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ABSTRACT OF THE DISSERTATION 
Quantifying variation in Drosophila immune response. 

By 

Bryan Alfonso Ramirez-Corona 

Doctor of Philosophy in Biological Sciences 

University of California, Irvine 2021 

Assistant Professor Zeba Wunderlich, Co-Chair 

Professor Ali Mortazavi, Co-Chair 

 

 

A robust and specific immune response is critical for the maintenance of organismal 

health. The immune response’s primary function is infection clearance; however, the outcome of 

an infection can vary greatly between individuals. This variation can be traced back to the 

combined effects of genetic background, environmental factors, and stochastic events. 

Understanding how these individual components influence the observed variation in immune 

response in Drosophila may help further our understanding of infection outcome in across 

metazoans, mammals, and plants.  

Here, I investigate sequence variation that leads to variation in immune response and 

propose to novel methods that will help investigate additional sources of variation. In Chapter 2, 

I quantify the relative contributions of changes in cis and trans to expression divergence in the 

Drosophila immune response. I show that the proportions of these changes are condition 

specific. In Chapter 3, I describe a novel method for the longitudinal monitoring of infection 

progression using autobioluminscent bacteria. I demonstrate the methods utility for linking 

individual infection histories to observed outcomes. Lastly in Chapter 4, I adapt a method for the 



 xii 

cell specific chemical labeling of nascent RNA’s using an orthogonal chemical-genetic labeling 

system. I show preliminary results that suggest the method can specifically label RNA in a tissue 

specific manner and provide next steps for the application of this method fully in Drosophila. 
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CHAPTER 1 
Introduction 
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1.1 The importance of innate immunity  

 
A robust and specific immune response is necessary for an organism’s continued survival. 

The immune response is responsible for the clearance of pathogenic viruses, bacteria and other 

invading agents. In mammals this response consists of the evolutionarily ancient innate immune 

response and the relatively newer adaptive response (Janeway 2002). Invertebrates, including 

Drosophila melanogaster, do not possess an adaptive response and rely entirely on the innate 

immune response to fight off infection. The innate response system, however, is found across 

vertebrates, invertebrates, and plants; understanding innate immunity in one system has the 

potential to advance understanding of immunity across multiple kingdoms of life.  

While the immune response’s primary function is the clearance of infections, infection 

outcome depends on genetic background, environmental factors, and stochastic events. Genetics, 

diet, injury, and many other factors may all contribute to the immune response, and it is the specific 

combination of these factors that ultimately dictates infection outcome. This outcome can range 

from infection clearance, chronic infection, and in the worst-case scenario, death. One salient 

example can be seen in the recent global outbreak of Covid-19, where large amounts of variation 

in the severity of infection have been observed. This is true even after stratifying data by the largest 

contributing factors such as age, socioeconomic background, and comorbidities (Argenzian, 2020, 

Zhang 2021). As such there is a need to better understand the factors that contribute to infection 

variation. 

In this thesis, I use the genetically amenable Drosophila melanogaster to investigate the 

genetic basis of immune response and describe methods for studying genetic and non-genetic 

sources of immune response and infection variation. In Chapter 2 I study the relative contributions 

of cis-acting and trans-acting sequence changes on expression of immune-responsive genes in the 
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Drosophila fat body under multiple conditions. In Chapter 3 I improve upon current methodologies 

for monitoring infection dynamics and describe a novel method to non-invasively monitor 

bacterial infection in flies. Finally, in Chapter 4 I describe a precise chemical-genetic method for 

labeling and isolating RNA in a tissue-specific manner. Together this work shows the most fine-

grained image to date of sequence changes to immune response expression variation and provides 

methods to further investigate genetic and non-genetic variation in immune response.   

 Below I begin with an overview of the innate immune response of Drosophila 

melanogaster, focusing on the most relevant components for understanding the work presented in 

Chapter 2. In subsequent sections I give context for the following chapters by describing the state 

of the field specific to each chapter. I also describe current gaps in the knowledge and address how 

the work will contribute to our understanding of the field.  

  

1.2 Specifics of the innate immune response 

 
In Drosophila the innate immune response consists of a cellular response and a humoral 

or systemic response. In the cellular response, foreign agents are phagocytized or encapsulated 

by circulating plasmatocytes and lamellocytes. The humoral response to infection begins with 

the recognition of microbial ligands which set off signaling cascades that lead to the production 

of antimicrobial peptides (AMPs) in the fat body. This is the primary immune-responsive organ. 

These peptides are then released into the hemolymph where they can be transported to the sites 

of infection.  

1.2.1 The fat body 

In adult Drosophila the humoral response takes place primarily in the fat body. This tissue 

is found along the dorsal side of the adult fly and is in some ways comparable to the mammalian 
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liver. This tissue serves in the immune response as well as carrying out important metabolic roles. 

In Drosophila larvae, the fat body has been observed to be arranged into functionally distinct 

regions along the anterior-posterior axis, though in adults this has yet to be verified (Haunerland 

1995). Unlike the larval fat body, the adult fat body has been largely understudied due to physical 

difficulties in working with this tissue. Whereas the larval fat body is relatively simple to dissect, 

the adult fat body is much more fragile and impossible to dissect intact. As such, the adult fat body 

remains a largely underexplored tissue with a great deal of promise for future discovery. 

At the gene level, the production of AMPs is regulated by two conserved nuclear factor-

κB (NF-κB) signaling cascades, the Toll pathway and the IMD pathway (Buchon 2014). A variety 

of pattern recognition receptors can recognize different classes of bacteria, activate the necessary 

cascades and initiate production of different AMPs (Lemaitre 2007, Lu 2019). The IMD response 

is generally turned on by gram-negative infections and the Toll response is generally turned on by 

gram-positive infections (Buchon 2014). Though historically these pathways have been thought of 

as distinct, research demonstrates that there is crosstalk between them (Troha 2018).  

1.2.2 The Toll response 

As the name suggests, the Toll pathway is regulated by the Toll-like receptor (TLR) genes 

of which there are nine in Drosophila that as act receptors to various ligands (Buchon 

2019). Specifically, the Toll receptor and Spaetzle ligand are critical for activation of the 

Toll response pathway. This ligand is activated when extracellular recognition factors 

initiate protease cascades that lead to the cleavage of the Spatzle prodomain (Valanne 

2011). Activation of the Toll pathway eventually leads to the nuclear localization of Dorsal 

and Dif, NF-κB homologs, via the degradation of Cactus, resulting in activation of AMP 
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genes (Valanne 2011). Although immune-related Toll signaling is conserved in mammals, 

in Drosophila it bears the additional role of being involved in development. 

1.2.3 The IMD response 

In response to gram-negative infections, the IMD pathway activates production of AMPs 

via nuclear localization of a third NF-κB factor Relish (Myllymäki 2014). This pathway is often 

compared to the mammalian Tumor necrosis factor receptor (TNFR) signaling pathway. Much 

like the mammalian TNFR pathway, this pathway bifurcates into the JNK pathway which is 

involved in wound healing (Myllymäki 2014).  Direct microbial recognition by genes such as 

peptidoglycan recognition proteins (PGRPs) sets off protease cascades that result in the cleavage 

of the C-terminus of Relish. This allows for the nuclear localization of this factor and the activation 

of AMP production (Lu 2019).  

 

1.3 Cis and trans variation in gene expression 
 

In Chapter 2 of my thesis, I study the genetic underpinnings of expression divergence in 

Drosophila melanogaster. In eukaryotes, spatiotemporal gene expression patterns are generated 

by the interactions of trans-acting factors, such as transcription factors, and cis-regulatory 

elements (CREs), such as enhancers. Sequence variation in either protein-coding regions of trans-

acting factors or CREs can change gene expression patterns. Changes in trans generally fall in 

coding regions and typically have widespread effects. This is because they affect all downstream 

targets of a gene carrying the change. On the other hand, changes in cis typically have more 

localized effects. Given that a CRE generally controls a single gene and only in a particular context, 

a change in cis is more likely to only affect the expression of a single gene at a time (Wittkopp 

2012). 
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1.3.1 The importance of understanding cis and trans mutations 

Understanding the relative contributions of cis and trans changes may help further our 

understanding of how organisms evolve. Changes in cis and trans underlie expression differences 

within and between species (Wittkopp 2012). Expression divergence in turn is important for 

processes such as adaptation and speciation. As such there is a need to understand the contribution 

of cis and trans mutations to better understand how organisms evolve (Emerson 2010, Wittkopp 

2012). On one hand, a system can evolve through a small number of trans mutations that can bring 

about drastic changes but that are also more likely to have deleterious effects. On the other hand, 

a system can evolve through many fine-tuning mutations in cis, that allow for incremental changes 

that are less likely to have adverse effects (Wittkopp 2012). More than likely, it is some 

combination of both these strategies that result in observed expression divergence. And it is the 

relative proportions of these that may inform us of the evolutionary pressures on organisms and 

how they evolve and adapt in response to them (Wittkopp 2012). 

 In addition, identifying changes in cis and trans may serve as a stepping-off point for 

dissection of the regulatory logic of CREs. Common obstacles to studying the design principles of 

CREs is the difficulty in identifying functional CREs in vivo, pairing these to the genes they 

control, and then finding potentially informative sequence changes for understanding how CREs 

function. While the first two obstacles can be addressed using techniques such as DNase-seq and 

Hi-C, the last obstacle remains. However, one of the byproducts of quantifying cis and trans effects 

on a genome-wide scale is a list of genes with functional sequence changes in CREs. We can then 

combine this with other omics sets to identify potentially causative sequence changes for the 

observed differences in expression. This, in turn, may be informative to the understanding of how 

CREs function in controlling expression levels. 
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1.3.2 Cis and trans variation between species 

Already, research has been conducted that investigates the relative proportions of cis and 

trans changes between species using a variety of organisms including yeast (Tirosh 2009, Metzger 

2017), flies (Wittkopp 2004, Landry 2005, Wittkopp 2008, McManus 2010, Coolon 2014), 

vertebrates (Davidson 2016, Mattoli 2020) and plants (Shi 2012). When looking at expression 

divergence between species cis changes tend to dominate the system (Tirosh 2009, Metzger 2017, 

Wittkopp 2004, Wittkopp 2008, Mcmanus 2010, Coolon 2014, Mattoli 2020, Shi 2012). Greater 

evolutionary distances seem to result in a greater proportion of changes in cis, though notable 

exceptions to this trend exist (McManus 2010, Coolon 2014). This suggests that while changes in 

cis may be favored in expression divergence between species there are instances in which changes 

in trans may dominate. 

1.3.3 Cis and trans variation within species 

Given that changes in cis dominate between-species expression differences, we would 

expect this to remain true for the shorter evolutionary distances within species. This however is 

not always the case. Work examining this in yeast (Emerson 2010, Schaefke 2013, Metzger 2017), 

flies (Wittkopp 2008, Gonclaves 2012, Coolon 2014, Osada 2017, Benowitz 2020, Frochaux 2020) 

and plants (Bell 2013, Diaz-Valenzuela 2020) found a greater proportion of changes in trans to be 

responsible for within-species expression differences. Once more, exceptions to this trend exist, 

suggesting that while a type of change may be favored the contributions of each type of change 

may be specific to the evolutionary circumstances of the organisms involved (Gonclaves 2012, 

Osada 2017, Frochaux 2020). One potential explanation for the differences in relative 

contributions for changes in cis and trans within and between species is that changes in trans may 
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be relatively more common within a species but cis changes are more likely to become fixed in a 

population since they are less likely to have deleterious effects (Denver 2005).  

1.3.3 Cis and trans variation in Drosophila 

 

More specific to Drosophila, we see that changes in cis tend to dominate between species 

(Wittkopp 2004, Wittkopp 2008, Coolon 2014). The exception to this pattern is the expression 

divergence between D. melanogaster and D. sechellia (McManus 2010, Coolon 2014). It is worth 

noting that in the case of D. sechellia authors suggest that the break from the expected trend may 

be attributed to the specific evolutionary history of the species as D. sechellia an island species 

with very little intraspecific genetic variation (McManus 2010). As such the abundance of trans-

acting changes may be a result of drift rather than selection.  

With regards to intra-species expression variation, we observe more evidence of trans-

acting changes being the dominant driver of expression divergence (Wittkopp 2008, Coolon 2014, 

Benowitz 2020). However, there are examples where this is not the case (Osada 2017, Frochaux 

2020,). Given the large number of variations in experimental design between studies (genetic lines, 

conditions, treatments), it is difficult to determine the source of the observed differences in relative 

proportions of cis and trans effects between these works. 

1.3.4 Compensatory effects 

One trend that has emerged from previous studies is the prevalence of cis and trans effects 

that function in opposite directions to maintain gene expression levels, known as compensatory 

effects. This is a puzzling observation since it would suggest some sort of stabilizing pressure is 

maintaining gene expression levels. Nonetheless gene expression divergence emerges both within 

and between species. Thus, it is not clear how expression divergence is able to emerge when as 

much as 50% of cis and trans effects in a system are observed to be working antagonistically to 
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maintain gene expression. One explanation is that many cis effects may emerge to balance out the 

deleterious effects of a small number of trans effects. Additionally, the number of compensatory 

effects may be artificially inflated in some cases due to experimental design. As pointed out by 

Emerson et. al. 2010, estimates of cis and trans effects that rely on shared F1 hybrid samples will 

result in spurious inference of compensatory effects. This is because compensatory evolution is 

defined as a negative relationship between cis and trans variation and so in estimates that use a 

common F1 hybrid, these will be negatively correlated via error shared from the hybrid data 

(Zhang 2019). Thus, more controlled estimates of cis and trans effects spanning multiple 

conditions are necessary to better understand the true contributions of compensatory effects.  

1.3.5 Limitations of current studies 

 Though previous works have been fundamental in our current understanding of cis and 

trans effects, they are often limited either by the technology of the time or the experimental design. 

Particularly in Drosophila, studies performed generally make use of RNA extracted from the 

whole body or only consider signal from a single control condition. This means that the signal is 

generally averaged across multiple tissues and in a single context. As such, these studies are unable 

to capture the contributions of cis- and trans-acting changes of specific biological processes. 

Capturing these contributions is important given that different processes and tissues may be under 

different selective pressures.  

 There is currently limited understanding of the broad rules regarding the mode in which 

gene expression differences arise. As such there is a need for a fine-grained examination of the 

contributions of cis and trans effects to expression divergence in specific biological processes 

across multiple conditions. In Chapter 2 I fill this particular gap in knowledge by measuring the 

contributions of cis and trans mutations in expression divergence of the humoral response. I 
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achieve this by using RNA from the fat body in both control and infected conditions. To date this 

study represents the most high-resolution pathway-specific examination of cis and trans effects in 

multicellular organisms.  

 

1.4 Inter-individual variation in immune response 
 

One common threat to the health of multicellular organisms is bacterial infection. For any 

given infection, the outcome can vary greatly between individuals. Bacteria are diverse, versatile, 

and extremely adaptable. In a host, the immune response is deployed to mitigate acute infection, 

but infection outcome is dependent on a combination of genetic background, environmental factors 

and stochastic events. The specific contributions of these factors can lead to variation in infection 

outcomes between individuals. There is a need to better understand the sources of outcome 

variation and the specific contributions of these sources therein. This need has been made 

particularly clear over the course of the ongoing Covid-19 global outbreak, where infection 

outcomes have been observed to vary drastically even among factors with the strongest effect sizes 

on outcome (Argenzian 2020, Zhang 2021). This knowledge not only has the potential to inform 

our understanding of variation in infection outcome not only in human health but also across 

insects and plant populations as well.  

As mentioned before, infection outcome is dependent on the combination of genetic 

background, environmental factors, and stochastic events. In Drosophila, much of the research to 

date has addressed the contributions of genetic and environmental factors.  This is done by either 

controlling for environmental conditions to test for differences in genetic background or by 

controlling for genetic background to test for different environmental conditions. While 

informative, these studies have given rise to the observation, that even among genetically identical 
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individuals there is a great deal of variation in infection outcome (Lazzaro 2004, Lazaro2006, 

Sackton 2010, Howick 2017, Duneau 2017). This variation is observed as differences in the 

bacterial load upon infection or the ability to survive infection within genetic lines. Historically, 

this variation has been attributed to stochastic differences such as variation in inoculation, time to 

immune initiation or other stochastic events (Duneau 2017, Ellner 2021). However, to our 

knowledge, detection of this interindividual variation has been limited in no small part due to 

limitations in existing methods. 

1.4.1 Current methods and limitations 

The most common method for measuring infection progression in Drosophila, and many other 

systems, is dilution plating. This method involves inoculating individuals with bacteria, then 

sacrificing individual flies at the time points of interest by grinding them up. A serial dilution of 

the homogenate is then plated on the appropriate media to quantify the colony-forming units (CFU) 

for each fly. In this manner, the mean CFU per fly can be calculated at a single time point and the 

average infection trajectory is determined by tracking how this mean changes over time. This 

method is labor-intensive, as it requires many individual measurements to account for biological 

variation in infection as well as variation introduced via the dilution plating process itself.  

This method for measuring infection progression is also inadequate for determining sources of 

interindividual variation. This is because it requires animal sacrifice and as such can only provide 

a "snapshot" of an animal's physiological state. Additionally, this sacrifice means that all 

information of the infection progression up to and after the point of measurement is lost. Without 

access to individual infection trajectories, this method must average across many individuals to 

determine the average infection trajectory of a group. This in turn means that individual infection 
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outcomes cannot be directly linked to an individual infection trajectory. Thus, sources of variance 

between individuals can only be inferred but not directly observed.  

1.4.2 Previous findings 

Despite the caveats, the method of dilution plating has been critical for gaining insight into 

genetic variation in immune response infection progression between genetic lines (Lazzaro 2004, 

Lazaro2006, Sackton 2010, Howick 2017), as well as potential sources of non-genetic variation 

(Duneau 2017, Ellner 2021). Although it has never been directly measured, some work has been 

done in Drosophila on variation in infection outcome between genetically identical individuals, 

despite seemingly similar infection conditions. These works suggest that a potential explanation 

for this may be stochastic variation in the amount of time it takes the immune response to switch 

on in response to infection (Duneau 2017). Another explanation may be that mutual negative 

feedback loops between the pathogen and the host immune response amplify stochastic variation 

between individuals, resulting in differential infection outcomes (Ellner 2021). However, these 

works rely on models to explain observed variation in infection outcome, and while potentially 

informative they still require validation. As such, there is a need for a method that can 

longitudinally track infection in individual flies to directly link variation in infection outcome to 

infection trajectory and disentangle potential sources of variation in immune response.  

To address this current need in the field, we developed a method to longitudinally monitor 

infection progression in individual Drosophila melanogaster.  This method involves injecting 

autobioluminescent bacteria into flies and quantifying the amount of light emitted from bacteria 

through the fly cuticle. The light detected serves as a direct measure of the bacterial load over time 

without the need for sacrifice. Additionally, this method allows for the measurement of infection 

progression at the level of individuals while being high-throughput enough to allow between-
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genotype measurements to also be feasible. In this way this new method improves on existing 

methods of monitoring infection by making them more high-throughput while allowing for the 

quantification of individual infection dynamics. In chapter 3 of my thesis, I describe this method 

in detail and demonstrate its potential for identifying sources of variation both between genetic 

lines and genetically identical individuals. 

 

1.5 Tissue-specific labeling of nascent RNA 
 

As mentioned above, differences in gene expression can drive larger scale phenotypic 

differences.  Understanding what genes are differentially expressed between genotypes or 

conditions can inform us about the function and form of biological processes that are involved 

(Asyali 2006). However, gene expression is not homogeneous throughout an organism and 

expression programs may vary drastically between different tissues and cell types (Whitehead 

2005, Asyali 2006). As such, gene expression studies that are interested in specific biological 

processes require expression measurements on the level of tissue or cell type to avoid confounding 

signals.  

1.5.1 Current methods for tissue and cell-specific gene expression profiling  

 Several methods exist for acquiring expression data at the level of tissue or cell type, many 

of which require the physical isolation of tissues or cells of interest. To acquire tissue-specific 

measurements one of the most straightforward methods is to simply dissect or isolate the tissue for 

RNA extraction. This method works well for larger or highly structured tissues but becomes less 

feasible with smaller, more amorphous tissues or with rare cell types. For isolating cell-specific 

RNA, methods such as single-cell sequencing or cell sorting before sequencing do exist, but these 

methods can become expensive and they rely on the ability to dissociate a particular tissue into 
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individual cells (Otsuki 2014, Wang 2015). While these methods work well for sturdier cell types, 

they are not feasible for isolating cell types that cannot survive the mechanical stress of 

dissociation without rupturing. One common workaround for tissues and cells that are recalcitrant 

to standard tissue dissociation protocols is the sequencing of single nuclei. Research has shown 

that while single nuclei and single cells generally have highly correlated relative gene expression, 

notable differences do exist (Nguyen 2018). As such there is a need for methods of expression 

profiling that do not rely on mechanical means of isolation.  

 Currently, several systems exist for expression profiling that do not require tissue or cell 

isolation. In general, these methods either rely on the co-immunoprecipitation of RNA binding 

proteins or the labeling of nascent RNAs (Otsuki 2014). With the first method, one major concern 

is the level of background contamination introduced via biochemical procedures necessary for co-

immunopurification which may result in the non-specific binding of proteins to RNA (Otsuki 

2014). With the second method, however, this concern is mitigated since RNA is directly labeled 

and purified (Otsuki 2014). RNA labeling methods generally rely on inert nucleoside or 

nucleobase analogs carrying a chemical handle can be readily biotinylated (Miller 2009, Nguyen 

2016, Beasley 2018). Tissue or cell-type specificity is conferred by the addition of an exogenous 

enzyme that in only expressed in predetermined tissues or cell types. This allows for the 

incorporation of the supplied analog into specific RNAs, and the chemical handle can then be used 

to specifically label and purify RNA from bulk extracted RNA.  

1.5.2 Targeted RNA labeling in Drosophila 

 In Drosophila the established method for targeted labeling of nascent RNA was found to 

be lacking in specificity. This is because the system relies on the bacterial uracil 

phosphoribosyltransferase (UPRT), in combination with a uracil analog, to label RNA (Miller 
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2009, Nguyen 2016). Previously UPRT homologs in higher eukaryotes were found to be primarily 

inactive in vitro (Li 2007). This led to the use of microbial UPRT RNA labeling. However, in vivo 

work later found the Drosophila UPRT homolog to show activity that allowed for the nonspecific 

integration of uracil analogs into nascent RNA (Gosh 2015).  

Consequently, there is a need for a method to specifically label RNA in Drosophila that 

does not rely on microbial UPRT. Fortunately, a separate system already exists that instead uses 

an inert protected nucleotide analog in combination with the bacterial-specific penicillin G 

amidase (PGA) (Nguyen 2016, Beasley 2019). Similar to the previous system, this inert analog 

can be activated in particular tissues or cell type via the specific expression of a PGA gene which 

leads to the removal of a PGA-specific protecting group and integration of the nucleotide analog 

into RNA (Nguyen 2016, Beasley 2019). Despite the promise of this system for specific labeling 

of RNA, it has yet to be adapted for use in Drosophila.  

In Chapter 4 of my thesis, I describe how we adapted this PGA-dependent method for the 

labeling of nascent RNA in Drosophila. I demonstrate that this system can uptake and incorporate 

modified nucleotides administered orally. I also describe preliminary results that suggest that 

caged nucleotide analog coupled with tissue-specific expression of the PGA gene using a GAL4-

UAS system appears to specifically label nascent RNAs. Though further work is required to verify 

and optimize the specificity of the methods’ labeling, this work fills the current need for precise 

chemical tools for dissecting gene expression differences and may serve as a starting point for 

future work.  
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CHAPTER 2 
The mode of expression divergence in Drosophila fat body is 

infection-specific 
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2.1 Abstract 
 

Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting 

factors. Changes in cis or trans factors can drive expression divergence within and between 

species, and their relative prevalence can reveal the evolutionary history and pressures that drive 

expression variation. Previous work delineating the mode of expression divergence in animals has 

largely used whole body expression measurements in one condition. Since cis-acting elements 

often drive expression in a subset of cell types or conditions, these measurements may not capture 

the complete contribution of cis-acting changes. Here, we quantify the mode of expression 

divergence in the Drosophila fat body, the primary immune organ, in several conditions, using 

two geographically distinct lines of D. melanogaster and their F1 hybrids. We measured 

expression in the absence of infection and in infections with Gram-negative S. marcescens or 

Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the 

Drosophila innate immune response. The mode of expression divergence strongly depends on the 

condition, with trans-acting effects dominating in response to Gram-positive infection and cis-

acting effects dominating in Gram-negative and pre-infection conditions. Expression divergence 

in several receptor proteins may underlie the infection-specific trans effects. Before infection, 

when the fat body has a metabolic role, there are many compensatory effects, changes in cis and 

trans that counteract each other to maintain expression levels. This work demonstrates that within 

a single tissue, the mode of expression divergence varies between conditions and suggests that 

these differences reflect the diverse evolutionary histories of host-pathogen interactions.  
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2.2 Introduction 
 

Differences in gene expression are drivers of phenotypic divergence in closely related species 

(King and Wilson 1975). These expression differences can arise through sequence changes in cis-

regulatory elements, such as enhancers, or in the coding regions of trans-acting factors, such as 

transcription factors. These two types of changes differ in their impact. Changes in cis are local, 

typically affecting the expression of one gene at a time, whereas changes in trans can be broad, 

affecting all downstream targets of a gene. The relative prevalence of each of these types of 

changes may give insight into how expression divergence arises in a particular setting: through the 

accumulation many fine-tuning cis-acting changes, by a smaller number of large impact trans-

acting changes, or both. 

The prevalence and relative contributions of cis and trans changes are being explored in 

various model systems (Signor and Nuzhdin 2018). For example, within individual Drosophila 

melanogaster lines or between Drosophila species, the contributions of cis-acting changes 

generally increase with phylogenetic distance, and the precise balance of cis versus trans effects 

depends on the phylogenetic relationships and demographics of the genotypes being compared 

(Wittkopp et al., 2004, Wittkopp et al., 2008, McManus et al., 2010, Coolon et al., 2014, Osada et 

al., 2017). These studies have elucidated the mode and tempo of the changes driving expression 

divergence; however, most studies use whole body measurements of expression, thus averaging 

signal across multiple tissues. Therefore, these studies cannot examine the prevalence of cis and 

trans changes in specific biological processes, which may be subject to different types of selection 

pressure. In addition, given that many cis-regulatory elements act in a tissue-specific manner, 

studies that measure cis and trans effects with tissue-specific resolution may reveal effects 

undetectable in heterogenous samples.  
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 Drosophila have an innate, but not adaptative, immune response, and this response is a 

powerful system for measuring the contributions of cis and trans changes for several reasons. First, 

the immune response is inducible, with active and inactive states. This allows for the clear 

delineation of the transcriptional response of the immune system from that of other processes. 

Second, the fat body within the immune system is an optimal tissue for study. Though other tissues 

participate in the immune system, the fat body is a primary driver of the humoral response (Buchon 

et al., 2014), and it is relatively easy to isolate. Lastly, there is ample variation in the resistance, 

survival, and transcriptional response to infection between individual D. melanogaster lines 

(Lazzaro et al., 2004, Lazzaro et al., 2006, Sackton et al., 2010, Hotson and Schneider 2015), 

suggesting there are many sequence changes driving these differences. 

To quantify changes in cis and trans that drive transcriptional divergence in the immune 

response, we use allele-specific expression analysis (ASE) of RNA-seq data (Wittkopp et al. 2004, 

Signor and Nuzhdin 2018, Frochaux et al 2020). In this approach, we compare a gene’s expression 

levels in two parental lines to the expression levels of each parental allele in the resulting F1 

hybrids. Differences in expression due to changes in cis, e.g. a sequence change in a promoter or 

enhancer, will only affect the expression of the corresponding parental allele. Thus, changes in cis 

are independent of cellular environment and will be observed as allelic imbalance between the 

parents that is maintained in the hybrids. Differences in trans, e.g. a coding sequence change in a 

transcription factor, will affect the expression of both alleles in the F1 hybrids and thus will be 

observed as differential expression in the parental lines that is not maintained in the F1 hybrids. 

Combining ASE analysis with RNA-seq allows us to determine the prevalence of cis and trans 

changes genome-wide. 
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When comparing the innate immune response of different D. melanogaster lines, it is not 

clear whether cis or trans changes will dominate. Changes in cis generally affect a single gene’s 

expression and thus may be easily tolerated, as they only introduce small amounts of phenotypic 

variation. Changes in trans can affect the expression of many genes at once and efficiently 

introduce a large amount of phenotypic variation, but changes in trans may be harder for the 

organism to tolerate, as they also increase the likelihood of deleterious effects. However, the 

specific biology of the innate immune response may temper this expectation. Antimicrobial 

peptides (AMPs) are among the most highly up-regulated genes in response to infection, but the 

deletion of individual AMP genes often has little to no measurable effect of infection survival 

(Hanson et al., 2019). This suggests that to get an appreciable phenotypic effect, synchronous 

changes in gene expression are required, which can result from a trans-acting change. In addition, 

within D. melanogaster lines, trans changes are typically more prevalent (Wittkopp et al., 2008, 

Coolon et al., 2014). In this setting, the observation of a large number of cis-acting changes would 

imply that immune-responsive expression divergence is achieved through the divergence of one 

gene at a time, suggesting a fine-tuning process. Conversely, a preponderance of trans-acting 

changes would imply that expression divergence is achieved through changes in upstream factors 

that can simultaneously modulate the expression of many target genes. 

To measure the contributions of cis and trans-acting changes in the Drosophila innate 

immune response, we measured fat body gene expression in two sequenced inbred D. 

melanogaster lines and their F1 hybrids, in control and infection conditions. To find signaling 

pathway-specific effects, we separately infected the animals with either Gram-positive 

Enterococcus faecalis or the Gram-negative Serratia marcescens. These bacteria have different 

strengths of virulence and separately trigger the two primary immune signaling pathways in the 
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fly. We quantified the contribution of cis and trans effects in the control and in each infection 

condition. This approach enabled us to examine the evolutionary changes that drive expression 

divergence in response to a stimulus, while minimizing the confounding effects of multiple tissue 

types.  

 

2.3 Results 
 

2.3.1 Two geographically distinct lines show genotype-specific immune 

response      

To measure the relative contributions of cis- and trans-acting effects in the innate immune 

response, we needed two inbred, sequenced strains of D. melanogaster with abundant genetic 

variation and phenotypic differences in the immune response. The founder lines of the Drosophila 

Synthetic Population Resource fit these requirements, making them ideal candidates (King et al., 

2012). To maximize the likelihood of finding variation in these lines, we selected two lines from 

different continents, the A4 line, also known as KSA2, collected from the Koriba Dam in South 

Africa, and the B6 line, collected from Ica, Peru. Using the available SNP data, we found 462,548 

SNPs between A4 and B6, with about half of them falling into exonic regions, indicating that 0.9% 

of exonic bases varied between the genotypes, with an average of 25.25 variants per gene. The 

extensive variation in the coding regions allowed us to map, on average, 11.2% (±1.3%) of RNA-

seq reads in an allele-specific manner. 

To assess the divergence in the A4 and B6 immune responses, we measured gene 

expression pre- and post-infection in the abdominal fat body, the primary site of immune response. 

To do so, we performed RNA-seq on the dissected fat bodies of 4-day old males from both lines 

that had been infected with either Gram-positive Enterococcus faecalis (Efae) or Gram-negative 
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Serratia marcescens (Smar). We selected these bacteria because in D. melanogaster, Gram-

positive infections generally stimulate the Toll pathway, and Gram-negative infections generally 

stimulate the IMD pathway, though there is additional nuance due to signaling crosstalk and the 

contributions of other signaling pathways (Buchon et al., 2014; Busse et al., 2007; Lemaitre and 

Hoffmann 2007; Tanji et al., 2010; Troha et al., 2018). We measured expression pre-infection and 

three hours post-infection, to capture the early transcriptional response prior to the complicating 

effects of feedback. As a control, we performed RNA-seq on the fat bodies of uninfected, 

unwounded animals from each genotype (see Methods). This choice means that, when compared 

to the control, the expression response observed in the infected samples includes both wound 

healing and infection responses. 

In response to Efae infection, we found sizable genotype-specific effects in the immune 

response. To detect these effects, we performed two types of differential gene expression analysis: 

we compared control and infected samples to find Efae-responsive genes, and then within this 

group, we looked for genes differentially expressed between the A4 and B6 genotypes. We found 

1165 differentially expressed genes between the control and infected samples regardless of 

genotype (Figure 2.1A). We categorized these Efae-responsive genes into four groups based on 

their differential expression between genotypes. Group 1 genes showed no genotype specific 

expression, Group 2 genes are differentially expressed only in the control samples, Group 3 genes 

are differentially expressed only in the infected samples, and Group 4 genes are differentially 

expressed in both control and infected samples. Of the 500 Efae-responsive genes showing 

genotype effects, 87% (433 genes) are in Group 3, while only 10 genes are in Group 1 and 57 

genes in Group 4 (Figure 2.1B). This indicates that many Efae-responsive genes show genotype-

specific expression, and these differences are typically only revealed in response to infection. 
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In response to the Smar infection, we found 1203 differentially expressed genes between 

the control and infected samples (Figure 2.1A). To look for genotype-specific expression, we 

categorized the 1203 Smar-responsive genes into the three previously mentioned groups. For this 

infection, we found roughly equal numbers of genes in Groups 2-4, with 88, 91, and 84 genes, 

respectively (Figure 2.1B). This indicates that a higher fraction of Smar-responsive genes show 

genotype effects prior to infection than Efae-responsive genes (p = 1.7 × 10-11, Chi-square test, 

Bonferroni corrected), while a higher fraction of Efae-responsive genes show genotype effects 

after infection (p = 9.5 × 10-67, Chi-square test, Bonferroni corrected). 

To assess whether there is also phenotypic divergence on the organismal level, we 

performed the Efae and Smar infections and measured survival and bacterial load. In response to 

Efae infection, we found differences in the ability to survive infection between genotypes, with B6 

surviving infection longer than A4 (Supplemental Figure S2.1A). In response to Smar, we found 

there were no significant differences in survival, but bacterial load was lower in A4 than in B6 

(Supplemental Figure S2.1B, S2.1C). Together, these data demonstrate that there are differences 

between the two lines in their ability to resist or survive infection.  

To compare our tissue-specific measurements to previous work, we intersected our Efae- 

and Smar-responsive genes to an existing list of immune-responsive genes. This list is an expanded 

version of the Drosophila immune responsive genes set (DIRGS) and constitutes the summation 

of more than two decades of work in Drosophila (De Gregorio et al., 2001; Lemaitre and Hoffman 

2007; Troha et al., 2018). Of 538 genes on this list, we found more than half of these (297 genes) 

were identified as immune-responsive in our data (Figure 2.1C). Troha and colleagues identified 

a subset of immune-responsive genes as core, i.e., the gene that are differentially expressed 

regardless of the type of bacterial infection (Troha et al., 2018). Of these 252 core genes, 
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approximately 40% were found to be both Smar- and Efae-responsive in our data. Therefore, 

despite differences in the genetic background, tissue (previous studies were typically done with 

whole body sampling), and time points, our findings show concordance with previous studies of 

gene expression in response to infection. We also show that the A4 and B6 lines have divergence 

both immune-responsive expression, making them suitable for subsequent F1 hybrid experiments. 

  

2.3.2 Cis-acting effects dominate expression variation in the uninfected fat body 

To effectively quantify cis and trans effects, we needed to accurately analyze the allelic expression 

in F1 hybrids. Using the the Allele-Specific Alignment Pipeline (ASAP) (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified allele-specific 

expression in our samples. Since we are working with males, we were able to use the fraction of 

misassigned X-chromosome reads as a metric of our pipeline's accuracy (Supplemental Methods).  

On average, 0.5% of X chromosome reads were mis-assigned (standard deviation = 3%; 

Supplemental Table S2.1). The consistent, low level of mis-assigned reads verifies our ability to 

accurately quantify allelic expression. 

We next sought to quantify cis and trans effects in the control samples. We used the 

complete set of parental RNA-seq reads and the subset of the F1 hybrid reads that could be 

assigned to a specific allele. Using three separate generalized linear models, we tested for 

differential expression in the parents, allelic imbalance in the F1 hybrids, and trans effects between 

parents and F1 hybrids (see Methods) (Davidson and Balakrishnan, 2016; Osada et al., 2017; 

Takada et al., 2017). We then categorized each gene into one of six categories (Figure 2.2A). Genes 

showing no differential expression in the parents or F1 hybrids are conserved. Genes showing 

differential expression in both the parents and F1 hybrids and no trans signal are cis-only. Genes 
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showing differential expression in the parents and not the F1 hybrids are trans-only. Some genes 

show evidence of both cis and trans effects and are either compensatory (if the changes on 

expression are in opposite directions) or cis + trans (if the changes on expression are coherent). 

Genes that do not fall into any of these categories are undetermined. 

Of the 4959 genes that were expressed in the pre-infection fat body that could be detected 

in an allele-specific manner, 77% were conserved (3802 genes; Figure 2.2B, F). We found 

151genes showing unambiguous cis or trans effects. Among these 151 genes, cis effects dominated 

the signal: 90% of genes (135 genes) showed cis signal (including cis-only, cis + trans and 

compensatory genes), and 57% (87 genes) showed cis-only effects. 42% of genes (64 genes) 

showed trans signal and only 10% of genes (16 genes) showed trans-only effects. One-quarter of 

genes (37 genes) were compensatory, even when using an experimental design to avoid the 

artificial inflation of compensatory signal (Methods; Zhang and Emerson, 2019; Fraser et al., 

2019). Additionally, to ensure that any differences in the quality of our in-house A4 and B6 

transcriptomes do not affect our conclusions, we quantified cis and trans effects using sets of high 

confidence genes at multiple levels of stringency and found that this had negligible effects on the 

detected signal (Methods; Supplemental Figure S2.2; Supplemental Table S2.2). From these data, 

we can conclude that in the unstimulated state, most genes have conserved expression levels in the 

fat body, and among those genes that diverge, cis effects dominate, with a sizable number of genes 

showing compensatory cis and trans changes. 

 

2.3.3 More cis than trans effects are found in Efae-infected fat body expression 

We quantified cis and trans effects in Efae-infected samples following the same methodology. We 

found roughly 52% of genes (2580 genes) are conserved and 379 genes showed unambiguous cis 
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or trans effects (Figure 2.2C). To identify genes whose expression divergence is specific to the 

immune response, we eliminated genes that show cis or trans signal in the control sample. After 

this filtering, roughly 69% of the genes showing cis or trans effects (263 genes) remained; 66% of 

these genes (174 genes) show cis-only signal, and 28% (75 genes) show trans-only signal. Only 8 

genes (3%) show concordant cis + trans effects, and only 6 genes show compensatory effects. Of 

the genes that show cis-only signal, roughly even numbers of genes show higher expression in 

each genotype, consistent with the idea that cis-acting changes affect a single gene at a time. In 

contrast, of the genes showing trans-only signal, nearly twice as many were expressed more highly 

in the B6 genotype (48 genes) than in the A4 genotype (27 genes) (p = 0.0105, Chi-square test). 

This suggests that one or a few changes in upstream regulatory factors are responsible for this 

observation, and below, we identify candidate genes. Since we do not observe this trend towards 

higher B6 expression in the control samples and have removed genes that showed any evidence of 

mapping bias (Methods), we are confident this trend reflects true biological differences in the 

immune response. In sum, we find both cis and trans effects drive Efae-responsive expression 

divergence, with cis effects dominating. 

 

2.3.4 Trans effects dominate expression variation in the Smar-infected fat body  

Lastly, we quantified cis and trans effects in response to Smar infection. We found roughly 82% 

of genes (4106 genes) are conserved, and 355 genes showed unambiguous cis or trans signal 

(Figure 2.2D). We again filtered out genes that show cis or trans effects in the control samples and 

were left with 251 genes that have immune-specific signal. Of these, 31% (79 genes) showed cis-

only signal, and roughly equal numbers of cis-only genes showed higher expression in each 

genotype. Seven genes showed cis + trans effects, and 16 genes had compensatory signal. 59% of 
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genes (149 genes) showed trans-only signal. Within trans-only genes, we found that 71% (106 

genes) showed greater expression in B6. In summary, in response to Smar infection, trans effects 

drive the majority of expression divergence between the two genotypes and few genes show 

compensatory effects. 

 

2.3.5 Comparisons of cis and trans signals in different conditions reveal both 

infection-specific and shared divergence 

To systematically assess modes of expression variance under different conditions, we compared 

the proportion of genes falling into the different categories. The control and Efae-infected samples 

had a greater proportion of cis-only genes than the Smar samples (control vs. Smar p = 3.96 × 10-

6, Efae vs. Smar p = 6.83 × 10-14, Chi-square test, Bonferroni-corrected). All three groups differ in 

the proportion of trans-only genes, with Smar-infected samples showing more than twice the 

proportion of genes with trans-only signal, followed by Efae, and then the control samples (control 

vs. Efae p = 3.48 × 10-4, control vs. Smar p < 1.54e-16, Efae vs. Smar p = 3.05 × 10-11, Chi-square 

test, Bonferroni-corrected). We also found that the uninfected fat body showed significantly more 

compensatory signal than either infected sample (control vs. Efae p < 1.54e-16, control vs. Smar 

p = 1.8 × 10-6, Chi-square test, Bonferroni-corrected). Taken together, this suggests one of two 

possibilities. One possibility is that before infection, when the fat body is carrying out its metabolic 

functions, there is less pressure for expression divergence. An alternative interpretation is that 

immune-responsive genes are more tolerant of expression divergence and subject to less pressure 

to maintain expression levels. In response to infection, there is ample expression divergence, which 

is driven by both cis and trans effects. The extent to which each type of effect contributes is 



 33 

dependent on the particular pathogen, suggesting that the relative importance of local and 

pleiotropic changes is specific to different infection pressures. 

Though we generally expect the two infections to regulate gene expression via distinct 

signaling pathways, we also anticipated some genes would be regulated in both infections, either 

due to crosstalk between the IMD and Toll pathways (Busse et al., 2007; Tanji et al., 2010) or via 

more general infection and wound responses. We found 86 genes with unambiguous cis and/or 

trans signal in response to both Efae and Smar infection (Supplemental Data S2.1). Of these genes, 

71 showed concordant classification. Therefore, in the majority of genes shared between these two 

infections, the same genetic differences are likely driving the expression divergence in both 

infection conditions. 

 

2.3.6 Differential expression of detection genes is a likely source for genotype 

expression bias in observed trans effects  

Since we observed that genes with trans-only effects tended to be more highly expressed in B6 

than in A4 in both infection conditions, we hypothesized that changes in a handful of upstream 

immune factors are responsible for this phenomenon. The changes in upstream regulators could 

either be infection-specific or shared. Out of 202 genes showing trans-only signal in either 

infection, only 17 genes were shared,  indicating that the bulk of trans-acting changes are likely 

infection-specific. 

  Immune detection genes, signaling genes, or transcription factors differentially expressed 

between genotypes are likely sources of trans-acting changes, since these genes have the ability to 

affect the expression of many downstream targets. We posited that these genotype-specific 

differences had to be present in the control to have the effects at the 3-hour post-infection 
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timepoint. Of the 295 genes that are differentially expressed between genotypes in the control 

samples, we found 22 genes that are prime candidates, which we will refer to as trans-source 

candidates (Table 1).  

Five peptidoglycan recognition proteins (PGRP) genes are potential mediators of the large 

number of trans effects observed in the Smar infection. Four of these PGRPs (PGRP-SC1a, PGRP-

SC1b, PGRP-SC2, PGRP-LB) are negative regulators of the IMD response, and the last gene, 

PGRP-SD is positive Toll and IMD regulator (Bischoff et al., 2006; Zaidman-Rémy et al., 2006; 

Iatsenko et al., 2016; Charroux et al., 2018; Lu et al., 2020). Three of the negative regulators, 

PGRP-SC1a, PGRP-SC1b, PGRP-SC2, are more highly expressed in A4. Given that these are 

negative regulators of the IMD pathway, this finding is congruent with the observation that genes 

showing trans-only signal tend to show greater expression in B6. PGRP-SD is more highly 

expressed in B6, and, given its role as a positive regulator of the IMD response, it is also consistent 

with the trend of higher B6 expression of genes showing trans-only signal. The last negative 

regulator of IMD response, PGRP-LB, has higher expression in B6. Since three of the four negative 

regulators are more  highly expressed in A4, it is possible this balance can account for the 

expression trend in Smar trans-only genes. It is also possible that the greater expression of PGRP-

SD is enough to account for the differences observed.  

Though there were fewer trans effects in the Efae-infected samples than in the Smar-

infected samples, the pattern wherein most trans-only genes showed greater expression in B6 than 

A4 was maintained. Of the 22 trans-source candidates, we found two Toll-specific genes: Spatzle-

Processing Enzyme (SPE) and spatzle (spz), which are both more highly expressed in B6. Spatzle 

is the Toll receptor ligand, and SPE is required to generate the active form of spz, so differential 

expression of these genes can drive a large number of downstream changes. In addition, PGRP-
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SD can act as a positive regulator of both the Toll and IMD responses and is also found to have 

higher expression in the B6 line. 

In addition to differences in expression between genotypes, function-altering differences 

in the coding sequences of immune genes may also be the source of trans-acting changes. As a 

first approach, we analyzed the coding sequence differences between A4 and B6 in the 22 trans 

source candidates identified above using the Ensembl Variant Effect Predictor (McLaren et al., 

2016). There are a number of non-synonymous changes, some of which fall into functional 

domains (Supplemental Figure S2.3, Supplemental Table S2.3 and S2.4). Predicting the effect of 

these mutations on individual protein function, however, remains a challenge. 

As an alternative approach, we analyzed the proportions of synonymous to 

nonsynonymous coding changes between A4 and B6 in several larger gene sets.  Previous work 

has demonstrated that immune-related genes have a higher average rate of adaptive evolution than 

other gene classes (Sackton, et al. 2007; Obbard, et al. 2009). We wanted to see if, for our particular 

genotypes and genes of interest, the same held true. We considered all genes expressed in the fat 

body above a threshold of 1 count per million (CPM), and then sorted them into two groups: genes 

that are differentially expressed in response to either or both infections (DE infection) and those 

that are not (fat body detected). We then intersected each of these gene lists with  our curated 

immune-responsive gene set to generate both a list of differentially and non differentially-

expressed immune genes (DE immune and non-DE immune respectively; Figure 2.3A). We posited 

that, given the large number of trans effects in response to infection, differentially-expressed 

immune-related genes may have a greater proportion  of nonsynonymous changes compared to the 

fat body detected gene set. We found that DE immune genes have a significantly higher fraction 

of nonsynonymous sequence changes (24%) compared to the fat body detected genes (21%) (p = 
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0.01, Chi-square test, Bonferroni-corrected), suggesting that some of these changes may be under 

selection and possibly the source of our trans-acting signal (Figure 2.3A-B). By comparison, the 

non-DE immune genes had a lower proportion of nonsynonymous changes (19 %, p=1.6 × 10−4, 

Chi-square test, Bonferroni-corrected), suggesting that the elevated rate of nonsynonymous 

changes in DE immune genes is not simply reflective of their immune status.  In summary, we find 

that differentially-expressed immune genes have a larger proportion of non-synonymous changes 

between our genomes of interest than fat body detected or non-differentially expressed immune 

genes. Some of these non-synonymous changes may be capable of altering the function of these 

proteins and therefore drive expression divergence of downstream genes in a trans-acting fashion. 

 

2.3.7 Genes with cis effects have greater transcription factor binding site 

divergence than to genes with trans effects 

The above analysis sought to identify changes in expression or protein sequence that may 

drive the observed trans effects Cis-acting changes also drive expression divergence of a large 

number of genes. These changes encompass mutations in several types of DNA features, including 

promoters, enhancers, and untranslated regions. We analyzed the patterns of divergence in 

immune-responsive transcription factor binding sites (TFBS) to see if they were consistent with 

our delineation of cis and trans-acting effects. We hypothesized that genes whose divergence was 

due to cis-acting effects would show more divergence in the associated TFBS than those without 

them. 

We scanned potential regulatory regions of our genes of interest for TFBS in the A4 and 

B6 genomes. There are relatively few characterized immune-responsive enhancers in the fat body, 

so instead we extracted 1kb regions upstream of the transcription start site of genes showing any 
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cis or trans-acting changes in infected conditions. We searched these regions for binding sites 

corresponding to four known immune-responsive transcription factors Dorsal (Dl), Relish (Rel), 

Serpent (Srp) and CrebA (Shazman et al., 2014). CrebA modulates transcription in response to 

both Gram-positive and Gram-negative bacteria (Troha et al., 2018). Srp binding sites have been 

previously used to identify immune-responsive enhancers (Senger et al., 2004). Relish is a NF-kB 

transcription factor downstream of the IMD pathway, and Dl and its paralog Dorsal-related 

immunity factor (Dif) are downstream of the Toll signaling pathway. For this analysis however, 

only Dl was considered since Dif homodimers have less specific binding preferences than Dl and 

Dif/Rel heterodimers bind sequences similar to Rel homodimers (Senger et al., 2004). Given the 

cross-talk between the Toll and IMD pathways, we searched both Efae- and Smar-responsive 

genes for both Dl and Rel binding sites. For each gene, we calculated the difference in the total 

number of TFBS in the A4 and B6 genomes. We then compared the genotype differences between 

genes showing any cis effects and genes showing exclusively trans effects (see Methods). We 

hypothesized that genes showing cis effects would have more differences in TFBS than the trans 

effected genes, which would be observed as a broader distribution in TFBS differences.  

For all transcription factors except Dl (Figure 2.4A-E), the genes with cis effects did indeed 

show a broader distribution of difference than those with trans effects (all TFs: p = 8.8 × 10-13, 

Rel: p = 2.9 × 10-2, Srp: p = 7.1 × 10-10, CrebA: p = 1.5 × 10-7, F-test to compare distribution 

variances, Bonferroni corrected). While most genes do not differ in TFBS numbers, 22% of genes 

with cis changes differed, as opposed to only 18% of trans affected genes, though this difference 

was not significant (Figure 2.4F). As the number of characterized immune-responsive enhancers 

and transcription factors increases, we will be able to refine this analysis to more accurately 

identify potential causative mutations of cis-effects.  
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2.4 Discussion 
 

Here, we quantified the mode and extent of expression divergence in the Drosophila abdominal 

fat body, both in an uninfected control condition, where it carries out a variety of metabolic roles, 

and in response to two types of infection. We found that two geographically isolated lines of D. 

melanogaster are phenotypically distinct in their immune responses, differing both on the 

organismal and transcriptional levels. By comparing gene expression in the fat body between these 

lines and their F1 hybrids, we quantified the contributions of cis and trans effects to expression 

divergence in the uninfected control, Efae-infected and Smar-infected conditions. Both the control 

and Efae infection conditions were dominated by cis effects, while the Smar infection condition 

had an abundance of trans effects. The uninfected control also showed a greater proportion of 

compensatory effects, suggesting that there is stabilizing selection to maintain fat body expression 

levels of certain genes in the absence of an infection. Among the genes showing changes in trans, 

we found that expression of the B6 allele is typically higher, and we identified expression 

divergence in a group of proteins that may drive these trans effects. By analyzing the TFBS content 

of upstream regions of genes, we found that genes with cis effects show evidence of more TFBS 

divergence than genes with trans effects. Overall, we find that the mode of evolution in expression 

divergence can vary between conditions in a single tissue and likely represents condition-specific 

selection pressures.  

  Our unique approach to measuring the mode of expression divergence gave rise to several 

novel observations about the relative contributions of cis and trans effects on expression variation. 

While there have been a number of studies aimed at disentangling the contribution of cis and trans 

changes to gene expression in Drosophila, few have sought to answer this question using a single 

organ or with different physiological stimuli (Wittkopp et al., 2004, Wittkopp et al., 2008, 
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McManus et al., 2010, Coolon et al., 2014, Osada et al., 2017). Our approach allows us to examine 

evolutionary changes in response to perturbation while minimizing the confounding effects of 

multiple tissue types. A previous study by Juneja, et al. (2016) found, among geographically 

distinct flies, a large number of cis-acting changes that cause whole body expression divergence 

in response to an infection with mixture of bacteria. This is concordant with our finding of a large 

number of cis-acting changes in both infection conditions, but this study did not quantify trans-

acting changes or distinguish between Toll- and IMD-specific responses. By measuring expression 

in the heads and abdomens of multiple D. melanogaster lines, another group reported the 

predominance of changes in cis over those in trans but did not measure these differences in 

different physiological states or attempt to dissect individual tissues in the head or abdomen (Osada 

et al., 2017). Most recently, two studies sought to uncover the underlying genetics of resistance to 

either P. entomophila or E. faecalis infection, and each identified novel drivers of phenotypic 

divergence (Chapman et al., 2020; Frochaux et al., 2020). Here, we sought to directly assess the 

contribution of cis and trans sequence changes in a single tissue in the context of multiple treatment 

conditions, giving a uniquely high-resolution view of the evolutionary sequence changes 

underlying expression divergence. 

 With our approach we were able to uncover two notable trends. First, we found that 

compensatory mutations were more frequent in the control samples than in either of the infected 

conditions. Previous studies in several organisms had suggested that compensatory effects were 

very prevalent (McManus et al., 2010, Gonclaves et al., 2012, Schaefke et al., 2013, Coolon et al., 

2014). However, certain choices in experimental design can inflate estimates of compensatory 

effects (Zhang and Emerson 2019; Fraser et al., 2019). Our study avoids this artifact, and therefore 

yields a more accurate estimate of compensatory effects across multiple conditions. Additionally, 
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a large proportion of studies addressing cis and trans effects in animals do so in “control” 

conditions, which may not reveal the full extent of selection forces that act on gene expression 

(Gonclaves et al., 2012, Osada et al., 2017, Davidson and Balakrishnan 2016, Signor and Nuzhdin 

2018). We find evidence that the genes involved in the maintenance of basic metabolic functions 

of the uninfected fat body are under different selective pressures than those involved in immune 

response. Unlike the immune-responsive genes, which must contend with a continuously evolving 

pathogen landscape, the genes carrying out metabolic functions may be subject to stabilizing 

selection, given relatively unchanging nutritional availability. In future studies, it will be 

interesting to further probe which systems and conditions show enrichment for these different 

patterns of expression divergence. 

Secondly, we observe that the relative contribution of cis- and trans-acting changes are 

perturbation-specific. In response to Efae infection, cis effects dominate expression changes, while 

in the Smar infection, trans changes are predominant. The prevalence of either cis or trans effects 

can be reasonably justified in our system, but we did not anticipate that the proportion of these 

effects would be infection specific. Because changes in trans factors have pleiotropic effects, it 

has been suggested that changes to these factors are under more selective constraint than cis-acting 

elements, and, thus, cis effects can more readily introduce small-scale variation into a system 

(Schaefke et al., 2013). In some cases, however, arriving at a more fit phenotype may require the 

coordinated alteration of expression of many genes, which may be more readily achieved by 

changes to trans-acting factors. In our D. melanogaster lines, S. marcescens is more virulent than 

E. faecalis – a higher dose of E. faecalis is needed to achieve similar levels of mortality to that of 

S. marcescens (Supplemental Figure S2.1). It is possible that adaptation to highly virulent 

pathogens or rapidly evolving pathogens requires large-scale, synchronous changes to expression, 
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whereas adaptation to less virulent pathogens is possible with smaller, localized mutations. 

Experiments with a wider range of pathogens, particularly those that trigger the same signaling 

pathway, will further illuminate the relationship between the mode of expression divergence and 

the host-pathogen relationship. In addition, expansion of the study to more D. melanogaster 

genotypes or to other time points will yield a more complete picture of the modes of expression 

divergence in the immune response. 

In summary, we find that the mode of expression divergence, as represented by the 

proportion of cis and trans effects in a system, is condition-specific in the Drosophila 

melanogaster abdominal fat body. This specificity may be a result of the distinct selective 

pressures that different host-pathogen interactions exert on the D. melanogaster immune system. 

In the course of our study, we found several candidate genes that may be the sources of the 

observed trans effects, which are most prominent in Smar infection. In the future, we can combine 

the data sets presented here with other types of functional genomics experiments to identify the 

specific sequence changes that drive cis-acting divergence. Taken together, these studies will 

provide a more comprehensive view of how regulation of expression in this rapidly changing 

system is wired and evolves.  

 

2.5 Methods 
 

2.5.1 Animal genotypes, infection protocols, and survival analysis 

The A4 and B6 D. melanogaster lines, SNP tables, and genomic reads were received from the 

Drosophila Synthetic Population Resource (King et al., 2012).  Flies were reared at 25˚C on 

standard cornmeal fly food (Brent and Oster 1974). For all RNA-seq experiments four-day-old 

males were infected with approximately 15 nL of A600 = 0.5 OD solution of either Enterococcus 
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faecalis or Serratia marcescens via microinjection, yielding an infection of ~10,000 CFUs/fly 

(Khalil et al., 2015). Survival and bacterial load experiments were performed using a modified 

infection protocol (Supplemental Methods). Uninfected controls were placed on a carbon dioxide 

pad for 6 minutes to mimic the effects of anesthesia used for microinjection. Bacteria were grown 

in liquid culture on a shaker at 37˚C overnight and then diluted 1:1000 in fresh media in the 

morning. Cultures were grown until exponential phase then pelleted down and resuspended in PBS 

for OD measurement and injection. Injections took place between 3:00 and 5:00 pm to account for 

the impact of circadian rhythm on immune response (Scheiermann et al., 2013).  

To determine the number of unique SNPs between A4 and B6, we downloaded published 

SNP tables from the DSPR website (King et al., 2012). We selected SNPs that were not shared 

between lines and that also showed a reference allele frequency of < 0.05 . We then calculated 

total SNP differences for exonic and non-exonic regions using exon coordinates from FlyBase 

(dm6/iso-1: FB2019_01) (Thurmond et al., 2019). 

 2.5.2 Preparation and sequencing of RNA-seq libraries 

For sequencing experiments abdominal filets with the attached fat bodies were prepared as in 

(Krupp and Levine et al., 2010) 3 hours post infection. Three fat bodies per sample were suspended 

in TRIzol on ice (Life Technologies) and immediately stored at -80˚C for later extraction (Kono 

et al., 2016). To mitigate the impact of batch effects, injections and  RNA extractions were done 

in groupings of 6-8 samples, with at least two treatment conditions and two genotypes (A4, B6, 

A4B6 or B6A4) represented in each batch. A minimum of three biological replicates were 

collected for each treatment condition/genotype combination.  Both the order of treatment and the 

order of RNA extraction was randomized for each batch. RNA was extracted using Zymo Research 

Direct-zol RNA Extraction Kits. Library construction was completed protocol outlined in (Serra 
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et al., 2018). Samples were then sequenced on Illumina NextSeq Platform with NextSeq 500/550 

High Output Kit v2.5 to generate 43bp paired end reads. Data was imported to the UCI High 

Performance Computational Cluster for trimming and mapping of sequenced reads. 

 2.5.3 Differential expression analysis 

Reads were trimmed and filtered using Trimmomatic 0.35 (Bolger et al., 2014), specifying the 

parameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:6 SLIDINGWINDOW:4:15 

MINLEN:30. Count and TPM data for each sample was then calculated using Salmon 0.12.0 

aligner (Patro et al., 2017) using the dm6/iso-1 transcriptome and the parameters -l A --

validateMappings. Count matrices of gene-level data were then constructed in R using the 

Tximport 1.12.3 package (Soneson et al., 2015). To find genes either differentially expressed in 

response to each infection, compared to control, or differentially expressed between genotypes, 

we used the edgeR 3.26.5 package (Robinson et al., 2010, McCarthy et al., 2012). For this analysis 

we excluded lowly expressed genes (CPM<1), accounted for extraction batch in our model, and 

corrected p-values with false discovery rate (Benjamini and Yekutieli et al., 2001). Genes with an 

FDR < 0.05 were considered differentially expressed. Additionally, we assessed the potential 

effect of absolute expression on our ability to call genotype effects, and we did not find any 

significant sources of bias (Supplemental Figure S2.5). Code and accompanying files related to 

this section are in Supplemental Code as both R-notebooks and HTML documents (Script1_fig1).  

 2.5.4 Generation of A4 and B6 transcriptome annotations 

To map RNA-seq reads in an allele-specific manner, we created two reference transcriptomes by 

lifting over iso-1 genome annotations to sequenced A4 and B6 genomes. Using the UCSC liftOver 

suite, custom chain files were created by mapping iso-1 homologous sequences to the A4 or B6 

genome using BLAT (parameters -tileSize=12 -minScore=100 -minIdentity=98 )(Salinas et al., 



 44 

2016). A subset of 7654 high confidence genes were used for the subsequent analysis 

(Supplemental Methods)  

2.5.5 Allele-specific expression analysis 

RNA reads were assigned parental alleles using Allele Specific Alignment Pipeline (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/) using the A4 and B6 genomes and 

allowing for no mismatches. Non-uniquely assignable reads were discarded. Count and TPM data 

were then generated by aligning allelic reads to the corresponding transcriptome. Count matrices 

of gene-level data were then constructed in R using the Tximport 1.12.3 package (Soneson et al., 

2015).  

  To characterize expression divergence into cis and trans categories, differential expression 

was determined with unparsed parental reads and allele-specific reads from the F1 hybrids, using 

edgeR and three distinct GLM structures. Lowly expressed genes (CPM<1) and X Chromosome 

genes were excluded from the analysis. For each condition, we first tested for differential gene 

expression between parental samples (Murad et al., 2019). Next, we tested for allelic imbalance, 

taking into account parent of origin and maternal genotype effects as outlined in (Osada et al., 

2017; Takada et al., 2017). For this test we used half of the F1 hybrid samples. Finally, we tested 

for trans effects using parental samples and the remaining F1 hybrid samples (J. Coolon pers. 

comm., Supplemental_Code: Script2_fig2.rmd Section 4). In all three tests, we assigned 

significance after adjusted p-values for multiple comparisons using the False Discovery Rate 

method (Benjamini and Yekutieli et al., 2001). Using the results from each test, we categorized 

each gene into one of five classes using the logic outlined in Table 2, which is based on previous 

studies (Emerson and Li 2010, McManus et al., 2010). Any genes that did not fit into the described 

patterns were categorized as “undetermined” and were excluded from further analysis. A complete 



 45 

list of genes and their categories for each condition is available in the Supplemental Data S2.1. 

Code and accompanying files related to this section are available Supplemental Code as both R-

notebook and HTML document form (Script2_fig2).  

2.5.6 Identification of sources of trans effects 

To investigate potential sources of observed trans effects, we looked for genes differentially 

expressed in uninfected samples. We selected genes that show differential expression between A4 

and B6 in uninfected samples. These genes were then intersected with a list of known Drosophila 

transcription factors as well as known immune genes (De Gregorio et al., 2001; Lemaitre and 

Hoffman 2007; Hammonds et al., 2013, Troha et al., 2018). Only genes that were transcription 

factors, immune detection genes, or immune signaling genes were considered to be candidates.  

2.5.7 Analysis of SNPs in coding sequences 

To better understand the effects of sequence changes on coding regions between our lines we used 

the Ensemble Variant Effect Predictor Tool (VEP) to predict the effects of SNPs on the resulting 

amino acid sequence (McLaren et al., 2016). The fat body expressed gene set consists of  genes 

expressed in the unstimulated fat body above a CPM of 1 and excludes  genes differentially 

expressed in response to infection. DE infeciton genes are those differentially expressed in 

response to infection with either Efae or Smar. DE immune genes are those differentially expressed 

genes that are also previously verified immune response genes, and non-DE immune genes are 

previously-verified immune genes in the fat body expression gene set. Unless otherwise stated, 

figures were generated using ggplot2 3.3.2 package in R 3.6.0 (Wickham 2016, R Core Team 

2019). Code and accompanying files related to this section  are available in Supplemental Code as 

both R-notebook and HTML document form (Script3_figure3).  

2.5.8 Analysis of transcription factor binding site variation  
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To investigate the effects of noncoding sequence changes on observed expression divergence, we 

identified differences in TFBS in potential cis elements of genes showing evidence of expression 

divergence. We selected 1kb regions upstream of the transcription start site of genes showing cis 

or trans effects in response to infection (421 genes). TFBS for these regions were passed through 

the tool for Finding Individual Motif Occurrences (FIMO) from the MEME suite ( v 5.1.0 ) at p-

value thresholds of either p =0.001, or p =0.0001 and using default parameters (Bailey et al., 2009). 

MEME motif files were generated using the sites2meme utility and TFBS sequences from 

OnTheFly (Shazman et al., 2014). Binding site data was downloaded into R 3.6.0 for analysis and 

plotting (R core Team 2019). Binding sites with a p-value < .001 were considered in downstream 

analysis. This threshold was selected based on the ability to call a majority of previously identified 

Rel and Srp binding sites in four immune responsive enhancers (Senger et al 2004, Supplemental 

Table S5). For comparison, we categorized genes into two groups cis genes or trans genes. Cis 

genes were defined as genes showing any cis effect (cis-only, cis + trans and compensatory 

categories) in response to either infection (219 genes). Trans genes were defined and genes that 

showed trans-only effects and no other effects in response to either infection (199 genes). Genes 

showing any combination of trans-only and any cis effects were excluded from this analysis (3 

genes). Differences in the number of TFBS were calculated by subtracting the number of TFBS 

for each gene’s upstream region in B6 from A4, for all TFs combined as well as for each TF 

separately. We tested for significance in the distribution of these TFBS differences between the 

cis and trans affected genes using an F test for variance with the R 3.6.0 function var.test. We also 

repeated this analysis using the TFBS score instead of number, and the results mirrored those found 

for the TFBS number (Supplemental Figure S2.4). Code and accompanying files related to this 
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section  can be found in Supplemental Code as both R-notebooks and HTML document form 

(Script4_fig4).  

 

2.5.9 Description of statistical tests 

p-values for all single and multiple proportion comparisons were calculated using the R 3.6.0 

prop.test function which performs a Chi-square test with Yate's continuity correction. For data 

where more than one statistical test was performed on the same set of data, p-values were 

Bonferroni corrected for familywise type I error by multiplying the p-value by the number of tests 

performed.  

 

2.6 Data Access 
 

All raw and processed sequencing data generated in this study have been submitted to the NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE155033. 
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2.10 Figures 

 
Figure 2.1. The A4 and B6 D. melanogaster lines have variation in their response to Gram-

positive E. faecalis infection and Gram-negative S. marcescens 

A) We measured expression in the fat bodies of the A4 and B6 lines infected with Gram-positive 

Enterococcus faecalis (Efae) or with Gram-negative Serratia marcescens (Smar), 3 hours post-

infection. We found 1165 and 1205 differentially expressed in response to infection to Efae and 

Smar respectively, relative to control samples. Mean centered log2 average CPM values for each 

condition are displayed. We categorized the infection responsive genes into four groups, based on 

their differential expression between the two fly genotypes: genes showing no genotype-specific 

expression (Group 1), genes showing genotype-specific expression only in the control condition 

(Group 2), genes showing genotype-specific expression only in the infected condition (Group 3) 

and genes showing genotype-specific expression in both control and infected conditions (Group 

4). B) Among genes showing genotype effects, the majority of genes in Efae fell into the Group 2 

classification, indicating a large amount of genotype-specific expression variation is revealed upon 

infection with Efae. Among Smar-responsive genes, roughly equal numbers show expression 

differences between the genotypes before (Group 1), after (Group 2), and both before and after 

infection (Group 3). C) We intersected the genes we identified as differentially expressed in 

response to infection and a list of previously published immune responsive genes. More than half 

of the verified immune genes were identified as differentially expressed in the abdominal fat body, 

with half of these immune genes being shared between conditions. Among these previously 

identified immune genes, core genes are differentially expressed across all infections. We detected 
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roughly 40% of the core set as differentially expressed in both our infection conditions, despite 

differences in the genetic background, tissue type, and time point used in our study versus previous 

work.  
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Figure 2.2. The relative contributions of cis and trans effects to expression divergence are 

condition specific. 

 A) Here we show a schematic of the expected locations for genes falling into  four classifications  

of causes of expression divergence in plots that show the expression ratio of a gene in the parental 

lines (x-axis) against the allele expression ratio in the F1 hybrids (y-axis). B) In the uninfected 

control condition, of 4960 genes that could be detected in an allele-specific manner, 153 genes 

showed cis or trans signal. Of these 153 genes, most showed cis-acting effects. Panel F) displays 

the precise numbers of genes in each category. C) In response to Efae infection, expression 

divergence is driven predominantly by changes in cis. D) In response to Smar infection, expression 

divergence is dominated by changes in trans. E) We compared the fraction of genes categorized 

into each divergence class in the three conditions and found that the modes of expression 

divergence were condition-specific.  
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Figure 2.3: There is a greater proportion of non-synonymous SNPs in previously identified 

immune-responsive genes. 

A) To look for the prevalence of non-synonymous SNPs in our genotypes and genes of interest, 

we defined four gene sets. Among genes detected in the fat body samples, we separated genes into 

those that were differentially expressed in response to either infection (DE infection) and those 

that were not (fat body detected). Within the fat body detected genes, we defined previously 

identified immune genes showing no differential expression in response to infection (Non-DE 

Immune), and among the DE infection genes, we refined the gene list to include previously 

identified immune genes (DE immune). The numbers indicate the total number of SNPs found in 

each gene set and the percentages of synonymous and non-synonymous SNPs. B) DE immune 

genes have a higher proportion of non-synonymous SNPs than the fat body expressed genes, which 

suggests they may carry function-altering SNPs at a higher rate than the fat body expressed genes.  

p-values are Bonferroni-corrected Chi-square test with the proportion of non-synonymous SNPS 

relative to the fat body expressed gene set. 
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Figure 2.4: There are greater differences in TFBS in cis affected genes than trans affected 

genes. 

A) We identified TFBS for 4 immune responsive transcription factors Dl, Rel, Srp and CrebA in 

1kb region upstream of 219 cis-affected genes and 199 trans-affected genes. Differences in total 

TFBS numbers between genotypes were calculated for each gene and plotted. We find that 

variance in the distribution of these differences is significantly greater in genes showing cis effects 

(F-test to compare distribution variances, Bonferoni corrected). B) For Dl TFBS, there was not a 

a significant difference in the width of the TFBS distribution between genes showing cis effects 

and trans effects. C-E) For Rel, Srperpent and CrebA TFBS, there was a broder distribution of 

TFBS differences in genes with cis effects than genes with trans effects. F) A larger proportion of 

genes showing cis effects had a difference in total TFBS than genes showing trans effects, though 

the differences in these proportions were not significant.  
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FB Gene 

ID 

Gene 

Symbol 

Type Log2 

Fold 

Change 

(B6/A4) 

More 

Highly 

Expressed 

in:  

A4 

Average 

CPM 

B6 

Average 

CPM 

Immune 

involvement 

FBgn00

29822 

CG122

36 

TF -3.13 A4 28 2.7 Unclear 

FBgn00

39075 

CG439

3 

Signaling 2.06 B6 8.8 39 Unclear  

FBgn00

38978 

tHMG1 TF 3.06 B6 7 57 Unclear 

FBgn02

87768 

esg TF -3.27 A4 11 1 Unclear  

FBgn00

39932 

fuss TF 2.50 B6 1.1 6.3 Wound healing 

FBgn02

50732 

gfzf TF 8.24 B6 0 2 Unclear 

FBgn00

00448 

Hr3 TF -4.12 A4 10 0.7 Unclear 

FBgn00

16675 

Lectin-

galC1 

Detection 2.72 B6 79 570 Binding and 

agglutination 

FBgn00

35993 

Nf-YA TF -10.16 A4 10 0 Unclear 

FBgn00

28542 

NimB4 Detection -1.08 A4 40 22 Phagocytosis 

and  microbial 

pattern 

recognition 

FBgn02

59896 

NimC1 Detection -3.06 A4 97 27 Phagocytosis 

and  microbial 
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pattern 

recognition 

FBgn00

03130 

Poxn TF -4.38 A4 1.2 0.07 Unclear 

FBgn00

14033 

Sr-CI Detection -2.39 A4 84 38.6 Phagocytosis 

and  microbial 

pattern 

recognition 

FBgn00

04606 

zfh1 Signaling 

/ TF 

1.77 B6 50 17 Haematopoiesi

s  

FBgn00

31973 

Spn28D

c 

Signaling 2.56 B6 9.4 2.4 Negative 

regulator of 

melanization 

FBgn00

37906 

PGRP-

LB 

Detection 4.536 B6 111.9 75.2 Negative 

regulator of 

IMD pathway  

FBgn00

43576 

PGRP-

SC1a 

Detection -5.57 A4 4.3 6.8 Negative 

regulator of 

IMD pathway 

FBgn00

33327 

PGRP-

SC1b 

Detection -5.24 A4 3.9 0.2 Negative 

regulator of 

IMD pathway 

FBgn00

43575 

PGRP-

SC2 

Detection -4.02 A4 15 1.3 Negative 

regulator of 

IMD pathway  

FBgn00

35806 

PGRP-

SD 

Detection 4.25 B6 97.6 19.2 Positive 

regulator of 

IMD pathway 

FBgn00

39102 

SPE Signaling 2.41 B6 491.9 255.2 Positive 

regulator of 

Toll pathway 

FBgn00 spz Signaling 0.68 B6 72.8 45.5 Positive 
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03495 regulator of 

Toll pathway 

 

Table 2.1: Transcription factors and immune genes identified as potential sources of trans 

effects in infection.  

List of genes potentially driving the trans effects for Efae and Smar infection.  Candidate genes 

were identified by finding genes that had genotype-specific expression differences in the 

uninfected control conditions and that were classified as either a transcription factor, immune 

signaling gene, or immune detection gene. 
 

Category Differential gene 

expression in parents 

F1 allelic imbalance Trans test 

cis only True True False 

trans only True False True 

cis + trans True True True 

Compensatory False True True 

Conserved False False False 

 

Table 2.2: Logic for cis and trans effect gene categories. 

Genes were designated into categories based on the results of three statistical tests. Here, 'True' 

indicates a significant test result at FDR<.05 and 'False' indicates an insignificant test result. 

 
2.11 Supplemental Materials  

 
Supplemental Methods 
 

Survival and Bacterial load tracking of A4 and B6 lines. 

 

To more effectively ascertain differences in survival, we used lower doses of bacteria for the 

survival analysis than for the RNA-seq analysis  (5,000 CFUs of E. faecalis or 1,000 CFUs of S. 

marcescens). Once per day following infection, the survival status of the flies was recorded and 

the bacterial load was measured via dilution plating of a live flies as in (Khalil et al., 

2015;  Supplemental Figure S2.1). Kaplan-Meier estimates of survival were calculated using the 

survival 3.2-3 package in R (Therneau et al., 2000;  Therneau et al.,2020), and log-rank tests and 

plotting were performed using the survminer 0.4.4 package (Kassambara and Kosinski 2019). 

 



 63 

Filtering low confidence annotations from A4 and B6 transcriptome annotations. 

 

To assess the quality of our annotations and remove genes with poor annotations, genomic 

sequencing reads for A4 and B6 from the DSPR website were downloaded and aligned to our 

transcriptome files using Salmon 0.12.0 aligner (Thurmond et al., 2019). We hypothesized that 

well-annotated genes would show similar coverage of genomic reads in both the A4 and B6 

transcriptomes. We then filtered genes using two methods for outlier calling: a Poisson 

distribution-based method and a negative binomial generalized linear model (GLM) method, 

similar to that used for differential gene expression in RNA-seq experiments. For the Poisson 

method, we fitted a Poisson distribution to gene count data for the A4 and B6 transcriptomes 

separately, using the fitdistributionplus 1.0-14 package in R and called outlier genes using three 

thresholds of increasing stringency p = 0.001, 0.01 and 0.025 (Delignette-Muller & Dutang 2015). 

For the GLM-based approach, we looked for gene counts that were significantly different between 

the A4 and B6 transcriptomes and filtered genes using FDR thresholds of 0.01, 0.05 and 0.09. As 

our threshold for significance became more stringent, we filtered out an increasing number of 

genes but the differences between the final filtered sets show about a 3% difference in terms of 

total genes and less than 1% difference in genes shown to be differentially expressed 

(Supplemental Figure S2.2). Genes found not to be outliers in either the Poisson or GLM method 

were then combined into gene sets based on the stringency of filtering. These gene sets were then 

used to quantify cis and trans effects for all three conditions. We found that the stringency of 

filtering did not significantly impact the total number or proportions of cis and trans effects 

between conditions. For the allele-specific expression analysis presented in Figure 2.3, we used a 

set of genes filtered using a combination of both methods at medium stringency. 

 

Assessing accuracy of ASAP allele calling using X Chromosome reads. 

To verify the accuracy of our quantification allelic expression in F1 hybrids, we used the RNA-

seq data from the A4 and B6 parental lines and data from the F1 hybrids (A4♂x B6☿) and 

reciprocal crosses (B6♂x A4☿), in the control, Efae-infected, and Smar-infected conditions. Since 

we are using males, if our allele-specific expression analysis is correct, none of the X Chromosome 

reads should map to the paternal genotype. Using the published A4 and B6 genomes and the Allele-

Specific Alignment Pipeline (ASAP) (Krueger, 

https://www.bioinformatics.babraham.ac.uk/projects/ASAP/), we quantified the fraction of X 

Chromosome reads that incorrectly map to the paternal genotype. On average, samples had 0.5% 

mis-assigned reads (standard deviation = 3%), with the highest fraction being 1.2% (Supplemental 

Table S1). The consistent, low level of mis-assigned reads verifies our ability to accurately 

quantify allelic expression. Given that all the flies are male, any reads aligning to the paternal X 

Chromosome can definitively be classified as mis-assigned. 
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Figure S2.1: A4 and B6 lines show differences in survival in response to Gram-positive but 

not Gram-negative infection.  

A) Survival curves and confidence intervals for flies infected with an average 1000 CFUs of S. 

marcescens, observed once per day.  P-value was calculated using a log-rank test. B6 flies survive 

Efae infection for longer than the A4 flies. B) Survival curves and confidence intervals for flies 

infected with approximately 5000 CFUs of E. faecalis, observed once per day. P-value was 

calculated using a log-rank test. There is no significant difference in infection survival between 

the two genotypes. C) Bacterial load of A4 and B6 lines in response to S. marcescens infection, 

assessed by dilution plating of homogenized infected flies. Points represent a single animal’s 

bacterial load measurement (an average of three technical replicates per animal), and solid lines 

indicate the median values of bacterial load for each day. Though the flies do not show a significant 

difference in survival, it appears that A4 shows greater resistance to Smar, while B6 shows greater 

tolerance of the infection. D) Table showing sample sizes for the results depicted in this figure. 
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Figure S2.2: Differences in assembly quality minimally affect cis and trans effects in 

downstream analysis. 

To quantify the effects of assembly quality of on cis and trans effects, we filtered out genes with 

poor annotations at increasingly restrictive thresholds and quantified differences in cis and trans 

effects (Supplemental Table S2). We identified potentially problematic genes by aligning A4 and 

B6 genomic reads to their respective transcriptomes. We posited that each gene of the lifted over 

transcriptome should receive roughly the same amount of coverage once normalized for gene 

length and that genes deviating from this coverage were poorly annotated. We used two methods 

for calling outlier genes: a Poisson distribution-based method and a GLM based method (see 

Methods for details). A) Here we report the non-outlier (retained) gene numbers for different 

methods and degrees of stringency. The gene numbers do not decrease rapidly with increasing 

stringency. B-D) These graphs plot the gene counts in transcripts per million (TPM) using the A4 
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and B6 genomic reads mapped to their respective transcriptomes. Outlier genes are shown in teal 

and retained genes are shown in pink. The quantification of cis and trans effects for these different 

gene sets are shown in Supplemental Table S2. 
 

 
Figure S2.3: Most nonsynonymous mutations have non-negative BLOSUM62 scores. 

As a coarse-grained approximation of the effects of non-synonymous changes on protein function, 

we analyzed the distribution of BLOSUM62 scores for the four gene sets described. The 

BLOSUM62 score is a homology-based metric that describes the likelihood of a particular residue 

change, positive numbers indicate frequently observed changes, while negative numbers indicate 

rare amino acid substitution (Pearson 2013). For all gene sets, non-negative scores dominate, with 

67% for fat body detected, 67% for DE infected, and 71% for DE immune, 55% Non-DE immune. 

This suggests that there are some nonsynonymous mutations that may alter protein function, but 

the fraction of these disruptive mutations does not significantly differ between gene sets.   
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Figure S2.4: There are greater differences in TFBS score in cis affected genes than trans 

affected genes. 

A) We quantified TFBS score for four immune responsive transcription factors: Dl, Rel, Srp and 

CrebA in 1kb region upstream of 219 cis affected genes and 199 trans affected genes. The 

differences in total TFBS score in the B6 and A4 upstream regions were calculated for each gene. 

We find that variance in the distribution of these differences is greater in genes showing cis effects 

(F-test to compare distribution variances, Bonferoni corrected). We then looked at the distribution 

of these differences for each of the four transcription factors separately. B-C) The variances in the 

score difference distributions for Dl and Rel were not significantly different between genes 

showing cis effects and trans effects. D-E) The variances of the score differnt distributions for Srp 

and CrebA are significantly differet between genes showing cis effects and trans effects. F) A 

higher fraction of genes showing cis effects had differences in total TFBS score than genes 

showing trans effects, though these fractions were not significantly different.  
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Figure S2.5: Average CPM for genes across different identified gene groups. 

A) To determine if absolute expression between immune stimulated and control samples may be 

biasing our ability to detect genotype-specific effects, we looked at average CPM values for 

differentially expressed genes in both infection conditions. Specifically, we wanted to ensure that 

we were not finding more expression divergence effects in the infected samples because genes 

have higher expression in response to infection than in the control condition. The expression levels 

of differentially expressed genes in Efae (1165 genes) and Smar (1203 genes) conditions were 

compared to the corresponding genes in the control samples, E_CO2 and S_CO2 respectively 

(Supplemental Code, Script1_fig1). We performed two-sided Wilcoxon rank-sum tests to compare 

average CPM values from immune stimulated samples to average cpm values of the corresponding 

genes in the control conditions. Using a p-value threshold of p=0.05 we found no significant 

differences in average CPM of infection-responsive genes between treated samples and untreated 

controls (two-sample Wilcoxon rank sum test, Bonferroni corrected).  B) Here we show average 

CPM values for each of the four gene groups showing different genotype effects in response to 

Efae infection (as shown in Figure 2.1). We do not observe a significantly different average CPM 

between treated and control conditions (two-sample Wilcoxon rank sum test, Bonferroni 

corrected). C) Here we show average CPM values for the four gene groups showing different 

genotype effects in response to Smar infections (as shown in Figure 2.1). No group shows 

significance in average CPM value between the treated and control samples (two sample Wilcoxon 

rank sum test, Bonferroni corrected). 
 

  



 70 

 

 

Sample Treatment Genotype 
♂/♀ 

Total 

Reads 
Mapped 

Reads 
% Uniquely 

Aligned to 

A4  

% Uniquely 

Aligned to 

B6 

% Mis-assigned 

to X 

Chromosome 

1 control A4 26369673 24364366 9.4 0.1 0.3 

2 control A4 14870917 13878016 9.5 0.1 0.3 

3 control A4 18732323 17558251 9.4 0.1 0.3 

4 control A4 34580046 32442180 10.3 0.1 0.4 

5 control A4B6 41318671 19649962 5.4 6.4 0.6 

6 control A4B6 41205951 19378946 5.6 6.6 0.6 

7 control A4B6 53666239 50178799 4.6 5.5 0.8 

8 control A4B6 82417525 65605513 5.7 6.4 0.6 

9 control B6 17980721 16879587 0.4 10.2 0.6 

10 control B6 19997738 18798790 0.4 8.7 0.8 

11 control B6 19129651 17946593 0.4 10.4 0.8 

12 control B6 24984658 23547941 0.3 9.1 1.0 

13 control B6A4 53543764 10893030 6.0 4.5 0.3 

14 control B6A4 47079732 24895491 6.7 5.0 0.3 

15 control B6A4 47509119 21329979 6.3 4.7 0.3 

16 control B6A4 49562943 46726476 6.0 4.6 0.3 

17 Efae A4 11521847 10597039 10.9 0.0 0.4 

18 Efae A4 26211400 24598530 12.2 0.1 0.4 

19 Efae A4 16272150 15204121 12.0 0.0 0.3 

20 Efae A4 24759445 23361494 11.0 0.1 0.3 

21 Efae A4B6 36234287 33302637 5.4 6.0 0.9 

22 Efae A4B6 54770680 51649242 6.0 6.7 0.5 

23 Efae A4B6 37724992 35152256 5.5 6.0 0.7 

24 Efae A4B6 52373459 49185996 7.4 8.0 0.4 
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25 Efae B6 20269632 18651459 0.2 10.4 1.1 

26 Efae B6 22075327 20668129 0.3 11.9 0.5 

27 Efae B6 28118298 26565158 0.3 9.2 1.2 

28 Efae B6 28488360 26831112 0.3 12.7 0.6 

29 Efae B6A4 43346696 39878989 5.9 4.8 0.4 

30 Efae B6A4 50841666 47062579 6.6 5.2 0.3 

31 Efae B6A4 45437286 42562754 6.2 4.9 0.3 

32 Efae B6A4 62113778 57926378 6.6 5.2 0.3 

33 Smar A4 20932070 19569646 10.7 0.1 0.3 

34 Smar A4 22220731 20314035 7.7 0.1 0.3 

35 Smar A4 13096294 12215786 11.5 0.1 0.3 

36 Smar A4 19474264 17939316 10.8 0.0 0.3 

37 Smar A4B6 46702136 13363924 5.2 6.3 0.6 

38 Smar A4B6 42722535 19500222 6.1 6.7 0.5 

39 Smar A4B6 70196188 17932361 6.0 6.8 0.5 

40 Smar A4B6 49839957 22491147 5.7 6.5 0.5 

41 Smar A4B6 48904532 45834532 6.3 6.7 0.5 

42 Smar B6 9730094 9132793 0.4 10.4 0.5 

43 Smar B6 11254219 10569215 0.4 11.7 0.4 

44 Smar B6 16858117 15638969 0.2 10.3 0.8 

45 Smar B6A4 45215266 8235284 6.4 4.8 0.2 

46 Smar B6A4 70994061 11427623 6.0 4.7 0.3 

47 Smar B6A4 54223062 50351817 6.8 5.4 0.4 

 

Table S2.1: Sample read numbers and alignment statistic. 

Sample treatment categories are uninfected (control), E. faecalis-infected (Efae) and S. 

marcescens-infected (Smar). Genotype of samples are listed to indicate hybrid cross order: male 

genotype is listed first and female genotype second. We also show counts of 43bp paired end reads 

for each sample before and after alignment, percentages for A4 and B6 uniquely mapping reads, 

and percentages of mis-assigned X Chromosome reads (total mis-assigned X Chromosome reads 

over total X Chromosome genotype-specific reads).  
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Stringenc

y 

Treatmen

t 

Cis-

only 

gene

s 

Trans

-only 

genes 

Cis + 

Tran

s 

genes 

Compensator

y genes 

Conserve

d genes 

Undetermine

d genes 

Poisson 

Med 

Control 86 16 11 38 3808 1001 

Combined 

Low 

Control 89 16 10 46 3989 1046 

Combined 

Med 

Control 86 16 11 38 3808 1001 

Combined 

High 

Control 86 15 13 35 3688 962 

Poisson 

Med 

Efae 169 73 8 6 2586 1993 

Combined 

Low 

Efae 177 75 8 5 2734 2064 

Combined 

Med 

Efae 169 73 8 6 2586 1993 

Combined 

High 

Efae 165 77 8 8 2488 1929 

Poisson 

Med 

Smar 72 144 6 18 4107 496 

Combined 

Low 

Smar 77 153 6 15 4319 500 

Combined 

Med 

Smar 72 144 6 18 4107 496 

Combined 

High 

Smar 69 139 7 19 3965 485 

 

Table S2.2: Increased stringency of problematic gene filtering minimally impacts overall 

number of cis and trans effects.  

For each treatment, using sets of genes filtered at various levels of stringency, we quantified the 

number of genes falling into each of the cis and trans categories. We found that within treatment 

conditions the number and proportions of genes did not greatly differ as we increased the 

stringency of filtering. 
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Location Alle

le 

Gene 

Symb

ol 

Gene Feature CDS 

positi

on 

Protei

n 

positi

on 

Ami

no 

acids 

Codon

s 

BLOSU

M62 

2L:41223

51 

T Sr-CI FBgn0014

033 

FBtr0346

582 

526 176 H/Y Cac/T

ac 

2 

2L:41228

97 

C Sr-CI FBgn0014

033 

FBtr0077

467 

947 316 S/T aGc/a

Cc 

1 

2L:41233

56 

T Sr-CI FBgn0014

033 

FBtr0346

582 

1406 469 K/M aAg/a

Tg 

-1 

2L:80054

99 

A Spn28

Dc 

FBgn0031

973 

FBtr0079

549 

763 255 A/S Gcg/T

cg 

1 

2L:80055

23 

G Spn28

Dc 

FBgn0031

973 

FBtr0079

549 

739 247 I/L Att/Ct

t 

2 

2L:80055

49 

G Spn28

Dc 

FBgn0031

973 

FBtr0079

549 

713 238 V/A gTc/g

Cc 

0 

2L:80064

51 

A Spn28

Dc 

FBgn0031

973 

FBtr0079

549 

682 228 T/S Aca/T

ca 

1 

2L:80068

64 

C Spn28

Dc 

FBgn0031

973 

FBtr0079

549 

269 90 N/S aAc/a

Gc 

1 

2L:13968

919 

C NimB

4 

FBgn0028

542 

FBtr0080

617 

832 278 T/A Acc/G

cc 

0 

2L:13974

306 

G NimC

1 

FBgn0259

896 

FBtr0080

615 

1787 596 I/T aTa/a

Ca 

-1 

2L:13974

690 

T NimC

1 

FBgn0259

896 

FBtr0343

644 

1409 470 P/H cCt/c

At 

-2 

2L:13974

703 

G NimC

1 

FBgn0259

896 

FBtr0080

615 

1390 464 S/P Tca/C

ca 

-1 

2L:13975

363 

T NimC

1 

FBgn0259

896 

FBtr0080

615 

730 244 V/M Gtg/A

tg 

1 

2L:13975

380 

T NimC

1 

FBgn0259

896 

FBtr0080

615 

713 238 G/D gGc/g

Ac 

-1 
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2L:13975

515 

G NimC

1 

FBgn0259

896 

FBtr0080

615 

578 193 V/A gTc/g

Cc 

0 

2L:13975

735 

T NimC

1 

FBgn0259

896 

FBtr0080

615 

358 120 G/S Ggc/A

gc 

0 

2L:13976

157 

C NimC

1 

FBgn0259

896 

FBtr0343

644 

40 14 S/A Tca/G

ca 

1 

2R:87170

36 

G PGRP

-SC2 

FBgn0043

575 

FBtr0088

709 

70 24 I/V Atc/G

tc 

3 

2R:10207

902 

C Hr3 FBgn0000

448 

FBtr0330

609 

1570 524 P/A Cca/G

ca 

-1 

2R:10232

873 

T Hr3 FBgn0000

448 

FBtr0452

140 

439 147 S/T Tcg/A

cg 

1 

2R:10237

018 

G Hr3 FBgn0000

448 

FBtr0112

799 

23 8 N/T aAc/a

Cc 

0 

3L:76517

52 

T PGRP

-SD 

FBgn0035

806 

FBtr0076

807 

548 183 S/F tCc/tT

c 

-2 

3L:94418

76 

A Nf-YA FBgn0035

993 

FBtr0076

504 

17 6 S/I aGc/a

Tc 

-2 

3R:71486

18 

C gfzf FBgn0250

732 

FBtr0334

671 

1480 494 H/D Cac/G

ac 

-1 

3R:71506

21 

A gfzf FBgn0250

732 

FBtr0091

512 

10 4 P/S Ccc/T

cc 

-1 

3R:23378

558 

T CG43

93 

FBgn0039

075 

FBtr0339

617 

3322 1108 L/I Tta/At

a 

2 

3R:23378

567 

C CG43

93 

FBgn0039

075 

FBtr0301

085 

3313 1105 P/A Cca/G

ca 

-1 

3R:23378

571 

A CG43

93 

FBgn0039

075 

FBtr0339

616 

3309 1103 E/D gaG/g

aT 

2 

3R:23379

640 

G CG43

93 

FBgn0039

075 

FBtr0339

617 

2375 792 Q/P cAa/c

Ca 

-1 

3R:23379

641 

T CG43

93 

FBgn0039

075 

FBtr0301

085 

2374 792 Q/K Caa/A

aa 

1 
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3R:23381

986 

T CG43

93 

FBgn0039

075 

FBtr0301

085 

548 183 T/N aCc/a

Ac 

0 

3R:27066

830 

G spz FBgn0003

495 

FBtr0085

137 

199 67 T/P Acc/C

cc 

-1 

3R:30773

707 

A zfh1 FBgn0004

606 

FBtr0331

180 

232 78 Q/K Cag/A

ag 

1 

3R:30774

111 

T zfh1 FBgn0004

606 

FBtr0085

701 

386 129 K/M aAg/a

Tg 

-1 

3R:30774

123 

T zfh1 FBgn0004

606 

FBtr0331

180 

398 133 A/V gCc/g

Tc 

0 

3R:30774

165 

C zfh1 FBgn0004

606 

FBtr0085

701 

440 147 S/T aGc/a

Cc 

1 

3R:30785

831 

T zfh1 FBgn0004

606 

FBtr0085

701 

2861 954 A/V gCg/g

Tg 

0 

  

 

 

Table S2.3: Sequence changes in the list of candidate genes identified as being potential 

sources of trans effects. 

Of the 46 SNPs falling into the coding regions of 22 genes identified as potential trans sources, 

37 SNPs resulted in amino acid substitutions in 12 genes. Roughly 20% (8 SNPs) of these SNPs 

fell into the phagocytic gene NimC1 alone. In all cases, the majority of affected protein domains 

were in unnamed domains. Of the 5 PGRPs, only 2 (SC2 and SD) were found to carry mutations 

that resulted in coding region substitutions. These mutations fell into a transmembrane helix 

domain for PGRP-SC2 but in an unknown domain for PGRP-SD. Additionally we found 5 

missense mutations in Spaetzle processing enzyme and a single mutation in Spaetzle, though in 

both cases these mutations fell on unnamed protein domains. This underscores the large gap in 

our understanding of many of the domains important in the function of innate immunity genes 

and may serve as potential points of interest for future investigation.  
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Locati

on 

Al

lel

e 
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Table S2.4: Domains associated with sequence changes in the list of candidate genes 

identified as being potential sources of trans effects. 

List of protein domains affected by sequence changes in exonic regions from Supplemental Table 

S3. 
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g Rel 
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A4 .001 26 10 1 13 7 0 

A4 .0001 12 4 7 7 0 7 

B6 .001 29 11 0 13 7 0 

B6 .0001 12 4 7 7 0 7 

 

Table S2.5: Determination of ap-value threshold for transcription factor binding site analysis 

To determine an appropriate p-value threshold for identifying transcription factor binding sites 

(TFBS), we tested FIMO’s ability to detect previously identified Rel and Srp binding sites in the 

upstream regions of four immune responsive genes.  The Identified Rel sites and Identified Srp 

sites columns give the total identified binding sites for the selected TF by the FIMO utility. The 

Matched Rel sites and Matched Srp sites columns give the number of identified sites that match 

the previously described binding sites (Senger et al., 2004). The Missing Rel sites and Missing Srp 

sites columns give the number of previously identified sites that were not able to be detected by a 

given threshold. Based on this analysis, we used a p-value threshold of 0.001 for our TFBS 

analysis. 
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3.1 Abstract 
 

The innate immune system is critical for host survival of infection. Infection models in organisms 

like Drosophila melanogaster are key for understanding evolution and dynamics of innate 

immunity. However, current toolsets for fly infection studies are limited in their ability to resolve 

changes in pathogen load on the hours time-scale, along with stochastic responses to infection in 

individuals. Here we report a novel bioluminescent imaging strategy enabling non-invasive 

characterization of pathogen load over time. We demonstrate that photon flux from 

autobioluminescent reporter bacteria can be used to estimate pathogen count. Escherichia coli 

expressing the ilux operon were imaged in whole, living flies at relevant concentrations for 

immune study. Because animal sacrifice was not necessary to estimate pathogen load, stochastic 

responses to infection were characterized in individuals for the first time. The high temporal 

resolution of bioluminescence imaging also enabled visualization of the fine dynamics of 

microbial clearance on the hours time-scale. Overall, this non-invasive imaging strategy provides 

a simple and scalable platform to observe changes in pathogen load in vivo over time. 

3.2 Introduction  
 

Bacteria are widespread and can cause severe disease in animals, including humans (Hunter 

et al., 2010). Hosts mitigate acute illness through deployment of the immune system. Infection 

progression and outcome is ultimately determined by a combination of genetics, environment, and 

stochastic events (Carruthers et al., 2020; Duneau et al., 2017). Determining the relative 

contribution of each of these factors to individual prognosis will enable the identification of genetic 

markers and early predictors of infection outcome. Such discoveries will contribute to targeted 

treatment of bacterial infections.  
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Determination of genetic and stochastic contributions to infection outcome requires a host 

organism amenable to genetic manipulation and high-throughput experimentation. Drosophila 

melanogaster fulfills both of these criteria. There are thousands of inbred and sequenced D. 

melanogaster lines, and flies are tractable for high-throughput experimentation in 96-well plates, 

unlike common mammalian model organisms (Lack, Lange, Tang, Corbett-Detig, & Pool, 2016). 

Additionally, Drosophila possess an innate immune system composed of signaling pathways that 

are highly conserved in mammals (Lemaitre & Hoffmann, 2007). Flies use both the Toll and IMD 

signaling pathways in their immune response. The Toll pathway was initially discovered in flies 

and is analogous to the Toll-like receptor signaling pathway found in mammals (Lemaitre & 

Hoffmann, 2007). In both flies and mammals, the pathway depends on molecular recognition 

through pattern recognition receptors (PRRs) to initiate downstream immune response (Moy & 

Cherry, 2013). The IMD pathway in flies is orthologous to the TNF receptor family signaling 

cascade in mammals (Buchon, Silverman, & Cherry, 2014; Lemaitre & Hoffmann, 2007). Beyond 

their use as a platform for discovered conserved immune genes, studying immunity in insects like 

Drosophila provides insight into how insect vectored diseases spread, and how they may be 

contained (D. Schneider, 2000). 

Variation in infection outcome between D. melanogaster lines is in part determined by the 

genetic backgrounds of the host (Duneau et al., 2017; Hotson & Schneider, 2015; Lazzaro, 

Sackton, & Clark, 2006; Sackton, Lazzaro, & Clark, 2010). Using genetically distinct D. 

melanogaster lines, previous work has identified how different loci affect either the ability of an 

animal to reduce bacterial load or to induce gene expression upon infection (Frochaux et al., 2020; 

Lazzaro et al., 2006). Less studied both in its mechanism of action and its variation between lines 

is the fly's ability to endure infection, i.e tolerance. Though studies have shown that the genes 
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involved in infection tolerance somewhat overlap with those involved in resistance, this has yet to 

be comprehensively determined for different pathogens and across genetically diverse lines 

(Ayres, Freitag, & Schneider, 2008; Ayres & Schneider, 2008; D. S. Schneider & Ayres, 2008; 

Troha, Im, Revah, Lazzaro, & Buchon, 2018).  

D. melanogaster lines also display variability in infection response within genetically 

identical individuals. This variation has been indirectly linked to stochastic differences in bacterial 

growth within the colonized host early in the infection process and variation in the onset of the 

animal’s immune response (Duneau et al., 2017; Ellner, Buchon, Dörr, & Lazzaro, 2021).The 

exact source of stochasticity has yet to be directly observed, largely due to a lack of tools capable 

of providing information on bacterial load noninvasively over time. Characterization of infection 

progression in flies has typically relied on destructive methods to establish bacterial loads at static 

time points, e.g. dilution plating. Dilution plating involves sacrificing individuals and quantifying 

bacterial load using colony counts from serially diluted fly homogenates. While these averaged 

“snapshot” analyses can provide biological insight into mechanisms of infection progression and 

clearance, they are unable to capture the stochastic variability that occurs between individuals 

(Chambers, Jacobson, Khalil, & Lazzaro, 2019; Kutzer & Armitage, 2016). Furthermore, fine 

resolution of early immune dynamics has historically been difficult to determine, owing to low 

temporal sensitivity of existing methods. New strategies that enable high resolution, non-invasive 

measurement of pathogen load are necessary for understanding infection dynamics and outcomes 

of genetically similar and diverse populations.  

Historically, a “go-to” method for non-invasive imaging in rodent models is 

bioluminescence (Love & Prescher, 2020; Zambito, Chawda, & Mezzanotte, 2021). 

Bioluminescence employs luciferase enzymes that oxidize luciferin substrates, producing photons 
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of light (Kaskova, Tsarkova, & Yampolsky, 2016). These photons can be detected through tissues 

in whole organisms, enabling sensitive and non-invasive readouts (James & Gambhir, 2012). 

Because no external excitation source is necessary, background signals are very low compared to 

other optical (e.g., fluorescent) readouts (Contag & Bachmann, 2002). Despite these advantages, 

bioluminescence has only been sporadically used in D. melanogaster (Brandes et al., 1996; 

Stanewsky, Jamison, Plautz, Kay, & Hall, 1997; Stempfl et al., 2002). One potential reason for its 

limited use is that uniform delivery of the luciferin substrate by feeding is difficult, as feeding 

patterns can vary from fly to fly (Ja et al., 2007). One solution is to use autobioluminescent 

systems, which produce light without the need for exogenous substrate delivery. There are operons 

that produce both the luciferase and luciferin, allowing transgenic organisms to continuously glow 

(Kaskova et al., 2016). One popular autobioluminescent system derived from bacteria is the ilux 

system (Gregor, Gwosch, Sahl, & Hell, 2018). Engineered from the bacterial lux system, ilux emits 

blue light (490 nm) and exhibits enhanced brightness and thermal stability. While 

autobioluminescent systems have been used for decades to illuminate the spread of various 

pathogens in vivo (Cronin et al., 2012; Massey et al., 2011; Morrissey, Hill, & Begley, 2013), they 

have yet to be applied for studying bacterial clearance in D. melanogaster.   

Here, we report a novel method employing the ilux system for longitudinally monitoring 

bacterial load in D. melanogaster. By expressing the ilux operon in requisite bacteria and using 

photon count as a reporter for relative microbial load, we can non-invasively monitor infection 

progression and clearance over time. With this method, we are able to observe distinct infection 

dynamics between lines of D. melanogaster as well as between genetically identical 

individuals.  This method generated real-time, high-throughput and longitudinal measures of 

infection in D. melanogaster, a feat that has not yet been accomplished in the field. 
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3.3 Results 

Drosophila infection models have historically required animal sacrifice to determine 

pathogen load, which limits measurements to static time points (Figure 3.1A). While this method 

has provided key insights into fly innate immunity and disease progression (Chambers et al., 2019; 

Chambers Moria, Jacobson, Khalil, Lazzaro Brian, & Bäumler, 2014; Duneau et al., 2017; Kutzer 

& Armitage, 2016; Lazzaro et al., 2006), the fine dynamics of infection progression and tolerance 

among individuals remains difficult to measure. To address these limitations, we designed a non-

invasive imaging strategy to monitor pathogen load over time (Figure 3.1B). We employed 

bioluminescent E. coli that constitutively expressed the ilux reporter (ilux-Ecoli) as a proof-of-

concept platform (Gregor et al., 2018). The load of these autoluminescent bacteria could then be 

tracked post-injection, with photon flux reporting on pathogen count. Thus, we hypothesized that 

this method could be used to track differences in immune response between genetically distinct 

individuals and identify stochastic differences in infection progression within groups of genetically 

identical individuals. 

To employ autobioluminscence as a reporter for pathogen count, we first measured how 

photon flux correlated with bacterial optical density (OD) in liquid culture (Figure S3.1). To do 

so, we serially diluted ilux-Ecoli in liquid culture and measured bioluminescent output. Photon 

counts correlated exponentially with bacterial OD. Since OD can be converted to bacteria colony 

forming units (CFUs), we can determine relative pathogen load from total flux (Figure 3.2A). 

We then sought to determine how flux correlates with bacterial count when injected into 

living flies. The ilux system emits blue light, with an emission maximum of 490 nm (Figure S3.2). 

While blue light is difficult to detect in the thicker tissues of mammalian model organisms, the fly 

cuticle is thin, and thus we hypothesized that the blue emission would be readily detectable in 
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infected flies. Indeed, upon injection and imaging ilux-Ecoli in wild-type, male Oregon-R flies, 

we were able to reliably detect as few as 1000 CFUs. The thermal noise on the imaging instrument 

used (IVIS Lumina II) is ~10^2 photons/sec. Thus, we could not reliably image <1000 CFU. A 

positive correlation was observed between CFU and photon flux indicating that flux can report on 

relative microbial count in vivo (Figure 3.2B). To determine whether sexually dimorphic 

pigmentation of the cuticle affected this relationship, we also compared the best fit line of 

radiance/CFU of male and female flies. We found no differences between sexes (Figure S3.3) 

Thus, we were confident bioluminescence could be employed to determine pathogen count in both 

male and female flies. When we compared the relationship between CFU and total flux in liquid 

culture versus in flies, we found no difference in relationship (Figure S3.4). This suggests that the 

fly cuticle does not interfere with photon penetrance, and that we can use standard curves of flies 

injected with known amounts of bacteria to calculate relative load at a given point in time.  

To determine whether bioluminescence could be employed for longitudinal tracking of 

pathogen load over time, we monitored flies for infection progression over several days. Given the 

duration of the experiment, the flies required housing both compatible with imaging and including 

food to prevent starvation. To this end, flies were housed in black 96-well plates by preparing 

small aliquots of food for each well and placing a glass sheet overtop of the plate (Figure S3.5). 

The glass sheet was secured with black electrical tape to mitigate aberrant photon scattering. With 

the housing in hand, we infected 48 flies with increasing concentrations of ilux-Ecoli and 

transferred them to individual wells in the prepared housing. The flies were then imaged for four 

days, and photon fluxes recorded (Figure 3.3A-B). Since the flies were freely moving during the 

3–5-minute image acquisition, they created a donut shaped signal by traveling around the sides of 
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the well (Figure 3.3A). We can account for fly activity in quantification by summing the photon 

count of the entire well.  

Since wild-type flies mount a robust immune response against E. coli infection, none of 

the flies died during the course of the experiment. For lowest doses of bacteria administered, 

photon flux values indicated that the infection had been cleared to levels <1000 CFU, i.e., below 

the detection limit. At higher doses, detectable amounts of bacteria remained on day 4. Further 

monitoring would distinguish whether flies exposed to higher initial doses of E. coli maintain a 

systemic, but non-lethal, infection (Chambers et al., 2019; Chambers Moria et al., 2014) or whether 

more time is needed to clear the infection. To ensure the decreasing photon counts as a function of 

time were due to infection clearance rather than loss of the ilux plasmid, we performed the same 

time course and performed bioluminescence imaging of plated fly homogenate for each day 

(Figure S3.6, S3.7). We observed minimal plasmid loss. Clearance patterns varied among flies 

receiving the same dose of pathogen (Figure 3.3C). For example, when looking at the trajectories 

from the two lowest doses, there are individual flies that experience resurgent infections, which 

are unobservable with dilution plating assays. Some flies receiving the highest dose show 

markedly faster clearance dynamics than others. Our longitudinal measurements allow us to 

determine that this is true variation in the infection response, as opposed to differences in initial 

dose. Together, these results highlight how bacterial bioluminescence can be used to image 

stochastic responses to infection.  

Historically, stochasticity of immune response in the first 12 hours of infection has been 

difficult to observe due to the need for fly sacrifice to obtain pathogen load information. We 

hypothesized our bioluminescent imaging strategy would be useful for studying differences in 

pathogen clearance during these critical first hours of infection. For example, we can measure 



 88 

when the immune system is activated, which may vary between individuals, genotypes or in 

response to different pathogens. To test this capability, we used two fly lines, Oregon-R wild-type 

flies, and immunodeficient imd10191 flies (Pham, Dionne, Shirasu-Hiza, & Schneider, 2007). Wild-

type flies are resilient to E. coli infection and clear the Gram-negative microbes easily, as shown 

in Figure 3.3. Imd10191 flies, by contrast, more easily succumb to infection. These organisms bear 

a frameshift mutation in the IMD protein, effectively eliminating the immune response to Gram-

negative bacteria. Therefore, we anticipated imd10191 flies would have different pathogen loads 

compared to wild-type files. Indeed, upon injection of a large quantity (1,000,000 CFU) of ilux-

Ecoli, imd10191 flies sustained high pathogen levels over time, while Oregon-R flies steadily cleared 

the infection as evidenced by reduced emission levels (Figure 3.4B). When handling highly 

concentrated pathogens for injection, variance in initial dose can occur. In this experiment, the 

imd10191 flies received a slightly lower initial dose of bacteria than the wild-type flies. However, 

by the two-hour time point, the imd10191 flies carried a higher load than the wild-type flies. 

Although we aim to deliver consistent initial doses, this result highlights a feature of this method: 

we can censor individual animals that receive aberrant initial doses. This quality control step is not 

possible with dilution plating-based methods. 

Beyond quality control, we can actually use variation in initial dose to answer biological 

questions. For example, it has been shown that within a genotype variation in initial dose 

contributes to the differences in bacterial load of chronic infections observed, though this study 

relies on group averages and is unable to assess the impact of initial infection load (Chambers et 

al., 2019). To address this question, we plotted the infection dynamics of individual flies (Figure 

3.4C). In the imd10191 line, one individual received a low inoculation of bacteria. To determine if 

the initial load of infection contributed to the differences in bacterial load at the end of the time 
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course, we divided samples in each genotype as having received an initial dose above the mean 

(high dose) or below the mean (low dose) and tested for differences in the mean of the final 

bacterial loads. We found the initial dose of pathogen does not correlate with differences in the 

final load (Oregon-R high vs low: p=0.18, imd10191 high vs low: p=0.78, Welch two sample t-test, 

Figure S3.8). The bioluminescent method thus reports on initial inoculation differences and can 

provide insight into alternative hypotheses for variance in infection dynamics among genetically 

identical populations. 

In the experiment above, the high initial dose of bacteria killed the immune-deficient flies 

in a small-time window, which made it difficult to assess potential drivers of death.  We posited 

that a lower dose of bacteria would kill immunodeficient flies more slowly and with greater 

variation in the time to death. To test this hypothesis, we injected wild-type and imd10191 flies with 

10,000 CFUs of ilux-Ecoli. We then imaged flies every hour for 2 days post-infection. While both 

strains of flies were injected with the same concentration of bacteria, within the first hour, pathogen 

load differed between the two populations (Figure 3.5A-B). Over time, the wild-type flies cleared 

the infection to low pathogen load and survived to the end of the experiment. Conversely, the 

imd10191 flies showed a gradual increase in pathogen load over time, with all flies succumbing to 

the infection by the end of the experiment. While initial loads varied between individuals, 

inoculation load did not correlate with final bacterial load upon death for imd10191 individuals, or 

upon end of experiment for wild type individuals (S8, S9). This suggests variance in initial load 

does not fully explain variation in bacterial load over time. In line with our hypotheses, we did 

observe substantial variance in time to death among the imd10191 individuals (Figure 3.5C). 

To further explore the variation in the infection progression in immunodeficient flies, we 

plotted their individual dynamics (Figure 3.6A). To identify groups of individuals showing distinct 
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infection profiles, samples were hierarchically clustered using Euclidean dissimilarity (Figure 

3.6B, Figure S3.10, (Montero & Vilar, 2014)). This clustering requires that each individual have 

a measurement from all time points; therefore, we included bacterial load data post-mortem for 

flies that died prior to the end of the experiment. We separated the trajectories into four clusters, 

with the majority of flies falling into cluster 2 (blue, n=29) or cluster 3 (yellow, n=13), and clusters 

1 and 4 having three flies each (magenta and green, respectively). Clusters 2 and 3 appear to 

separate based on the lag time to unchecked bacterial growth, with cluster 2 having a lag time of 

5-10 hours and cluster 3 having a lag time of 10-15 hours after infection. Clusters 1 and 4 appear 

to cluster primarily based on receiving a below-average initial dose (cluster 4) or on bacterial 

dynamics post-mortem (cluster 1). No cluster appeared to correlate with time of death (Welch two 

sample t-test on every cluster combination, Figure S3.11). While all samples ultimately succumbed 

to the infection, these distinct dynamics would have been missed using previously established 

methods.  

We further investigated potential sources of the variability observed in time to death of the 

imd10191 flies. Several possibilities exist to explain these differences in dynamics, including 

variation in the injury upon infection, variation in the initial pathogen load, or differences in the 

physiological state of the fly. To examine if this variance in time to death can be explained by 

differences in the initial load of infection, we performed Spearman rank correlations between time 

of death and the initial load. We also measured the correlations between time of death and load at 

20 h post injection and the area under curve (AUC) of pathogen load at 20 h. We found initial load 

was negatively correlated with time of death (ρ = -0.30, 95% bootstrapped confidence interval = 

(-0.56, 0.00)) (Figure 3.6C). Intuitively, this aligns with expectations: flies receiving higher 

inoculations will die more quickly. The strongest correlation was found between time to death and 
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observed load at 20 h post injection (ρ = -0.61, 95% bootstrapped confidence interval = (-0.78, -

0.39)) (Figure 3.6D). A similarly strong correlation was observed between time to death and area 

under the flux curve at 20 h post injection (ρ = -0.59, 95% bootstrapped credible interval =(-0.75, 

-0.36)) (Figure 3.6E). These correlations suggest that a threshold may exist where host 

colonization can no longer be contained by the immune system, and death becomes inevitable. 

This highlights how factors beyond initial load contribute to the time of death observed in 

individual flies, and the importance of stochasticity in infection outcome. Indeed, the variable 

paths flies take toward a potential “point-of-no-return” in bacterial colonization can now be 

investigated in fine detail using the temporal resolution afforded by our bioluminescent method. 

Ongoing work involving integration of additional luminescent reporters to label immune system 

components would enable even more thorough investigation into how different variables can 

contribute to infection outcome.  

Unlike the immunodeficient line, all of the wild-type flies survived well past two days, 

with the overall trend of clearing the infection (Figure 3.7A). Despite the average drop in pathogen 

load, we did observe large amounts of variance, particularly between hours 10 and 20 of infection. 

Hierarchical clustering sorted the individual traces into groups that corresponded to early pathogen 

load (Figure S3.12). In studying this data, we noticed that some individuals experienced a 

resurgence in infection, and these individuals fell into more than one cluster. Therefore, we 

highlighted profiles based on the presence of a secondary distinct increase of pathogen load after 

the initial infection (magenta, n = 10) rather than a sustained gradual decrease (blue, n = 38, Figure 

3.7B). Again, we found the initial dose of infection did not correlate with the presence of a 

secondary peak (Oregon-R C1 vs C2: p=0.41, Welch two sample t-test, Figure S3.13). Despite the 

presence of an increase in pathogen load in some flies, the population ultimately converges towards 
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clearing the infection. We expect that this method’s ability to report fine differences in pathogen 

load over time will enable future research to uncover the origins of such stochasticity and better 

characterize the paths hosts may take to clear an infection.  

3.4 Discussion 

Here we show that employing an autobioluminescent bacterial reporter enables simple, 

non-invasive pathogen load determination in Drosophila melanogaster. We show that total flux 

can report on changes in bacterial load over time. The non-invasive feature of this method 

fundamentally changes our view into infection dynamics by enabling longitudinal tracking of 

infections in individual animals. Traditional dilution plating approaches only allow for the 

measurement of an average infection trajectory in a population of genetically identical individuals, 

while longitudinal measurements allow us to reveal individual variation in dynamics and features 

such as resurgent infections. Further, these traces can be used to test hypotheses about what 

features (e.g.  initial dose, time to immune system engagement, or colonization progress) drive the 

ultimate outcome of infection. The simple housing requirements and rapid acquisition times allow 

for the efficient measurement of large numbers of animals or genotypes at fine time resolution. 

Because each animal is repeatedly sampled throughout the experiment, the longitudinal 

measurements effectively reduce the sample size needed to identify differences in distinct 

genotypes of flies. The decrease in sample size, coupled with the increase in throughput, will make 

previously laborious genetic screens to identify new components of the immune response more 

accessible. 

The flexibility and simplicity of this method should enable its use in a wide range of 

settings. For example, the ilux cassette can be manipulated via molecular cloning, allowing 

expression in a wide variety of pathogens. The fly housing requires only simple components found 
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in most laboratories. We also examined the feasibility of using a plate reader instead of an IVIS 

imager for luminescence measurements (Figure S3.15). Using flies injected with bacterial doses 

spanning 6 orders of magnitude, we found that while the IVIS has better sensitivity in detecting 

low pathogen loads, the plate reader performed comparably to the IVIS at higher doses. This 

indicates that the plate reader may be useful for examining infections leading to binary outcomes 

such as death. 

The longitudinal measurements and temporal resolution achieved using bioluminescence 

enables novel observations of infection dynamics. For example, although we found wild type flies 

cleared ilux-Ecoli in all experiments, low initial doses prompted a resurgence in infection among 

certain individuals (Figure 3.7). Using previous dilution plating methods, resurgence cannot be 

definitely identified. It would appear to be variation between sacrificed individuals at discrete time 

points. Using our bioluminescent method, resurgence can be easily visualized as an increase in 

total flux observed in certain individuals of a population and future studies may investigate the 

causes and predictors of a resurgent infection.  

New insights were also gleaned from experiments with immunodeficient flies. We found a 

moderate correlation between the initial load and time to death for immunodeficient flies, and a 

stronger correlation between time to death and bacterial load at 20 h post injection for individuals 

receiving a low initial dose of ilux-Ecoli (Figure 3.6D). This correlation suggests that flies may 

have a bacteria “threshold” where colonization proceeds unchecked, and death becomes inevitable 

(Duneau et al., 2017). Taken together, it seems both variation in initial load and infection 

progression combine to determine the ultime time of death. Thus, bacterial loads at earlier 

timepoints may be able to predict whether survival or death may be expected. 
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In summary, non-invasive tracking of pathogen load in Drosophila melanogaster over time offers 

many advantages when compared to traditional methods. Dilution plating requires animal sacrifice 

to determine average pathogen load at static time points, limiting investigations into individual 

infection dynamics. Fine differences in pathogen load, infection progression, and immune 

activation are unable to be determined. The bioluminescent method presented herein offers a facile 

approach to non-invasively monitor pathogen load on the individual level. Because images may 

be acquired on the minute-time scale, bioluminescence enables infection progression to be 

monitored with exceptional resolution. Using this method, we can begin to quantify the 

contributing factors that result in stochasticity, resurgence, and ultimate infection outcome. 

3.5 Materials and Methods  
 

3.5.1 Preparing ilux E. coli 

An E. coli strain harboring a plasmid with the ilux operon (ilux pGEX(-)) was obtained from 

Addgene (plasmid # 107897, deposited by Stefan Hell) and streaked on an LB agar plate with 

ampicillin (100 µg/mL) to afford single colonies. A single colony was picked and grown in 5 mL 

LB broth containing ampicillin (100 µg/mL, LB-AMP). The culture was miniprepped according 

to the manufacturer’s instructions (kit purchased from Zymo Research). The concentration of the 

plasmid was determined using a NanoDrop 3000 (Thermo Fisher). Plasmid (10 ng) was 

transformed into chemically competent TOP10 E. coli (20 µL). The transformant was recovered 

with SOC (50 µL) for 30 mins at 37 °C and 25 µL plated on an agar plate containing ampicillin. 

A single colony was picked and expanded in LB-AMP, and a glycerol stock was made for long 

term storage at -80 °C (500 µL culture with 500 µL 50% v/v glycerol). This glycerol stock is 

referred to as ilux-Ecoli.  

3.5.2 Drosophila lines and rearing 
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Oregon R and imd-10191 were used for this study (Pham et al., 2007). Both lines were reared on 

standard cornmeal media at 20˚C (Brent and Oster 1974). Four-day old male and female flies were 

collected for injections to ensure full replacement of the larval fat body by the adult fat body 

(Johnson & Butterworth, 1985). 

3.5.3 Drosophila infection induction 

Prior to infection, ilux-Ecoli was cultured in liquid LB-AMP on a shaker at 37˚C for 8 hours. 

Bacteria were then pelleted using a table-top micro-centrifuge at 5000 rpm/g and resuspended in 

200µl of 1X phosphate buffered saline. Optical density was then measured using a NanoDrop 2000 

(Thermo Fisher). Injection solutions were prepared at the appropriate OD by dilution in additional 

PBS. Flies were injected with 34 nL of bacterial solution using Narishige IM 300 Microinjector 

along the scutescutullar suture and immediately placed into black 96-well plates (Grenier Bio 

One). For time course experiments, 96-well plates for imaging were prepared by punching out 

circles of standard cornmeal media and placing these at the bottom of wells before placing flies 

into the plate. A 4-inch by 6-inch glass cover was placed on the plate during the duration of the 

time course to prevent individual escape. For single time point measurements, flies were placed in 

96-well plates lacking food.  

3.5.4 Dilution plating: ilux-Ecoli 

To determine the concentration of ilux-Ecoli at per OD measurement, ilux-Ecoli was grown in 10 

mL LB-AMP on a shaker at 37˚C for 6-7 hours while the bacteria was still in exponential growth 

phase. Bacteria was then pelleted down and resuspended in 200 uL 1X phosphate buffered saline 

and OD of the solution was determined using a NanoDrop 2000 (Thermo Fisher). A stock solution 

of OD 1 was prepared and serially diluted using 1x PBS by 6million fold. CFUs where then 

quantified in two ways. The first manner was using 5µl of solution for each dilution which was 
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spot plated in triplicate on LB plates supplemented with 100µg/ml ampicillin. The second manner 

was using 90µl of solution which was plated on LB plates supplemented with 100µg/ml ampicillin. 

Colonies were then counted for each dilution step to determine the concentration of CFUs at OD1 

for both methods (Supplementary Figure 3.1).  To determine the relationship between ilux-Ecoli 

concentration and total flux, a solution of bacteria was prepared as described above, 90µl of each 

dilution was then placed into black 96 well plates for imaging (see “imaging parameters” section 

below). 

3.5.5 Dilution plating: infected Drosophila 

To determine the concentration of bacteria injected into individual flies, flies were suspended in 

250µl of 1X phosphate buffered saline and homogenized (Krupp & Levine, 2010). Homogenate 

was then used for stepwise serial dilutions. 5 µL of each dilution in the series was then spot plated 

in triplicate on LB plates with 100µg/ml ampicillin. Colonies were then counted for each dilution 

step to determine the concentration of CFUs per fly. For plasmid loss determinations, homogenate 

and serial dilution was prepared in the manner described above. Next 90µl of solution from each 

dilution in the series was plated on individual LB plates not supplemented ampicillin. Plates 

containing colonies were then counted for each dilution step to determine the concentration of 

CFUs per fly and imaged for luminescence output as described in the “imaging parameters” 

section. Thus, emissive and non-emissive colonies could be distinguished to determine the 

proportion of colonies that had lost the ilux plasmid.  

3.5.6 Imaging parameters 

All imaging analyses were performed in black 96-well plates (Grenier Bio One) prepared as 

described above, or on agar plates for plasmid loss studies. Biological replicates for different 

experiments were performed on different days. Plates containing flies were imaged immediately 
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post-injection unless otherwise stated. Injected flies and agar plates containing ilux-Ecoli were 

imaged using an IVIS Lumina II (Xenogen) CCD camera chilled to -90 °C. The stage was kept at 

room temperature (25 °C) during the imaging session, and the camera was controlled using Living 

Image Software. The exposure time was 1 s - 10 min depending on the brightness of the sample, 

and the data binning levels were set to medium. Radiance was integrated over regions of interest 

and quantified to total flux values using the Living Image software. Raw luminescent images were 

analyzed using FIJI (Schindelin 2012) . For plasmid loss studies, CFUs on plates were quantified 

by hand, luminescent colonies were quantified by importing for analysis and counting in FIJI. 

3.5.7 Data analysis 

All flux data was imported into R 3.6.0 for analysis and visualization (R Core Team. 2019, 

Wickham H. 2016, Dowle M(2019), Wickham H. 2021, Wickham et al., 2019). Model2 

regressions were performed using the package lmodel2 1.7-3 ( Legendre 2018). Euclidean 

dissimilarity and hierarchical clustering were performed using package TSclust 1.3.1 (Montero & 

Vilar, 2014).  

3.6 Data access 
 

All flux data generated during this study as well as the code used to analyze the data and generate 

figures are available for download at   github.com/WunderlichLab/ilux_infection_tracking. \ 
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3.9 Figures 

 
Figure 3.1. A novel method for non-invasive tracking of pathogen load over time. A) 

Previous methods for determining pathogen load at static time points require animal sacrifice. 

Larger cohorts are required for experiments as several flies must be sacrificed at desired intervals 

to check infection progression and clearance. B) This work presents a novel, non-invasive 

method to track pathogen load over time using bioluminescence. Thus, all flies can be 

individually monitored over time, allowing for a more comprehensive view of immune response. 
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Figure 3.2. Photon flux is positively correlated to bacterial concentration. A) ilux-Ecoli were 

serially diluted in liquid cultures and assayed for photon output. Higher concentrations of 

bacteria correlate with higher photon fluxes. Plot shows twelve measurements per OD (four 

technical replicates across three biological replicates). Well images are representative of three 

biological replicates. B) Wild-type flies were injected with different concentrations of ilux-Ecoli 

and assayed for light emission. A linear correlation was observed between radiance and CFUs 

injected. Standard major axis regression of the data showed the slope of 1.2 (confidence interval 

(CI):[1.16,1.29]). Graph shows data of 36 injected flies . Well images above each graph are 

representative of images of the injected flies. In both experiments, radiance was summed over 

the entire well to yield flux using the Living Image software. 
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Figure 3.3. Bioluminescence can be used to track changes in pathogen load over time. A) 

Representative well images for different concentrations of bacteria injected in wild-type flies 

over four days. Higher initial concentrations were cleared to low, but detectable concentrations. 

Low initial concentrations were cleared below the limit of detection for the imaging instrument. 

Well images are representative of 48 injected individuals. B) Average clearance patterns for 

different concentrations of ilux-Ecoli injected in individual flies over time. Photon counts were 

summed over the entire well where flies resided. Grey box shows the limit of detection of the 

imaging instrument. Solid colored line represents the average of the cohort. Grey bar represents 

the standard deviation over replicates, dots represent one individual. Graph shows data of 48 

injected flies. C) Individuals display varied routes toward infection clearance, suggesting 

stochasticity plays a role in infection dynamics. Black dotted line represents the average, and the 

grey band represents the standard deviation. Grey box shows the limit of detection of the 

imaging instrument. Solid lines represent routes individuals took toward infection clearance. 

Data shown were taken from 48 infected individuals. 
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Figure 3.4: Longitudinal tracking of individual flies allows for deconvolution of community 

dynamics A) Representative images of radiance measurements for wt and imd10191 injected with 

.034µl of OD=6 (1,000,000 CFU) ilux-Ecoli. Images show the first 8 hours, after which most 

imd10191 flies perished. Images are representative of 24 injected individuals. B) Comparison of 

population level integrated total flux. Timepoints showing difference in mean between the two 

lines are demarked with an asterisk. Immunodeficient lines received a lower dose of infection 

than wt flies, but within an order of magnitude difference. This significance was lost by hour 1, 

with imd10191 bacterial load surpassing that of wt by hour 2. Data comprise 12 injected 

individuals. C) Comparison of wt and imd10191 individual tracks. Individual variation of immune 

response and pathogen clearance was observed in living flies (solid lines). Deaths are marked by 

red triangles, and the lines end. The blue dotted line shows the average of the cohort, while dark 

grey lines show the individual paths toward clearance or death. Death histogram shows the 

effective pathogen load upon death as a function of total integrated flux. The red line on the 

imd10191 graph also demarcates the average of these values. The light grey line indicates a fly that 

received a lower-than-average initial dose. Thus, these data were filtered out in the subsequent 

analysis. Data shown comprise 12 injected individuals. 
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Figure 3.5: Individual infection tracking of immune-deficient flies allows for deconvolution 

of infection variation. Both wt and imd10191 flies were injected with 0.034µL of OD=0.06 

(10,000 CFU) ilux-Ecoli (n=48 for each genotype) A) Representative images of radiance 

measurements for wt and imd10191 flies injected with ilux-Ecoli. Images are representative for 48 

individuals and are shown in 5-hour intervals for the first 45 hours of infection. B) Summary of 

integrated total flux values for the wt and imd10191 in 5-hour intervals for the first 45 hours. 

Timepoints showing difference in mean between the two lines are demarked with an asterisk. By 

hour 5, both lines show differences in the ability to fight off infection with wild-type flies 

observed clearing the infection and imd10191 flies much higher bacterial loads. C) Histogram 

displaying time of death statistics for imd10191 flies. The majority of imd10191 flies died at hour 32, 

when integrated total flux reached its highest peak. Death data were compiled from 48 imd10191 

individuals. 
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Figure 3.6: Individual infection tracking of oregon-R flies shows two distinct pathways 

towards bacterial clearance. A) Individual tracks of infection in live imd10191 flies (black lines, 

n=48); deaths are marked as a red triangle and the end of the line. All flies died by hour 48 and 

the mean radiance upon death was 18.6x106 (solid red line). Threshold of accurate detection 

demarcated with a grey box. Histogram shows the   distribution of integrated photon flux 

(serving as a proxy for pathogen count) of imd10191 flies upon death. B) Individual tracks of 

infection colored by clusters. Clusters were assigned via hierarchical clustering using Euclidean 

dissimilarity. Four distinct groups were assigned with cluster 2 and 3 containing the majority of 

samples (cluster 2= 29, cluster 3=13) and clusters 1 and 4 containing 3 samples each. Data are 

for 48 imd10191 individuals. C) Spearman rank correlation (ρ) and the 95% bootstrapped 

confidence interval (CI) between initial flux and time of death for imd10191 flies. D) Spearman 

rank correlation and CI between total flux at hour 20 and time of death. E) Spearman rank 

correlation and CI between the log transformed area under the curve (AUC) up until hour 20 and 

the time of death. The curve here refers to the bacterial load (CFU) vs time curve. In all cases CI 

of Spearman correlation coefficients were computed by bootstrapping 10,000 synthetic datasets 

and computing the correlations on these datasets. 2.5 and 97.5 percentile values of the sampled 

correlations are reported. 
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Figure 3.7: Individual infection tracking of wt flies shows two distinct pathways towards 

bacterial clearance.  A) Individual tracks of infection in live flies (black lines). No flies died 

during this time course. Threshold of accurate detection demarcated with grey box. B) Individual 

tracks of infection grouped by the presence of a secondary peak during the infection process. 

While all flies showed a decrease in bacterial load by the 48 hour mark, a subset of flies (n = 10) 

showed an increase in bacterial load between 10 - 25 hours (magenta lines). Dashed lines 

represent the mean trajectory for the genotype. 
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3.10 Supplementary Materials 

 
 

Figure S3.1. ilux-Ecoli Calculated to be 546666.67 CFUs/µl. Calculated CFUs/µl for two 

dilution plating experiments. ilux-Ecoli solution were prepared, serially diluted and plated using 

one of two methods (see Methods). From each dilution, either a single 90µl aliquot was plated on 

a single plate (left) or six 5µl aliquots were plated on a single plate (right). Calculated CFUs per 

µl for both measurements were within an order of magnitude of each other. We chose the 90µl 

plate measurements for our final calculations given that the larger aliquots make them less likely 

to be skewed by stochastic sampling. 

 

 



 111 

 
Figure S3.2. Spectroscopic properties of ilux. ilux-Ecoli were cultured in LB-AMP for 24 h at 

37 °C. An aliquot of cells (700 µL) was transferred to a quartz cuvette, and the bioluminescence 

spectra was recorded at 25 °C. Luminescence values were normalized such that the maximum 

value equaled one and plotted in GraphPad Prism 5.  
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Figure S3.3: Male and female flies show no differences in relationship of CFUs injected to 

radiance detected. Male and female flies were injected with one of four doses (OD = 6, 0.6, 0.06 

or 0.006) of ilux-Ecoli. Standard major axis regression of log-transformed data for each sex 

showed no significant differences between slope of the lines male m= 1.3 (CI: [1.37,1.16]) female 

m=1.2 (CI:[1.28,1.14]). While there are differences in intercept, for our range of detection, we 

conclude that there are no differences in radiance detection between female flies and the more 

pigmented male flies. See Methods for more details. 
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Figure S3.4: Bacteria injected into flies and in liquid culture show a similar relationship 

between total CFUs and total flux. Standard major axis regression of the relationship between 

detected radiance and total CFUs injected into flies (blue) and CFUs in liquid culture (red). We 

observe no difference in slope of the two lines ( flies m=1.2, CI:[1.29,1.16] , liquid m=1.2, 

CI:[1.26,1.15]), demonstrating the positive correlation between flux and concentration is upheld 

in vivo. We suspect that the lower intercept of the bacteria in liquid culture is likely due to the 

greater area these bacteria occupy, thus making the signal harder to detect (ie more diffuse). 
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Figure S3.5: Schematic of the plate set up used for housing and imaging flies. Black-walled, 

clear-bottomed 96-well plates with a 2 mm thick glass cover  were used to house flies for the 

duration of the imaging time course. For food, 2-5 mm thick disks of standard cornmeal media 

were placed at the bottom of each well before placing individual flies inside. Disks were prepared 

by using the end of a 5 mL serological pipette to "punch out" disks from solid media.  
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Figure S3.6: ilux-Ecoli injected into flies show minimal plasmid loss over time. To ensure ilux-

Ecoli maintain plasmid expression during time course experiments, we measured the ratio of 

luminescent vs non-luminescent colonies from injected flies over 5 days. To this end, we injected 

flies with 34 nL of ilux-Ecoli at an optical density of 6 ( approximately 680,000 CFUS) and 

measured the number of ilux+ and ilux- colonies over the course of 5 days. A) We found over the 

course of 5 days mean plasmid loss remained below 5%. B) Total counts of colonies with plamid 

loss. C) We also measured the amount of plasmid loss experienced by ilux-Ecoli injected into 

ampicillin fed flies and we found no differences. Red dots listed on plots represent the mean of 

each condition. The first time point (day 0) was marked as NA since flies were homogenized within 

30 minutes of injection and not expected to show differences due to presence or absence of 

antibiotic in the food.  
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Figure S3.7 : Representative images of colonies used to measure plasmid loss. To assess ilux+ 

and ilux- colonies, plates were imaged and colonies assessed for bioluminescence emission. 

Positive colonies were determined as any colonies showing signal above the background level of 

radiance.  
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Figure S3.8: Initial dose of infection does not result in differences in final load in Oregon-R 

or imd10191. In order to determine whether the initial load of infection for each genotype infected 

in Figure 4 resulted in differences in the final radiance (upon death or the end of the time course), 

we took the mean injected radiance for each genotype and categorized flies  as having received 

below average load (pink) or above average load (cyan). We then tested for differences in the mean 

using a Welch unpaired two sample t-test. We found that for both Oregon-R and imd10191 initial 

bacterial load did not result in differences in the final load. Oregon-R high vs low: p=0.18, imd10191 

high vs low: p=0.78.  
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Figure S3.9: Initial dose of infection does not result in differences in final load in imd10191. 

Given the higher number of biological replicates(n=48) of this experiment (Figure 5) over the 

previous (n=12) (Figure 4), we asked if the initial load of infection for imd10191 resulted in 

differences in the radiance upon death. We took the mean injected radiance and categorized flies 

as having received below average load (pink) or above average load (cyan). We found that the 

initial bacterial load did not result in differences in the final load. imd10191 high vs low: p=0.78, 

Welch unpaired two sample t-test. 
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Figure S3.10: Unsupervised clustering of imd10191 results in 4 distinct clusters. 

In order to group infection profiles we performed hierarchical clustering using Euclidean 

dissimilarity on log transformed radiance data. Clusters were assigned based on the groups 

resulting from the first 3 branching points of the dendrogram. For this analysis individual flies 

were named after their position in the plate with the letter corresponding to a row in the plate and 

the fly number corresponding with the plate column.  
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Figure S3.11: Time of death does not correlate with assigned cluster. We asked if there was 

any cluster that was enriched for a particular time of death. We performed Welch unpaired two 

sample t-test on every cluster combination and found that no cluster mean appeared to be 

significantly different from the rest. C1 vs. C2 p=0.7796, C1 vs. C3 p=0.2054, C1 vs. C4 p=0.2739, 

C2 vs. C3 p=0.05494, C2 vs. C4 p=0.3123, C3 vs. C4 p=0.6186. 
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Figure S3.12: Unsupervised clustering of Oregon-R infection profiles does not separate 

trajectories by infection resurgence. In order to group infection profiles, we performed 

hierarchical clustering using Euclidean dissimilarity on log transformed radiance data. We noticed 

that several flies showed an increase in bacterial load between 10-25 h. A) Clustering using the 

full data,  clusters were assigned based on the first 3 branching points of the dendrogram. For this 

analysis individual flies were named after their position in the plate with the letter corresponding 

to a row in the plate and the fly number corresponding with the plate column. B) Coloring of 

individual infection profiles shows that initial clustering fails to group profiles that show a 

resurgence in bacterial load. C) We suspected that the general convergence of the data at around 

hour 35 and the noise after the 40 h mark may be affecting the clustering, so we performed a second 

round of clustering using only data from before hour 30. D) Coloring of individual infection 

profiles based on clustering shows that the clustering of the censored data similarly does not  group 

profiles based on our feature of interest. 
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Figure S3.13: Initial load of infection and cluster do not result in differences in final radiance. 

A) In order to determine if the initial load of infection for Oregon-R resulted in differences in the 

final radiance, we took the mean injected radiance for the line and categorized flies as having 

received below average load or above average load. We found that the difference in initial bacterial 

load did not result in differences in the final load. Oregon-R high vs low: p=0.51, Welch two 

sample t-test. B) To determine whether the unusual increase in bacterial load between hours 10-

25 resulted in differences in the final radiance, we took the final loads of flies falling into group 1 

(resurgence in infection) and cluster 2 (monotonically decreasing infection). We performed a 

Welch two sample t-test for group1 vs group2 and found that they were not significantly different 

(p=0.41).  
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Figure S3.14: Autobioluminecent bacteria is detectable by both IVS and plate readers. To 

determine how amenable this method is to more cost effective equipment set-ups we compared 

readings from flies between our set up (IVIS) and a TECAN plate reader. Flies were injected with 

6 doses of bacteria ranging from approximately 680,000 CFUs/fly ( OD=6 ) to less than 10 CFUs 

(OD=6x10-5). Thresholds of detection for both equipment are marked as a red dashed line for the 

IVIS and blue dashed line for the TECAN plate reader. We observe that the IVIS is able to 

distinguish injection doses above an OD of 6x10-4 while the plate reader set up is able to distinguish 

doses above an OD of 0.006.  Thus while the IVIS is more sensitive at the lower range of detection 

both equipment are able to distinguish doses at above an approximately 600CFUs/fly.   
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CHAPTER 4 
Tissue-specific labeling of nascent RNA in Drosophila 

melanogaster 
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4.1 Abstract 
 

 Expression profiling of fragile tissues and rare cell types remains challenging, even with 

single-cell methodologies. One potential solution to this is the precise metabolic labeling and 

isolation of RNA from tissue or cell types of interest. In Drosophila, the chemical tools available 

for such labeling is limited. Here we adapted a previously described system for the specific labeling 

and isolation of nascent RNA in the immune responsive fat body. This method uses a protected 

adenosine analog carrying a 2’ azido moiety (2’AZ), in combination with exogenous penicillin G 

amidase (PGA) under the control of a Gal4-UAS system. We find that orally administered 

nucleoside analog can be effectively taken up by adult Drosophila to achieve RNA integration. 

Preliminary data suggests that this can be used to specifically label tissue specific RNA though 

additional verification and optimization is necessary.  

 

4.2 Introduction 
 

Since the emergence of ultra-high-throughput mRNA sequencing, transcriptome profiling 

has become an essential tool for the understanding of cellular function and identity (Mortazavi 

2008, Nguyen 2018). With the development of single-cell sequencing technologies we can 

phenotype highly heterogenous populations of cells. From single cell studies we have gained 

invaluable insight into many biological processes, but in a more general sense it has highlighted 

the large amounts of cellular heterogeneity present even within seemingly homogenous tissues 

(Nguyen 2018). This has further emphasized need for targeted expression profiling of specific cell 

groups to disentangle biological processes without confounding signal from extraneous cell 

populations.  
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Current methods for targeted expression profiling generally rely on the physical isolation 

of cell populations of interest (Wang 2015, Nguyen 2018). These methods will dissociate a tissue 

or organ into individual cells, individual cells are then lysed, and their RNA is barcoded for 

sequencing. Populations that are rare or difficult to isolate can be enriched, using cell sorting 

methods or by simply sequencing a large enough population to detect these (Nguyen 2018). In the 

cases of cell types that are not amenable to dissociation methods, single nucleus sequencing is also 

available (Nguyen 2018). However, while this method is useful for accurately quantifying relative 

expression levels it has been observed that single nucleus samples are enriched for nuclear RNAs, 

lncRNAs and intronic sequences (Nguyen 2018). Therefore, there is a need for a method to 

specifically profile expression in cell types of interest that does not rely on physical isolation of 

cells.  

One such system that exists to address this need is the metabolic labeling of RNA using 

protected nucleoside analogs (Singha 2020). This is a two-part system that relies on an inert 

nucleoside analog and an exogenous enzyme that can activate the nucleoside for integration into 

RNA (Nguyen 2016, Beasley 2019). Two existing analogs are the 5-ethynyl-uridine (5EU) and 

2’azido-adenosine (2’AZ). Both of these can be readily biotinylated via Cu(I)-catalyzed azide-

alkyne cycloaddition (CuAAC). However, the addition of a protecting phenylacetyl group (PAC) 

to these molecules prevents them from being integrated into RNA, rendering the molecule inert 

(Nguyen 2016, Beasley 2019). The bacterial enzyme Penicillin G amidase (PGA) can cleave off 

the PAC moiety and endogenous kinases will then phosphorylate the analog, thus activating the 

analog for RNA integration (Nguyen 2016, Beasley 2019). To confer specific labeling, we can 

place the PGA gene under control a tissue or cell specific cis-regulatory element. Though the 

protected analog will diffuse indiscriminately throughout the system, PGA will only be expressed 
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in a subset of cells. In these, the analog will be uncaged and thus we confer specificity of RNA 

labeling (Nguyen 2016, Beasley 2019). Labeled RNA can subsequently be biotinylated, enriched 

and identified using RNA sequencing (Singha 2020).  

The aforementioned system, while powerful, has only been established in cell culture and 

has yet to be adapted for whole organism use (Nguyen 2016, Beasley 2019, Singha 2020). In 

Drosophila, genetic tools already exist for the specific expression of genes in select cells and 

tissues. We posited that the GAL4-UAS would be well suited for this RNA labeling method. This 

is because of the large number of publicly available GAL4 driver lines makes it easy to express a 

gene under the control of a UAS-sequence in a cell population of interest.  

Here we describe the adaptation of the PGA-PAC system for use in adult Drosophila 

melanogaster. We find that orally administered nucleoside analog 2’AZ is able to be detected in 

as little as 4 hours after exposure. We then create a UAS-PGA fly line and show preliminary results 

that we can specifically uncage protected analog PAC-2’AZ in a tissue specific manner using 

existing GAL4 driver lines. The specificity of this method remains to be verified via RNA 

sequencing; however, this work provides promising preliminary results to the utility of this 

method.  

 

4.3 Results 
 

 To determine if we can detect RNA incorporation of nucleoside analogs via feeding alone, 

we supplemented standard corn meal media with the unprotected 5EU or 2’AZ. Previous research 

demonstrated that Drosophila melanogaster larvae could uptake and integrate modified 

nucleobases simply by feeding (Miller 2009, Ghosh 2015). Though it seemed likely that nucleoside 

analogs delivered by feeding should be similarly incorporated in RNA, this remained to tested. To 
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assess this, we placed 2nd instar wild type (WT) larvae on 1g of standard fly food supplemented 

with 15mg of either 5EU (63mM) or 2’AZ (54mM) for 16 hours. We then extracted RNA from 

batches of 10 larvae and for comparison we extracted RNA from larvae that were not fed any 

analog. RNA was then biotinylated, and integration of the analog into RNA was visualized using 

streptavidin-HRP with a chemiluminescent substrate (see Methods, Figure 4.1 A, B). we found 

that both 5EU and 2’AZ should strong signal of incorporation above background.    

Next, we wanted to test if we could achieve uptake and RNA integration of the modified 

nucleoside in adult flies. We suspected that adult flies would likely eat less than larvae and as such 

may not be consume enough food, and therefore analog, to achieve detectable signal. To test this, 

we placed 4-day old WT on 1g of standard fly food supplemented with 15mg of  5EU (63mM) for 

16 hours. We found very strong signal for RNA labeling with nucleotide analog in comparison to 

unfed flies (Figure 4.1 C). This showed that the nucleoside analog can be orally administered via 

fly food to achieve detectable levels of RNA labeling. Given that azido functional groups can be 

biotinylated via copper-free strain-promoted azide-alkyne cycloaddition (SpAAC) which is less 

damaging to RNA and shows lower levels of background labeling we decided to continue with 

2’AZ for future experiments rather that 5EU (Nguyen 2016, Nainar 2016).  

Next, we wanted to determine how low a concentration of nucleotide analog could be used 

to achieve detectable RNA labeling. We tested out three concentrations of 2’AZ by adding either 

15mg, 10mg or 5mg to 1 g of fly food to achieve concentrations of 54mM, 36mM or 18mM of 

nucleoside. We allowed adult flies to feed for 36 hours and found labeling for all three 

concentrations (Figure 4.1 D).  Lastly, we wondered what the lowest concentration and exposure 

time could be used to achieve detectable labeling. We found we could detect RNA labeling in as 

little as 4 hours with a concentration of 14mM (Figure 4.1 E). Despite seeing signal at a 
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concentration of 3.6mM at 4-8 hours this signal is still low and is entirely lost by 12 hours. 

Additionally, all tested concentrations showed a decrease in signal at 24 hours of exposure. It is 

possible that this is an artifact of this particular dot blot experiment or that the nucleoside analog 

may display a degree of photosensitivity.  Additional experiments will be necessary to ascertain 

this.  

Having shown that we could achieve detectable levels of RNA labeling by simply feeding 

Drosophila adults 2’AZ, we wanted to assess the level of background uncaging of our protected 

analog. Given that this systems utility hinges on the fact that the protected modified nucleoside 

cannot be incorporated into RNAs, we wanted to determine if there was any degree of background 

incorporation. We posited that if the protecting group of the analog were to be spontaneously lost 

that this would allow for the integration of the analog into the nucleotide and result in nonspecific 

labeling of RNA. To test the level of background incorporation, we fed adult WT flies with the 

protected PAC-2’AZ for either 12 or 24 hours. For comparison we also included flies fed with 

unprotected 2’AZ as well as a sample of flies that were not fed any nucleoside (Figure 4.2 A). We 

found that flies fed with PAC-2’AZ showed a minimal amount of signal just above that of 

background. This experiment shows that nonspecific RNA labeling is present at relatively low 

level when using PAC-2’AZ. However, more quantitative measurements of the extent of this 

labeling still need to be done to determine the extent of this labeling. 

Having established oral uptake of analog nucleosides as a feasible way to achieve RNA 

labeling, we then needed to generate PGA lines under the control of a UAS promoter. Two lines 

were generated, we referred to these fly lines as PGA1 and PGA2 and used PGA2 for our fly 

crosses with GAL4 drivers (see Methods). Once these lines where generated, we decided to test 

the potential side effects of labeling RNA on the PGA2 line. Previous work in cells has shown that 
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the addition of nucleobase analogs demonstrates some degree of toxicity, partially due to the 

DMSO used to suspend the analog (Singha 2020). To test for detrimental effects, we fed PAC-

2’AZ to adult PGA2 flies controlled by a ubiquitous GAL4 driver (UB-PGA2) and to WT flies 

that are incapable of uncaging the PAC-2’AZ. To assess the negative effects of feeding flies 

solvent, which is used to suspend PAC-2’AZ, we included a condition of flies fed with 5% DMSO 

by volume of fly food (Figure 4.2 B). We monitored survival over the course of 15 days and found 

that WT flies fed with only the DMSO died faster than flies fed with 2’AZ in DMSO. The PGA 

expressing flies supplied with the PAC-2’AZ in DMSO, showed the highest survival. We suspect 

that the differences in the survival of flies fed only DMSO are because these flies received a higher 

concentration of the solvent than flies that where fed with the analog suspended in DMSO. 

Nonetheless among the flies fed either the protected or unprotected nucleotide there does not 

appear to be a difference in survival for timescales shorter than 9 days. Given that we can detect 

strong signal in adults within 12 hours of exposure we do not foresee this difference in survival 

being a problem for the application of this system.  

Lastly, to determine the potential effectiveness for this method to specifically label RNA, 

we measured the signal detected from each of the individual parts of the system (Figure 4.3 A). 

We chose a ubiquitous GAL4 driver (UB) as well as fat-body specific GAL4 driver (FB) to test 

this (see Methods). We found that crossing of our GAL4 lines to the PGA2 line resulted in flies 

that show uncaging and incorporation of the protected analog {Figure reference?}. The level of 

signal achieved using the 2-part system was not as high as the signal produced using the 

unprotected nucleoside alone, but it was still above background signal. Additionally, the individual 

uncombined FB, UB and PGA2 lines fed with PAC-2’AZ do show a low level of RNA labeling, 

despite the absence of PGA expression. We found that the fat-body specific driver showed greater 
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signal of RNA labeling (albeit still low) than the ubiquitous driver. Two potential explanations 

exist for this that are not necessarily mutually exclusive. The first is that the FB driver may have a 

higher level of nonspecific uncaging of the protected nucleoside, even in the absence of the PGA 

gene. Evidence for this can be seen by the relatively higher signal observed from the FB line as 

opposed to the UB line which shows a signal closer to the background. It is unclear why this would 

be the case since we do not expect PGA homologs to be present in the background of any of these 

lines. The second explanation could be the FB driver is simply more active than the UB driver. 

This seems very likely as strong UB GAL4 drivers often negatively impact the health of a line. In 

either case the GAL4 driven expression of PGA is able uncage and integrate orally administered 

PAC-2’AZ in adult Drosophila. The exact extent of this specificality remains to be determined. 

 

4.4 Discussion 
 

  Here we show that we can adapt a system for specific RNA labeling in Drosophila 

melanogaster using PAC-2’AZ and the exogenous PGA gene. We find that we can achieve 

detectable levels of RNA labeling using orally administered nucleoside analogs in adult flies. We 

observe minimal levels of PAC-2’AZ background labeling and we show that we can use the PGA 

gene under the control of the GAL/UAS system to selectively unblock the protected analog. The 

data gathered here shows promise for utilizing this method in Drosophila. 

 Before this method can be widely used to garner biological insight in Drosophila, some 

amount of optimization and experimentation remains to be done. One simple improvement that 

can be made is to the UAS-PGA lines. This may help achieve stronger specificity and signal. 

Currently, both PGA expressing lines control the gene’s expression using a 5x UAS cassette. 

However, it has been shown that inclusion of up to 40x UAS sites can achieve stronger expression 
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of the gene being controlled (Pfeiffer 2010). In addition to this, the specificity of labeling RNA 

remains to be quantitatively measured. Sequencing of biotinylated RNA from lines fed with PAC-

2’AZ that either express or do not express the PGA gene is still necessary. This will allow us to 

directly quantify the amount of nonspecific RNA labeling that occurs simply by the inclusion of 

the protected nucleoside analog. Determining the levels and sources of non-specific RNA labeling 

by this method will be critical for assessing the viability of this method. 

  

   

4.5 Methods 
 

4.5.1 Media Preparation  

 All flies were grown on standard corn meal media (Brent and Oster 1974) at 25˚C with 12-

hour light and dark cycles. For flies and larvae fed with analog nucleoside, media was prepared by 

mixing 1g of warmed corn meal media with nucleotide suspended in DMSO. Media was then 

poured into 15ml plastic tubes and stopped with cotton plugs. Unprotected and protected 

nucleosides were provided by the Spitale lab at UCI and were stored at -20˚C.  

4.5.2  Fly lines  

 For experiments wild type fly lines A4 were acquired from the Drosophila Synthetic 

Population Resource center at UCI (King 2012). The ubiquitous expressing GAL4 line 

w;Arm>GAL4/TM3, Sb Ser was obtained from the Arora lab at the UCI. The fat-body specific 

GAL4 line w[1118]; P{w[+mC]=Cg-GAL4.A}2 was ordered from the Bloomington stock center 

( Stock number 7011).  

4.5.3 Generating new fly lines 
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 UAS PGA lines where generated by PCRing the 5' Flag-tagged PGA gene from the pWIG-

Flag-coPGA-IRES-GFP plasmid. Using Gibson assembly, we inserted this into the pUAST-attB 

vector (Pfeiffer 2010). This vector contains a 5X UAS cassette, a heat shock promoter (hsp), and 

we cloned the 5' Flag-tagged PGA gene downstream of the hsp promoter. The vector also has an 

attB site, making it suitable for phiC31 mediated integration into a specific attP site, and a mini-

white gene to allow for screening of transgenic flies. The full construct (pUAS-attB-FLAG-PGA) 

was shipped to BestGene. Here the fly lines were made by injecting the full construct into attP2 

flies (Bloomington Drosophila Center Stock #8622, full genotype: y1 w67c23; P{CaryP}attP2) 

and made homozygous transgenic stocks using the mini-white marker. The attP site in this stock 

is on Chr 3L.  

4.5.4 Feeding experiments  

 For feeding experiments flies or larvae were placed on media containing nucleoside analog. 

Tubes where then kept at 25˚C with 12-hour light and dark cycles for the duration of the 

experiment. At the end of an experiment flies where anesthetized using a CO2 and 3 flies per tube 

with 250µl of TRIzol reagent (Thermofisher 15596026) were frozen by placing in -80˚C freezer 

for later extraction 

4.5.5 CuAAC chemistry 

To detect the relative levels of labeled RNA, total RNA was extracted using Zymo Research 

Direct-zol RNA Extraction Kits. RNA was quantified using NanoDrop 3000 (Thermo Fisher).  

 CuAAC protocol was obtained from Kim Nguyen from the Spitale lab. To biotinylate RNA 

we mixed 25 µl of  “click” chemistry cocktail ( 1:1:1 solution of 12 mM CuSO4, 2mg/mL tris-

hydroxypropyltriazolylmethylamine, and 2.1 mg/mL of NaAscorbate), 5 µl of 10 mMEDTA, 5 µl 

of 10 mM biotin-azide or biotin alkyne, and 2-10 µg of RNA for a final 50 µl reaction. Mixture 
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was incubated for 30 min at room temperature with gentle shaking. Total RNA was then purified 

using Zymo RNA Clean & Concentrator kit, with the final elution step performed twice. RNA was 

then stored at -80˚C.    

 

4.5.6 Dot blots 

  To detect the relative level of biotinylated to non-biotinylated RNA we performed dot blots 

using Hybond-N+ (GE Healthcare). Membrane was equilibrated in 2x SSC buffer for 5 minutes 

(20x SSC buffer 87.65 g NaCl, 44.1g Na3Citrate,  final 500 mL volume). Membrane was air dried 

for 10 min, then 2µg of RNA per sample was loaded onto membrane in 1µl increments. RNA was 

then UV crosslinked to membrane using Stratalinker UV crosslinker ( 254 nm UV, 2x 1200 

µjoules). Following this membrane was incubated in blocking buffer for 30 minutes with rotation 

( Blocking buffer : 3.65 g NaCl, 1.2 g Na2HPO4, .5 g NaH2PO4, 50 g SDS, final volume 500mL 

water). Blocking buffer was discarded and membrane was then incubated with 1 mL of 1:5000 

solution of blocking buffer and Pierce™ High Sensitivity Streptavidin-HRP (thermo fisher) for 5 

minutes. Membrane was then washed twice with a 1:10 dilution of blocking buffer, for 20 minutes 

each with rotation. Lastly, membrane was washed twice with a 1x washing solution for 5 minutes 

with rotation (washing solution : 6 g Tris base, 2.9 g NaCl, 1 g MgCl2, final volume 500mL, pH 

9.5). Membrane was then incubated with 1:1 Pierce™ ECL Western Blotting Substrate (Thermo 

scientific) and imaged using the ChemiDoc XRS+ imager (Bio-Rad) 
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4.7 Figures  
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Figure 4.1 Orally administered nucleoside analog can be detected in RNA of larval and 

adult Drosophila. Unprotected nucleoside analogs were mixed into standard cornmeal media for 

oral uptake. RNA from animals fed for 16 hours was then extracted, biotinylated and loaded onto 

blot paper. The relative amount of biotinylated RNA was then detected using streptavidin 

horseradish peroxidase and a light emitting substrate (see methods) A) 5EU fed- and B) 2’AZ  

fed 2nd instar larvae both showed signal above background (RNA extracted from non-fed 

animals). RNA for positive controls were from cells in culture after being supplied with the 

nucleoside analog. C) Adult flies show uptake of 5EU and incorporation above the background. 

D) Adult flies fed 2’AZ for 36 hours show RNA labeling in concentrations as low as 18mM of 

modified nucleoside. As positive control RNA from 2nd instar larvae fed with 54 mM of 2’AZ 

was used. E) We quantified the lowest exposure time and concentration of nucleoside needed to 

detect RNA labeling via dot blot. We detect labeling in as little as 4 hours with concentrations of 

14mM.  
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Figure 4.2 PAC-2’AZ shows minimal labeling and survival effects.  A) To assess the level of 

background uncaging of PAC-2’AZ we fed adult flies with 12mM concentration of the 

nucleoside for either 12 or 24 hours. For comparison we included flies fed with 18mM of 2’AZ 

as well as a positive control, RNA from 2nd instar larvae fed with 54 mM 2’AZ, and a negative 

control, adults fed no nucleoside. B) To determine any potential detrimental effects that the 

supplied protected nucleoside may be having on adult flies we fed flies expressing the PGA gene 

throughout the body with PAC-2’AZ. For comparison we included non-PGA expressing WT 

flies and flies fed DMSO. Uncaging and integration of the 2’AZ does not appear to negatively 

impact the survival of flies.  
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Figure 4.3 PGA-2 line can be used to specifically label RNA. A) To determine if the ability of 

the UAS-PGA system to specifically label RNA we tested 2 GAL4 drivers with the PGA lines. 

We supplied flies with either PAC-2’AZ or 2’AZ. We find that the GAL4-UAS+PGA system is 

able to uncage PAC-2’AZ and label RNA. Two UAS+PGA lines where generated a “weak” 

PGA line (PGA1) and a “strong” PGA line (PGA2).  Additionally, 2GAL4 drivers were tested a 

ubiquitous driver (UB) and a fat body specific driver (FB).  Three biological replicates (rows) 

were tested per condition (columns). Methylene blue staining was also performed to ensure equal 

amounts of loaded RNA.  
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CHAPTER 5 
Future directions 

  



 144 

In the previous chapters, I detailed my works on quantifying variation in the Drosophila 

immune response. In Chapter 2, I quantified genetic sources of variation between two genetic lines 

of D. melanogaster. I showed that the relative contribution of cis and trans effects to expression 

divergence in the Drosophila fat body is condition specific.  In Chapter 3, I demonstrated a new 

method for non-invasively tracking bacterial infection over time using autoluminescent bacteria. I 

showed the utility of this method to elucidate sources of variation for individual infection 

outcomes. In Chapter 4, I presented a novel method for the precise chemical labeling and isolation 

of cell-specific RNA in D. melanogaster. I adaptive this chemical-genetic system for use in vivo 

and showed preliminary data that suggests that can be used to precisely label nascent RNA in a 

tissue specific manner. Taken together these works identify genetic sources of variation in immune 

response and provide methods for exploration of non-genetic sources. Below I outline two logical 

extensions of the work discussed in chapters 2 and 3.  

 

5.1 Pathway specific cis and trans variation  
 

A great deal of work has been invested into understanding the mode and tempo of expression 

divergence both within and between species (Wittkopp 2012). While previous work has been 

instrumental for establishing a foundational understanding of this subject, we are still missing a 

broader understanding of the rules and mechanisms that dictate the mode in which expression 

divergence arises (Signor 2018). One major limitation in the field is that a great deal of the work 

to date has averaged signal across multiple tissues and therefore biological pathways (Wittkopp 

2004, Landry 2005, Wittkopp 2008, McManus 2010, Gonclaves 2012, Coolon 2014, Osada 2017, 

Benowitz 2020, Frochaux 2020). Different biological processes may be under distinct evolutionary 

pressures which in turn may affect the relative contributions of cis and trans changes, but these 
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differences cannot be examined in these data. To achieve this broader level of understanding, we 

require a more precise view of the mode and tempo of expression divergence that is at the level of 

individual biological pathways. This view must include diverse biological pathways across 

multiple conditions and evolutionary distances. By elucidating the relative contributions of cis and 

trans effects in these, we can build a framework to better understand the broader mechanisms that 

dictate how expression variation arises.  

In Chapter 2 I aimed to examine the relative contributions of cis and trans changes specifically 

in the immune response pathway.  In my work I homed in on this pathway by examining expression 

only in the abdominal fat body, which is the primary immune responsive organ in Drosophila. 

Additionally, by examined expression divergence in this tissue under infected and non-infected 

settings I was able to show that the relative proportion of cis and trans effects are condition 

specific. While this experimental design is an improvement on previous studies that used 

expression data from whole bodies, it is still not entirely pathway specific. In the same way that 

previous studies averaged signal across multiple tissue this study is likely averaging across 

multiple cell types. In larvae the fat body has been observed to have functionally distinct regions, 

so it is not unreasonable to believe that this may be the case in adults as well (Haunerland 1995). 

To account for populations of cells that may be involved in distinct biological pathways more 

precise methods of expression profiling must be used when quantifying the sources of expression 

divergence.  

The use of single cell (SC) and single nucleus (SN) methods in combination with an F1 hybrid 

experimental design from Chapter 2, will be necessary to precisely quantify the contributions of 

cis and trans expression variation at the level of pathway. Pathway level resolution of mode of 

gene expression divergence will be crucial to advance our understanding in Drosophila and 
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multicellular organisms in general. Coupling of these methods will allow for the exploration of 

pathway specific expression variation the field is currently lacking.  

Specific to the fat-body, SN sequencing will be necessary, since the tissue itself is not amenable 

to SC methods. In fact, work is already being done to optimize SN methodologies for the 

Drosophila fat body (Gupta 2021). SN data can be used to cluster populations of cells across 

samples prior to performing allele specific expression analysis, ensuring that cells involved in 

similar pathways are compared to each other. In this manner we can describe the mode of 

expression divergence in a pathway specific manner. Expanding this experimental design to 

examine multiple pathways, conditions and evolutionary distances is the next logical step for the 

field.  

From this type of experiment, we would gain invaluable insight into the general biology of the 

fat body and a broader view of the mode of expression divergence. We would expect that in 

performing SN in the fat body we should find distinct populations of cells specialized for specific 

biological roles such as immune response and general metabolism. Moreover, we would be able 

to compare how conserved these populations are across evolutionary distances. This information 

would greatly improve our understanding of the general biology of the fat body. 

Secondly, we would observe how the mode of expression divergence differs between 

biological pathways that are under different selections pressures. We would expect that pathways 

under more intense selection pressures should generally show greater changes in trans whereas 

those under less intense selection should show greater changes in cis. Should this expectation be 

met, this would provide strong evidence to support that the mode of expression divergence may 

be dependent on the intensity of selection that is occurring on a biological process. Whereas if this 

expectation is not met then this would suggest that something else must also be involved.   



 147 

 

5.2 Using autobioluminescence to examine sources of variation 
 

In Drosophila the understanding of sources of inter individual variation in immune 

response remains underexplored (Duneau 2017, Ellner 2021). This is due in no small measure, to 

the limitations of the methods used to assess the immune response which generally rely on animal 

sacrifice. In Chapter 3 of my thesis, I provide a new method for longitudinal tracking of bacterial 

infection using an autobioluminescent reporter that allows for the observation of individual 

infection trajectories. This method also allows for the direct linking of individual infection 

histories to infection outcomes. Additionally, the autobioluminescent construct used in this method 

is amenable for use in other bacterial strains making this method extremely flexible to the pathogen 

of choice. This method opens a door to explore genetic and non-genetic sources of infection 

variation in a high throughput manner.  

Given that this area is underexplored it is relatively rich for discovery, but of particular 

interest is the identification of predictors of infection outcome. Work by Duneau et al 2017 

identified the bacteria of Enterococcus faecalis, Providencia burhodogranariea, and Providencia 

rettgeri as showing a bimodal infection outcome in Drosophila lines. A logical next step would be 

to use this system to identify potential predictors for infection outcome. By transforming these 

bacteria with the autobioluminescent reporter, measuring infection progression and outcome in the 

previous lines, we can leverage this bimodal outcome to pinpoint the sources that dictate the 

observed outcome. We would expect that variation in the inoculation load, initial injury and 

immune activation will all contribute to the infection outcome. However, it will be interesting to 

see the effect size of each of these factors. This would provide an unprecedented level of resolution 
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into infection progression that can be used to build more refined predictive models of infection 

outcome. 

5.3 Concluding remarks 
 

Above I discuss logical extensions to the research presented in previous chapters of my 

thesis. Specifically, I suggest the utilization of single cell and single nucleus methods in 

combination with allele specific expression analysis as a means to quantify pathway specific 

expression divergence. This will hopefully lead to a better understanding of the broader rules that 

dictate the way in which expression and thus phenotypic divergence. I also suggest an experimental 

design set up for which to use the method described in Chapter 3, that may aid in the designation 

of potential predictors of infection out come between genetically identical individuals. The 

research presented in this thesis only begins to address the sources of variation in in immune 

response. It expands on decades of previous work into the contribution of cis and trans effects in 

immune response, but also points out areas that remain to be expanded on. Similarly, it provides a 

mere glimpse into the relatively unexplored field of interindividual variation and raises a great 

many questions as to the sources of this variation that can now be addressed. As the colloquial 

expression goes, “good research will provide some answers but also open more questions.”  
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