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Abstract

Methods for High-throughput, Cellular-Resolution Estimation of Synaptic Properties

by

Benjamin M. Shababo

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Dr. Hillel Adesnik, Chair

Circuit-mapping experiments combining whole-cell electrophysiology with two-photon opti-
cal stimulation of potentially presynaptic neurons (“2p-mapping”) have produced rich data
on monosynaptic connectivity of neural circuits. However, mapping densely-packed presy-
naptic populations at cellular resolution has proven challenging, making the precise local-
ization and identity of connected neurons difficult. To interpret data resulting from these
experiments, it is therefore critical to develop statistical methods which can infer the prop-
erties of neural circuits despite the limited spatial resolution of state-of-the-art 2p-mapping
technologies. In this work, we present several novel statistical methods for mapping neu-
ral circuits at cellular resolution. In Chapter 1, we present background on mapping neural
circuits and the methods used. In Chapter 2, we present a statistical method for inferring
monosynaptic connections when the resolution of two-photon stimulation is not sufficient
given the density of the opsin-expressing cells. In Chapter 3, we present a high-resolution
approach for inferring common input to two simultaneously patched neurons during map-
ping. And in Chapter 4, we present a high accuracy method for inferring the timing of
post-synaptic currents - the key response observation when mapping neural circuits.
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To July

The brain is a curious thing.



ii

Contents

Contents ii

1 Introduction 1
1.1 Studying Neural Microcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Physiological synaptic mapping . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Single-cell Resolution Mapping With Two-Photon Holograpahic Opto-
genetics 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A high-throughput, temporally precise data acquisition system . . . . . . . . 7
2.3 Single-cell resolution optogenetics is not (currently) possible . . . . . . . . . 10
2.4 Single-cell resolution analysis for mapping . . . . . . . . . . . . . . . . . . . 14
2.5 Learning the neural response function . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Method Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Mapping Complementary Networks of Cortical Somatostatin Interneurons 32
3.1 Mapping a cortical circuit with multiple modalities . . . . . . . . . . . . . . 32
3.2 Distinct subtypes of L5 SST cells receive complementary patterns of excitatory

synaptic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Common input mapping reveals subnetwork structure in L5 SST cell output 35
3.4 Paired recordings confirm dense, reciprocal, and selective intra- and translam-

inar connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Bayesian Methods For Event Analysis of Intracellular Currents 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79



iii

5 Appendix 97
5.1 Technical Details for Gaussian Processes Learning . . . . . . . . . . . . . . . 97
5.2 Implementation Details of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . 99
5.3 Table of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



1

Chapter 1

Introduction

1.1 Studying Neural Microcircuits

At the level of microcircuits, the goal of experimental neuroscience is to validate theories
which describe 1) how neural activity in a circuit relates to information that is useful for
sensation, cognition, and behavior and 2) validate quantitative models of how that neural
activity is generated from the properties of the cell types and synapses that comprise that
circuit [186]. Examples of features that can be used to classify cell type include intrinsic
electrophysiology, transcriptional and epigenetic profiles, morphology, and location [183,
131, 28]. The synapses between these cells can be defined by their pre- and postsynaptic
properties like the probability of vesicle release, the magnitude and shape of the postsynaptic
current, and its short-term dynamics [51]. Additionally, the cell types in a specific neural
microcircuit form synapses with each other at different rates [29]. Together, these features
lead to the flow of neural activity through the circuit and thus its computational properties.

The relationship between neural activity and functions like sensation and behavior is ex-
perimentally validated by temporally correlating measurements or estimates of the activity
in a circuit with measurements of stimuli or behavior. Models of neural microcircuits are
validated by demonstrating that measurements or estimates of cellular and synaptic proper-
ties lead to the appropriate neural activity when used to simulate the circuit. One hallmark
examples of this process is the discovery of neurons that detect particular visual features
by Hubel and Weisel. In their work, they demonstrated that neurons in striate cortex of
the cat responded to particular visual features. They then combined knowledge (and some
speculation) about the connections and cell types in the circuits which contained the feature
detecting neurons to model how the feature selection computation arises from the neural
activity in the circuit [62].

One of the core challenges in obtaining these types of measurements is the sheer scale
of neural microcircuits. A single circuit is made up of thousands to millions of neurons
with orders of magnitude more synapses, and it is not always straightforward to aggregate
measurements across different circuits to obtain a sufficient description of the circuit in
general (i.e. to estimate higher-order statistics). The mouse has proven to be a useful
model for studying microcircuits, especially in cortex. Advances in tools for the readout
of neural activity in the mouse have allowed for unprecedented investigation of local neural
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circuits. For example, fluorescent imaging [94] has facilitated a dramatic scaling in the
ability to estimate and perturb neural activity at the cellular scale while also knowing the
location and transcriptional identity of individual neurons. In [81], Calcium imaging was
combined with measurements of the synapses between the imaged neurons in mouse visual
cortex to demonstrate, like Hubel and Wiesel, that the activity and functional identities of
the neurons could be correlated with the structure of the local microcircuit. However, the
number of connections probed per circuit was orders of magnitude lower than the number
of possible connections between the functionally identified neurons.

While the readout of neural activity has scaled up due to advances in imaging, scaling up
measurements of synaptic properties, sometimes called mapping, has been much more diffi-
cult. Electron microscopy (EM) has been used to reconstruct microcircuits, but the process
of tracing neurons and identifying synapses from the data has been difficult to scale [93].
Additionally, EM reconstructions are a primarily morphological description of the circuit and
do not provide much information about the physiological properties of synapses which are
essential for modeling the circuit and understanding its computational properties. Measuring
the physiological properties of synapses at scale is extremely difficult because it depends on
precise experimental access to two neurons simultaneously. Specifically, it requires evoking
spikes in a reliable and precise manner from a pre-synaptic cell and, for nearly all properties
of interest, requires measuring the subthreshold response of post-synaptic neurons.

1.2 Physiological synaptic mapping

Paired recording, in which both the pre- and postsynaptic cells are recorded intracellularly
using whole-cell patch clamp, provides an unambiguous determination of the presence or
absence of a synaptic connection as well as unmatched measurements of physiological prop-
erties [89, 167, 39]. Dozens of studies across many labs have together provided a quantitative
outline of the connectivity between various types of neurons in microcircuits. However, its
main drawback is its extremely low throughput. In any of these studies, only a tiny number
of presynaptic neurons for any given postsynaptic cell could be probed, and so the total map
of any cell type had to be inferred by collating data across different cells, in different circuits,
in different animals. Thus even heroic studies, obtaining thousands of such pairs, have only
provided small snapshots of the cortical wiring diagram [89, 67, 102].

Optically mapping connectivity by patching one cell and using light stimulate others
opened the possibility of mapping many connections in a single circuit. One of the earliest,
if not the first, such experiments was conducted in invertebrate ganglion [42]. The authors
created molecular probes which could depolarize membranes by creating transient channels
when activated with light. They then recorded from one neuron using an electrode while
searching for presynaptic partners by stimulating many nearby neurons. The authors note
the dramatic increase in both throughput as well as access since recording from small cells
with electrodes is more difficult and temperamental.

There are two main factors to consider when designing an optical stimulation method:
1) the technology for targeting light to a subvolume of the sample and 2) the actuator which
transduces the light into a transmembrane current.
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1.2.1 Targeting light

Initial synaptic mapping experiments used visible wavelengths of light to drive currents in
neurons. Visible light is generally safe and affordable to work with, and many compounds
and proteins in the natural world interact with these wavelengths. Perhaps the most com-
mon method of targeting visible light is laser-scanning microscopy where a focused beam
of light is directed to positions in the focal plane by placing galvos in the beam path [159].
Alternatively, one can send a collimated beam out of the objective which fills the field and
then select portions of that field using a digital micromirror device in the beam path [138].

Photo-stimulation with visible light can be extremely fast and reliable, and it has been
used extensively to map the coarse-scale connectivity of circuits [158, 60, 26, 135]. However,
it cannot achieve the requisite spatial precision to stimulate neurons at near-single cell res-
olution, and therefore it can only make statements about synapses between layers and cell
types but not necessarily about individual connections.

Alternatively, two-photon excitation [38] can be used to drive currents [146, 117, 124]. In
two-photon excitation, the light-matter interaction is dependent on the coincident arrival of
two lower energy photons. The probability of such an event occurring falls off non-linearly
away from the focal plane where the convergence of the beam creates the highest density of
photons. As a result, the axial resolution for two-photon excitation is considerably better
than traditional one-photon excitation. The trade-off for the increased resolution is that
considerably more photons are necessary and thus two-photon excitation requires higher
power pulse lasers which can damage tissue more easily and are more temperamental and
expensive.

Like the targeting of visible light, two-photon excitation can be structured using laser-
scanning approaches [146, 117, 124] or a shape-based approach called Computer Generated
Holography (CGH) [128, 156, 130]. Holography is a method for encoding an image in the
interference pattern between a reference beam and that same reference beam after scattering
off of the objects to be imaged. If the reference beam is diffracted off of the recorded
interference pattern, the resulting wavefront will generate a three dimensional image of the
original objects. Because of this ability to generate three dimensional distributions of light
in the image plane, CGH was developed for microscopy to compute interference patterns
from desired distributions of light at the sample. Due to its ability to target larger volumes
and therefore larger quantities of the actuating molecule, two-photon excitation with CGH
has demonstrated the ability to drive extremely fast and reliable spiking in neurons [100,
156, 31].

Importantly, CGH suffers in its axial resolution due to the fact that extending the shape
of the beam in the radially also extends the volume of excitation axially. Therefore temporal
focusing is commonly used to improve axial resolution [120, 128]. Temporal focusing diffracts
the beam in the image plane such that the short laser pulses are stretched in time in a manner
that the duration of the pulse is shortest a the focal plane. Analogous to the spatial principle
that results in high excitation at the focal plane using two-photon excitation in general, the
difference in pulse widths created by temporal focusing increases the level of excitation at
the focal plane relative to planes away from the focus by focusing the light not only in space
but in time as well. One drawback of temporal focusing is that it eliminates the ability of
CGH to distribute light away from the focal plane, but recently three-dimensional temporal
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focusing has been demonstrated for two-photon optogenetic excitation [130, 58].

1.2.2 Optical transducers of current

The first optical actuators to become widely used to map synapses were caged neurotrans-
mitters [73, 26]. These neurotransmitters become ”uncaged” in response to light and then
are free to interact with the endogenous receptors on the nearby neurons to drive optically
evoked currents. Uncaging with visible light has proven useful in mapping connections across
layers of cortex and to examine correlations in connectivity between simultaneously patched
cells and different cell types [157, 158, 182, 6, 103]. Two-photon uncaging of glutamate [117,
10, 47] has also been used to map synapses. In these experiments, individual connections
could be characterized resulting in the estimate of many fine-scale synaptic parameters in
a single, local cortical circuit. By using genetically targeted fluorescent labels, two-photon
uncaging can be used to map synapses between particular subtypes of cells [46, 123].

Because caged compounds can be applied via perfusion at the time of the experiment,
they can be in some ways easy to use. However, this is challenging in vivo because commonly
used forms of caged glutamate act as antagonists at GABA receptors [126, 47] which could
lead to epileptiform activity. Additionally, in many experiments neurons are targeted by their
soma but most glutamate receptors are on neuronal dendrites. This can lead to ambiguity
in the spiking response and presents major challenges for preventing off-target stimulation
via the density of dendrites in the nearby neuropil. Off-target currents can also affect the
patched cell and contaminate recordings of postsynaptic responses.

Mapping with opsins [23, 37] as the optical transducer (optogenetics) offers key advan-
tages, in particular that the actuator only affects the target cell. Furthermore, opsins can
be targeted to genetically defined cell types which facilitates experimental precision and, in
the case where the patched cell is non-expressing, eliminates contamination of the postsy-
naptic recording. Like uncaging, optogenetics with visible light has been widely used to map
connectivity in local cortical circuits at the scale of layers [135, 74, 119, 138]. While these
methods solve some of the drawbacks of uncaging, they still suffer from the low resolution
provided by one-photon approaches.

In contrast, two-photon stimulation can achieve much better spatial precision [124, 146,
100]. However, it became clear early on that their were challenges to achieving cellular
resolution excitation with optogenetics [146]. In particular, two-photon optogenetics suffers
from the fact that excitation occurs near saturation of the opsin of the molecules. That is,
the amount of excitation produced is limited by the amount of available opsin molecules.
In a very thorough theoretical and experimental characterization, [146] showed that under
these conditions the axial resolution gains of two-photon excitation begin to deteriorate and
thus the optical sectioning of two-photon optogenetics will not be as dramatic as the optical
sectioning of two-photon imaging.

Nonetheless, several groups have employed two-photon optogenetics to map physiologi-
cal connections [14, 124, 156, 64, 53]. There are several key considerations when mapping
synapses with two-photon excitation - that is, the goal is to identify the properties of indi-
vidual connections. The sensitivity and kinetics of the opsin heavily influence the success
of mapping. In an ideal world, one could spike a presynaptic neuron with arbitrary timing
and precision. Put another way, the ideal actuator is infinitely strong and infinitely fast.
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Therefore two-photon optogenetics has been most successful when using specially designed
strong and fast opsins [100, 31] which allow for low input powers, lower expression levels, and
faster trial rates. Nonetheless, all examples of two-photon optogenetic mapping to date use
slower opsins [124, 64, 53] which limits the throughput of these methods. Another impor-
tant factor when optimizing resolution is trafficking the opsin to the soma [14, 178] which is
essential for mapping in densely expressing populations. Two-photon optogenetics has been
demonstrated for locally mapping both inhibitory (Chapter 3) and excitatory connections
[64]. Most recently, Hage et al. [53], used two-photon optogenetics to map putative single
connections between many different cell types and multiple layers of mouse cortex in what
is by far the most impressive mapping effort yet.

For a full review of optical approaches to mapping synapses in cortex, see [7].

1.2.3 The core challenge

As mentioned above, the key goal of two-photon optogenetic mapping is to characterize as
many monosynaptic connections as possible in a single circuit. The key question for any
mapping method then becomes, ”How can one know if the evoked postsynaptic responses
come from the targeted presynaptic cell and not some off-target stimulation?” The answer
to this question comes down to the spatial resolution of the stimulation methodology. In
all papers on two-photon excitation, the authors provide some characterization of their spa-
tial resolution. In general, these characterizations are then used to estimate error rates
given the density of excitable neurons [124, 53]. Often, these error rates are supported by
supplementing with paired-patch data.

An alternative approach is to use the characterization of the neural response to optical
stimulation to statistically infer if responses are likely to have come from particular excitable
neurons [155], and thus far, only one paper has taken this approach with real data [64]. In
this thesis, we build on this approach and present novel statistical methods which facilitate
two-photon optogenetic mapping and demonstrate their efficacy with real data.
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Chapter 2

Single-cell Resolution Mapping With
Two-Photon Holograpahic
Optogenetics

This chapter contains unpublished work that was a product of a collaboration with Dr.
Shizhe Chen, a postdoc under the supervision of Dr. Liam Paninski, Karl Kilborn and
his team at Intelligent Imaging Innovations (3i), as well as Xinyi Deng (Paninski Group),
Johannes Friedrich (Paninski Group, Flatiron Institute), and Savitha Sridharan (Adesnik
Lab).

2.1 Introduction

In the previous section, we noted that the key challenge of two-photon optogenetic mapping
experiments is determining which presynaptic neuron produced the evoked postsynaptic
events, and that understanding the resolution of the optogenetic system is key to making
that determination. In general, the spiking probability as a function of distance and averaged
across cells is used to summarize the excitation resolution. By comparing this to the density
of the opsin expressing neurons, one can estimate the error rate of a mapping method.

For example, in Hage et al. [53], the resolution of excitation was estimated for each
presynaptic population, and given the densities of each of these populations, they were able
to infer that their error rate was low enough to be more or less ignored. Importantly, they
also validated their optically estimated connectivity rates between cell types against ground
truth paired-patch experiments to support their argument. In general, their method was
quite successful. Only one cell type had a large disparity between the optically estimated
connectivity rate and the paired-patch estimated rate, somatostatin (SST) expressing neu-
rons. For SST neurons, the optical rate was estimated to be much higher than the rate
estimated with patching alone; and not surprisingly, the resolution of optical stimulation for
SST cells was the worst of all the cell types they tested (also see Chapter 3). This implies
that the resolution for SST cells is not sufficient given the expression density, and it demon-
strates that there are conditions under which two-photon optogenetic mapping breaks down
when off target excitation is ignored.
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Considering this and the fact that the most densely expressing cell type considered in
[53], the excitatory Tlx3-Cre line, is still orders of magnitude less dense than the excitatory
neuronal population in general, there would be a benefit to increasing the resolution of two-
photon optogenetic mapping. While improvements in two-photon optogenetics per se have
pushed the resolution quite far [100, 58], the current state of the art is likely not sufficient to
map dense populations of opsin expressing cells. Additionally, the variance in response can
vary significantly across cells due to differences in opsin expression and intrinsic properties
which can lead to other difficulties when mapping dense populations of cells, as we will
demonstrate later.

Similar to super-resolution microscopy techniques, one can also use computational or
statistical methods to improve the resolution of optical mapping [155]. For example, in
[64], we used a model of the axial resolution of their two-photon optogenetic system to
”deconvolve” off target responses and identify which opsin expressing neuron was in fact
connected. In this work, we build on this approach by developing a more detailed optogenetic
neural response model and demonstrating how it can be used to perform inference for two-
photon optogenetic mapping experiments.

2.2 A high-throughput, temporally precise data

acquisition system

The general experimental design of a two-photon optogenetic mapping experiment involves
obtaining a whole-cell patch of a designated postsynaptic cell, estimating the locations of
the opsin expressing presynaptic neurons, rapidly directing light to those locations, and
then analyzing the data to determine which cells are connected and what the properties of
those synapses are (Figure 2.1B). Our particular mapping system is designed to maximize
throughput both in terms of the trial rate and the number of connections probed.

2.2.1 Voltage-clamp recording

The vast majority of synaptic parameters of interest are estimated using subthreshold re-
sponses in postsynaptic cells, i.e. postsynaptic currents (PSCs) and postsynaptic potentials
(PSPs). Both types of responses can be recorded using whole-cell patch clamp, with the for-
mer using a voltage-clamp configuration and the latter using a current-clamp configuration.
For high-throughput mapping, voltage-clamp is the better choice for several reasons. First,
there is a more stable baseline and no spiking which reduces non-signal variance the record-
ing and facilitates detecting evoked events for analysis. Second, PSCs have faster kinetics
than PSPs since the membrane does not low-pass filter the signal so there is less chance that
events will overlap at high trial rates. And third, estimates of synaptic properties such as
strength (e.g. amplitude, charge transfer) and paired-pulse ratio have less variance since the
driving force remains constant from trial to trial reducing.

The downside to whole-cell patch clamp is that it is relatively low-throughput and a
patch has a relatively short time to record before the cell dies. While other methods, such as
voltage-imaging [80], may provide a less invasive method to reliably estimate subthreshold
responses in neurons in the future, for now those methods are too new and temperamental to
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employ in a high-throughput mapping pipeline. Additionally, voltage-clamp recordings suffer
from what is known as space-clamp - the fact the membrane potential is only held constant
near the patch electrode and not in distal processes where many synapses are located as well
as voltage-gated conductances. As a result, many inputs to the cell will appear distorted or
may become undetectable in a voltage-clamp recording.

2.2.2 Two-photon holography

In previous two-photon mapping experiments spiral scanning was used to stimulate neurons,
but this method of stimulation is relatively slow [123, 64]. Instead, we use holography [129]
to shape light into volumes which can activate many more opsin molecules simultaneously
and therefore drive enough current to spike the cell more quickly [156, 130].

Our system is based on a custom Phasor Two-Photon Computer-Generated Holography
System (3i) with temporal focusing (Figure 2.1A) which is controlled by the SlideBook soft-
ware. For two-photon excitation, we use a 5W 1040nm femtoTrain laser (Spectra-Physics).
Holographic patterns consisted of 10um diameter disks targeted to arbitrary positions in the
XY-plane (i.e. the radial plane) at 1um resolution. Because our system uses traditional
temporal focusing and not three-dimensional temporal focusing, we target neurons in the Z-
dimension (i.e. the optical axis) by moving the objective with a fast and reliable piezo stage
(Physik Instrumente). Each pattern is illuminated for 3 milliseconds at desired intensities
using a combination of a Pockels cell (Conoptics) and a fast shutter (Uniblitz).

The holographic field of excitation was registered to the two-photon scanning field of
view by burning holes in a thin layer of fluorescent substrate at twelve locations defined
in the holographic coordinate system. The location of each hole in the imaging coordinate
system was determined by user input, and both sets of locations were used to solve for the
affine transform between the two coordinate systems. Output intensities of the holographic
system were estimated using a calibration procedure based on measuring light intensity at
the specimen as a function of Pockels cell input and holographic targeting location.

2.2.3 Two-photon optogenetics

Our goal is to quickly stimulate a dense set of opsin expressing neurons in our cortical
slice preparation. The speed at which we can stimulate neurons is a function of both the
kinetics of the opsin response as well its strength. Therefore, we use ChroME [99], an opsin
developed specifically for two-photon excitation, which has very fast on kinetics and large
currents. Spikes produced by combining ChroME and two-photon excitation are extremely
precise having low latency and low jitter (Figure 2.2C). Additionally, we the Kv2.1 tag to
traffic opsin to the soma and away of from the distal dendrites [14, 178]. Soma-targeting is
essential because it increases the spatial resolution of the system by effectively shrinking each
cell as well as increases the response relative to the expression level of the opsin. To obtain
broad and dense opsin expression in cortical neurons by postnatal day 14, we delivered the
construct described above using adeno-associated virus (AAV) injection at P0-P4. We used
the AAV9 serotype as it has been shown to produce reliable and broad expression in the
central nervous system [36].
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Another challenge for two-photon optogenetics is to identify the locations of the opsin
expressing cells. While this is not strictly necessary, knowing these locations can drastically
reduce the number of stimuli needed to estimate a map. Additionally, being able to identify
the neurons in the tissue allows the map to be registered against other modalities such as
Calcium imaging or seqFISH [40]. When combined, these methods could align estimates of
the functional and transcriptional properties of hundreds of neurons with a synaptic map of
their circuit, a goal that neuroscience is making slow but steady progress on [81, 83]. To
facilitate the detection of each cell’s location, we co-express a fluorescent protein, mRuby3,
alongside ChroME. Importantly, a combination of the P2A motif with a nuclear-localization
sequence is used which results in the population of opsin expressing cells being visualized
as fairly well separated sphere-like objects (Figure 2.1D). Under these conditions, we were
able to quickly and reliably detect each neuron’s position from a 3D volume imaged with
two-photon scanning microscopy using the extremely fast cell detection method from [168]
(Figure 2.1E).

A

B

C

D E

Figure 2.1: (A) A schematic of the microscope showing the holography, scanning, and wide field light paths
as well as the headstages for electrophysiology. (B) A flowchart of the experimental workflow. (C) ChroME
is a strong and fast opsin. Left, ChroME evokes strong and fast currents. Middle, Chrome induces reliable
short latency spikes. Right, the average latency and jitter of a ChroME spike in a cell. (D) The construct
delivery system produces broad, dense expression which facilitates 3D cell detection. Left, cells under the
EMX-cre promoter in L23 of cortex with nuclear mRuby3. A patched neuron filled with Alexa488 dye.
Right, the locations of cells in 3D from the cell detection algorithm. (E) A schematic of the computational
and I/O resources of the system.
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2.2.4 Optimized and automated mapping

The two-photon holographic optogenetic (TPHO) system described above can evoke tempo-
rally precise spikes in a dense population of neurons given a holographic pattern. However,
to run this system at a high trial rate requires solving two bottlenecks. First, for each desired
holographic pattern, one must compute the phase mask for that pattern. Second, one must
coordinate the loading of phase masks into RAM with the execution of trial batches.

Computing arbitrary phase masks is achieved using the Gerchberg-Saxton [50] algorithm
which can take hundreds of milliseconds or more to run. To speed up phase mask computa-
tion, we developed an algorithm which takes a precomputed phase masks for a single 10um
disk at the center of the field and shifts it to an arbitrary location in the field of excitation
at 1um resolution. The algorithm also uses precomputed phase masks for diffraction lim-
ited spots spaced at 10um intervals across the field and second set of phase masks for spots
spaced at 1 um interview across the center 10um x 10um square of the field. By performing
two convolutions (i.e. parallelizable elementwise multiplication the Fourier domain), we are
able to quickly move the centered disk to the closest point in the 10um spacing grid and
then shift it up to +/- 5um along either axis using the 1um spacing grid. Using this method
allowed phase masks to be computed at rates faster than single trials.

To optimize acquisition time, we also coordinated the computation of phase masks on a
separate analysis computer. After the system begins recording the first batch, it immediately
triggers the analysis computer to begin computing the next batch of phase masks. Once
these masks are ready, the sent back to the computer which communicates with the SLM
and loaded into RAM in preparation for the next batch. Additionally, a third computer
acted as a master coordinator and handled the main DAQ I/O (Figure 2.1E). Under these
conditions, we were able to perform mapping experiments with very little down time once
mapping began.

The process of finding a cell to patch, patching the cell, imaging the 3D volume, detecting
cells, defining stimuli, computing phase masks, and then executing those stimuli on the
system can be quite cumbersome if every step requires user input. To speed up the entire
process - which is important because the first step is obtaining the whole-cell patch - we
designed the master control software to only require one click one the patch was acquired
and the patched cell was centered in the field.

2.3 Single-cell resolution optogenetics is not

(currently) possible

The fundamental challenge in analyzing the data resulting from the mapping experiment
described above is that we do not know which presynaptic neuron fired the spike that led to
an observed post-synaptic response. This is because the optogenetic stimulation may elicit
spikes in nearby neurons even if it is intended to stimulate only one particular neuron. These
off-target activations are a consequence of multiple factors.
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2.3.1 Experimental parameters that affect resolution

Perhaps the most important parameter that affects the resolution of TPHO is the stimulation
intensity. We illustrate this issue in Fig. 2.2A. Here we record spikes from opsin-expressing
neurons while stimulating at locations near this neuron at various powers. Each color rep-
resents the data from a different neuron - aligned so they are all centered at the origin.
Small, transparent dots show stimulation locations and solid, larger dots show locations
which evoked spikes. The top row shows the projection onto the XY plane and bottom row
shows the projection onto the the XZ plane.

It is immediately clear that the resolution of TPHO is a function of stimulus intensity.
That is, with more power, neurons spike in response to stimuli that are further away. Addi-
tionally, neurons do not show a stereotyped response as a function of either stimulus location
or intensity. For example, stimuli as far as 30 µm away can cause the red neuron to spike at
15 mW while the green neuron produced did not fire in response to stimuli at any locations
at the same power. At the population level, we see that the fraction of cells which spike as
a function of stimulus intensity slowly increases from about 30% at 5 mW until nearly all
neurons spike at around 35 mW (Figure 2.2B). This means that the resolution of TPHO
is also a function of the properties of each neuron, in particular the rheobase and opsin
expression level which together determine each cell’s sensitivity to light.

Fig. 2.2C shows the histogram of pairwise distances between neurons taken from one
representative field of opsin expressing neurons in a cortical slice. In this particular sample,
about 44.2% of neurons have a neighbour within 20 µm. Given the variance in light sensitivity
across the field and tight packing of opsin expressing cells, it is essentially guaranteed that
the minimum stimulus intensity to spike some cells will evoke spikes in nearby cells with
either more opsin expression or lower rheobases. (Note that in this work we restrict out
presynaptic population to cortical L23 excitatory cells, i.e. cells in L23 which express under
the EMX1-Cre line, to reduce the variance due to intrinsic cell type properties.) Thus, simple
approaches that estimate synaptic connections based solely on the stimulation location and
the existence of postsynaptic events will be prone to false-positive errors. For example, the
responses seen in a patched cell when stimulating the cells in the local area shown in Figure
2.2D reveal potential connections at 4 out of 5 of the cell locations. If we believed our mode
of stimulation was truly cellular resolution, it would seem reasonable to predict that all four
cells are presynaptic to the patched cell. If we want to create high-throughput system with
a low false positive rate, we must have a way to deal with the uncertainty about which
particular cells are connected when mapping.

2.3.2 A spike-timing solution

In previous work [64], we demonstrated that when everything else is held constant, evoked
spike times are at a minimum when stimulation is directly on the cell. This lead to a relatively
simple approach which was able to localize the presynaptic neuron by in the Z-axis by finding
the plane which minimized the evoked PCS timing. Then due to the sparsity of expression it
was straight-forward to determine which neuron in that plane produced the responses. We
build upon this approach by developing a more detailed model which describes how two-
photon holographic stimulation evokes spikes at varying times in a stimulus intensity and
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distance dependant manner. We can then use this model to map circuits by extending it to
describe how PCS timings arise in the postsynaptic cell given the evoked presynaptic spikes.

We can break down the model into three parts (Figure 2.2F). The first part of the
model represents the transformation from TPHO to spike times or spike rates, the neural
response model. The second part represents the transform from presynaptic spike rates to
a postsynaptic PSC event rate, the connectivity model. And finally, the third part of the
model represents the transform from the PSC event rate to a noisy voltage-clamp recording.
In this chapter, we focus on the first two parts of the model and use the PSC event times
as the response observation. For details on the voltage-clamp modeling and estimating the
PSC event times see Chapter 4.



13

A B C

D E F

G H

I

K L

ve
rt

ic
al

ax
ia

l/h
or

iz
on

ta
l

horizontal horizontal horizontal

Empirical CDF

Fr
ac

tio
n 

C
el

ls
 S

pi
ke

Power (mW)

Power (mW) Power (mW)

Pe
ak

 C
ur

re
nt

 (p
A

)
M

in
 S

pi
ke

 T
im

e 
(m

se
c)

J

Sp
ik

e 
Ti

m
e 

St
d 

D
ev

 (m
se

c)
Sp

ik
e 

Ti
m

es
 (m

se
c)

Mean peak current (pA)Mean peak current (pA)

20um

Pe
ak

 C
ur

re
nt

 (p
A

)

Axial Distance (um)

0              20             40            60             80

2500

2000

1500

1000

500

0

15

10

5

0
0              20             40            60             80

0        500       1000      1500      2000     2500

15

10

5

0
0        500       1000      1500      2000     2500

100

10

1.0

0.1

-20         0           20 -20         0           20 -20         0           20 

-40

0

40

-50

0

50

0               10              20              30             40               50              60 

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-100      -80      -60       -40       -20        0         20        40        60        80       100

   1500

1000

500

0

15 mW 25 mW 50 mW

Figure 2.2: (A) Locations that evoke spikes from neurons at various powers. Each color represents a neuron.
Smaller transparent dots are stimulus locations that did not evoke spikes and larger opaque dots are locations
which did evoked spikes. The top row is the XY projection of the data and the bottom the XZ projection.
(B) The empirical CDF of the distribution of minimum powers to spike a neuron with TPHO. (C) The
empirical CDF of the distance to the closest neighbor neurons for a representative population. The vertical
dashed red line helps indicate that almost half of all neurons have neighbor that is very close relative to the
resolution of TPHO. (D) 5 opsin expressing neurons in a local area and (E) the postsynaptic response as each
location when stimulated at varying powers. Each trace is one trial, blue dots represent the output of PSC
event detection. (F) A schematic of our generative model for the TPHO mapping experiment. Continued
on next page.
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2.3.3 Building an intuition for the neural response model

Before we provide the mathematical details of the model, we will provide a basic intuition for
the phenomenon we are trying to represent by examining some preliminary data of the neural
response to our TPHO system. In the following section we will present a statistical analysis
of this data as part of our presentation of our mapping model and inference procedure.

We start by considering the case where we only modulate the stimulus power and hold
stimulus location directly on the soma, i.e. the location returned by the cell detection algo-
rithm. We first stimulated while recording spikes in cell-attached mode, and then switched
to voltage-clamp mode to repeat the same set of stimuli while recording evoked currents. As
expected, the evoked current increases monotonically as the stimulus power increases and
then eventually saturates (Figure 2.2G). Similarly, we see spike times decrease as a function
of power and eventually hit a minimum time and exhibit extremely low jitter (Figure 2.2H,J).
While the shapes of the response curves are similar across neurons, we also once again see a
large variation of response sensitivity across the population. Based on the current responses,
it seems possible that a scalar gain parameter per presynaptic neuron could be used to pre-
dict the evoked current given the stimulus power for a particular location. To investigate the
transform from evoked current to spike time, we leveraged the fact that the data in Figures
2.2G and 2.2H were taken on the same cells and plotted the current-spike time pairs for each
power and for each neuron (Figure 2.2I). The points closely followed a one-dimensional curve
indicating that neurons expressing under the EMX-Cre line (mostly L23 excitatory cells) all
have very similar rheobases, and that we can likely model the transform from stimulus to
spike times as a scaling of the intensity which is then transformed by a function fit to the
scattered data in Figure 2.2I.

Next we investigate the spatial response of neurons by keeping the stimulation power
constant and raster a stimulus over the neuron while recording evoked currents (Figure
2.2K). The heatmaps generated by this procedure represent the spatial receptive field of the
neuron which is the convolution of the stimulus shape with the spatial distribution of opsin
in the neuron. The extensions of expression that reach out towards the top of the map,
toward pia, are a result of the Kv2.1 tag also trafficking to the proximal apical dendrite
which is consistent with [178, 14]. The non-Gaussian, non-convex, and relatively variable
shapes of the opsin distribution in each neuron means that we cannot use a simple model to
represent the shape of neurons in the radial plane. Measurements of evoked current along
the Z-axis reveal a much simpler shape, but they also demonstrate how poor the resolution
of TPHO can be along the optical axis (Figure 2.2L).

2.4 Single-cell resolution analysis for mapping

2.4.1 Generative statistical model

To use the intuitions we built from the optogenetic response data, we developed a Bayesian
statistical model which describes the transforms from stimulus to spike times to postsynaptic
responses using probability distributions. By modeling the gain and spatial receptive field
for each opsin expressing neuron, fitting the model will (softly) assign postsynaptic responses
back to single presynaptic neurons even if our stimulation is not single-cell resolution.
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To formally introduce the generative model we need to begin by defining some notation
for the three basic elements of the experiment. First, there are K opsin expressing neurons
in the field of excitation. We denote the three dimensional location of the k-th neuron as
wk for k = 1, . . . , K. Second, each stimulus on trial i has a location and intensity denoted
as xi and Ii, respectively, and each experiment consists of M trials. (We note that while
our model can handle multiple stimulus locations per trial, in this work we only consider
one stimulus per location.) And finally, the output of each trial is a voltage clamp current
recording, Ji(t).

Optically evoked currents

The data presented above suggest that to develop an optogenetic neural response model, it
is useful to first model the peak magnitude mi,k of the current elicited by the optogenetic
stimulus on trial i in neuron k, and then in turn model the spiking of the cell at time t given
mi,k.

As demonstrated, mi,k is dependant on three critical factors: the stimulus location xi
relative to the spatial profile of neuron k, the neuron’s opsin expression level, denoted ϕk,
and the stimulus intensity Ii. In the stimulus regime used here, it is reasonable to use a
linear model to connect these ingredients; thus we model the mean evoked current mi,k as

mi,k = sk
(
vi,k

)
ϕkIi, (2.1)

where vi,k = xi − wk and sk(·) is a random function that reflects the spatial profile of
neuron k, centered around its nucleus location wk. We assume that sk(0) = 1 so that
it is identifiable with the total opsin expression level ϕk. Because the spatial profile is a
three dimensional function that differs across neurons, it requires a large amount of trials at
various locations in order to accurately learn sk(·) for each neuron which is infeasible during
a mapping experiment. Therefore, we propose to factorize the shape function of each neuron
as the product between two a radial shape function sk,xy(·) and and axial shape function
sk,z(·)

sk(vi,k) = s
ai,k,xy
k,xy (vi,k,xy)s

ai,k,z
k,z (vi,k,z),

where ai,k,xy ≡ v2
i,k,xy/∥vi,k∥22, and ai,k,z ≡ v2

i,k,z/∥vi,k∥22.

Figure 2.2: Continued from previous page. (G) The maximum current evoked by stimulation as a function
of power. Each color is an individual cell and each dot represents a trial. The line goes through mean for
each condition. (H) Like G the evoked spike times. (I) The mean peak current plotted against the mean
spike time for each cell and power. (J) The standard deviation of the spike times in H. (K) Peak current
as a function of XY location, each columns is a cell. The first row shows the values as a 3D bar graph to
help understand the scale within and across cells. The second and third row are just the flat heatmaps. The
first and second row scale the color axis such that the color is clipped at roughly the rheobase of the cells
to illustrate which locations are likely to evoke spikes for each cell. The bottom row is normalized within
each cell. (L) Evoked currents as a function of axial distance. Each color is a unique cell and each circle
represents a single trial.
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Probabilistic spike timing

Next let t̃i,k be the evoked spike time of neuron k in the i-th trial. In the experimental
conditions analyzed here, the stimulation intensities are chosen such that, usually, one spike
is elicited per trial per presynaptic neuron. To further ensure that at most one evoked per
neuron is observed per trial, we choose the shortest reasonable trial duration (in this work
7.0 ms). We approximate the distribution of t̃i,k given mi,k using a truncated normal distri-
bution with mean g(mi,k) and variance h(mi,k), where g(·) and h(·) are both monotonically
decreasing functions (i.e., the average spike latency and variance both decrease as the current
magnitude increases) representing the trends in Figures 2.2I and 2.2J. Note that if we had
more than one cell type in our opsin expressing population, we would likely need to model
these functions for each type of cell.

Thus, the density of t̃i,k takes the form

λ̃
(
t̃ | mi,k

)
= ψ

{
t̃− g(mi,k)

h(mi,k)

}
, 0 < t̃ < T. (2.2)

Here ψ denotes the standard normal density, and note that λ̃ does not integrate to one on
the given interval [0, T ]; the complement 1−

∫ T
0
λ̃(t̃ | mi,k)dt is simply the probability that

neuron k does not spike on the i-th trial given mi,k.

Transforming spikes into postsynaptic responses

Synaptic transmission is probabilistic; not every presynaptic event is transmitted to the post-
synaptic neuron, and this synaptic release probability may vary from cell to cell. Therefore,
we assume that a presynaptic spike at time t̃i,k induces a postsynaptic event at time ti,jk
with probability γk, and that

ti,jk = t̃i,k + dk + ei,k, (2.3)

where dk is a fixed synaptic delay between neuron k and the patched neuron, and ei,k ∼
N (0, δ2k) is a random jitter. Note that we use jk to indicate the jth postsynaptic event
on that trial and that its source is neuron k. We refer to γk ∈ [0, 1] as the probability of
transmission; if γk = 0 then no connection exists between neuron k and the patched neuron.
If γk ∈ (0, 1], then it can be thought of as the probability that at least one vesicle is released
from the presynapse given a spike. In addition to the evoked postsynaptic events, the patch
recording may also contain spontaneous events that follow a homogeneous Poisson process
with a small constant intensity λ0. In general, we treat λ0 as known because it can be
estimated from portions of the voltage-clamp recording between stimulation batches.

Finally, we observe the postsynaptic current Ji(t) and estimate the postsynaptic event
times from it using the method presented in Chapter 4. While event detection may introduce
errors, we note that by biasing detection to false positives we simply increase the Poisson
baseline intensity λ0 which is preferred over false negatives which lead to decreases in the
estimated γk. We denote the detected events on the ith trial as Ti = {ti,j : j = 1, . . . , ni} if
ni > 0, and Ti = ∅ if ni = 0.

The data on each trial i are summarized as Di = {xi, Ii, Ti}, that is the stimulus locations,
stimulus intensities, and the detected postsynaptic event times.
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2.4.2 Inference

We take a Bayesian approach for inference in the proposed model. The two key ingredients
in the Bayesian approach are the likelihood and prior distributions.

Likelihood

The likelihood of the model proposed in Section 2.4.1 takes the form

L(D;Θ) ≡
M∏
i=1

 ∑
A∈A(K+1,ni)

∏
k∈A

λi,k(ti,kA)
∏
k/∈A

[
1−

∫ T

0

λi,k(t)dt

] , (2.4)

where A(K +1, ni) denotes all possible ni permutations of the K +1 possible sources of the
postsynaptic events, and kA is a short-hand notation for the index of k in A. To be specific,
each permutation A ∈ A(K + 1, ni) is an ordered set consisting of ni entries, where each
entry takes a value in {0, 1, 2, . . . , K}. For instance, if ni = 2, then A = {7, 0} means that
the first postsynaptic event is induced by a spike from neuron 7 and the second event is a
spontaneous event. λi,k(t) represents the contribution of neuron k to the overall postsynaptic
event rate in the ith trial

λi,k(t) = γk

∫ ∞

0

λ̃i,k(t−∆;mi,k)ψ([∆− dk]/δk)d∆, (2.5)

where λi,k(·;mi,k) is the firing rate of neuron k in the ith trial given evoked current mi,k.
Recall that λ̃i,k follows a truncated normal distribution with mean g(mi,k) and variance
h2(mi,k). As a result, we can simply convolve to approximate (for positive t)

λi,k(t) ≈ γkψ

(
t− dk − g(mi,k)

[δ2k + h2(mi,k)]1/2

)
.

For the background events where k = 0, we set λi,0(t) = λ0.
The unknown parameters in the likelihood are {γk, dk, sk,xy(·), sk,z(·), ϕk, δk : k = 1, . . . , K}.

Although sk,xy(·) is a function that takes values on a two-dimensional space, we only need
to learn its value at the unique locations stimulated in the experiment. Specifically, if there
are Lk,xy unique locations (projected to the z = 0 plane) that have been stimulated, we only
need to learn the values of sk,xy(·) at these Lk,xy locations {sk,xy(vl,k,xy) : l = 1, . . . , Lk,xy}.
Similarly for the function sk,z(·), we only need to learn its values at the unique stimulation
locations, i.e., {sk,z(vl,k,z) : l = 1, . . . , Lk,z}.

Prior

The other ingredient is the prior distribution for the unknown parameters. For simplicity
in notation, we introduce Θk to represent the unknown parameters associated with neuron
k, i.e., Θk ≡ {γk, ϕk, sk(·), dk, δk : k = 1, . . . , p}, and we use θ ∈ Θk to represent one of
the unknown parameters in Θk. We introduce a prior distribution for each of the unknown
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parameters in the likelihood, and we write the prior distribution for all unknown parameters
as

K∏
k=1

P(Θk) =
K∏
j=1

∏
θ∈Θk

p0(θ;α
0
θ, β

0
θ , bθ). (2.6)

Briefly, we use the logit-normal distribution as the prior distribution for {γk, dk, ϕk, δk :
k = 1, . . . , K}, where the bounds bθ for the logit-normal distributions are set based on the
response data. In other words, we assume that

p0(θ;α
0
θ, β

0
θ , bθ) = ψ

(
f(θ; bθ)− α0

θ

exp(β0
θ )

)
, (2.7)

where f represents the logit transformation with bounds bθ = (bθ,1, bθ,2)
T, i.e.,

f(θ; bθ) = log

(
θ − bθ,1
bθ,2 − θ

)
.

We use a Gaussian process to model the spatial profiles sk,xy(·) and sk,z(·). Recalling that we
only need to learn values of the functions at the unique locations that have been stimulated,
the Gaussian processes thus reduces to multivariate normal distributions. In particular, we
have (

sk,xy(v1,k,xy), . . . , sk,xy(vLk,xy ,k,xy)
)T ∼ N

(
µxy(Vk,xy),Σxy(Vk,xy,Vk,xy)

)
(2.8)

and
(
sk,z(v1,k,z), . . . , sk,z(vLk,z ,k,z)

)T ∼ N
(
µz(Vk,z),Σz(Vk,z,Vk,z)

)
, (2.9)

where Vk,xy = (v1,k,xy, . . . ,vLk,xy ,k,xy) is a matrix that contains all unique stimulation posi-
tions relative to the nucleus of neuron k projected on the plane {x ∈ R3 : x3 = ω3}, and
Vk,z = (v1,k,z, . . . , vLk,z ,k,z) is a vector containing all the unique z-coorindates of stimulation
locations. We discuss the how we estimate the mean and variances functions for the two
Gaussian processes from pilot studies in Section 2.5.2.

Approximating the posterior with stochastic variational inference

Combining the likelihood and the prior, the posterior distribution of the unknown parameter
{Θk}pk=1 satisfies that

P(Θ | D) ∝ L(D;Θ)
K∏
k=1

P(Θk). (2.10)

We approximate the true posterior distribution with mean-field variational inference. In
variational inference, we aim to maximize the evidence lower bound

ELBO(α,β) ≡ Eq
[
logL(D;Θ) +

K∑
k=1

logP(Θk)−
K∑
k=1

∑
θ∈Θk

log q(θ;αθ, βθ, bθ)
]
, (2.11)

where q(θ;αθ, βθ, bθ) denotes the variational distribution for an unknown parameter θ ∈ Θk.
We let q(θ;αθ, βθ, bθ) be a logit-normal distribution with bounds bθ for θ ∈ {γk, dk, ϕk, σ2

k,e :
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k = 1, . . . , K}, where the bounds are the same as in the prior distributions. We approximate
the posterior of

(
sk,xy(v1,k,xy), . . . , sk,xy(vLk,xy

)
)T ∈ RLk,xy using a multivariate normal distri-

bution N
(
µ̃k,xy, Σ̃k,xy

)
, where µ̃k is an Lk,xy-vector, and Σ̃−1

k,xy = Σ−1
xy (Vk,xy,Vk,xy) + B−1

k,xy

with Bk,,xy being an Lk,xy×Lk,xy diagonal matrix. In this variational distribution, there are

2Lk,xy unknown parameters in µ̃k and Bk,xy. We note that the assumed form of N
(
µ̃k, Σ̃k

)
is commonly used in Gaussian approximation. Intuitively, the mean vector µ̃K allows the
variational distribution to adjust its mean based on the data, and the additive diagonal
matrix B describes how reliable the information from the data is compared to the prior.
When the entries in B are sufficiently small, we know that Σ̃k ≈ B, which implies that the
posterior distribution for each value sk(vl,k) is determined by the observed data rather than
the prior. As a final note, although we introduce separate variational distributions for each
unknown parameter, the variational parameters, i.e., the maximizers for the ELBO (2.11),
are connected via the likelihood. Similarly for

(
sk,z(v1,k,z), . . . , sk,z(vLk,z

)
)T ∈ RLk,z , we ap-

proximate its posterior distribution using a multivariate normal distribution N
(
µ̃k,z, Σ̃k,z

)
with Σ̃−1

k,z = Σ−1
z (Vk,z,Vk,z) + B−1

k,z . With a slight abuse of notation, we denote the varia-

tional distribution for both vectors as q(θ;αθ, βθ, bθ) when θ =
(
sk,z(v1,k,z), . . . , sk,z(vLk,z

)
)T

and θ =
(
sk,xy(v1,k,xy), . . . , sk,xy(vLk,xy

)
)T
.

We use gradient descent to find the maximizer of the evidence lower bound in (2.11).
Briefly, we take the black-box variational inference approach proposed in [143]. This proposal
uses a Monte-Carlo method to estimate the gradient of ELBO(α,β) with respect to (α,β)
as follows

∇̂(α,β)ELBO(α,β)

=
1

S

S∑
s=1

∇(α,β) log q(Θ[s])
[
logL(D;Θ[s]) +

K∑
k=1

logP(Θk[s])−
K∑
k=1

∑
θ∈Θk[s]

log q(θ)
]
,

(2.12)

where we write q(Θ[s];α,β, b) as q(Θ[s]) for simplicity, S is a user-specified parameter, and
Θ[s] is a sample from q(Θ[s];α,β, b). The Monte-Carlo gradient is an approximation to the
true gradient whose accuracy depends on the parameter S. To control the variability from
Monte-Carlo, we employ the control variate as proposed in [143]. The algorithm is given in
Algorithm 1.

Computational details of Algorithm 1

The black-box variational inference algorithm (Algorithm 1) is computationally demanding
due to the use of Monte-Carlo sampling for approximating the gradients. In this section, we
discuss the computational details of Algorithm 1 and introduce our strategies for reducing
the computational cost.

The main factors that affect the computational complexity of Algorithm 1 are the number
of iterations to convergence C, the number of Monte Carlo samples S, the total number of
trials M , and the total number of presynaptic neurons K. Roughly speaking, the computa-
tional complexity of Algorithm 1 is proportional to the product of these factors O(CSMK).
One can see that the computational cost will quickly grow out of control when the size of the
field of excitation increases: a larger field will include more presynaptic neurons, K. More
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Algorithm 1: Variational inference for postsynaptic neural response model.

Input: data D, likelihood function L(D;θ), prior distribution P(Θ) (2.6), mean field
variational family Qθ = {q(θ;αθ, βθ, bθ) : αθ, βθ} for each θ ∈ Θ;
Initialize α,β given prior knowledge or rough estimates from the data;
Set ϵ = κ+ 1;
while ϵ < κ do

for s = 1, . . . , S do
Θ[s] ∼ qΘ(Θ;α,β);
Calculate
E [s] = logL(D;Θ) +

∑K
k=1 logP(Θk)−

∑K
k=1

∑
θ∈Θk

log q(θ;αθ, βθ, bθ)

end
for k = 1, . . . , K do

for θ ∈ Θk do
for s = 1, . . . , S do

aj[s] = ∇(αθ,βθ) log q(θ;αθ, βθ, bθ)E [s];
bj[s] = ∇(αθ,βθ) log q(θ;αθ, βθ, bθ);

end

end
for θ ∈ Θk do

cθ =
[
var(bθ)

]−1[
cov(aθ, bθ)

]
;

∇̂(αθ,βθ)ELBO = S−1
∑S

s=1

(
aθ[s]− cθbθ[s]

)
;

end

end
ρ = t−1;

(αθ, βθ)
T = (αθ, βθ)

T + ρ∇̂(αθ,βθ)ELBO;
t = t+ 1;

Calculate the normalized change ϵ =
∥∥ρ∇̂(αθ,βθ)ELBO

∥∥
2
/∥(αθ, βθ)∥2;

end

neurons naturally require more trials in order to map the circuit, and more neurons also
introduces more unknown parameters to learn which may slow down convergence. We take
the following strategies to address concerns about computational cost.

First, the number of iterations for Algorithm 1 to converge directly relates to the quality
of initialization. Good initial estimates of the variational parameters α,β may significantly
reduce the computing time for Algorithm 1. In addition, initialization helps find the global
maximal, given that the evidence lower bound (2.11) is not necessarily a convex function
of the variational parameters. Additionally, we develop a fast initialization strategy for the
variational parameters based on prior knowledge and crude—but fast—analysis of data.

Second, we follow [143] to use a control variate to reduce the variability in the estimated
gradients. Black-box inference approximates the gradients of the evidence lower bound using
Monte Carlo sampling. The number of Monte Carlo samples S controls the accuracy for the
estimated gradients. Increasing S yields more accurate estimators of the gradients, which
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may reduce the number of iterations till convergence. However, a larger S also means higher
computational cost. Thus, we implement the control variate to reduce the variance of the
estimated gradients without increasing S.

Third, we propose to evaluate the likelihood of each trial by considering only the neu-
rons that could plausibly respond to the stimulation. To be specific, when evaluating the
likelihood for trial i, we can only consider the neurons that are within certain radius of the
stimulation(s), instead of considering all K neurons, as potential sources of events. This
simple but effective strategy will bring down the computational complexity for evaluating
the likelihood of one trial from O(|A(K + 1, ni)|) to O(|A(K + 1, ni)|), where |C| represents
the number of elements in a set C and P is the number of neurons that may respond to
stimulation in trial i. Here the number P is determined by the spatial resolution of stimu-
lation and the density of cells in the field of excitation, which is a local parameter that is
independent of K.

Lastly, we can further speed up the inference using distributed learning. The key obser-
vation is that, when learning the posteriors of neuron k, we only need to consider the neurons
that live near neuron k, because they are the neurons that may overlap in their spatial pro-
file and thus can potentially produce responses given the same stimuli. Therefore, we can
divide the field into small, overlapping regions, where we analyze the trials and update the
posteriors for each region in parallel. Moreover, there is little or no need for communication
between each region during the experiment.

2.5 Learning the neural response function

2.5.1 Spike Time Transform

As we say in Figure 2.2I and 2.2J, given an evoked current m, all opsin expressing neurons
produce similar mean spike times and spike time standard deviations. We can therefore use
the optogenetic response data to learn the mean function g(·) and the standard deviation
function h(·) which describe how evoked opsin currents relate to evoked spike times. We
assume that the two functions take the form

g(m) = a+ bm−1 and h(m) = min{std.dev.}+ cm−1.

It is worthwhile to point out that the estimated standard deviation function h tends
to underestimate the variability in a real mapping experiment, especially when the mean
current is large. Therefore, we transform the standard deviation using the following function

h̃(x) = minh+
(maxh−minh)

1 + exp(β1(x− β2)
,

where β1, β2 are parameters, and x is the peak current.

2.5.2 Shape

In Section 2.4.1, we introduce two shape functions sk,xy(·) and sk,z(·) that capture the spatial
distribution in the opsin on the membrane of a neuron. In this section, we discuss the
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Figure 2.3: Data-driven priors. (A,B) Red lines indicate the learned functions, g() and h() and the blue
dots are the data from Figures 2.2I and 2.2J. (C) Mean evoked currents at each location for several cells
(red dots) and the mean (solid black line) and variance (dashed black line) fit for the Gaussian process
shape prior. Right panel, along vertical axis of cortex where negative is closer to pia and positive is closer
to L4. The extended shape into the negative direction is a result of the Kv2.1 tag trafficking to the apical
dendrite. Middle, the horizontal axis of cortex in the radial plane. Left, the horizontal axis of cortex parallel
to the optical axis. (D) Heatmaps of the normalized current response for six cells (each column). The rows
correspond to different axial distances from the cell, and maps have been interpolated. (E) A sample from
the fit Gaussian process prior at the same spatial locatinos as the data in D as well the mean and variance
fit for each point.

Gaussian processes that we use as the prior distributions for these functions. We drop the
subscript k which indexes a particular opsin expressing neuron in the discussion to follow.

From the response data (Figure 2.2K, 2.2L), it is clear that we can learn both functions
sxy(·) and sz(·) if we record the evoked currents when a neuron responds to optogenetic
stimulation targeted on a dense grid around the nucleus. Such a exhaustive approach is
infeasible during a mapping experiment, but it can be conducted on several neurons to build
a prior distribution for the shape functions.

Consider first the shape function sxy(·) used to model the data in Figure 2.2K. In the prior
distribution (2.8), we see that we need to learn the mean function µxy(·) and the variance
function Σxy(·, ·). Following common practice with Gaussian processes, we further assume
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that the covariance function Σxy(·, ·) takes the form

Σxy(v1,xy,v2,xy) = σxy(v1,xy)Kxy(v1,xy,v2,xy)σxy(v2,xy), (2.13)

where Kxy(v1,xy,v2,xy) = Kτx(v1,x, v2,x)Kτy(v1,y, v2,y) is the kernel function and σxy(·) is the
standard error function of the Gaussian process. We set the kernel Kτ (a, b) as

Kτ (a, b) = exp
{
− (a− b)2/τ 2

}
, (2.14)

and we choose τx = 7 µm and τy = 7.5 µm.
Allowing for measurement errors, we assume that

mi = sxy(vi,xy)ϕIi + ϵi, (2.15)

where ϕ is the overall optical gain, Ii is the intensity of the stimulation, and ϵi is the
measurement error in the ith trial. Recall that we assume the maximum of the shape
function is unity for identifiability with ϕ. Therefore, we can estimate ϕ using the maximum
ratio between the elicited current and the power level, i.e., ϕ̂ = maxi(mi/Ii). Note that the
maximum may not be achieved at the nucleus 0 (see Remark 1 below). Plugging in the ϕ̂,
we can rewrite (2.15) as

sxy(vi,xy) =
(
ϕ̂Ii

)−1
mi −

(
ϕ̂Ii

)−1
ϵi. (2.16)

We can then learn the mean and variance on the radial plane by using a smoothing method
on the response data (Figure 2.2C, 2.2E). We take a similar strategy to build the prior for
the shape function sz(·) (Figure 2.2C). In this case, we estimate one-dimensional functions
µz(·) and σz(·) which represents the response to stimulation along the axial dimensions of
the microscope, and we set τz = 15. We defer the details of the smoothing to Appendix 5.1.

Inspecting the mean functions reveals that the Gaussian Process prior is able to capture
important properties of the data such as the localization of the opsin to the apical dendrite
(Figure 2.3C, first panel). We also note that the radial variance function (Figure 2.3E,
right column) captures the variance in neuron size as well as the variance in apical dendrite
expression indicated by the high variance around the edges of the soma and

Finally, it is important to notice that the shape functions should both take values in [0, 1],
but the range of values of the Gaussian process will clearly expand beyond the bounds.
We emphasize here that the Gaussian process is probably not an ideal data generative
distribution for simulating shape functions, but we merely use it for facilitating the learning
of posteriors during the mapping experiments.

Remark 1. (Potential shift in the nucleus detection and optogenetic stimulation.) In the
experiment, one recurring phenomenon is that the maximum elicited current may not be
achieved when stimulating directly at the detected nucleus. This phenomenon can be the joint
result of the errors in the nucleus detection and in the tuning of optogenetic stimulation even
in the state-of-art experimental conditions. To accommodate the “shift” of the neuron from
the detected and targeted location, we propose to include a new random variable rk ∈ R3 such
that the true location ω∗

k = ωk+rk. The shift variable rk is a neuron-specific parameter, and
we can build the prior distribution for each entry of rk. Given the priors, we can easily add
rk in the proposed framework to learn the posteriors.
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Remark 2. (Relaxing the priors.) We introduce the prior distributions to help the infer-
ence of posterior distributions. However, the prior distribution built from a limited number
of neurons may not present the distributions of the shapes of neurons in a mapping experi-
ments. To allow for more flexibility during the mapping experiment, we can relax the prior
distributions for sxy(·) and sz(·) by simply adding constants to the variance functions σ2

xy(·)
and σ2

z(·) of the Gaussian processes. From Gaussianity, the addition of a constant to the
variance is effectively adding a noise term to the prior distribution. The larger the constant
is, the more flexibility we allow from the priors.

2.6 Validation

2.6.1 Simulation

Characterizing the resolution of inference

To better understand the resolution of our model and inference method, we simulate exper-
iments with only two opsin expressing neurons where the two evaluating are separated by
some amount along one of the three spatial axes. By evaluating the performance of inference
as a function of this distance, we can characterize the resolution of our method.

Specifically, we generate two neurons that live at w1 = (0, 0, 0) and w2 = (x, y, z),
respectively. The coordinates of the second neuron will be specified later. All parameters of
the two neurons, except for the probability of release, are randomly generated from the prior
distributions built from pilot studies. The probability of release for Neuron 1 at the origin
is set to be from a uniform distribution, where γ1 ∼ Uniform(0.6, 1). For Neuron 2, we draw
the probability of release from a spiked uniform distribution where prob(γ2 > 0) = 0.5 and
γ2 ∼ Uniform(0.6, 1) given γ2 is non-zero. We consider three scenarios for w2, the location
of Neuron 2, where each one of the three coordinates is non-zero in each scenario.

In this simple two-neuron system, we consider an experimental design where stimulation is
targeted directly at the nucleus of each neuron. Specifically, in each trial, the selected nucleus
is stimulated at a power level from {30, 40, 50, 60} mW. Each power level is repeated in 3
trials, which results in 12 trials at each nucleus in total. We compare our proposed inference
with a naive benchmark approach. The benchmark approach calculates the probability of
release as the proportion of trials with postsynaptic events when targeted at this neuron. We
evaluate the performance of each method using the misclassification rates of postsynaptic
events.
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Figure 2.4: (A) The misclassification rate as a function of the distance between two presynap-
tic neurons for our proposed method and a naive benchmark approach for a set of simulated
experiments. (B) Predicted spike times against true spike times. Each dot represents a
particular cell at a particular power. (C) Simultaneous loose-patch recording of an opsin
expressing cell with a voltage-clamp recording of non-expressing cell. (D) Simultaneously
recorded raw traces from each cell during different stimulation intensities. (E) The spike
times, red, and PCS times, blue. Dots are the data and the solid/dashed lines represent the
mean/standard deviation of the posterior distribution.

Results of the simulation are shown in Figure2.4A. The Gaussian process inference achieve
smaller misclassification rates than the benchmark procedure. Misclassification rates for
both approaches decrease sharply along the x- and y- axes as expected, since response data
indicated that our optogenetic stimulation has relatively high spatial resolution in the radial
plane.

2.6.2 Ground Truth Data

We next compare inference in our model with ground truth data. First we test the first part
of model which predicts spike times from TPHO stimulation given a static location. In this
experiment we fit the gain of each cell given the spike times for some stimulus conditions and
then tested the fit by comparing the expected spike times with data for held-out conditions.
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We see that our model does an excellent job of predicting spike times up until around 7
milliseconds or so after stimulation which is sufficient for time windows we consider.

A B C

D

Figure 2.5: (A) Simultaneously recorded opsin-expressing cell in loose patch (blue circle)
and a non-expressing cell in voltage-clamp (green circle). (B) Higher resolution image of the
local area around the loose-patched cell (cell 1). (C) Scatter plot of the local opsin expressing
cells (red, blue for loose-patched cell) and all stimulation locations (block). (D) The opsin
expressing cells as in C but here each volume corresponds to a stimulation power, and the
black dots show targets where PSCs were detected on multiple trials for that power.
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Next we demonstrate that we are able to transform evoked spike time distributions into
PCS time distributions. In this experiment we observe the PSC times in a post synaptic cell
and then infer the latent spike time distributions. By loose-patching the presynaptic cell as
well, we are able to observe the true spike times. We see that inferred spike time distribution
matches the ground truth data quite well (Figure 2.4E).

Finally, we test our full inference procedure. As in the last experiment, we loose-patch
a potential presynaptic cell along with the postsynaptic cell in voltage-clamp (Figure 2.5A).
However in this case we target at and around a cluster of 13 neurons near the potential
presynaptic cell (Figure 2.5B,C). As expected, we see the number of stimuli that evoked reli-
able PSCs in the postsynaptic cell increases with power, and the structure of those locations
does not make it make obvious which cells are connected (Figure 2.5D).

BA

C

Figure 2.6: (A) Posterior distributions for the probability of transmission, γk, for each of
the 13 neurons. (B) An image of the field before aspiration showing the nucleus of neruon
1, and raw traces of light evoked spikes in neuron one with the simultaneously recorded
postsynaptic traces. (C) As in B but post aspiration. Note that now the nucleus of cell 1,
the evoked spikes, and the PSCs have all been eliminated.

When we run inference on these data, we see that the algorithm predicts that the putative
presynaptic cell is in fact connected (neuron 1 in Figure 2.6A). To verify this prediction we
first stimulate the presynaptic cell with light to directly observe both the evoked spikes
in that cell and reliable PSCs in the postsynaptic cell (Figure 2.6B). We then aspirate the
presynaptic neuron through the loose-patch pipette and confirm that the nucleus is no longer
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visible with fluorescent imaging (Figure 2.6C). We then target that location one last time to
observe that both the spikes and the PSCs have been eliminated. Although we didn’t have
any other stimulated cells patched in this experiment, we did observe that targets on cell 7
(the cell closest to the confirmed presynaptic cell) at the highest power resulted in reliable
responses in the postsynaptic cell. Despite this, inference did not predict that cell 7 was
connected (Figure 2.6A) and we were able to verify that those PSCs in fact correlated with
off-target spikes evoked in the patched presynaptic neuron.

2.7 Discussion

In this chapter, we have presented a statistical method for increasing the native resolution
of two-photon holographic optogenetics when mapping synapses in dense populations of
opsin expressing neurons. Our statistical model and inference method is able to analyze
single trials and individual cells together to determine which opsin expressing neurons are
responsible for evoked postsynaptic events. The key to our method is a thorough analysis
and characterization of the neural response to our TPHO system. However, we note that our
method is highly tuned to the properties of our particular system which are a function of the
holographic microscope, the opsin and its expression system, and the stimulation protocol.
To map a new cell types or use a new microscope or opsin, one would have to collect the
response data and re-learn the priors and potentially even some of the functional forms.
We also note that our validation data is limited to a single example for fitting the synaptic
delay and, more importantly, for inferring synaptic transmission. It would be worthwhile to
validate this method further before applying it at scale.

Another future direction for this work is to incorporate online experimental design to
minimize the number of trials needed to infer synaptic connections [155]. One advantage of
a Bayesian model is that the posterior uncertainty can be quantified and utilized during an
experiment to guide the choice of stimuli. If synaptic connections can be detected quickly,
then it could be possible, especially with faster opsins, to learn more complex models for
each synapse such as the short-term dynamics.

2.8 Method Details

All experiments were performed in accordance with the guidelines and regulations of the
Animal Care and Use Committee of the University of California, Berkeley.

2.8.1 Transgenic mice

The following mouse lines were used for this study: the emx1-IRES-Cre line (JAX stock
005628). Mice were housed in cohorts of five or fewer with a light:dark cycle of 12:12 hours,
and were used for experimentation during their subjective night.
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2.8.2 Viral Infection

Neonatal mice (p0-3) were deeply cryo-anesthetized and placed in a head mold. Viral aliquots
were loaded into a Drummond Nanoject injector and injected into 4 sites in the barrel cortex
of the left hemisphere. At each site, virus was injected at multiple depths in increments of
18.4 nL or 36.8 nL (for multiphoton experiments), for a total of 150-440 nL of virus injected
per mouse. Following injections, mice were moved to an incubation chamber for recovery,
and were returned to the dam once they regained color and began to move. Viruses used
were pAAV-CAG-DIO-ChroME-ST-P2A-H2B-mRuby3.

2.8.3 Brain slice recording

Acute thalamocortical slices were prepared from mice (ages p14-21) as previously described.
Slices were placed in a recording chamber and constantly perfused with oxygenated artifi-
cial cerebro-spinal fluid (NaCl 119 mM, KCl 2.5 mM, MgSO4 1.3 mM, NaH2PO4 1.3 mM,
glucose 20 mM, NaHCO3 26 mM, CaCl2 2.5 mM) maintained at 32° C (21° C for multi-
photon mapping experiments). Slices were oriented with the caudal surface facing up in the
recording chamber. To ensure minimal disruption of vertical connectivity, all slices used for
recording were inspected under infrared illumination at 40x magnification and/or post-hoc
confocal imaging to confirm that pyramidal cell apical dendrites stayed roughly parallel with
the surface of the slice or receded slightly deeper as they progressed apically. Whole cell
recordings were performed using glass micropipettes (2-5MΩ resistance) pulled on a Sut-
ter P-1000 Micropipette Puller. Pipettes were filled with a Cs+ based internal (CsMeSO4
135 mM, NaCl 8 mM, HEPES 10 mM, Na3GTP 0.3 mM, MgATP 4 mM, EGTA 0.3 mM,
QX-314-Cl 5 mM, TEA-Cl 5mM) or a potassium gluconate based internal (K-gluconate 135
mM, NaCl 8 mM, HEPES 10 mM, Na3GTP 0.3 mM, MgATP 4 mM, EGTA 0.3 mM). Data
were analyzed from recordings in which series resistance remained stable and below 30MΩ.
Data were acquired and filtered at 2.2 kHz using a Multiclamp 700B Amplifier (Axon In-
struments) and digitized at 20 kHz (National Instruments). All data were acquired using
custom written MATLAB (Mathworks) software.

Space clamp error will inevitably affect somatic measurements of currents from distally lo-
cated SST-¿PC synapses; however, we recorded IPSCs using a cesium-based internal solution
(which included the ion channel blockers tetraethylammonium and QX-314) and performed
experiments at room temperature, which ameliorate this to some extent 115. We also used
a holding potential of +40 mV to increase the IPSC driving force. In these experiments,
internal solutions also contained 5 M Alexa 488 hydrazide (ThermoFisher Scientific) to aid
visualization with multiphoton imaging, and 5 mM kynurenic acid Sodium salt (abcam)
was added to the external ACSF to block glutamatergic activity.

2.8.4 Two-photon Holographic Excitation

Laser light was generated using a 5W 1040 nm femtoTrain laser (Sepctra-Physics) and power
was modulated on short time scales using a Pockels cell (Conoptics) and a high speed shutter
(UniBlitz). Light was delivered to the sample using a VIVO 2- Photon workstation (3i) based
on a Sutter Moveable Objective Microscope (Sutter) and the hologram was created using a
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Phasor 2-Photon computer-generated holography system (3i) with Slidebook software (3i).
The holograms used for stimulation were 2D discs of diameter 15 um centered at arbirary
points at 1 um resolution within a 300 um x 300 um grid in the focal plane (Fig. 3.4b,c).
Stimulation consisted of e ms square pulses to the Pockels cell with voltages calibrated
to produce a range of average power on sample. Power for each hologram was calibrated
empirically to account for power loss due to diffraction efficiency degradation away from the
zero-order of the SLM.

2.8.5 Automated workflow

See Figure 2.1E for reference.
The Master CPU initializes the experiment, and then a patch is acquired - either voltage-

clamp or loose patch depending on the experiment. Once the stimulation field is selected by
moving the objective, a single click begins the experiment, orchestrated by the Master CPU.

First, the SlideBook CPU takes a 200 um stack at 1 um spacing was taken with 1000 nm
light of the nuclear mRuby3 signal. The 3D volume is then sent to the analysis computer
for cell detection [168]. While this happens, the Master CPU runs an electrophysiological
protocol on the patched cell if it is in voltage-clamp. Once the cell locations are detected,
the user can pause to look at and adjust the results as well as identify the patched cell in
the image.

After locations are confirmed, the the experimental protocol (e.g. measure spike times,
measure shape, map connections) generates one batch of locations and powers for stimulation
and send them to the analysis computer to compute phase masks. When the first batch is
done, they phase masks are loaded onto the SlideBook CPU as well as information about
trial timing and hardware coordination. The first batch begins, and immediately the design
of the second batch is sent to the analysis computer to prepare. This cycle allows for almost
no down time in acquisition until the end of the experiment.

2.8.6 Experimental Protocols

Spiking, Spike Times, Current, and Shape

In these experiments, spikes from a cell in loose-patch are recorded as a function of stimulus
intensity. The location for all of these experiments is the location returned from cell detection
for the patched cell. The powers used varied from 5 mW to 70 mW and was chosen based
on the expression level of the patched cell. For some experiments, an adaptive procedure
was used to focus trials around the rheobase of the cell and also cover desired ranges.

For current measurements, everything is the same but the cell is in voltage-clamp. For
many cells we recorded in both modes. In these cases we first obtained a gigaseal in attached
mode, recorded spikes, broke in, and then recorded currents in voltage-clamp.

In the shape learning experiments, the experiment was similar to the previous current
measurements but in this case the power was held constant to 25 mW and the location of
stimulation was either rastered at 5 um spacing on a 70 x 70 um grid in the radial plane, or
at non-uniform spacing along the axial axis of the microscope.
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2.8.7 Synaptic Mapping

In these experiments, we have two patched cells: one in loose-patch and one in voltage-clamp.
We center the excitation field on the loose-patch cell. Locations are chosen based on the
detected cells’ locations as well as randomly chosen locations near, but not directly on these
cells.
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Chapter 3

Mapping Complementary Networks of
Cortical Somatostatin Interneurons

This chapter contains a work from a mapping collaboration which itself was part of a larger
project. It is presented here as an excerpt from the larger work. References to supplementary
figures (e.g. S1 or S4) can be found with the full publication:

Naka, A., Veit, J., Shababo, B., Chance, R., Risso, D., Stafford, D., Snyder, B., Eglady-
ous, A., Chu, D., Sridharan, S., Mossing, D., Paninski, L., Ngai, J., and Adesnik, H. (2019).
Complementary subnetworks of cortical somatostatin internurons enforce layer specific con-
trol. Elife, e43696.

3.1 Mapping a cortical circuit with multiple

modalities

Excitatory and inhibitory synaptic connectivity are fundamental to computation in neu-
ral circuits. In sensory regions, such as the primary somatosensory cortex (S1), excitatory
circuitry follows a modular architecture centered on the 6-layered structure of neocortex.
Excitatory principal cells (PCs) in each layer differentially encode and process sensory in-
formation, and their inter-connectivity helps define the basic input/output logic of the S1
microcircuit [43, 54]. ‘Bottom-up’ sensory inputs enter S1 via thalamocortical projections
that most densely innervate L4, and cortical output emerges primarily from PCs in L2/3 and
L5, feeding forward to other brain regions. In between, sensory-driven activity propagates
through the different layers via highly specific translaminar pathways. Together, these exci-
tatory pathways comprise a stereotyped microcircuit, which is thought underlie hierarchical
transformation and processing of sensory information [12, 104].

In contrast, no comparable framework exists for inhibitory circuit organization. While
it is well established that the connectivity of many inhibitory circuits is selective with re-
spect to cell-type (especially interneuron-to-interneuron connectivity; [76, 136]), and that
many interneurons target specific subcellular compartments of other neurons [101, 169], it
remains unclear how inhibitory circuits integrate into the layer-based logic of the excitatory
microcircuit. One possibility is that interneurons non-selectively interconnect with PCs [21,
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151, 59, 46, 122], irrespective of layers; this would suggest that cortical inhibition primarily
performs ‘global’ operations on excitatory neurons, such as non-specific normalization [141,
142, 30]. Alternatively, interneurons might form synaptic connections with specific layers
within the microcircuit, which would suggest that different functional components of corti-
cal circuits can be independently modulated by specific inhibitory pathways, enabling more
sophisticated computations.

To resolve this, it is necessary to assess connectivity in inhibitory circuits with respect to
both layer and cell-type, since different classes of interneurons likely obey different principles
for translaminar wiring. For example, many interneurons, including parvalbumin (PV) cells,
the most numerous class of cortical interneuron, are largely local, intralaminar inhibitors
([24, 82, 91, 122]; but see [22, 25]). However, some types of interneurons - most notably,
dendrite-targeting somatostatin (SST) interneurons- appear specialized to mediate translam-
inar inhibition [74, 103, 66, 57, 173, 179, 68]. SST cells are critical players in many aspects of
neural computation, perception, and cognition [3, 85, 77, 98, 87, 170]. Since they integrate
excitatory inputs from both intralaminar and translaminar sources and since many SST cells,
project extensive translaminar axons they are likely key players in translaminar inhibitory
circuitry [9, 181, 161, 70, 121, 185, 72]. How do SST inhibitory networks integrate into
the different layers of the cortical microcircuit? The intralaminar outputs of SST cells onto
nearby PCs are thought to be extremely dense [46, 66], which has led to the hypothesis that
SST cells might generate a ‘blanket of inhibition’ that overlays nearby excitatory circuits
[71, 45]. One possibility is that the translaminar connectivity of SST cells is similarly non-
selective. However, more sophisticated principles might govern the organization of laminar
SST circuits. SST cells are highly heterogeneous [170, 184] and can be subdivided into elec-
trophysiologically and genetically distinct subtypes [165]. Emerging evidence indicates that
SST subtypes exhibit distinct sensory tuning and coupling to behavior [85, 77, 113, 96, 144,
115], indicating that different SST subtypes might serve different computational functions.
Intriguingly, SST subtypes target their axons to different laminar domains [113, 97, 112].
While most SST cells are Martinotti cells (MCs) with axons that ascend to L1, there is also a
substantial population of non-Martinotti cells with axons that primarily target L4 instead of
L1. It has been hypothesized that these two distinct SST subtypes could uniquely influence
cortical processing by targeting specific components of the cortical microcircuit. However, we
lack basic knowledge of the circuit organization of different SST subtypes, which precludes
mechanistic understanding of their computational contributions to cortical function. What
are the patterns of synaptic input to different types of SST cells, and how might these give
rise to differential activation of SST subtypes during sensation and behavior? Do all SST
cells generate non-selective inhibitory outputs, or can SST cells provide targeted inhibition
to specific components of the cortical microcircuit, such as certain cortical layers?

To address these issues, we used a combination of high-resolution one and two photon op-
togenetic mapping, paired intracellular recordings, and anatomical reconstructions to probe
the logic of SST inhibitory circuits across the six cortical layers. We focused our investigation
on L5, since this layer hosts a more diverse population of SST cells than the upper layers,
which includes large fractions of both Martinotti and non-Martinotti cells [101, 148]. We
found that two subtypes of SST cells exhibit exquisitely specific and strikingly complemen-
tary laminar patterns of connectivity. L5 Martinotti cells receive input from L2/3 and L5,
whereas L5 non-Martinotti cells receive input from L4 and L6. In turn, L5 Martinotti cells
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provide reciprocal inhibition to L5 PCs but not L4 PCs, while L5 non-Martinotti cells inhibit
L4 PCs but not L5 PCs. Furthermore, in vivo optogenetic manipulation of Martinotti and
non-Martinotti cells modulated cortical activity in a layer specific manner. These results
demonstrate that subtypes of SST cells are wired into separate layer and cell-type specific
subnetworks which independently shape different aspects of cortical computation.

3.2 Distinct subtypes of L5 SST cells receive

complementary patterns of excitatory synaptic

input

To probe the structure of L5 SST circuits, we first verified approaches to identify and target
different subtypes of SST cells in the barrel cortex. The widely used SST-Cre line allows
labeling of SST cells irrespective of subtype (by crossing to the LSL-tdTomato mouse line;
hereafter referred to as ‘SST-TdT’). Additionally, there exist transgenic GFP reporter lines
which have been characterized as labeling smaller subsets of the SST population. We chose
two of these lines, the ‘X94’ line and the ‘GIN’ line in order to respectively target non-
Martinotti and Martinotti cells for whole cell recording in acute barrel cortex slices [97,
118, 164]. GFP+ neurons were clearly visible within L5 in slices from both X94 and GIN
animals, consistent with reports that L5 contains both Martinotti and non-Martinotti SST
cells. Biocytin fills confirmed that the vast majority of L5 GIN cells were MCs (41/44; 93%)
which exhibited an ascending translaminar axon that ramified in L1, L2/3, and L5a (Fig.
3.1a) and intrinsic properties classically associated with MCs (Fig. S1; [41, 75, 79, 173]).
Similarly, the vast majority of L5 X94 cells were non-Martinotti cells (32/35; 91%) which
formed a dense axonal plexus in L4 rather than L1 (Fig. 3.1a, Fig. S2) and exhibited quasi-
fast-spiking electrophysiological phenotypes (Fig. 3.1b, Fig. S1). While the X94 line labels
only 15% of SST cells in L5 51, additional recordings from L5 SST-TdT cells suggested
that a larger fraction ( 30 - 40%; Fig. S1c-g) of L5 SST cells are non-Martinotti, X94-like
cells (hereafter termed ‘XCs’) with most of the remainder being MCs. Thus L5 contains at
least two intermingled but qualitatively distinct SST cell subtypes, MCs and XCs, which
can reliably be identified using the GIN and X94 lines, respectively [97].

Aligning reconstructions of L5 MCs and XCs revealed that these two populations had
strikingly complementary vertical profiles of neurite density: MCs primarily innervated layers
1, 2/3 and 5, and XCs primarily innervated L4 and the L5/L6 border (Fig. 3.1c). This
complementary pattern bears a strong similarity to the axonal projection profile of the
two major thalamic input pathways to the barrel cortex: the profile of XCs aligns with
the lemniscal pathway projection from the ventro-posterior medial nucleus (VPM), whereas
the profile of MCs aligns with the paralemniscal pathway projection from the posterior
medial nucleus (POm). These pathways, which carry different aspects of whisker related
information, continue intracortically via specific, translaminar pathways; thus this distinction
represents an important organizing principle in the excitatory connectivity and function of
barrel cortex circuits.

We next asked whether MCs and XCs might differentially wire in to the laminar networks
defined by these pathways. To do this, we first sought to determine whether the excitatory



35

inputs to MCs and XCs might arise from different laminar sources. We virally expressed
channelrhodopsin-2 (ChR2) in all excitatory neurons and photo-stimulated PCs in different
regions of the slice to map the excitatory inputs to L5 MCs and XCs (Fig. 3.1d,e,f, AAV-
flexed-ChR2 in the emx1-Cre line; see methods and Fig. S4). Remarkably, we found that
L5MCs and XCs receive inputs from highly specific but largely non-overlapping sources
that aligned with the anatomical distributions of their neurites. L5 MCs, but not L5 XCs,
frequently received excitatory inputs from either upper L5, L2/3, or from both L2/3 and
L5, but received little input from L4 or L6. On average, MCs received stronger inputs
from L2/3 than L5 (49 ± 9% of total input from L2/3 versus 26 ± 7% from L5 in n =
15 MCs; p = 0.008, paired t-test). These results are consistent with previous studies [66,
70, 5, 138]. In contrast, L5 XCs received strong input from L4 and/or the L5B/L6 border
(Fig. 3.1e,f; input from L4 and L6 was 62 ± 7% of total input for n = 14 XCs versus 25 ±
3% for n = 15 MCs; p = 6.5 · 10-10 ; two sample T-test; see also Fig. S3) but relatively
little input from L2/3 and L5. This input architecture indicates that these two subtypes
of L5 SST cells receive almost completely distinct patterns of excitatory innervation from
their local circuit. Comparing the average laminar profiles of mapped excitatory input and
anatomical reconstructions revealed a striking symmetry in the overall structure of XC and
MC intracortical circuits: XCs received input from L4 and 6, and projected most densely to
these two layers; MCs received input from L2/3 and 5, and projected preferentially to these
same two layers (Fig. 3.1c,f).

The striking laminar differences in inputs to L5 XCs and MCs suggested that these two
types of SOM cells should be differentially recruited by activity of different cortical layers. For
instance, driving L4 should specifically recruit XCs, but not MCs. To test this possibility, we
specifically photo-stimulated L4 excitatory neurons via Cre-dependent expression of ChR2 in
scnn1-Cre mice (crossed to GIN or X94; Fig. 3.2a). L4-specific photostimulation (with two
different stimulus protocols, across four different intensities; see methods) drove large EPSCs
in XCs but evoked little to no input in MCs under identical conditions (Fig. 3.2b,c; Fig.
S5). Current clamp recordings under the same conditions showed that L4 photo-stimulation
reliably drove spiking in L5 XCs, but not in L5 MCs (Fig. 3.2b,d; Fig. S5), despite the fact
that MCs are intrinsically more excitable than XCs (Fig. S1). The lack of evoked responses
in MCs was not due to differences in the degree of L4 activation (see supplemental text and
Fig. S5 for controls). Thus, these results indicate a stark difference between L5 XCs and
MCs: L4 densely innervates and powerfully drives firing in L5 XCs, but not L5 MCs.

3.3 Common input mapping reveals subnetwork

structure in L5 SST cell output

Having found that XCs and MCs in L5 receive highly complementary patterns of excitatory
synaptic input, we next asked whether XCs and MCs also exhibit layer-specificity in their
inhibitory outputs. Since SST cells have been implicated in generating feedback inhibition [3,
161, 70], we hypothesized that MCs and XCs might target their inhibitory outputs in order
to reciprocally inhibit the same PC populations that excite them. For example, XCs but not
MCs would inhibit L4 PCs, whereas MCs but not XCs inhibit L5 PCs. Alternatively, MCs,
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Figure 3.1: Optogenetic circuit mapping reveals complementary synaptic input patterns to two subtypes of
L5 SOM cells. (A) Confocal images of dye filled neurons revealing two morphological phenotypes of L5 SST
cells. Left: an L5 GIN cell. Right: an L5 X94 cell. Scale bar: 200 µm. (B) Example traces during current
step injections from an L5 GIN cell (black) and an L5 X94 cell (red). (C) Left: Overlaid morphological
reconstructions of L5 GIN/MC cells (black, n=14) and L5 X94/XC cells (red, n=10) showing differences in
laminar distribution of neurites. Right: Normalized neurite density versus cortical depth for L5 GIN (black)
and L5 X94 cells (red). Data are represented as mean ± C.I.(D) Schematic of experimental configuration.
A digital micromirror device was used to focally photo-stimulate excitatory cells in different regions of the
slice in order to map the spatial profile of excitatory inputs to GFP+ L5 MCs (Emx1-Cre; GIN) or GFP+
L5 XCs (Emx1-Cre; X94).(E) Example heat maps of median EPSC charge transfer evoked at each stimulus
site for example L5 SST cells. Left: An L5 MC that received inputs from L5 and L2/3. Right: An L5
XC that received inputs from L4 and the L5/6 border. Soma locations are indicated by red/black bordered
white dot). Scale bar: 200 µm.(F) Left: Grand averages of input maps reveal cell-type specific patterns of
laminar input. Soma locations are indicated as above. Right: Normalized charge transfer versus distance
from L4-L5 border for MC (black) and XC (red) populations. Scale bar: 200 µm. Inset: Swarm plots
showing the proportion of total evoked charge transfer in each map that originated from sites in L4+L6, i.e.
[L4+L6] / [L2/3+L4+L5+L6] for the MC (black; median, 27%; range, 13-36%) and XC (red; median, 62%;
range, 38-84%) populations. Proportions were significantly different between L5 MCs and L5 XCs (25 ± 3%
in n = 15 MCs versus 62 ± 7% in n = 14 XCs, mean ± C.I.; p = 6.5 · 10-10 ; two-sample t-test). See also
Figures S1-4.

XCs, or both cell types could globally target PCs within and across layers non-selectively.
These hypotheses are difficult to test using conventional optogenetic approaches since, to our
knowledge, Cre-driver lines do not exist for all SST subtypes. An alternative approach is to
use high precision photo-stimulation to ask whether the outputs of individual SST cells (in
the non-specific SST-Cre line) diverge onto PCs in multiple layers. If individual SST cells
target either L4 or L5 PCs, but not both, then we should never observe common input to
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Figure 3.2: L4 photo-stimulation excites L5 XCs but not L5 MCs (A) Top: Schematic of the experimental
configuration. L5 X94 or GIN cells were recorded during photo-stimulation of L4 excitatory neurons. Bottom:
Confocal image of a filled L5 X94 neuron (green) with ChR2-TdTomato expression (red) visible in L4. Scale
bar: 150 µm. (B) Top row: Example traces recorded in the current clamp (upper traces) or voltage clamp
(lower traces) configurations during a 1-second ramp photo-stimulation. Bottom row: As above, but for
photo-stimulation with a 40 Hz train of ten 1ms pulses. (C) Quantification of excitatory charge transfer
during maximum intensity 1-second ramp stimulation trials. Mean 122 ± 41 pC in n = 20 XCs versus 15
± 8 pC in n = 15 MCs; p = 3.9 · 10-6, Wilcoxon rank sum test.(D) Quantification of the mean number of
evoked action potentials during maximum intensity 1-second ramp stimulation trials. Mean 8.1 ± 5.5 spikes
per trial in n = 15 XCs versus 0.03 ± 0.05 spikes per trial in n = 15 MCs; p = 6.6 · 10-4, Wilcoxon rank
sum test. (E) As in C, for maximum intensity 40Hz pulse train stimulation. Mean 200 ± 56 pA in n = 20
XCs versus 18 ± 12 pA in n = 15 MCs; p = 2.8 · 10-6, Wilcoxon rank sum test. (F) As in D, for maximum
intensity 40Hz pulse train stimulation. Mean 8.7 ± 2.4 spikes per trial in n = 15 XCs versus 0.5 ± 0.9 spikes
per trial in n = 15 MCs; p = 1.5 · 10-6, Wilcoxon rank sum test. Error bars denote mean ± 95% confidence
interval. Three asterisks denotes p¡0.001. See also Figure S5.

pairs of L4 and L5 PCs when photo-stimulating single SST neurons. This can be tested by
mapping SST inhibitory connections onto multiple PCs simultaneously and analyzing the
spatiotemporal coincidence of evoked IPSCs onto different pairs of PCs, thereby measuring
the amount of common input shared between pairs of PCs in different layers [185, 111].
Although this approach does not discriminate between MCs and XCs directly, it performs a
more stringent test by extending our hypothesis to apply to the structure of the outputs of
the L5 SST population as a whole.

In order to conduct comprehensive mapping of individual SST outputs, we developed a
novel approach to map neural circuits at high spatiotemporal resolution using two photon
optogenetics and a statistical pipeline for detecting synaptic connections [108] (see Chapter
4) and evoked inhibitory postsynaptic current (IPSC) synchrony. In addition, we employed
a soma-targeted opsin [178], which has the advantage of providing far superior spatial reso-
lution during photo-stimulation than non-targeted opsins (Fig. 3.3a,b,c; [13]). We expressed
a soma-targeted variant of the red-shifted opsin, ChrimsonR, in SST cells using the SST-
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Cre line, and photo-stimulated SST cells using 2-photon excitation with computer generated
holography (Fig. 3.3a,b; Fig. 3.4a). Since SST → PC synapses are often located on the
distal dendrites of PCs, we recorded IPSCs using a cesium-based internal solution and took
additional steps to minimize false negatives (see Methods). Using this method, we simulta-
neously mapped SST inputs to pairs of L4-L5 PCs and L5-L5 PCs (Fig. 3.3d,e,f). We found
that L5 PCs received SST inputs at more locations than L4 PCs on average (45.3 ± 5.5
inputs out of 441 locations tested per map in n = 30 L5 PC maps versus 12.8 ± 2.3 inputs
in n = 10 L4 PC maps, Fig. 3.5e), but that both cell types received inputs from locations
throughout L5 (Fig. 3.5f).

If individual L5 SOM cells target either L4 PCs or L5 PCs but not both, we would
expect maps from L4-L5 PC pairs to contain spatially intermixed but non-overlapping input
locations. Conversely, when recording a pair of L5 PCs, we would expect a much higher rate
of overlap due to common input from MCs. Consistent with this hypothesis, we observe that
the probability of detecting an input at the same location in L4-L5 pairs was very low and
substantially smaller than for L5-L5 pairs (2.4 ± 1.3% spatially coincident inputs out of all
input locations in n = 10 L4-L5 pairs, versus 28 ± 6.7% in n = 10 L5-L5 pairs; p = 1.2 ·
10-3, Wilcoxon rank sum test). Given that occasionally more than one SST cell might be
photostimulated at any given location (Fig. 3.4d,g), we employed a statistical test for fine
time scale synchrony of IPSCs between the patched cells at each candidate location (where
both cells received input) to determine whether the IPSCs truly arose from a single SST cell
diverging onto both recorded PCs ([4], see Methods, Fig. 3.3g, Fig. 3.5g,h,i,j). Using this
far more stringent spatiotemporal test for the detection of common input, we detected no
locations in which stimulation evoked common inputs for L4-L5 pairs, whereas we detected
at least one common input in 7 of 10 L5-L5 pairs (Fig 3.3h; no locations in n = 10 L4-L5
pairs versus 13.7 +/- 5.1% of all input locations in n = 10 L5-L5 pairs; p = 1.1 · 10-3,
Wilcoxon rank sum test; see also Fig. 3.5k). These data argue that individual L5 SST cells
connect to either L4 PCs or to L5 PCs, but never to both. In other words, L4 PCs and L5
PCs are inhibited by non-overlapping subnetworks of L5 SOM cells.
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Figure 3.3: 2 photon optogenetic circuit mapping reveals that L4 and L5 PCs are inhibited by separate
populations of L5 SST cells. (A) Schematic of the experimental configuration. IPSCs are recorded from a
pair of PCs (either an L4/L5 pair or an L5/L5 pair) while SST cells expressing soma-targeted ChrimsonR-
mRuby2 are focally activated using 2P photo-stimulation and computer generated holography.(B) Left: post-
hoc confocal image showing SST cells expressing soma-targeted-ChrimsonR-mRuby2 (red) and biocytin fills
of recorded PCs in L4 and L5 (white) at 10x magnification. Right: Confocal image at 20x magnification
showing the grid of photo-stimulated target locations. Both images are max z-projections over 100 um.
Continued on next page.
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Figure 3.3: Continued from previous page. (C) Spatial photo-excitation profile of a soma-targeted-
ChrimsonR-mRuby2 expressing SST cell. Whole cell current-clamp recordings from this cell showing multiple
trials of photo-stimulation at a 4 x 4 subsection of the photo-stimulation grid with 20 um spacing between
stimulation locations. The SST cell is recruited to spike only at a small number of stimulation sites, but
does so reliably and with low jitter across trials at these sites. (D) Example traces showing IPSCs recorded
from an L4 PC during SST photo-stimulation at a single site (corresponding to black boxed square in E)
over multiple trials. Dots above each trace indicate the onset time of detected IPSCs (p = .0003, Poisson
detection). (E) Example overlay of maps showing the mean number of IPSCs at detected input locations
during photo-stimulation for a simultaneously recorded L4 PC-L5 PC pair. Bubble size indicates the mean
number of IPSCs evoked (deviation from background rate) per trial.(F) As in E, but for an L5 PC-L5 PC
pair.(G) Example traces illustrating method for detection of common SST-mediated inputs to pairs of si-
multaneously recorded PCs. Left: IPSC traces at a single site recorded simultaneously in two PCs (each
PC is indicated by black or grey traces) and corresponding detected IPSCs. IPSCs with synchronous onset
occur in many trials, despite the trial-to-trial jitter in IPSC onset, suggesting that a SST cell which diverges
onto both recorded PCs is being stimulated at this site (p = .0005, synchrony jitter test). Right: IPSC
traces from a different site. Evoked IPSCs are observed in both cells, but the lack of synchronicity suggests
they arise from separate, neighboring SST cells (p = .4). Dots above each trace indicate the estimated onset
time of detected IPSCs.(H) Probability of detecting common SST input per photo-stimulated site for pairs
consisting of L4 PCs and L5 PCs versus pairs consisting of two L5 PCs. No common input locations were
detected in n = 10 L4-L5 pairs versus 13.7 +/- 5.1% of all input locations locations stimulated in n = 10
L5-L5 pairs; p = 1.1e-3, Wilcoxon rank sum test Data are summarized by mean +/- S.E.M. (I) Schematic
of main result for SST outputting mapping. Individual L5 SST cells form inhibitory connections onto L4
PCs and or L5 PCs but not both.
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Figure 3.4: (A) Schematic of the CGH-based stimulation microscope. (B) Imaging stimulation holograms
with two-photon induced fluorescence in a thin fluorescent slide. Left: Time projection of a stimulation
sequence covering a 15 x 15 grid of targets at 20 um spacing before power calibration. Middle: As in Left
but with power calibration. Left: XZ slice of a single target. Note that excitation is confined to a small
volume and that power calibration results in more uniform excitation radially. The decrease in fluorescence
in the middle of the two stimulation grids is due to the zero-order block. Continued on next page.
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Figure 3.4: Continued from previous page. (C) Example plots of the lateral resolution of photo-stimulation.
Left column: Raw cell-attached data of light-evoked spiking for example SST cells. Right column: average
number of spikes evoked per trial at each location. Locations are 20 µm apart as in mapping experiments. (D)
Radial spike count statistics. Top: Average map of the number of evoked spikes per trial in st-ChrimsonR+
cells (n= 11). Maps are centered on the somata of recorded cells. Middle: As in top, but for probability
of evoking at least 1 spike per trial. Bottom: Histogram of number of locations per cell which evoked
a spike at least 75% of the trials. (E) Radial spike timing statistics. Top: Average first spike latency
for st-ChrimsonR+ cells (n = 11). Yellow indicates that the average was ¿ 60 ms or that too few spikes
were observed across cells at those locations to obtain a good estimate. Bottom: Average first spike jitter,
computed as the full-width half-maximum of the first spike times. Yellow indicates a jitter of greater than 80
msec or that too few spikes were observed across cells at those locations. (F) Data from an example cell as
the hologram is moved axially. Distance between locations is 10 µm. (G) Axial spike count statistics. Left:
Average number of evoked spikes as a function of axial distance for st-ChrimsonR+ cells (n=4). Right: As
in left, but for the probability of at least one spike per trial. (H) Axial spike timing statistics. Left: Average
first spike latency as a function of axial distance (n=4 cells). Right: First spike jitter as a function of axial
distance for st-ChrimsonR+ cells (n = 3).
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Figure 3.5: Data processing and additional results for multiphoton SST output mapping. Continued on next
page.
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Figure 3.5: Continued from previous page. (A) Example of raw data a single map onto a L5 PC. Dashed
box shows location for which data is shown in B. (B) Example of Bayesian PSC detection on all 6 trials
from a single location from the map in A. (C) A map showing the evoked IPSC rates at each location for
the map from A. Dashed box shows location of data from B. (D) As in C except only locations which pass
FDR detection are shown. (E) Histograms showing the number of locations with evoked IPSCs for both L4
and L5 PCs. (F) Overall spatial input distributions for SST cells in L5 to both L4 PCs (left, n = 10) and
L5 PCs (right, n = 28). Maps are aligned vertically to the L4-L5 border and horizontally to the PC soma.
For this representation all inputs are plotted with the same size circle. (G). PSTH of IPSC times aggregated
from all locations with detected evoked IPSC rates. A 10 ms duration which matches the jitter duration
for temporal synchrony is marked for comparison. (H) As in B except showing data and IPSC detection for
two simultaneously recorded L5 PCs. The synchrony score for this location is 1.5 events/trial. Dashed box
shows data used for I. (I) Example of 20 resamplings of the events during the analysis window for the first
trial shown in H. Vertical dashed lines show discrete event jittering windows. Horizontal lines on each event
span 2ms such that if the lines from two events overlap then they would be counted as synchronous. (J)
Null distribution of synchrony score from event time series resampling of the data in H. The observed value
is from the far right extreme of the distribution. (K) Histograms of p-values for all spatially overlapping
locations for all pairs from jitter synchrony tests
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3.4 Paired recordings confirm dense, reciprocal, and

selective intra- and translaminar connectivity

We hypothesized that the L4-targeting and L5-targeting populations of L5 SST cells iden-
tified with two-photon optogenetic mapping corresponded to XCs and MCs. This would
mean that SST cells in L5 are organized into at least two discrete subnetworks, each with its
own unique input and output connectivity. If this were the case, one would expect L5 XCs
to be reciprocally connected with L4 PCs, but not L5 PCs; conversely, L5 MCs should be
reciprocally connected with L5 PCs but not L4 PCs. To address this, we conducted paired
intracellular recordings to assess the fine-scale patterns of synaptic connectivity between
L4/L5 PCs and L5 MCs/XCs. This strategy is low throughput, but provides unambiguous
measurements of synaptic connectivity between identified cell types; furthermore, it com-
plements the above experiments because it is unaffected by issues that potentially limit
optogenetic approaches (for example, differences in intrinsic excitability between cell types
or variability in opsin expression). In addition to targeting L5 MCs and XCs with the GIN
and X94 lines as above, we also used the SST-TdT line to identify L5 SST cells, which we
classified as putative MCs or XCs based on their electrophysiological properties (Fig. S1g;
Table S1).

First, we address translaminar connections. Paired recordings between L5 XCs and L4
PCs revealed monosynaptic L5 XC→ L4 PC connections, which we observed as short-latency
IPSP/IPSCs in the L4 PC membrane potential following induced action potentials in the L5
XC. We observed frequent L5XC→L4PC connections (36/67 pairs tested; 54%; Fig. 3.6a,b),
even across relatively long inter-somatic distances (183 ± 67 µm, mean ± S.D.; Fig. S6),
suggesting that L5 XCs connect densely onto L4. We also frequently observed monosy-
naptic excitatory connections from L4 PCs onto L5 XCs, consistent with the optogenetic
experiments above (39/72 pairs tested; 54%). These synapses exhibited profound facilita-
tion during sustained high-frequency firing in the presynaptic cell (Fig. 3.6a; Fig. S8), the
hallmark of excitatory connections onto SST cells [70, 17, 20]. In cases where we tested con-
nectivity bidirectionally, we frequently observed reciprocal connections (23/56 pairs tested;
41%). Thus, L5 XCs and L4 PCs form a translaminar feedback inhibitory motif. We also ob-
served frequent connections from L5 XCs onto L4 fast-spiking (FS) cells (12/23 pairs tested;
52%; Fig. S7), consistent with a known circuit in which L4 non-Martinotti SOM cells inhibit
L4 FS cells [97, 180].

In contrast, we very rarely observed excitatory connections from L4 PCs to L5 MCs (1/95
pairs tested; 1%; Fig. 3.6a,b) or from L5 MCs onto L4 PCs (4/68 pairs tested; 6%), despite
the fact that these pairs were separated by smaller inter-somatic distances than L4PC-L5XC
pairs (143 ± 47 µm, mean ± S.D.; Fig. S6), likely due to the fact that MCs and XCs
preferentially localize in the superficial and deeper portions of L5 respectively 51. In a
subset of these experiments, we recorded from L4 PCs in the voltage clamp configuration at
+10mV (using a cesium-based internal solution), but did not observe connections any more
frequently (0/38 pairs tested; 0%). These data suggest that L5 XCs are integrated into the
densely interconnected network of L4 PCs and interneurons [16, 133], whereas L5 MCs are
essentially isolated from it. Since our 2P mapping experiments indicated that distinct sets of
SST cells inhibit L4 PCs and L5 PCs, we hypothesized that this pattern would be reversed
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within L5, i.e. L5 MCs but not L5 XCs will interconnect with L5 PCs.
We next examined intralaminar connections between L5 PCs and L5 SST cells. We

observed frequent inhibitory connections from L5 MCs onto L5 PCs (24/46 pairs tested;
52%; Fig. 3.6c,d), in agreement with a large body of work indicating that Martinotti cells
diverge profusely onto nearby intralaminar targets [46, 66, 19]. We also observed excitatory
connections from L5 PCs onto L5 MCs, albeit more rarely (4/29 pairs tested; 14%; Fig.
3.6c,d) but at a rate consistent with the literature [91, 66]. In contrast, we detected very
few inhibitory outputs from L5 XCs onto L5 PCs (2/65 pairs tested; 3%; Fig. 3.6c,d) or
excitatory connections from L5 PCs onto L5 XCs (1/60 pairs tested; 2%; Fig. 3.6c,d), despite
the fact that L5 PCs were on average located much closer to L5 XCs than were L4 PCs. The
surprising dearth of intralaminar connectivity between L5 PCs and L5 XCs stands in stark
contrast to the dense intralaminar connectivity observed between L5 PCs and L5 MCs, as
well as in other inhibitory circuits [46, 122, 91], lending further support to the notion that
MC and XC circuits are uniquely and selectively wired (Fig. 3.6e).
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Figure 3.6: MCs and XCs exhibit different patterns of monosynaptic connectivity with L4 and L5 PCs.
(A) Paired recordings of L4 PCs (orange) and L5 XCs/MCs (red/black). ). Left: schematic of the tested
circuit. Middle: example traces of evoked spikes in a L4 PC (orange) and the excitatory synaptic current in
a L5 XC (red). Right: example traces of evoked IPSPs in a L4 PC (orange) in response to a single action
potential in a L5 XC (red). (B) Bar graph summarizing translaminar connection rates between L4 PCs and
L5 MCs (black bars) and L4 PCs and L5 XCs (red bars). p ¡ 10-6 for L4PC→L5MC (n = 95 connections
tested onto 39 MCs) versus L4PC→L5XC connection rate (n = 72 connections tested onto 51 XCs); p =
2·10-6 for L5MC→L4PC (n = 68 connections tested from 35 MCs) versus L5XC→L4PC connection rate (n
= 67 connections tested from 51 XCs); Monte Carlo permutation test. (C) As in A, but intralaminar pairs
between L5 MCs/XCs and L5 PCs (blue). (D) As in B, but for intralaminar connections with L5 PCs. p =
0.020 for L5PC→L5MC (n = 29 connections tested onto 20 MCs) versus L5PC→L5XC connection rate (n
= 60 connections tested onto 35 XCs); p¡10-6 for L5MC→L5PC (n = 46 connections tested from 30 MCs)
versus L5XC→L5PC connection rate (n = 65 connections tested from 37 XCs); Monte Carlo permutation
test.

3.5 Discussion

Understanding of the organization of cortical inhibitory circuits has surged in recent years,
but the integration of these new architectures with the established, layer-centric framework
of the excitatory cortical microcircuit has proved elusive. Our data establish previously
unknown excitatory-to-inhibitory and inhibitory-to-excitatory pathways involving two sub-
networks of L5 SST interneurons, which are both layer and cell-type specific. Optogenetic
circuit mapping shows that L5 MCs receive excitatory inputs chiefly from PCs in L2/3 and
L5, the primary cortical output layers, while L5 XCs receive inputs mainly from PCs in
L4 and upper L6, the primary input zones for afferent input from the ventral posterome-
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dial thalamus [177]. Paired recordings and 2-photon holographic optogenetic interrogation
of common SST-mediated input indicate that in turn, these same SST subtypes selectively
inhibit the same PC populations that excite them, at least within L4 and L5. Thus XCs
and MCs, though spatially intermingled in L5, are functionally segregated into two disjoint
networks with selective and complementary laminar connectivity (Fig. 3.6e).

3.5.1 Dense but selective inhibitory wiring

These results reveal a previously unknown, striking degree of specificity in the inhibitory
cortical wiring diagram. In particular, the observation that L5 XCs exhibit nearly no in-
tralaminar connectivity with L5 PCs, but do engage in dense, reciprocal connectivity with
L4 PCs is inconsistent with the idea of a single, global blanket of SST-mediated inhibition.
Instead, SST-PC circuits appear to more closely resemble a patchwork quilt, comprised of
multiple networks of SST subtypes which independently service separate spatial domains.
SST-PC connectivity can be extremely dense and non-selective within one of these domains
(e.g. creating a blanket within a single laminar microcircuit), but highly selective on the
scale of layers and columns. Though we did not investigate it in this study, it seems likely
that selective connectivity on this scale could be achieved, at least in part, simply by SST
subtypes having preferred laminar targets for axonal arborization [124].

3.5.2 Functional implications of separate, layer-specific SST
feedback circuits

The circuit structure established here suggests that at least two different pools of SST-
mediated inhibition separately modulate successive stages of cortical processing. XCs will
chiefly be recruited as a function of the ‘input’ of the microcircuit, generating inhibition
proportional to the amount of activity in the input layers and thalamus, which in turn varies
widely depending on external sensory drive. Conversely, MCs will be recruited by activity
in L2/3 and L5 PCs, whose projections represent the major feedforward pathways out of
S1 [54]; consequently, MCs will generate feedback inhibition as a function of the ‘output’ of
the microcircuit. This raises the possibility that MC and XC-mediated feedback inhibition
could differentially contribute to various forms of population gain control: XCs could perform
input-scaling on the gain, whereas MCs could regulate output-scaling. These different modes
of gain control have been proposed to perform myriad functions in perception and cognition
[30, 109, 149], and the circuit mechanisms of gain modulation are a topic of intense recent
focus [87, 48, 176, 154, 142, 11, 95, 125]. Independent modulation of different SST circuits,
either by the intracortical excitatory circuits described here, long range inputs from thalamus
or higher cortical areas, or by other sources such as VIP-mediated inhibition [136, 113, 88,
137] or neuromodulation [179, 180, 140] could represent a mechanism by which the brain
dynamically fine-tunes the cortical population input-output function.

Furthermore, these parallel subnetworks of SST inhibition might also fine-tune how the
sensory cortex integrates ‘bottom-up’ and ‘top-down’ inputs, as bottom-up is conveyed via
thalamocortical axons primarily (though not exclusively; [34]) to L4, and thus is most di-
rectly affected by XC-mediated inhibition, while top-down inputs are thought to be conveyed
to the apical dendrites of L5 and L2/3, and thus are primarily modulated by MC-mediated
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inhibition [114, 134]. Therefore, the parallel structure of MC and XC networks could al-
low S1 to independently alter its sensitivity to top-down and bottom-up input streams to
optimize the behavioral responses to sensory stimuli. Supporting this proposal, recent stud-
ies have observed that subtypes of SST cells with either wide or narrow spike waveforms
(which might correspond to MCs and XCs) are differentially activated during various be-
havioral contingencies [85, 77, 113, 144]. Pressing questions for future investigation will be
to determine how excitatory drive from different laminar PC populations contributes to the
unique activity patterns of SST subtypes, and conversely, to determine how distinct SST
subtypes differentially shape the dynamics of the cortical microcircuit. Future experiments
could address these questions by optogenetically manipulating specific SST subtypes using
intersectional genetics [56] or with a Cre-DOG based approach [163]. Nearly all optogenetic
manipulations of SST cells have employed the non-specific SST-Cre line, which could ex-
plain the somewhat heterogeneous results that have emerged, including both inhibition and
disinhibition [87, 180, 176, 154, 35]. More precise manipulations of SST subtypes (e.g., MCs
vs. XCs) could help reveal the functional impacts of distinct SST subnetworks.

The selective inhibitory ‘pathways’ described here also suggest specific predictions about
how different SST subtypes shape the dynamics of cortical activity. For example, within
layers, XCs and MCs will respectively mediate L4→L4 and L5→L5 feedback dendritic inhi-
bition [161]. Across layers, SST cells should contribute to L2/3→L5 feedforward inhibition
[142, 9, 2], but not to L4→L5 translaminar inhibition, implying that the latter operates
solely through parvalbumin-expressing FS interneurons [138]. Furthermore, XCs (but not
MCs) receive strong thalamocortical input [65, 61, 162] and are thought to generate feed-
forward inhibition in response to sustained thalamic activity; our data therefore imply that
SST-mediated thalamocortical feedforward inhibition will impinge upon L4 neurons but not
L5 PCs.

3.6 Methods

All experiments were performed in accordance with the guidelines and regulations of the
Animal Care and Use Committee of the University of California, Berkeley.

3.6.1 Transgenic mice

The following mouse lines were used for this study: the scnn1-tg3-Cre line (JAX stock
009613), the emx1-IRES-Cre line (JAX stock 005628), the PV-IRES-cre line (B6;129P2-
Pvalbtm1(cre)Arbr/J ; JAX stock 008069), the SST-IRES-cre line (JAX stock 013044), the
GIN line (FVB-Tg(GadGFP)45704Swn/J; JAX stock 003718), the X94-GFP line (Tg(Gad1-
EGFP)94Agmo/J; JAX stock 006334), the Ai9 Rosa-LSL-tdTomato line (JAX stock 007909).
Mice were housed in cohorts of five or fewer with a light:dark cycle of 12:12 hours, and were
used for experimentation during their subjective night.
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3.6.2 Viral Infection

Neonatal mice (p0-3) were deeply cryo-anesthetized and placed in a head mold. Viral aliquots
were loaded into a Drummond Nanoject injector and injected into 4 sites in the barrel cortex
of the left hemisphere. At each site, virus was injected at multiple depths (2 depths for
scnn1-tg3-cre and drd3-cre mice, 3 depths for emx1-IRES-Cre and SST-IRES-cre mice) in
increments of 18.4 nL or 36.8 nL (for multiphoton experiments), for a total of 150-440 nL of
virus injected per mouse. Following injections, mice were moved to an incubation chamber for
recovery, and were returned to the dam once they regained color and began to move. Viruses
used were AAV9.CAGGS.Flex.ChR2-tdTomato.WPRE.SV40 (acquired from the University
of Pennsylvania Vector Core; undiluted for scnn1-tg3-cre and drd3-cre mice, diluted 1:1 with
PBS for emx1-IRES-Cre mice), and AAV9-2YF-hSyn-DIO-ChrimsonR-mRuby2-Kv2.1.

3.6.3 Brain slice recording

Acute thalamocortical slices were prepared from mice (ages p14-29, at least 14 days after
viral injection; mice were selected randomly from litters and thus there should be no bias
between sexes used) as previously described ([2]). Slices were placed in a recording chamber
and constantly perfused with oxygenated artificial cerebro-spinal fluid (NaCl 119 mM, KCl
2.5 mM, MgSO4 1.3 mM, NaH2PO4 1.3 mM, glucose 20 mM, NaHCO3 26 mM, CaCl2 2.5
mM) maintained at 32° C (21° C for multiphoton mapping experiments). Slices were oriented
with the caudal surface facing up in the recording chamber. To ensure minimal disruption of
vertical connectivity, all slices used for recording were inspected under infrared illumination
at 40x magnification and/or post-hoc confocal imaging to confirm that pyramidal cell apical
dendrites stayed roughly parallel with the surface of the slice or receded slightly deeper as
they progressed apically. Whole cell recordings were performed using glass micropipettes
(2-5MΩ resistance) pulled on a Sutter P-1000 Micropipette Puller. Pipettes were filled
with a Cs+ based internal (CsMeSO4 135 mM, NaCl 8 mM, HEPES 10 mM, Na3GTP
0.3 mM, MgATP 4 mM, EGTA 0.3 mM, QX-314-Cl 5 mM, TEA-Cl 5mM) or a potassium
gluconate based internal (K-gluconate 135 mM, NaCl 8 mM, HEPES 10 mM, Na3GTP 0.3
mM, MgATP 4 mM, EGTA 0.3 mM). In some experiments, biocytin (0.4-1%) was dissolved
into the internal solution to enable morphological recovery. Voltage recordings were not
corrected for the junction potential. Series resistance was monitored with negative voltage
steps during each trial, and was compensated up to 60%. Data were analyzed from recordings
in which series resistance remained stable and below 30MΩ. Data were acquired and filtered
at 2.2 kHz using a Multiclamp 700B Amplifier (Axon Instruments) and digitized at 20 kHz
(National Instruments). All data were acquired using custom written MATLAB (Mathworks)
software.

3.6.4 Characterization of intrinsic properties

In all recordings using K-based internal solution, an F-I curve was measured at the start
of the experiment using a series of 1-second current injections, at -200 pA, -100 pA, and
then proceeding in 50 pA increments from +50 to +500 pA. In some experiments, addi-
tional current steps were manually designated and performed online to aid in estimation of
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rheobase. Resting membrane potential was defined as the median membrane potential dur-
ing a baseline period measured immediately after break-in. Input resistance was calculated
with Ohm’s law using the steady state membrane potential during subthreshold current in-
jections steps (current clamp) and/or the steady state current during 5 mV voltage steps
(voltage clamp). Action potential onset was detected using code adapted from the Berg lab’s
Spike threshold PS function, which defines onset as the point of maximum positive slope in
the phase space of the membrane potential and its first derivative [153]. Spike width was
measured as the full-width of each spike at the voltage halfway between the action potential
threshold and the peak amplitude (half-max). Rheobase was estimated using the average of
1) a linear fit (with coefficients constrained to be nonnegative using the lsqnonneg function
in MATLAB) of the F-I relation during the last subthreshold current injection step and the
first few suprathreshold steps and 2) linear extrapolation of the current necessary to reach
threshold based on measurements of the resting membrane potential, input resistance, and
average threshold value of the first action potentials evoked during suprathreshold injections.
These two measures were usually in good agreement. Adaptation index was calculated (fol-
lowing the Allen Brain Institute’s Cell Types Database protocol) for each current injection
using the expression:

1

N − 1

N−1∑
n=1

ISIn+1 − ISI

ISIn+1 + ISIn
(3.1)

Where N is the number of spikes during that current step and ISI is the interspike interval.

3.6.5 Paired recording connectivity testing

We first targeted whole-cell recordings to a fluorescent (GFP+ or TdTomato+) SST cell,
and then subsequently patched nearby neurons in the same slice. In some cases, we recorded
serially from several neurons while maintaining the recording of the first neuron, in order to
test multiple connections. Monosynaptic excitatory connectivity onto SST cells was tested
by driving trains of 10 spikes in the presynaptic cell at 70 Hz via current injection, while
monitoring for EPSCs in the postsynaptic cell. Stimulation was repeated at least 15 times
in all pairs tested. Monosynaptic inhibitory connectivity from SST cells onto other neurons
was tested by driving spikes in the presynaptic cell while monitoring postsynaptically for
IPSCs (Cs-based internal, postsynaptic cell held at +10mV) or IPSPs (K-based internal,
postsynaptic cell depolarized to approximately -52mV). Electrical connectivity between SST
cells was tested by hyperpolarizing each cell with 1-second current injections (at least 15
trials) while monitoring for hyperpolarization in the other cell.

For L5SST-L5PC pairs, we recorded from both pyramidal tract and intratelencephalic
type PCs, which could be distinguished by their laminar positions (preferentially L5B versus
L5A), morphology visualized via infrared (large soma versus smaller soma) and post-hoc
confocal imaging (thick-tufted apical dendrites versus slender-tufted), and/or their intrinsic
properties (initial burst/doublet spiking followed by non-adapting spikes versus continuously
adapting regular-spiking phenotype; [55, 78, 152]). We did not observe any significant differ-
ences in the connectivity of either L5PC type with L5MCs or XCs. For L5SST-L4PC pairs,
we did not distinguish between spiny stellate and pyramidal/star-pyramidal excitatory cells.
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For paired recordings between L5 SST cells and L4 FS/PV cells, we identified FS/PV
cells using PV-Cre; LSL-TdTomato mice in some experiments (Fig. S7i). However, it was
often difficult to visualize X94 cells using these animals due to the TdTomato fluorescence
being much brighter than the GFP fluorescence. In other experiments (Fig. S7h), we
targeted FS/PV cells in L4 by looking for L4 neurons with large cell bodies under IR, and
then confirmed the identity of these cells electrophysiologically, with the primary criteria
separating them from being narrow spike widths (slightly shorter than the average XC spike)
and little or no spike frequency accommodation during high amplitude steps of current
injection.

To classify SST-TdT cells as putative XCs or MCs, we fit a support vector machine (cross
validated 10-fold) to perform binary classification of L5 GIN cells and L5 X94 cells using
only their intrinsic electrophysiological properties. We found that a classifier based on only
two measures (spike width and estimated rheobase) performed just as well as multivariate
classification based on a large number of metrics ( 85% accuracy).We then used this classifier
to predict the identity of a different dataset of L5 SST cells recorded in SST-TdT mice. This
approach is likely to have resulted in a small number of SST-TdT cells being misclassified;
however, the connectivity of putative XCs and MCs were highly similar to the connectivity
of XCs and MCs identified using the X94 and GIN lines. Furthermore, our conclusions about
the differences in connectivity rates of L5 MCs and XCs with L4 and L5 PCs are unchanged
by the exclusion of the SST-TdT dataset, with the exception of L5PC→L5SST connections
– a circuit which has been studied in some detail by others. This approach also effectively
assumes a dichotomy in L5 SST cells, since we have only two labels (MC and XC) to provide
as training data, which is an important caveat since it is likely that further subdivisions of
SST cells exist in L5 [97]. In a handful of cases, we recorded from SST-TdT cells which
appeared to be FS cells 114, with very narrow spikes, low input resistances, and a near
complete lack of spike-frequency accommodation during high amplitude current injection
steps; these neurons were excluded from further analysis.

Using paired recordings, we tested 544 total possible connections between 146 L5 SST cells
(39 L5 GIN cells, 53 L5 X94 cells, 54 L5 SST-TdT cells) and PCs/FS cells in L4 and L5. Data
from a subset of these neurons (n = 17 L5 GIN cells) were included in a previous study [138].
This dataset was unbalanced, and because in some cases we tested multiple connections onto
the same L5 SST cell, included some non-independent observations. Because of this, we used
Monte Carlo permutation tests to test for significant differences between the connectivity
rates of MCs and XCs. We generated a permuted dataset with the same observation structure
(same number of L5 SST cells and same number of connections tested per L5 SST cell)
in place for MCs and XCs by randomly resampling with replacement at both levels. We
then measured the difference in observed connectivity rate for the MC and XC groups, and
repeated this procedure 100,000 times to generate a null distribution of rate differences. We
used this distribution to perform a 1-tailed test for significant differences between MC and
XC connectivity rates for each type of connection tested (Table S1).

3.6.6 Optogenetic connectivity mapping in vitro

Experiments were done in slices from Emx1-Cre; GIN or Emx1-Cre; X94 mice injected with
an AAV driving Cre-dependent expression of ChR2 in all excitatory cells. Whole cell voltage
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clamp recordings were performed in GFP+ L5 cells to target L5 MCs (Emx1-Cre; GIN) or
L5 XCs (Emx1-Cre; X94). A digital micromirror device was used to focally photo-stimulate
excitatory cells in different regions of the slice in order to map the spatial profile of excitatory
inputs to recorded MCs and XCs.

Prior to experiments, slices were briefly visually inspected with epifluorescence under a
5x objective to confirm that a wide area containing dense, even expression of fluorescence
(tagged to an opsin) was present in the barrel cortex. Recordings were targeted to within
this region, which typically covered the entire lateral extent of barrel cortex in 4-5 slices.
Slices in which expression appeared faint or uneven were discarded.

In some experiments, it was necessary to locate fluorophore-positive cells in slices also
containing an excitatory opsin. To avoid excitotoxicity that can result from excessive il-
lumination of opsin-containing neurons, we limited illumination to very brief intervals (1-2
seconds) while searching for fluorophore-positive cells. In some cases where the target cells
were weakly fluorescent (young GIN and X94 animals), we searched for these cells while
keeping the slice submerged in sucrose-substituted ACSF. Once target cells were located,
this solution was washed out and replaced with normal recording ACSF prior to patching
these cells and starting experiments.

3.6.7 DMD-based excitatory input mapping

Laser light was generated using a 1W 445nm diode laser (Ultralasers) and routed via a liquid
light guide into a CEL5500 digital micromirror device (DMD) (Digital Light Innovations).
The projection from the DMD was then collimated and integrated into the light path of the
microscope, before being focused onto the slice chamber using a 5x (Olympus). For experi-
ments using widefield illumination, the DMD passively reflected but not spatially modulate
light. Prior to photo-stimulation, infrared and epifluorescence images were captured using
an IR-1000 CCD camera (DAGE-MTI) and imported into MATLAB.

Excitatory mapping experiments were performed using a modified version of a previously
described protocol [138]. Mapping was performed over an area extending from pia to the
white matter, covering 2-4 barrel columns laterally ( 400 to 800 µm). For mapping excitatory
inputs to GIN and X94 cells, the DMD was used to pattern light into a square region (75 µm
x 75 µm). Each stimulation site was spaced 40µm apart from adjacent ones, resulting in some
overlap of adjacent stimuli. We chose to ‘ramp’ our photostimulation, starting each stimulus
with the light off and linearly increasing the light intensity over time. Ramping in this
manner minimizes activation of fibers of passage [2]. In each trial, a ‘sawtooth’ light stimulus
composed of three successive 25ms ramps of light (1.25 mW/mm2 final intensity) was applied
to one stimulus site. This protocol was chosen in order to maximize the short-term facilitation
of excitatory inputs to L5 SST cells, though in practice we found it was usually possible to
observe responses during the first ramp alone. Ten regions were stimulated per second in
a serial, pseudorandom order, with 4 second breaks after every 10 seconds of mapping.
Control experiments were performed using identical stimulation conditions while recording
from ChR2+ neurons in all layers. These experiments determined the spatial resolution
of photostimulation and confirmed that spiking was elicited in ChR2+ neurons only when
regions very close to the soma were stimulated. We also included n = 2 experiments mapping
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inputs to L5 X94 cells which were performed using the exact mapping protocol described in
[138], though our results and conclusions were not substantially altered by their exclusion.

All data were analyzed using custom written MATLAB software. Data preprocessing
consisted of removing baseline offsets and slow fluctuations from recordings by subtracting
a down-sampled and median-filtered versions. Charge was calculated as the integral of the
preprocessed recordings during photo-stimulation and the subsequent 25 milliseconds. To
aggregate maps across cells, we first rotated the average map collected in each experiment
in order to horizontally orient the laminar boundaries of the mapped area. Maps were next
translated vertically to align the L4-L5 laminar boundary, and translated horizontally to align
either the home column or the soma position of the recorded cell, before being horizontally
cropped to an area ±300µm of their center and then averaged to yield a summary map.

For L4 stimulation experiments, we used widefield photostimulation through a 5x objec-
tive. We used two stimulation protocols: prolonged, 1-second ramps of linearly increasing
light intensity and trains of ten pulses (1ms duration) at 40 Hz. We stimulated at 4 different
intensities for each protocol. Since we sometimes recorded multiple neurons in the same slice
(see Fig. S5), we fit generalized linear mixed effects models to the dose-response function
of light-intensity versus evoked response (EPSC charge transfer or number of spikes), with
fixed effects coefficients for the slope of this function for each cell-type and random effects
slope coefficients for each slice and neuron in the dataset as well as a constant intercept term.
F-tests were used to test for differences in fixed effects coefficients. For paired analysis of L4
XCs and L5 MCs/XCs (Fig. S5), paired t-tests were used to test for differences in L4-evoked
responses at maximum stimulus intensity.

3.6.8 Multiphoton CGH-based inhibitory output mapping

Laser light was generated using a 5W 1040 nm femtoTrain laser (Sepctra-Physics) and power
was modulated on short time scales using a Pockels cell (Conoptics) and a high speed shutter
(UniBlitz). Light was delivered to the sample using a VIVO 2- Photon workstation (3i) based
on a Sutter Moveable Objective Microscope (Sutter) and the hologram was created using a
Phasor 2-Photon computer-generated holography system (3i) with Slidebook software (3i)
(Fig. 3.4a). The holograms used for stimulation were 2D discs of diameter 15 um centered
on points with 20 um spacing, making a 400 um x 400 um grid in the focal plane (Fig.
3.4b,c). Stimulation consisted of 4 or 10 ms square pulses to the Pockels cell with voltages
calibrated to produce 200 or 250 mW average power on sample, respectively. The choice of 4
ms at 200 mW or 10 ms at 250 mW stimulation was determined slice to slice based on opsin
expression. Power for each hologram was calibrated empirically to account for power loss
due to diffraction efficiency degradation away from the zero-order of the SLM. There was an
inter-trial interval of 100 ms between the end of one stimulation and the start of the next
stimulation. Under these conditions, SST cells spiked reliably and with high radial resolution
(Fig. 3.3c, Fig. 3.4c,d) and moderate axial resolution (Fig. 3.4f,g). Given the sparsity of
SST neurons (Fig. 3.3b), this level of spatial resolution provided a good tradeoff between
sampling many cells with fewer targets and spiking cells with high spatial resolution. In
addition, reliably evoked spikes were produced with low latency and jitter when stimulating
randomly through the target grid at 10 Hz. Under these conditions, most evoked spikes
occurred in the first 20 ms after the onset of stimulation (Fig. 3.4e,h).
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Space clamp error will inevitably affect somatic measurements of currents from distally lo-
cated SST-¿PC synapses; however, we recorded IPSCs using a cesium-based internal solution
(which included the ion channel blockers tetraethylammonium and QX-314) and performed
experiments at room temperature, which ameliorate this to some extent [175]. We also used
a holding potential of +40 mV to increase the IPSC driving force. In these experiments,
internal solutions also contained 5 M Alexa 488 hydrazide (ThermoFisher Scientific) to aid
visualization with multiphoton imaging, and 5 mM kynurenic acid Sodium salt (abcam)
was added to the external ACSF to block glutamatergic activity.

To determine which locations evoked responses in the voltage-clamp recordings, first we
detected IPSCs using a Bayesian modeling approach via Gibbs sampling [108]. Event times
were estimated by first binning all of the time samples at 1 ms resolution and then finding
maxima of those timeseries (using findpeaks in MATLAB). Because the vast majority of
evoked spikes recorded from opsin expressing SST cells occurred with short latency (Fig.
3.4c,f), we estimated the background rate of IPSCs for each patched cell from the last 25
ms of all inter-trial intervals and the evoked rate at each location from a time window of
30 ms starting 5ms after the onset of each stimulation. Taking a Poisson distribution of
events with the estimated background rate as a null distribution for all locations for each
cell, we could then calculate a p-value for the hypothesis that there is no evoked IPSCs each
location. We then detected locations with evoked responses using the Benjamini-Hochberg
False Detection Rate (FDR) procedure with q = 0.1 [18]. We chose this relatively liberal
FDR rate because any false positives will likely be thrown out after the temporal statistics
are taken into account.

To determine if a location with evoked rates in both simultaneously patched cells was
in fact a common input from a single source, we employed a statistical test that compares
a computed synchrony statistic against a null distribution computed from resampled event
time series. Specifically, the test we use employs a null distribution where all synchrony is
a result of some processes at timescales longer than some given duration [4]. The intuition
is that the chosen duration should match the general timing of evoked IPSCs such that any
synchrony under this null arises only because IPSCs are being generated by two separate
presynaptic SST cells at roughly the same time. When we reject this null, we have evidence
that the synchrony is coming from a process that operates at a finer timescale than the
general evoked IPSC statistics: that is, a single presynaptic SST cell is generating highly
time-locked IPSCs in two postsynaptic PCs. In our case, the duration of the timescale we
want to test against can be estimated from both the timing statistics of evoked spiking of
SST cells as wells as the peristimulus time histogram (PSTH) of IPSCs for all trials at all
detected input locations across all PC input maps (Fig. 3.4e,h, Fig. 3.5g). Using these
statistics as guidance, we chose 10 ms as the timescale for our null distribution. In detail, we
first summarize the synchrony of events between two simultaneously patched cells at each
location where both cells receive input. The statistic we use is the sum of the center and
two flanking bins of the cross correlation of the binary event time series for each cell. As
mentioned, the event time series are binned at 1 ms. We then created a null distribution
for this statistic at each of these locations using the event series resampling described in 66
which allowed us to estimate a p-value for each location as well (Fig. 3.5h,i,j,k). We then
detected common spatiotemporal input using these p-values and the Benjamini-Hochberg
FDR procedure with q = .05, aggregating all tests across all paired maps. The common
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input probability for a simultaneously patched pair could then be computed as the total
number of detected common input locations for that pair divided by the total number of
unique detected input locations for the pair (i.e. the cardinality of the union of the sets of
input locations for the two cells).

To align the input maps for each cell, we first aligned each input map to a two-photon
image of the tissue taken at the time of recording based on previous calibrations between the
SLM coordinate frame (e.g. the input map frame) and the two-photon imaging frame. Next,
the tissue-aligned maps were then registered via an affine transform to a confocal image of
the fixed slice which had been stained with DAPI and in which the opsin expressing cells
could be visualized as well as the patched cells which had been filled with biocytin. This
allowed each map to be registered to each other based on the laminar borders, in particular
the L4-L5 boundary.

3.6.9 Biocytin staining and reconstruction

Following experiments, slices were transferred to 4% paraformaldehyde at 4° for several
days. Slices were then repeatedly washed in TBS and subsequently incubated in block
solution at room temperature for two hours. Next, 1:1000 streptavidin-Alexa647 conjugate
was added to the solution and allowed to stain for 2 hours. Slices were then washed again
and mounted/DAPI-stained on coverslips using VectaShield.

Stained neurons were imaged on a confocal microscope, along with the DAPI signal in or-
der to identify laminar boundaries. These images allowed us to qualitatively assess whether
recorded cells were L1-targeting MCs or L4-targeting XCs. We reconstructed a subset of
filled neurons, with the goal of performing a bulk quantification of how MC and XC neurites
are distributed with respect to the cortical layers (Fig. 3.1c, Fig S2e). Since detailed recon-
structions of the morphologies of these neurons have already been carried out by others [173,
161, 97, 180, 56, 162, 105], we adopted a high-throughput, semi-automated approach to per-
form 2D reconstruct MCs and XCs (Fig. S2c). We imaged neurons using a 10x air objective
and used the Imaris software package to automatically trace filled neurites. Subsequently,
we manually edited these traces and annotated layer boundaries. These reconstructions did
not distinguish between axon and dendrite and contained small scale errors (e.g. neurites
passing near each other were sometimes spuriously connected). However, comparison of
semi-automated reconstructions with detailed 3D reconstructions (performed manually in
Imaris, after imaging with a 60x oil immersion objective and/or a 20x air objective) showed
that the semi-automated approach yielded an accurate measurement of neurite density in
each layer (Fig. S2a,b).
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Chapter 4

Bayesian Methods For Event Analysis
of Intracellular Currents

This chapter contains work that was a collaboration with Dr. Josh Merel, at the time a
postdoc in Dr. Paninski’s group. It was published as:

Merel, J.*, Shababo, B.*, Naka, A., Adesnik, H., Paninski, P. (2016). Bayesian methods
for event analysis of intracellular currents. Journal of Neuroscience Methods, Volume 268, p
21-32.

4.1 Introduction

Subthreshold neuronal activity provides an unsurpassed richness of information about a sin-
gle cell’s physiological properities. Access to subthreshold activity allows for inference about
intrinsic biophysical properties (e.g. membrane and ion channel parameters), circuit level
properties (e.g. synaptic connectivity), neural coding (e.g. receptive fields), and synaptic
properties (e.g. quantal properties & plasticity). At present, whole-cell patch-clamp stands
alone in its ability to reliably access subthreshold activity owing to excellent signal-to-noise
ratio (SNR) and very high temporal precision, as opposed to optical subthreshold measure-
ments. At the same time, optical technologies have advanced to the point where we can
observe the suprathreshold activity of hundreds of individual neurons simultaneously with
calcium imaging and stimulate neurons by subtype or spatial location [146]. However, the
limits on temporal resolution and the indirectness of the observations make inferring fine-
scale network and cellular parameters difficult. Approaches which combine optical tools
with electrophysiology offer unique advantages [150]. In this work we present new statistical
techniques useful for analyzing whole-cell data as well as extensions demonstrating how our
approach is particularly well-suited to settings where electrophysiology is combined with
optical physiology.
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4.1.1 Our setting and approach

Fundamentally, many of the subthreshold-based analyses mentioned above depend on the
interpretation of the recorded time series as a sequence of events. In this setting, events are
the successful transmission of neurotransmitter onto the recorded cell, and when this occurs,
a transient current flows into or out of the cell, known as a postsynaptic current (PSC).
The analyses of experiments designed to infer properties of evoked or spontaneous inputs
to a cell (e.g. monosynaptic mapping or quantal/mini-PSC analyses) require determining
when a postsynaptic event happened and describing that event. Estimating PSC properties
is most straightforward when recordings are acquired using the voltage-clamp configuration
which employs a feedback circuit to hold the membrane potential at a constant value thus
mitigating variability in PSC properties due to the intrinsic biophysics of the cell (though
see [15]).

In this work, we present a Bayesian approach for inferring the timing, strength, and kinet-
ics of postsynaptic currents from voltage-clamp recordings, and we demonstrate on simulated
and real data that this method performs better than standard methods for detecting PSCs.
The improvement in single-trial accuracy with our method should allow for better estimation
of physiological parameters with less data and under more variable conditions (e.g. when the
exact timings of stimuli or its effects are unknown). In addition, the quantification of uncer-
tainty over PSC features provided by Bayesian inference enables new experimental designs
(e.g. [155]).

Bayesian approaches are naturally extensible, so the intuitive, generative model and
straightforward inference procedure flexibly extend to include structure relevant to the anal-
yses mentioned above. Specifically, we extend the core single-trial model to include types of
data obtained in monosynaptic mapping experiments which may involve optical stimulation
artifacts or combine voltage-clamp recordings and optical recordings. For this latter exten-
sion, we combine the single trace model presented in this work with related work on calcium
imaging [139] to demonstrate a Bayesian approach to analyzing mapping experiments con-
sisting of simultaneous population calcium imaging and single cell voltage-clamp recordings
[1].

4.1.2 Review of other approaches

To our knowledge, all previous methods for inferring PSCs have relied on first inferring the
timing of single events (i.e. event onsets), and then sometimes fitting per-event kinetics given
that event time. These methods have tended to fall into two categories. The superficially
simpler of the two approaches is find events by thresholding the trace or its first derivative
(i.e. finite difference). In practice, such methods have extra parameters for smoothing,
computing the appropriate offset, or post-processing. Implementations tend to over-detect
candidate events and then evaluate candidates based on analysis of per event kinetics [69,
8, 63, 84]. For concreteness, consider a two-stage approach wherein a threshold is used to
identify initial candidates, and then a model is fit to the transient dynamics in order to
confirm or reject candidate events by comparison of the parameters of the dynamics against
pre-determined criteria [8]. Even with post-processing, such methods can be non-selective
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and tend not to exploit all of the available information (i.e. the transient dynamics aren’t
used to detect the events initially).

Threshold methods have been largely superseded by the second class of approaches,
template-based methods [33, 132]. In these methods, templates are usually learned by
averaging event-responses collected by a simpler method (e.g. thresholding and/or hand-
curation). While template methods are straightforward, initial attempts to apply these
methods failed when the amplitude of the events varied or where events overlapped - both
common scenarios. The first commonly used algorithm for PSC detection that attempted to
avoid issues related to amplitude variability introduced the idea of rescaling a fixed template
at each time step [33]. Following this trend, template-matching approaches have gradually
shifted towards deconvolution methods, which are a more well-founded way to use templates
[132]. Deconvolution generally refers to methods that assume the observed trace is the result
of convolving a template with unobserved events (of varying amplitude), and such methods
invert this model to estimate the times from the template. Both of these template-based
methods produce inferred events with different amplitudes and a threshold can then be used
to screen out small events (see [52] for a Python implementation of [33] and [132], and see
[145] for deconvolution of current clamp traces).

Methods that rely on fixed-shape templates can work very well when the shape of the
event is consistent across events, but postsynaptic events can vary in shape and amplitude,
especially for events from different pre-synaptic sources due to different dendritic filtering,
issues with space-clamp, or different receptor subunit distributions. Indeed, a core rationale
behind the initial preference for threshold based approaches was the recognition that events
may vary too much for a single template. While it is possible to use approaches that employ
multiple templates [92, 160], there are still potential issues related to the stage-wise separa-
tion between learning the template and subsequent detection causing a sub-optimal use of
information.

We take a Bayesian approach, rooted in a probabilistic, generative model. Broadening the
taxonomy, this approach is a type of deconvolution method. However, we do not consider a
single template (or a handful of templates), but instead a distribution over templates through
the use of prior distributions on the kinetics and amplitudes of individual PSCs. Importantly,
we also model event timing in continuous time (i.e. without binning), and we incorporate
an autocorrelated, AR(p) noise process [32], which provides a more accurate description of
the data. This leads to more precise detection of event times and inference that is more
robust (i.e. less susceptible to noise). As such, our inference better leverages all available
information (i.e. all events and full timecourse of each event). Given this probabilistic
formulation of the noise process and the inclusion of priors on the PSC features, we can
then perform posterior inference in this model using Markov chain Monte Carlo (MCMC,
see methods).

A tradeoff is that the proposed approach is more computationally intensive than previous
approaches. Nevertheless, we believe the flexibility and robustness that this approach affords
makes up for this in many settings. Beyond handling overlapping events and variation in
the shape of events, our method inherits advantages of probabilistic modelling. The method
is extensible and amenable to serving as a modular component of hierarchical models, as
we show. Moreover, while existing methods tend to produce all-or-none results and the
precise timing of the event is a secondary consideration, using a probabilistic approach, it
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is straightforward to consider posterior uncertainty. We essentially get a level of confidence
for detection of each event and the level of uncertainty in the precise timing of the event.
This posterior uncertainty in event times can translate into posterior uncertainty for other
parameters of interest, such as synaptic weights.

4.1.3 Overview

In the following sections, we will first present the details of the model for single-trial voltage-
clamp traces and extensions mentioned previously. We then provide the details of the infer-
ence scheme we use for sampling from the posterior distribution. In the results, we compare
our approach with the standard template-based approach [33] as well as a Wiener Filtering
approach [174], since these serve as competitive and robust baselines. Note that while we are
not aware of the Wiener filter having been explicitly proposed for this application, the Wiener
filter is a standard deconvolution approach (similar to [132]). Unlike the deconvolution ap-
proach in [132], the Wiener filter automatically and optimally determines deconvolution
parameters from the power spectral density (PSD), and we found this performs better over
a range of data than a deconvolution approach with hand-tuned parameters (not shown).
We show inference results from our approach on simulated and real data for spontaneous
EPSCs and IPSCs across several cell types, PSCs evoked via paired-patching as ground-
truth validation, and PSCs evoked optically with one-photon and two-photon stimulation
with stimulation artifacts. We also show results on simulated data for a mapping experiment
which combines voltage-clamp recordings with calcium imaging, illustrating extensibility.

4.2 Methods

We draw on tools developed in statistics [110] and signal processing [162] to decompose
a voltage-clamp recording into interpretable elements. In this application, our events are
unitary synaptic currents and their features describe the strength and kinetics of each event.
In previous work, we have found similar methods useful for inferring spiking events in calcium
imaging data [139].

The framework involves (1) specifying a generative model for voltage-clamp recordings,
the parameters of which describe event times, features, the noise model, etc., and (2) per-
forming Bayesian inference on event times and features and the model parameters jointly.
Theoretically, Bayesian estimators have nice guarantees (under a “true” model, see [90]).
In practice, the generic Bayesian approach can fail if the model is inadequate (e.g. in our
case, if the generative model does not capture the true statistics of voltage-clamp traces)
or if the inference algorithm performs poorly and the true model posterior is not obtained.
Motivated by these legitimate concerns, it is critical to validate that for our application, the
model captures the statistics of real voltage-clamp data and that inference performs well on
both simulated and real data (see Results).
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4.2.1 Model of a single electrophysiological trace

In the simplest version of our model, the observed current trace, yt, is a discrete time series
composed of the sum of n unitary synaptic currents, a baseline (holding current), b, and
observation noise ϵt (eq. 4.1).

yt =
n∑
i=1

aifi(t− ti) + b+ ϵt. (4.1)

fi(t) = (e−t/τ
d
i − e−t/τ

r
i )1(t >= 0). (4.2)

ϵt =

p∑
j=1

ϕjϵt−j + ut, ut ∼ N (0, σ2). (4.3)

Each event, indexed by i, is characterized by an event time, ti ∈ R+, which need not be
aligned with the sampling time of yt, its own kinetics determined by fi(·), and a strength
which we define as the amplitude, or peak current, of the event, ai. For synaptic currents,
we use a difference of exponentials for fi which is parameterized by a rise time constant, τ ri ,
and a decay time constant, τ di . For an example of the model, see Figure 4.1B-D. Observe
in Figure 4.1E that recovered kinetics of individual events do vary significantly, suggesting
that a model which captures this structure should perform better than methods which rely
on a single (or handful of) template(s).

As opposed to an i.i.d. Gaussian noise process, the more general autoregressive, AR(p),
process better captures the noise in voltage-clamp recordings. We have found the noise
model to be crucial for robust inference (see Results). In an AR(p) noise model, the noise
has temporal correlations due to direct dependencies between noise values for p timesteps. In
this work, we use an AR noise model with p = 2 (eq. 4.3). Voltage-clamp recordings exhibit
correlated noise whose source can be electrical hardware, changes in resistance between the
electrode and the interior of the neuron, and other biological non-event contributions to the
observation. In practice, it is these forms of temporally correlated noise which lead to many
of the false positives since they are more likely to exhibit a similar shape to true events.

With eqs. 4.1 and 4.3 we can write down the likelihood of the observed, noisy data given
the parameters (Θ ≡ {σ, b, n, {ai, ti, τ di , τ ri }i=1...n, {ϕj}j=1...p}). We begin with the i.i.d, i.e.
AR(0), case,

p(Y |Θ) =
T∏
t=1

(2πσ2)−1/2exp[− 1

2σ2
(yt − ŷt)

2], (4.4)

where ŷt refer to the predicted noiseless trace:

ŷt =
n∑
i=1

aifi(t− ti) + b. (4.5)

In equation 8 of [32], the likelihood is extended to the AR(p) case

p(Y |Θ) =
T∏
t=1

(2πσ2)−1/2exp[− 1

2σ2
(yt − ŷt|t−1)

2], (4.6)
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Simulated Synaptic Currents

AR(p) Noise Process

10 pA
10 ms

Simulated Voltage-Clamp Recording

Real Voltage-Clamp Recording

2.5 ms

Simulated EPSCs (normalized)

Fit EPSCs (normalized)A

B

C

D

E

F

Figure 4.1: This figure depicts the correspondence between real data and the generative model. A Shows
a real voltage-clamp recording. B Depicts simulated synaptic currents generated from a fit to the data in
A (noiseless). C Depicts AR(p) noise process (p = 2) generated from a fit to the data in A. D Illustrates
a model-based voltage-clamp recording simulation (the sum of the data in B and C), to illustrate that the
simulation visually captures core features of the real data. E Shows individual events estimated from the
data in A (with normalized amplitudes), and panel F shows the individual simulated events used in B (with
normalized amplitudes).

where ŷt|t−1 is (adapted from equation 11 of [32], omitting boundary observations),

ŷt|t−1 = ŷt +

p∑
j=1

ϕj(yt−j − ŷt−j). (4.7)

The probabilistic model provides a natural objective function:

L(Θ|Y ) ∝ ln p(Y |Θ) + ln p(Θ). (4.8)

It is possible to optimize this log-posterior directly, or inference can be performed to
obtain an estimate of the posterior distribution. p(Θ) corresponds to the prior probability
on the parameters. In a probabilistic formulation, it is worth explicitly keeping in mind
that the posterior distribution for a given parameter can only have support where its prior
distribution has support, so hard constraints (e.g. a parameter being positive or a minimum
amplitude size) are naturally incorporated as prior information. For amplitudes, baselines,
time-constants, and event times, we use non-informative, improper uniform priors over either
real or bounded real numbers (we selected very broad ranges appropriate for each parameter).
The prior on the event count is given by a Poisson distribution which has one free parameter
corresponding to the prior expected number of events – this is a parameter that a user would
tune depending on their general expectation about the number of events in their data. The
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prior on the noise level σ2 is a diffuse inverse gamma distribution (which is the conjugate
prior), and we use a diffuse prior distribution over ϕ (i.e. a normal distribution subject to
stability constraints, same as [32]) – see section 4.2.3 on inference for more details.

Additionally, we note that more sophisticated priors in a Bayesian model serve as natural
ways to extend the core model. For example, distributions over event features could be
modulated by clustering onto presynaptic sources or the rate of events in each trace could
be time-varied based on stimulation of presynaptic cells in mapping experiments. Model
extensions are explored in the next section.

4.2.2 Model extensions

Including optical currents

In this extension, we consider an active mapping experiment where we have some level of
spatially structured optical stimulation (via optogenetics [44] or neurotransmitter uncaging
[27]) of presynaptic cells while holding a postsynaptic cell in voltage-clamp [158, 74]. In this
setting, detections of PSCs coincident with stimulations can be used to infer connectivity
between neurons. However, in some protocols, the postsynaptic cell also responds to the
stimulation1. If this is the case, we will see a direct optically evoked current in our voltage-
clamp recording when we attempt to stimulate cells near the patched cell. In order to remove
artifacts of this sort, we can incorporate a parameterized, additive term in the generative
model and then perform inference jointly with respect to these parameters. The choice of an
additive term is more reasonable for optogenetic stimulation because the currents are carried
through different channels whereas with neurotransmitter uncaging the direct stimulation
current and the synaptic current may be competing for the same channels.

For example, it is straightforward to include a parameterized kernel for the optical re-
sponse of the neuron, h(·), and then to convolve that response with the known optical input
to the neuron (e.g. the laser or LED power),

yt =
n∑
i=1

aifi(t− ti) +
ns∑
j

ajh(θh) ∗ dj(t) + b+ ϵt, (4.9)

where we have ns optical inputs each with known timecourse dj(t) and the response kinetics
are modelled with a convolution which is parameterized by θh (e.g. a set of time constants).
Each stimulation will have its own gain, as, which depends on the density of the correspond-
ing channels at the location of that stimulation. We have found this approach to be useful
under certain conditions with optogenetics (Figure 4.5D). However, for some optogenetic
currents, the multi-state kinetics of opsins can make it difficult to design a parameterized
h(·) which can be sampled efficiently. In this case, the shape of the optical current could be
measured empirically and then modelled as

yt =
n∑
i=1

aifi(t− ti) +
ns∑
j=1

ajh(t− t
(s)
j ) + b+ ϵt, (4.10)

1This is seen with glutamate uncaging at locations near the patched cell and could also occur with opto-
genetics when mapping connections between cells of the same transcriptional identity in the same location
or when mapping many heterogeneous populations of cells (i.e. when a pan-neuronal promoter is be used).
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where h(·) is now the stereotyped shape of the current and we know the set of times

{t(s)j }j=1...ns at which we have stimulated. Since the currents are filtered in the dendrites,
eq. 4.10 breaks down slightly when handling stimulations at locations at varying distances
from the soma of the patched cell (Figure 4.5D). Nonetheless, it still provides a good trade
off between accuracy and computational tractability. In addition, one could create several
optical current templates based on the distance of the stimulation site from the soma [107].

Mapping with calcium imaging and voltage-clamp recordings

Next we extend the model to show how the inferred events could be identified with presy-
naptic sources when the local population is partially observed via calcium imaging [1] (al-
ternatively, a similar approach could combine information from voltage imaging). In this
setting our observations will consist of the fluorescence traces of the imaged cells and the
voltage-clamp recording. Both the presynaptic fluorescence traces, ckt where k indexes the
neurons observed via imaging, and the postsynaptic electrophysiological recording, yt, can
be interpreted as a sum of events [139],

ckt =

nk∑
i=1

a
(c)
k gk(t− tki) + bk + ηkt , (4.11)

yt =
K∑
k=1

nk∑
i=1

a
(y)
k fk(t− tki) +

n∅∑
j=1

a
(∅)
j fj(t− tj) + b+ ϵt, (4.12)

with ϵt as before and ηkt ∼ N (0, ν2k). Like fk(·), gk(·) is also a sum of exponentials but
the timescale of the kinetics is much slower. {tj}j=1...n∅ are the times of PSCs with no
corresponding imaged, presynaptic cell. We want to point out that because we model the
process in continuous time, the observed calcium traces need not have the same sampling
rate or observation times as each other or the voltage-clamp recording (which will be sampled
many orders of magnitude faster).

In this demonstration, we have chosen to assume the calcium events for the same cell
are all of equal amplitude – this would be appropriate if the spikes occur sparsely or if
calcium transients sum roughly linearly. If the summation is known to be nonlinear with
some biophysically plausible nonlinearity (e.g. see [172]), this could be straightforwardly
accommodated by modifying the model and similar inference methods may still be applied.
Alternatively, it is also straightforward for the calcium event amplitudes to vary across
events.

We have similarly chosen for all postsynaptic events to be of the same amplitude and
shape when they follow from a specific presynaptic cell, but in practice one can extend the
clustering to impose cell-specific priors on these amplitudes and shapes. Some subset of
events observed in the electrophysiological recording will arise from unobserved presynaptic
inputs so we allow these to be explained by events with no observed presynaptic cause
and with independent shape and amplitude per event (second summation term indexed i =
1...n∅). We could also incorporate a fixed delay between presynaptic events and postsynaptic
events (this would be an additional parameter, pre-specified or inferred, in the postsynaptic
transient response fk(·)).
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Since we now observe multiple traces, our new objective function is simply the sum of
the log probabilities of the various traces. The multiple traces are conditionally indepen-
dent given event times {tki}k=1...K,i=1...nk

and {tj}j=1...n∅ , so we have an overall objective
corresponding to the log-posterior:

L(Θ|Ck, Y ) ∝ ln p(Y |Θ) +
K∑
k=1

ln p(Ck|Θ) + ln p(Θ), (4.13)

again with p(Θ) corresponding to the prior probability on the full set of parameters (see
Section 4.3.4 for results).

4.2.3 Inference

For this work, we perform inference using Markov chain Monte Carlo (MCMC) [116, 49].
MCMC techniques allow us to obtain samples from the posterior distribution over all un-
known variables in the model and thereby approximate the posterior by a histogram of such
samples. Specifically, we perform Gibbs sampling over all the parameters [49]. This means
that for each parameter, we hold all other parameters fixed and conditionally update the
focal parameter by sampling it from its conditional distribution. A “sweep” consists of an
update of all parameters. While it is possible to compute conditional distributions analyt-
ically for sufficiently simple models, it is quite simple to use generic sampling methods to
update parameters for any model for which one can compute the likelihood. For example,
we use random-walk Metropolis (RWM) to update many parameters – this consists of up-
dating parameters by proposing updates from a distribution centered on the current value
and accepting or rejecting proposed updates such that the resulting set of samples are con-
sistent with the conditional distribution [49]. Alternatively, more powerful samplers such as
Hamiltonian Monte Carlo could be used [49] but simple RWM sufficed here.

In the single-trial, voltage-clamp case, we update {ti, ai, b, τ di , τ ri }i=1...n by RWM. Inclusion
of a direct optical current, in the simplest case, only contributes one additional amplitude
parameter for each stimulation, and these can be inferred similarly. Through sampling, we
also estimate the posterior distribution of the number of events in each trace, given a Poisson
prior (note that this could be generalized to an inhomogenous Poisson process prior so that
the event rate can vary based on inputs such as optical stimulation). To add and remove
events (i.e. perform inference over n), we use birth-death moves which consist of the proposal
of a new event time and the removal of an existing event time respectively [110].

The noise process parameters ϕ1..p are sampled by rejection sampling from the constrained
conditional distribution and σ is sampled from its conditional distribution. Specifically, we
reproduce the updates for the ϕ1..p and σ, which are provided in section 4.1 of [32]. ϕ1..p is
shown to be conditionally normal with a mean and posterior that depend on êt = yt − ŷt
and σ2, but also with the constraint that the AR(p) process defined by ϕ1..p is stable (note
that stability here means that the AR process remains bounded on bounded intervals if run
autonomously, which can be quickly checked by examining the magnitude of the roots of the
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associated characteristic polynomial [86]). Omitting boundary observations:

E = [êt−1...êt−p], (4.14)

Φn = Φ0 + σ−2(E ′E), (4.15)

ϕ̂ = Φ−1
n (Φ0ϕ0 + σ−2E ′e), (4.16)

ϕ ∼ N (ϕ̂,Φ−1
n )1Sϕ, (4.17)

where 1Sϕ is an indicator over the set of stable ϕ values and ϕ0 and Φ0 are set to weakly
informative prior values. Following [32], we place an inverse-gamma prior on σ2, which is
the conjugate prior given the likelihood (eq. 4.6) so that we can sample directly from the
conditional posterior,

δ1 =
T∑
t=1

(yt − ŷt|t−1)
2, (4.18)

σ2 ∼ IG(1
2
(T + ν0), 1/(

1

2
(δ1 + δ0))), (4.19)

where ν0 and δ0 are also set to weakly informative prior values.
For the full mapping case, inference is similar. However, additional moves need to be in-

corporated to improve mixing. That is, in addition to the single-variable updates, additional
custom moves are performed each sweep. The additional moves correspond to proposing a
swap for the presynaptic identity for a PSC event. That is, an MCMC step is proposed
wherein an event associated with one presynaptic source is eliminated and an event at the
same time is considered for another source. To implement such moves, we simply propose
to drop an event at a given time for one presynaptic source and to add an event at the same
time for another presynaptic source and evaluate the combined acceptance or rejection of
these proposed moves using the Metropolis-Hastings ratio [49].

4.2.4 Specific implementation details

Code implementing our inference routine is available on github2. When applying our infer-
ence method to data, we can run from a cold start, or we can initialize event times with those
found via a simpler, faster method (e.g. [33] or [132]). In this work, to establish initial per-
formance of our algorithm, we present results on simulated and real data using cold starts.
MCMC methods ideally will be run long enough that a proper posterior distribution can
be estimated. A standard convergence check for MCMC methods is to run multiple chains
and assess that they provide similar estimates. We did not run multiple Markov chains in
this case for all analyses. Rather, for ease of use, we followed a simple heuristic of initially
tuning the total number of sweeps by running multiple Markov chains and then consistently
performing a conservatively large number of sweeps to robustly achieve good performance
(i.e. as measured relative to other methods).

For applications, it is pragmatic to adjust the total number of samples to trade off relia-
bility (i.e. high probability of convergence) against computation time. For small timeseries

2https://github.com/jsmerel/joint_calcium_ephys_mapping

https://github.com/jsmerel/joint_calcium_ephys_mapping
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(roughly 1 second), inference consisting of 2000 sweeps of the sampler tends to provide an
accurate posterior (see Results, simulated data) and requires anywhere from a few seconds to
a few minutes on a contemporary computer depending on the number of inferred events. It is
standard to discard the first fraction of the sweeps as burn-in (we discard between one-fifth
to two-fifths of the total number of sweeps, depending on the event rate and its prior). For
longer timeseries or many timeseries, we run smaller sections of the timeseries in parallel on
a computing cluster (on a single CPU, the computation time would scale linearly with the
number of requested samples and scale linearly in the number of inferred events, which is
assumed to be proportional to the length of the trace). We also note that RWM requires
a proposal width hyperparameter – this can be automatically tuned early in the sampling
process by adjusting the proposal variance such that the accept rate is reasonable [147]. We
perform this automatic tuning in an ad hoc adaptive fashion, incrementally increasing or
decreasing the proposal variance when either too many or too few moves are being accepted.

We also note that in the implementation, we frequently rely on the log-likelihood, ln(p(Y |Θ)),
to determine whether to accept or reject moves. In order to minimize redundant operations,
it proves useful to store êt = yt − ŷt and we perform evaluations of yt − ŷt|t−1 by observing
that:

yt − ŷt|t−1 = yt − (ŷt +

p∑
j=1

ϕj(yt−j − ŷt−j)) (4.20)

= yt − ŷt −
p∑
j=1

ϕj(yt−j − ŷt−j) (4.21)

= êt −
p∑
j=1

ϕj êt−j. (4.22)

Finally, note that key hyperparameter settings are presented in Supplementary Table 1.

4.2.5 Experimental methods

All experiments were performed in accordance with the guidelines and regulations of the
Animal Care and Use Committee of the University of California, Berkeley. Mice used for
experiments in this paper were either wild type (ICR white strain, Charles River), som-
IRES-Cre (JAX stock #018973); Ai9 Rosa-LSL-tdTomato (JAX stock #007909), PV-Cre
(JAX stock #008069); Ai9 Rosa-LSL-tdTomato, or emx1-IRES-Cre (JAX stock #005628).

Viral Infection: Neonatal emx1-cre mice were injected with AAV9-CAG-flexed-Chr2-
tdTomato (for 1-photon experiments) or AAV9-syn-ChrimsonR-tdTomato (for 2-photon ex-
periments) at P0-P4. Viruses were acquired from the University of Pennsylvania Vector
Core. Undiluted viral aliquots were loaded into a Drummond Nanoject injector. Neonates
were briefly cryo-anesthetized and placed in a head mold. With respect to the lambda suture
coordinates for S1 were: 2.0 mm AP; 3.0 mm L; 0.3 mm DV.

2-Photon Optogenetic Stimulation: 1040 nm light (femtoTrain, Spectra-Physics) was
delivered to the sample using a VIVO 2-Photon workstation (3i) based on a Sutter Moveable
Objective Microscope (Sutter, Novato, CA) and the hologram was created using a Phasor 2-



68

Photon computer-generated holography system (3i). Light was delivered for 10 milliseconds
at 100 mW power on sample. The hologram for these data was a disc of radius 15 µm.

For more detailed methods on brain slicing, in vitro and in vivo electrophysiology, and
1-photon optogenetic stimulation, see [138]. All electrophysiology was analyzed at 20 kHz,
or equivalently, with timebins of 0.05 ms.

4.3 Results

4.3.1 AR noise model validation

We have found the choice of noise model to be critical when analyzing voltage-clamp data. It
is common to use i.i.d Gaussian noise for neurophysiological time-series ([127, 145]) , but very
often the noise can exhibit temporal correlations. To obtain a recording of a voltage-clamp
noise process which contains no events, we recorded from a neuron exposed to an excitatory
synaptic blocker (Kynurenic Acid, 4mM) while holding the cell near the inhibitory reversal
potential (-70 mV). Under these conditions, the recording should be relatively event free;
nonetheless the recording shows clear temporal correlations (Figure 4.2A). In the context
of deconvolving these data, it is primarily this correlated noise that drives false positives
because it can have similar features to PSCs.

To better capture the structure of voltage-clamp noise, we used the more general AR
process which we found was sufficiently flexible and expressive to represent the types of
noise we encountered. Specifically, an AR(2) model balanced model expressiveness and
computational cost. Figures 4.2A and 4.2B show that the extra structure in the AR(2)
model does in fact provide a better description of the data.

For a systematic validation, we performed a comparison between the AR(0) and AR(2)
inference for many simulated traces (10 x 1s traces per noise level). Specifically, we can
simulate traces with random event times and with various levels of AR(2) noise added to
the traces (i.e., varying SNR). In these simulations, events are naturalistic in that they have
variability in their distribution of amplitudes and time constants, and events may overlap
(4.2C). For inference with either noise model, performance is similar when there is low
levels of noise (or for specific AR(2) noise process parameters that result in only weak noise
autocorrelation, not shown), but the inference results diverge dramatically when the noise
is larger in magnitude. To summarize inference, we examine the correlation between the
posterior mean trace and the “true” simulated, noiseless event trace (4.2D). For biologically
realistic AR(2) noise structure and magnitude (indicated by an asterisk in 4.2D), inference
with the AR(2) model indeed performs considerably better than with the AR(0) model.
Note that in the high-SNR limit, simple methods like template matching algorithms, greedy
optimization, or other direct optimization of the model likelihood can perform well enough,
so sample-based inference would be computationally excessive. However, this validation
demonstrates that in the biologically realistic noise regime, noise is sufficiently large and
structured for proper inference to be useful.
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Figure 4.2: Validation of the AR(p) noise model and inference. A Top: a real voltage-clamp recording under
“event-free” conditions such that the recording is dominated by noise. Middle: simulated noise from an
AR(0) fit to the real example. Bottom: simulated noise from an AR(2) fit to the real example. The AR(2)
example better captures the structure of real noise. B Grey: periodogram estimate of the power spectral
density (PSD) of an “event-free” recording. Blue: a parameteric fit to the PSD with an AR(0) model.
Red: a parameteric fit to the PSD with an AR(2) model. C Top: a simulated voltage-clamp recording with
AR(2) noise. Middle, black: The true current for the top trace. Red: The true time-amplitude coordinate
for each PSC. Blue: A bivariate histogram reflecting the estimated time-amplitude posterior distribution
using an AR(0) noise model (uses a small, but non-zero minimum event size threshold). Bottom: same as
in the middle trace but inference is performed with an AR(2) noise model. D Curves depict accuracy of
inference as a function of SNR level (ranging an order of magnitude, with 1 indicating low noise relative to
size of events and 10 indicating noise that has marginal variance larger than the signal) for AR(0) vs AR(2)
model-based inference. The measure of accuracy is correlation coefficient between true (simulated) trace and
estimate of posterior mean. The asterisk indicates a biologically realistic SNR level equal to the example in
C. For each point on the curve, we simulate timeseries with random event-times and amplitudes (traces are
median and inter-quartile range over 10 repeats). Both algorithms do very well in the high SNR regime. As
soon as noise level begins to make inference difficult, both algorithms begin to lose accuracy. However the
AR(2) model inference degrades much more slowly.

4.3.2 Comparison with other methods on spontaneous and
evoked PSCs

We also compared our method to two common PSC detection algorithms: a standard
template-based approach [33] and a deconvolution approach (a Wiener Filter [174], which
we found tended to improve upon the slightly simpler inverse filter used in [132]). Although
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Figure 4.3: Comparison of methods on simulated data. A An example of inference/detection results for each
method on a simulated voltage-clamp recording. For each method we show the output time-series for that
method (i.e. the score template matching, deconvolved trace for deconvolution, and the posterior of event
times for the Bayesian approach), estimated event times, and the threshold used to determine those event
times (for the Bayesian trace the threshold is so low that it can’t be seen above the baseline posterior). B
Parametric curve showing the number of true positives and false positives as a function of peak detection
threshold. The results are from detection across 10 simulated traces with a total of 180 events ranging from
0.5 to 10 pA. The highlighted point in each line corresponds the threshold used in A. C Same as in B except
showing the true positive count as a function of the threshold. D same as in C except showing the false
positive count.

[33] is nearly twenty years old and is often outperformed by deconvolution approaches, it is
implemented in two commonly used software packages for the analysis of electrophysiolog-
ical data: Axograph and pClamp. Therefore it is still regularly used when PSC detection
is performed [99, 106]. When testing these algorithms, we attempted to give each its best
chance to perform well. Specifically, that means that the template-based and deconvolution
methods were given the average of the true underlying events as a template. We gave the
Wiener Filter the true noise power spectral density for simulated data. For real data with
high enough spontaneous rates, it was difficult to find a “quiet” section of the trace to esti-
mate the noise power spectral density (PSD); therefore we provided an AR fit to the noise
from Bayesian inference for the Wiener Filter’s noise PSD. For simulated data with Bayesian
inference, we provided the true priors on τ r and τ d that were used to generate the data.

First, we simulated a test set of recordings with realistic levels of noise and with relatively
low SNR PSCs. Each of the three algorithms produces a time series equal in length to the
input recording that is something like a score that an event is happening at that point in
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time. For the template-based method the output represents the goodness-of-fit to the event
template at that point in time, and for the deconvolution the output is an estimate of the
event amplitude at that point in time. For the Bayesian approach the output time series
is the marginal posterior of an event at each sample. Importantly, in practice the output
for the template-matching and deconvolution methods only have an empirically reasonable
interpretation in the high SNR case. To obtain estimates of event times for each simulated
trace for each method, we detected peaks above some threshold in these time series as
a function of their standard deviations. Figure 4.3A shows an example of results for each
algorithm on simulated data. The threshold for each method’s output is shown as a horizontal
line, and inferred events are shown as dots. (The threshold for the Bayesian approach is
difficult to see as it is very close to zero.)

By varying the threshold and counting the number of true positives and false positives,
we can get a sense of how noisy the output is from each approach. The Bayesian approach
is able to accurately detect more events while accumulating fewer false positives than the
other methods (Figure 4.3B). Importantly, it also maintains similar levels of true and false
positives as the threshold is varied (Figures 4.3C & 4.3D), indicating that our approach is
more robust to the choice of threshold. This is achieved because of the more precise and less
noisy representation of PSC timing produced by the Bayesian method which can be seen in
the sharpness of the peaks in the Bayesian trace in Figure 4.3A as compared to the other
methods. The average error for true positives was also smallest for the Bayesian method
(see Supplemental Figure 1). While there exists a threshold for the template-matching and
deconvolution methods that performs quite well, small deviations from this value lead to
vastly more false positives or less true positives (Figures 4.3C & D). When applying these
methods to real data, it may not be possible to finely tune the threshold parameter on a
per dataset basis since ground truth information is not available. This can be especially
troublesome when online or closed-loop analysis is desired.

We next compared methods on real voltage-clamp recordings in which we could modulate
the SNR of an event physiologically. To achieve this, we made paired patch recordings of
a PV+ cell and a layer V pyramidal cell until we found an inhibitory connection from the
fast-spiking cell onto the pyramidal cell with a probability of a postsynaptic event extremely
close to 1.0. We then moved the holding potential for the postsynaptic cell towards the
reversal potential for the inhibitory current. In this way, we could obtain ground truth data
in which we had direct control over the SNR (Figure 4.4A, B, & C, top traces).

We ran 50 trials each at three holding potentials representing relatively high, medium,
and low SNR regimes and detected events using all three methods. Only the Bayesian
approach was sensitive enough to detect events reliably in the low SNR case (Figure 4.4A,
B, & C, rasters). Similar to the simulated data, the Bayesian approach was also the only
method which was robust to the thresholding parameter, indicating that the posterior over
event times is highly peaked. As expected, as the SNR decreases, the ability to accurately
detect the timing of the event decreases.

Any approach will have hyperparameters that must be selected, and the Bayesian ap-
proach allows for tuning of hyperparameters corresponding to prior distributions on model
parameters. We show that a single set of prior distribution hyperparameters can perform
well across several physiological regimes by running inference on traces from different cell
types and under different recording conditions while holding the hyperparameters constant.
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Figure 4.4: Results on real voltage-clamp recordings. A-F Comparison to other detection methods on real
data while modulating the SNR. A Top: a single trial of the spiking presynaptic cell firing from direct
current injection. Middle traces: three example trials of the connected postsynaptic cell responding with an
IPSC. The postsynaptic cell is being clamped at -45 mV. Below the examples is the mean trace over all 50
trials. Bottom rasters: estimated events for 50 trials for each detection method. B-C Same as in A except
with the postsynaptic cell held at -50 mV (B) and -55 mV (C). The scales for the example traces are all
the same across A-C and likewise for the mean traces. D-F The average number of evoked events counted
in a window around the spike time (1.0 msec before to 5.0 msec after the spike) above a baseline rate of
detected events per trial as a function of threshold for each method. Colors and symbols as in 2C-B. The
dotted horizontal line represents perfect performance of one extra event detected per trial. G-I Examples
of results on several types of real data. G Spontaneous EPSCs detected in a layer II/III pyramidal cell, top,
a SOM+ cell, middle, and a PV+ cell, bottom. H Spontaneous IPSCs in a layer II/III pyramidal cell. I
Spontaneous EPSCs and IPSCs detected in an in vivo recording from a FS cell.

In 4.4G we show that with a single set of prior parameters our method can detect EPSCs
across three different cell types: a layer II/III pyramidal cell, a SOM+ interneuron, and
PV+ interneuron. Despite the differing statistics in each of these traces (event features and
noise), event detection performs well. In 4.4H we show results for spontaneous IPSCs in a
layer II/III pyramidal cell. For these results, we used the same prior parameters as in 4.4G
except that we increased the adjusted the bounds for the time constants to account for the
slower kinetcs of IPSCs. Finally, in 4.4I we show results on an FS cell recorded in vivo. The
prior parameter settings here are similar to those in 4.4G except that we had to increase
the rate prior on the number of events. We stress that there is no correct prior setting, but
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that the priors allow the user to trade off between objectives like true versus false positives
(e.g., through the rate parameter or minimum event amplitude). For reference, we include
the hyperparameter settings for all inference results in Supplmentary Table 1.

4.3.3 Extension 1: Direct optical stimulation artifact

For certain experiments, it may be productive to actively drive cells to fire in order to
study circuit properties. In particular, we may want to combine voltage-clamp recordings
with spatiotemporally structured optical stimulation of a putative presynaptic population
of neurons. This can induce optically evoked artifacts from direct optical currents in the
voltage-clamp recording. As an example, one could express an optogenetic channel pan-
neuronally which would allow the simultaneous mapping EPSCs and IPSCs onto one cell.
Under these conditions, the cell under voltage-clamp will also express opsin and respond to
any stimulating light. Similarly, in neurotransmitter uncaging mapping experiments, there
will be a direct stimulation of the postsynaptic cell at most stimulation sites close to the
cell.

We show that our approach is able to decompose a simulated trace with a direct optical
current in Figure 4.5. Specifically, we simulated a trace consisting of many EPSCs with an
additive direct optical stimulation current, consistent with eqn. 4.10. On this simulated
data, inference performs very well in terms of extracting events simultaneously with artifact
isolation.
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Figure 4.5: Removing direct stimulation artifacts from active mapping data. A Top: a simulated voltage-
clamp recording that is contaminated by a large direct, optical current. Top middle: the true direct current
(blue) with an estimate of the inferred direct current (dashed, red). Bottom middle: the true current used
in the top trace. Bottom, the inferred amplitude-time posterior (blue) with true amplitude-time coordinates
overlaid (red X’s). B Top: direct optical currents evoked in a single cell by stimulating different locations
with one-photon excitation and a DMD. Bottom: same as above but each trace is normalized to have the
same amplitude. C-D PSC detection with direct optical stimulation on real mapping data. C Inference
results for one-photon, DMD-based mapping data with direct stimulation contamination. All three trials
are for a single stimulation site. Red line shows when the stimulating laser is on. Dark blue trace shows the
posterior over event times. Light Blue trace shows the MAP estimate for the synaptic currents. Maroon
trace, MAP estimate for the direct stimulation. Black, raw voltage-clamp observation. D Inference results
for two-photon, SLM-based mapping data with direct stimulation contamination. Left, three trials from a
particular stimulation location which shows putative evoked EPSCs riding on top of direct stimulation with
inference. Right, same as the results to the left but for a stimulation location further from the cell.
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In Figure 4.5B-D, we present results on real data obtained by combining voltage-clamp
recording with one-photon stimulation via a digital micromirror device (DMD) as well as
two-photon, holographic stimulation of neurons. In 4.5B, we show direct currents at many
different stimulation locations with one-photon excitation via a DMD. Under these condi-
tions, the shape of the current is not well characterized by a parameterized template function
so we must use an empirically derived template. When normalized, all of the currents have
roughly similar shapes, validating our approximation of the artifact as a scaled template. In
4.5C we show PSC inference on three trials from a single stimulation location that has puta-
tive evoked PSCs overlapping the direct stimulation artifact. In Figure 4.5D, we show similar
results except the stimulation is performed using two-photon excitation with a spatial-light
modulator (SLM). We found that under these conditions, we were able to use the model in
eqn. 4.9 and fit two time constants to the optical current. This allowed for a more flexible
fit that could account for the differences in the direct current shape as the stimulation loca-
tion varied. The two sets of traces and results in 4.5D are for three trials at two different
locations. These locations were chosen because they contained putative evoked EPSCs.

4.3.4 Extension 2: Passive mapping experiment (simulation)

In addition to electrical recordings from a post-synaptic cell, we may also have calcium
indicator available in pre-synaptic cells [1]. This allows for a passive mapping experiment
from many pre-synaptic cells (optically imaged) to a single post-synaptic cell (patched). Here
we provide an example of the usage of the joint inference procedure (Figure 4.6A). We have
simulated a population of presynaptic cells which are observed via calcium imaging (SNR
for these cells is plausible for a well-tuned setting, and bin size is 35ms). These cells drive
post-synaptic events in the simulated patched cell (noise is biologically plausible, and bin size
is .05ms). In 4.6A, 4 of 6 candidate presynaptic neurons are observed. Postsynaptic events
evoked by unobserved neurons are inferred on a per event basis whereas events co-occuring
with presynaptic events arise from a single variable (see model eqns. 4.12).

We see that we can recover events jointly from the calcium imaging and electrophysiology,
with event identity successfully linked across the two modalities. In addition, the histogram
in the right panel of Figure 4.6B indicates that combining electrophysiology and calcium
imaging tends to yield increased temporal precision of event times compared to inference from
calcium imaging alone (this intuitively follows from the fact that the electrophysiology has
much higher temporal resolution and the Bayesian inference can combine information across
modalities). This simulation serves as a proof-of-concept that this probabilistic approach
can provide meaningful automatic analysis for passive mapping experiments.

4.4 Discussion

In this work we have presented a probabilistic formulation of the event detection problem
for electrophysiological recordings with an emphasis on PSC detection. This method works
on simulated and real data and its performance compares favorably relative to existing
methods. We have also shown how the probabilistic model can be incorporated into two
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Figure 4.6: Joint inference over simulated calcium and voltage data. A Observed data and true/inferred
event times for four simultaneously observed calcium traces (top) and (for simplicity) just a single voltage
trace (bottom). Colored dots indicate to which trace the algorithm matched each event; gray dots in
bottom correspond to voltage events that were detected but (correctly) not matched to any detected calcium
events. In this example the algorithm correctly matched all calcium-observed events. B Histograms of
temporal error in estimated event times. Given calcium only, the variance of inferred event times is large;
incorporating voltage information drastically reduces this variance, indicating significant potential gains in
temporal resolution from this Bayesian data fusion approach.

extensions applicable for mapping experiments which make use either of optical stimulation
or multi-modal fusion of electrophysiology with calcium imaging.

The PSC detection problem explored in this paper is similar to the more general set of
problems in neuroscience (and signal processing more broadly) having to do with inferring
events in noisy timeseries. In neuroscience, recent work has proposed probabilistic, MCMC-
based tools for analysis of calcium imaging data [172, 139]. However, we are not aware of
similar tools yet being leveraged for analysis of electrophysiology data. The models devel-
oped in this paper are formally similar to those used in the calcium imaging setting, with
appropriate modifications to allow for structured AR noise and distinct per event kinetics,
as well as detailing the extensions related to the mapping setting.

While there are other discriminative methods that have been proposed for deconvolution
(e.g. see [166] for alternative event-detection methods for calcium imaging), these approaches
lack the clear probabilistic generative semantics which facilitate modularity and extension
to hierarchical models such as those useful for mapping experiments. Our approach also
complements related work inferring synaptic inputs in a probabilistic fashion using particle
filtering [127] from voltage traces. The present approach focuses on current traces, allows
for per event kinetics, is perhaps simpler to implement, and does not require temporal
discretization.

The inference approach presented in this work makes most sense when PSC rates are
relatively low such that overlap is limited. For very high levels of overlap (i.e. the high-rate
case), we do not expect there is always hope to resolve precise timing of single events, and
it is likely that approaches more like [171] or [127] may be appropriate. That said, we have
found that our method can still give sensible results even when event rates are high (for
example, see Figure 4.4I).
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Aside from the extensions we considered, other sophisticated prior structure can be in-
corporated by making the model hierarchical. For example, in the single trace setting we
might expect the events to cluster by pre-synaptic cell identity or cell type. Even without
the additional observed traces employed in our mapping model, it would be conceivable to
specify and infer latent source clusters based on structure in the distribution of shape or
amplitude of post-synaptic events, depending on what were of most interest scientifically.
In the simplest case, this would result in a mixture model for the events, with each event
associated with a latent pre-synaptic source. We plan to pursue these model extensions in
future work.

4.5 Supplemental Material

4.5.1 Supplemental Table 1: Inference Hyperparameters

amin
(pA)

amax
(pA)

τ rmin
(msec)

τ rmax
(msec)

τ dmin
(msec)

τ dmax
(msec)

λn
events/sec

#
Gibbs
Sweeps

Figure 2C-D 1.5 Inf 0.25 2.50 0.25 2.50 0.0013 1000
Figure 3 0.01 Inf 0.05 1.00 0.50 10.00 2.00 1000
Figure 4A-C -Inf Inf 0.25 3.00 1.00 30.00 0.02 2000
Figure 4G LII/III Pyr 0.5 Inf 0.25 1.50 1.00 5.00 2.00 2000
Figure 4G SOM+ 0.5 Inf 0.25 1.50 1.00 5.00 2.00 2000
Figure 4G PV+ 0.5 Inf 0.25 1.50 1.00 5.00 2.00 2000
Figure 4H 0.5 Inf 1.00 3.00 5.00 30.00 2.00 2000
Figure 4I -Inf Inf 0.05 1.00 5.00 7.50 2000 2000
Figure 5A 5.0 Inf 0.05 0.50 0.50 10.00 200 2000
Figure 5C 5.0 Inf 0.05 0.50 0.50 10.00 0.20 2000
Figure 5D 2.5 Inf 0.10 1.00 1.00 8.00 0.20 3000
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4.5.2 Supplemental Figure 1: Timing Error Distributions
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Figure 4.7: The distributions of timing errors from the results corresponding to the highlighted points in
Figures 3B-D. The histograms have been normalized such that the areas for each histogram sum to one. The
vertical dashed line shows the median value for each distribution. Although the Bayesian method models
the timing of events in continuous time, the resolution of detection for all methods was set to the sampling
resolution of the data (20 kHz) as a result of the peak detection process.
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Chapter 5

Appendix

Further details on the model and algorithm from Chapter 2.

5.1 Technical Details for Gaussian Processes Learning

In this section, we discuss the procedure for learning the mean and variance functions for
the Gaussian process prior on the shape function sj(·). For reference, we introduced the
the optical response experiments to collect pilot data in Section 2.5.2. We discuss how to
normalize the measured current with respect to power and each cell’s unique optical gain in
Section 5.1.1. We explain the model for the variability in the induced current in Section 5.1.2.
We explain how to estimate the mean and variance functions in Section 5.1.3.

Recall from Section 2.5.2 that we need the mean function µ(·), the variance function σ2(·),
and τ in the kernel K(·, ·) to define the Gaussian process. We use the mean and variance
functions estimated from the response data and set the kernel parameter τ = 7.5, 7.5, or 20
for the three dimensions, respectively.

5.1.1 Normalization of measured current

To extract the function of interest sj(·) from the measured current (2.1), we normalize the
raw measurements mi,k by the power level as well as the maximum current for that cell. To
be specific,we first adjust the raw measurement by the power in the corresponding trial

m̂i,k ≡ mj,i/Ij,i, (5.1)

and then by the maximum power-adjusted current of this cell

m̃j,i ≡ m̂j,i/max
k

(
m̄j,k

)
, (5.2)

where m̄j,k =
∑

i:vi=vk
m̂j,i/card

(
{i : vi = vk}

)
.

Plugging (2.1) into (5.1), we can see that

m̂j,i = sj
(
vi
)
ϕj +

cj,i,ϵϵj,i
Ij,i

, (5.3)
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and
m̄j,k = sj

(
vk
)
ϕj +

∑
i:vi=vk

cj,i,ϵϵj,i

Ij,icard
(
{i : vi = vk}

) . (5.4)

Therefore, the normalized current is

m̃j,i =
sj(vi)ϕj
maxk m̄j,k

+
cj,i,ϵϵj,i

Ij,imaxk m̄j,k

. (5.5)

Recalling that maxv sj(v) ≡ 1, we have

m̃j,i ≈ sj(vi) +
cj,i,ϵϵj,i
Ij,iϕj

, (5.6)

where we use the approximation that maxk m̄j,k ≈ ϕj
Recall that the shape function should satisfy that maxi

(
sj
(
xi, 0, 0

))
= 1. Thus,

m̃j,i,X = sj
(
xi, 0, 0

)
+ cj,i,ϵϵj,i/

{
Ij,imax

i

(
sj
(
xi, 0, 0

))
ϕj}. (5.7)

Therefore, when learning the GP using m̃j,i,X , we need to account for the change of variance
as shown in (5.7). Specifically, let ĉj,i,ϵ be an estimate of the standard deviation, we have
c̃j,i,ϵ = ĉj,i,ϵ/

{
Ij,imaxk(x̄j,k,X)

}
.

5.1.2 Estimating the scaled variance

We assume that the standard deviation cj,i,ϵ in (2.15) is a linear function of the mean current.
In other words, cj,i,ϵ = aE[mj,i]+b. Using the repeated measurements at the same stimulation
location, we have

m̄j,k,X =
∑
i∈Si′

m̃j,i,X/card(Si′), (5.8)

and

ĉ2j,k,ϵ =
1

card(Si′)− 1

∑
i∈Si′

(m̃j,i,X − m̄j,k,X)
2, (5.9)

{xuj,i′}n
′

i′=1 is the set of unique stimulation locations for cell j, Si′ ≡ {i : xj,i = xuj,i′} is the
index set of xj,i that equals x

u
j,k, and card(Si′) is the number of indices in Si′ . .

5.1.3 Estimating the mean and variance function with boundary
conditions

Our goal here is to obtain a population mean shape given the noisy measurements of multiple
cell shapes. To this end, we use a Gaussian process GP

(
µ0(·),Σ0(·, ·)

)
as our smoother. We

set the mean function to be zero, i.e., µ0(·) ≡ 0, and set the kernel parameter τ to be a
constant (7.5 for l = 1, 2 and 20 for l = 3).

To enforce the boundary condition, that the mean function is zero beyond some bound-
aries, we set the standard deviation function σ0(·) as

σ0(v) = a

[
1

1 + exp(−B − v)

1

1 + exp(v −B)

]
, (5.10)
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Figure 5.1: Posterior mean of the GP fits on the mean function (left) and the prior variance
for the GP. The red dots represent the normalized current m̃j,i, the blue curve represent the
noninformative variance σ0(·), and the black curve represents the posterior mean, i.e, the
estimated mean function µ̃(·) in Section 2.4.

where a = 1, B = 70 for l = 1, 2, or B = 120 for l = 3. The posterior mean is our estimated
mean function µ̃X(·).

Given the estimated mean function µ̂(·), we can calculate the squared deviations [m̃j,i −
µ̂(vj,i)]

2. We can then take a similar strategy to learn a smooth variance function σ̃(·) with
a GP prior GP

(
µ0(·),Σ0(·, ·)

)
, and a crude observation model

[m̃j,i − µ̂(vj,i)]
2 = σ2(vj,i) + ϵ̇j,i, (5.11)

where ϵ̇j,i ∼ N (0, 1).

5.2 Implementation Details of Algorithm 1

5.2.1 Logit-normal Distributions

For logit-normal distributions, take ϕj for instance, we have

ϕ̄j ≡ log

(
ϕj − ϕlow

ϕup − ϕj

)
∼ N (αϕ,j,1, exp(αϕ,j,2)),

and ϕj = [exp(ϕ̄j)ϕup + ϕlow]/[exp(ϕ̄j) + 1]. As a result, the density function is

q(ϕj | αϕ,j,1, αϕ,j,2) =
1

exp(αϕ,j,2/2)
√
2π

exp

[
−(ϕ̄j − αϕ,j,1)

2

2 exp(αϕ,j,2)

]
ϕup − ϕlow

(ϕj − ϕlow)(ϕup − ϕj)
. (5.12)

And thus the logarithm of q(ϕj | αϕ,j,1, αϕ,j,2) takes the form

log q(ϕj | αϕ,j,1, αϕ,j,2) = C − 1

2
αϕ,j,2 −

(ϕ̄j − αϕ,j,1)
2

2 exp(αϕ,j,2)
− log(ϕj −ϕlow)− log(ϕup −ϕj). (5.13)

The partial derivatives are

∂

∂αϕ,j,1
log q(ϕj | αϕ,j,1, αϕ,j,2) =

ϕ̄j − αϕ,j,1
exp(αϕ,j,2)

,
∂

∂αϕ,j,2
log q(ϕj | αϕ,j,1, αϕ,j,2) = −0.5+

(ϕ̄j − αϕ,j,1)
2

2 exp(αϕ,j,2)
.

5.2.2 Multivariate Normal Distributions

We approximate the posterior distribution of sj
(
L − wj

)
using a multivariate Gaussian

distribution N
(
µ̃j, Σ̃j

)
, where Σ̃−1

j = Σ−1
j + D−1

j with Dj being a diagonal matrix. We

slightly abuse the notation and denote that sj ≡ sj
(
L−wj

)
and assume that the Lj ∈ Rn×3.
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The variational parameters to learn are µj ≡ (µj,1, . . . , µj,n) and Dj ≡ diag
(
dj,1, . . . , dj,n

)
.

We drop the subscript j for simplicity in this section.
The log-likelihood of s is

log q
(
s | µ,D

)
≡ =

1

2
log det

(
2πΣ̃

)−1 − 1

2
(s− µ)T Σ̃−1(s− µ)

=
n

2
log(2π) +

1

2
log det

(
Σ̃−1

)
− 1

2
(s− µ)T Σ̃−1(s− µ)

=
n

2
log(2π) +

1

2
log det

(
Σ−1 +D−1

)
− 1

2
(s− µ)T

(
Σ−1 +D−1

)
(s− µ)

(5.14)
The derivatives w.r.t. µi and di are as follows

∂

∂µi
log q

(
s | µ,D

)
= −1

2

∂

∂µi

[
(s− µ)T Σ̃−1(s− µ)

]
=

(
Σ̃−1

)
i,·
(µ− s),

(5.15)

and

∂

∂di
log q

(
s | µ,D

)
=

1

2
tr
(
Σ̃

∂

∂di

(
Σ−1 +D−1

))
− 1

2

∂

∂di

[
(s− µ)T

(
Σ−1 +D−1

)
(s− µ)

]
=

1

2
tr
(
Σ̃

∂

∂di

(
D−1

))
+

1

2
(si − µi)

2d−2
i

= −1

2
σ̃i,id

−2
i +

1

2
(si − µi)

2d−2
i ,

(5.16)

where σ̃i,i is the ith diagonal element of Σ̃.

5.2.3 Multivariate Normal Distributions with Constraints on
Parameters

We want to make sure that the variational distribution of the shape values falls in the
plausible region given our prior knowledge on s(·). Thus, we set the variational parameters
as

µi =
exp(αi,1)

exp(αi,1) + 1
(µi,max − µi,min) + µi,min, di = exp(αi,2), (5.17)

where µi,max and µi,min are the upper and lower bound of the shape value at this location
from the prior distribution.

The derivatives w.r.t. αi,1 and αi,2 are as follows

∂

∂αi,1
log q

(
s | µ,D

)
= −exp(αi,1)(µi,max − µi,min)

[exp(αi,1) + 1]2

(
Σ̃−1

)
i,·
(µ− s), (5.18)

and

∂

∂αi,2
log q

(
s | µ,D

)
= −1

2
σ̃i,i exp(−αi,2) +

1

2
(xi − µi)

2 exp(−αi,2). (5.19)
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5.3 Table of Notation

Variable Definition
wk Spatial coordinates of the nucleus of neuron k
xi Spatial coordiantes of the stimulation in the ith trial
Ii Intensity of optogenetic stimulation in the ith trial
Ji(t) Postsynaptic current in the ith trial
Ti Set of detected postsynaptic events {ti,j : j = 1, . . . , ni} in the ith trial
M Number of trials
p Number of neurons

mi,k Magnitude of elicited current in neuron k in the ith trial
sk(·) Spatial distribution of opsin expression level of neuron k
ϕk Overall opsin expression level of neuron k
g(m) Mean first spike time given the magnitude of induced current m
h2(m) Variance of first spike time given the magnitude of induced current m

λ̃i,k Intensity of the first spike time of neuron k in the ith trial
ψ(·) Density function of a standard normal distribution
dk Mean transmission delay of neuron k
ei,k Random transmission delay of neuron k in the ith trial
δ2k Variance of transmission delay of neuron k
ti,jk Postsynaptic event time induced by a spike of neuron k in the ith trial
γk Probability of transmission of neuron k
Di Data recorded in the ith trial
D Data recorded in the mapping experiment
λi,k Intensity of postsynaptic event induced by neuron k in the ith trial
Ψ Cumulative distribution function of a standard normal

A(p, ni) Set of all length-ni permutations out of the p neurons
vl,k Relative position of the lth unique stimulation location to the nucleus of neuron k
L Number of unique stimulation locations
Vk Matrix of (v1,k, . . . ,vL,k)
Θk Set of unknown parameters related to neuron k, i.e., {γk, dk, sk(·), ϕk, δk}
Θ Set of all unknown parameters, i.e., Θ = {Θk : k = 1, . . . , p}

L(D;Θ) Likelihood function
θ Variable in Θ

p0(θ;α0
θ, β

0
θ , bθ) Prior distribution of θ

α0
θ, β

0
θ Parameters in the prior distribution of θ

bθ Bounds of θ, bθ = (bθ,1, bθ,2)
T

f(θ; bθ) Logit transformation of θ with bounds bθ
µ(·) Mean function of the Gaussian process for the prior of sk(·)
Σ(·, ·) Variance function of the Gaussian process for the prior of sk(·)
α,β Variational parameters

ELBO(α,β) Evidence lower bound
q(θ;αθ, βθ, bθ) Variational distribution for θ

B Diagonal matrix in the variational distribution for
(
sk(v1,k), . . . , sk(vL,k)

)T ∈ RL

Θ[s] Monte-Carlo sample of Θ drawn from the variational distribution
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