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Abstract

Efficient Algorithms Inspired by Integer Programming Formulations

by

Xu Rao

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Dorit S. Hochbaum, Chair

Integer programming formulations play a key role in the design of efficient algorithms and
approximation algorithms for many discrete linear optimization problems as found in previ-
ous research. A specific integer programming formulation of a discrete linear optimization
problem may lead to algorithms with better running time or approximation algorithms with
better approximation factors than the other algorithms for the same problem. Inspired by
this, we introduce here new integer programming formulations to devise efficient algorithms
and approximation algorithms for two classes of problems, the covariate balancing problems
and the Replenishment Storage problems.

The existence of certain special integer programming formulations is an evidence of the
existence of polynomial time algorithms for some discrete optimization problems. For a
variant of the covariate balancing problems, our new integer programming formulation has
a network structure that was not previously known. We use this new formulation to devise
network flow algorithms, which have better running time than an existing polynomial time
algorithm. Other integer programming formulations we introduce show that several variants
of the class of covariate balancing problems are fixed-parameter tractable.

Integer programming formulations are often important in designing approximation algo-
rithms for intractable problems. The Replenishment Storage problems were known to be
NP-hard and one approximation algorithm was known for a special variant of the class. We
derive for this variant a polynomial time approximation scheme using a new integer pro-
gramming formulation. Our new formulation also leads to the first known approximation
scheme for another variant of this class. Moreover, this resolves the complexity status of
some variants of the Replenishment Storage problems as weakly NP-hard.
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Chapter 1

Introduction

Integer programming formulations play a key role in the design of efficient algorithms and
approximation algorithms for many discrete linear optimization problems as found in previ-
ous research. Although integer programming problems are in general intractable (NP-hard),
there are special classes of integer programs that are polynomial time solvable. In some cases,
a discrete linear optimization problem is shown to be polynomial time solvable through the
integer programming formulation of specific forms. For NP-hard discrete linear optimization
problems, a considerable amount of approximation algorithms depend on integer program-
ming formulations. Sometimes, different formulations of a problem make a difference in
terms of approximation factor and running time. Several examples from previous studies are
provided together with more background knowledge in Section 1.1 and Section 1.2.

In this dissertation, we use new integer programming formulations to devise efficient algo-
rithms for the class of covariate balancing problems and to derive approximation algorithms
for the class of Replenishment Storage problems. These two problem classes are introduced
in Section 1.3.

For one variant of the covariate balancing problems, we found an integer programming
formulation with a previously unknown network structure in the constraints, which is used to
devise efficient network flow algorithms. These algorithms are more efficient than an existing
algorithm in [3], which solves the linear programming relaxation of a different integer pro-
gram. Other integer programming formulations we introduce here for the class of covariate
balancing problems show that several variants of the problems are fixed-parameter tractable
(FPT).

For the class of Replenishment Storage problems, we use a new integer programming
formulation to derive approximation algorithms. Our algorithms are the first known ap-
proximation algorithms for one variant of the class. For another variant, we provide better
approximation factors than a previously known algorithm. Our results also resolve the com-
plexity status of some variants of the Replenishment Storage problems as weakly NP-hard.
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1.1 Integer programming formulations that imply

polynomial time algorithms

Some discrete linear optimization problems are shown to be polynomial time solvable by
specific formulations, which belong to special classes of integer programs that have known
efficient algorithms.

One class of integer programs with known polynomial time algorithms are those in which
the constraint matrix is totally unimodular and the right-hand side of the constraints are
integers. A matrix is said to be totally unimodular if all the sub-determinants are 1, 0
or 1. For any linear programming problem with totally unimodular constraint matrix and
integral right-hand side, every basic feasible solution is integral. And since every linear
programming problem is polynomial time solvable, if an optimal solution exists, there is an
integral optimal solution and it can be attained in polynomial time. Therefore, the class of
integer programs with totally unimodular constraint matrices and integral right-hand sides
can be solved efficiently with their linear programming relaxations.

Among the class of totally unimodular matrices, there is a sub-class of matrices in which
each column (or row) contains at most one 1 and at most one −1, with all the remaining
entries being 0. This sub-class of matrices are called the network matrices, and an inte-
ger programming problem with a network constraint matrix is a network flow problem. A
vast number of algorithms have been developed for the network flow problems, and these
algorithms are more efficient than solving the linear programming relaxations.

The structure of the network matrices is used here for devising efficient algorithms for
the class of covariate balancing problems. One variant of the covariate balancing problems
was known to be polynomial time solvable by solving the linear programming relaxation of
an integer programming formulation. We identify here an integer program with the network
structure. As a result, two network flow algorithms are devised. This improves the running
time complexity of the previously known method for this variant of covariate balancing
problems.

Another class of integer programs that is polynomial time solvable is called monotone IP3
[26]. A monotone IP3 problem is characterized by constraints that have at most two variables
per inequality that appear with opposite sign coefficients, and in addition a third variable that
appears only in one constraint (the coefficients of those third variables objective are required
to be nonnegative in a minimization objective or nonpositive in a maximization objective).
This class of integer programs is solvable with combinatorial flow algorithms in polynomial
time for polynomially bounded inputs [26]. One example that was discovered as monotone
IP3 is the Hochbaum’s Normalized Cut (HNC) problem, a variant of the Normalized Cut
problem for image segmentation. The HNC problem was mistakenly thought to be NP-hard
in [51]. Hochbaum formulated the HNC as a monotone IP3 problem and thus, established
that it is polynomial time solvable [26].
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1.2 Integer programming formulations that imply

approximation algorithms

One of the ways to cope with intractable problems is to derive approximation algorithms,
which yield feasible solutions that approximate the optimal solution in terms of objective
value. A δ-approximation algorithm for a minimization (maximization) problem is a polyno-
mial time algorithm that for all instances of the problem produces a feasible solution whose
objective value is within (at least) a factor of δ of the objective value of an optimal solution.
For a δ-approximation algorithm, we will call δ the approximation factor of the algorithm.

Integer programming formulations have been used extensively in designing and analyzing
the approximation algorithms of NP-hard discrete linear optimization problems. This topic
is discussed in the books of Hochbaum [23], Williamson and Shmoys [58], and Vazirani [57].
Sometimes different choices of formulations would give different approximation factors or
running time.

One example is the minimum knapsack problem, for which the standard integer program-
ming formulation would lead to arbitrarily bad approximation factors. To remedy this, Carr
et. al [8] provided a strengthened integer programming formulation that has an exponential
number of constraints. This strengthened formulation was used to develop a deterministic
rounding approximation algorithm [8] and a primal-dual approximation algorithm [7], both
of which attain an approximation factor of 2. The deterministic rounding algorithm rounds
the fractional solution of the linear programming relaxation to an integer solution based on
some rules. The primal-dual method, which often gives much faster algorithms than the
deterministic rounding algorithms, constructs an integral solution to the primal program
and a feasible solution to the dual program iteratively. Both the deterministic rounding
and the primal-dual methods compare the value of the solution with the value of the linear
programming relaxation solution. So it is impossible to achieve an approximation factor
that is better than the integrality gap, where the integrality gap of an integer programming
formulation is defined to be the worst-case ratio over all instances of the optimal value to the
linear programming relaxation to the optimal value of the integer program. The standard
integer programming formulation of the minimum knapsack problem has an integrality gap
that can be arbitrarily large. So it is impossible to use the standard formulation to derive
good approximation algorithms using these two methods. On the other hand, the strength-
ened formulation of Carr et. al. has an integrality gap of 2, which allows 2-approximation
algorithms to be built upon this formulation.

Many approximation algorithms that relied on the linear programming relaxation solu-
tion are restricted from getting a better approximation factor than the integrality gap. We
show here that the integer programming formulation can also lead to approximation algo-
rithms that beat the integrality gap for the class of Replenishment Storage problems. The
Replenishment Storage problems are NP-hard, and no approximation algorithm was known
except for a special variant [18]. The approximation factor of this known algorithm varies
from 1 to 2 depending on the problem instance. We provide a new integer programming for-
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mulation here, and design approximation schemes (see Chapter 2 for definitions) for various
variants based on our formulation. An approximation factor of (1 + ε) for any ε > 0 can be
attained by the approximation schemes, with the running time depending on ε.

Different integer programming formulations can lead to approximation algorithms with
the same approximation factor but different running time. An example can be found in
[17, 9] for the problem of minimizing the sum of weighted completion times of precedence-
constrained jobs on a single machine. Hall et. al. [17] provided the first 2-approximation
algorithm based on solving the linear relaxation of an integer programming formulation using
completion time variables. This integer program of Hall et. al. contains an exponential
number of inequalities, yet the linear programming relaxation can be solved in polynomial
time using a separation oracle. Chudak and Hochbaum [9] later presented a different integer
programming formulation using the linear ordering variables, which contains two variables
per inequality in the constraints. This formulation of Chudak and Hochbaum is a special
case of a class of integer programs called IP2 [28], and as a consequence, there is a 2-
approximation algorithm that solves it in polynomial time with network flow techniques (see
next paragraph for details). This is more efficient than solving the linear relaxation of the
formulation shown by Hall et. al.

IP2 is a class of integer programs with bounded variables over constraints with at most
two variables per inequality [28]. Hochbaum et. al. [28] showed that any feasible IP2
problem has a 2-approximation solution derived in the time required to solve a minimum cut
problem, which is polynomial if the range of variables are polynomially bounded. Therefore,
whenever an IP2 formulation applies to a feasible discrete optimization problem, there is a
2-approximation algorithm that solves the problem with a minimum cut procedure. The 2-
approximation algorithms with IP2 formulations were generated for many problems including
the following ones: the MIN 2-SAT problem [28], the biclique problems in [24], the minimum
satisfiability problem [25], and the complement of maximum clique problem [25].

1.3 Applications

Covariate Balancing

In an observational study, one is given disjoint samples of treatment units and control units,
and the goal is to compare outcomes between the two types of samples in order to estimate
a treatment effect. A complication is that the treatment assignment mechanism is in general
non-random, and so the treatment and control units often differ on important pre-treatment
attributes called covariates. These differences, referred to as covariate imbalance, can con-
found the estimate of the treatment effect if not properly taken into account. Therefore,
it is a common theme across various observational studies on estimating treatment effects
to adjust for covariate imbalance. The covariate balancing problems considered here are
optimization problems that find a selection of treatment samples and a selection (subset) of
control samples, which minimize the covariate imbalance over several different measurements
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of imbalance. Only the samples in the selections are used for the estimation.
The problem of identifying causal connections between actions (treatments) and outcomes

arises in several fields, such as the social sciences [11, 15, 21], epidemiology [5], medicine [46,
59, 63], economics [31], and political science [22]. There are two different set-ups for gathering
the data used for assessing the impact of a treatment, experimental and observational. In
experimental studies for assessing the impact of a treatment, researchers have access to
samples drawn from some population and can choose which of them receive treatment and
which do not. The standard way of choosing the samples is through random assignment.
This ensures an unbiased estimate of the treatment effect, which means the expected value
of the estimated treatment effect is the true treatment effect. Unlike experimental studies,
in an observational study, the researcher does not have the ability to determine treatment
assignment and instead is only able to observe some units that were treated and some that
were not. For example, when studying the effect of smoking, it is unethical to randomly
select some individuals to be exposed to smoking while others are not [41, 50]. The observed
treated and untreated units are called the treatment sample and control sample, respectively.

The major obstacle in observational studies is the selection bias, which is the distortion
in the estimated treatment effect caused by differences in the covariates (pre-treatment at-
tributes) of the treated and control populations. Examples of covariates in medical data
include age, height, weight, blood pressure, disease history, and/or genetic information. De-
spite this difficulty, the ease of access to ever-increasing quantities of observational data
makes such studies popular across a wide range of disciplines.

It is a common theme across various observational studies on estimating treatment ef-
fects to adjust for covariate imbalance, which refers to the differences in covariates between
the treatment and control populations. We address here several variants of the covariate
balancing problems with different measurements of imbalance.

We show that certain variants of the covariate balancing problems can be solved efficiently
as discovered through our integer programming formulations with network structure. One
of these variants was known to be polynomial time solvable with the linear programming
relaxation [3]. We are able to solve this variant here with network flow algorithms, which
have better running time. When the number of covariates and the number of levels of
each covariate are parameters, we derive several fixed-parameter tractable (FPT) results.
These FPT results are based on the integer programming formulations that require only a
fixed number of variables. With the polynomial time algorithm of Lenstra [37] for integer
programs on a fixed number of variables, we determine that those variants of covariate
balancing problems with such formulations are FPT.

The Replenishment Schedule to Minimize Peak Storage

The Replenishment Storage problem (RSP) arises in planning a periodic replenishment
schedule of multiple items so as to minimize the storage capacity required. The input to the
RSP consists of a multi-item inventory system where each item has deterministic demand,
a given reorder size and its own cycle length determined by its Economic Order Quantity.
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Here the reorders can only take place at an integer time unit within the cycle. The problem
is to determine the timing of the first replenishment of each item within its cycle so that the
maximum inventory level of all items over time is minimized. Geometrically, RSP can be
viewed as a problem of shifting periodic triangle functions and then packing them on top of
each other so as to minimize the peak value required as shown in Figure 1.1. (This figure is
used again in Chapter 4 for a more detailed introduction to the RSP.)

Time0 4 8

4

(a) Inventory level of item 1

Time0 1 3 5 7 8

2
1

(b) Inventory level of item 2

Time0 1 3 5 7 8

4
5

(c) Total inventory level

Figure 1.1: A geometric view of RSP

An instance of RSP consists of n items. Each item is associated with an integer individual
cycle length. The joint cycle length of the n items, denoted by k here, is the least common
multiple (lcm) of the individual cycle lengths. By the cyclical nature of the problem, the
total inventory levels repeat periodically every k units of time for any reorder schedule. If
all items have the same cycle time, k, the problem is said to be single-cycle, otherwise, it is
said to be multi-cycle.

The RSP is NP-hard [18]. Studies of the RSP have been mainly focused on the devel-
opment of heuristics [38, 60, 61, 4, 10, 49]. The only known approximation algorithm is a
(1 + 2/k)-approximation algorithm for the single-cycle of RSP [18].

We introduce for the RSP a new integer programming formulation. Using this new
formulation, we provide a pseudo-polynomial time algorithm that solves the RSP for constant
joint cycle length. It follows that the RSP with constant joint cycle length is weakly NP-hard.
On the other hand, the RSP with non-constant joint cycle length is proved to be strongly
NP-hard here, and therefore there is no pseudo-polynomial algorithm unless P=NP. That
means, the complexity of the RSP is different between the variants with constant joint cycle
length and the variants with non-constant joint cycle length.

Then we use the integer programming formulation again to derive approximation schemes,
which are families of (1 + ε)-approximation algorithms for every ε > 0. There are two
types of approximation schemes, Polynomial Time Approximation Scheme (PTAS) and Fully
Polynomial Time Approximation Scheme (FPTAS), which are defined in Chapter 2. We
derive the first known approximation schemes for three variants of the RSP: a FPTAS for
the multi-cycle RSP with constant joint cycle length, a FPTAS which is FPT in terms of
the joint cycle length for the single-cycle RSP with constant joint cycle length, and a PTAS
for the single-cycle RSP with non-constant joint cycle length. The question of whether there
exists a PTAS for the multi-cycle RSP with non-constant joint cycle length remains open.
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1.4 Overview

Preliminaries are provided in Chapter 2, which includes the description of two network
flow models used here, definitions of different types of approximation algorithms and fixed-
parameter tractability.

In Chapter 3 we consider several variants of covariate balancing problems. We discuss
the computational complexity of these problems. And we show that with a different integer
programming formulation from the one in an existing paper [3], we can develop more efficient
algorithms to handle several special cases. We also use the integer programming formulations
for these problems to derive the fixed-parameter tractability results.

Chapter 4 lays out our approach for designing approximation schemes for the Replenish-
ment Storage problem. The chapter provides the problem model, our new integer program-
ming formulation, a dynamic programming algorithm with pseudo-polynomial running time,
the fully polynomial time approximation scheme for the problem with constant joint cycle
length, as well as the polynomial time approximation scheme for the single-cycle problem
with non-constant joint cycle length.
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Chapter 2

Preliminaries

We first introduce two network flow models, the minimum cost network flow problem and
the maximum flow problem, which are used in Chapter 3 for deriving efficient network flow
algorithms for covariate balancing problems. Next, we provide the formal definition of two
types of approximation schemes, and the strongly and weakly NP-hard terminologies, which
are relevant to the existence of approximation schemes. Then we introduce the concept of
fixed-parameter tractability (FPT). This concept is used in both Chapter 3 and Chapter 4.

We abbreviate in this dissertation linear programs or linear programming by the acronym
LP, and we abbreviate integer program or integer programming by the acronym IP.

2.1 The minimum cost network flow problem and the

maximum flow problem

The minimum cost network flow (MCNF) problem is to determine a least cost flow through a
network in order to satisfy demands at certain nodes from available supplies at other nodes.
The input to the problem is a graph G = (V,A) with a set of nodes V and a set of arcs A,
where each arc (i, j) ∈ A is associated with a cost cij that denotes the cost per unit flow
on that arc, capacity upper bound uij, and capacity lower bound lij. Each node i ∈ V has
supply bi which is interpreted as demand if negative, and can be 0. Let xij be the amount
of flow on arc (i, j) ∈ A. The sum of flows on arcs directed to node k is the inflow of k, and
the sum of flows on arcs directed from node k is the outflow of k. The flow vector x is said
to be feasible if it satisfies:
(1)Flow balance constraints: For every node k ∈ V Outflow(k)− Inflow(k) = bk
(2) Capacity constraints: For each arc (i, j) ∈ A, lij ≤ xij ≤ uij.

The linear programming formulation of the problem is:

(MCNF) min
∑

(i,j)∈A cijxij
subject to

∑
j:(k,j)∈A xkj −

∑
i:(i,k)∈A xik = bi ∀k ∈ V

lij ≤ xij ≤ uij, ∀(i, j) ∈ A.
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The flow balance constraints coefficients form a {0, 1,−1}-matrix where in each column
there is exactly one 1 and one−1. Such matrix is a special case of matrices where each column
(or row) has at most one 1 and at most one −1, which are known to be totally unimodular.
The addition of the capacity constraints retains the total unimodularity property. Note that
the MCNF constraint matrix is linearly dependent (with the sum of all balance constraints
leading to 0 = 0) and one constraint can be eliminated as it is the negative sum of the others.

The flow balance constraints coefficients form a {0, 1,−1}-matrix where in each column
there is exactly one 1 and one −1. Such matrix is known to be totally unimodular. So
the linear programming relaxation of any MCNF problem has all basic solutions, and in
particular the optimal solution, integral. However, there are many specialized algorithms for
the MCNF problem which are more efficient than solving its linear programming relaxation.

The maximum flow problem, max-flow, is a special case of MCNF. The max-flow problem
seeks a feasible solution that sends the maximum amount of flow from a specified source
node to another specified sink node. The max-flow problem is defined on a directed graph
G = (V,A), with arc capacities uij and two distinguished nodes: a source node, s ∈ V , and a
sink node, t ∈ V . There is no lower bound or cost associated to each arc. The total outflow
from s, or the total inflow into t, is called the value of the flow. The objective is to find
the maximum value feasible flow leaving s and reaching t that satisfy the arc capacities. A
linear programming formulation of max-flow is:

(max-flow) max f
subject to

∑
(s,j)∈A xsj = f∑
(k,j)∈A xkj −

∑
(i,k)∈A xik = 0 ∀k ∈ V \ {s, t}

0 ≤ xij ≤ uij, ∀(i, j) ∈ A.

As a special case of MCNF there are specialized algorithms for max-flow which are more
efficient than algorithms for MCNF.

2.2 Approximation schemes and strong NP-hardness

First, we define approximation algorithms.

Definition 2.1. A δ-approximation algorithm for a minimization (maximization) problem is
a polynomial time algorithm that for all instances of the problem produces a feasible solution
whose objective value is within (at least) a factor of δ of the optimal objective value.

An approximation scheme is a family of approximation algorithms with some special
property. There are two types of approximation schemes and their definitions are given
below.

Definition 2.2. A polynomial time approximation scheme (PTAS) is a family of algorithms,
in which for every ε there is a (1 + ε)-approximation algorithm (for minimization problem)
or a (1− ε)-approximation algorithm (for maximization problem)
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The running time of an algorithm in a PTAS is allowed to depend arbitrarily on 1/ε. So
the running time could be exponential in 1/ε. In the special case where the running time of
a PTAS is polynomial in 1/ε, it is said to be fully polynomial.

Definition 2.3. A fully polynomial time approximation scheme (FPTAS) is an approxima-
tion scheme such that the running time of the (1± ε)-approximation algorithm is polynomial
in 1/ε for every ε.

Not all NP-hard optimization problems have a FPTAS. Under the assumption that
P 6=NP, class of problems that do not admit a FPTAS is the class of strongly NP-hard
problems, which is defined next.

Definition 2.4. A problem is strongly NP-hard if it is NP-hard even when its numeric data
is encoded in unary.

The following theorem proven in [57] shows that it is impossible to find a FPTAS for any
strongly NP-hard problems unless P=NP.

Theorem 2.1. [57] Any strongly NP-hard problem with a polynomially bounded objective
function does not have a FPTAS, assuming P 6=NP.

In contrast to strongly NP-hard problems, there are weakly NP-hard problems which are
defined below:

Definition 2.5. A problem is weakly NP-hard if it has a pseudo-polynomial time algorithm
(that is, it has polynomial time algorithm if its numeric data is encoded in unary).

It is possible that a weakly NP-hard problem has a FPTAS, but not every weakly NP-hard
problem has one. For example, the m-dimensional knapsack problem for any fixed m ≥ 2
is weakly NP-hard, but has no FPTAS even when the optimal objective is polynomially
bounded [36].

2.3 Parameterized complexity

Compared with classical complexity theory, parametrized complexity theory measures com-
plexity not only in terms of the input size, but also in terms of a parameter, which is a
numerical value that may depend on the input.

Definition 2.6. An algorithm with input size n is fixed-parameter tractable (FPT) with
respect to parameter k if the running time of the algorithm is at most f(k) · (n)O(1), where
f(k) is a computable function of parameter k which is independent of n. A problem that has
an FPT algorithm is said to be a fixed-parameter tractable problem.
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FPT problems that we use here are integer programs with fixed numbers of variables,
as well as mixed-integer linear programs with fixed numbers of integer variables. These
problems can be solved in FPT time with respect to the number of integral variables, by the
algorithms developed by Lenstra [37] (see also [34] for improved time complexity of these
algorithms). We use new integer programming formulations, mixed and not mixed, that
include fixed numbers of integer variables to derive FPT results for several variants of the
covariate balancing problems.
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Chapter 3

Efficient Algorithms for Variants of
Covariate Balancing Problems

In an observational study, one is given disjoint samples of treatment units and control units,
and the goal is to compare outcomes between the two types of samples in order to estimate
a treatment effect. A complication is that the treatment assignment mechanism is in general
non-random, and so the treatment and control units often differ on important pre-treatment
attributes called covariates. These differences, referred to as covariate imbalance, can con-
found the estimate of the treatment effect if not properly taken into account. Therefore,
it is a common theme across various observational studies on estimating treatment effects
to adjust for covariate imbalance. The covariate balancing problems considered here are
optimization problems that find a selection of treatment samples and a selection (subset) of
control samples, which minimize the covariate imbalance over several different measurements
of imbalance. Only the samples in the selections are used for the estimation.

Although these covariate balancing optimization problems are all NP-Hard in general,
certain special cases can be solved efficiently as discovered through our network flow IP
formulations. In addition to the polynomial time algorithms, we present FPT results for
several variants of the covariate balancing problems. Part of these results is included in two
unpublished manuscripts [29, 27].

Chapter Overview

We consider five families of covariate balancing problems in this chapter. The definition of
the problems, related literature, and a summary of our results are presented in Section 3.1.
In Section 3.2 we consider the special case in which there is only 1 covariate for each of
the problem families and provide a compact representation of the solutions. For the case
of 2 or more covariates, the complexity and algorithmic results for four of the five problem
families are presented in Section 3.3, Section 3.4, Section 3.5, and Section 3.6 respectively.
The remaining one is implied to be NP-hard with 2 or more covariates from the known
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NP-hardness of another problem, which is mentioned in Section 3.1. The fixed-parameter
complexity results for the five problem families are all provided in Section 3.7.

3.1 The class of covariate balancing problems

To formalize the discussion we introduce notation. Let the number of treatment samples
be n and the number of control samples be n′ (assuming that n ≤ n′). Let the set of all
treatment samples be denoted by T , |T | = n. Each sample, in either group, has P observed
nominal covariates. The values, or categories, of each covariate partition the treatment and
control samples to a number of subsets referred to as levels where the samples at every level
share the same covariate value. For p = 1, ..., P , covariate p partitions both treatment and
control groups into kp levels each. Let the partition of the treatment group under covariate
p be Lp,1, Lp,2, ..., Lp,kp of sizes `p,1, `p,2, ..., `p,kp . Similarly, let the partition of the control
group under covariate p be L′p,1, L

′
p,2, ..., L

′
p,kp

of sizes `′p,1, `
′
p,2, ..., `

′
p,kp

. Let κ be an integer
specifying the ratio of the number of matched control samples to the number of matched
treatment samples. The pre-specified integer κ should be within the range [1, n′/n], otherwise
the problems are infeasible.

To restrain group-level covariate imbalance, Rosenbaum et al. [46] introduced the concept
of fine balance, which is a set constraints on the selection of treatment and the selection of
control samples.

Definition 3.1 (κ-fine-balance). For an integer κ, a selection S ⊆ T of the treatment
group and a selection S ′ of the control group, we say that (S, S ′)-κ-fine-balance is satisfied if
κ · |S ∩ Lp,i| = |S ′ ∩ L′p,i| for p = 1, ..., P and i = 1, ..., kp.

The definition of the five problems are given as follows.
The minimum κ-imbalance (min κ-imbalance) problem is to find a selection S ′ of control

samples of size κn, so as to minimize the κ-imbalance, which is the violation of the (T , S ′)-
κ-fine-balance. We denote this κ-imbalance for selection S ′ as

IM(S ′) =
P∑
p=1

kp∑
i=1

||S ′ ∩ L′p,i| − κ`p,i|.

The maximum κ-fine-balance selection (κ-FBS) problem is to select a subset S ⊆ T and
a subset S ′ of the control group so as to maximize the size of the selection S (equivalent to
maximizing the size of S ′ since |S ′| = κ|S|) where the (S, S ′)-κ-fine-balance constraints are
satisfied.

The third problem studied here is the κ-fine-balance matching (κ-BM) problem, first
introduced by Rosenbaum et al. [46] for one covariate. Here we are given a distance, or
cost, measure between each treatment and each control sample representing the covariate
dissimilarity. The κ-BM problem is to minimize the total cost of the assignment of each
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treatment sample in T to κ control samples such that the selection of matched control
samples S ′ satisfies (T , S ′)-κ-fine-balance.

The last two problems could be view as the combination of the third problem, the κ-
BM problem, and each of the first two problems respectively. The combination takes the
objective from the κ-BM problem and defines the feasible sets to be the optimal solution of
the first two problems respectively.

Formally, the minimum κ-imbalance matching (κ-MIBM) problem finds the optimal se-
lections to the min κ-imbalance problem in the first stage. In the second stage, among all
selections that attain the minimum κ-imbalance, find the selection that minimizes the total
distance of an assignment of each selected treatment sample to exactly κ selected control
samples.

We define the maximum selection κ-fine-balance matching (κ-MSBM) problem in a sim-
ilar way. In the first stage, the goal is to find the optimal selections for the κ-FBS problem.
In the second stage, among all maximum-sized selections, find the selection that minimizes
the total distance of an assignment of each selected treatment sample to exactly κ selected
control samples.

For the case of κ = 1, we ignore the prefix κ so (S, S ′)-κ-fine-balance is called (S, S ′)-
fine-balance, κ-FBS problem is called FBS problem, etc. We summarize ten problems,
differentiated between κ = 1 and κ ≥ 2 for each of the five problem families, in Table 3.1.

Table 3.1: Summary of problems studied here.

Problem name Objective Constraints
min imbalance min IM(S) (T , S′)-fine-balance

min κ-imbalance min IM(S) (T , S′)-κ-fine-balance
max fine-balance selection (FBS) max |S| (S, S′)-fine-balance

max κ-fine-balance selection (κ-FBS) max |S| (S, S′)-κ-fine-balance
fine-balance matching (BM) min assignment cost (T , S′)-fine-balance

κ-fine-balance matching (κ-BM) min assignment cost (T , S′)-κ-fine-balance
min imbalance matching (MIBM) min assignment cost S′ optimal for min imbalance

min κ-imbalance matching (κ-MIBM) min assignment cost S′ optimal for min κ-imbalance
max selection fine-balance matching (MSBM) min assignment cost (S, S′) optimal for FBS

max selection κ-fine-balance matching (κ-MSBM) min assignment cost (S, S′) optimal for κ-FBS

Related literature

There are two models used here for balancing the covariates. The matching model (e.g. [52])
attempts to reduce covariate imbalance by pairing each treatment sample with a similar
control sample, or a set of κ similar control samples, for κ a pre-specified integer. The
treatment effect estimate is then the average difference in outcomes across all matched pairs
or matched sets, where unmatched samples are ignored. The balance optimization subset
selection (BOSS) model [41] identifies a selection (subset) of the treatment samples and a
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selection (subset) of the control samples that minimizes a group-level covariate imbalance
measure.

Matching has long been the standard for observational studies because of its potential
to balance the entire joint distribution of covariates. In an ideal situation, the samples of
the treatment and the control in each matched pair or matched set belong to the same
levels over all covariates, which is referred to as exact matching. However, satisfying the
exact matching requirement may be too restrictive in many cases and it typically results in
a very small selection from the treatment and control group, which is not desirable. Thus,
the matching model has to compromise on exact matches by permitting inexact matches or
by ignoring treatment individuals for whom no close matches exist (known as incomplete
matching). Within the realm of inexact matching, one notion of well-matched samples is
some distance measure (e.g. the Mahalanobis distance [48], the propensity score [47]) based
on the covariate values for each treatment-control pair. A detailed review of matching-related
methods used for covariate balancing problems is given by [52].

The BOSS model takes a different approach for observational studies [41, 53, 50]. Instead
of seeking matched treatment-control pairs, BOSS seeks a set of control samples that features
optimal covariate balance (however that is measured) with respect to the treatment group.
This shift from matched pairs to balanced groups makes BOSS more versatile than matching
and also provides an optimality guarantee on the balance that is attained, something that
matching methods often fail to provide [50]. However, the BOSS model does not have the
individual samples matching component which might be desired in some contexts.

The concept of fine balance was first introduced by Rosenbaum et al. [46], who studied
the κ-BM problem for the 1-covariate problem and proposed a network flow algorithm. No
polynomial running time algorithm has been known for the κ-BM problem with two or more
covariates. In fact, the 2-covariate κ-BM problem was shown to be NP-hard in [50].

It is not always feasible to find a selection S ′ of the control samples that satisfies the
(T , S ′)-κ-fine-balance constraints in the κ-BM problem. To that end, several papers consid-
ered the κ-MIBM problem [59, 63, 44]. The κ-MIBM problem is implied to be NP-hard for
2 covariates since the 2-covariate κ-BM problem can be reduced to a 2-covariate κ-MIBM
problem. So no polynomial algorithm exists for the 2-covariate κ-BM problem unless P=NP.
Yang et al. [59] proposed two network flow algorithms for the case of the 1-covariate problem;
Pimental et al. [44] proposed a network flow algorithm for the case in which the covariates
form a nested sequence. Zubizarreta [63] considered a different variant which minimizes the
total assignment cost of the matched sets with a penalty on the imbalance, and presented a
mixed integer programming formulation for an arbitrary number of covariates.

Sauppe et al. [50] and Bennett et al. [3] considered the min κ-imbalance problem,
which focuses only on the selection of the control group. The problem is trivial to solve
for the 1-covariate problem (see Section 3.2 for details); but for three or more covariates,
the problem is NP-hard [50]. Sauppe et al. [50] reformulated the problem as a generalized
set cover problem and presented an (1 − 1/e)-approximation algorithm. For the case of
2-covariate, Bennett et al. [3] provided an IP formulation for the problem and proved that
it is polynomial time solvable by solving the linear programming relaxation.
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Summary of our results

We introduce the κ-FBS problem and the κ-MSBM problem here for the first time. Instead
of permitting inequality in the (T , S ′)-κ-fine-balance, they relax the requirement of selecting
all treatment samples (as in [45]) and replaces it with a maximum size selection possible,
while enforcing the κ-fine-balance constraints for the two subsets.

Since the κ-BM problem can be reduced to the κ-MIBM problem or the κ-MSBM problem
with the same number of covariates, the NP-hardness of the κ-BM problem for two or more
covariates implies the NP-hardness for these two problems for two or more covariates as
well. So we mainly discuss the complexity of these problems here. We prove that 1-covariate
the κ-MIBM problem is NP-hard when κ ≥ 3. A polynomial algorithm is presented for the
1-covariate MSBM problem, but we leave the complexity status of the 1-covariate 2-MSBM
problem open.

Our algorithmic results focus mainly on the two problems under the BOSS model: the
min κ-imbalance problem and the κ-FBS problem.

We derived efficient algorithms for the min κ-imbalance problem with two covariates. We
present an IP formulation that is slightly different from the one in [3], and show that the con-
straint matrix is a network matrix. We then show that the two-covariate min κ-imbalance
problem can be solved much more efficiently than as a linear program with network flow
techniques. We show how to solve the problem as a minimum cost network flow problem
with complexity of O(κn(min{n′, k1k2}+(k1 +k2) log(k1 +k2))). We then devise a more effi-
cient algorithm based on a maximum flow formulation of the two-covariate min κ-imbalance
problem that runs in O(n′ ·min{n 2

3 , n′
1
2} · log n · log κn) steps.

We prove that for three or more covariates, the κ-FBS problems are NP-hard for any
value of κ. For the case of the 2-covariate problem, we present here an efficient algorithm
for the FBS problem. The algorithm is based on an integer programming formulation of the
problem in which the constraint matrix, for two covariates, has the structure of network flow
constraints. For the resulting minimum cost network flow problem we apply an algorithm
with running time O(n · (min{n+ n′, k1k2}+ (k1 + k2) log(k1 + k2)). We also prove that for
κ ≥ 3, the 2-covariate κ-FBS problem is NP-hard. For the remaining case in which κ = 2
and the number of covariates is two, the complexity status of the 2-FBS problem is left open.

We observe here that, for any number of covariates, if the selections of treatment and
control samples are fixed, then the optimal assignment among the selected samples, and
therefore the optimal solution to the κ-MIBM and the κ-MSBM problem, can be attained
by solving a minimum cost network flow problem. See Section 3.2 for details.

A summary of the complexity results for the five problem families is given in Table 3.2.
Beyond these complexity results, we also address here fixed-parameter tractable (FPT)

results. We prove that the κ-FBS, κ-BM and MSBM problems are solvable in fixed-parameter
tractable time for constant numbers of covariates levels, yet the κ-MSBM problem is NP-hard
for constant κ ≥ 3 even when the numbers of covariates levels are constant. It remains an
open problem whether the 2-MSBM problem is NP-hard for constant numbers of covariates
levels.
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Table 3.2: Summary of the complexity and algorithmic results. All based on our results here
except for the four noted references.

(Here n is the size of treatment group and n′ is the size of control group)

Problem 1-covariate 2-covariate ≥ 3 covariates
min κ-imbalance O(n+ n′) O(κn(min{n′, k1k2}+ (k1 + k2) log(k1 + k2))) NP-hard [50]

or O(n′ ·min{n 2
3 , n′

1
2 } · log n · log κn)

FBS O(n+ n′) O(n(min{n+ n′, k1k2}+ (k1 + k2) log(k1 + k2))) NP-hard
κ-FBS O(n+ n′) NP-hard for κ ≥ 3, open for κ = 2 NP-hard
κ-BM O((n+ n′)3) [46] NP-hard [50] NP-hard
κ-MIBM O((n+ n′)3)[59] NP-hard NP-hard
MSBM O((n+ n′)nn′) NP-hard NP-hard
κ-MSBM NP-hard for κ ≥ 3 NP-hard NP-hard

open for κ = 2

We also consider the 2-covariate BM problem and the 2-covariate κ-BM problem where
one of the covariates has a constant number of levels (whereas the other one may have a
linear number of levels), and we show that the complexity status of these special cases is tied
to the complexity status of the exact matching problem, a problem that is known to have a
randomized polynomial time algorithm [39] but the existence of a deterministic polynomial
time algorithm is a long-standing open problem.

3.2 The 1-covariate problems and the

level-intersections representation

Consider first the case of a single covariate, P = 1, that partitions the control and treatment
groups into, say, k levels each. Let the sizes of levels of the treatment group be `1, ..., `k,
and the sizes of levels of the control group be `′1, ..., `

′
k. It is easy to see that there exists a

selection S ′ of control samples that satisfies the (T , S ′)-κ-fine-balance if and only if `′i ≥ κ`i
for i = 1, ..., k. If this condition is satisfied then any subset S∗ of the control group with
κ · `i samples in level i, i = 1, ..., k, satisfies the (T , S∗)-κ-fine-balance, and as such is a
feasible selection for the κ-BM problem. With these known numbers of control samples to
be selected in each level, the optimal solution to the 1-covariate κ-BM problem is found
using a minimum cost network flow formulation, as shown next.

The MCNF problem the solution to which is an optimal solution to κ-BM is constructed
on a bipartite graph with the treatment samples each represented by a node on one side,
and the control samples each represented by a node on the other side. The cost on each arc
between a treatment sample and a control sample is the “distance” value between the two,
and the arc capacity is 1. Each treatment sample has a supply of κ. To account for the
requirement that in each level i of control samples there will be κ ·`i samples matched we add
to the bipartite graph a third layer of k nodes, one for each level. The ith node in the third
layer has demand of κ · `i and there are arcs to this demand node from all control samples
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in level i with capacity 1 and cost of 0. In an optimal solution to this MCNF problem the
control sample nodes through which there is a positive flow (of one unit) are the ones selected
and matched to the respective treatment sample nodes from which they have a positive flow.

If `′i < κ`i for some i then there is no selection S ′ of control samples that satisfies
the (T , S ′)-κ-fine-balance. To compromise on the (T , S ′)-κ-fine-balance requirement, we
can either relax the equality constraints, which leads to the min κ-imbalance problem, or
dropping out some treatment samples, which leads to the κ-FBS problem.

The solution to the 1-covariate min κ-imbalance problem is straightforward: in step 1,
select min{κ ·`i, `′i} control samples in level i; if the number of control samples selected is less
than κn in step 1, then we select random additional control samples such that the selection
is of size κn.

The solution to the 1-covariate κ-FBS problem is also straightforward: select ¯̀
i =

min{`i, b`′i/κc} treatment samples of level i and κ · ¯̀i control samples of level i.
For the 1-covariate problem of finding an optimal matching, or assignment, among all

optimal selections for either the min κ-imbalance or the FBS problem, we solve a MCNF
problem for the known number of samples to select from each level, similar to the one
defined above with the following modifications. For the minimum κ-imbalance, we first need
to change the demand of the demand nodes in the above MCNF problem from κ · `i to
min{κ · `i, `′i} for each level i. We also add a dummy demand node in the third layer with
demand κ ·n−

∑k
i=1 min{κ · `i, `′i}, which connects with all control nodes each with capacity

1 and cost of 0. For the optimal selections of FBS, in addition to changing the demand from
`i to ¯̀

i for each level i, we also remove the supply on each treatment sample, add for every
level i a supply node with supply ¯̀

i, and add arcs from this supply node to all treatment
samples in level i with capacity 1 and cost of 0. The best assignment found with a selection
that is optimal for the FBS problem is an optimal solution for the MSBM problem. However,
this method does not apply to the κ-MSBM problem with κ ≥ 2. We further show that even
the 1-covariate κ-MSBM problem is NP-hard for κ ≥ 3 (see Section 3.6).

Hence, all problems discussed here except for the κ-MSBM problem are polynomial time
solvable for the 1-covariate case. In Section 3.6 we show that the 1-covariate κ-MSBM does
not admit a polynomial time algorithm for κ ≥ 3 unless P=NP.

Consider next the case of multiple covariates. For the min κ-imbalance and the κ-
FBS problem, we observe that the selections from the treatment and control groups can
be represented compactly in terms of level-intersections. For P covariates, the intersection
of the level sets L1,i1 ∩ L2,i2 ∩ . . . ∩ LP,iP , ip = 1, . . . , kp, p = 1, . . . , P , form a partition of
the treatment group. Similarly, the intersection of the level sets L′1,i1 ∩ L

′
2,i2
∩ . . . ∩ L′P,iP ,

ip = 1, . . . , kp, p = 1, . . . , P , form a partition of the control group. Therefore, instead of
specifying which sample belongs to the selection, it is sufficient to determine the number
of selected samples in each level intersection for the two groups, since the identity of the
specific selected samples has no effect on the fine balance requirement. With this discussion
we have a theorem on the representation of the solution to the min κ-imbalance and the
κ-FBS problems in terms of the level-intersections sizes.
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Theorem 3.1. The level-intersections sizes s′i1,i2,...,iP are an optimal solution to the min
κ-imbalance problem if there exists an optimal selection S ′ of control samples such that
s′i1,i2,...,iP = |S ′ ∩ L′1,i1 ∩ L

′
2,i2
∩ . . . ∩ L′P,iP |, for p = 1, . . . , P , ip = 1, . . . , kp.

Theorem 3.2. The level-intersections sizes si1,i2,...,iP and s′i1,i2,...,iP are an optimal solution
to the κ-FBS problem if there exists an optimal selection S of treatment samples and S ′

of control samples such that si1,i2,...,iP = |S ∩ L1,i1 ∩ L2,i2 ∩ . . . ∩ LP,iP | and s′i1,i2,...,iP =
|S ′ ∩ L′1,i1 ∩ L

′
2,i2
∩ . . . ∩ L′P,iP |, for p = 1, . . . , P , ip = 1, . . . , kp.

We will say that the optimal selection for the covariates problems here is unique if for
any optimal selection S and S ′, the numbers si1,i2,...,iP = |S ∩ L1,i1 ∩ L2,i2 ∩ . . . ∩ LP,iP | and
s′i1,i2,...,iP = |S ′ ∩L′1,i1 ∩L

′
2,i2
∩ . . .∩L′P,iP | are unique. In order to derive an optimal selection

given the optimal level-intersections sizes, one selects any si1,i2,...,iP treatment samples from
the intersection L1,i1∩L2,i2∩. . .∩LP,iP and any s′i1,i2,...,iP control samples from the intersection
L′1,i1 ∩ L

′
2,i2
∩ . . . ∩ L′P,iP for ip = 1, . . . , kp, p = 1, . . . , P .

We observe here that, for any number of covariates, if the optimal selection of treatment
and control samples in terms of level-intersections is known and unique, then the optimal
assignment among the selected samples, and therefore the optimal solution to the κ-MSBM
problem, can also be attained by solving an MCNF problem as follows. For each non-zero
level intersection of treatment samples there is a source node with supply of si1,i2,...,iP . This
source node is connected to all treatment samples in the intersection L1,i1 ∩L2,i2 ∩ . . .∩LP,iP
with arcs of capacity 1 and cost of 0. For each non-zero level intersection of control samples
there is a demand node with supply of s′i1,i2,...,iP . This demand node is connected from all
control samples in the intersection L′1,i1 ∩L

′
2,i2
∩ . . .∩L′P,iP with arcs of capacity 1 and cost of

0. The treatment and control sample nodes through which there is a positive flow (of some
unit) are the ones selected, and a positive flow between a treatment node and a control node
indicates the two samples are matched. This is a minimum cost network flow problem with
a total demand (or supply) bounded by min{n, n′}, and O(nn′) arcs and O(n + n′) nodes.
Therefore the successive shortest paths algorithm, discussed below in Section 3.4, solves this
problem in O((n+ n′)nn′) steps.

3.3 The minimum κ-imbalance (min κ-imbalance)

problem

The min κ-imbalance problem is trivial for 1-covariate (see Section ??), and the problem is
NP-hard with 3 covariates [50]. The 2-covariate problem was shown to be polynomial time
solvable by the linear relaxation of the IP formulation presented by Bennett el. al. [3].

In this section, we present a different IP formulation, related to that of Bennett et al [3],
and show that the constraint matrix is a network matrix. That implies the two-covariate
min κ-imbalance problem can be solved much more efficiently than as a linear program with
network flow techniques. We first show how to solve the problem as a minimum cost network
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flow problem with complexity of O(κn(min{n′, k1k2}+(k1+k2) log(k1+k2))). We then devise
a more efficient algorithm based on a maximum flow formulation of the two-covariate min
κ-imbalance problem that runs in O(n′ ·min{n 2

3 , n′
1
2} · log n · log κn) steps.

We start by introducing additional notation for the min κ-imbalance problem. Let the
levels of the treatment group under covariate p = 1, . . . , P be Lp,1, Lp,2, ..., Lp,kp of sizes
`p,1, `p,2, ..., `p,kp , and let the levels of the control group under covariate p be L′p,1, L

′
p,2, ..., L

′
p,kp

of sizes `′p,1, `
′
p,2, ..., `

′
p,kp

. For a selection S ′ of control samples we define the discrepancy at
level i under covariate p as,

dis(S ′, p, i) = |S ′ ∩ L′p,i| − `p,i.
The discrepancy of a level can be positive or negative. If the discrepancy is positive we refer
to it as excess which is defined as ep,i(S

′) = max{0, dis(S ′, p, i)}, and if negative, we refer to
it as deficit dp,i(S

′) = max{0,−dis(S ′, p, i)}. With this notation the imbalance of a selection
S ′, IM(S ′) is,

IM(S ′) =
P∑
p=1

kp∑
i=1

(ep,i(S) + dp,i(S)) .

Notice that this quantity is identical to the imbalance form presented in the introduction:
IM(S ′) =

∑P
p=1

∑kp
i=1 ||S ′ ∩ L′p,i| − `p,i|.

We now present the IP formulation that was given by Bennett et al. in [3] for the min-
imbalance problem. Although Bennett et al. presented the formulation is for the case of
κ = 1, it can be easily adjusted for the case with general κ. That integer program involves
two sets of decision variables:
zj: a binary variable equal to 1 if control sample j is in the selection S ′, and 0 otherwise,
for j = 1, . . . , n′;
yp,i = |dis(S ′, p, i)| = ||S ′ ∩ L′p,i| − `p,i|: the absolute value of discrepancy at level i under
covariate p, for p = 1, . . . , P , and i = 1, . . . , kp. We note that this variable can only assume
integer values.
With these variables the formulation is:

min
P∑
p=1

kp∑
i=1

yp,i (3.1a)

s.t.
∑
j∈L′p,i

zj − κ`p,i ≤ yp,i p = 1, . . . , P, i = 1, . . . , kp (3.1b)

κ`p,i −
∑
j∈L′p,i

zj ≤ yp,i p = 1, . . . , P, i = 1, . . . , kp (3.1c)

n′∑
j=1

zj = κn (3.1d)

zj ∈ {0, 1} j = 1, . . . , n′. (3.1e)
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For each pair p, i, p = 1, . . . , P and i = 1, . . . , kp, constraint (3.1b) and (3.1c) ensure that
yp,i assumes the absolute value of the difference between the number of selected level i control
samples and κ`p,i at an optimal solution. These constraints also ensure that any feasible yp,i
is non-negative and therefore a non-negativity constraint is not required for variable yp,i. The
constraint (3.1d) specifies that the size of selected subset equals the size of the treatment
group multiplied by κ. This IP formulation does not have the network matrix structure in
the constraints.

We next present an IP formulation with network flow constraints for the 2-covariate min
κ-imbalance problem. We then show how to solve the problem efficiently with a minimum
cost network flow algorithm.

A network flow IP formulation for the 2-covariate min
κ-imbalance problem

It was noted, in Theorem 3.1, that there is no differentiation between the individual samples
selected in each level intersection, only the number of those selected counts. We thus define
the level-intersections variables as follows:
xi1,i2 : the number of control samples selected from the (i1, i2) level intersection L′1,i1 ∩ L

′
2,i2

,
for i1 = 1, ..., k1, i2 = 1, ..., k2; Let ui1,i2 = |L′1,i1∩L

′
2,i2
| for i1 = 1, ..., k1, i2 = 1, ..., k2. Clearly,

xi1,i2 must be an integer between 0 and ui1,i2 .
In our formulation, instead of using variables yp,i, we use variables for excess and deficit.

As discussed in Section 3.2, ||S ′ ∩ L′p,i| − κ`p,i| = ep,i(S
′) + dp,i(S

′) for each p and i. We
let the variable for excess for p and i be ep,i and the variable for deficit be dp,i. Note that
yp,i = ep,i + dp,i where both ep,i and dp,i are non-negative variables.
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With these decision variables we get the following network flow formulation:

min
2∑
p=1

kp∑
i=1

(ep,i + dp,i) (3.2a)

s.t.

k2∑
i2=1

xi1,i2 + d1,i1 − e1,i1 = κ`1,i1 i1 = 1, ..., k1 (3.2b)

−
k1∑
i1=1

xi1,i2 − d2,i2 + e2,i2 = −κ`2,i2 i2 = 1, ..., k2 (3.2c)

−
k1∑
i1=1

d1,i1 +

k1∑
i1=1

e1,i1 = 0 (3.2d)

k2∑
i2=1

d2,i2 −
k2∑
i2=1

e2,i2 = 0 (3.2e)

ep,i, dp,i ≥ 0 p = 1, 2, k = 1, ..., kp (3.2f)

0 ≤ xi1,i2 ≤ ui1,i2 i1 = 1, ..., k1, i2 = 1, ..., k2 (3.2g)

.
For each p and i, |S ′ ∩ L′p,i| − κ`p,i = ep,i − dp,i ⇔ |S ′ ∩ L′p,i| + dp,i − ep,i = κ`p,i.

So the constraints (3.2b) and (3.2c), together with the non-negativity constraints (3.2f),
ensure that ep,i and dp,i assume the values of respective excess and deficit. Constraints
(3.2b) and (3.2c) for the two covariates are separated to facilitate the identification of the
network matrix structure. Since L′1,1, ..., L

′
1,k1

is a partition of the control group,
∑k1

i=1 |S ′ ∩
L′1,i| = |S ′|. Also, because `1,1, ..., `1,k1 are the sizes of the levels partition of the treatment

group for the first covariate, it follows that
∑k1

i=1 `1,i = n. Therefore,
∑k1

i=1 (e1,i − d1,i) =∑k1
i=1

(
|S ′ ∩ L′1,i| − κ`1,i

)
= |S| − κn . So specifying |S| = κn is equivalent to constraint

(3.2d). With similar reason, constraint (3.2e) is also equivalent to setting |S ′| = κn. Though
constraint (3.2e) is redundant, we include it to show the network matrix structure.

In the constraint coefficient matrix of our integer programming formulation, each column
has at exactly one 1 and exactly one −1:

(1) Both {L′1,1, ..., L′1,k1} and {L′2,1, ..., L′2,k2} are partitions of the control group, so L′1,1, ..., L
′
1,k1

are mutually disjoint, and L′2,1, ..., L
′
2,k2

are mutually disjoint. The column of each xi1,i2
has exactly one 1 in rows corresponding to (3.2b), and one −1 in rows corresponding
to (3.2c).

(2) For each i, the column of d1,i has exactly one 1 in rows corresponding to (3.2b) and
exactly one −1 in rows corresponding to (3.2d); the column of e1,i has exactly one −1
in rows corresponding to (3.2b)) and exactly one 1 in rows corresponding to (3.2d).
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(3) For each i, the column of d2,i has exactly one −1 in rows corresponding to (3.2c) and
exactly one 1 in rows corresponding to (3.2e); the column of e2,i has exactly one 1 in
rows corresponding to (3.2c)) and exactly one −1 in rows corresponding to (3.2e).

The formulation (3.2) is a minimum cost network flow problem. The corresponding
network is shown in Figure 3.5, where all capacity lower bounds are 0, and each arc has a
cost per unit flow and upper bound associated with it. Nodes of type (1, i1) each has supply
of `1,i1 and nodes of type (2, i2) each has demand of `2,i2 In Figure 3.5, for each i1 and i2, the
flow on the arc between node (1, i1) and node (2, i2) represents variable xi1,i2 ; arc from node
1 to node (1, i1) represents the excess e1,i1 ; arc to node 1 from any node (1, i1) represents
the deficit d1,i1 ; arc from node 2 to any node (2, i2) represents the deficit d2,i2 ; arc to node
2 from any node (2, i2) represents the excess e2,i2 . So the per unit arc cost should be 1 for
arcs between node 1 or 2 and any node in {(1, 1), (1, 2), ..., (1, k1)}∪{(2, 1), (2, 2), ..., (2, k2)}.
All other arcs have cost 0. It is easy to verify that constraints (3.2b) are corresponding to
the flow balance at nodes (1, i1) for all i1, constraints (3.2c) are corresponding to the flow
balance at nodes (2, i2) for all i2. Constraint (3.2d) is corresponding to the flow balance at
node 1, and constraint (3.2e) is corresponding to the flow balance at node 2.

Theorem 3.3. The 2-covariate min κ-imbalance problem is solved as a minimum cost net-
work flow problem in O(κn · (min{n′, k1k2}+ (k1 + k2) log(k1 + k2))) time.

Proof. We choose the algorithm of successive shortest paths that is particularly efficient for
a MCNF with “small” total supply to solve the network flow problem of the 2-covariate min
κ-imbalance problem.

The successive shortest path algorithm iteratively selects a node s with excess supply
(supply not yet sent to some demand node) and a node t with unfulfilled demand and sends
flow from s to t along a shortest path in the residual network [33, 32, 6]. The algorithm
terminates when the flow satisfies all the flow balance constraints. Since at each iteration,
the number of remaining units of supply to be sent is reduced by at least one unit, the
number of iterations is bounded by the total amount of supply. For our problem the total
supply is O(κn).

At each iteration, the shortest path can be solved with Dijkstra’s algorithm of complexity
O(|A| + |V | log |V |), where |V | is number nodes and |A| is number of arcs [56, 12]. In our
formulation, |V | is O (k1 + k2). Since the number of nonempty sets L′1,i1 ∩ L

′
2,i2

is at most
min{n′, k1k2}, the number of arcs |A| is O(min{n′, k1k2}).

Hence, the total running time of applying the successive shortest path algorithm with
node potentials on our formulation is O(κn · (min{n′, k1k2}+ (k1 + k2) log(k1 + k2))).

Maximum flow formulation

Here we show a maximum flow (max-flow) formulation for the min κ-imbalance problem
with 2 covariates. Unlike the previous formulations, the maximum flow solution requires
further manipulation in order to derive an optimal solution to the min κ-imbalance problem
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Figure 3.1: Min-cost network flow graph corresponding to formulation (3.2).

arc legend: (cost, upperbound)

with 2 covariate. That max-flow graph is illustrated in Figure (3.3). The source node s can
send at most κ`1,i1 units of flow to node (1, i1) for each i1 = 1, ..., k1, the sink node can get at
most κ`2,i2 units of flow from node (2, i2) for each i2 = 1, ..., k2, and there can be a flow from
node (1, i1) to node (2, i2) with amount bounded by ui1,i2 , for i1 = 1, ..., k1, i2 = 1, ..., k2.

Let the maximum flow value for the max-flow problem presented in Figure (3.3) be de-
noted by f ∗, and let x∗ be the optimal flow vector, with x∗i1,i2 denoting the flow amount be-

tween node (1, i1) and node (2, i2). It is obvious that
∑k1

i1=1

∑k2
i2=1 x

∗
i1,i2

= f ∗ ≤
∑k1

i1=1 κ`1,i1 =
κn. That means an initial selection S ′ generated by selecting the prescribed number of con-
trol samples as in the optimal max-flow solution, i.e., selecting x∗i1,i2 control samples from
L′1,i1 ∩L

′
2,i2

is of size f ∗. In order to get a feasible solution for the min κ-imbalance problem
it is required to select κn− f ∗ additional control samples. The selection S ′ has no positive
excess, only non-negative deficits with respect to the levels of both covariates. This is be-
cause

∑k2
i2=1 x

∗
i1,i2
≤ κ`1,i1 due to the upper bound of arc from s to (1, i1) for each i1, and∑k1

i1=1 x
∗
i1,i2
≤ κ`2,i2 due to the upper bound of arc from (2, i2) to t for each i2. To recover

an optimal solution for the min κ-imbalance problem from the initial set S ′, we add up to
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Figure 3.3: Maximum flow graph

arc legend: upperbound

κn−f ∗ unselected control samples, one at a time, each corresponding to a level with positive
deficit under either covariate 1 or 2. This process is repeated until either κn−f ∗ such control
samples are found, or until no such control sample exists. In the latter case, to complete
the size of the selection, any randomly selected control samples are added. Algorithm 1 is
a formal statement of this process of recovering an optimal solution of the min κ-imbalance
problem from the initial selection S ′.
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Algorithm 1

Initialization step: Select x∗i1,i2 number of control samples from L′1,i1 ∩ L
′
2,i2

in set S ′.
while |S ′| < κn do

if there exists an unselected control sample j /∈ S ′ whose covariate 1 level is i1 and
covariate 2 level is i2, such that |S ′ ∩ L′1,i1| < κ`1,i1 or |S ′ ∩ L′2,i2| < κ`2,i2 then,

S ′ ← S ′ ∪ {j}.
else

Let S ′′ = S ′ and let S+ be any κn− |S ′| control samples /∈ S ′. Set S ′ ← S ′ ∪ S+.
end if

end while
Output S ′.

To show that Algorithm 1 provides an optimal solution to the min κ-imbalance problem,
we distinguish two cases of Algorithm 1: (1) S+ = ∅ and (2) |S+| ≥ 1. In the first case,
there is, at each iteration, at least one control sample that belongs to some level with positive
deficit. In Theorem 3.4 we prove that the output S ′ of Algorithm 1 is an optimal solution
in this case.

Theorem 3.4. If S+ = ∅ then the output selection S ′ of Algorithm 1 is optimal for the min
κ-imbalance problem, with an optimal objective value of 2(κn− f ∗).

Proof. First, we show that the total imbalance of the selection S ′ is IM(S ′) = 2(κn − f ∗).
At the initialization step the selection S ′ has only deficits for all levels, with total deficit
for covariate 1,

∑k1
i1=1(κ`1,i1 −

∑k2
i2=1 xi1,i2) = κn − f ∗, and total deficit for covariate 2,∑k2

i2=1(κ`2,i2 −
∑k1

i1=1 xi1,i2) = κn− f ∗. At each iteration, there is an added control sample,
say in L′1,i1 ∩ L

′
2,i2

, such that either L′1,i1 or L′2,i2 has a positive deficit with respect to S ′. It
is however impossible for both L′1,i1 and L′2,i2 to have a positive deficit with respect to S ′

since otherwise, there is an s, t-augmenting path, from s to node (1, i1), to node (2, i2), to t,
along which the flow can be increased by at least one unit. This is in contradiction to the
optimality of the max-flow solution x∗. As a result, at each iteration where a control sample
is added, the total deficit is reduced by one unit, and the total excess is increased by one
unit. Thus, at each iteration of the if step, the sum of total deficit and excess remains the
same, namely 2(κn− f ∗).

Suppose, by contradiction, that there exists a selection S ′∗ for which the total imbalance
is lower, IM(S∗) < 2(κn − f ∗). We repeat the following iterative procedure of removing
samples from S∗ until there is no positive excess remaining: while there is a level of either
covariate with positive excess with respect to S ′∗, we remove one sample of S ′∗ that belongs
to this level. Each such iteration results in the total excess reducing by at least 1 unit and
the total deficit increasing by at most 1 unit, and therefore the sum of total deficit and excess
does not increase. So when this iterative procedure ends, the total excess is zero and the total
deficit is at most IM(S ′∗). Let xi1,i2 be the number of samples remaining in S ′∗∩L′1,i1 ∩L

′
2,i2

after this excess removing procedure. Since there is no positive excess, x is a feasible solution
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for the max-flow problem with the flow between node (1, i1) and node (2, i2) equal to xi1,i2 .

The sum of deficits associated with this remaining set is κn−
∑k1

i1=1

∑k2
i2=1 xi1,i2 for covariate

1 and κn−
∑k1

i1=1

∑k2
i2=1 xi1,i2 for covariate 2, for a total of 2(κn−

∑k1
i1=1

∑k2
i2=1 xi1,i2), which

is at most IM(S ′∗). Therefore, the total flow value,
∑k1

i1=1

∑k2
i2=1 xi1,i2 , satisfies that it is at

least κn − IM(S′∗)
2

. Since κn − IM(S′∗)
2

> κn − (κn − f ∗) = f ∗, it follows that the value of
the feasible flow induced by the set S ′∗ is greater than the maximum flow value f ∗, which
contradicts the optimality of f ∗.

We now address the second case where |S+| ≥ 1 and |S ′′| < κn. In this case, the total
imbalance of S ′′ is, from the arguments in the proof of Theorem 3.4, IM(S ′′) = 2(κn− f ∗).
Each one of the S+ samples selected adds 1 unit of excess to each covariate, resulting in the
addition of 2 units of excess to the imbalance. Therefore, the total imbalance of the output
solution is 2(κn−f ∗)+2|S+|. We next show what the value of |S+| is, and then demonstrate
that any feasible selection to the min κ-imbalance problem has total imbalance of at least
2(κn−f ∗)+2|S+|. This will prove that the output of Algorithm 1, S ′, is an optimal solution
to the min κ-imbalance problem.

It will be useful to consider an equivalent form of Algorithm 1. For each level i of covariate
p that has |S ′ ∩L′p,i| < κ`p,i, we add the largest number possible of available control samples
in L′p,i so long as the total does not exceed κn. This number is min{κ`p,i − |S ′ ∩ L′p,i|, `′p,i −
|S ′ ∩ L′p,i|}. Let ¯̀

p,i = min{κ`p,i, `′p,i} then for each p, i that has |S ′ ∩ L′p,i| < κ`p,i we add
¯̀
p,i − |S ′ ∩ L′p,i| previously unselected control samples to S ′. The outcome of this equivalent

procedure is exactly the same as that of Algorithm 1. In the case that |S+| ≥ 1 there is
an insufficient number of control samples to add to S ′ after for all levels the largest number
possible has been added. Therefore, at the end of this process, the if step returns that
another unselected control sample does not exist, and the total number of control samples
of S ′′, for each level i of covariate p, is ¯̀

p,i.

Lemma 3.1. If |S+| ≥ 1 (and |S ′′| = n − |S+| < n) then |S+| = n − (¯̀
1 + ¯̀

2 − f ∗) where
¯̀
1 =

∑k1
i1=1

¯̀
1,i1 and ¯̀

2 =
∑k2

i2=1
¯̀
2,i2.

Proof. At the initialization step of Algorithm 1 |S ′| = f ∗ and the total deficit is 2(κn− f ∗).
Each time a control sample is added to S ′ in the if step, the total deficit is decreased exactly
by 1 unit. So we can derive the value of |S ′′| when the algorithm terminates if we know the
total deficit when the algorithm terminates. Note that the total excess may change, but we
only consider here the deficit part of the imbalance.

From the discussion above, the total number of control samples of S ′′, for each level
i of covariate p, is ¯̀

p,i. We denote ¯̀
1 =

∑k1
i1=1

¯̀
1,i1 , and ¯̀

2 =
∑k2

i2=1
¯̀
2,i2 . Since the sum∑k1

i1=1 `1,i1 = n and
∑k2

i2=1 `2,i2 = n, the sum of deficits of set S ′′ under covariate 1 is∑k1
i1=1 κ`1,i1 − ¯̀

1,i1 = κn− ¯̀
1, and the sum of deficits under covariate 2 equals

∑k2
i2=1 κ`2,i2 −

¯̀
2,i2 = κn− ¯̀

2. It follows that the sum of deficits of S ′′ is 2κn− ¯̀
1 − ¯̀

2.
Since the initial set S ′ that has total deficit of 2(κn− f ∗) has its deficit reduced through

Algorithm 1 to 2κn− ¯̀
1− ¯̀

2 in the set S ′′, the additional number of control sample in S ′′ that
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were added to the initial f ∗ control samples is 2(κn− f ∗)− (2κn− ¯̀
1 − ¯̀

2) = ¯̀
1 + ¯̀

2 − 2f ∗.
Therefore, the size of S ′′ is f ∗ + (¯̀

1 + ¯̀
2 − 2f ∗) = ¯̀

1 + ¯̀
2 − f ∗. This number is less than n

and the size of S+ then satisfies, |S+| = κn− (¯̀
1 + ¯̀

2 − f ∗).

Corollary 3.1. If |S+| ≥ 1 when Algorithm 1 terminates, the total imbalance of the output
solution S ′ is IM(S ′) = 4κn− 2¯̀

1 − 2¯̀
2.

Proof. The imbalance of S ′′, as in the proof of Theorem 3.4, is equal to 2(κn−f ∗). Since each
sample in S+ adds two units to the imbalance, the total imbalance of the output solution
S ′ is IM(S ′) = 2(κn − f ∗) + 2(κn − (¯̀

1 + ¯̀
2 − f ∗)), which is equal to 4κn − 2¯̀

1 − 2¯̀
2, as

stated.

Next, we prove that this is the minimum total imbalance achievable.

Theorem 3.5. For any selection of size n, the total imbalance must be greater or equal to
4κn− 2¯̀

1 − 2¯̀
2.

Proof. For the optimal selection S ′∗ of size κn, let IM(S ′∗) be the total imbalance of S ′∗.
We first classify the samples in S∗ into three types, S ′1, S ′2 and S ′3 that forms a partition of
S ′∗, using the 3-type Classification Procedure.

In the procedure we use variable dis(p, i) to denote the value of dis(S, p, i), discrepancy
for control group selection S and level i under covariate p. With this notation the excess
of the corresponding level is e(S, p, i) = max{0, dis(p, i)}, and the deficit is d(S, p, i) =
max{0,−dis(p, i)}.

3-type Classification Procedure
Initialize

S ← S ′∗, S1 ← ∅, S2 ← ∅, S3 ← ∅;
Let dis(p, i)← |S ∩ L′p,i| − κ`p,i for p = 1, 2, i = 1, ..., kp;

S1 selection:
While there exists a sample j in S whose covariate 1 level is i1, covariate 2 level is i2,

such that dis(1, i1) > 0 and dis(2, i2) > 0, pick j;
S1 ← S1 ∪ {j}, S ← S − {j}, dis(1, i1)← dis(1, i1)− 1, dis(2, i2)← dis(2, i2)− 1;

end while;
S2 selection:

While there exists a sample j in S whose covariate 1 level is i1, covariate 2 level is i2,
such that dis(1, i1) > 0 or dis(2, i2) > 0, pick j;

S2 ← S2 ∪ {j}, S ← S − {j}, dis(1, i1)← dis(1, i1)− 1, dis(2, i2)← dis(2, i2)− 1;
end while;

S3 selection:
S3 ← S;

end.
The output S1, S2, S3 of the procedure is not unique, since it depends on the order in

which samples are picked. However, the statements of the theorem hold for any output of
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the procedure. Note that in the procedure, whenever a sample is picked, any dis(p, i) can
only go down. For that reason, once S1 selection ends, there will not be another sample in
S for which the discrepancy values of the corresponding levels under the two covariates are
both positive. Furthermore, once the S1 and S2 selections are done, dis(p, i) ≤ 0 for each
p, i. That means, |S3 ∩ L′p,i| ≤ κ`p,i for all p, i.

Let the sizes of the three subsets be denoted by s1 = |S1|, s2 = |S2|, s3 = |S3|.
We claim that the total imbalance of samples in S3 is IM(S ′∗)−2s1. For the S1 selection

part of the procedure, each samples picked in S1 reduces the total excess by 2. For each
sample selected in the S2 selection part of the procedure, the excess is reduced by 1, and
the deficit is increased by 1. So for each sample selected in the S2 selection step, the
total imbalance does not change. Therefore, the total imbalance of the samples in S3 is
IM(S ′∗)− 2s1.

On the other hand, the total imbalance of S3, which equals the sum of deficits of both
covariates (all excesses equal zero as |S3 ∩ L′p,i| ≤ κ`p,i), is 2(κn− s3). That says,

IM(S ′∗)− 2s1 = 2(κn− s3).

Hence,

IM(S ′∗) = 2(κn− s3) + 2s1 = 2(κn− s3) + 2(κn− s2 − s3) = 4κn− 2s2 − 4s3.

Here, the second equality comes from the fact that s1 + s2 + s3 = κn.
Next, we show that s2 ≤ (¯̀

1− s3) + (¯̀
2− s3). Let the samples in S2 be ordered according

to the order they were picked, j1, j2, ..., js2 . We now add these samples to S3, in the reverse
order js2 , ..., j1. When each sample jq is added to S3, the deficit is reduced by exactly 1
unit. Once all the S2 samples are added to S3 the deficit at each level of S2 ∪ S3 is zero, or
alternatively, dis(S2 ∪ S3, p, i) = |(S2 ∪ S3) ∩ L′p,i| − κ`p,i ≥ 0 for each p, i.

We now consider the total deficit of S3: By the definition of ¯̀
1 and ¯̀

2, the positive deficit
of S3 under covariate 1 is at most ¯̀

1 − s3 and that the positive deficit of S3 under covariate
2 is at most ¯̀

2 − s3. That means the size of S2 is bounded by the amount of this deficit,
s2 ≤ (¯̀

1 − s3) + (¯̀
2 − s3).

Now we have,

s2 ≤ (¯̀
1 − s3) + (¯̀

2 − s3) ⇔ s2 + 2s3 ≤ ¯̀
1 + ¯̀

2

⇔ IM(S ′∗) = 4κn− 2s2 − 4s3 ≥ 4κn− 2¯̀
1 − 2¯̀

2.

We conclude that the total imbalance IM(S∗) is at least 4κn− 2¯̀
1− 2¯̀

2. That implies that
the selection output of Algorithm 1, S ′, which has a total imbalance of 4κn − 2¯̀

1 − 2¯̀
2, is

optimal.

The conclusion from Corollary 3.1 and Theorem 3.5, is that for |S+| ≥ 1 when Algorithm
1 terminates, the output solution S ′ is an optimal selection to the min κ-imbalance problem.
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Together with Theorem 3.4, we have that Algorithm 1 outputs an optimal selection for the
min κ-imbalance problem using the max-flow solution to the flow problem in Figure 3.3 as
input.

Theorem 3.6. The maximum flow formulation of the 2-covariate min κ-imbalance problem
is solved the in O(n′ ·min{n 2

3 , n′
1
2} · log n · log κn) time.

Proof. We choose here the binary blocking flow algorithm of Goldberg and Rao [16] for
solving the max-flow problem shown in Figure 3.3 because this algorithm depends on the
maximum arc capacity which is a small quantity in our formulation.

The complexity of the binary blocking flow algorithm for a graph G = (V,A) is O(|A| ·
min{|V | 23 , |A| 12} · log |V |

2

|A| logU) where |V | is number of nodes, |A| is number of arcs, and U
is maximum arc capacity. As argued earlier for the minimum cost network flow formulation,
the number of nodes in the network |V | is O (k1 + k2), which is no more than O(n); and the
number of arcs is bounded by min{n′, k1k2}. Although ui1,i2 could be as large as n′, a feasible
flow to our maximum flow formulation can not have more than κ`1,i1 units of flow on the
arc from node (1, i1) to node (2, i2). Thus the maximum arc capacity U is effectively O(κn).

The ratio |V |
2

|A| ≤
(k1+k2)2

k1+k2
≤ n. Hence, the running time of applying the binary blocking flow

algorithm to our max-flow problem is O(n′ ·min{n 2
3 , n′

1
2} · log2 n).

The complexity of Algorithm 1 is O(n) as the number of iterations is bounded by n, and
each iteration takes O(1) steps.

Therefore, the running time of solving the min κ-imbalance problem as a max-flow prob-
lem is O(n′ ·min{n 2

3 , n′
1
2} · log n · log κn).

3.4 The maximum κ-fine-balance selection (κ-FBS )

problem

In this section we show the complexity and algorithmic results for the κ-FBS problems.
We present the results separately first for the 1-covariate problem, next for three or more
covariates, then the 2-covariate FBS problem, and finally the 2-covariate κ-FBS problem for
κ ≥ 3.

The solution to the 1-covariate κ-FBS problem is straightforward, as discussed in Section
3.2: select ¯̀

i = min{`1,i, b`′1,i/κc} number of level i treatment samples and κ · ¯̀
i number

of level i control samples. The union of the selections at each level is an optimal solution
for the 1-covariate κ-FBS problem.The value of the objective function corresponding to this
solution is

∑k1
i=1

¯̀
i =

∑k1
i=1 min{`1,i, b`′1,i/κc}.

NP-hardness for the κ-FBS problem for any constant κ with P ≥ 3

We show here that even for κ being constant, the κ-FBS problem with three or more covari-
ates is NP-hard by reducing the 3-Dimensional Matching problem, one of Karp’s 21 NP-hard
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problems [35][14].
3-Dimensional Matching: Given a finite set X and a set of triplets U ⊂ X × X × X. Is
there a subset M ⊆ U such that |M | = |X| and that no two elements of M agree in any
coordinate?

Theorem 3.7. The κ-FBS problem is NP-hard when P = 3 even for constant κ.

Proof. Given an instance of 3-dimensional matching problem with a finite set X and a set
of triplets U ⊂ X ×X ×X, we construct an instance of κ-FBS problem with P = 3 for any
constant κ. Without loss of generality, we assume X = {1, ..., |X|}.

First we define the levels of the three covariates. For p = 1, 2, 3, the set of levels of
covariate p is {1, ..., |X|} ∪ {0, 0′}. So all the three covariates have |X|+ 2 levels.

Next, we construct the samples. For each sample, we represent it by the ordered triplet
(a, b, c) where a is the level of the first covariate, b is the level of the second covariate,
and c is the level of the third covariate. The treatment group contains a sample (i, i, i) for
i = 1, ..., |X| as well as |X| copies of (0, 0, 0) and |X| copies of (0′, 0′, 0′). For each triplet
u ∈ U , whose elements are denoted by [u1, u2, u3], we create one control sample (u1, u2, u3).
In addition, for each element i ∈ X we have (κ − 1) copies for each of the three control
samples (i, 0′, 0), (0′, 0, i), (0, i, 0′). We also create |X| copies of (0, 0, 0) and |X| copies of
(0′, 0′, 0′) for the control group. That is, the control group is the union of the following three
sets (we represent the different copies by a superscript as shown below.):

C1 = {(u1, u2, u3) : ∀u = [u1, u2, u3] ∈ U},
C2 = {(i, 0′, 0)(w), (0′, 0, i)(w), (0, i, 0′)(w) : ∀i = 1, ..., |X|,∀w = 1, ..., κ− 1},
C3 = {(0, 0, 0)(w), (0′, 0′, 0′)(w) : ∀w = 1, ..., |X|}.

The treatment group constructed is of size 3|X| and the control group constructed is of
size |U | + (3κ − 1)|X|. The two sizes are both polynomially bounded in the size of the
3-dimensional matching instance so the reduction can be computed in polynomial time.

Finally, we claim that the optimal value of the constructed 3-covariate κ-FBS problem
is 3|X| if and only if there exist a subset M ⊆ U such that |M | = |X| and that no two
elements of M agree in any coordinate for the 3-dimensional matching instance.

Let M ⊆ U be the solution for the 3-dimensional matching instance, we derive a solution
for the constructed problem as follows. We select all the treatment samples. For each triplet
u ∈M , we choose the control sample in C1 whose covariates levels are corresponding to the
elements in u. Additionally, we also choose all control samples in C2 and C3. To check the
feasibility of this solution, first consider the appearances of level i for each i = 1, ..., |X| under
each covariate p = 1, 2, 3: level i appears once in the treatment group for each covariate p;
it appears once among the selected samples in C1 as i appears once in each coordinate in
M ; it appears for κ− 1 times in C2; it does not appear in C3. That is, there is exactly one
selected treatment sample of level i under covariate p and κ selected control samples of level
i under covariate p, for each i and p. Next, consider appearances of level 0 and 0′ under
each covariate p = 1, 2, 3: they each appear |X| times in the treatment group; they do not
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appear in C1; they each appear (κ− 1)|X| times in C2 and |X| times in C3. That is, 0 and
0′ each appear κ|X| times in the selected control samples under each covariate. Therefore,
this selection is feasible and the objective value, the number of selected treatment samples,
is 3|X|.

On the other hand, if the constructed 3-covariate κ-FBS problem has an optimal solution
S, S ′ of objective value 3|X|, we say that u = [u1, u2, u3] ∈ U is selected for M if the control
sample (u1, u2, u3) is selected in S ′ for the constructed problem. We will show that M is
a feasible solution of the 3-dimensional matching instance. Since the size of the treatment
group is 3|X|, all treatment samples must be selected in the optimal solution, and that 3κ|X|
number of control samples must be selected. For each covariate 1, 2, 3, levels 0 and 0′ each
appears |X| times in the treatment group, so the number of appearance of each of these two
levels must be κ|X| in the selection S ′ of the control samples. So all samples in C2 and C3

must be selected, otherwise there is no enough level 0 or level 0′ samples in S ′. Therefore,
M = 3κ|X| − |C2| − |C3| = |X|. Furthermore, for each covariate p and for i = 1, ..., |X|,
level i appears exactly once in the treatment group so there are κ number of selected control
samples in level i. For each i under each covariate p, since there are (κ − 1) number of
samples in level i in C2 ∪ C3, only one sample in C1 in that same level is selected. So there
is no overlap in each coordinate for any two triplets in M .

With the above arguments, any 3-dimensional matching problem can be reduced to a
3-covariate κ-FBS problem for any constant integer κ, and hence, the κ-FBS problem is
NP-hard for any such κ when P = 3.

Corollary 3.2. The κ-FBS problem is NP-hard for any integer P ≥ 3, even for constant κ.

Proof. For any constant integer κ, any 3-covariate κ-FBS problem, and any P > 3, we can
construct an equivalent P -covariate κ-FBS problem as follows: for each sample of the given
3-covariate κ-FBS problem, we create a sample for the constructed κ-FBS problem such that
they have the same level value for covariate p = 1, 2, 3. For p = 4, ..., P , set covariate p to
have only one level so all samples in the constructed κ-FBS problem have the same value.

Therefore, the NP-hardness of 3-covariate κ-FBS problem implies that the P -covariate
κ-FBS problem is NP-hard for every value of P when P ≥ 3.

Since the κ-FBS problem is NP-hard for P ≥ 3, there is no polynomial time algorithm
unless P = NP .

In the following subsections, we will discuss the remaining case of the 2-covariate prob-
lems.

The network flow algorithm for FBS with P = 2

In this subsection, we present an integer programming formulation with network flow con-
straints for the 2-covariate FBS problem. We then show how to solve the problem efficiently
with a network flow algorithm.
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It was noted, in Theorem 3.2, that there is no differentiation between the individual
samples selected in each level intersection, only the number of those selected counts. We
thus define the decision variables as follows:

xi1,i2 : the number of treatment samples selected from the (i1, i2) level intersection L1,i1 ∩
L2,i2 , for i1 = 1, ..., k1 and i2 = 1, ..., k2;

x′i1,i2 : the number of control samples selected from the (i1, i2) level intersection L′1,i1∩L
′
2,i2

,
for i1 = 1, ..., k1 and i2 = 1, ..., k2.
Let ui1,i2 = |L1,i1 ∩ L2,i2 | and u′i1,i2 = |L′1,i1 ∩ L

′
2,i2
| for i1 = 1, ..., k1, i2 = 1, ..., k2. Clearly,

xi1,i2 must be an integer between 0 and ui1,i2 , and x′i1,i2 must be an integer between 0 and
u′i1,i2 . With these decision variables the following is an integer programming formulation for
the 2-covariate FBS problem:

(IP-FBS) max

k1∑
i1=1

k2∑
i2=1

xi1,i2 (3.3a)

s.t.

k2∑
i2=1

xi1,i2 −
k2∑
i2=1

x′i1,i2 = 0 i1 = 1, ..., k1 (3.3b)

k1∑
i1=1

xi1,i2 −
k1∑
i1=1

x′i1,i2 = 0 i2 = 1, ..., k2 (3.3c)

0 ≤ xi1,i2 ≤ ui1,i2 i1 = 1, ..., k1, i2 = 1, ..., k2 (3.3d)

0 ≤ x′i1,i2 ≤ u′i1,i2 i1 = 1, ..., k1, i2 = 1, ..., k2 (3.3e)

xi1,i2 , x
′
i1,i2

integers i1 = 1, ..., k1, i2 = 1, ..., k2 (3.3f)

.
The objective (3.3a) is the total number of selected treatment samples. Constraints

(3.3b) are the fine balance requirement under covariate 1, as
∑k2

i2=1 xi1,i2 equals the number

of selected treatment samples in level i1 under covariate 1 and
∑k2

i2=1 x
′
i1,i2

equals the number
of selected control samples in the same level. Similarly, constraints (3.3c) are the fine balance
requirement under covariate 2.

Formulation (IP-FBS) is in fact also a network flow formulation. In a minimum cost
network flow formulation, each column of the constraint matrix corresponding to a variable
that is a flow along an arc, has exactly one 1 and one -1. The corresponding MCNF network
is shown in Figure 3.5, where all capacity lower bounds are 0, and each arc has a cost
per unit flow and upper bound associated with it. The flow on the arc from node (1, i1)
to node (2, i2) represents variable xi1,i2 , which is bounded between 0 and ui1,i2 as stated
in constraints (3.3d); arc from node (2, i2) to node (1, i1) represents variable x′i1,i2 , which
is bounded between 0 and u′i1,i2 as stated in constraints (3.3e). To get a “minimize” type

objective, we take the negative value of |S| =
∑k1

i1=1

∑k2
i2=1 xi1,i2 as the objective, so the per

unit arc cost should be −1 for arcs from any node in {(1, 1), (1, 2), ..., (1, k1)} to any node
in {(2, 1), (2, 2), ..., (2, k2)}. All other arcs have cost 0. It is easy to verify that constraints



CHAPTER 3. EFFICIENT ALGORITHMS FOR VARIANTS OF COVARIATE
BALANCING PROBLEMS 34

(3.3b) are corresponding to the flow balance at nodes (1, i1) for all i1, constraints (3.3c) are
corresponding to the flow balance at nodes (2, i2) for all i2.

1,1

1,2

1,k1

2,1

2,2

2,k2

...
...

(−1, u1,1)

(−1, u1,2)

(−1, u1,k2
)

(−1, u2,2)

(−1, uk1,k2
)

(0, u′1,1)

(0, u′2,2)

(0, u′k1,k2
)

(0, u′1,k2
)

Figure 3.5: Min-cost network flow graph corresponding to formulation (IP-FBS) .

arc legend: (cost, upperbound)

Theorem 3.8. The 2-covariate FBS problem is solved as a minimum cost network flow
problem in O(n · (min{n+ n′, k1k2}+ (k1 + k2) log(k1 + k2)) time.

Proof. To solve the minimum cost network flow problem of the 2-covariate FBS problem, we
choose the algorithm of successive shortest paths that is particularly efficient for a MCNF
with “small” total arc capacity (see [1] Section 9.7). The successive shortest paths algorithm
starts with a network graph with no negative cycles, so we first modify the network shown in
?? using a well-known arc reversal transformation in [1] Section 2.4. The resulting network
graph is shown in Figure 3.7.

The successive shortest path algorithm iteratively selects a node s with excess supply
(supply not yet sent to some demand node) and a node t with unfulfilled demand and sends
flow from s to t along a shortest path in the residual network [33, 32, 6]. The algorithm
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(`2,k2)

(1, u1,1)

(1, u1,2)

(1, u1,k2
)

(1, u2,2)
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)

(0, u′1,1)

(0, u′2,2)

(0, u′k1,k2
)

(0, u′1,k2
)

Figure 3.7: Min-cost network flow graph after arc reversal.

arc legend: (cost, upperbound); node legend: (supply)

terminates when the flow satisfies all the flow balance constraints. Since at each iteration,
the number of remaining units of supply to be sent is reduced by at least one unit, the
number of iterations is bounded by the total amount of supply. For the network in Figure
3.7 the total supply is n.

At each iteration, the shortest path can be solved with Dijkstra’s algorithm of complexity
O(|A| + |V | log |V |), where |V | is number nodes and |A| is number of arcs [56, 12]. In our
formulation, |V | is O (k1 + k2), which is at most O(n). Since the number of nonempty sets
L1,i1 ∩ L2,i2 is at most min{n, k1k2}, the number of unit-cost arcs is O(min{n, k1k2}). Since
the number of nonempty sets L′1,i1 ∩ L

′
2,i2

is at most min{n′, k1k2}, the number of zero-cost
arcs is O(min{n′, k1k2}). So the total number of arcs |A| is O(min{n+ n′, k1k2}).

Hence, the total running time of applying the successive shortest path algorithm on our
formulation is O(n · (min{n+ n′, k1k2}+ (k1 + k2) log(k1 + k2)).

In contrast to the 2-covariate FBS problem which is polynomial time solvable, we show
next that the 2-covariate κ-FBS problem is NP-hard when κ ≥ 3.
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NP-hardness for the 2-covariate κ-FBS problem with κ ≥ 3

We prove here that the 2-covariate κ-FBS problem is NP-hard for all constant values of κ
such that κ ≥ 3. The proof reduces the exact 3-cover problem, which is NP-hard [35, 14].
Exact 3-cover: Given a collection C of 3-element subsets (triplets) of a ground set E with
|E| = 3q for some integer q, is there a subcollection C ′ ⊆ C where each element e ∈ E
appears in exactly one triplet of C ′?

Theorem 3.9. The 2-covariate κ-FBS problem is NP-hard for any constant κ ≥ 3.

Proof. Given an instance of Exact 3-cover problem with ground set E of size 3q and a
collection of triplets C, we construct an instance of 2-covariate κ-FBS problem for any
constant integer κ ≥ 3.

First we define the levels of the two covariates. For covariate 1, we have a level T for
each triplet T ∈ C, and a level e′ for each element e ∈ E. So there are |C| + |E| levels of
covariate 1. For covariate 2, we have a level e′′ for each element e ∈ E, and one additional
level dentoed as X. So there are |E|+ 1 levels of covariate 2.

Next, we construct the samples. For each sample, we represent it by the ordered pair
(a, b) where a is the level of the first covariate and b is the level of the second covariate.
The treatment group contains a sample (T,X) for each triplet T ∈ C and a sample (e′, e′′)
for each element e ∈ E. Moreover, for each triplet T ∈ C, whose elements are denoted by
et1 , et2 , et3 , we create three control samples (T, e′′t1), (T, e

′′
t2

), (T, e′′t3), as well as (κ− 3) copies
of control sample (T,X). In addition, for each element e ∈ E we have one control sample
(e′, X) and (κ − 1) copies of control sample (e′, e′′). The treatment group constructed is of
size |C| + |E| and the control group constructed is of size κ|C| + κ|E|. The two sizes are
both polynomially bounded in the size of the Exact 3-cover instance so the reduction can be
computed in polynomial time.

Finally, we claim that the constructed 2-covariate κ-FBS problem has a feasible solution
with objective value of at least 4q if and only if the Exact 3-cover instance has a subcollection
C ′ ⊆ C such that each element e ∈ E appears in exactly one triplet of C ′.

Let C ′ be a subcollection such that each element e ∈ E appears in exactly one triplet of
C ′, we derive a solution for the constructed problem as follows. In the treatment group, we
choose (T,X) for all T ∈ C ′, and (e′, e′′) for all e ∈ E. In the control group, for each T ∈ C ′,
whose elements are denoted by et1 , et2 , et3 , we choose (T, e′′t1), (T, e

′′
t2

), (T, e′′t3) and the (κ− 3)
copies of (T,X). Additionally, we also choose from the control group sample (e′, X) and
(κ− 1) copies of (e′, e′′) for each e ∈ E. That is, the selection of treatment samples is

S = {(T,X) : ∀T ∈ C ′} ∪ {(e′, e′′) : ∀e ∈ E}

and the selection of control samples is

S ′ ={(T, e′′t1), (T, e
′′
t2

), (T, e′′t3) : ∀T = (et1 , et2 , et3) ∈ C ′} ∪ {(T,X)(w)) : ∀T ∈ C ′, w = 1, ..., κ− 3}∪
{(e′, X) : ∀e ∈ E} ∪ {(e′, e′′)(w) : ∀e ∈ E,w = 1, ..., κ− 1}.
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To check the feasibility of this solution, first consider the levels of the first covariate. For
each T ∈ C, if T ∈ C ′ then there is exactly one treatment sample with level T in S and
we choose exactly κ such control samples for S ′; and if T /∈ C ′, then we have not chosen
any sample of this level for neither the treatment nor the control group. Furthermore, for
each e ∈ E, we choose exactly one sample from the treatment group with covariate 1 level
e′ and exactly κ control samples with covariate 1 level e′. Next, consider the levels of the
second covariate. We choose |C ′| number of level X treatment samples and (κ− 3)|C ′|+ |E|
number of level X control samples. Note that the size of subcollection C ′ must be q as
each element in E appears in exactly one triplet of C ′, so (κ − 3)|C ′| + |E| = κq = κ|C ′|.
For every ē ∈ E, we choose exactly one treatment sample with level ē′′. There are κ − 1
control samples of level ē′′ under covariate 2 in the set {(e′, ē′′)(w) : ∀e ∈ E,w = 1, ..., κ− 1}.
Since each element ē appears in exactly one triple of C ′, ē′′ appears exactly once in the set
{(T, e′′t1), (T, e

′′
t2

), (T, e′′t3) : ∀T = (et1 , et2 , et3) ∈ C ′}. So there are κ control samples of level
ē′′ under covariate 2 in the selection S ′. Therefore, this solution is feasible and the objective
value of this solution is |S| = |C ′|+ |E| = 4q.

On the other hand, if the constructed 2-covariate κ-FBS problem has a feasible solution
S, S ′ of objective value at least 4q, we say that T ∈ C is selected for subcollection C ′ if the
treatment sample (T,X) is selected in S for the constructed problem. We will show that the
subcollection of selected triplets is a feasible solution of the Exact 3-cover problem. Since
there are only 3q samples in the treatment group that do not correspond to a triplets, the
size of C ′ must be at lease q. So the subcollection is feasible if we can establish that every
pair of selected triplets is disjoint. Assume by contradiction that there exist two selected
subsets T, T ′ ∈ C ′ that have a common element e. Due to (S, S ′)-κ-fine-balance, we know
the number of control samples in each level under any covariate must be an integer multiple
of κ. Since there is only one sample of level ē′′ in the treatment group, in selection S ′ there
can be either 0 or κ samples of level ē′′ under covariate 2. Since both (T,X) and (T ′, X)
are in the selection S, control samples (T, ē′′) and (T ′, ē′′) must be chosen in S ′, otherwise
the number of selected samples in covariate 1 levels T and T ′ will not satisfy (S, S ′)-κ-fine-
balance. Thus, the number of samples in S ′ with the second covariate being ē′′ is at least
2. So the number |S ′ ∩ L′2,ē′′ | must be κ, the number |S ∩ L2,ē′′ | must be 1, and the number
of sample (ē′, ē′′) in selection S ′ must be less than or equal to κ − 2. This implies that the
number of control samples of level ē′ under covariate 1 can not be more than κ − 1, which
means, it must be zero. So we can derive that treatment sample (ē′, ē′′) is not selected, which
means the number of treatment samples in level e′′ under covariate 2 is 0, contradicts with
|S ∩ L2,e′′ | = 1.
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3.5 The κ-balanced-matching (κ-BM) problem with

P ≥ 2

The 1-covariate κ-BM problem is solvable in polynomial time [46]. Sauppe et al. [50] showed
that the 2-covariate κ-BM problem is NP-hard. The NP-hard statement can be extended
for more than 2 covariates.

Corollary 3.3. The P -covariate κ-BM problem is NP-hard for every value of P when P ≥ 2.

Proof. For any 2-covariate κ-BM problem, and any P > 3, we can construct an equivalent
P -covariate κ-BM problem by adding P − 2 covariates for each sample in the 2-covariate
κ-BM problem instance and set the value of the pth covariate to be the same for all samples,
for each p = 3, ..., P .

Therefore, the NP-hardness of 2-covariate κ-BM problem implies that the P -covariate
κ-BM problem is NP-hard as long as P ≥ 2.

We will show next that the 2-covariate BM problem and the 2-covariate κ-BM problem
when the second covariate has a constant number of levels can be solved efficiently if and
only if the exact matching problem on bipartite graphs can be solved efficiently. Note that
if both covariates have constant numbers of levels, then the results of Section 3.7 give a
polynomial time algorithms for the two problems. Here we consider an intermediate case
where only one of the covariates has a constant number of levels.

The special case of 2-covariate BM and 2-covariate κ-BM problems
where the second covariate has a constant number of levels

Let BM’ be the special case of 2-covariate BM problem where the second covariate has a
constant number of levels while the first covariate has super-constant and perhaps linear
number of levels. In Section 3.7 we will establish that if both covariates have constant
number of levels then the 2-covariate BM problem is polynomial time solvable. Here, we
show that relaxing this constraint for one of the covariates is connected to the study of the
exact matching problem. In order to present this connection we assume that the distance
matrix is integral and all distances are given in unary, that is, there is a polynomial π of the
input encoding length where δij ≤ π for all i, j.

The exact matching in bipartite graph problem is defined as follows. The input is an
integer number k together with a bipartite graph G = (V,E) with bipartition of the node
set V into V1 ∪ V2, and its edge set E is partitioned into Eb ∪ Er where Eb is the set of
blue edges and Er is the set of red edges. The exact matching problem is to find a perfect
matching that has exactly k blue edges (and all other edges are red). The complexity status
of the exact matching problem is as follows. While [39] showed that there is a randomized
polynomial time algorithm for the problem, the existence of a deterministic polynomial time
algorithm is still an important open problem. We show the following connection between
the exact matching problem and problem BM’.
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Theorem 3.10. There is a deterministic (or randomized) polynomial time algorithm for
BM’ if and only if there is a deterministic (or randomized, respectively) polynomial time
algorithm for exact matching in bipartite graphs.

Proof. Assume that there is a polynomial time algorithm ALG for BM’ and we will establish
the existence of a polynomial time algorithm for the exact matching problem. Given an
input to the exact matching problem with 2q nodes (q nodes on each side of the bipartite
graph), we denote the bipartition of the graph by V1 ∪ V2 and the partition of the edge set
into Eb ∪ Er, and we let k be the number of the required blue edges in the matching. We
define the following input for BM’. We will associate samples with nodes so the control group
consists of nodes and the treatment group also consists of nodes. For every node v ∈ V1,
we have two nodes in the control corresponding to v: a red node vr and a blue node vb. All
blue edges in Eb that were incident to v in the input to the exact matching problem are
now incident to vb, and all red edges that were incident to v are now incident to vr. These
edges corresponding to original edges in the input for the exact matching instance have zero
distance, while all other distances are set to 1. The nodes in V2 (of the original input graph
to the exact matching) are the treatment nodes, so the distances we defined represent the
distances between an treatment node and a control node.

The levels of the first covariate are defined such that every pair [vr, vb] for v ∈ V1 defines
one level of the first covariate, and we have one treatment node in each such level. Observe
that the number of levels of the first covariate is q, and we have q nodes in the treatment
group, so this assignment of levels of the first covariate is feasible. Next, consider the second
covariate. We will have two levels of the second covariate corresponding to blue and red.
The red level of the control is the set of all red nodes, and the blue level of the control is
the set of all blue nodes. The second level of the treatment are defined so that there will
be exactly k nodes of the treatment in the blue level (and the remaining q − k nodes in the
treatment are in the red level). Now, we would like to apply algorithm ALG on the BM’
instance and check if the output cost is zero or strictly positive. In any feasible solution of
the BM’ defined, exactly one of two control nodes [vr, vb] is matched for each v ∈ V1, as there
is one treatment node in each level of the first covariate. And since we need to match k red
control nodes and q − k blue control nodes, a zero distance matching of the BM’ represents
a set of edges in the exact matching instance that is a perfect matching consisting of k blue
edges and q − k red edges.

Observe that this construction is a deterministic polynomial time algorithm. Thus the
algorithm that constructs the input to BM’ and apply ALG on that input is a determin-
istic (randomized) polynomial time algorithm for the exact matching problem if ALG is a
deterministic (randomized, respectively) polynomial time algorithm for BM’.

We next prove the other direction. Assume that there is a polynomial time algorithm for
the exact matching problem in bipartite graph, we will establish the existence of a polynomial
time algorithm for BM’. Here we are going to use the fact that the maximum distance is
at most π and without loss of generality, we assume that q ≤ π. We set ε = 1/(qπ + 1),
and we consider the following multi-objective optimization problem. The goal is to find the
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(1 + ε)-approximated Pareto set of matchings for the following multi-criteria objective.
The first objective is the total distance. The total distance is a non-negative integer of

at most qπ. Therefore, if we approximate this objective with an approximation ratio of 1 + ε
then we get the optimal value of this objective (given the values of the other objectives). The
other objectives of this multi-criteria problem are defined so that we have one objective per
level of the second covariate and this objective is to minimize the number of selected control
samples with this level of the second covariate. Similarly to the first objective, every possible
value of this objective is an integer between 0 and q, and therefore if we approximate this
objective with an approximation ratio of 1+ε then we get the optimal value of this objective
(given the values of the other objectives). Note that the sum of the last set of objectives (all
objectives except to the first one) is always equal to q, and therefore if we have one of those
objectives as super-optimal then another one is sub-optimal. Thus the (1 + ε)-approximated
Pareto set need to include one solution per each possible vector of the number of elements
in the different levels of the second covariate. So there are constant number of objectives
and for our choice of ε the approximated Pareto set is in fact the Pareto set.

Now, we use the result of Papadimitriou and Yannakakis [43] to conclude that the algo-
rithm for exact matching gives the required algorithm for approximating the Pareto set. In
this Pareto set, we find the point corresponding to the level counters of the treatment, i.e.,
the point in the Pareto set corresponding to a feasible point for BM’.

Furthermore, if we use the existing algorithm of [39] to solve the exact matching then the
resulting algorithm will be randomized polynomial time algorithm whereas if we will use it
with (future) deterministic polynomial time algorithm then the resulting algorithm for BM’
is also deterministic polynomial time algorithm.

Next we consider the κ-BM’ that is the special case of 2-covariate κ-BM where the second
covariate has a constant number of levels, and once again we assume that the distance
matrix is integral and the maximum distance is upper bounded by a polynomial π of the
input encoding length. We show that κ-BM’ has the same complexity status as BM’ (for all
κ ≥ 2). That is, we establish the following result.

Theorem 3.11. There is a polynomial time algorithm for BM’ if and only if there is a
polynomial time algorithm for κ-BM’.

Proof. Assume that there is a polynomial time algorithm ALG for BM’. Consider an instance
of the κ-BM’ problem, and replace every treatment sample by κ copies of it with the same
pair of levels as the original element of the treatment group. We define the distance matrix
as follows. The distance between an treatment sample x that is a copy of the original
treatment sample x′ (of the instance for the κ-BM’) and a control sample y, is now defined
as the distance between x′ and y. The resulting treatment group and control group is the
instance for BM’, and we apply ALG on that instance. A feasible solution for this BM’
instance gives a feasible solution for the κ-BM’ instance (simply by matching an treatment
sample to a control sample if one of the copies of the treatment sample was matched to that
control sample) and of the same total distance. Similarly, a feasible solution to the original
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κ-BM’ instance gives a feasible solution for the BM’ instance of the same cost by matching
the set of κ matched control sample to the unique treatment sample to the κ copies of this
treatment sample in the BM’ instance (with one control sample matched to each copy).
Thus, we get a polynomial time algorithm for κ-BM’ problem.

Consider the other direction. Assume that we are given a polynomial time algorithm
ALG for κ-BM’ and we establish the existence of a polynomial time algorithm for BM’.
Consider an instance of the BM’ problem. First, we add (q + 1) · π for every component
of the distance matrix. This modification of the distance matrix ensures that every feasible
solution for BM’ has a cost that is at least (q2 +q)π and at most (q2 +2q) ·π. Next, for every
treatment sample x we add another κ− 1 control samples with the same levels as the ones
of x whose distance from x is 0 and from other treatment samples the distance is 2q3 · π.
These κ − 1 control samples for each treatment sample are called dummy control samples.
This is the instance of κ-BM’ on which we apply ALG. The output has cost B ≤ (q2 +2q) ·π
if and only if the solution we obtain by deleting all the dummy control sample is a feasible
solution for BM’ of cost B. To prove the last claim note that the solution for the κ-BM’
instance cannot match dummy control samples to treatment samples if their distance is not
zero. Furthermore, the κ−1 zero distances for each treatment sample must be in the selected
control samples as otherwise, the total distance would be at least (q+ 1)2 · π > (q2 + 2q) · π.
Thus, by deleting the dummy control sample we get a feasible solution for the BM’ problem
(after the modification of the distance matrix) of the same cost. Similarly, if we take an
optimal solution for the BM’ problem (before or after the modification of the distances) and
add to it the dummy control samples that are matched using the zero-distances then we get
an optimal solution for the κ-BM’. Therefore, by applying ALG on the last κ-BM’ problem
we get a polynomial time algorithm for solving the original BM’ instance.

3.6 The maximum selection κ-fine-balance matching

(κ-MSBM) problem

Since any κ-BM problem can be solved as a κ-MSBM problem with the same κ and the same
number of covariates, Corollary 3.3 implies that the P -covariate κ-MSBM problem is also
NP-hard for P ≥ 2 and any constant κ. And in Section 3.2 we show that the 1-covariate
MSBM problem can be solved as an MCNF problem in polynomial time. We are going to
show next that the 1-covariate κ-MSBM problem is NP-hard even for any constant κ ≥ 3
by reduction from the Exact-3-cover problem (see Section 3.4) .

Theorem 3.12. For any constant value of κ such that κ ≥ 3, the 1-covariate κ-MSBM
problem is NP-hard even with only one level.

Proof. Given an instance of Exact-3-cover, namely a collection C of 3-element subsets
(triplets) of a ground set E with |E| = 3q for some integer q. We will define an instance
of 1-covariate κ-MSBM with only one level for any constant κ such that κ ≥ 3. In the
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constructed instance, we have one treatment sample for every triplet in C, and we have one
control sample for every element e ∈ E. In addition we have (κ− 3) · q dummy control sam-
ples. For each triplet T ∈ C, the distance of the corresponding treatment sample to a control
sample is defined as follows: it is zero if the control sample is one of the dummy samples
or if the control sample is an element of the triplet T . All other distances (that are still
undefined) are set to one. Observe that a feasible solution for the κ-MSBM instance selects
all control group and selects exactly q treatment samples. We claim that in this instance,
an optimal solution for κ-MSBM has total distance of zero, if and only if the Exact-3-cover
instance is a YES instance.

To see the last claim assume first that there is a subcollection of triplets C ′ ⊆ C such that
every element of E appears in exactly one triplet in C ′. Then we construct a zero-distance
solution for the κ-MSBM instance as follows. We select the samples C ′ of the treatment group
and each such selected sample T ∈ C ′ is matched to the samples of the control consisting of
the three elements samples in T together with κ−3 of the dummy control samples. Since C ′

has q triplets, we have sufficient number of additional control samples. Furthermore, since
every element in E appears only once in triplets of C ′, we conclude that its control sample
is matched to exactly one selected treatment sample.

On the other hand, assume that there is a zero-distance solution for the κ-MSBM instance.
Then, this solution selects exactly q treatment samples corresponding to q triplets. Denote by
C ′ ⊆ C this subcollection of q triplets. Note that if there is a selected treatment sample that
is matched to at least κ− 2 dummy control samples, then there exists a selected treatment
sample that is matched to at most κ− 4 dummy control samples, and thus it is matched to
at least four control samples that correspond to elements of E, then at least one of those
matches has distance one. This contradicts the assumption that the cost of the κ-MSBM
solution is zero. Therefore, every selected treatment sample is matched to exactly κ − 3
additional control samples and three control samples that are corresponding to its elements.
Since every control sample corresponding to an element is matched exactly once, we conclude
that every element of E appears in exactly one triplet of C ′, so the Exact-3-cover instance
is a YES instance.

For the 1-covariate κ-MSBM problem where κ = 2, the complexity status remains open.

3.7 Fixed-parameter tractable algorithms

In this section, we consider the special cases of the min κ-imbalance, the κ-FBS, κ-BM, and
κ-MSBM problems where all covariates have a small number of levels.

Let K =
∏P

i=1 ki be the number of level-intersections. Observe that if the number
of covariates is constant and all covariates have constant number of levels, then K is a
constant. We note that the problems κ-FBS, κ-BM, and MSBM can be solved in fixed-
parameter tractable (FPT) time with parameter K. In order to state these results, we
say that a problem is fixed-parameterized complexity with parameter K and denote it by
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FPT (K) if it has an algorithm whose time complexity is upper bounded by a function of the
form f(K) · poly where f(K) is some computable function of the parameter K, and poly
is some polynomial of the input binary encoding length. We also say that an algorithm runs
in FPT (K) time and mean that its time complexity can be upper bounded by a function of
the form f(K) ·poly where f(K) is some computable function of the parameter K, and poly
is some polynomial of the input binary encoding length. Here we show that these problems,
namely κ-FBS, κ-BM problems for all κ, and MSBM problem are FPT (K). Furthermore, we
also show that similar results for κ-MSBM where κ ≥ 3 cannot be obtained unless P = NP
as those special cases of κ-MSBM are NP-hard even if there is only one covariate that has
only one level (i.e., for the case K = 1). The complexity status of the 2-MSBM problem
with constant K is open.

Our proof for the FPT (K) results uses the existence of fast algorithms for solving integer
programming in fixed dimension and for solving mixed-integer linear programs if the number
of integral variables is fixed. Lenstra [37] (see also [34] for an improved time complexity of
these algorithms) showed that the integer linear programming problem with a fixed number
of variables is polynomially solvable, and he also showed that a mixed-integer linear program
with a fixed number of integer variables can be solved in polynomial time. In fact, these algo-
rithms runs in FPT time with parameter being the number of integral variables. Therefore,
to prove our results we show either an integer programming (IP) formulation with number
of decision variables O(K) or a mixed-integer linear program (MILP) with O(K) integer
variables such that solving this MILP to optimality ensures that the resulting solution is
integral and solves the corresponding problem.

The min κ-imbalance problem

First consider the min κ-imbalance problem. For this problem we change the IP formu-
lation (3.1) of Bennett et al. by replacing the decision variables by the level-intersections
representation.

Let u′i1,i2,...,iP = |L′1,i1 ∩ L
′
2,i2
∩ ... ∩ L′P,ip | for ip = 1, ..., kp, p = 1, ..., P . The level-

intersections decision variables are:
x′i1,i2,...,iP : the number of control samples selected from the (i1, i2, . . . , iP ) level intersection

L′1,i1 ∩ L
′
2,i2
∩ ... ∩ L′P,ip , for ip = 1, ..., kp, p = 1, ..., P .

The integer programming formulation is:
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min
P∑
p=1

kp∑
i=1

yp,i (3.4a)

s.t.

k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

x′i1,i2,...,iP − κ`p,i ≤ yp,i

p = 1, . . . , P ip = 1, ..., kp (3.4b)

κ`p,i −
k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

x′i1,i2,...,iP ≤ yp,i

p = 1, . . . , P ip = 1, ..., kp (3.4c)

k1∑
i1=1

...

kP∑
iP =1

x′i1,i2,...,iP = κn (3.4d)

0 ≤ x′i1,i2,...,iP ≤ u′i1,i2,...,iP p = 1, ..., P, ip = 1, ..., kp (3.4e)

x′i1,i2,...,iP integers p = 1, ..., P, ip = 1, ..., kp (3.4f)

This integer programming formulation has 2K decision variables and O(K) constraints,
and thus the algorithm that constructs it and solves it to optimality runs in FPT (K)
time. The optimal solution for this integer program encodes the optimal solution for min
κ-imbalance problem as shown in theorem 3.1.

The κ-FBS problem

For the κ-FBS problem we use an integer program with dimension O(K) that is based on
(IP-FBS) . Let ui1,i2,...,iP = |L1,i1 ∩L2,i2 ∩ ...∩LP,ip | and u′i1,i2,...,iP = |L′1,i1 ∩L

′
2,i2
∩ ...∩L′P,ip|

for ip = 1, ..., kp, p = 1, ..., P . The decision variables are:
xi1,i2,...,iP : the number of treatment samples selected from the (i1, i2, . . . , iP ) level inter-

section L1,i1 ∩ L2,i2 ∩ ... ∩ LP,ip , for ip = 1, ..., kp, p = 1, ..., P ;
x′i1,i2,...,iP : the number of control samples selected from the (i1, i2, . . . , iP ) level intersec-

tion L′1,i1 ∩ L
′
2,i2
∩ ... ∩ L′P,ip , for ip = 1, ..., kp, p = 1, ..., P .

The integer programming formulation is:
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max

k1∑
i1=1

k2∑
i2=1

· · ·
kp∑

iP =1

xi1,i2,...,iP (3.5a)

s.t. κ ·
k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

xi1,i2,...,iP =

k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

x′i1,i2,...,iP

p = 1, . . . , P ip = 1, ..., kp (3.5b)

0 ≤ xi1,i2,...,iP ≤ uc p = 1, ..., P, ip = 1, ..., kp (3.5c)

0 ≤ x′i1,i2,...,iP ≤ u′i1,i2,...,iP p = 1, ..., P, ip = 1, ..., kp (3.5d)

xi1,i2,...,iP , x
′
i1,i2,...,iP

integers p = 1, ..., P, ip = 1, ..., kp (3.5e)

.
Note that this integer programming formulation has 2K decision variables and O(K)

constraints, and thus the algorithm that constructs it and solves it to optimality runs in
FPT (K) time. The optimal solution for this integer program encodes the optimal solution
for κ-FBS as shown in theorem 3.2.

The κ-BM problem

Next consider the κ-BM problem. In Section 3.2, we describe an MCNF formulation when
the level intersection sizes s′i1,i2,...,iP for p = 1, ..., P and ip = 1, ..., kp are given. Observe that
if we treat the sizes s′i1,i2,...,iP for all p and ip as decision variables, then by enforcing the
integrality of these K variables and adding the constraints saying that

k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

s′i1,i2,...,iP = κ · `p,ip , ip = 1, ..., kp p = 1, . . . , P

forcing the κ-fine balance constraints to the MCNF formulation, we get a MILP formulation
of κ-BM with K integral variables. In fact if we restrict ourselves to a common integral
values of these K variables, then the other decision variables are integral as we argue next.
By considering the values of these K integral variables as constants, the resulting linear
programming formulation is in fact an MCNF LP formulation whose supply/demand vector
depends on the values of these K integral variables. Thus, the optimal solution for the MILP
is without loss of generality integral, and even if it does not satisfy this integral requirement
it can be transformed to another optimal solution that is integral in polynomial time.

Since the number of variables of the resulting mixed-integer program is at most n ·n′+K,
the number of integer variables is K, and the number of constraints is O(n ·n′), we conclude
that the algorithm that formulates this MILP and solves it to optimality guaranteeing that
the optimal solution is integral, runs in FPT (K) time.
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The MSBM and κ-MSBM problems

We know from Theorem 3.12 that the 1-covariate κ-MSBM problem for κ ≥ 3 is NP-hard
already if the unique covariate has only one level.

We consider next the MSBM problem. In Section 3.2, we describe an MCNF formulation
if all the level intersection sizes si1,i2,...,iP and s′i1,i2,...,iP are given. Observe that if we treat
si1,i2,...,iP and s′i1,i2,...,iP as decision variables, then by enforcing the integrality of these O(K)
variables and adding the constraints saying that

k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

si1,i2,...,iP =

k1∑
i1=1

...

kp−1∑
ip−1=1

kp+1∑
ip+1=1

...

kP∑
iP =1

s′i1,i2,...,iP , ip = 1, ..., kp p = 1, . . . , P

that is the fine balance constraints, in addition to the constraint saying that the sum over
all si1,i2,...,iP equals the objective function value of κ-FBS, to the MCNF formulation, we get
a MILP formulation of κ-MSBM with 2K integral variables. In fact if we restrict ourselves
to a common integral values of these 2K variables, then the other decision variables are
without loss of generality integral as well as we argue next. By considering the values of
these 2K integral variables as constants, the resulting linear programming formulation is in
fact a MCNF LP formulation whose supply/demand vector depends on the values of these
2K integral variables. Thus, the optimal solution for the MILP is without loss of generality
integral, and even if it does not satisfy this integral requirement it can be transformed to
another optimal solution that is integral in polynomial time.

Since the number of variables of the resulting mixed-integer program is at most n·n′+2K,
the number of integer variables is 2K, and the number of constraints is O(n ·n′), we conclude
that the algorithm that formulates this MILP and solves it to optimality guaranteeing that
the optimal solution is integral, runs in FPT (K) time.
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Chapter 4

Integer Programming Formulation
Inspired Approximation Schemes for
the Replenishment Storage Problem

The Replenishment Storage problem (RSP) arises in planning a periodic replenishment
schedule of multiple items so as to minimize the storage capacity required. The input to the
RSP consists of a multi-item inventory system where each item has deterministic demand,
a given reorder size and its own cycle length determined by its Economic Order Quantity.
Here the reorders can only take place at an integer time unit within the cycle. The problem
is to determine the timing of the first replenishment of each item within its cycle so that the
maximum inventory level of all items over time is minimized.

Time0 4 8

4

(a) Inventory level of item 1

Time0 1 3 5 7 8

2
1

(b) Inventory level of item 2

Time0 1 3 5 7 8

4
5

(c) Total inventory level

Figure 4.1: A geometric view of RSP

Geometrically, RSP can be viewed as a problem of shifting periodic triangle functions
and then packing them on top of each other so as to minimize the peak value required. To
illustrate that, Figure 4.1a is the triangles function for the inventory level of item 1, for which
the order quantity is 4 units and the cycle length is 4 periods. These correspond to the height
and the width of each triangle respectively. The replenishment timing of item 1 is at time
0. A second item, item 2, is shown in Figure 4.1b. It has order quantity of 2 units and cycle
length 2 and its replenishment timing is 1. With this selection of the replenishment timings
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the sum of the inventory levels of the two items is maximized at time 0 with a peak storage
level is 5, illustrated in Figure 4.1c. This peak storage level is also the smallest possible for
this RSP problem. We note that the peak storage level always coincides with the reorder
timing of one of the items.

Chapter Overview

The different variants of the RSP is introduced in Section 4.1, together with a review on
the related literature, and a summary of our result. Section 4.2 introduces notation, a
review of the known integer programming formulation of RSP and the derivation of our
new integer programming formulation. In Section 4.3 we prove the strong NP-hardness of
RSP for non-constant value of k (joint cycle length) and the weak NP-hardness of RSP for
constant value of k. These proofs apply for the complexity of both single-cycle RSP and
multi-cycle RSP. The weak NP-hardness of RSP for constant k (joint cycle length) is proved
here via a pseudo-polynomial time dynamic programming algorithm that solves the problem
optimally. This establishes that both single-cycle RSP and multi-cycle RSP with constant
joint cycle are weakly NP-hard. Then we first describe in Section 4.4 the new FPTAS for
the multi-cycle RSP for constant k, and next in Section 4.5 we describe the fixed-parameter
tractable FPTAS for the single-cycle RSP for constant k. Section 4.6 includes the new PTAS
for the single-cycle RSP with non-constant k. That section also provides a description of the
(1 + 2

k
)-approximation algorithm for single-cycle RSP of Hall [18]. We conclude with several

remarks in Section 4.7.

4.1 Variants of the RSP

An instance of RSP consists of n items. Each item i is associated with an integer individual
cycle length ki, and an integer reorder size si . Here si is expressed in terms of the storage
amount required for the reorder quantity. The joint cycle length of the n items is the least
common multiple (lcm) of the lengths ki, i = 1, . . . , n. We denote k = lcm(k1, . . . , kn). By
the cyclical nature of the problem, the total inventory levels repeat periodically every k units
of time for any reorder schedule. If all items have the same cycle time, k, the problem is
said to be single-cycle, otherwise it is said to be multi-cycle.

The continuous-time variant of RSP, referred to as continuous-RSP here, allows the
reorders (replenishment timing) to take place at any time within the cycle of each item.
The continuous-RSP has been studied extensively. We clarify here the complexity status of
the RSP and delineate the complexity gaps between it and the continuous variant of the
problem.

The single-cycle RSP was shown by Hall [18] to be NP-hard, even for constant k. Since
single-cycle RSP is a special case of multi-cycle RSP, it implies that multi-cycle RSP is
NP-hard, even for constant joint cycle length k. Here we prove that for non-constant k,
both single-cycle and multi-cycle RSP are strongly NP-hard. This matches the strongly NP-
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hardness of the continuous-RSP for the multi-cycle RSP with non-constant k, [13]. Prior
to our results here it was conceivable that the RSP for multi-cycle and non-constant k
could be easier than the continuous problem, if it were to be shown to be weakly NP-hard.
With the strong NP-hardness result here both discrete and continuous problems are of equal
complexity for this case.

For constant k, we provide here, for the first time, a pseudo-polynomial time algorithm
that solves RSP optimally, proving that both single-cycle RSP and multi-cycle RSP for
constant k are weakly NP-hard. Weakly NP-hard problems can have a Fully Polynomial Time
Approximation Scheme (FPTAS). Indeed, we devise for the single-cycle RSP a FPTAS. That
approximation scheme utilizes a newly introduced integer programming formulation of RSP.
This new formulation is of independent interest and is shown to be tighter that the known
integer program that has been used for RSP to date. For the strongly NP-hard single-cycle
RSP with non-constant k we devise a Polynomial Time Approximation Scheme (PTAS),
which is the best approximation possible for strongly NP-hard problems. Furthermore, for
a fixed parameter ε, that PTAS delivers an ε-approximate solution in linear time.

Our results narrow the complexity gap between the RSP and the continuous variant for
multi-cycle (with either constant or non-constant cycle length) and single-cycle with constant
cycle length. The single-cycle continuous-RSP is polynomial time solvable [30]. Hence, our
results widen the gap between single-cycle RSP and the single-cycle continuous variant with
non-constant cycle length. For the multi-cycle case, and constant joint cycle length, the
complexity status of continuous-RSP is open, whereas it is proved here that the RSP is
weakly NP-hard. A tabular summary of the complexity results here is provided in Table 4.1
and 4.2.

Related literature

Single-cycle RSP was shown to be NP-hard for k = 2 [18], which implies that both single-
cycle RSP and multi-cycle RSP are at least weakly NP-hard. Such proof however, does not
exclude the possibility that the problems are strongly NP-hard, and therefore the complexity
status of these two RSPs, as strongly NP-hard versus weakly NP-hard, has been unresolved
until now. Hall [18] provided an approximation algorithm for the single-cycle RSP, with
an approximation factor of

(
1 + 2

k

)
. (Another algorithm provided by Hall in [18] delivers

a 2-approximation, which is observed here to be satisfied by any feasible solution.) The
(1 + 2

k
)-approximation algorithm is of particular interest as it is a part of the PTAS we

derive for the single-cycle RSP with non-constant k. That algorithm links the continuous
and discrete problems by rounding (down) the fractional values of the closed form solution
to the respective continuous problem. A complete description of this (1 + 2

k
)-approximation

algorithm is given in Section 4.6.
For multi-cycle RSP with only two items, Murthy, Benton, and Rubin [40] provided an

optimal closed-form replenishment solution, meaning that it is solved in constant time.
Studies of multi-cycle RSP with more than two items have been focused on the develop-

ment of heuristics. These include genetic algorithms [38, 60], a smoothing procedure utilizing
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a Boltzmann function [61], local-search procedures [10], a simulated-annealing algorithm [4]
and a hybrid heuristic [4, 49]. None of these heuristics were shown to deliver a guaranteed
approximation bound.

The continuous single-cycle RSP was first explicitly studied by Homer [30], who derived
an optimal closed form solution. Later, Page and Paul [42], and Zoller [62] independently
rediscovered Homer’s result. Hartley and Thomas [20] considered the continuous-time multi-
cycle RSP with only two items and devised an optimal closed-form solution. For multi-item
multi-cycle continuous-RSP, the problem was proved to be strongly NP-complete for non-
constant cycle lengths [13]. Anily [2], Hariga and Jackson [19] obtained lower bounds on
the minimum peak storage required and proposed heuristics for multi-cycle continuous-RSP.
Teo, Ou, and Tan [54] addressed multi-cycle continuous-RSP when for all pairs of individual
cycle lengths, (ki, kj), the larger value is an integer multiple of the smaller value. For the
problem with this integer-ratio cycles’ lengths assumption, they devised a heuristic which is
a 15

8
-approximation algorithm.
Continuous-RSP was used as a subproblem for the problem of identifying optimal cycle

lengths and replenishment schedule for multi-items so as to minimize the order and inventory
holding costs without exceeding a given storage capacity. In this latter problem each item
is associated with a unit holding cost and an order cost. Under the assumption of identical
cycles, an optimal closed form solution was derived from the closed form solution to the
replenishment schedule for single-cycle continuous-RSP [30, 42, 62]. For this problem with
non-identical cycles and only two items, a similar approach resulted in a closed form solution
generated from the continuous-RSP closed form solution [20, 55].

A summary of the relevant known results for continuous and discrete RSP is given in
Table 4.1 for non-constant k, and Table 4.2 for constant k. These tables include also our
contributions here.

Continuous-RSP RSP (previous) RSP (here)
2 items Closed-form solution [20] Closed-form [40]
single-cycle Closed-form solution [30, 42, 62] (1 + 2/k)-approximation [18] Strongly NP-hard & PTAS
multi-cycle Strongly NP-hard [13] NP-hard [18] Strongly NP-hard

Table 4.1: Summary of complexity results for the RSP and a continuous-time variant with
non-constant joint cycle length.

Summary of Contributions

Our main contributions on the RSP are:

1. Resolving the complexity status of RSP: We prove that for non-constant joint cycle
length k the RSP is strongly NP-hard, whether single-cycle or multi-cycle. In contrast,
for constant joint cycle length k we show that the problem is weakly NP-hard and
provide a pseudo-polynomial time optimization algorithm with complexity that is a
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Continuous-RSP RSP (previous) RSP (here)

single-cycle
Complexity Polynomial NP-hard [18] Weakly NP-hard

Algorithm
Closed-form solution (1 + 2/k)-approximation Pseudo-poly optimization algorithm
[30, 42, 62] [18] & FPTAS (fixed-parameter tractable)

multi-cycle
Complexity Open NP-hard [18] Weakly NP-hard
Algorithm Pseudo-poly optimization algorithm

& FPTAS

Table 4.2: Summary of complexity results for the RSP and a continuous-time variant with
constant joint cycle length.

polynomial function of the sum of the order sizes si and is exponential in the joint
cycle length k. These results demonstrate that for non-constant k both the RSP and
the continuous-RSP are strongly NP-hard, and in that closes the gap between these
two problems. This provides extra evidence to support the conjecture that the RSP
can only be harder than the continuous variant. For constant k the continuous-RSP
is polynomial for the single-cycle case and of unknown complexity for the multi-cycle
case. From our results the problem is weakly NP-hard for both the single and multi-
cycle cases which, if our conjecture is true, implies that the continuous-RSP for the
multi-cycle case cannot be strongly NP-hard.

2. Identifying a new innovative IP formulation for RSP. This formulation enables the
derivation of the three approximation schemes listed below for the RSP.

3. Devising the first known FPTAS for, the weakly NP-hard, multi-cycle RSP with con-
stant k.

4. Devising the first known fixed-parameter tractable FPTAS for, the weakly NP-hard,
single-cycle RSP in terms of parameter k.

5. Devising the first known polynomial time approximation scheme (PTAS) for, the
strongly NP-hard, single-cycle RSP with non-constant k.

A summary of our results for RSP as compared to the best previously known results is
given in the two tables: Table 4.1 for RSP with non-constant joint cycle length k, and Table
4.2 for RSP with constant joint cycle length k.

4.2 Preliminaries and Integer Programming

Formulations

Given an instance of RSP, the demand rates and inventory levels are given in terms of the
respective reorder size: for item i, the demand per unit of time is si

ki
, and its inventory levels

at each replenishment cycle of ki time units starting at time T , (T + 0, T + 1, . . . , T +ki−1),



CHAPTER 4. INTEGER PROGRAMMING FORMULATION INSPIRED
APPROXIMATION SCHEMES FOR THE REPLENISHMENT STORAGE PROBLEM52

are (si,
ki−1
ki
si,

ki−2
ki
si, . . . ,

1
ki
si). The inventory level of item i on time `, given that it is re-

ordered on time j, is denoted by Vij`. Thus Vij` = si ·
(

1− (`−j) mod ki
ki

)
.

Recall that since k = lcm(k1, . . . , kn), the inventory levels are periodic within a cycle of
k time units (repeat every k time units). It is therefore sufficient to determine the peak
storage requirement by examining a time interval of length k. In this interval, we only need
to look at discrete time values from 1 to k for that peak storage always coincides with the
reorder timing of an item. Note that inventory level at time 0 is the same as inventory level
at time k.

The decision variables in the integer programming formulations are the assignments of
time periods within the k-unit time frame to the orders of all items. This assignment of
timing is given as an n× k binary matrix x where

xij =

{
1 if item i is ordered at time j,
0 otherwise.

Definition 4.1. A n×k binary matrix x is said to be a valid assignment for a given instance
if and only if each item i is replenished exactly once every ki time units. That is,∑ki

j=1 xij = 1 i = 1, . . . , n, and xij = xi,(j−ki) i = 1, . . . , n, j = ki + 1, . . . , k.

The following listed notations denote demand rates, inventory levels, the total sum of
reorder sizes at an integer time and the optimal peak storage:
di = si

ki
: demand rate of item i for i = 1, ..., n.

D =
∑n

i=1 di =
∑n

i=1
si
ki

: total demand (aggregate stock depletion) per unit of time.

Vij` = si ·
(

1− (`−j) mod ki
ki

)
: the inventory level of item i at time ` given that the reorder

time is j.
V`(x) =

∑n
i=1

∑ki
j=1 Vij`xij: the inventory level at time ` for ` = 1, ..., k.

V (x) = max`∈{1,..,k} V`(x): the maximum inventory level (peak storage) of a cycle.
Qj(x) =

∑n
i=1 sixij: the total sum of reorder sizes at time j for j = 1, ..., k.

V ∗ = minx valid V (x): the optimal peak inventory level.
Let the following quantity, which is a constant, be denoted by C: C =

∑n
i=1

1
2
(1 + 1

ki
)ksi +

(1+k)k
2

D. This quantity is used in deriving the new formulation and the FPTAS.

It is observed next that the peak inventory level for any valid assignment x is within
twice the optimum. Hence, any replenishment schedule is a 2-approximate solution:

Lemma 4.1. Any valid assignment x is a 2-approximate solution.

Proof. At time `, for ` = 1, . . . , k, the inventory level of all items is V`(x) =
∑n

i=1

∑ki
j=1 Vij`xij.

Since Vij` = si ·
(

1− (`−j) mod ki
ki

)
≤ si,

V`(x) ≤
n∑
i=1

ki∑
j=1

sixij =
n∑
i=1

(
si

ki∑
j=1

xij

)
=

n∑
i=1

si.
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Hence the storage capacity needed is less than or equal to
∑n

i=1 si.
On the other hand, the average inventory level of item i per time unit is 1

2
(1 + 1

ki
)si for

any i. So the aggregated average inventory level of all items per time unit is 1
k

∑k
`=1 V`(x) =∑n

i=1
1
2
(1 + 1

ki
)si >

∑n
i=1

1
2
si. The peak inventory level is at least as much as this aggregated

average inventory level, thus, V ∗ ≥ 1
2

∑n
i=1 si.

Consequently, V (x) ≤
∑n

i=1 si ≤ 2V ∗, which means that x is a 2-approximate solution.

The standard integer programming formulation:
We present next a straightforward formulation of RSP was used in previous studies

[40, 4, 49]. Let the binary variables yij be,

yij =

{
1 if item i is ordered at time j
0 otherwise

for i = 1, ..., n, j = 1, ..., ki.

Note that variables yij coincide with variables xij, that are defined for k time periods, within
the first ki time periods of a single cycle. In that sense the Yi variables are a projection of
the xij variables on the first ki periods.

Let Vij` be parameters defined as above, Vij` = si

(
1− (`−j) mod ki

ki

)
. The standard

integer programming formulation (RSP0) is as follows:

(RSP0) min V

subject to
∑n

i=1

∑ki
j=1 Vij`yij ≤ V ` = 1, . . . , k∑ki

j=1 yij = 1 i = 1, . . . , n

yij binary for i = 1, ..., n, j = 1, .., ki.

A New Integer Programming Formulation

We observe that formulation (RSP0) has multiple solutions of the same value. Specifically,
for any valid assignment that attains the peak storage at day ` there are k − 1 other valid
assignments of the same objective value that attain the maximum storage on any day other
than `. For example, to attain the peak storage at day ` + 1 we shift the reorder by one
day forward. Our new formulation requires that any feasible assignment attains its peak
storage at time k (or equivalently, at time 0). This is proved to be possible with “shift”-
permutations in Lemma 4.2. Another aspect of the new formulation is that instead of dealing
with inventory levels directly, as in (RSP0), the new formulation uses, as the main variables,
the total reorder size at time j, Qj(x) =

∑n
i=1 sixij for j = 1, ..., k. Lemma 4.3 and Lemma

4.4 establish the relationship between inventory levels and reorder sizes.

Lemma 4.2. For any valid assignment x there is a shift-permutation of 1, . . . , k, denoted
by π(1), . . . , π(k), such that the valid assignment x′ with x′ij = xiπ(j), attains peak inventory
level at time k, and this new peak inventory level equals the peak inventory level of assignment
x. That is, Vk(x

′) = V (x′) = V (x).
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Proof. Suppose the peak storage for assignment x is attained at time h, Vh(x) = V (x).

For the following shift-permutation, π(j) =

{
(j + h), if j + h ≤ k

(j + h)− k, if j + h > k
, the assignment

x′ with x′ij = xiπ(j) is a new valid assignment which is h time units shifted back in time as
compared to x. In other words, the inventory levels induced by the new assignment x′ form
a shift permutation of the original sequence of inventory levels, Vj(x

′) = Vπ(j)(x). Therefore
the peak inventory levels of the two assignments are the same, and Vk(x

′) = Vπ(k)(x) =
Vh(x) = V (x).

With Lemma 4.2, we can restrict valid assignments to those attaining peak inventory level
at time k without changing the optimal solution of RSP. Hence, RSP can also be formulated
as minimizing the inventory level at time k such that the schedule is a valid assignment that
attains peak inventory level at time k, which can be written as V`(x) ≤ Vk(x) for ` = 1, ..., k.

Next we show, in Lemma 4.3, that for any valid assignment x, the inventory level of time
` can be determined based only on Qj(x), the total amount ordered at time j, the inventory
level at time k, Vk(x), and on D, the total sum of demand rates of all items:

Lemma 4.3. For any valid assignment x,

V`(x) = Vk(x)− `D +
∑̀
j=1

Qj(x), ` = 1, .., k (4.1)

Proof. Each unit of time, item i’s inventory is reduced by its demand rate di, and the total
inventory level is reduced by D =

∑n
i=1 di. Since Qj(x) =

∑n
i=1 sixij is the reorder size at

time j, the inventory level at time j is Vj(x) = V
(j−1) mod k

(x) − D + Qj(x). Note that

inventory level at time 0 is the same as inventory level at time k by the cyclical nature of
RSP. For any integer time `, we apply this equation recursively with j = `, ` − 1, ..., 1 to
derive that, V`(x) = Vk(x)− `D +

∑`
j=1 Qj(x).

Lemma 4.2 shows that we can formulate RSP as minimizing the inventory level at time k
such that the schedule is a valid assignment. A consequence of this lemma is that inequalities
V`(x) ≤ Vk(x) for ` = 1, ..., k can be rewritten using equations (4.1) in Lemma 4.3 as:

Vk(x) ≥ Vk(x)− `D +
∑`

j=1 Qj(x) for ` = 1, . . . , k

or equivalently, ∑̀
j=1

Qj(x) ≤ `D for ` = 1, .., k (4.2)

We refer to this set of inequalities (4.2) as the cascading constraints. These constraints
enforce the peak storage at time k.



CHAPTER 4. INTEGER PROGRAMMING FORMULATION INSPIRED
APPROXIMATION SCHEMES FOR THE REPLENISHMENT STORAGE PROBLEM55

Next we address the objective function. Let z(x) be the following function of a valid
assignment x:

z(x) =
k∑
j=1

(k − j + 1)Qj(x) =
k∑
j=1

(k − j + 1)
n∑
i=1

sixij.

In the next lemma we prove that minimizing the inventory level of time k, Vk(x), is equivalent
to maximizing z(x). This is proved by showing that the sum of kVk(x) and z(x) is a constant,
the constant C defined earlier.

Lemma 4.4. kVk(x) + z(x) =
∑n

i=1
1
2
(1 + 1

ki
)ksi + (1+k)k

2
D.

Proof. For item i, the sum of storage space it takes up during its ki time units of reorder
cycle is

∑ki
j=1

ki+1−j
ki

si = 1
2
(1 + 1

ki
)kisi. There are k

ki
reorder cycles for item i during the time

frame of length k so item i takes a total of 1
2
(1 + 1

ki
)ksi units storage space. The sum of

all items’ inventory levels over the k integer times is hence
∑k

`=1 V`(x) =
∑n

i=1
1
2
(1 + 1

ki
)ksi.

Using formula (4.1) in the statement of Lemma 4.3,
∑k

`=1 V`(x) can be re-written as:

k∑
`=1

V`(x) =
k∑
`=1

(
Vk(x)− `D +

∑̀
j=1

Qj(x)

)

= kVk(x)− (1 + k)k

2
D +

k∑
j=1

(k − j + 1)Qj(x)

= kVk(x)− (1 + k)k

2
D + z(x).

It follows that,

kVk(x) + z(x) =
k∑
`=1

V`(x) +
(1 + k)k

2
D =

n∑
i=1

1
2
(1 +

1

ki
)ksi +

(1 + k)k

2
D,

and the right hand side is a constant for every problem instance.

From Lemma 4.4 it follows that minimizing V (x) can be replaced by maximizing z(x).
This, with the cascading constraints lead to the new integer programming formulation (RSP).
For presentation simplicity we use Qj(x) =

∑n
i=1 sixij:

(RSP) max z(x) =
∑k

j=1(k − j + 1)Qj(x)

subject to
∑`

j=1Qj(x) ≤ `D ` = 1, .., k∑ki
j=1 xij = 1 i = 1, . . . , n

xij = xi,(j−ki) i = 1, . . . , n, j = ki + 1, . . . , k
xij binary for i = 1, ..., n, j = 1, .., ki.
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A Graphical Visualization of (RSP)

To provide the intuition behind the cascading constraints and objective function z(x) of
(RSP) we present a graphical illustration in Fig 4.2. In the example illustrated we let the
cycle length be k = 4. In Figure 4.2a, there are k = 4 columns with heights `D for time
` = 1, ..., k, which represent the right hand sides of the cascading constraints.

In Figure 4.2b, there is a rectangle with height Q1(x) that extends from day 1 to day
k. A second rectangle with height Q2(x) is stacked on the first rectangle, extending from
day 2 to day k. The third rectangle of height Q3(x) extends from day 3 to day k, and the
last, fourth, rectangle of height Q4(x) extends only over time period (day) k = 4. With this
construction, the sum of heights of all rectangles within the column corresponding to time `
is exactly the left hand side of the `th cascading constraint,

∑`
j=1 Qj(x).

The area of the first rectangle is kQ1(x), the second is (k − 1)Q2(x), and in general, the
jth rectangle covers an area of (k+1− j)Qj(x). Therefore, the sum of areas of all rectangles

is z(x) =
∑k

j=1(k − j + 1)Qj(x), which is the objective function of (RSP).
Therefore, geometrically, (RSP) seeks to find the valid assignment x that maximizes the

area of the rectangles representing Qj(x)’s, subject to the constraints that the total height
of the rectangles in column ` does not exceed the column height `D.

We call the area not covered in each column, the remainder. The remainders are the
spaces between the column heights in Figure 4.2 and the packed rectangles of area z(x).
Obviously minimizing those is identical to maximizing z(x), since the total area of the

remainders plus the area covered by the rectangles z(x) is a constant,
∑k

`=1 `D = (k+1)kD
2

.
It is important to observe that the area of the remainders is not fully available for additional
items. That is because if an item j is added to the reorder in day p(j), its size sj will diminish
not only the remainder on day p(j) but also on days p(j) + 1, . . . , k. Instead, the critical
form of remainders are the adjusted remainders defined in Section 4.5, which are added to
the objective function z(x) for the derivation of the FPTAS for the single-cycle RSP.

Index `

D

2D

3D

4D

1 2 3 4(k)

(a)

Index `

D

2D

3D

4D

1 2 3 4(k)

Q1(x)

Q2(x)

Q3(x)

Q4(x)

(b)

Figure 4.2: A graphical visualization of formulation (RSP).
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Comparing the New and Standard Formulations, (RSP) and (RSP0)

As noted before, (RSP) removes multiple optima that differ in the ordering present in (RSP0),
and always selects an optimal solution with peak storage attained at time k. In that sense
any solution to (RSP) and its LP-relaxation is contained in the set of feasible solutions to
(RSP0) or its LP-relaxation. Yet there are other features on which the two problems differ.
The new presentation of the problem as a maximization problem opens up the option, when
there are multiple solutions to (RSP), of selecting the solution that minimizes the “adjusted
remainders”, a concept described in Section 4.5, which is crucial in the derivation of the
FPTAS and the PTAS for the single-cycle RSP. A key result shown in Section 4.5 is that the
optimal solution to the new integer programming formulation when the sum of the adjusted
remainders is added to the objective, is “close” to the optimal solution.

Another difference between the two formulations is the form of the constraints’ matrix
coefficients. The coefficients of binary variables in the constraints of (RSP0) vary for each
i, j, `, as the coefficient Vij` follows the triangular line. By contrast, in the cascading con-
straints of (RSP) the coefficients of binary variable xij can only be 0 or si for each i, j` as
they represent the packing of rectangles. For single-cycle RSP, the coefficients of xij in (RSP)
are all 0 in the first j − 1 cascading constraint and all si for the remaining ones. We believe
that as a result, the LP-relaxation of (RSP0) is likely to have more fractional variables in an
optimal solution than the LP-relaxation of (RSP)

4.3 The Complexity of RSP for Constant and

Non-constant Joint Cycle Length

RSP has been known to be NP-hard for both the single-cycle and multi-cycle versions and
for either constant or non-constant joint cycle length k [18]. We show in this section that
for constant k both the single-cycle RSP and multi-cycle RSP are actually weakly NP-hard.
We derive for both problems a pseudo-polynomial time algorithm that solves these problems
optimally. For non-constant k we show here that both the single-cycle RSP and multi-cycle
RSP are strongly NP-hard (and hence there cannot be a pseudo-polynomial time algorithm
for non-constant k unless NP=P). We first prove the strong NP-hardness for non-constant
k.

Non-constant Joint Cycle RSP is Strongly NP-hard

The single-cycle RSP is a special case of multi-cycle RSP. It is therefore sufficient to prove
that the non-constant joint cycle length, single-cycle RSP is strongly NP-hard, as that would
imply that the multi-cycle RSP is also strongly NP-hard for k non-constant. The reduction
is from the 3-Partition problem, a well-known strongly NP-hard problem [14].
3-Partition: Given integers a1, a2, . . . , a3m, and integer b such that 1

4
b < ai <

1
2
b for each i
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and
∑3m

i=1 ai = mb. Can {1, 2, . . . , 3m} be partitioned into m disjoint sets A1, A2, . . . , Am
such that, for 1 ≤ j ≤ m,

∑
i∈Aj

ai = b?

Theorem 4.1. The single-cycle RSP with non-constant joint cycle length is strongly NP-
hard.

Proof. Given an instance of 3-Partition, we define an instance of single-cycle RSP with
n = 3m, k = m, and si = ai for 1 ≤ i ≤ 3m. The decision problem for RSP is stated
as: Is there a valid assignment x with peak inventory level that is less than or equal to
V = 1+m

2m

∑3m
i=1 ai?

We observe that the sum of inventory levels at integer times over a cycle equals
∑3m

i=1(1+
m−1
m

+ . . .+ 1
m

)ai =
∑3m

i=1
m+1

2
ai = mV . Having

∑k
`=1 V`(x) = mV , the peak inventory level

max` V`(x) ≤ V is equivalent to V`(x) = V for all `. This means that the inventory levels
at all integer time units are the same. From Lemma 4.3 it follows that V1(x) = V2(x) =
. . . = Vm(x) if and only if Q1(x) = Q2(x) = . . . = Qm(x) = D, where D =

∑3m
i=1

ai
m

= b.
Let Aj = {i|xij = 1}, j = 1, . . . ,m, then Qj(x) =

∑n
i=1 aixij =

∑
i∈Aj

ai. Therefore the
decision problem corresponding to single-cycle RSP has a ‘yes’ answer if and only if there is
a partition Aj, j = 1, . . . ,m, such that

∑
i∈Aj

ai = b for 1 ≤ j ≤ m.

Constant Joint Cycle Length RSP is Weakly NP-hard

We prove the weak NP-hardness of the RSP with constant k by devising a dynamic pro-
gramming algorithm solving RSP optimally in pseudo-polynomial time. The complexity of
this dynamic programming algorithm depends on the value of the order sizes (rather than
the length/logarithm of these sizes) and is exponential in k. Such complexity is considered
pseudo-polynomial for constant k. Since both the single-cycle RSP and the multi-cycle RSP
with constant k are NP-hard [18], the existence of such an algorithm implies that the RSP
with constant joint cycle length k is weakly NP-hard for both single-cycle and multi-cycle.

The dynamic programming algorithm presented in this paper is associated with the in-
teger programming formulation (RSP). It is also possible to devise a dynamic programming
algorithm of the same complexity based on the standard formulation (RSP0). We comment
however that in order to generate the FPTAS for the single-cycle RSP, presented later, it is
essential to use the dynamic programming procedure that is based on (RSP).

For h an integer such that 0 ≤ h ≤ n, let xh denote the assignment of reorders for the
first h items. Let the function fh(q1, q2, ..., qk) be the maximum of z(xh) with the cumulative
reorder sizes at time ` being restricted to less than or equal to q` for ` = 1, ..., k. Here,
(q1, . . . , qk) is an integer array with q` ∈ [0, `D]. Formally,
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fh(q1, q2, ..., qk) = max
∑k

j=1(k − j + 1)Qj(x
h)

subject to
∑`

j=1 Qj(x
h) ≤ q` ` = 1, .., k∑ki

j=1 xij = 1 i = 1, . . . , h

xij = xi(j−ki) i = 1, . . . , h, j = ki + 1, . . . , k
xij binary for i = 1, ..., h, j = 1, .., ki,

where Qj(x
h) =

∑h
i=1 sixij. We set fh(q1, q2, ..., qk) = −∞ if the above integer programming

problem is infeasible. The optimal solution being sought is fn(D, 2D, ..., kD).
The values of the function fh(q1, q2, ..., qk) are evaluated for every h = 1, ..., n and any

integer array (q1, . . . , qk), where qj ∈ [0, jD], with a dynamic programming recursion. The
boundary conditions are f0(q1, q2, . . . , qk) = 0 for any (q1, q2, . . . , qk). The recursive derivation
of fh(q1, q2, . . . , qk) from fh−1(·) requires to determine the timing to replenish item h within
the first kh time units so as to maximize the objective

∑k
j=1(k − j + 1)Qj(x

h).
To see how the recursion works we split the objective function into the terms involving

item h and the terms involving items 1, . . . , h− 1:

k∑
j=1

(k − j + 1)Qj(x
h) =

k∑
j=1

(k − j + 1)shxhj +
k∑
j=1

(k − j + 1)Qj(x
(h−1)) (4.3)

If time τ , for 1 ≤ τ ≤ kh, is selected to be the first reorder timing of item h, the following
reorder timings of item h are τ + kh, τ + 2kh, ..., τ + ( k

kh
− 1)kh. The first part of (4.3) is then

k∑
j=1

(k − j + 1)shxhj =

k/kh−1∑
t=0

(k + 1− τ − tkh)sh =

(
k + kh

2
+ 1− τ

)
k

kh
sh.

Let q′`(τ) = q` −
∑`

j=1 shxhj = q` − b `−τ+kh
kh
csh, the second term in (4.3),

∑k
j=1(k − j +

1)Qj(x
(h−1)), has a maximum of fh−1(q′1(τ), ..., q′k(τ)) if q′`(τ) ≥ 0 for all `, and minus infinity

otherwise.
The recursive equation, using the notation q′`(τ) = q` − b `−τ+kh

kh
csh, is:

fh(q1, q2, ..., qk) =

{
maxτ=1,...,kh{

(
k+kh

2 + 1− τ
)
k
kh
sh + fh−1(q′1(τ), ..., q′k(τ))}, if q′`(τ) ≥ 0 for all `

−∞ otherwise.

All function values are evaluated recursively for h = 1, ..., n and for all integer values of
(q1, . . . , qk), where each qj ∈ [0, jD] and qj integer. Each function evaluation is associated
with a choice of τ(h), which is the timing of the replenishment of item h within the kh cycle.
The optimal objective value is then fn(D, 2D, ..., kD).

To recover the optimal valid assignment we record the choices of the replenishment tim-
ings within the k cycle, for each function value evaluation.
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Since there are O(n) possible values of h and O(`D) possible values of q` for each 1 ≤
` ≤ k, the total number of function evaluations is O(n ·1D ·2D · ... ·kD) = O(n ·k!Dk). Each
evaluation for item h enumerates the O(kh) choices of τ , and for each choice τ , it takes O(k)
to compute q′1(τ), ..., q′k(τ). Therefore, the run time of this dynamic programming procedure
is O(k2 · k!Dk · n), which is O(nDk) for constant k. This complexity is pseudo-polynomial
and hence RSP is weakly NP-hard for constant k. This weak NP-hardness applies for both
the single-cycle RSP and the multi-cycle RSP problems.

4.4 A fully polynomial-time approximation scheme

for the multi-cycle RSP with constant joint cycle

length

In this section, we establish the first known FPTAS for the multi-cycle RSP for constant
joint cycle length. We derive a family of (1+ε′)-approximation algorithms for the multi-cycle
RSP for every ε′ > 0. The (1 + ε′)-approximation algorithm works by applying the dynamic
programming algorithm in Section 4.3 with scaled reorder sizes with scaling factor T . We
show in this section that the output of the dynamic programming algorithm using the scaled
sizes is within a factor of 1 + ε′ of the optimal solution. The run time of this approximation
algorithm is polynomial in n and 1

ε′
, and hence this family of algorithms is a fully polynomial

approximation scheme.
The (1 + ε′)-approximation solves a modified RSP, (scaled-RSP), in which the order sizes

are scaled by a factor T . The scaled problem is solvable using the dynamic programming
procedure of Section 4.3 and the solution of it is a valid assignment that has objective
function value close to the optimal value of (RSP).

The scaling of (RSP), (scaled-RSP)

For any ε′ > 0, we let ε = ε′/2 and we scale the reorder sizes by the factor T = εD
kn

as follows.
Let s′i = b si

T
c be the scaled sizes of items i = 1, ..., n and D′ = D

T
be the scaled demand. Let

Q′j(x) and z′(x) denote the “scaled” replenishment sizes at time j and the objective function

for the scaled sizes s′i: Q
′
j(x) =

∑n
i=1 s

′
ixij, j = 1, .., k; z′(x) =

∑k
j=1(k − j + 1)Q′j(x).

The scaled problem (scaled-RSP) is formulated as follows:

(scaled-RSP) max z′(x) =
∑k

j=1(k − j + 1)Q′j(x)

subject to
∑`

j=1Q
′
j(x) ≤ `D′ ` = 1, .., k∑ki

j=1 xij = 1 i = 1, . . . , n

xij = xi,(j−ki) i = 1, . . . , n, j = ki + 1, . . . , k
xij binary for i = 1, ..., n, j = 1, .., ki.
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The optimal solution for (scaled-RSP) is found by applying the dynamic programming
procedure in Section 4.3 with scaled sizes D′ and s′1, . . . , s

′
n.

The running time of finding the optimal solution for (scaled-RSP) with the dynamic

programming procedure, is O(nD′k) = O(n
k+1

εk
).

Next we define the (ε-relaxed RSP) and then prove that any feasible solution for (scaled-
RSP), including x̂, is feasible for (ε-relaxed RSP).

The ε-relaxed RSP

The (ε-relaxed RSP) formulation allows the cascading constraints to be violated by up to
εD as follows:

(ε-relaxed RSP) max z(x) =
∑k

j=1(k − j + 1)Qj(x)

subject to
∑`

j=1Qj(x) ≤ `D + εD ` = 1, .., k∑ki
j=1 xij = 1 i = 1, . . . , n

xij = xi,(j−ki) i = 1, . . . , n, j = ki + 1, . . . , k
xij binary for i = 1, ..., n, j = 1, .., ki.

We refer to the constraints
∑`

j=1Qj(x) ≤ `D + εD as the ε-relaxed cascading constraints.
We next show that the effect of the ε-relaxed cascading constraints on the optimal solution
is at most εD.

Lemma 4.5. The peak inventory level of any feasible solution x to (ε-relaxed RSP) is at
most Vk(x) + εD.

Proof. Any feasible solution x for (ε-relaxed RSP) is a valid assignment, so Lemma 4.3 ap-

plies. That is, V`(x) = Vk(x) +
(∑`

j=1Qj(x)− `D
)

for ` = 1, ..., k. The ε-relaxed cascading

constraints state that
∑`

j=1Qj(x) − `D ≤ εD for all `. So when x is a feasible solution of
(ε-relaxed RSP), V`(x) ≤ Vk(x) + εD for all `, and hence, V (x) = max` V`(x) ≤ Vk(x) + εD.

The next lemma proves that any feasible solution for (scaled-RSP), including x̂, is feasible
for (ε-relaxed RSP).

Lemma 4.6. Any assignment x that is feasible for (scaled-RSP) is feasible for (ε-relaxed
RSP).

Proof. In both problems x is required to be a valid assignment. It remains to show that x
satisfies the ε-relaxed cascading constraints, that is,

∑`
j=1Qj(x) ≤ `D + εD for ` = 1, .., k.

By definition, s′i = b si
T
c. So si < T (s′i + 1) and thus,

∑̀
j=1

Qj(x) =
∑̀
j=1

n∑
i=1

sixij ≤
∑̀
j=1

n∑
i=1

T (s′i + 1)xij = T

(∑̀
j=1

n∑
i=1

s′ixij +
∑̀
j=1

n∑
i=1

xij

)
. (4.4)
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Since x is feasible for (scaled-RSP) and D′ = D
T

,∑̀
j=1

n∑
i=1

s′ixij =
∑̀
j=1

Q′j(x) ≤ `D′ =
`D

T
. (4.5)

For ` = 1, ..., k, ∑̀
j=1

n∑
i=1

xij ≤
k∑
j=1

n∑
i=1

xij ≤ kn (4.6)

Hence from inequalities (4.10), (4.11) and (4.12),∑̀
j=1

Qj(x) ≤ T

(
`D

T
+ nk

)
= `D + Tkn = `D + εD.

Using the relationship between reorder sizes si and the scaled sizes s′i, we show that for
any feasible solution of (scaled-RSP), x, the objective with original sizes z(x) =

∑k
j=1(k −

j + 1)Qj(x) is closely approximated by the objective with scaled sizes z′(x) =
∑k

j=1(k− j +
1)Q′j(x), corrected for the scaling factor T :

The approximation property of the solution to (scaled-RSP)

Lemma 4.7. For any assignment of items x feasible for (scaled-RSP), the values of the
objective function with original and scaled sizes, z(x) and z′(x) respectively, satisfy,

Tz′(x) ≤ z(x) ≤ Tz′(x) + εkD.

Proof. Recall that s′i = b si
T
c, so Ts′i ≤ si < T (s′i + 1). We derive the lower bound on z(x) as

follows:

z(x) =
k∑
j=1

(k − j + 1)Qj(x)

=
k∑
j=1

(k − j + 1)
n∑
i=1

sixij

≥ T ·
k∑
j=1

(k − j + 1)
n∑
i=1

s′ixij

= T ·
k∑
j=1

(k − j + 1))Q′j(x)

= Tz′(x). (4.7)
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The upper bound on z(x) can be derived as follows:

z(x) =
k∑
j=1

(k − j + 1)Qj(x)

=
k∑
j=1

(k − j + 1)
n∑
i=1

sixij

≤ T ·
k∑
j=1

(k − j + 1)
n∑
i=1

(s′i + 1)xij

= T ·

[
k∑
j=1

(k − j + 1)Q′j(x) +
k∑
j=1

(k − j + 1)
n∑
i=1

xij

]
≤ Tz′(x) + Tk2n

= Tz′(x) + εkD. (4.8)

Lemma 4.7 leads to the following lower bound on z(x̂) for x̂ being an optimal solution of
(scaled-RSP):

Theorem 4.2. For any feasible solution x of (RSP), z(x̂) ≥ z(x)− εkD.

Proof. By Lemma 4.7, we know z(x̂) ≥ Tz′(x̂). Since any feasible solution of (RSP), x, is
also feasible for (scaled-RSP), we use the upper bound of z(x) from Lemma 4.7 to get:

Tz′(x) ≥ z(x)− εkD.

Because x̂ is optimal for (scaled-RSP), it follows that z′(x̂) ≥ z′(x). Combining the three
inequalities, we get

z(x̂) ≥ Tz′(x̂) ≥ Tz′(x) ≥ z(x)− εkD.

Consequently, the optimal solution x̂ for (scaled-RSP) attains a objective value z(x̂) that
is at least as much as the optimal objective of (RSP) minus εkD.

The (1 + ε′)-approximation bound

From the discussion above, we know that the optimal solution for (scaled-RSP) x̂ is a valid
assignment whose inventory levels at time k approximates that maximum inventory level,
and the value z(x) approximates the optimal objective value of (RSP). We will prove here
that x̂ is an (1 + ε′)-approximation solution for ε′ = 2ε and any ε > 0.
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Theorem 4.3. The optimal solution x̂ for (scaled-RSP) is a (1 + ε′)-approximation solution
for the RSP.

Proof. Assignment x̂ is valid as it is feasible for (scaled-RSP). So we just need to prove the
approximation factor for the peak inventory level.

Let x∗ be an optimal solution of (RSP), and V ∗ the corresponding peak inventory level.
As stated in Theorem 4.2, z(x̂) ≥ z(x)−εkD for any x that is feasible of (RSP), including

x∗. From Lemma 4.4, the inventory levels at time k for x̂ and x∗ are Vk(x̂) = C
k
− z(x̂)

k
and

Vk(x
∗) = C

k
− z(x∗)

k
respectively. Therefore,

Vk(x̂) =
C

k
− z(x̂)

k
≤ C

k
− z(x∗)

k
+
εkD

k
= Vk(x

∗) + εD.

From Lemma 4.5 it follows that the peak inventory level for x̂ satisfies V (x̂) ≤ Vk(x̂)+εD.
Since x∗ is a solution of (RSP), the peak inventory level for x∗ is V ∗ = Vk(x

∗). Hence,

V (x̂) ≤ Vk(x̂) + εD ≤ V ∗ + 2εD.

That is, for the optimum peak storage of (RSP), V ∗, and for the optimal solution of
(scaled-RSP) x̂, the ratio V (x̂)/V ∗ is at most 1+2εD/V ∗. Observe that V ∗ must be at least
the per unit time demand D, it follows that 2εD/V ∗ ≤ 2ε.

Therefore, the ratio V (x̂)/V ∗ is at most 1+2ε = 1+ε′. Hence, x̂ is a (1+ε′)-approximate
solution to the RSP.

The complexity of this approximation procedure is O(n
(k+1)

εk
) for constant k. Noted that

1
ε

= O( 1
ε′

). Therefore the complexity of the RSP (1+ε′)-approximation algorithm is O(n
(k+1)

ε′k
),

which is polynomial in n and 1
ε′

for constant k. And a family of (1 + ε′)-approximation
algorithms with complexity that is polynomial in n and 1

ε′
is called a Fully Polynomial Time

Approximation Scheme.

4.5 A Fully Polynomial-time Approximation Scheme

for the Single-cycle RSP with Constant k

In this section, we establish a FPTAS for the single-cycle RSP for constant joint cycle length.
This approximation scheme is a family of (1 + ε′)-approximation algorithms for every ε′ > 0,
with fixed-parameter tractable running time O( n

ε2k
). For any given ε′ > 0, we let ε = ε′/4 > 0.

The (1+ε′)-approximation algorithm for the single-cycle RSP works by first assigning reorder
timings of “large” items, where “large” items are those with reorder size greater than εD.
This large assignment is determined by solving a variant of (RSP) that involves “adjusted
remainders”. All items that are not large, which are considered “small”, are assigned in a
greedy fashion to any “adjusted” cascading constraint that still has a positive slack. It is
shown that such a solution is within a factor of 1 + ε′ of the optimal solution. The run
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time of this approximation algorithm is polynomial in n and 1
ε
. Since O(1

ε
) = O( 1

ε′
), this

run time is also polynomial in 1
ε′

, and hence this family of algorithms is a fully polynomial
approximation scheme which is fixed-parameter tractable in terms of the joint cycle length
k.

Since we address here the single-cycle RSP, we use a formulation referred to as (k-RSP)
which is the integer programming (RSP) for the single cycle of length k RSP:

(k-RSP) max z(x) =
∑k

j=1(k − j + 1)Qj(x)

subject to
∑`

j=1 Qj(x) ≤ `D ` = 1, .., k∑k
j=1 xij = 1 i = 1, . . . , n

xij binary for i = 1, ..., n, j = 1, .., k.

We next define the classification of the n items as large or small:
For a given value of ε > 0, let the set of large items be IL = {i|si > εD} and the set of small
items be IS = {i|si ≤ εD}. Let nL = |IL| denote the number of large items and nS = |IS|
denote the number of small items. It is observed that since kD =

∑n
i=1 si ≥

∑
i∈I

L
si >

nL · εD, the number of large items nL is bounded by k
ε
.

Let an n× k binary matrix xL determine the assignment of large items as:

xL
ij =

{
1 if i ∈ IL, and item i is ordered on time j
0 otherwise.

Similarly, an n× k binary matrix xS is the assignment of small items where,

xS
ij =

{
1 if i ∈ IS, and item i is ordered on time j
0 otherwise.

Definition 4.2. An assignment of large (small) items xL (xS) is a valid large (small) as-
signment for a given single-cycle RSP instance if and only if any large (small) item i is
replenished exactly once in a joint cycle. That is,∑k

j=1 x
L
ij = 1 i ∈ IL (

∑k
j=1 x

S
ij = 1 i ∈ IS).

By Definition 4.1 (of valid assignment) and Definition 4.2, it is clear that the sum of
any valid large assignment xL and any valid small assignment xS, x = xL + xS, is a valid
assignment of all items.

Definition 4.3. For any assignment x and I ⊆ {1, ..., n}, the n× k binary matrix PI(x) is
said to be the projection of the x onto I where,

PI(x)ij =

{
xij if i ∈ I
0 if i 6∈ I.



CHAPTER 4. INTEGER PROGRAMMING FORMULATION INSPIRED
APPROXIMATION SCHEMES FOR THE REPLENISHMENT STORAGE PROBLEM66

It follows that for a valid assignment x, its projection on the large (small) item set
xL = PIL(x) (xS = PIS(x)) is a valid large (small) assignment, and furthermore, z(x) =

z(xL) + z(xS); Qj(x) = Qj(x
L) +Qj(x

S).
The single-cycle FPTAS devised here consists of two stages. In the first stage we de-

termine an assignment of the large items, x̂L, and in the second stage we assign the small
items, x̂S. For a given ε′ > 0 and ε = ε′/4, we show that the valid assignment x̂ = x̂L + x̂S

is a (1 + ε′)-approximate solution.

The Assignment of Large Items

The procedure for assigning the large items addresses a modified (k-RSP) in which the ob-
jective function is changed by adding terms dependent on a form of slacks in the cascading
constraints, the adjusted remainders. We call this problem (modified k-RSP). The modified
problem is then scaled in that the order sizes are scaled by T = ε2D

k
. The resulting scaled

problem, (scaled-modified k-RSP), is then shown to be solvable using the dynamic program-
ming procedure of Section 4.3 and generating an assignment of large items that has objective
function value close to the optimal value of (k-RSP).

The adjusted remainders

The cascading constraints are equivalent to
∑`

j=1 Qj(x
S) ≤ `D−

∑`
j=1 Qj(x

L) for ` = 1, .., k.
Hence the remaining “space” for small items in the first ` integer times is no more than
R`(x

L) = `D−
∑`

j=1Qj(x
L). We refer to R`(x

L) as the remainder of time `. The cascading
constraints are then equivalently written as

∑̀
j=1

Qj(x
S) ≤ R`(x

L) for ` = 1, .., k. (4.9)

For any integer `1, `2 such that 1 ≤ `1 < `2 ≤ k, the constraint of time `2 in the form of
(4.9) implies

`1∑
j=1

Qj(x
S) ≤ R`2(x

L)−
`2∑

j=`1+1

Qj(x
S) ≤ R`2(x

L).

Hence these constraints (4.9) are equivalent to
∑`

j=1Qj(x
S) ≤ minj≥`Rj(x

L) for ` = 1, . . . , k.

We refer to the right hand sides of these inequalities, R̄`(x
L) = minj≥`Rj(x

L), as the adjusted
remainders. Obviously the adjusted remainder for any inequality ` can only be smaller than
the respective remainder, R̄`(x

L) ≤ R`(x
L).

To illustrate the concepts of remainders and adjusted remainders, we provide an instance
of a single-cycle RSP with five items for k = 4 (see Table 4.3). In this instance D = 24, and
we take ε = 0.6. Then 3 items are determined as large and 2 are small:

Consider the assignment of large items: item 1 to time 1, item 2 to time 2, and item 3
to time 4. Figure 4.1 visualizes the four cascading constraints for this assignment of large
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i 1 2 3 4 5
si 23 18 52 2 1
Large/Small Large Large Large Small Small

Table 4.3: A problem instance of single-cycle RSP with k = 4.

items: the columns heights indicate the right hand side of the four cascading constraints;
rectangles with patterns in each column represent the large items that are replenished before
and on the indexed time. So the remainders are represented by the white space in each
column. Figure 4.4 shows the corresponding remainders and adjusted remainders.

∑`
j=1Qj(x

L)

Index `

D

2D

3D

4D

1 2 3 4

s1

s2

s3

Figure 4.3: An assignment of large items for the example in Table 4.3.

R`(x
L)

Index `1 2 3 4

R3

R1

R2
R4

(a) Remainders

R̄`(x
L)

Index `1 2 3 4
R̄1

R̄2 = R̄3 = R̄4

(b) Adjusted remainders

Figure 4.4: The remainders and the adjusted remainders corresponding to Fig 4.3.
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The modified objective of (modified k-RSP)

We modified the objective function z(x) by adding the adjusted remainders. Specifically, let
the objective function g(xL) be defined for any valid assignment of large items xL:

g(xL) = z(xL) +
k∑
`=1

R̄`(x
L) =

k∑
j=1

(k − j + 1)Qj(x
L) +

k∑
`=1

R̄`(x
L).

An important property of function g(·) is that for x feasible for (k-RSP) and xL its projection
to the large items set, g(xL) is an upper bound of z(x), as proved next:

Lemma 4.8. For any feasible solution x of (k-RSP) and xL = PIL(x), g(xL) ≥ z(x).

Proof. To show g(xL) = z(xL)+
∑k

`=1 R̄`(x
L) ≥ z(x) it suffices to prove that for xS = PIS(x),

z(xS) = z(x)− z(xL) ≤
∑k

`=1 R̄`(x
L).

By the definition of adjusted remainders, any x feasible for (k-RSP) satisfies,
∑`

j=1 Qj(x
S) ≤

R̄`(x
L) for ` = 1, . . . , k. Therefore, z(xS) =

∑k
j=1(k − j + 1)Qj(x

S) =
∑k

j=1

∑k
`=j Qj(x

S) =∑k
`=1

∑`
j=1 Qj(x

S) ≤
∑k

`=1 R̄`(x
L).

The scaling of (modified k-RSP), (scaled-modified k-RSP)

The data is scaled by the factor T = ε2D
k

as follows: Let s′i = b si
T
c be the scaled sizes of

items i = 1, ..., n and D′ = D
T

= k
ε2

be the scaled demand. Let Q′j(x
L), R̄′`(x

L) and g′(xL)
denote the “scaled” replenishment sizes at time j, the adjusted remainder at time ` and the
objective function for the scaled sizes s′i:
Q′j(x

L) =
∑

i∈I
L
s′ix

L
ij, j = 1, .., k;

R′`(x
L) = `D′ −

∑`
j=1Q

′
j(x

L), ` = 1, .., k;

R̄′`(x
L) = minj≥`R

′
j(x

L), ` = 1, .., k;

g′(xL) =
∑k

j=1(k − j + 1)Q′j(x
L) +

∑k
`=1 R̄

′
`(x

L).

Let the large items be re-indexed from 1 to nL. The scaled problem that is solved
to determine the assignment of the large items is (scaled-modified k-RSP), formulated as
follows:

(scaled-modified k-RSP) max g′(xL)

subject to
∑`

j=1Q
′
j(x

L) ≤ `D′ ` = 1, .., k∑k
j=1 x

L
ij = 1 i = 1, ..., nL

xL
ij binary for i = 1, ..., nL, j = 1, .., k.

The optimal solution for (scaled-modified k-RSP) is found by applying the dynamic
programming procedure in Section 4.3 with scaled sizes:
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Algorithm 2 Large-assignment(D′, s′1, . . . , s
′
nL

)

Initialize: f0(q1, q2, . . . , qk)← 0 for any (q1, q2, . . . , qk) with qj ∈ [0, jD′] and qj integer.
for h = 1, ..., nL do

for j = 1, ..., k and for each qj ∈ {0, 1, ...jD′} do

fh(q1, q2, ..., qk)←
{

maxτ=1,...,k{(k + 1− τ) s′h + fh−1(q′1(τ), ..., q′k(τ))}, if q′`(τ) ≥ 0 for all `
−∞ otherwise

where q′`(τ) = q` − b `−τ+kh
kh
csh.

end for
end for
Output x̂L, the solution attaining the value max(q1,...,qk) fn

L
(q1, ..., qk) +

∑k
`=1 r̄j, where

r̄` = minj≥`(jD
′ − qj).

The complexity of algorithm Large-assignment, with the scaled sizes, is O(k2 · k! ·
D′k · nL) = O( n

ε2k
) for constant k.

Next we define the (ε-relaxed k-RSP), the single-cycle version of (ε-relaxed RSP) intro-
duced in Section 4.4. And then we prove that any feasible solution for (scaled-modified
k-RSP), including x̂L, is feasible for (ε-relaxed k-RSP).

The ε-relaxed k-RSP

The (ε-relaxed k-RSP) formulation allows the cascading constraints to be violated by up to
εD as follows:

(ε-relaxed k-RSP) max z(x) =
∑k

j=1(k − j + 1)Qj(x)

subject to
∑`

j=1 Qj(x) ≤ `D + εD ` = 1, .., k∑k
j=1 xij = 1 i = 1, . . . , n

xij binary for i = 1, ..., n, j = 1, .., k.

Since the single-cycle is a special case of multi-cycle. The following lemma follows from
Lemma 4.5.

Lemma 4.9. The peak inventory level of any feasible solution x to (ε-relaxed k-RSP) is at
most Vk(x) + εD.

The next lemma proves that any feasible solution for (scaled-modified k-RSP), including
x̂L, is feasible for (ε-relaxed k-RSP).

Lemma 4.10. Any valid assignment of large items xL that is feasible for (scaled-modified
k-RSP) satisfies,

∑`
j=1 Qj(x

L) ≤ `D + εD for ` = 1, .., k.

Proof. By definition, s′i = b si
T
c. So si < T (s′i + 1) and thus,∑̀

j=1

Qj(x
L) =

∑̀
j=1

nL∑
i=1

six
L
ij ≤

∑̀
j=1

nL∑
i=1

T (s′i + 1)xL
ij = T

(∑̀
j=1

nL∑
i=1

s′ix
L
ij +

∑̀
j=1

nL∑
i=1

xL
ij

)
. (4.10)
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Since xL is feasible for (Scaled Large Packing) and D′ = 1
ε2

,

∑̀
j=1

nL∑
i=1

s′ix
L
ij =

∑̀
j=1

Q′j(x
L) ≤ `D′ =

`D

T
. (4.11)

Since the reorder size for any large item is greater than εD, and the sum of reorder sizes
of large items is bounded by the total reorder sizes kD, we can infer that the number of
large items is bounded by nL <

k
ε
. From feasibility of xL for (Scaled Large Packing), we also

know that
∑k

j=1 x
L
ij = 1 for any large item i. Hence, for ` = 1, ..., k,

∑̀
j=1

nL∑
i=1

xL
ij ≤

k∑
j=1

nL∑
i=1

xL
ij =

nL∑
i=1

(
k∑
j=1

xL
ij

)
= nL <

k

ε
. (4.12)

Hence from inequalities (4.10), (4.11) and (4.12),

∑̀
j=1

Qj(x
L) ≤ T

(
`D

T
+
k

ε

)
= `D + εD.

Using the relationship between reorder sizes si and the scaled sizes s′i, we show that for
any feasible solution of (Scaled Large Packing), xL, the objective with original sizes g(xL) is
closely approximated by the objective with scaled sizes g′(xL) =

∑k
j=1(k − j + 1)Q′j(x

L) +∑k
`=1 R̄

′
`(x

L), corrected for the scaling factor T :

The approximation property of the solution to (scaled-modified k-RSP)

Theorem 4.4. For any assignment of large items xL feasible for (scaled-modified-k-RSP1),
the values of the objective function with original and scaled sizes, g(xL) and g′(xL) respec-
tively, satisfy,

T · g′(xL)− εk2D ≤ g(xL) ≤ T · g′(xL) + εk2D.

Proof. Recall that s′i = b si
T
c, so Ts′i ≤ si < T (s′i + 1). So for any integer time j,

Qj(x
L) =

nL∑
i=1

six
L
ij < T ·

nL∑
i=1

(s′i + 1)xL
ij = T ·

(
Q′j(x

L) +

nL∑
i=1

xL
ij

)
The second term in the parentheses,

∑nL
i=1 x

L
ij, must be less tan or equal to the number of

large items, which is bounded by k
ε
. Therefore we derive the following inequality

Qj(x
L) < T ·

(
Q′j(x

L) +
k

ε

)
= T ·Q′j(xL) + εD for j = 1, ..., k. (4.13)
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Using si ≥ Ts′i for any i, we get

Qj(x
L) =

nL∑
i=1

six
L
ij ≥ T ·

nL∑
i=1

s′ix
L
ij = T ·Q′j(xL) for j = 1, ..., k. (4.14)

Recall that the adjusted remainder of time τ is R̄τ (x
L) = min`≥τ R` = min`≥τ

(
`D −

∑`
j=1Qj(x

L)
)

,

and that the scaled adjusted remainder of time τ is R̄′τ (x
L) = min`≥τ

(
`D′ −

∑`
j=1Q

′
j(x

L)
)

.

We derive from inequality (4.13) that for any time τ ,

R̄τ (x
L) = min

`≥τ

(
`D −

∑̀
j=1

Qj(x
L)

)

≥ min
`≥τ

[
`D −

∑̀
j=1

(
T ·Q′j(xL) + εD

)]

≥ min
`≥τ

[
`D − T ·

∑̀
j=1

Q′j(x
L)

]
− εkD

= T · R̄′τ (xL)− εkD. (4.15)

And we derive from inequality (4.14) that for any time τ ,

R̄τ (x
L) = min

`≥τ

(
`D −

∑̀
j=1

Qj(x
L)

)
≤ min

`≥τ

(
`D − T ·

∑̀
j=1

Q′j(x
L)

)
= T · R̄′τ (xL) (4.16)

Using the inequalities (4.13) and (4.16), we prove the upper bound on g(xL) as follows:

g(xL) =
k∑
j=1

(k − j + 1)Qj(x
L) +

k∑
τ=1

R̄τ (x
L)

<

k∑
j=1

(k − j + 1)
(
T ·Q′j(xL) + εD

)
+

k∑
τ=1

T · R̄′τ (xL)

= T ·

[
k∑
j=1

(k − j + 1)Q′j(x
L) +

k∑
τ=1

R̄′τ (x
L)

]
+ εD ·

k∑
j=1

(k − j + 1)

≤ T · g′(xL) + εk2D.
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The lower bound on g(xL) follows from inequalities (4.14) and (4.15):

g(xL) =
k∑
j=1

(k − j + 1)Qj(x
L) +

k∑
τ=1

R̄τ (x
L)

≥
k∑
j=1

(k − j + 1)T ·Q′j(xL) +
k∑
τ=1

(
T · R̄′τ (xL)− εkD

)
= T ·

[
k∑
j=1

(k − j + 1)Q′j(x
L) +

k∑
τ=1

R̄′τ (x
L)

]
− εk2D

= T · g′(xL)− εk2D.

This completes the proof of the statement of the theorem.

Theorem 4.4 leads to the following lower bound on g(x̂L) for x̂L being an optimal solution
of (scaled-modified k-RSP):

Theorem 4.5. For any feasible solution x of (k-RSP) and xL = PIL(x), g(x̂L) ≥ g(xL)−δ(ε)
where δ(ε) = 2εk2D.

Proof. By Theorem 4.4, we have the lower bound of g(x̂L):

g(x̂L) ≥ T · g′(x̂L)− εk2D.

Since for any feasible solution of (k-RSP), the projection to the large items set, xL, is also
feasible for (scaled-modified k-RSP), we use the upper bound of g(xL) from Theorem 4.4 to
get:

Tg′(xL) ≥ g(xL)− εk2D

Because x̂L is optimal for (scaled-modified k-RSP), it follows that g′(x̂L) ≥ g′(xL). Combin-
ing the three inequalities, we get

g(x̂L) ≥ T · g′(x̂L)− εk2D

≥ T · g′(xL)− εk2D

≥ g(xL)− εk2D − εk2D

= g(xL)− 2εk2D.

For any feasible solution x of (k-RSP) and xL = PIL(x), Lemma 4.8 states that g(xL) ≥
z(x). Hence, a corollary of Theorem 4.5 and Lemma 4.8 is:

Corollary 4.1. For any feasible solution x of (k-RSP), g(x̂L) ≥ z(x) − δ(ε) where δ(ε) =
2εk2D.

Consequently, the algorithm Large-assignment yields an output x̂L such that g(x̂L)
is at least as large as the optimal objective of (k-RSP) minus δ(ε).
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The Assignment of Small Items

Given the assignment of large items x̂L and the corresponding adjusted remainders R̄`(x
L),

we derive a valid assignment of the small items so that the joint large and small items
assignment is a feasible solution to (ε-relaxed RSP).

As stated in section 4.5, the cascading constraints are equivalent to,

`1∑
j=1

Qj(x
S) ≤ R̄`(x

L) for ` = 1, ..., k. (4.17)

The following greedy procedure assigns any yet unassigned small item to the lowest integer
index time with positive adjusted remainder. For simplicity, the small items are re-indexed
1 to nS in the procedure’s description provided next:

Algorithm 3 Small-assignment(R̄1(x̂L), . . . , R̄k(x̂
L), s1, . . . , snS

)

R̃`(0)← R̄`(x̂
L) ` = 1, ..., k.

for i = 1, ..., nS do
j(i)← min{`|R̃`(i− 1) > 0}.
Assign item i to time j(i).
R̃`(i)← R̃`(i− 1) ` = 1, ..., j(i)− 1.
R̃`(i)← R̃`(i− 1)− si ` = j(i), ..., k.

end for

Let x̂S denote the output assignment of the small items of Small-assignment.

Lemma 4.11. Algorithm Small-assignment is correct, and its complexity is linear, O(nS).

Proof. To prove correctness one needs to prove that the algorithm terminates only after
all small items were assigned, meaning that there is always a positive adjusted remainder
available for each small item.

The notation used in Small-assignment, R̃`(h), is the slack of cascading constraint
(4.17) at time ` after iteration h. That is, R̃`(h) = R̄`(x̂

L)−
∑`

j=1

∑h
i=1 six̂

S
ij. Also, R̃`(nS) =

R̄`(x̂
L)−

∑`
j=1

∑nS
i=1 six̂

S
ij = R̄`(x̂

L)−
∑`

j=1Q(x̂S).
By the definition of remainders and adjusted remainders, it follows that the initial slack

corresponding to day k is R̃k(0) = R̄k(x̂
L) = Rk(x̂

L) = kD −
∑

i∈IL si =
∑

i∈IS si. In each
iteration of Small-assignment, the slack corresponding to day k is reduced by the reorder
size of the small item assigned at that iteration. So the slack of day k is positive until all
small items have been assigned. That is, Small-assignment guarantees an assignment of
all the small items.

The complexity of Small-assignment is linear since there are nS iterations, each of
which runs in O(1) steps when k is a constant, as assumed here.
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As an illustrative example consider the adjusted remainders in Figure 4.4 and the small
items in Table 4.3. Small-assignment assigns item 4 to time 1 and item 5 to time 2.
Figure 4.5 visualizes this assignment example of small items. Columns heights correspond to
the value of the adjusted remainders. The rectangles with patterns in each column are the
small items that are replenished on or prior to the indexed time. The combined assignment
of all items is shown by Figure 4.6. In Figure 4.6a, the column heights are truncated by
the same amount as the difference between remainder and adjusted remainders. Figure 4.6b
combines the assignment of large items and small items in the truncated columns.

R̄`(x
L)

Index `1 2 3 4
R̄1

R̄2 = R̄3 = R̄4

(a)

∑`
j=1 Qj(x

S)

Index `1 2 3 4

s4

s5

(b)

Figure 4.5: The adjusted remainders (a) and assignment of small items (b) for the example
in Table 4.3 by Small-assignment.

`D − (R`(x
L)− R̄`(x

L))

Index `

D

2D

3D

4D

1 2 3 4

(R3 − R̄3)

(a)

∑`
j=1 Qj(x)

Index `1 2 3 4

s1

s2

s3

s4s5

(b)

Figure 4.6: Assignment of all items in Table 4.3.

The update of the slacks R̃`(h) in the algorithm is such that the following properties
hold:

Property 1. The slacks prior to the assigning timing j(h) are unaffected.
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Property 2. The slacks of time j(h) + 1, ..., k are reduced by the same amount as the slack
of assigning timing j(h).

We note that Property 1 is not satisfied by the (RSP0) formulation, and that Property 2
does not hold for multi-cycle RSP.

From the two properties it follows that the positive slacks at each iteration are non-
decreasing in the integer indices of time from 1 to k.

Lemma 4.12. 0 < R̃j(h)(h− 1) ≤ R̃j(h)+1(h− 1) ≤ ... ≤ R̃k(h− 1) for any 1 ≤ h ≤ nS.

Proof. We prove this by induction on the iteration index.
Base: Since the adjusted remainders are defined as R̄`(x̂

L) = minj≥`R`(x̂
L), we have

R̄1(x̂L) ≤ R̄2(x̂L) ≤ ... ≤ R̄k(x̂
L). And as R̃`(0) = R̄`(x̂

L) for all `, we also have R̃1(0) ≤
R̃2(0) ≤ ... ≤ R̃k(0). The algorithm Small-assignment assign j(1) to be the smallest
integer index such that R̃j(1)(0) > 0. Therefore, 0 < R̃j(1)(0) ≤ R̃j(1)+1(0) ≤ ... ≤ R̃k(0), the
statement is true for h = 1.
Inductive Step: Assume that the statement holds for h, 1 ≤ h ≤ nS− 1, now we prove for
h+1: Since j(h+1) ≥ j(h), the assumption implies R̃j(h+1)(h−1) ≤ R̃j(h+1)+1(h−1) ≤ ... ≤
R̃k(h−1). As R̃`(h) = R̃`(h−1)−sh for all ` ≥ j(h), R̃j(h+1)(h) ≤ R̃j(h+1)+1(h) ≤ ... ≤ R̃k(h).

Moreover, by the algorithm Small-assignment, we have R̃j(h+1)(h) > 0. Therefore,

0 < R̃j(h+1)(h) ≤ R̃j(h+1)+1(h) ≤ ... ≤ R̃k(h)

Next we show that the joint assignment of large items with the output assignment of
small items x̂S, yields a feasible solution for (ε-relaxed k-RSP).

Lemma 4.13. The assignment x̂ = x̂L + x̂S is feasible for (ε-relaxed k-RSP).

Proof. It is easy to see that x̂ is valid. It remains to show that x̂ satisfies the ε-relaxed
cascading constraints.

By Lemma 4.10, we know that
∑`

j=1Qj(x
L) ≤ `D+εD, so R`(x̂

L) = `D−
∑`

j=1Qj(x
L) ≥

−εD for any `. Thus R̄`(x̂
L) = minj≥`Rj(x̂

L) ≥ −εD for any `.
By Lemma 4.12, only the positive slacks could be reduced at each iteration. And as the

reorder sizes of small items are less than or equal to εD, the reduction is at at most εD. Thus,
R̃`(h) ≥ −εD for any ` and h, meaning that

∑`
j=1 Q(x̂S) = R̄`(x̂

L)− R̃`(nS) ≤ R̄`(x̂
L) + εD.

By definition of R̄`(x̂
L), for any `, R̄`(x̂

L) ≤ R`(x̂
L) = `D−

∑`
j=1Q(x̂L), so

∑`
j=1Q(x̂S)+∑`

j=1 Q(x̂L) ≤ `D + εD.

Lemma 4.14. R̃`(nS) ≤ 0 for ` = 1, ..., k.

Proof. By contradiction, suppose at the conclusion of the algorithm Small-assignment,
there exists an index ` so that R̃`(nS) > 0. This implies j(h) ≤ ` for any h, meaning that all
small items are assigned to the first ` integer times. In that case

∑`
j=1 Q(x̂S) =

∑
h∈IS

sh.
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Therefore, R̃`(nS) = R̄`(x̂
L) −

∑`
j=1Q(x̂S) = R̄`(x̂

L) −
∑

h∈IS
sh ≤ R̄k(x̂

L) −
∑nS

i=1 si =(
kD −

∑
h∈IL

sh

)
−
∑

h∈IS
sh = 0, contradicting the assumption.

Theorem 4.6. Given the assignment of large items x̂L that is optimal for (scaled-modified
k-RSP), Small-assignment will generate an output x̂S such that z(x̂S) ≥

∑k
`=1 R̄`(x̂

L).

Proof. From Lemma 4.14,
∑`

j=1Q(x̂S) = R̄`(x̂
L)− R̃`(nS) ≥ R̄`(x̂

L). Therefore,

z(x̂S) =
k∑
j=1

(k − j + 1)Q(x̂S) =
k∑
`=1

∑̀
j=1

Q(x̂S) ≥
k∑
`=1

R̄`(x̂
L).

Theorem 4.6, together with Corollary 4.1, implies the following theorem:

Theorem 4.7. Let x̂ = x̂L + x̂S, where x̂L and x̂S are the outputs of algorithms Large-
assignment and Small-assignment respectively. Then for any x that is feasible for
(k-RSP), z(x̂) ≥ z(x)− δ(ε).

Proof. By Theorem 4.6, z(x̂S) ≥
∑k

`=1 R̄`(x̂
L), so z(x̂) = z(x̂L)+z(x̂S) ≥ z(x̂L)+

∑k
`=1 R̄`(x̂

L) =
g(x̂L). And by Corollary 4.1, g(x̂L) ≥ z(x)−δ(ε) for any x that is feasible of (k-RSP). There-
fore, z(x̂) ≥ g(x̂L) ≥ z(x)− δ(ε) for any x that is feasible of (k-RSP).

Therefore, assignment x̂ described in Theorem 4.7 attains a objective value z(x̂) that is
at least as much as the optimal objective of (k-RSP) minus δ(ε).

The (1 + ε′)-approximation Algorithm

Combining the theorems of the previous sections, the algorithms Large-assignment and
Small-assignment deliver an FPTAS for the single-cycle RSP. That is, a (1+ε′)-approximation
algorithm for any ε′ > 0. The (1 + ε′)-approximation algorithm consists of following steps:
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Algorithm 4 single-cycle approximation

Step 1 (initialize) Let ε = ε′/4; D = 1
n

∑n
i=1 si;

(partition the items into large and small) Let IL = {i : si > εD} and IS = {i : si ≤
εD};
(scaling) Let T = ε2D

k
, s′i = b si

T
c for i ∈ IL and let D′ = D

T
;

Step 2 Call Large-assignment(D′, s′i for i ∈ IL) to get x̂L;
Compute R`(x

L) = `D −
∑`

j=1Qj(x
L) for ` = 1, ..., k;

Compute R̄`(x̂
L) = minj≥`Rj(x

L) for ` = 1, ..., k;

Step 3 Apply Small-assignment(R̄1(x̂L), . . . , R̄k(x̂
L), si for i ∈ IS) to get x̂S;

Step 4 Output x̂(ε) = x̂L + x̂S.

Theorem 4.8. single-cycle approximation is a (1 + ε′)-approximation algorithm for
single-cycle RSP.

Proof. Let x∗ be an optimal solution of (k-RSP), and V ∗ the corresponding peak inventory
level.

As stated in Theorem 4.7, z(x̂) ≥ z(x) − δ(ε) for any x that is feasible of (k-RSP),

including x∗. From Lemma 4.4, the inventory levels at time k for x̂ and x∗ are Vk(x̂) = C
k
− z(x̂)

k

and Vk(x
∗) = C

k
− z(x∗)

k
respectively. Therefore,

Vk(x̂) =
C

k
− z(x̂)

k
≤ C

k
− z(x∗)

k
+
δ(ε)

k
= Vk(x

∗) +
δ(ε)

k
.

From Lemma 4.9 it follows that the peak inventory level for x̂ satisfies V (x̂) ≤ Vk(x̂) +
εkD. Since x∗ is a solution of (k-RSP), the peak inventory level for x∗ is V ∗ = Vk(x

∗).
Hence,

V (x̂) ≤ Vk(x̂) + εD ≤ V ∗ +
δ(ε)

k
+ εD.

That is, for the optimum peak storage of (k-RSP), V ∗, and for the output of our single-

cycle approximation, x̂, the ratio V (x̂)/V ∗ is at most 1 +
(
δ(ε)
k

+ εD
)
/V ∗. Since V ∗ ≥

k+1
2k

∑n
i=1 si = k+1

2
D, it follows that(

δ(ε)

k
+ εD

)
/V ∗ ≤ (2k + 1) εD · 2

(k + 1)D
≤ 4ε = ε′.

Hence, x̂ is a (1 + ε′)-approximate solution to RSP.

The complexity of this single-cycle approximation procedure is dominated by the
complexity of Large-assignment, which is O( n

ε2k
) for constant k. (Small-assignment
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takes linear time in n). Noted that 1
ε

= 4
ε′

. Therefore the complexity of RSP (1 + ε′)-
approximation algorithm is O( n

ε′2k
), which is polynomial in n and 1

ε′
for constant k. Therefore,

the family of single-cycle approximation for any ε′ > 0 is a Fully Polynomial Time
Approximation Scheme.

4.6 A Polynomial-time Approximation Scheme for

Single-cycle RSP with Non-constant k

In this section, we combine the (1+ 2
k
)-approximation algorithm by Hall [18] with the FPTAS

we just presented, to get a PTAS for the single-cycle RSP with non-constant k. Since this
problem is strongly NP-hard, a PTAS is the best approximation possible.

Hall’s (1+ 2
k
)-approximation algorithm has a complexity of O(n). Recall that the contin-

uous single-cycle RSP has closed form solutions ([30]; [42]; and [62]). Hall’s algorithm rounds
down the reorder timings of the optimal solution for the continuous problem. As the value
of k increases, the resolution of the discrete problem becomes more and more refined, the
rounded solution becomes very close to the continuous solution and close to the optimum.
(This is because the continuous optimal solution is a lower bound on the value of the discrete
optimum.) For the sake of completeness we include the pseudocode of the algorithm below.

Algorithm 5 (1 + 2
k
)-approximation [18]

for i = 1, ..., n do

j(i)← bk ·
∑i

h=1 sh∑n
h=0 sh

c.
Assign item i to time j(i).

end for

While this (1 + 2
k
)-approximation algorithm performs better as k increases, our single-

cycle FPTAS works well for small values of k where the continuous solution is not close to
the discrete solution and Hall’s approximation algorithm does not work well.

We take the advantage of the complexity of Hall’s algorithm and the approximation factor
of our FPTAS into a PTAS which works as follows: when k > 2

ε
, we run Hall’s algorithm,

which is a (1 + ε)-approximation algorithm; when k ≤ 2
ε
, we run the FPTAS in this paper,

and the running time is O(k2 · k! · n
ε2k

) = O((2
ε
)! · n

ε2k+2 ) when k non-constant. The overall
running time O((2

ε
)! · n

ε2k+2 ) is linear in n for fixed ε so it is a polynomial-time approximation
scheme.

4.7 Concluding Remarks

In this chapter we resolve the complexity of RSP, the problem of minimizing the peak storage
requirement with given reorder sizes and individual cycle lengths. While it was known that
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RSP is NP-hard even when the joint cycle length is constant [18], we prove here that the
problem is strongly NP-hard for non-constant joint cycle length, and that the problem is
weakly NP-hard for constant joint cycle length.

For constant joint cycle length RSP, we further present a pseudo-polynomial time algo-
rithm that solves the problem optimally, and the first known FPTAS for the multi-cycle
RSP, and the first known fixed-parameter tractable FPTAS for the single-cycle RSP. For
non-constant joint cycle length single-cycle RSP, we devise here the first known PTAS. The
question of whether there exists a PTAS for the respective cases of the multi-cycle RSP
remains open.
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