1 

which gives the difference in current times between ramps, as a function of the queue 

sizes, R;(t).  These, of course, are yet to be determined. 

If we let r denote the travel time on the arterial between two ramps, our route choice 

mechanism implies that6 

Atime 5 r 

which yields the following condition: 

5An even more conservative model of route choice would assume that current travel times correspond 

*A pure equality would imply that people are indifferent between the two ramps. The inequality 
to veh6les exiting each link. 

implies that the downstream ramp is favored; this can happen because drivers cannot backtrack. 
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or 

The right side of Eq. (7) is positive for i = 1 (if r >> Z/vr as one would expect) and 

negative for i = m - 1 (since should be greater than r in most cases). We now argue 

that Eq. (7) should be a pure equality. 
V f  

Initially, one would expect Eq. (7) to be a pure equality for i 5 m because the (many) 

drivers from upstream blocked origins can choose among all i (i 5 m) without traveling 

the wrong way; i.e. if one ramp was favored (with a small I?,) some drivers would travel 

to it and increase its R;. As long as there are queues on all i 5 m, the R;(t) will decrease 

at the same rate and people will not have an incentive to jockey among ramps. Thus, 

one would expect Eq. (7) to  remain as an equality until one of the queues dissipates. 

I t  follows that (as long as they are all positive) the R(t)  can be easily obtained for any 

given total number of ramp occupants 
m 

i=l 

with the following procedure: 

Starting with a given AI, obtain Rz, R3, ... , R ,  with Eq. (7) interpreted as 

an equality. Then add ( $ ) ( R ( t )  - Ri) to each of the values. 

The resulting values satisfy Eqs. (7) and (8); they are valid if none are negative. 

Note that the ramp with the longest queue has an. i  where the RHS of Eq. (7) is close 
to  zero. This means that it is located where the freeway travel time roughly matches the 

arterial travel time. Note as well that the minimum queue length arises at one of the 

extremes (either i = 1 or i = m). Consequently, since all the R;(t) decline at the same 

rate (q?),  one of the extreme ramps will eventually become idle. Consideration shows 

that no vehicles would move to  the new empty ramp. This is obvious for ramp m, since 

vehicles are not allowed to backtrack. It  is also true if ramp 1 clears first because, after 

dissipation, the queuing time of ramp 1 remains fixed at zero while the remaining queuing 
times decline. Drivers wouldn’t want to  move to ramp 1. It should be clear then that as 

soon as one of the ramps clears, the combined input flow to  the freeway drops. As soon 

as this happens, freeway traffic must quickly return to an uncongested state with positive 

flows and rapidly moving vehicles (see Figure 6). 
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Figure 6: Time-space diagram of the system's return to normalcy when: (a) ramp i = 1 
clears first, and (b) ramp i = m clears first. Figure depicts the case with m = 4. 

What is disturbing from this outcome is that the flow through the bottleneck will have 

declined below capacity, while ramp queues remain. Vehicles trapped in these queues 

would have been better served by waiting at ramp' i = m + 1 in anticipation of the 

freeway clearing time. Because they didn't, their delay 'and that of the overall system are 

increased. It is doubtful that such a phenomenon would be observed in real life. (If it 
did, closing the arterial would result in less delay.) It seems reasonable to conclude that 

drivers do anticipate the evolution based on past experience. Logical as this may be, the 

conclusion is unfortunate because it complicates the modeling of dynamic network flows; 

especially with regard to  the development of detailed dynamic traffic-responsive control 

strategies. 
Similar conclusions are reached if a two-way travel is allowed on the arterial. It is 

not dCfficult to see that the two-way system would still evolve in the same way until the 
dissipation time of the first ramp. After that time, people at ramp m and/or m - 1 may 
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find it attractive to backtrack so as to  enter ramp m + 1, .without significant queuing or 

delay. This may or may not happen depending on the specific values of the parameters 

T ,  1 ,  vf, etc. ..., appearing in Eq. (5). But if it does it would imply that some motorists 

from upstream origins would travel t o  a ramp, queue, and later decide that a previously 
bypassed upstream ramp was a better alternative. Commuters are unlikely to behave so 

naively. 
A more realistic model of commuter behavior should be based on past experiences. We 

would expect experienced commuters always to  maintain the first m ramps busy. If this 

is true, it would mean that the bottleneck is never starved for traffic and that the overall 

system delay is as low as it can be, given that there is a bottleneck. Ramp metering 

strategies could not reduce the overall system delay. 

6 Conclusion and Summary 

The note has developed the solution to the hydrodynamic model for a freeway carrying 

morning commuters to a single destination. Although one may take issue with the realism 

of the hydrodynamic model for a microscopic description of traffic (over short distances 

and small time intervals), its behavior on a macroscopic scale would seem satisfactory. It  

has been extensively studied, and is widely used by practicing  engineer^.^ It is certainly 

more realistic than the point queue model, as it recognizes that as the freeway fills with 

vehicles the flow from upstream links must be restricted. The hydrodynamic model pre- 

dicts a very different congestion dissipation pattern. It  predicts that freeway links reach 

freeflow speed in the upstream direction, starting from the bottleneck, while the point 

queue model predicts the opposite; this highlights the latter’s inability to represent real 

life situations where blocking arises. 
A by-product of our analysis is a set of expressions that can be used to test numerical 

implementations of the hydrodynamic model. This is done in Figure 7, which displays 

the output of a prototype freeway network flow program currently being developed (Lin 

and Daganzo, 1993). The shading intensity in this figure, which should be compared to  

Figure 3, corresponds to the magnitude of the predicted traffic density. Figure 8 depicts 

the result for (Y = 1/4. It  should be compared with the appendix’s results. 
The introduction of a parallel arterial revealed that if drivers were to choose routes 

without anticipating the future evolution of the system, the queuing patterns that would 
develop would become unrealistic. This observation has important implications for the 

7The value of purported improvements such as microscopic car-following simulations can be questioned, 
since the macroscopic implications of all the details have not been examined in sufficient detail. As is 
well known, e.g. from chaos theory, non-linear systems can be very sensitive to details. 

- 
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Figure 7: T
raffic intensity plot .to the m

orning traffic problem
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direction of dynamic traffic network research; it seems to suggest that commuters choose 

routes based on expectations formed on prior travel days and that anticipation should be 

built into the models. 
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Appendix 

This appendix presents the expressions obtained by repeating the process of Sec. 3 for 

the more realistic case where a is small and the freeway is very long.' As was mentioned 

in the text, the results are qualitatively similar. 

We consider the case where a 5 * = 2 (rn = 1 , 2 , .  . . ,), and recall that after an 

initial delay flows reach a stable pattern. Consideration shows that the stable flow on link 

i will be: 

qmoz 2 m  

q; = g m a x ( l  - a)' i = 0 , 1 , 2 , .  . . . (1) 

This state is reached at time: 

t .  - - + (t) i. l q m a x  

"f 9T 
t -  

The stable pattern is disturbed every time one of the downstream ramps clears and a 

wave propagates upstream. As the wave passes every link, the link flow will then increase 

by a factor of 1 - a. Link flows increase in steps until they return to capacity. The time 

when queues on ramp i are discharged, t d i ,  can be obtained recursively: 

1 ,  
t d i  = t d , i - l  + - + ti i = 2 ,3 , .  . . . 

The first term, t d , i - l ,  is the time ramp i - 1 clears. The second term is the time it takes 

for the wave, generated by ramp i - 1 when it stops discharging vehicles, to travel from 

ramp i - 1 to ramp i. The last term, t:, is the difference between the time link i receives 

w (3)  

the wave and the time queues 

t ;  = t$ = . . . = t: and that: 

I t .  = 

Note that t: is independent of 

Consideration shows that 

on ramp i are cleared. It can be shown by induction that 

A 
q m a x  
- - (6 + t) i =  2 ,3 ,  .... 

CY. 

which together with (3) and (4) determines the t d i ' s .  

As occurred with a = 1, the system returns to normal from the bottleneck up. Figure 

8 depicts the computer output for CY = 1/4, which matches the predictions with (3) - ( 5 ) .  
A diagram similar to Figure 3 would also match closely Figure 8. 

'The expressions about to be mentioned do not apply to the ramps close to the upstream end of the 
freeway, as their behavior is influenced by upstream boundary conditions. 
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