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Learning Drivers’ Utility Functions in a Coordinated 
Freight Routing System Based on Drivers’ Actions 

EXECUTIVE SUMMARY 

As urban areas grow and city populations expand, traffic congestion has emerged as a 
significant problem, negatively impacting economic and environmental conditions, particularly 
in regions with substantial truck traffic. In this study, we present a coordinated freight routing 
system designed to optimize network utility and reduce congestion through personalized 
routing guidance and incentive mechanisms. This system customizes incentives and payments 
for individual drivers based on current traffic conditions and their specific routing preferences. 

The proposed system uses a mixed logit model with a linear utility specification to capture 
drivers' route choice behaviors and decisions accurately. Participation in the system is 
voluntary, ensuring that most drivers receive a combined expected utility, including incentives, 
that exceeds their anticipated utility under User Equilibrium (UE), thus encouraging them to 
follow the suggested routes. The system continuously collects data on drivers' routing choices 
and updates utility parameter estimates based on recent decisions using a hierarchical Bayes 
estimator. This adaptation allows the system to dynamically refine its understanding of driver 
preferences, ensuring that routing suggestions remain relevant and effective. 

To address the variation in drivers' route choice preferences, a logit mixture model is employed 
within the willingness-to-pay space. This model assumes that a truck driver evaluates a route 
based on several attributes, such as travel time, distance, speed limits, and the number of 
intersections. This model helps estimate drivers' preferences accurately, even without precise 
knowledge of individual utility parameters. 

The system operates over defined intervals, where truck drivers submit their intended Origin-
Destination (OD) pairs to a central coordinator. The coordinator assigns routes and 
corresponding payments, ensuring that drivers receive higher utility than they would under UE 
conditions. This process involves clustering drivers based on their utility parameters and 
optimizing route assignments and payments at the cluster level. By clustering drivers, the 
system can optimize overall system costs and offer tailored incentives to maximize compliance. 

Experimental results on the Sioux Falls network validate the effectiveness of this approach. The 
system's performance is evaluated through various sensitivity analyses, and simulations show 
that the coordinated freight routing system can significantly improve the performance of the 
network.  
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1. Introduction 

Traffic congestion has become a significant issue in modern urban environments, reducing 
residents' quality of life and causing considerable economic losses. In 2022, Americans spent an 
average of 51 hours annually in traffic jams, leading to an economic impact of $81 billion 
nationwide [1]. Beyond the financial costs, congestion worsens air pollution and negatively 
affects health, with vehicle emissions being a major pollutant [2],[3]. 

A major factor contributing to traffic congestion is the lack of coordination among road users. 
Without cooperation, individuals independently select routes to minimize their own travel costs 
[4]. This self-interested behavior, referred to in the literature as User Equilibrium (UE) [5], 
increases the overall system costs and reduces the efficiency of the transportation network. 

Research in traffic management has focused on transitioning from UE to more efficient traffic 
distributions through various tolling methods. One prominent technique is congestion pricing, 
introduced in earlier studies [6], which proposes charging tolls on heavily congested roads to 
influence drivers' route choices and reduce traffic congestion. This approach has been explored 
in numerous studies, addressing aspects such as dynamic congestion pricing [7], the effects on 
diverse user value-of-time [8], and revenue management strategies from congestion tolls [9]. 
Besides congestion pricing, other innovative strategies to alleviate congestion include tradable 
credit schemes [10] and tradable travel permits [11], which allow drivers to trade travel rights 
within the network. 

Recently, there has been a growing interest in using positive incentive policies to reduce traffic 
congestion, as these methods are often more favorable to both the public and policymakers 
[12]. Research has highlighted the effectiveness of such incentives in modifying commuter 
behavior, including changes in departure times and travel modes [13]-[17]. For example, a 
study conducted in Bangalore, India, aimed to ease congestion by encouraging commuters to 
travel during off-peak hours through monetary rewards [18]. This approach led to a significant 
shift in travel habits, resulting in lower average commute times. At Stanford University, the 
CAPRI program [19] aimed to mitigate peak-hour traffic by incentivizing alternative 
transportation methods like walking and biking. The program successfully promoted these 
alternatives and reduced commute times. Additionally, a study examined a lottery-based 
incentive system [20] to decrease congestion in urban transit by encouraging public transit use 
during less busy hours, demonstrating the potential of such strategies to manage traffic flow 
more effectively. 

The advent of connected devices, such as mobile apps, and the rise of autonomous vehicles 
have underscored the potential for personalized incentives in transportation research [21]. 
These technologies enable a central coordinator to interact with travelers, monitor their 
choices, and tailor incentives based on individual preferences [22]. One example is Tripod [23], 
a real-time, smartphone-based system designed to influence travel decisions—such as mode of 
transport and departure time—through personalized information and incentives. Instead of just 
reducing travel time, Tripod aims to enhance overall energy efficiency. Another approach [24] 
combines behavioral modeling with optimization techniques to create customized travel 



 

 2 

incentives that encourage energy-efficient choices. Additionally, particle filters have been used 
in research to analyze individual responses and learn personal preferences [25], promoting 
sustainable travel behaviors. The Random Utility Maximization (RUM) framework [26][27] is 
commonly used to model user behavior and understand individual travel preferences. RUM 
posits that individuals choose the option with the highest utility among several alternatives. For 
more on discrete choice modeling and related estimations, we refer the interested reader to 
[28]. 

While earlier studies focus on influencing commuters' departure times and travel modes, our 
research is most closely related to the work found in [29], [30], [31], and [32]. These 
investigations study the use of personalized incentives to guide drivers' routing choices within 
transportation networks as a strategy to mitigate traffic congestion. For example, [29] 
introduced a distributed computational approach to address the large-scale optimization of 
offering personalized incentives to drivers, aiming to reduce overall travel time or other 
network costs. Studies [30], [31], and [32] involved a central coordinator managing route 
assignments and incentives for truck drivers to improve traffic flow through a budget-neutral 
method. Specifically, [31] incorporated user heterogeneity in value-of-time by using a multi-
class model to ensure that each user class benefits more than they would under UE, thus 
achieving a Pareto improvement. Expanding on this, [32] included various factors beyond just 
value-of-time in the utility function, such as travel time and distance, and used a maximum 
likelihood estimation to determine the parameters of the proposed utility function. 

This research introduces a coordinated routing system designed to optimize network efficiency 
and reduce congestion through personalized incentives and payments. Our system customizes 
incentives for alternative routes based on current traffic conditions and individual driver 
preferences. The objective is to ensure that the majority of drivers find their combined 
expected utility, including incentives, to be greater than their expected utility under UE, 
encouraging them to follow the suggested routes. The system collects data on drivers' route 
choices and continually updates utility estimates based on this information. To accurately 
model driver preferences, we use a logit mixture model and apply the Hierarchical Bayes 
method for estimating utility parameters. By incorporating driver feedback into a closed-loop 
system, our approach dynamically adjusts to actual driving behavior, providing a precise and 
adaptable representation of evolving preferences. Experimental results show that our 
coordinated routing system enhances network performance, with even more significant 
improvements when additional budget is available. 

Our study concentrates on optimizing truck routes and evaluating a scenario where incentives 
are only offered to truck drivers for several key reasons. First, due to their larger size and 
slower speeds, trucks significantly disrupt general traffic flow. This slower movement leads to a 
disproportionately large impact on traffic congestion [33]. Second, since trucks are often 
confined to specific routes, implementing a coordinated routing system is more 
straightforward. Third, truck drivers regularly alter their routes based on traffic conditions for 
similar journeys, making them a suitable group for coordinated routing interventions. This 
framework can be easily modified to apply incentives to selected groups of drivers. 
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In this section, we differentiate our study from previous research, particularly focusing on the 
methodologies in [31] and [32]. Firstly, while [32] utilizes a cluster-based approach for utility 
learning and incentive distribution, our study emphasizes the customization of incentives at the 
individual level. By tailoring incentives based on each driver’s unique utility parameters, we 
better match individual preferences, thereby enhancing compliance with assigned routes. 
Secondly, instead of relying on static survey data and a multinomial logit model with basic 
maximum likelihood estimation as in [32], our approach continuously updates utility 
parameters using actual driver behavior data. This ongoing adjustment, enabled by a logit 
mixture model, provides a more accurate and dynamic representation of driver preferences. 
Furthermore, [29] assumes that drivers choose routes based on fixed probabilities without 
considering the utility of different routes, which contrasts with our approach that integrates 
utility-based route choice. Finally, our method uses incentives as continuous variables, offering 
more flexibility and adaptability in their application. In contrast, [29] uses fixed discrete 
incentive values, which complicates practical implementation and can hinder algorithm 
performance. 

This paper makes several key contributions: First, it introduces a personalized routing approach 
that dynamically adjusts to drivers' changing preferences by incorporating their historical 
routing decisions to reduce congestion. Second, it presents a new algorithm for distributing 
incentives, based on utility estimations derived from a mixed logit model. Third, our study 
evaluates the compliance rates of drivers and explores the consequences of non-compliance on 
overall system performance and revenue.  

The paper is organized as follows: Section 2 covers the problem formulation. Section 3 
describes the proposed methodology. Section 4 reports the simulation results. Finally, Section 5 
concludes the paper.   
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2. Problem Formulation 

Table 1 provides a summary of all key notations utilized in this paper. Scalar variables are 
represented without bold formatting. Vector variables are shown in bold lowercase letters. 
Matrices and higher-dimensional variables are denoted in bold uppercase letters. Sets are 
indicated using calligraphic font. 

2.1 Transportation network 

Let 𝐺 = (𝑉, 𝐸)  denote a transportation network, with 𝑉 representing the set of nodes and 𝐸 
representing the set of road segments. This network accommodates both trucks and passenger 
vehicles. We assume there are 𝑊 distinct Origin-Destination (OD) pairs for truck drivers. For 
each OD pair 𝑤, the available routes connecting the origin to the destination are represented 
by ℛ𝑤 = {1,2, … , |ℛ𝑤|}. 

Let 𝑁𝑙𝑃 be the number of passenger vehicles on road segment 𝑙. The travel time for road 
segment 𝑙 is given by a known non-linear function 𝐶𝑙(𝑁𝑙𝑃 , 𝑁𝑙𝑇), where 𝑁𝑙𝑇 is the number of 
trucks on the same segment. The function 𝐶𝑙 follows the Bureau of Public Roads (BPR) form: 

𝐶𝑙(𝑁𝑙𝑃 , 𝑁𝑙𝑇) = 𝛾𝑎 + 𝛾𝑏 (
𝑁𝑙𝑃 + 3𝑁𝑙𝑇

𝛾𝑐
)

4

 

where  𝛾𝑎, 𝛾𝑏 , 𝛾𝑐  are constants. This equation is utilized in Sections 3.2 and 3.3 to model the 
travel times for truck routes. 

2.2 Random utility model 

We address the variation in drivers' route choice preferences by employing a logit mixture 
model [34] within the willingness-to-pay (WTP) space [35]. It is assumed that a truck driver 
evaluates a route based on 𝐿 attributes, which may include factors such as travel time, 
distance, speed limits, and the number of intersections. Among these attributes, travel time is 
always considered a critical factor in route selection. It is further assumed that, for any route, 
only the travel time is influenced by the current traffic conditions, while other attributes remain 

constant. For driver 𝑛 evaluating an alternative route 𝑗, let  𝐱𝐣𝐧 = (𝑥𝑗𝑛
1 , 𝑥𝑗𝑛

2 , … , 𝑥𝑗𝑛
𝐿 ) denote the 

vector of 𝐿 observable attributes for route 𝑗. In this vector, 𝑥𝑗𝑛
1   specifically represents the travel 

time for driver 𝑛 on route 𝑗. 

Consider a scenario where a truck driver 𝑛 chooses from among various alternative routes 𝑗 ∈
ℛ. The utility of selecting route 𝑗 for truck driver 𝑛, denoted as 𝑈𝑗𝑛, is described as: 

𝑈𝑗𝑛 = 𝑉𝑗𝑛 + 𝑝𝑗𝑛 + 𝛽𝑛𝜖𝑗𝑛 

. = 𝐱𝐣𝐧
𝑇  𝛉𝐧 + 𝑝𝑗𝑛 + 𝛽𝑛𝜖𝑗𝑛

 

Here, 𝑉𝑗𝑛 = 𝐱𝐣𝐧
𝑇  𝛉𝐧 represents the observed utility and 𝛉𝐧 = (𝜃𝑛

1, 𝜃𝑛
2, … , 𝜃𝑛

𝐿) is the vector of 

parameters reflecting driver 𝑛 's preferences for the 𝐿 observable attributes of a route. Given 

that 𝑥𝑗𝑛
1  denotes the travel time for route 𝑗 for driver 𝑛, 𝜃𝑛

1  corresponds to the utility 

coefficient for travel time for driver 𝑛. We assume that 𝛉𝐧 follows a multivariate normal 
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distribution: 𝛉 ∼ 𝒩(𝛍, 𝛀), with 𝛍 as the mean vector and 𝛀 as the covariance matrix. The error 

term 𝜖𝑗𝑛 follows a Gumbel distribution, with 𝑉𝑎𝑟(𝜖𝑗𝑛) =
𝜋2

6
. Additionally, 𝛽𝑛 is the scale 

parameter associated with the error term for driver 𝑛. 

The variable  𝑝𝑗𝑛 represents the payment that driver 𝑛 receives for selecting route 𝑗. This model 

employs the Willingness-to-Pay (WTP) space notation as defined by [35], where the price 
coefficient is consistently set to 1. A positive 𝑝𝑗𝑛 indicates that the driver receives a payment 

from the system, whereas a negative 𝑝𝑗𝑛 means that the driver is charged by the system. 

It is important to note that the coordinator cannot precisely know the exact value of 𝛉𝐧. 
Instead, 𝛉𝐧 can only be estimated based on the historical route choices made by driver 𝑛. 

Consequently, the estimate of 𝛉𝐧 is denoted by 𝜽𝒏̃, and the estimate of 𝛽𝑛 is denoted by 𝛽𝑛̃. 
The method for estimating these parameters is detailed in Section 3.4. 

2.3 Coordinated routing system 

The coordinated routing system operates over defined intervals, which can range from several 
hours to a full day as set by the user. Before each interval begins, truck drivers scheduled to 
travel during that period must submit their intended OD pair 𝑤𝑛 to the central coordinator. The 
entire group of truck drivers traveling in a particular period is represented as 𝒟, while those 
planning to travel between a specific OD pair 𝑤 are denoted as 𝒟𝑤. For each planning period, 
the central coordinator works with a budget 𝐵, which is greater than or equal to zero. 

Upon receiving the reported OD pairs from the truck drivers, the coordinator assigns each 
driver 𝑛 a specific route 𝑎𝑛 ∈ ℛ𝑤𝑛 along with the corresponding payment  𝑝𝑛, which could be 
either a charge or a reward. In addition to the assigned route  𝑎𝑛  and the payment  𝑝𝑛, driver 𝑛 
is provided with details about the attributes of the assigned route  𝑎𝑛  within the coordinated 
routing scheme, denoted as 𝐱𝐜𝐨,𝐧, where 𝑥𝑐𝑜,𝑛

1  represents the estimated travel time. 

Drivers can choose whether or not to participate in the coordinated routing system. A driver is 
incentivized to follow the assigned route if it offers higher utility compared to the UE scenario, 
where there is no central coordination and each driver independently selects routes to 
maximize personal utility. As a reference, drivers receive information about the UE route under 
the same traffic demand conditions, with the estimated route details at UE represented as 
𝐱𝐮𝐞,𝐧, where 𝑥𝑢𝑒,𝑛

1  is the estimated travel time. The process for determining the UE is explained 
in Section 3. With the assigned route 𝑎𝑛, payment 𝑝𝑛, and the estimated attributes 𝐱𝐜𝐨,𝐧 and 

𝐱𝐮𝐞,𝐧, drivers 𝑛 is asked to decide whether to adhere to the assigned route. If they choose to 
follow 𝑎𝑛, they receive the payment 𝑝𝑛. If they decide against it, they are free to choose any 
other route from  ℛ𝑤𝑛. The central coordinator tracks each driver's choice between the 
assigned route and an alternative route. 

It is assumed that drivers lack precise knowledge of the travel times for their assigned routes 
when making their routing decisions. Instead, they rely only on the estimates provided by the 
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system. We also assume that drivers do not incorporate their own judgments or external 
information about travel times into their decision-making process. 

Table 1. Notations of frequently-used variables. 

Variable Meaning 

𝑊 The number of total OD pairs in the network 

ℛ𝑤 The set of routes that connect OD pair 𝑤 

𝐿 The number of observed attributes of a route 

𝐾 The number of clusters for each OD in the clustering algorithm 

𝒟 The set of all truck drivers in a period 

𝒟𝑤 The set of truck drivers who intend to travel in OD pair 𝑤 

𝐵 The budget of the coordinator 

𝛉𝐧 The utility parameters of driver 𝑛 

𝜽𝒏̃ 
The estimated utility parameters of driver 𝑛 

𝑤𝑛 The OD pair of driver 𝑛 intends to travel 

𝑘𝑛
𝑤  The cluster that driver 𝑛 whose OD pair is 𝑤 belongs to 

𝑎𝑛 The proposed route assignment of driver 𝑛 

𝑝𝑛 The proposed payment/incentive for driver 𝑛 

𝐱𝐜𝐨,𝐧 The attributes of the assigned route of driver 𝑛 

𝐱𝐮𝐞,𝐧 The attributes of the route at UE of driver 𝑛 

A, 𝛼 Cluster-based route assignments 

𝚽, 𝜙 Cluster-based payments/incentives 

𝐶𝑙 The travel time of road segment 𝑙 

𝑁𝑙𝑃 The number of passenger vehicles that traverse road segment 𝑙 

𝑁𝑙𝑇 The number of trucks that traverse road segment 𝑙 

𝑈𝑟𝑛 The unobserved utility of alternative route 𝑟 for truck driver 𝑛 

𝑉𝑟𝑛 The observed utility of alternative route 𝑟 for truck driver 𝑛 

𝑈 Total utility of the truck drivers 

𝑇 Total travel time of the passenger vehicles 

𝑂 The objective of the optimization problem 
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3. System Design 

 

Figure 1. The structure of the proposed system. 

The primary aim of the proposed system is to enhance the efficiency of the transportation 
network beyond the limitations of the UE by assigning personalized routes and offering 
payments to truck drivers. This improvement in efficiency is measured by combining the 
expected total travel time for passenger vehicles with the total utility derived by truck drivers, 
using a weighted sum. Participation in the system is voluntary, allowing truck drivers the choice 
to opt in or out based on their preferences. 

In real-world situations, each driver has distinct routing preferences and utility parameters. The 
system estimates these parameters by analyzing the drivers' recent routing decisions. However, 
incorporating these individual utility parameters into an optimization model designed to 
minimize the overall cost of the transportation network greatly increases computational 
complexity, especially as the number of drivers grows. 

To manage computational complexity, we first categorize all drivers into distinct clusters and 
then solve a cluster-specific route assignment problem to minimize system costs. Following this, 
we tailor payment schemes for each driver based on their assigned routes and estimated utility 
parameters, aiming to maximize participation through personalized incentives. By collecting 
drivers’ actual route choices, we refine the utility function estimates for each driver based on 
their recent decisions. The overall system architecture is depicted in Figure 1. 
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3.1 Clustering the drivers based on their utility parameters 

At the start of each period, the system collects information regarding the OD pair that each 
truck driver intends to traverse. The set of drivers planning to travel on a specific OD pair 𝑤 is 
represented as 𝒟𝑤. Additionally, the estimated utility parameter for each driver 𝑛, denoted as 

𝜽𝒏̃, has been determined based on their past behavior. The K-means algorithm is utilized for 
clustering drivers, with the number of clusters 𝐾 being an adjustable parameter. This clustering 
process, specific to each OD pair, is outlined in Algorithm 1.  

 

3.2 Cluster-based route assignment problem with system optimality 
consideration 

With the centroid utility parameters identified for each cluster and the corresponding number 
of drivers, we design a cluster-based route assignment method aimed at optimizing the overall 
system cost. 

For each cluster 𝑘𝑤  within OD pair 𝑤, the method determines how to allocate drivers in the 
cluster to routes 𝑟 ∈ ℛ𝑤 and calculates the corresponding payments for these drivers. Let 

𝛂𝐤
𝐰 = (𝛼𝑘

𝑤,1, … , 𝛼𝑘
𝑤,|ℛ𝑤|

) represent the allocation for cluster 𝑘𝑤  of OD pair 𝑤, where  𝛼𝑘
𝑤,𝑟 

indicates the proportion of drivers in cluster 𝑘𝑤  of OD pair 𝑤 assigned to route 𝑟. The overall 
allocation for all clusters is denoted by 𝐀 = {𝛼𝑘

𝑤,𝑟 , 𝑤 = 1, … , 𝑊, 𝑘 = 1, … , 𝐾, 𝑟 ∈ ℛ𝑤}. During 
this step, payments for each route are also calculated at the cluster level. Let  𝛟𝐤

𝐰 =

(𝜙𝑘
𝑤,1, … , 𝜙𝑘

𝑤,|ℛ𝑤|
) represent the payments for cluster 𝑘𝑤  of OD pair 𝑤, where 𝜙𝑘

𝑤,𝑟 is the 

payment for a driver in cluster  𝑘𝑤  of OD pair 𝑤 if assigned to route 𝑟. The payments for all 
clusters are denoted by 𝚽 = {𝜙𝑘

𝑤,𝑟 , 𝑤 = 1, … , 𝑊, 𝑘 = 1, … 𝐾, 𝑟 ∈ ℛ𝑤}. 
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Let  𝐱𝐫𝐰 = (𝑥𝑟𝑤
1 , 𝑥𝑟𝑤

2 , … , 𝑥𝑟𝑤
𝐿 )  represent the vector of attributes for route 𝑟 within OD pair 𝑤. 

According to the established notation, 𝑥𝑟𝑤
1  is defined as the travel time for route 𝑟 ∈ ℛ𝑤. This 

variable, 𝑥𝑟𝑤
1 , is modeled as a function of the allocation matrix 𝐀 using the BPR function, since 

𝐀 determines the number of trucks on each network link. Besides travel time, route 𝑟 ∈ ℛ𝑤 has 
other attributes 𝑥𝑟𝑤

2 , … , 𝑥𝑟𝑤
𝐿  that are independent of traffic volume and are assumed to be 

known beforehand. Thus, we express 𝐱𝐫𝐰 as a function of the allocation 𝐀, denoted as 𝐱𝐫𝐰(𝐀). 

Our objective is to minimize the overall cost within the transportation network. This cost is 
calculated as a weighted sum of the total travel time for passenger vehicles and the negative 
value of the total utility derived by truck drivers, with the inversion intended to maximize the 
utility for truck drivers. In the context of the cluster-based optimization problem, the total 
utility for truck drivers is defined as follows: 

. 𝑈(𝐀) = ∑ ∑ ∑ 𝛼𝑘
𝑤,𝑟

𝑅

𝑟=1

𝐾

𝑘=1

𝑊

𝑤=1

(𝐱𝐫𝐰(𝐀)𝑇 𝛉𝐤
𝐰‾ ) 

The total travel time of passenger vehicles in the network is given by: 

𝑇(𝐀) = ∑ 𝑁𝑙𝑃

𝑙∈𝐸

𝐶𝑙(𝑁𝑙𝑃 , 𝑁𝑙𝑇(𝐀)) 

The total utility of truck drivers and the total travel time of passenger vehicles both depend on 
the allocation 𝐀. The objective function can therefore be expressed as follows: 

. 𝑂(𝐀) = 𝜆𝑇(𝐀) − (1 − 𝜆)𝑈(𝐀) 

where 𝜆 ∈ [0,1]  is a weighting factor. 

The optimization problem is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐀,𝚽

  𝑂(𝐀)

𝑠. 𝑡  𝑆𝑘
𝑤,𝑟 ≥ 𝑄𝑘

𝑤  ∀𝑤, 𝑘, 𝑟 ∈ ℛ𝑤

. ∑ ∑ ∑ 𝑑𝑘
𝑤

𝑅

𝑟

𝐾

𝑘

𝑊

𝑤

𝛼𝑘
𝑤,𝑟𝜙𝑘

𝑤,𝑟 ≤ 𝐵

. ∑ 𝛼𝑘
𝑤,𝑟

𝑅

𝑟

= 1  ∀𝑤, 𝑘

. 𝛼𝑘
𝑤,𝑟 ≥ 0  ∀𝑤, 𝑘, 𝑟 ∈ ℛ𝑤

 

where 𝑆𝑘
𝑤,𝑟  represents the expected utility of cluster 𝑘𝑤  assigned to route 𝑟, given by: 

. 𝑆𝑘
𝑤,𝑟 = 𝐱𝐫𝐰(𝐀)𝑇 𝛉𝐤

𝐰‾ + 𝜙𝑘
𝑤,𝑟 

𝑄𝑘
𝑤  denotes the expected utility for cluster 𝑘𝑤  within OD pair 𝑤 in a UE scenario. The detailed 

derivation of 𝑄𝑘
𝑤  is provided in the Appendix. 
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The first constraint ensures that the expected utility from the assigned routes within each 
cluster meets or exceeds the expected utility in the UE scenario, which is key to motivating 
drivers to follow the assigned routes by ensuring they benefit from doing so. The second 
constraint ensures the total financial transactions—both disbursements and receipts—by the 
coordinator stay within the allocated budget, thereby ensuring the system's financial 
sustainability. The third constraint requires that the allocation variables for any given route sum 
to 1, while the fourth constraint mandates that these allocation variables fall within the range 
[0, 1]. The feasibility of the proposed optimization problem is assured, as the allocation aligned 
with the UE solution, along with 𝜙𝑘

𝑤,𝑟 = 0, satisfies all the imposed constraints. 

3.3 Personalized incentive distribution 

In Section 3.2, we employ a cluster-based methodology to determine incentives, ensuring that a 
representative driver at the centroid of each cluster is motivated to participate in the 
coordinated routing scheme. However, this approach does not guarantee that every individual 
driver will be equally motivated, as their personal utility parameters may differ from those of 
the cluster centroid. Therefore, the first two constraints in the above optimization problem may 
not be applicable at the individual driver level due to these variations in utility parameters. 

To address individual differences among drivers, this subsection focuses on their unique 
decision-making processes. We propose a heuristic for distributing incentives that assigns 
personalized payments to each driver. The purpose of this heuristic is to maximize participation 
in the assigned routes while staying within the budget constraints. Our aim is to make the 
incentives attractive enough to persuade the majority of drivers to comply with their assigned 
routes, accordingly enhancing the overall efficiency and effectiveness of our system. 

During each period, the system assigns each driver 𝑛 a specific route 𝑎𝑛 from the set of 
available routes ℛ𝑤𝑛 corresponding to their OD pair 𝑤𝑛, along with a designated payment 𝑝𝑛, 
which can be either a disbursement or a charge. The assignment of 𝑎𝑛  is carried out through a 
specific procedure: Within each cluster 𝑘𝑤  of OD pair 𝑤, we examine all routes 𝑟 ∈ ℛ𝑤. A 
proportion 𝛼𝑘

𝑤,𝑟 of drivers is randomly selected and assigned to route 𝑟, where 𝛼𝑘
𝑤,𝑟  represents 

the optimal solution obtained from Section 3.2. The method for calculating personalized 
incentives 𝑝𝑛 is detailed later in this subsection. 

In addition to receiving their assigned route 𝑎𝑛 and payment 𝑝𝑛, driver 𝑛 is also provided with 
the attributes of route 𝑎𝑛 within the coordinated routing scheme, denoted as 𝐱𝐜𝐨,𝐧. The travel 

time, 𝑥𝑐𝑜,𝑛
1 , is derived from the allocation 𝐀∗, which is the optimal solution to the optimization 

problem specified in Section 3.2. For comparison, and as a benchmark against the scenario 
without a coordinated routing system, drivers are also given estimated route information under 
user equilibrium, represented by 𝐱𝐮𝐞,𝐧. This UE information is obtained through an individual-
level simulation model [36], as detailed in Algorithm 2. 
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The convergence criterion requires that over the duration of 𝑀 iterations, the difference 
between the maximum and minimum travel times for each truck route must not exceed a 
predetermined percentage threshold 𝜏. The parameters 𝜂, 𝑀, and 𝜏 are set prior to the 
simulation. 

Next, we evaluate whether the assigned route provides driver 𝑛 with improved utility. When 
driver 𝑛 follows the assigned route 𝐱𝐜𝐨,𝐧, the utility is given by: 

𝑈𝑐𝑜,𝑛 = 𝐱𝐜𝐨,𝐧
𝑇  𝛉𝐧 + 𝑝𝑛 + 𝛽𝑛𝜖𝑐𝑜,𝑛. 

In the absence of the coordinated routing system, the scenario most familiar to the driver is 
represented by the UE, where the utility is given by: 

𝑈𝑢𝑒,𝑛 = 𝐱𝐮𝐞,𝐧
𝑇  𝛉𝐧 + 𝛽𝑛𝜖𝑢𝑒,𝑛. 

Since the actual utility parameter 𝛉𝐧 is not precisely known to the system, we use an estimated 

utility parameter 𝜽𝒏̃ to calculate driver 𝑛 's estimated utility for both the assigned route under 
the coordinated routing scenario and the route at the UE. We define the estimated utility of the 

assigned route as  𝑈𝑐𝑜,𝑛 =  𝐱𝐜𝐨,𝐧
𝑇  𝜽𝒏̃ + 𝑝𝑛 and the estimated utility at the UE as 𝑈𝑢𝑒,𝑛 =

 𝐱𝐮𝒆,𝐧
𝑇  𝜽𝒏̃. 

We introduce a greedy heuristic incentive distribution algorithm for determining 𝑝𝑛, detailed in 
Algorithm 3. The main objective of this algorithm is to maximize the number of drivers for 
whom the estimated utility of their assigned route in the coordinated routing system surpasses 

that of the UE scenario by at least 𝜉, expressed as 𝑈𝑐𝑜,𝑛 ≥  𝑈𝑢𝑒,𝑛 + 𝜉 . This goal is pursued while 
keeping the total budget within its limit. The parameter 𝜉 acts as a margin of error to account 

for the randomness in 𝜖 and estimation inaccuracies in 𝜽𝒏̃. 
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The algorithm begins by targeting drivers who would achieve a substantially higher net profit 
from following the assigned route compared to the UE route. These drivers are charged, and 
the collected funds are added to a funding pool. Next, the algorithm distributes positive 
incentives to drivers who would incur a negative net profit from their assigned route compared 
to the UE route, prioritizing them based on their net profit in descending order. 

3.4 Utility learning algorithm 

To model drivers' routing choices, we use the logit mixture model outlined in Section 2.2. This 
model includes hierarchical parameters with two levels of estimation: the individual-level mean 
𝛉𝐧, the population-level mean 𝛍, and the population-level covariance matrix 𝛀. The 
Hierarchical Bayes (HB) method is employed to estimate these parameters. This method 
improves the stability of individual-level preference estimates by leveraging both the 
individual's historical choices and the choices made by other individuals in the dataset. 

The coordinated routing system keeps a record of each driver's past routing decisions. To 
ensure that the estimated parameters remain up to date, we use each driver's most recent 
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choices for parameter estimation. We denote the number of historical choices used for this 
purpose by 𝐻. Let 𝐝𝐧 = (𝑑𝑛1, ⋯ , 𝑑𝑛𝐻) represent the historical routing choices of driver 𝑛, 
where 𝑑𝑛𝑡 indicates the choice made by driver 𝑛 at time 𝑡, with 𝑡 = 1  being the most recent 
and 𝑡 = 𝐻 being the least recent. 

Given the properties of the logit model, the probability of observing driver 𝑛 's choices 𝐝𝐧 
conditional on  𝛉𝐧 is expressed as follows: 

𝑃(𝐝𝐧 ∣ 𝛉𝐧) = ∏
exp(𝛉𝐧

𝑇 𝐱𝐝𝐧𝐭𝐧𝐭)

∑ exp𝑗 (𝛉𝐧
𝑇 𝐱𝐣𝐧𝐭)

𝐻

𝑡=1

 

The probability of 𝐝𝐧 given 𝛍 and 𝛀 is formulated as follows: 

𝑃(𝐝𝐧 ∣ 𝛍, 𝛀) = ∫ 𝑃
𝛉𝐧

(𝐝𝐧 ∣ 𝛉𝐧)𝑓(𝛉𝐧 ∣ 𝛍, 𝛀)𝑑𝛉𝐧 

Here, the function 𝑓 represents the normal probability density function.  

Our objective is to derive the joint posterior distribution of the parameters to be estimated: 
𝛍, 𝛀 and 𝛉𝐧 ∀𝑛. By applying Bayesian theory and the derived conditional probabilities, the joint 
posterior distribution of these parameters is given by: 

𝐾(𝛍, 𝛀, 𝛉𝐧 ∀𝑛 ∣ 𝐝𝐧 ∀𝑛) ∝

. [∏ 𝑃

𝑁

𝑛=1

(𝐝𝐧 ∣ 𝛉𝐧)𝑓(𝛉𝐧 ∣ 𝛍, 𝛀)] 𝑘(𝛍)𝑘(𝛀)
 

In this context, 𝑘(𝛍) and 𝑘(𝛀) represent the prior distributions of the population-level 
parameters. If no prior knowledge is available, a non-informative prior can be used to formulate 
the posterior distribution. 

However, this posterior distribution lacks a closed form and must be approximated via 
simulation. To obtain samples from this posterior, we use Gibbs sampling [37], an iterative 
Markov Chain Monte Carlo (MCMC) method that generates a sequence of samples from the 
joint probability distribution of multiple random variables when direct sampling is challenging. 
In particular, we employ a three-step Gibbs sampling technique known as the Allenby-Train 
procedure [35] to derive the posterior samples. 

• Step1: Drawing 𝛍 conditional on 𝛀 and 𝛉𝐧 ∀𝑛, using a normal Bayesian update with 
unknown mean and known variance. 

• Step2: Drawing 𝛀 conditional on 𝛍 and 𝛉𝐧 ∀𝑛, using a normal Bayesian update with 
known mean and unknown variance. 

• Step3: Drawing 𝛉𝐧 ∀𝑛 conditional on 𝛍 and 𝛀, following a Metropolis-Hastings 

algorithm. For more details, the reader can refer to [35]. 



 

 14 

Further details about the sampling process can be found in [28] and [35]. The posterior mean 
obtained from this sampling procedure is used as the estimate for each parameter. The 

estimated utility parameter for driver 𝑛, 𝜽𝒏̃, is derived from the posterior mean of 𝛉𝐧.   
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4. Numerical Results 

In this section, we conduct simulations to validate the effectiveness of the proposed method. 
We begin by detailing the experimental setup, followed by an analysis of how the method's 
solutions respond to changes in the number of clusters, number of OD pairs and the system's 
budget. We also emphasize the significance of the personalized incentive distribution algorithm 
by comparing it with scenarios where this algorithm is absent. 

4.1 Experiment setup 

 

Figure 2. The Sioux Falls network. 

In this study, a numerical simulation approach was employed to model the system dynamics. 
Unlike microscopic traffic simulations, this method focuses on solving mathematical models 
using numerical techniques. The details of the numerical simulation setup, including the specific 
parameters and algorithms used, are outlined below. We use the Sioux Falls network, a well-
known benchmark in transportation research [38], consisting of 24 nodes and 76 links. The 
layout of the Sioux Falls network is depicted in Figure 2. We assume that the volume of 
passenger vehicles on each link remains constant.  

For our analysis, we set 𝐿 = 3, which means we consider three observable attributes in drivers’ 
routing decisions: estimated current travel time, distance, and maximum historical travel time 

of a route. The utility function for driver 𝑛 is expressed as 𝑈𝑗𝑛 = 𝜃𝑛
1𝑥𝑗𝑛

1 + 𝜃𝑛
2𝑥𝑗𝑛

2 + 𝜃𝑛
3𝑥𝑗𝑛

3 +

𝑝𝑗𝑛 + 𝛽𝑛𝜖𝑗𝑛, where 𝑥𝑗𝑛
1 , 𝑥𝑗𝑛

2 , and 𝑥𝑗𝑛
3  represent the estimated current travel time (in minutes), 

distance (in miles), and maximum historical travel time (in minutes), respectively. The 
maximum historical travel time captures the highest recorded travel time over the past 25 
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periods, reflecting delays due to incidents or high demand. Driver 𝑛 's utility parameters, 𝛉𝐧 =
(𝜃𝑛

1, 𝜃𝑛
2, 𝜃𝑛

3), correspond to these attributes. In our simulation, we created a pool of 2500 
drivers, with utility parameters sampled from a normal distribution 𝛉 ∼ 𝒩(𝛍, 𝛀), where 𝛍 =
{−1.31, −0.63, −0.25} and 𝛀 is {[0.080,0.0030,0.0005], [0.0030,0.039,0.0010], 
[0.0005,0.0010,0.018]}. 

In the Sioux Falls network, we designate 10 OD pairs for truck drivers: (1,7), (1,11), (10,11), 
(10,20), (15,5), (24,10), (15,7), (24,8), (13,2), and (13,7). Each OD pair is assumed to have three 
alternative routes. For each period, the demand for these OD pairs is randomly drawn from a 
normal distribution. After the demand is established, a corresponding number of drivers is 
randomly chosen from the driver pool and assigned to the respective OD pairs. 

We solve optimization problems ([obj1]) and ([obj2]) using the interior point method, using the 
fmincon solver from the Matlab optimization toolbox [39]. To estimate the parameters of the 
logit mixture model, we use a Markov Chain Monte Carlo (MCMC) algorithm implemented with 
the RSGHB package in R [40]. This procedure runs a single chain for 10,000 iterations, discarding 
the first 10,000 iterations as burn-in to ensure convergence. 

4.2 Model performance and sensitivity analysis 

In all experiments, we evaluate performance using a weighted combination of the total travel 
time for passenger vehicles and the negative value of the total utility derived by truck drivers. 
This metric, where smaller values of 𝑌 indicate better system performance, is represented as 
follows: 

. 𝑌 = 𝜆𝑇 − (1 − 𝜆)𝑈 

In this context, 𝑇 refers to the total travel time for passenger vehicles, and 𝑈 denotes the total 
utility for truck drivers. For the experiments that follow, we use a weighting factor 𝜆 set at 0.2. 

We assess the performance of the coordinated routing system by comparing it to the UE 
scenario, focusing on the differences in the performance metric. To calculate the metric for the 
UE scenario, we use the simulated user equilibrium introduced in Algorithm 2, applying the 
drivers’ actual utility parameters. The simulation parameters for simulation are set to 𝜂 =
0.1, 𝑀 = 100, and 𝜏 = 2%. In the greedy incentive distribution heuristics, the error margin 𝜉 is 

defined as 𝛽 +
𝐵

2|𝒟| 
, where 𝛽 is the population-level mean of 𝛽, and  |𝒟| represents the number 

of truck drivers in the period. 

To assess the performance of the coordinated routing system, we examine the actions of 
individual drivers. Each truck driver receives their route assignment and corresponding 
incentive (𝑎𝑛, 𝑝𝑛), along with details about the assigned route and the UE route. Drivers 
evaluate the utility of the assigned route against the utility of the UE route, 𝑈𝑐𝑜,𝑛 versus 𝑈𝑢𝑒,𝑛, 

to decide whether to accept the assigned route. The participation rate is calculated based on 
the number of drivers who follow their assignments. Drivers who choose not to comply are 
assumed to select the most beneficial route from the available alternatives. The final 
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performance metric is then computed based on these route selections. In addition to this 
metric, we also calculate the actual financial balance of the central coordinator, considering 
that only drivers who follow their assigned routes will incur payments or charges. 

In our experiments, the coordinated routing system is tested over multiple periods, each with 
randomly generated demand for each OD pair. The initial periods function as a data collection 
phase, where drivers' responses are recorded to estimate utility parameters. The system's 
performance is evaluated over the final 25 periods, with the results averaged across these 
periods. As the accuracy of parameter estimation improves with the accumulation of each 
driver’s historical choices, we examine scenarios with different volumes of historical choice 
data per driver, assessing their impact on participation rates and the overall performance 
metric. Additionally, we compare these scenarios to an ideal case where there is no estimation 
error, and the coordinator has access to the actual utility parameters of the drivers. This 
comparison allows us to evaluate the influence of estimation errors on system performance. 

Next, we assess the performance of the proposed algorithm and examine its sensitivity to 
several key parameters: the number of OD pairs (𝑊), the number of clusters (𝐾), the 
coordinator's budget (𝐵), and the volume of historical responses from each driver. To 
streamline our analysis and avoid confusion from varying parameter sets, we establish a 
baseline scenario and then modify one parameter at a time. For the baseline scenario, the 
following parameters are used: the number of OD pairs 𝑊 = 6, the number of clusters 𝐾 = 6, 
a coordinator budget 𝐵 = 0, and 50 historical choice records per driver. 

Table 2. Sensitivity to the volume of drivers’ historical choice records (6 OD pairs, 6 clusters, 0 
budget). 

volume of drivers’ 
historical choice 
record 

drivers’ 
compliance 
rate 

coordinated 
routing 
metric 

UE metric metric 
decrease % 

system’s 
actual 
revenue 

no estimation 
error 

98.2% 12827.99 13340.70 3.82% 13.47 

200 historical 
records 

74.1% 12937.32 3.02% 184.35 

100 historical 
records 

70.5% 12973.52 2.75% 121.91 

50 historical 
records 

63.9% 13019.29 2.41% 47.87 

30 historical 
records 

57.5% 13048.13 2.19% -206.99 

Table 2 shows the system’s performance with different volumes of drivers' historical data. In 
these experiments, we set the number of OD pairs to 6, the number of clusters to 6, and a 
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system budget of 0. The first row of the table shows an ideal case where the central 
coordinator has direct access to each driver's true utility parameters, serving as a benchmark to 
assess the impact of utility parameter estimation errors. This row demonstrates that nearly all 
drivers follow their assigned routes when there are no estimation errors. Conversely, the last 
row indicates that when historical data is limited, the driver compliance rate falls below 60%, 
resulting in the system’s actual financial balance not meeting the budget.  

As the volume of historical data grows, the accuracy of utility parameter estimation improves. 
This enhanced precision enables the system to offer more accurate and attractive route 
assignments and incentives. Consequently, a larger historical data volume results in a higher 
participation rate and a lower metric, signifying an overall improvement in the system’s 
performance. 

Table 3. Sensitivity to the number of OD pairs (6 clusters, 0 budget, 50 historical choice 
records). 

number 
of OD 
pairs 

percentage 
of trucks in 
the network 

drivers’ 
compliance 
rate 

coordinated 
routing 
metric 

UE 
metric 

metric 
decrease % 

system’s 
actual 
revenue 

4 11.1% 60.9% 9772.67 9980.57 2.08% 85.97 

6 16.3% 63.9% 13019.29 13340.70 2.41% 47.87 

8 19.8% 64.0% 16933.21 17418.86 2.79% 282.36 

10 22.3% 62.0% 20424.13 21048.25 2.96% 154.63 

Table 3 explores the system's response to increases in both the number of OD pairs and truck 
volume. In these experiments, the number of clusters is set to 6, the system budget is 0, and 
each driver has 50 historical records. Although the participation rate exhibits slight variations, a 
higher number of truck OD pairs results in more significant improvements achieved by the 
coordinated routing system. This improvement is attributed to the increase in OD pairs, which 
expands the number of links affected by truck traffic, enabling the proposed algorithm to more 
effectively distribute traffic loads across these links.  
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Table 4. Sensitivity to the number of clusters (6 OD pairs, 0 budget, 50 historical choice 
records). 

number of 
clusters 

drivers’ 
compliance 
rate 

coordinated 
routing metric 

UE metric metric 
decrease % 

system’s actual 
revenue 

4 58.9% 13043.20 13340.70 2.20% 46.90 

6 63.9% 13019.29 2.41% 47.87 

8 65.5% 12982.50 2.69% 295.99 

10 66.8% 12970.76 2.77% 366.66 

Table 4 shows the system’s performance with varying numbers of clusters. In these 
experiments, the number of OD pairs is set to 6, the system budget is 0, and each driver has 50 
historical records. Increasing the number of clusters in the route assignment problem positively 
impacts both participation rates and overall system efficiency. By grouping drivers into more 
refined categories based on their preferences, the cluster-based route assignment aligns better 
with individual utility parameters, thus improving compliance and system performance. 
However, a larger number of clusters also leads to longer computational times. 

Table 5. Sensitivity to the system budget (6 OD pairs, 6 clusters, 50 historical choice records). 

system’s 
budget 

drivers’ 
compliance 
rate 

coordinated 
routing metric 

UE metric metric 
decrease % 

system’s actual 
revenue 

0 63.9% 13019.29 13340.70 2.41% 47.87 

400 76.6% 12955.07 2.89% -284.24 

800 82.3% 12927.21 3.10% -561.94 

1600 87.2% 12897.58 3.32% -1189.72 

Table 5 shows the system’s performance when the coordinator is allowed a positive budget. In 
these experiments, the number of OD pairs is set to 6, the number of clusters to 6, and each 
driver has 50 historical records. On average, there are 1900 drivers per period. It is reasonable 
to anticipate that increasing the system’s budget would boost the compliance rate, thereby 
enhancing overall system performance. The experiments confirm that the system’s average 
actual payment remains below the allocated budget. 

4.3 The necessity for personalized incentives 

This subsection highlights the advantages of personalized incentives over cluster-based 
incentives. Table 6 presents a comparison between the performance of incentives produced by 
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the personalized incentive distribution algorithm, as described in Section 3.3, and those 
obtained from the optimization problem detailed in Section 3.2. 

Table 6. Comparison between personalized incentives versus cluster-based incentives (6 OD 
pairs, 6 clusters, 0 budget). 

volume of 
drivers’ 
historical 
choice 
record 

personalized incentives cluster-based incentives UE 
metric 

drivers’ 
compliance 
rate 

coordinated 
routing 
metric 

system’s 
actual 
revenue 

drivers’ 
compliance 
rate 

coordinated 
routing 
metric 

system’s 
actual 
revenue 

200 
historical 
records 

74.1% 12937.32 184.35 65.1% 13163.24 -728.88 13340.70 

100 
historical 
records 

70.5% 12973.52 121.91 64.9% 13203.00 -1087.45 

50 
historical 
records 

63.9% 13019.29 47.87 66.7% 13229.77 -463.66 

30 
historical 
records 

57.5% 13048.13 -206.99 64.3% 13296.58 -556.07 

This analysis emphasizes the critical role of personalized incentives, as derived in Section 3.3, in 
enhancing compliance rates and overall system performance. According to the table, 
personalized incentives result in an average metric reduction of 2.59%, whereas cluster-based 
incentives achieve only a 0.87% reduction. It's noticeable that although cluster-based incentives 
contribute to improving the metric, they do not align with the system's budgetary goals. 
Personalized incentives, by addressing individual driver preferences more effectively, ensure 
higher satisfaction and better adherence to the routing system.   
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5. Conclusion 

This study presents an innovative coordinated freight routing system that adapts to drivers' 
utility functions, which are learned from their recent routing choices. By employing a logit 
mixture model and a Hierarchical Bayes estimation method, the system continuously aligns 
route assignments and incentive distributions with the evolving preferences of individual 
drivers. The experimental results demonstrate significant improvements in network efficiency, 
with most truck drivers opting to follow the assigned routes, even under budget-neutral 
conditions. 

The success of this system in managing freight traffic suggests that similar approaches could be 
applied to other traffic segments, such as commuter vehicles or public transportation. The 
personalized incentive model could be adapted to encourage the use of environmentally 
friendly routes or off-peak travel times, contributing to broader sustainability goals. Moreover, 
by reducing congestion, the system can positively impact urban air quality and overall public 
health, addressing some of the pressing challenges in urban planning and environmental 
management. 

Future research could explore several avenues to enhance and expand the system. First, 
incorporating real-time traffic fluctuations, such as those caused by accidents or sudden 
changes in weather conditions, would improve the system's responsiveness and reliability. 
Additionally, integrating machine learning techniques to predict traffic patterns and adjust 
incentives accordingly could further optimize the system's performance. Another promising 
direction is the application of distributed optimization techniques to handle larger and more 
complex transportation networks. As urban areas continue to grow, scaling the system to 
accommodate increased traffic volumes and more diverse routing preferences will be crucial.  

In conclusion, this study contributes a robust and adaptable framework for coordinated freight 
routing, with the potential to significantly enhance urban transportation efficiency. By 
addressing the challenges and exploring the future research directions outlined, this system 
could play a key role in the evolution of smart transportation networks, paving the way for 
more sustainable and efficient urban mobility solutions.  
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Data Summary 

Products of Research  

The traffic flow data from Caltrans Performance Measurement System (PeMS) were collected 
for the study to determine the parameters in the BPR functions. 

Data Format and Content  

Data is in the format of zip file and includes following traffic information: timestamp, sensing 
station identifier, direction of travel, lane type, station length, total flow, average speed. 

Data Access and Sharing  

The general public can access the data through website https://pems.dot.ca.gov/.  

Reuse and Redistribution  

The data can be reused and redistributed by the general public through website 
https://pems.dot.ca.gov/.   

https://pems.dot.ca.gov/
https://pems.dot.ca.gov/


 

 26 

Appendix 

This appendix introduces the derivation of the user equilibrium using a cluster-based method. 
In a UE scenario, drivers independently choose their routes. It is recognized that multiple, non-
equivalent UE solutions can exist. In this study, we identify a UE solution that minimizes a 
weighted combination of the expected total travel time for truck drivers and the negative value 
of their expected total utility. This method allows us to derive a cluster-based UE for the route 
assignment problem outlined in Section 3.2. To achieve this, we solve the following 
optimization problem, which incorporates complementary constraints [41]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝐀,𝚽

  𝑂(𝐀)

𝑠. 𝑡  0 ≤ 𝛼𝑘
𝑤,𝑟 ⊥ 𝛿𝑘

𝑤 ≥ 𝐱𝐫𝐰(𝐀)𝑇 𝛉𝐤
𝐰‾  ∀𝑤, 𝑘, 𝑟

, ∑ 𝛼𝑘
𝑤,𝑟

𝑅

𝑟

= 1  ∀𝑤, 𝑘

 

where 𝛿𝑘
𝑤 is a set of free variables and the notation ⊥ means that 𝛼𝑟

𝑤,𝑘 = 0 or 𝛿𝑘
𝑤 =

𝐱𝐫𝐰(𝐀)T 𝛉𝐤
𝐰‾ . Note that the free variables 𝛿𝑘

𝑤 are employed only in the complementarity 
constraints, which is a common technique utilized in many similar problems. 

At the UE, the expected utility of cluster 𝑘 in od pair 𝑤 is represented as follows: 

𝑄𝑘
𝑤 = ∑ 𝛼𝑘

𝑤,𝑟

𝑅

𝑟

(𝐱𝐫𝐰(𝐀)𝑇 𝛉𝐤
𝐰‾ ) 
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