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Abstract 

Pattern and process: An examination of how evolutionary forces shape patterns of genetic 

diversity and adaptive potential in the long-lived tree species, giant sequoia 

By  

Rainbow DeSilva 

Doctor of Philosophy in Environmental Science, Policy, and Management  

University of California, Berkeley 

Professor Richard S. Dodd, Chair 

 

During this century, climate warming and altered precipitation patterns will lead to habitat 

changes that may be detrimental to long-lived tree species. Giant sequoia, Sequoiadendron 
giganteum, is an iconic Sierra Nevada tree species with populations that tend to be small and 

highly fragmented, making them especially vulnerable to rapid environmental change. For tree 

species like giant sequoia, long generation times can limit migration outside of current range 

boundaries to track climate change. Thus, attention needs to be paid to the risks of adaptative 

mismatches between a population and its environment. In the face of climate change, genetic 

diversity is the ultimate source of variation upon which selection can act to allow adaptive 

responses that mitigate this phenomenon. This dissertation is an investigation of the patterns of 

extant genetic diversity in giant sequoia at multiple spatial scales, and the processes that shape 

and move diversity, with a focus on the adaptive potential of populations. Specifically, the 

chapters of this dissertation will address the following topics in detail: 1) Patterns of range-wide 

population connectivity and estimation of recent and historic gene-flow; 2) Mating parameters 

and the dispersal dynamics of pollen and seed within giant sequoia populations; 3) Pattern and 

climatic drivers of local adaptation and identification of potential genomic regions of adaptive 

significance. The knowledge gleaned from this research will provide comprehensive background 

information for giant sequoia regarding the extant genetic diversity, the potential for diversity to 

spread through gene flow, and the risks of future loss of genetic diversity for a locally restricted 

species under a changing climate. By highlighting both populations of conservation need, (i.e. 

isolated or genetically depauperate populations) and those that may contain diversity that can 

serve as pre-adapted variation for future conditions, this research will be an invaluable asset to 

forest managers seeking to maintain viable giant sequoia populations into the future.  
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Introduction 
SPECIES BACKGROUND 
 Giant sequoia, Sequoiadendron giganteum [Cupressaceae] is the only extant member of 
its genus. It is a paleoendemic, long-lived tree species whose current range stretches 
approximately 400km North-to-South from Placer to Tulare counties and consists of ~70 groves, 
scattered across the mid-elevation Sierra Nevada mountains. Its elevational range predominantly 
occurs within 1800-2100m, yet a few groves extend into elevations between 1500-2200m and 
scattered individual trees have been noted as low as 900m along drainages (Hartesveldt et al. 
1975). The entire range of giant sequoia is fragmented. However, populations are highly disjunct 
from Placer county to the Kings River, and somewhat more contiguous from the Kings river 
south to the southernmost grove, Deer Creek, in Tulare county. Giant sequoia range is situated 
within the mixed-conifer forest. Although giant sequoia is often dominant within groves, it co-
occurs with many tree species including, Abies concolor, Calocedrus decurrens, Pinus 
ponderosa, and Pinus lambertiana.  
 

The timeline for the establishment of the extant range of giant sequoia on the western 
slopes of the Sierra Nevada remains somewhat obscure due to limited fossil and molecular 
evidence. Some fossil evidence suggests changes in local abundance, or short distance range 
shifts at various time periods in the late Pleistocene and Holocene (Anderson and Smith 1994, 
Cole 1983, Anderson 1994, Koehler and Anderson 1994). For instance, in one record from a full 
glacial period in Sequoia and Kings Canyon National Park, (SKCNP), Cole (1983) notes the 
presence of giant sequoia remains in packrat middens from 40-18 kya (thousands of years before 
present), which subsequently drops out of the more modern record. Currently, giant sequoia 
grows approximately 2 km from the midden site, which suggests that a short distance shift in 
grove boundaries may have occurred in the recent past. Moreover, another pollen core from 
SKCNP, within present day Giant Forest grove, shows low levels of sequoia pollen from 
approximately 10.5 kya, that slowly increases until 5kya, indicating an increase in abundance at 
this site (Anderson 1994). In the central and northern portion of the giant sequoia range, fossil 
records are extremely sparse. Two studies of note in this region include Davis and Moratto 
(1988) who reported giant sequoia pollen at Exchequer Meadow at approximately 11 kya and 
Koehler and Anderson (1994) who found macrofossils present at Nelder grove from 11-9.5 kya. 
Currently, giant sequoia is absent from Exchequer Meadow, but it is present 5 km south at 
McKinley Grove, again suggesting a shift in grove location. Unfortunately, the record for Nelder 
grove lacks resolution and thus the changes in distribution or abundance of giant sequoia at this 
site remains unclear. Taken together this limited pollen and fossil evidence suggests that shifts in 
giant sequoia range have been ongoing until recently (5kya). Yet, molecular data do not show 
imprints of recent colonization for present-day groves (Dodd and DeSilva 2016). Instead, extant 
patterns of genetic diversity suggest a long-history for many groves (Dodd and DeSilva 2016, 
DeSilva and Dodd 2020). Thus, the most parsimonious explanation that reconciles fossil and 
molecular evidence is that modern-day groves have only shifted short distances by way of local 
elevational or microclimatic changes during recent glacial-interglacial phases (Dodd and DeSilva 
2016). Of course, more extensive pollen sites or detailed molecular work would be very helpful 
to better understand the evolutionary history of giant sequoia range. 
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Giant sequoia exhibits a unique regeneration strategy that is tied to fire and an 
environmentally sensitive seedling stage. The reproductive biology of giant sequoia is commonly 
characterized by episodic bursts of regeneration when conditions are optimal. Mature giant 
sequoia trees produce an abundance of wind-pollinated seed-cones each year. These cones 
remain closed and attached to the tree for many years, and thus provide a large aerial seed bank 
(Hartesveldt et al. 1975). Although Douglas squirrels contribute annually to seed dispersal, 
successful regeneration often occurs after fire, which not only triggers extensive seed dispersal, 
but also creates canopy gaps and a mineral substrate that increases successful seed germination 
and growth (Rundel 1972; Hartesveldt et al. 1975, Harvey et al. 1980; York et al 2003, 
Shellhammer and Shellhammer 2006, York et al. 2009). Many ecological studies have noted that 
giant sequoia seedlings are sensitive to water and light availability during their establishment 
phase and grow best under conditions of high resource availability (Rundel 1972, Hartesveldt et 
al. 1975, York et al. 2003, Shellhammer and Shellhammer 2006). Giant sequoia can grow very 
fast under prime conditions of high moisture and light (York et al. 2003). It is commonly noted 
that the lower elevational range limit of giant sequoia is controlled by a lack of sufficient soil 
moisture to sustain sequoia seedlings and the upper elevational limit is controlled by cold 
temperatures (Rundel 1972, Hartesveldt et al. 1975). In support of this assertion, researchers 
have found that giant sequoia seedlings experience high mortality due to desiccation (Rundel 
1972, Weatherspoon 1990). In contrast, mature giant sequoias can be fairly robust to short 
periods of unfavorable climate (Stephenson et al. 2018). 

 
ENVIRONMENTAL CONTEXT 

Climate change poses great threats to biodiversity. In California, end of century climate 
predictions include temperature increases ranging from 1.5-4.5ºC (Cayan et al. 2008) and altered 
precipitation patterns. The Sierra Nevada is a high mountain range that collects precipitation 
from the Pacific Ocean mostly in the form of winter rain and snowfall. The slow release of water 
from snowmelt in the spring is an important source of moisture for seedling growth and 
establishment. Sierra snowpack has declined in recent years (Fyfe et al. 2017). With warmer 
temperatures, regional climate models suggest that spring snow-water equivalent will decline by 
73% by the end of the century, with mid-elevations (1500-2500m) experiencing the greatest 
declines (Sun et al. 2018). Taken together, increases in temperature and earlier snowmelt will 
cause tree seedlings to experience additional heat stress coupled with an accentuation of the 
summer drought that is typical of Mediterranean climates. A recent drought in California resulted 
in massive tree mortality (USDA 2016), exposing the risks of catastrophic disease and mortality 
for some tree species from climate change.  

 
 During this century, climate warming and altered precipitation patterns will lead to 
habitat changes that may be especially detrimental to long-lived tree species. To persist through 
these changes, tree species can shift their range or adapt to new conditions (Aitken et al. 2008). 
Although species distribution models predict shifts of a species suitable habitat poleward and 
upslope (Iverson et al. 2008), for many tree species, long generation-times limit the potential for 
a rapid migratory response. As a long-lived tree species, giant sequoia exhibits generation-times 
of ~305 years (Dodd and DeSilva 2016). Thus, given both the pace of climate change and the 
specific suite of conditions needed for giant sequoia recruitment it is unlikely that range shifts 
can keep pace with climate changes. Under migratory limitation, populations of giant sequoia are 
likely to experience conditions to which they are maladapted. Thus, the adaptive potential of 
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giant sequoia populations will be a major determinant of persistence. For giant sequoia, the 
current pool of genetic diversity will provide the fuel for adaptive evolution in the face of climate 
change (Aitken et al. 2008; Barrett and Schluter 2008). Thus, understanding patterns of extant 
diversity and the factors that create, erode, or move diversity is of primary concern. 
 
 The overarching goal of this dissertation is to understand whether viable populations of 
giant sequoia are likely to exist in the future and highlight at-risk populations, as well as 
populations that may contain important functional variation. The results of this research can 
provide invaluable information to forest managers who wish to take steps to maintain genetic 
diversity and facilitate adaptive responses across the range of giant sequoia.  
 
CHAPTER ONE 

Considering the fragmented nature of the giant sequoia range, connectivity among 
spatially separated populations through gene flow has numerous implications for the 
maintenance and distribution of genetic variation. Gene-flow is an important mechanism by 
which variation is moved within and maintained across a species’ range. Fragmented 
populations, typical of giant sequoia, tend to have reduced gene flow (Aguilar et al. 2008, 
Dubreuil et al. 2010). Yet, connectivity can be maintained across fragmented landscapes via long 
distance gene flow (Bacles et al. 2006, O’Connell et al. 2007, Colabella et al. 2014), commonly 
by pollen. In addition, species that exhibit small population sizes, a typical feature of giant 
sequoia, can be vulnerable to losing genetic diversity over time through genetic drift. Gene flow 
can counteract this trend and reduce diversity loss (Slatkin 1987), as well as to rapidly introduce 
new variation into populations, which can be a source of adaptive potential (Young et al. 1996, 
Kremer et al. 2012). Under climate change, gene flow has the added potential to spread pre-
adapted variation (Kremer et al. 2012). For example, locally adapted populations within the 
warm-dry climatic range extremes could be pre-adapted to the future conditions expected in 
other areas of giant sequoia distribution.  

 
The dynamics of gene flow and range-wide population connectivity are examined in the 

first chapter of this dissertation. Using patterns in range-wide genetic structure among 568 
individuals, from 19 groves, I report long-term genetic connectivity with estimates of recent and 
historic gene-flow across spatially adjacent populations. Gene flow among populations may 
depend on the success of immigrant genes in their novel environment, so I assessed the role of 
landscape dissimilarity, including climatic variation, on restricting gene flow and ultimately 
shaping genetic differentiation among populations.  

 
CHAPTER TWO  

In Chapter One, I reported surprisingly low gene flow between spatially close groves in 
the northern range of giant sequoia that was not evident in southern groves. In this chapter, I 
addressed the fine scale processes of gene flow at the scale of individual groves. This included 
possible evidence for local demic structure that can arise from short distance pollen and seed 
dispersal and subsequent mating among close relatives (bi-parental inbreeding). Dispersal shapes 
the clustering of related individuals on the landscape and thus contributes to changes in genetic 
diversity over time. Two aspects of dispersal are of major importance, mean dispersal distance 
and the shape of the dispersal kernel. Mean dispersal provides important insights on the extent to 
which seed and pollen cluster near the parent tree. Subsequently, the spatial clustering of related 
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individuals can affect mating parameters such as biparental inbreeding (Krakosksi et al. 2003, 
Lloyd et al. 2018) and also increase the potential for genetic diversity loss through genetic drift 
or from a mortality disturbance (Willi and Määttänen 2011). Whereas, the shape of the dispersal 
kernel (kurtosis) can be an important indicator of the potential for long-distance gene flow 
between fragmented populations (Nathan et al. 2008, discussed in more detail below). The 
dispersal distance of pollen is generally greater than that of seed in wind-pollinated trees such as 
giant sequoia (Dow and Ashley 1996, Bittencourt and Sebbenn 2007). Thus, understanding the 
pollen dispersal kernel is a major focus of this work, for which I used progeny arrays, in the form 
of laboratory germinated seed.  

 
The information presented in this chapter synthesizes my estimates of gene dispersal 

among adult trees and pollen dispersal with estimates of local mating and fine-scale grove 
genetic structure. It will help determine how diversity may change through time within 
populations, (i.e. how populations may be impacted by genetic drift or disturbance), and the 
potential for long-distance gene flow among fragmented giant sequoia populations.  

 
CHAPTER THREE  

Natural selection is of key importance in shaping patterns of genetic diversity across a 
species range. When populations occur across a heterogenous landscape, divergent selective 
pressures can result in local adaptation of populations to their home environment. Patterns of 
local adaptation can contain information about species tolerances and sensitivity to different 
ecological factors. In the context of climate change, identifying the major climatic factors that 
influence the selective landscape will inform how the species may respond to altered conditions. 
Moreover, understanding the distribution of adaptive diversity in relation to climatic gradients is 
a critical first step in promoting the adaptive potential of populations (Holderegger et al. 2006; 
Aitken and Whitlock 2013).  Furthermore, highlighting populations or regions that potentially 
contain adaptively important variation will inform future management efforts that seek to 
maximize adaptive capacity in the species.  

 
In the third chapter of this dissertation, I utilize a genome-wide data set of 1364 bi-allelic 

single nucleotide polymorphisms, to uncover signatures of local adaptation by identifying highly 
differentiated loci and those with a strong association to climate factors. This analysis provides 
evidence of the specific climate factors that are of major selective importance for giant sequoia 
and can highlight loci of potential adaptive significance. Considering the anticipated climatic 
changes for sierra Nevada ecosystems, we also identify populations that could contain genetic 
variation that may offer ‘pre-adaptations’ to future conditions.   

 
OVERARCHING THEMES 

The persistence of giant sequoia under climate change will be aided by adaptation of 
populations to new environmental conditions. The capacity for this response (adaptive potential) 
will depend on the extent and distribution of genetic diversity, whether it can move among 
populations, and whether variation exists that is pre-adapted to future conditions. Thus, assessing 
extant patterns of diversity and the factors that shape changes in diversity over time is of utmost 
importance to predicting species response. In this dissertation, I address the major determinants 
of genetic diversity in giant sequoia at multiple spatial scales and in relation to various 
evolutionary forces. During the course of this study, I identified populations of giant sequoia that 
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are at high risk (i.e. those that are genetically depauperate), those of high conservation priority 
(i.e. those that are genetically distinct), and populations that may harbor vital diversity to aide in 
adaptive responses across the range (i.e. those that are likely adapted to arid/warm conditions). 
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Chapter 1 

 

 

Fragmented and isolated: limited gene flow coupled with weak 
isolation by environment in the paleoendemic giant sequoia 

(Sequoiadendron giganteum) 

 

Rainbow DeSilva, Richard S. Dodd 

 

 
ABSTRACT 

Patterns of genetic structure across a species’ range reflect the long-term interplay 
between genetic drift, gene flow, and selection. Given the importance of gene flow in preventing 
the loss of diversity through genetic drift among spatially isolated populations, understanding the 
dynamics of gene flow and the factors that influence connectivity across a species’ range is a 
major goal for conservation of genetic diversity. Here we present a detailed look at gene flow 
dynamics of Sequoiadendron giganteum, a paleoendemic tree species that will likely face 
numerous threats due to climate change. We used microsatellite markers to examine nineteen 
populations of S. giganteum for patterns of genetic structure and to estimate admixture and rates 
of gene flow between eight population pairs. Also, we used Generalized Dissimilarity Models to 
elucidate landscape factors that shape genetic differentiation among populations. We found 
minimal gene flow between adjacent groves in the northern disjunct range. In most of the 
southern portion of the range, groves showed a signal of connectivity which degrades to isolation 
in the extreme south. Geographic distance was the most important predictor of genetic 
dissimilarity across the range, with environmental conditions related to precipitation and 
temperature explaining a small, but significant, portion of the genetic variance. Due to their 
isolation and unique genetic composition, northern populations of S. giganteum should be 
considered a high conservation priority. In this region, we suggest germplasm conservation as 
well as restoration planting to enhance genetic diversity.  
 
INTRODUCTION 

Understanding the patterns of genetic diversity and population differentiation is a central 
goal of evolutionary biology. These patterns are a result of long-term trends in species 
distribution and evolutionary forces (e.g., gene flow, selection, and genetic drift) occurring over 
space and time (Loveless and Hamrick, 1984; Slatkin, 1985, 1987). Many demographic changes, 
such as population size reductions or range contractions with subsequent population isolation, 
create fragmented populations that tend to experience reduced gene flow, which in turn results in 
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strong population structure and the loss of genetic diversity over time (Young et al., 1996; 
Segelbacher et al., 2003; Aguilar et al., 2008; Dubreuil et al., 2010; Arenas et al., 2012). Yet, this 
is not always the case. In forest trees, connectivity can be maintained across fragmented 
landscapes via long distance dispersal, as in Austrocedrus chilensis (D.Don) Pic. Serm. & 
Bizzarri [Cupressaceae], Picea glauca (Moench) Voss [Pinaceae], and Fraxinus excelsior L. 
[Oleaceae] (Bacles et al., 2006; O’Connell et al., 2007; Colabella et al., 2014). Even at low 
levels, gene flow has the potential to reduce diversity lost via drift (Slatkin, 1987) and quickly 
introduce new variation into populations, which can be a source of adaptive potential (Young et 
al., 1996; Kremer et al., 2012).  

 
A major goal of landscape genetics is to disentangle the relative contribution of landscape 

factors in influencing the spatial variation in gene flow (Holderegger and Wagner, 2008). One 
important factor inhibiting gene flow is dispersal limitation, which results in patterns of isolation 
by distance (IBD), meaning proximate populations are more likely to share migrants than distant 
populations (Wright, 1943). However, many other factors, including population size, landscape 
barriers, and ecological gradients, play an important role in shaping gene flow and differentiation 
among populations (Ellstrand and Elam, 1993; Lee and Mitchell-Olds, 2011; Shafer and Wolf, 
2013). Of particular concern is elucidating how local adaptation can negatively affect immigrant 
success and thereby reduce gene flow and result in a pattern of increased genetic divergence with 
environmental distance, commonly referred to as isolation by environment (IBE) (Nosil et al., 
2008; Wang and Summers, 2010).  

 
Sequoiadendron giganteum (Lindl.) J.Buchh., giant sequoia, [Cupressaceae] is an iconic 

tree species, renowned for its massive size and long lifespan, often exceeding 2000-3000 years in 
age (Stephenson, 2000; Sillett et al., 2015). This species occurs in ~70 groves in a narrow 
elevation band (mostly within 1400–2200 m) along the western slope of the Sierra Nevada 
Mountains, California, USA, that extends approximately 420 km north-to-south (Figure 1). 
Sequoiadendron giganteum groves vary in size from 1 ha to 1624 ha and occupy a total area of 
~14,600 ha (Harvey et al., 1980; York et al., 2013; Nydick et al., 2018). The vast majority of S. 
giganteum grove area is concentrated in the southern portion of the range (York et al., 2013). 
Here, populations are fairly continuous, yet often separated from each other by approximately 2–
10 km, whereas in the northern two thirds of the latitudinal range, the remaining eight 
populations are highly disjunct. In view of the potential threats posed by climate change and by 
fire for this restricted paleoendemic, we have been studying genetic structure of populations to 
better understand their recent evolution, genetic potential to respond to environmental 
challenges, and distribution of genetic resources that can provide material for future restoration 
and reforestation.  

 
It is surprising that so little is known of the population genetics of such an iconic species. 

In our previous work (Dodd and DeSilva, 2016), we showed that the northern isolated 
populations were genetically distinct from those in the southern range and concluded from 
demographic simulations that Sequoiadendron giganteum had likely experienced a long-term 
decline in population size over the last ~2 My, with a more severe contraction prior to the last 
glacial maximum. We inferred that the fragmented distribution today was a result of this 
demographic decline, rather than a result of colonization by long-distance dispersal. Indeed, we 
found some evidence that would suggest that gene flow is quite restricted in the northern range 
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of the species (Dodd and DeSilva, 2016). The pollen record suggests subsequent local expansion 
of S. giganteum in a few regions during the Holocene (Anderson, 1994; Anderson and Smith, 
1994).  

Currently, range boundaries of Sequoiadendron giganteum remain stable, as the vast 
majority of groves are located in protected areas, but in the future, climate change may result in a 
mismatch between protected areas and suitable habitat. This raises two questions as to the 
maintenance of genetic diversity through gene flow amongst extant populations and the degree to 
which environment may affect migrant success: (1) Do fragmented populations of S. giganteum 
have the potential to maintain genetic connectivity through gene flow? and (2) Is there evidence 
that isolation by environment has played a role in population genetic structure? Gene flow 
dynamics will shape how S. giganteum populations respond to rapidly changing environmental 
conditions and will help in designing strategies for the protection of this remarkable natural 
resource.  

 
In this study, we tested three hypotheses: (1) gene flow is restricted in the northern 

disjunct range, even between locally close populations. This would support our previous findings 
that the northern groves are likely to have had a longer history than previously thought, or that 
they arose through relatively short distance spatial shifts of paleo-groves; (2) southern 
populations should show a signal of greater gene flow that would be consistent with connectivity 
among the network of groves in this region; and (3) isolation by environment, potentially 
resulting from constraints on the success of migrants, has been important in shaping genetic 
dissimilarity. We tested these hypotheses by analyzing allelic variation in 19 natural populations 
for a suite of microsatellite markers designed for giant sequoia (DeSilva and Dodd, 2014).  
 
MATERIALS AND METHODS  
Sampling and SSR genotyping  

Between 2015 and 2018, foliage was collected from 562 individuals representing 
eighteen groves distributed across the range of Sequoiadendron giganteum (Figure 1). Isolated 
DNA from an additional grove (PLAC) was obtained from Valerie Hipkins (USDA Forest 
Service). Geographic coordinates for all samples were obtained at the time of collection using a 
Garmin eTrex Global Positioning System (Garmin, Olathe, Kansas, USA). All samples were 
collected with permission.  

 
The resulting data set consists of 568 individuals from 19 populations (Table 1) spanning 

the entire latitudinal range of the species, including all eight populations in the northern two 
thirds of the range (Figure 1, ‘northern group’) and eleven populations spread across the southern 
portion of the range, (Figure 1, ‘southern group’). DNA was extracted from 100mg of leaf tissue 
using Norgen Biotek Plant/Fungi DNA Isolation kits (Norgen Biotek, Thorold, ON, Canada). All 
individuals were genotyped at eleven microsatellite loci described in DeSilva and Dodd (2014). 
DNA amplifications were achieved using a M13 tail attached to the forward primer and a FAM-
labeled universal M13 fluorescent primer, following the technique outlined by Schuelke (2000). 
Each PCR reaction consisted of a 10µl reaction volume containing 1 µl 10x PCR buffer, 0.2µl 
MgCl2, 200µmol/L of each dNTP (Roche, Santa Clara, Calif., USA), 0.16µmol/L reverse and 
universal M13 primer, 0.04µmol/L forward primer, 0.5 units of HotStarTaq polymerase (Qiagen, 
Valencia, Calif., USA), and 20-40ng of extracted DNA. The resulting solution was subjected to 
the following temperature treatments: initial denaturation at 95°C for 15min; 30 cycles of 30s at 
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95°C, 45s at 56°C, and 45s at 72°C; 8 cycles of 30s at 95°C, 45s at 53°C, and 45s at 72°C; 
finishing with a final extension of 30min at 72°C. The PCR product was then mixed with a 
solution containing 0.5 µl Genescan LIZ500 size standard (Applied Biosystems, Waltham, 
Mass., USA) and 8.0 µl formamide and processed on an ABI 3730 automated sequencer. SSR 
fragment lengths were visualized and called using GeneMapper 5 software (Applied 
Biosystems).   

 
Genetic diversity, structure, and differentiation  

All SSR data were checked for null alleles and evidence of scoring errors using 
Microchecker (Oosterhout et al., 2004). Deviations from Hardy-Weinberg equilibrium and 
Linkage Disequilibrium were tested using Genepop through their web interface (Raymond and 
Rousset, 1995; Rousset, 2008) and significance for both analyses was assessed after Bonferroni 
corrections for multiple tests (Rice, 1989).  

 
We used FSTAT version 2.9.3 (Goudet, 2001) to calculate gene diversity (HE) allelic 

richness (corrected for sample size) (AR), and pairwise FST, and we performed permutation tests 
to obtain one-tailed significance tests in FSTAT with 1000 iterations to compare HE, AR, and FST  
between the northern and southern population groups, assuming less connected populations in 
the north would on average have lower genetic diversity and greater divergence. PLAC, an 
outlier with low AR, and high FST (Table 1) was excluded from this test. We estimated 
conditional genetic distance (cGD), a measure of genetic dissimilarity between populations, 
using the GSTUDIO package implemented in R (Dyer et al., 2010; Dyer, 2014; R Core Team, 
2018). This metric simultaneously takes into account the genetic covariance among all 
populations and thereby measures the genetic similarity that is created by both direct and indirect 
gene flow (Dyer and Nason, 2004; Dyer et al., 2010).  

 
To assess the evolution of population structure we tested for a signal of mutations 

contributing to the observed population structure, which would be a signal of ancient divergence 
between northern and southern groups (Figure 1). These tests compare the observed RST with a 
value of RST obtained after permuting allele sizes within loci (RSTperm). Permuting allele sizes 
removes the effects of stepwise mutation among microsatellite alleles but retains the divergence 
among populations due to allele frequency differences and thereby RSTperm approximates FST 

(Hardy et al. 2003). RSTperm is then compared to RST to estimate the effects of mutation on 
population divergence.  We performed analyses in SPAGeDi V 1.5 (Hardy and Vekemans 2002), 
using 20,000 permutations.  

 
To estimate patterns of genetic structure across the species range, we utilized two 

complementary approaches, STRUCTURE (Pritchard et al., 2000) and TESS (Chen et al., 2007; 
Durand et al., 2009b). The program STRUCTURE version 2.3.3, utilizes a Bayesian clustering 
algorithm to simultaneously estimate the number of genetic clusters (K) and assigns individuals 
to a genetic cluster based on their multi-locus genotypes, without a priori information about 
geographic origin (Pritchard et al., 2000). To visualize partitions in genetic clusters and find 
likely K values, we utilized CLUMPAK (Kopelman et al., 2015). The best K values were 
determined using the K value that maximized Pr(Data| K) (Pritchard et al., 2000), and the ∆K 
statistic as suggested by Evanno et al. (2005). To reduce computing time, we narrowed the range 
of potential K values by completing exploratory tests using 10 repetitions of K = 1–19. After 



 5 

initial runs, we used 20 replications and a burnin of 300,000 and 1,000,000 Markov Chain Monte 
Carlo (MCMC) repeats after burnin with K = 2–13 (a reduced range of reasonable K-values 
obtained from exploratory runs).  

We also utilized TESS, a spatially explicit method for genetic clustering (Chen et al. 
2007). TESS utilizes the geographic coordinates of each individual to inform the estimation of 
spatial autocorrelation in allele frequencies (Durand et al. 2009b). In this algorithm, the 
probability that two individuals belong to the same cluster decreases with geographic distance 
(Durand et al. 2009b). We used the admixture model (CAR) as it is robust to various levels of 
admixture in the data set (Durand et al. 2009a, Francois and Durand 2010). To determine the 
most likely number of clusters (Kmax) we plotted the deviance information criterion (DIC) against 
the Kmax and visually chose values of Kmax where DIC reached a plateau, as suggested in the 
program documentation (Durand et al. 2009b). Using the same range of likely Kmax values as in 
STRUCTURE, TESS was run using 120000 sweeps and a burnin of 20000 with 20 replicates for 
each Kmax= 2 - 13.  

 
Climatic effects on genetic divergence  

Due to the long lifespan of Sequoiadendron giganteum (~3000 years), we chose to run 
our analyses using climate data for two time periods, Mid-Holocene (6kya) and current (1970–
2000). For the current time period, nineteen bioclimatic variables were obtained from the 
WorldClim database at a spatial resolution of 30 arc-seconds (Fick and Hijmans, 2017). For the 
analysis of current climate only, we obtained Climate Water Deficit (CWD) from the California 
Basin Characterization Model (Flint et al., 2013). CWD is the difference between potential and 
actual evapotranspiration and provides an indication of aridity that is important for 
Mediterranean climate systems, such as in California (Stephenson, 1998). From the resulting set 
of 20 environmental variables, we used the sampling centroid of each of the populations to 
extract average site conditions for each population. To improve accuracy in differentiating 
between IBD and IBE, we removed variables that were highly correlated with geographic 
distance using Spearman’s ρ ≥ 0.7. We then further reduced redundancy among our 
environmental predictors by removing highly correlated variables (ρ ≥ 0.7). When choosing 
between two highly correlated variables, we kept the one that was less correlated to the other 
remaining predictors. Our remaining set of predictors representing the current climate included 
eight variables; five associated with temperature, two with precipitation, and CWD (an index of 
aridity) (Appendices 1.1 and 1.2). Nineteen downscaled bioclimatic variables were obtained 
from WorldClim for the mid-Holocene time period under the CCSM4 model (Fick and Hijmans, 
2017). After removal of correlated variables, the mid-Holocene climate was represented by nine 
climate variables (Appendix 1.1).  

 
We utilized Generalized Dissimilarity Modeling (GDM) (Ferrier et al., 2007) to assess 

the correlations between environmental variation and geographic distance with genetic 
dissimilarity among populations. This method uses matrix regression to look for relationships 
between dissimilarities in predictor and response variables and has been increasingly applied to 
landscape genetic studies (Freedman et al., 2010; Thomassen et al., 2010; Geue et al., 2016). We 
used both environmental variation and geographic distance as predictor variables, and we used 
genetic dissimilarity, as measured by cGD, as the response variable. Conditional genetic distance 
was the chosen metric of dissimilarity due to its increased potential to detect landscape genetic 
patterns under various migration models and its reduced sensitivity to confounding effects of 
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phylogenetic history (Dyer et al., 2010). In addition, cGD captures dimensional migrant 
exchange among multiple populations, making it potentially superior to traditional metrics (e.g., 
pairwise FST) for assessing connectivity in Sequoiadendron giganteum (Dyer and Nason, 2004).  

 
For these analyses, we utilized the ‘gdm’ package in R (Manion et al., 2015). The 

northernmost population, PLAC, was a strong geographic and cGD outlier and was therefore 
excluded from all analyses. Due to evidence of a strong genetic divide at the Kings River 
drainage (Dodd and DeSilva, 2016) separating the northern and southern groups (Figure 1), we 
ran our analyses separately for both the range-wide data set and the eleven southernmost 
populations. We conducted model selection among un-correlated environmental variables with 
the varImp function within the ‘gdm’ package using 1000 permutations. This function uses 
matrix permutation and backward variable removal to aid in model selection (Manion et al., 
2015). The ‘best’ model was chosen by removing all predictor variables that did not contribute to 
the explanatory power of the model while considering the point at which removing additional 
variables increased the P-value of the model.  

 
Population connectivity  

To capture genetic connectivity at short distances (<10 km), we employed STRUCTURE 
version 2.3.3 (Pritchard et al., 2000) to infer the degree of admixture for eight population pairs, 
three in the northern group and five in the southern group (Table 2). The Bayesian clustering 
framework implemented in STRUCTURE estimates a proportional assignment of each 
individual to a genetic cluster, and thus also provides a measure of joint ancestry to multiple 
clusters. We ran STRUCTURE using 10 replications with a burnin of 300,000 and 1,000,000 
MCMC repeats after burnin with K varying from 1 to 4. We determined the level of admixture 
within populations as the average proportion of individuals per population pair that show 
between 30 and 70% assignment to each genetic cluster at K = 2. Using CLUMPAK (Kopelman 
et al., 2015), we determined the best K using the ∆K statistic as suggested by (Evanno et al., 
2005) and visualized the degree of admixture.   

 
For these same population pairs, we also examined the rates of gene flow through time 

using two complementary approaches, MIGRATE-n and BAYESASS. BAYESASS 3.0.4 
employs Markov Chain Monte Carlo (MCMC) analyses to estimate recent (within the last ~3–5 
generations) levels of interpopulation migration based on the linkage disequilibrium imprint it 
creates (Wilson and Rannala, 2003; Rannala, 2007). MIGRATE-n estimates long-term 
(approximately 4Ne generations) migration rates using a coalescent based approach (Beerli and 
Felsenstein, 2001; Beerli, 2006). For both analyses, we removed one locus (31670) that exhibited 
strong deviations from Hardy-Weinberg equilibrium as we were concerned that this locus may 
violate the requirement of MIGRATE-n that populations be in mutation-drift equilibrium (Beerli, 
2012). In addition, for population pairs with unequal sample sizes, we randomly removed 
individuals from the larger sample of the pairwise grove comparisons to equal the smaller sample 
i.e., we re-sampled RMNT and GFOR, and NELD. For NELD, our migrate runs after re-
sampling failed to converge, which appeared to be due to population structure within the two 
regions within NELD grove (see Appendix 1.3), Therefore, we randomly removed samples from 
one area within NELD.  
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During initial runs of BAYESASS we altered the mixing parameters ∆a, ∆m, ∆f between 
0.2 and 0.6 to achieve the optimal acceptance values that facilitate parameter mixing, as 
suggested by Rannala (2007). After finalizing mixing parameters, we completed 10 runs for each 
population pair, each with a different seed to check run consistency. Each run consisted of 
10,000,000 iterations, a burnin of 1,000,000, and parameter values were sampled every 5000 
iterations. As recommended by Meirmans et al. (2014), we report the parameter estimates from 
the ‘best fit model’ as indicated by the lowest Bayesian deviance (Faubet et al., 2007).  
 

Using MIGRATE-n, we estimated mutation scaled migration rates with the requirement 
that loci are in migration-drift equilibrium and the assumption that migration rates are constant 
through time (Beerli, 2012). We used the Bayesian framework and a Brownian motion mutation 
model as it approximates the step-wise mutation rate for SSR markers and is computationally 
less intensive (Beerli, 2012). We also employed a constant mutation rate and used FST 
calculations as starting parameter values. We conducted exploratory runs to determine the range 
of values appropriate for uniform priors for θ (4Ne μ) and M (m/μ), where Ne is the effective 
population size and m and μ are the per generation migration and mutation rates respectively. 
After uniform priors were determined, we ran one long chain that visited 100,000,000 parameter 
values and had a burnin of 50,000, and sampled parameter values every 100 steps. To compare 
long-term and recent migration rates, we converted the mutation-scaled migration rate M (m/μ), 
using an estimated mutation rate of 5 × 10-4 per generation as outlined in Chiucchi and Gibbs 
(2010). Using estimates of mutation scaled effective population size, θ, we also converted M to 
number of migrants per generation (Nm) using the formula θ × M/4.  
 
RESULTS 
Genetic diversity, structure, and differentiation  

MicroChecker found significant evidence for null alleles at two loci (31670 and 31267), 
in seven and eight populations, respectively. The presence of null alleles was not consistent 
across populations for the two loci, so we chose to retain all loci. We detected significant linkage 
disequilibrium for 85 of 1045 locus pairwise tests among populations, but these were spread 
across populations and pairs of loci.  

Genetic diversity, as measured by allelic richness (AR) and gene diversity (HE), was 
highest in GFOR, with AR = 4.08, and HE = 0.64, and lowest in PLAC, with AR = 1.73, and HE = 
0.20 (Table 1; Appendix 1.4). FSTAT permutation tests show no significant difference in mean 
AR (3.6 > 3.2 P = 0.11) or mean HE (0.58 > 0.59 P = 0.59) for the northern region as compared to 
the southern region. Average pairwise FST was highest in PLAC (0.39) and lowest in GFOR and 
RMNT (0.08) (Table 1). PLAC was a clear FST outlier, as other Northern populations exhibited 
FST ranging from 0.11-0.24 (Table 1). FST was not significantly higher in the northern region 
when compared to the southern (FSTnorth = 0.13, FSTsouth = 0.06, Pnorth>south = 0.07), whereas 
Global FST was 0.143. RST permutation tests suggested an effect of stepwise mutations on 
divergence between the northern and southern groups of populations: RST = 0.04 and the RSTperm 

= 0.02, P (RSTobs > RSTperm) = 0.01.  
 

Population genetic structure 
In the STRUCTURE analyses, we found an optimum number of clusters at K = 5 (Figure 

2). Among the key trends at K=5, southern groves (LMDW to DCRK) appeared quite 
homogeneous, but northern groves (PLAC to MKLY) tended to be more distinct one from 
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another (except NCAL and SCAL). Of the northern groves, PLAC formed a distinct cluster and 
MERC appeared highly distinct from its neighboring grove TUOL, which is only 3 km to the 
north. Six of the seven central groves were highly admixed, but LOST was relatively uniform 
and showed affinities to MERC and MKLY. The TESS analysis recovered nine clusters (Figure 
2). It provided improved resolution over STRUCTURE by separating LOST, MERC and MKLY 
and by showing increased differentiation between PKSD and DCRK and between NCAL and 
SCAL, with SCAL exhibiting considerable admixture (Figure 2).    

 
Climatic and geographic effects on genetic dissimilarity 

Using GDM on the range-wide dataset with current climate conditions, our best model 
explained 22.4% of the variation in the observed genetic distance among populations (P = 0.001; 
Table 3). The predictor variables in this model included geographic distance, as well as three 
climatic variables, Precipitation of Warmest Quarter (PWQ), Temperature Seasonality (TS), and 
Climate Water Deficit (CWD). Geographic distance was important in explaining genetic 
dissimilarity in the range-wide analysis, explaining 12.6% of the variation when used as the only 
predictor (P < 0.001) (Table 3). The combination of climatic predictors was significant in 
explaining a small portion of the observed variation (1.8%, P = 0.003) (Table 3). Range-wide 
GDM models with Mid-Holocene climate predictors were consistent with contemporary models 
(Table 3). In addition to the three overlapping predictors (Table 3), Precipitation of Driest 
Quarter (PDQ) was also included in the model. GDM models on the southern group only were 
non-significant. 

 
Population connectivity 

Rates of STRUCTURE admixture at similar spatial scales were highly variable for the 
eight paired populations from across the range of S. giganteum. For the three northern population 
pairs, individual assignments were strongly associated with groves from which samples were 
obtained, and rates of admixture were only 5-7% (Table 2; Appendix 1.3). By contrast, 
admixture levels in the southern group were 70-100% for all but the two southernmost pairs, 
LMDW and CNHM, PKSD and DCRK, which exhibited only 12% and 4% admixture 
respectively and strong association of individuals with their grove of origin (Table 2; Appendix 
1.3).  

 
We found significant recent gene-flow (BAYESASS) only in population pairs from the 

mid-southern range; GRNT/RMNT, GFOR/ATWL and FMAN/MCTR (Figure 3). For each of 
these three population pairs, our inferred migration rates (fraction of individuals of migrant 
ancestry) showed evidence of asymmetry. For example, significant migration was detected from 
GRNT to RMNT (M=0.18, 95% confidence interval [CI] 0.05-0.31), ATWL to GFOR (M=0.26, 
CI 0.10 - 0.41), and FMAN to MCTR (M=0.22, CI 0.05-0.31) (Figure 3). For these population 
pairs none of the reverse estimates of migrant ancestry were significant. Across the three 
northern and two southernmost population pairs M was low (from 0.02- 0.07) and non-
significant (Figure 3).  

 
Mutation-scaled migration rates estimated by MIGRATE-n were only significant for 

RMNT to GRNT (Figure 3). Although no other long-term rates of gene flow obtained by 
MIGRATE-N were significant, we believe that estimates of Nm remain somewhat informative in 
providing an assessment of the relative connectivity across the range (Figure 3, Appendix 1.5). 
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Mean long-term rates of migration showed strong variation across the range that was largely 
concordant with contemporary gene flow patterns. We found low levels of long-term migration 
between each of the three northern population pairs (Nm = 0.01-0.73), higher rates of gene flow 
for the three out of five southern population pairs (Nm = 1.77-19.14), and limited migration 
among the two southernmost population pairs (Nm = 0.04-0.54). Spearman’s correlation shows 
that estimates of long-term and recent gene flow show consistent patterns across the range (ρ = 
0.22, P = 0.04) (Appendix 1.5).   

 
DISCUSSION  
Range-wide patterns of population structure and differentiation  

Sequoiadendron giganteum and its close relatives once existed across a larger portion of 
North America (Axelrod, 1964; Harvey, 1985). Currently, this paleoendemic exhibits a 
fragmented range that includes a series of highly disjunct northern groves and a southern 
network of groves that are more spatially connected. Previously, we detected a strong genetic 
divergence among plants in a common garden originating from northern and southern groves 
(Dodd and DeSilva, 2016). Here, samples collected directly from nineteen groves covering the 
range of the species confirmed our previous results of a strong north-south divergence. Among 
the nineteen groves of S. giganteum, we found between five and nine genetic clusters depending 
on the clustering algorithm used. TESS, which uses spatial data, returned a greater optimal 
number of clusters than STRUCTURE, providing fewer anomalous cluster assignments and 
should probably be considered as being more biologically meaningful. These clusters indicated 
strong genetic differentiation among populations in the northern range, a distinct cluster in the 
extreme southern range, and central southern populations that appear more genetically cohesive. 
Increased genetic differentiation at the range periphery has been reported for many species, such 
as Thuja occidentalis L. [Cupressaceae] and Pinus sylvestris L. [Pinaceae], and has been 
attributed to isolation and lower rates of gene flow (Pandey and Rajora, 2012; Wójkiewicz et al., 
2016). The results of our RST permutations indicate a potential impact of mutation on the 
population structure separating the northern and southern groups (Hardy et al., 2003). This 
finding is consistent with a long-term divergence of populations in the northern portion of the 
range as reported by Dodd and DeSilva (2016). Lower population sizes at the range periphery 
may also be contributing to genetic differentiation in this region by increasing the effects of 
genetic drift (Eckert, 2008 and references therein).  
 
Connectivity across adjacent populations  

We assessed connectivity among approximately equidistant population pairs in two ways: 
(1) from evidence of mixed ancestry, as inferred from admixture proportions estimated by 
STRUCTURE; and (2) from estimates of long-term (MIGRATE-n) and recent (BAYESASS) 
rates of migration. The variation in admixture proportions among population pairs was broadly 
supported by estimates of recent and long-term migration rates from BAYESASS and 
MIGRATE-n respectively. All methods indicated connectivity between three population pairs 
from the southern range, but no significant migration among population pairs in the northern 
range, or between the southernmost population pairs.  

 
BAYESASS estimates showed asymmetric migration for two of the southern grove pairs, 

resulting in net immigration to RMNT from GRNT and to GFOR from ATWL, whereas 
migration between FMAN and MCTR was similar in both directions. Grove size is larger at 
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RMNT than at GRNT and at GFOR than at ATWL and approximately equal at FMAN and 
MCTR. The possibility that grove size can play a role in source-sink relationships is interesting 
and worth further investigation.  
 

Estimates of long-term migration from MIGRATE-n were more equivocal due to lack of 
significance of most estimates. However, mean estimates of number of migrants per generation 
showed a pattern concordant with recent migration rates. Therefore, it seems likely that, although 
the rates of migration may have varied over time, the pattern among population pairs has likely 
remained more or less constant; less gene flow over approximately equal distances in the 
northern paired groves compared with those in the south of the range. This pattern suggests 
greater genetic connectivity in the south, even over similar spatial distance between groves. This 
could be explained by: (1) interactions among the network of groves in the south; and (2) by 
greater grove size in the south. Over 90% of giant sequoia range area is clustered in the southern 
portion of the distribution, where populations tend to be larger and more abundant over the 
landscape (York et al., 2013). This increased density of populations would lead to higher levels 
of genetic connectivity through stepwise gene flow across the region. Larger average grove size 
(numbers of individuals) should result in greater numbers of pollen and seed that might enhance 
opportunities for long-distance dispersal events (Nathan et al., 2008; Purves, 2009).  

 
An important conclusion that can be drawn from our connectivity data is that direct gene 

flow in the northern range of Sequoiadendron giganteum appears limited across distances of 3–6 
km, the maximum distance between adjacent groves in this region. Interestingly, this is not true 
of the southern range where significant migration was detected over a distance of ~10 km from 
GFOR to ATWL. We assume this to be due to indirect gene flow among the network of groves 
in the southern range. Consistency in range-wide patterns of current and historic gene flow 
suggests biological factors are limiting dispersal. This finding is supported by research showing 
poor pollen dispersal in S. giganteum (Anderson, 1990a). On an evolutionary scale, the virtual 
lack of gene flow between northern paired groves is surprising and seems to suggest that the 
groves do not have a very long shared spatial proximity. In other words, at least some of these 
northern pairs of groves might have originated from divergent source populations. Could these 
have colonized from ghost populations that have now gone extinct, from long-distance dispersal, 
or even from ancient human-assisted dispersal? Previously, we suggested that fragmentation of 
the range of giant sequoia probably dated to around the last glacial maximum and that 
subsequent spatial shifts in populations may have occurred over relatively short distances (Dodd 
and DeSilva, 2016). This was based on palynological studies that showed the presence of giant 
sequoia close to contemporary groves during the Holocene (Cole, 1983; Davis and Moratto, 
1988). It is difficult to envisage highly divergent ghost populations giving rise to such 
genetically divergent, but spatially close groves, such as TUOL and MERC. To our knowledge, 
no other studies have attempted to determine the source populations for the northern portion of S. 
giganteum range. Moreover, the fossil pollen record for S. giganteum in this region is extremely 
limited and provides little clarity on the availability of source populations to colonize the 
northern range (Davis and Moratto, 1988; Anderson, 1990b; Koehler and Anderson, 1994). More 
extensive pollen sites would be very helpful in understanding the evolutionary history of giant 
sequoia and, in particular, the perplexing distribution of northern groves. The possibility of 
ancient human-assisted plantings is intriguing and worthy of further study. We hope to provide 
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some added clarity on these questions through direct studies of pollen and seed dispersal between 
the grove pairs and more detailed range-wide genetic data that we are currently analyzing.  
 
Limitations to estimates of migration  

Some surprising results raise questions concerning the reliability of our estimates of 
migration. Indeed, BAYESASS has been found to provide reliable estimates of migration only 
when differentiation among populations is high (FST ≥ 0.05) (Faubet et al., 2007). Whereas our 
northern population pairs satisfy this criterion, some southern population pairs do not (Appendix 
1.6). Most concerning was the lack of significance for most of the MIGRATE-n estimates. Due 
to the assumptions of a coalescent-based approach, divergence time (in generations) among 
populations should ideally be larger than Ne (Beerli, 2010). Our prior work (Dodd and DeSilva, 
2016) suggested divergence ~68 generations ago and Ne for the northern population pairs, as a 
combined estimate per pair, ranging from 329 to 592 (~165 to 296 per population). Therefore, 
divergence time in Sequoiadendron giganteum is likely to be too recent for us to reject zero 
migration rates with confidence. Another caveat to our analysis is that considering that S. 
giganteum has generation times of more than 300 years (Dodd and DeSilva, 2016) and that 
individuals can live upwards of 3000 years, any distinctions between contemporary and long-
term gene flow may be artificial. Despite these caveats, all the methods converge on similar 
patterns of gene flow: low in the northern pairs, higher in the mid-southern pairs, and low again 
in the southernmost populations.  
 
Climatic and geographic effects on genetic dissimilarity  

Our GDM models for the range-wide population set explained a moderate proportion of 
the observed genetic dissimilarity among populations and indicated a prevailing pattern of 
isolation by distance (IBD) with a more limited importance of isolation by environment (IBE). 
Although both IBD and IBE have been shown to be integral factors shaping genetic composition 
across many plant taxa including Fraxinus angustifolia Vahl [Oleaceae], Quercus engelmannii 
Greene [Fagaceae], Caragana microphylla Lam. [Fabaceae], and Helianthus petiolaris Nutt. 
[Asteraceae] (Andrew et al., 2012; Ortego et al., 2012; Temunović et al., 2012; Xu et al., 2017), 
the results presented here should be treated with caution. The signal of IBE detected in our study 
is weak and explains a small portion of the variance. Our models indicated that both temperature 
and moisture related variables played a role in the genetic structure that we detected, which is 
consistent with ecological studies reporting that Sequoiadendron giganteum is highly sensitive to 
water availability, light, and temperature during its establishment phase (Rundel, 1972; 
Hartesveldt et al., 1975; York et al., 2003; Shellhammer and Shellhammer, 2006). However, 
GDM models were non-significant in the portion of the range that contains the vast majority of 
S. giganteum populations.  

 
Although significant, a historical component of divergence confounds our IBD estimates. 

The IBD that the GDM model detects is likely driven by the strong divergence between the 
northern and southern groups as we reported previously (Dodd and DeSilva, 2016), and is also 
supported by the RST permutation tests presented here. Our earlier reports of a lack of IBD across 
Sequoiadendron giganteum range (Dodd and DeSilva, 2016) separated a historical component of 
divergence that is included in our IBD estimates here. Thus, the detected signal of IBD here 
might be better thought of as an unknown combination of IBD and isolation by time. More 
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comprehensive data is needed to provide clarity on IBE, IBD, and historic divergence across the 
range of S. giganteum.  

 
CONCLUSIONS  

Isolated and genetically distinct northern and extreme southern populations of 
Sequoiadendron giganteum should be a high conservation priority. In these regions, suggested 
conservation actions include building an extensive ex-situ germplasm reserve and restoration 
planting to promote the maintenance of genetic diversity. In an era of climate change, S. 
giganteum populations are facing novel environmental conditions to which they may be 
maladapted. Additional research aimed at understanding the adaptive potential of S. giganteum 
populations will be of paramount value in informing our response to this threat.  
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Figure 1: Sequoiadendron giganteum distribution. A map of California, USA with the distribution of 
Sequoiadendron giganteum shown in black. Each sampled population is labeled with a location code (Table 1), and 
the northern and southern groups are outlined.  

 
 
 
Figure 2: Results of population structure analyses from STRUCTURE (Pritchard et al., 2000) and TESS (Chen et 
al., 2007; Durand et al., 2009b). (A) STRUCTURE clusters for all populations sampled: Vertical bars represent a 
sampled individual, color-coded for assigned cluster at K = 5. Populations are arranged from north to south. (B) 
TESS clusters for all populations sampled: Vertical bars represent a sampled individual, color-coded for assigned 
cluster at K = 9. Populations are arranged from north to south.  
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Figure 3: Recent and historic gene flow across paired populations. Migration across selected population pairs. (A) 
Recent migration estimated as the fraction of individuals of migrant ancestry (M), (B) Historic migration rates 
estimated as the number of migrants per generation (Nm). Solid lines indicate significant values and dotted arrows 
are non-significant. Population pairs are arranged from north to south, where the first three pairs are in the northern 
group of populations, and the remaining pairs are in the southern group of populations  
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APPENDIX 
 
 
Appendix 1.1: Environmental variables included in GDM model selection 

Current Conditions   Mid-Holocene Conditions 
Bio 2: Mean Diurnal Range Bio 2: Mean Diurnal Range 
Bio 3: Isothermality Bio 3: Isothermality 
Bio 4: Temperature Seasonality Bio 4: Temperature Seasonality 
Bio 6: Min Temperature of the Coldest Month Bio 6: Min Temperature of the Coldest Month 
Bio 10: Mean Temperature of the Warmest Quarter  Bio 10: Mean Temperature of the Warmest Quarter  
Bio 15: Precipitation Seasonality  Bio 14: Precipitation of Driest Month  
Bio 18: Precipitation of Warmest Quarter Bio 15: Precipitation Seasonality  
Climate Water Deficit Bio 17: Precipitation of Driest Quarter  
 Bio 18: Precipitation of Warmest Quarter 

 
 
Appendix 1.2: The full set of climate data used in the GDM analyses  
 

Longitude Latitude bio2 bio3 bio4 bio6 bio10 bio14 bio15 bio17 bio18 cwd 

NCAL -120.303 38.280 136 44 6255 -27 183 6 80 30 42 568.79 

SCAL -120.250 38.244 138 44 6247 -29 182 6 79 32 43 557.92 
TUOL -119.808 37.770 142 45 6108 -44 167 6 78 31 40 487.88 

MERC -119.840 37.749 142 45 6145 -37 175 5 78 29 37 564.47 
MPSA -119.601 37.509 137 45 5831 -48 155 6 78 28 39 558.3 
NELD -119.591 37.429 142 46 5987 -34 174 4 80 24 33 767.12 
MKLY -119.108 37.029 124 44 5643 -42 151 5 79 22 38 634.56 
GRNT -118.972 36.747 118 42 5849 -35 161 4 81 19 36 625.43 
RMNT -118.916 36.704 127 42 6053 -32 175 4 81 17 32 536.71 
LOST -118.828 36.651 119 42 5843 -42 155 5 80 21 37 467.18 
GFOR -118.760 36.567 123 42 5975 -39 163 5 80 20 35 581.12 
ATWL -118.675 36.467 120 42 5872 -48 150 6 77 25 39 651.59 
MCTR -118.576 36.132 129 43 6061 -34 173 4 78 20 32 670.34 
FMAN -118.519 36.144 130 42 6136 -36 174 5 78 21 33 709.77 
LMDW -118.598 35.964 127 43 5929 -33 168 4 80 20 32 711.46 

CNHM -118.569 35.917 123 43 5834 -39 157 5 78 22 36 653.06 
PKSD -118.592 35.926 125 43 5846 -35 163 5 79 22 35 704.53 
DCRK -118.611 35.876 139 44 6069 -19 192 2 81 16 25 724.52 
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Appendix 1.3: Observed admixture among paired populations. STRUCTURE plots for paired populations: 
Vertical bars represent a sampled individual, color-coded for assigned cluster at best K, with a black line indicating 
the separation of each population. Paired populations are arranged from North to South, with the first three pairs 
representing the northern group and last five pairs representing the southern group. 

 
 
 
Appendix 1.4: Gene Diversity (HE), Allelic Richness (AR), Inbreeding Coefficient (FIS), and Estimated Null 
Alleles by locus for the entire sample  

Locus▵ Gene diversity (He)  
Allelic Richness 
(Ar) 

Inbreeding 
Coeficient (Fis)  

Estimated Null 
Alleles*  

31267 0.82 16.9 0.32 0.05 
31670 0.71 13.0 0.59 0.22 
39473 0.92 24.0 0.14 0.00 
30133 0.71 9.0 0.18 0.00 
40527 0.58 6.0 0.08 0.00 
29596 0.75 14.9 0.09 0.00 
30510 0.30 6.0 0.02 0.00 
36493 0.72 16.9 0.25 0.01 
7365 0.63 6.0 0.13 0.00 
17786 0.67 4.0 0.19 0.00 
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Appendix 1.5: Migration coefficient estimates from MIGRATE-n and BAYESASS 
Direction of 
Gene Flow 

BayesAss: (M) 
Fraction of 
individuals of 
migrant ancestry  
(95% credible 
interval) 

Migrate-n: (M) 
Mutation scaled 
Migration   
Mean (95% 
confidence 
interval) 

Theta 
(Migrate) 
 

Historical 
migration rate 
mh=Mμ 
(μ=5x10-4) 

Number of 
migrants per 
generation 
(Nm) historic 
(θ×M/4) 

NCAL -> SCAL M= 0.02 (0.00-0.04) 3.26 (0-28) NCAL 0.02 0.0016 0.73 
SCAL -> NCAL M=0.02 (0.00 – 0.05) 12.43 (0-38) SCAL 0.24 0.0062 0.01 
TUOL -> MERC M=0.02 (0.00 – 0.07) 5.58 (0-22.7) TUOL 0.06 0.0028 0.09 
MERC -> TUOL M=0.07 (0.00 – 0.15) 3.55 (0-20) MERC 0.06 0.0018 0.06 
MPSA -> NELD M=0.03 (0.00 – 0.08) 5.01 (0-21.3) MPSA 0.13 0.0013 0.19 
NELD -> MPSA M=0.02 (0.00 – 0.05) 5.69 (0-22.6) NELD 0.09 0.0014 0.25 
GRNT -> RMNT M=0.18 (0.05 – 0.31) 6.26 (0-37) GRNT 2.49 0.0031 4.11 
RMNT -> GRNT M=0.02 (0.00 – 0.06) 30.81 (3-57) RMNT 2.63 0.0154 19.14 
GFOR -> ATWL M=0.05 (0.00 – 0.12) 15.00 (0-41) GFOR 1.56  0.0075 1.77 
ATWL -> GFOR M=0.26 (0.10 – 0.41) 7.43 (0-33) ATWL 0.47 0.0031 2.89 
MCTR -> FMAN M=0.17 (0.00 – 0.37) 22.85 (0-56) MCTR 1.45 0.0114 8.37 
FMAN -> MCTR M=0.22 (0.05 – 0.38) 17.43 (0-50.7) FMAN 1.47 0.0087 6.30 
LMDW -> CNHM  M=0.07 (0.00 – 0.17) 6.42 (0-14) LMWD 0.03 0.0032 0.08 
CNHM -> LMDW M=0.04 (0.00 – 0.11) 9.90 (0-18) CNHM 0.15 0.0050 0.25 
PKSD -> DCRK M=0.04 (0.00 – 0.09) 8.95 (0-34) PKSD 0.24    0.0045 0.04 
DCRK -> PKSD M=0.02 (0.00 – 0.06) 6.61 (0-32) DCRK 0.03 0.0033 0.54 

 
 
Appendix 1.6: Pairwise FST values for all pairwise population combinations.   
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TRANSITION TO CHAPTER TWO 
 
 

Considering the fragmented nature of the giant sequoia range and the prevalence of small 
populations, the first chapter of this dissertation focused on the broad factors that affect 
connectivity among spatially separated populations and the extant patterns of genetic diversity at 
neutral molecular markers. Our research estimating rates of gene flow among spatially proximal 
groves indicated minimal gene exchange between adjacent groves (3.0 - 6.5 km apart) in the 
northern range of giant sequoia, which is consistent with limited dispersal in the species. In 
contrast, southern populations appeared to maintain genetic connectivity at similar spatial scales. 
Because the biological explanations for this dichotomy were speculative, we decided to follow 
up this work (Chapter Two) with a fine-scale study on dispersal dynamics within groves that 
could add clarity to the potential for long-distance dispersal in the species. Moreover, by using 
progeny arrays at a local scale, we are able to assess pollen dispersal characteristics, the quality 
(diversity) of the pollen pool and rates of inbreeding.  
 

An overarching goal of this dissertation is to understand patterns of extant genetic 
diversity across giant sequoia range. The initial assessment presented in chapter one, indicates 
low levels of genetic diversity, with the smallest and most isolated populations typically being 
the most genetically depauperate. For sessile organisms such as forest trees, how far propagules 
disperse away from the parent tree has many consequences for the distribution of genetic 
diversity at fine-spatial scales. Thus, to further understand patterns of diversity within groves and 
how diversity might change over time, spatial genetic structure within groves is examined in 
Chapter Two.  

 
Overall, Chapter Two addressed the fine scale processes of dispersal at the scale of 

individual groves and builds upon the knowledge gained in Chapter One by adding clarity to 
aspects of gene flow and genetic diversity. 
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 

Chapter 2 

 

 

Patterns of fine-scale spatial genetic structure and pollen 
dispersal in giant sequoia (Sequoiadendron giganteum) 

 

Rainbow DeSilva, Richard S. Dodd 

 

 
ABSTRACT 

Patterns of dispersal shape the distribution and temporal development of genetic diversity 
both within and among populations. In an era of unprecedented environmental change, 
maintenance of extant genetic diversity is crucial to population persistence. We investigate 
patterns of pollen dispersal and spatial genetic structure within populations of giant sequoia 
(Sequoiadendron giganteum), using both progeny arrays and leaf collections. Our results indicate 
that giant sequoia is predominantly outcrossing but exhibits moderate levels of bi-parental 
inbreeding (0.155). The diversity of the pollen pool is low with an average of 7.5 pollen donors 
per mother tree. As revealed by the Sp-statistic, we find significant genetic structure in ten of 
twelve populations examined, which indicates clustering of related individuals at fine spatial 
scales. Estimates of pollen and gene dispersal indicate predominantly local dispersal, with the 
majority of pollen dispersal < 253 m, and some populations showing fat-tailed dispersal curves, 
suggesting potential for long-distance dispersal. The results presented here represent the first 
detailed examination of the reproductive ecology of giant sequoia, which will provide necessary 
background information for conservation of genetic resources in this species.  

 
 INTRODUCTION 

Dispersal is a key ecological process that influences the evolution of genetic diversity 
both within and among populations (Nathan et al. 2008, Kremer et al. 2012, Ellstrand, 2014, 
Robledo-Arnuncio et al. 2014). For sessile organisms such as forest trees, how far propagules 
disperse away from the parent tree has many consequences for the distribution of genetic 
diversity at fine-spatial scales (Vekemans and Hardy 2004). Moreover, characteristics of the 
dispersal kernel play a large role in determining the extent of long-distance dispersal (gene flow) 
and thus modulate large scale patterns of genetic diversity and structure across a species range 
(Slatkin 1987, Cain et al. 2000, Riesenberg and Burke 2001). Since an adequate pool of genetic 
diversity, on which selection can act, is critical for the success of populations under changing 
environments, understanding dispersal dynamics is important for successful management of 
species.  
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At the scale of a population, dispersal dynamics shape the clustering of related 

individuals on the landscape. Fine-scale spatial genetic structure (FSGS), can be defined as the 
non-random arrangement of genotypes on a landscape (Heywood 1991, Vekemans and Hardy 
2004). In plants, FSGS is caused by the interplay of many evolutionary forces, but of key 
importance is dispersal limitation, which creates patterns of isolation by distance between 
parents and offspring (Wright 1943, Vekemans and Hardy 2004). When related genotypes 
aggregate together in space, this can increase rates of bi-parental inbreeding, eventually leading 
to a reduction in genetic diversity (i.e. loss of heterozygosity, Ellstrand and Elam 1993, 
Krakowski et al 2003). Moreover, populations with strong genetic structure can be more 
vulnerable to genetic diversity loss from stochastic events, such as disturbance or genetic drift 
(Willi and Määttänen 2011).  

 
In plants, gene dispersal occurs at two distinct phases, pollen and subsequent seed 

dispersal. For forest trees, pollen and seed differ in abundance and dispersal dynamics. Empirical 
studies have often shown that for wind-dispersed species, pollen can have a particularly large 
dispersal potential (Dow and Ashley 1996, Bacles et al. 2005, Robledo-Arnuncio and Gil 2005, 
deLucas et al. 2008, Chybicki and Dzialuk 2014). Moreover, the shape of the dispersal kernel 
(kurtosis) is an important indicator of the potential for long-distance dispersal (LDD) as fat-tailed 
curves have increased likelihood of LDD (Nathan et al. 2008). In an era of ever-increasing 
habitat fragmentation, long distance pollen dispersal can be especially important for maintaining 
connectivity among habitat patches (O’Connell et al. 2007, Colabella et al. 2014) and mitigating 
risks of inbreeding. Thus, determining the characteristics of the pollen dispersal curve is critical 
to understanding how genetic diversity will change within populations and across fragmented 
landscapes.  

 
Giant sequoia, Sequoiadendron giganteum, is a paleoendemic long-lived tree species 

occupying ~70 groves, scattered across mid-elevations in the Sierra Nevada mountains of 
California. Its range stretches approximately 400 km from Placer county in the north to Tulare 
county in the south. The entire range of giant sequoia is fragmented. However, populations tend 
to become smaller and more disjunct in the northern ~2/3rds of the latitudinal range (Figure 1). 
Giant sequoia is wind pollinated, and mature trees produce an abundance of pollen and seed 
cones each year (Hartesveldt et al. 1975). Mature seed cones remain closed and attached to the 
tree for many years, and thus provide a large aerial seed bank (Hartesveldt et al. 1975). 
Successful regeneration for this species can be episodic and often occurs after a fire, which 
triggers seed dispersal and creates canopy gaps (Rundel 1972; Harvey et al. 1980; York et al 
2003, Shellhammer and Shellhammer 2006, York et al. 2009). This species’ reliance on fire, 
highlights a potential for environmental mismatch as forest management policies and shifting 
climate alter fire regimes across California (Goss et al. 2020).  

 
Given the cultural and ecological value of this species, it is surprising how little is known 

regarding the fine-scale patterns of genetic diversity and dispersal within the extant groves. To 
date, no studies have addressed the extent of FSGS within giant sequoia populations, and only a 
single study (Anderson 1990), which investigated pollen rain, demonstrated patterns consistent 
with short-distance pollen dispersal. Yet, the scope of this work was extremely limited as it only 
covered two extremely small populations of giant sequoia < 0.21 km2 (Anderson 1990). Our 
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previous work indicated minimal gene exchange between adjacent groves (3.0 - 6.5 km apart) in 
the northern range of giant sequoia (DeSilva and Dodd 2020), consistent with limited dispersal in 
the species. However, no studies have used progeny arrays at a local scale to understand the 
dynamics of pollen dispersal distance, the quality (diversity) of the pollen pool and rates of 
inbreeding in determining FSGS. Here we attempt to fill this gap in giant sequoia reproductive 
ecology by: 1) determining the degree of fine-scale spatial genetic structure within twelve 
populations of giant sequoia; 2) estimating mating parameters (i.e. number of pollen donors, 
rates of outcrossing and bi-parental inbreeding) using progeny collected from five populations; 
and 3) investigating characteristics of pollen dispersal including mean dispersal distance and 
kurtosis of the dispersal curve.  

 
METHODS 
Sampling and data preparation 
Fine-scale spatial genetic structure (FSGS) 

FSGS within groves was estimated using leaf tissue collected from twelve giant sequoia 
groves. Leaf collections, DNA extraction, and DNA preparation are described in detail in 
DeSilva and Dodd (2020). In brief, for this study we utilized leaf material collected in twelve 
populations with high sampling density. All individuals were genotyped at ten microsatellite loci 
described in DeSilva and Dodd (2014).  

 
Mating parameters and pollen dispersal  

We obtained fallen cones that were in clusters close to a putative parent tree, within five 
S. giganteum groves. Due to the height of reproductive branches in mature S. giganteum trees, 
often >10 m, cones were collected from the ground beneath potential maternal trees in 7-18 
locations per population (Table 1). Geographic coordinates of all collection sites were taken at 
the time of collection. From each sampling location, seeds were extracted from multiple cones 
and subjected to 30 days of moist cold-stratification and 30 days of dry cold-stratification at 1-2° 
Celsius. Seeds were then germinated on filter-paper lined Petri dishes. Subsequently, DNA was 
isolated from the seedling radicle using the CTAB method (Doyle and Doyle 1990). A total of 
1070 seeds were genotyped using ten microsatellite markers outlined in DeSilva and Dodd 
(2014).  

 
Census density of mature trees was estimated from population surveys for all southern 

groves, using the density of all trees >75cm d.b.h. (York et al. 2013). For the northern groves, 
(NELD, CALN, CALS), census densities of mature trees were estimated from Willard (2000).  

 
Assigning maternity 

Because each cone collection locality potentially included progeny from more than a 
single mother tree, maternal families were identified using the likelihood method implemented in 
ML-RELATE (Kalinowski et al. 2006). Subsequently, the largest maternal families were 
retained from each cone collection locality. We then removed individuals with potential null 
alleles or genotyping errors (those that were incompatible with a single mother tree), while 
maximizing the number of individuals retaining the most common alleles within the maternal 
family. On occasion, this process resulted in more than one potential maternal family. In this 
case, all potential families were retained for subsequent analyses and average statistics for the 
population are reported. We then utilized MLTR to determine the most likely maternal genotype 
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for each maternal family (Ritland 1996, Ritland 2002), as potential maternal genotypes were not 
sampled. After filtering, DNA from 629 seeds were used in pollen dispersal analyses and 
assessing mating parameters.  

 
Data Analysis 
Mating parameters 

Using the seed genotype data, we first estimated the mating parameters (selfing, bi-
parental inbreeding and outcrossing) from single locus and multilocus estimates of outcrossing 
using MLTR (Ritland 2002). Multilocus outcrossing rate (tm) provides an estimate of the true 
level of selfing, whereas single locus outcrossing rate (ts) accounts for all inbreeding (selfing and 
mating with close relatives). Thus, we estimated bi-parental inbreeding as (tm - ts) following 
Ritland (2002).  

 
Then, we used TwoGener (Smouse et al. 2001) to estimate the effective number of pollen 

donors per mother tree (Nep) as Nep=1/2ΦFT (Austerlitz and Smouse 2001), where ΦFT is the 
differentiation between the pollen clouds sampled by pairs of maternal trees within a population.  
 
Spatial Genetic Structure and Spatial genetic structure and gene dispersal 

Based on leaf genotypes of established trees we estimate the extent of spatial genetic 
structure within populations using the Sp statistic (Vekemens and Hardy 2004), calculated as -bF 
/ [1 − F(1)], where bF represents the linear decay in the pairwise kinship coefficient (Fij) for all 
pairs of individuals with the logarithm of geographic distance and F(1) is the mean kinship 
coefficient between individuals within the first distance class. The Sp statistic is useful in our 
case because it provides a meaningful way to compare spatial genetic structure across 
populations despite variation in population sizes and sampling scheme (Vekemans and Hardy 
2004). For this calculation, we used the pairwise kinship coefficients (Fij) of Loiselle et al. 
(1995), as this measure of relatedness shows less statistical bias than many others (Hardy and 
Vekemans 1999; Vekemans and Hardy 2004). We assigned the number of distance classes based 
on the geographic area of each grove as follows: number of distance classes 0-125 ha = 2, 125 - 
275 ha = 3, 275-500 ha = 4, 500-850 ha = 5, and >900 ha = 6 (Appendix 2.1). We determined 
these grove area cut-offs, after completing exploratory analyses, to inform the spatial resolution 
that allowed for a large number of pairwise comparisons per distance class and an adequate 
spatial resolution within the first distance class. Significance of ‘bF’ was obtained using 20,000 
permutations of sampling locations within populations. All calculations were completed using 
SPAGeDi 1.5 software (Hardy and Vekemans 2002).  

 
Also, we utilized SPAGeDi 1.5 (Hardy and Vekemans 2002) to obtain an indirect 

estimate of evolutionary-scale gene dispersal, an effective pollen and seed average, from patterns 
of FSGS. Under equilibrium isolation-by-distance conditions, the scale of effective gene 
dispersal can be estimated from Wright’s neighborhood size equation (Nb ≡ 4πDeσ2

 ), where De is 
the effective density and σ2 is half the mean-squared parent-offspring distance (i.e. gene 
dispersal; Hardy and Vekemans 2002, Fenster 2003). For the estimation of gene dispersal (σ2) 
we set the effective density to 1/2 the adult census density. We recognize this represents a high 
estimate of effective density as evidence suggests that for adult populations the ratio of Ne/N 
often ranges between 0.1 and 0.5 (Frankham 1995).  
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Pollen dispersal parameters 
 We estimated the characteristics of pollen dispersal using both the TwoGener and 
KinDist approaches, as implemented in POLDISP 1.0 (Robledo-Arnuncio et al., 2007). Here, 
maternal trees are considered to serve as pollen traps, and their progeny represent a sample of the 
available pollen pool. The TwoGener method uses the differential structure of the pollen sampled 
by each mother tree across the landscape (Smouse et al. 2001), whereas the related KinDist 
method uses the relationship between correlated paternity and the pollen dispersal kernel 
(Robledo-Arnuncio et al. 2006). Both methods can have some drawbacks. To fit the pollen 
dispersal curve, TwoGener requires an independent estimate of effective density which can be 
hard to obtain for some species. Yet, accuracy can be increased with a reliable external estimate 
of effective density (Robledo-Arnuncio et al. 2006). On the other hand, KinDist requires a 
threshold distance for unrelated pollen pools, which can be difficult to determine. For both 
KinDist and TwoGener, we applied the two parameter (a and b) exponential power distribution 
to fit the pollen distribution curve as recommended by Austerlitz et al. (2004). This distribution 
allows for the leptokurtic pattern of pollen dispersal that is commonly observed in wind-
pollinated trees (Austerlitz et al. 2004, de-Lucas et al 2008, Marchelli et al. 2012, Chybicki and 
Diazuk 2014, Moracho et al. 2016, Burczyk et al. 2019). We estimated the scale (a) and shape 
(b) parameters of the dispersal kernel and calculated mean pollen dispersal distances (d) 
according to Austerlitz et al. (2004). The shape parameter (b) provides an indication of the 
potential for LDD, through determining the degree of kurtosis (i.e. how fat-tailed the dispersal 
curve is). For TwoGener calculations we set the Ne/N ratio as 0.1, and 0.5. Because effective 
density often ranges between 0.1 and 0.5 of census density (Frankham 1995), we chose these 
values as they potentially represent a high and low estimate of the effective density within giant 
sequoia populations.  
 
RESULTS 
Mating parameters 

Average multi-locus outcrossing rate (tm) across five groves was 91 percent, with the 
highest outcrossing observed for GFOR (0.95) and the lowest in GRNT (0.84) (Table 1), which 
indicates that low levels (9 percent) of selfing is also occurring. The average rate of bi-parental 
inbreeding was moderate (tm-ts) = 0.155. Bi-parental inbreeding was lowest in LOST, (tm-ts) = 
0.112 (0.037), and highest in GFOR, (tm-ts) = 0.189 (0.107) (Table 1). The number of effective 
pollen donors per mother tree (Nep), ranged from 4.7 - 8.5, with an average of 7.5 (Table 1). We 
observed the fewest pollen donors in GRNT (4.7) and the most in CALN (8.5) (Table 1).  

 
Spatial genetic structure  

Significant genetic structure was found in ten of the twelve populations assessed (Table 
2). For these ten populations, Sp ranged from 0.0235 to 0.0444 and was lowest in RMNT and 
highest in CALS. When estimating Wright’s gene dispersal from SPAGeDi, which represents an 
effective pollen and seed average, we found mean gene dispersal distances between 120.4 - 
374.0 m (Table 2). Our iterative procedure to estimate gene dispersal failed to converge for three 
populations, likely due to insufficient sampling density within these populations.   

 
Dispersal dynamics 

The TwoGener method indicated average pollen dispersal distance (d) ranging from 64.6 
– 252.1 m with a trend of increased dispersal distance when the effective density was reduced 
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from 50 to 10 percent census density (Table 3). Evidence for fat-tailed dispersal kernels (b < 1.0) 
was consistently found for GRNT, LOST, and GFOR but was absent in CALS and detected in 
CALN only when effective density was set to 50 percent census density (Table 3). When using 
the KinDist approach, the correlated paternity among maternal families did not show a 
significant decrease with distance for CALN, CALS, or LOST populations (Pearson's product-
moment correlation p-value = 0.21, 0.47, and 0.69, respectively). Thus, further analysis using the 
KinDist method is not recommended for these populations (Robledo-Arnuncio et al. 2007). 
Estimated dispersal parameters for GRNT and GFOR showed average pollen dispersal distance 
ranging from 572.8 - 2133.8 m respectively and leptokurtic dispersal kernels (i.e. b <1.0). Since 
our goal here is to uncover general pollen dispersal characteristics across the giant sequoia range, 
we focus the discussion on the TwoGener results as they provide evidence for more general 
patterns in the species.  
 
DISCUSSION 
 Our prior work on genetic structure within the range of giant sequoia indicated relatively 
strong divergence among groves in the northern range (north of the Kings River watershed) 
despite the close proximity of some of the groves e.g. the two Calaveras groves (CALN and 
CALS), Tuolumne and Merced, Nelder and Mariposa (DeSilva and Dodd 2020). We proposed 
low rates of seed and pollen dispersal to account for divergence over such short distances. In the 
southern range, groves appeared to be more admixed, which raised questions as to whether 
dispersal distances might be greater in the south, or whether the increased admixture was a result 
of a lack of lineage sorting in this more contiguous range.  
 

In the present work, we have addressed gene dispersal by estimating the distance of total 
gene flow and of pollen dispersal inferred from progeny arrays sampled within groves from the 
northern and southern range of the species. In addition, we assessed mating system parameters in 
the same groves to determine whether their size, or isolation contributed to any differences in 
levels of inbreeding through selfing and bi-parental inbreeding.  Overall, we found that although 
giant sequoia is generally an outbreeding species, it exhibits a low degree of selfing and 
moderate rates of bi-parental inbreeding. The scales of pollen and gene dispersal were consistent 
across groves, suggesting dispersal distances for the species are predominantly short, which 
indicates that most pollination is localized to within groves. Dispersal curves showed evidence of 
fat-tails, which could indicate potential for some long-distance dispersal events.  

 
Mating system and pollen pool diversity 

Consistent with our observations for giant sequoia, outcrossing rates in many wind-
pollinated trees typically range from 90-100% (Burczyk et al. 1996, Wasieliwska et al. 2005, 
Burczyk et al. 1996, Sork et al. 2002, O’Connell et al. 2006, Bower and Aitken 2007, de-Lucas 
et al. 2008). In slight contrast, we found higher levels of bi-parental inbreeding in giant sequoia 
than for many other conifer species (Ledig et al. 2005, O’Connell et al. 2006, Mantovani et al. 
2006, de-Lucas et al. 2008). Links between inbreeding and population size have been established 
for some tree species, which can exhibit higher inbreeding (bi-parental or selfing) in smaller 
populations (Rajora et al 2002, O’Connell et al. 2006, Chybicki and Dzialuk 2014). From the 
five groves for which we obtained estimates of inbreeding, we found no evidence for a 
relationship between grove size and level of inbreeding, despite having data from two groves of 
less than 25 ha (CALN and LOST). Interestingly, the average bi-parental inbreeding estimated 
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from progeny arrays exceeded the degree of inbreeding (FIS-statistic) estimated from adult trees 
in these five groves using the same microsatellite loci (DeSilva, unpublished data). We believe 
this difference could be attributable to a post germination selective filter acting against inbred 
progeny in natural populations.  

 
 We observe low pollen pool diversity in comparison to many other conifers, such as 
Larix occidentalis (Nep ≊	35), Picea glauca (Nep = 62–143), Pinus pinaster (Nep = 21–56), and 
Austrocedrus chilensis (average Nep = 13.9) (El-Kassaby and Jaquish 1996, O’Connell et al. 
2006, de-Lucas et al. 2008, Colabella et al. 2014), which supports the idea that pollen dispersal 
in these giant sequoia groves is spatially restricted. However, it should be noted that our Nep 
estimates are similar to those reported for the wind pollinated angiosperm trees Quercus lobata 
and Nothofagus nervosa (Sork et al. 2002, Marchelli et al. 2012) and our estimate of Nep is likely 
somewhat reduced due to bi-parental inbreeding (Austerlitz and Smouse 2001b).  
 
Evidence for limited dispersal  
 The high levels of fine-scale spatial genetic structure (FSGS) across the giant sequoia 
range suggest limited dispersal capacity in this species. Although forest tree species commonly 
show significant genetic structure, the Sp-statistic values are typically lower than found here (de-
Lucas et al. 2009, Aleksic et al. 2017, Eliades et al 2018, Mosca et al. 2018 ). For instance, in 25 
populations of four conifer species, Sp values varied from 0.0018 to 0.0035 (Mosca et al. 2018). 
Although peripheral populations (due to small size or lower density) often demonstrate stronger 
FSGS as compared to core populations (Gapare and Aiken 2005, de-Lucas et al. 2009), for giant 
sequoia we find no relationship between the degree of FSGS and population size, isolation, or 
density. In contrast, the degree of FSGS was fairly consistent across populations (average Sp = 
0.0349, SD 0.0076), which points to underlying biological constraints on gene dispersal.  
 

Our results indicate that the majority of pollination in giant sequoia occurs over short 
distances < 253 m, which is typical for many tree species including Pinus pinaster, Quercus 
lobata, Nothofagus nervosa, and Larix decidua (de-Lucas et al. 2008, Pluess et al. 2009, 
Marchelli et al. 2012, Burczyk et al. 2019). Moreover, gene dispersal (a measure of the effective 
pollen and seed average) also appears to occur over short distances <370 m and we observe no 
significant differences across the range due to grove area or density. Although we are unable to 
make direct comparisons between pollen and gene dispersal for GRNT and LOST, estimated 
dispersal parameters show general correspondence. High congruence in dispersal distance 
despite differences among groves indicate biological controls on dispersal capacity. Interestingly, 
this finding also suggests that seed and pollen may disperse at similar scales in giant sequoia, 
which is in contrast to many wind-pollinated trees where pollen travels farther than seed (Latta et 
al.1998, Schuster and Mitton 2000, Heuertz et al. 2003, Chybicki and Burczyk 2010, Sork et al. 
2015, Browne et al, 2018). More limited pollen dispersal in giant sequoia may be a result of less 
buoyant pollen, as giant sequoia pollen lack the air-filled sacs typical of the members of the 
Pinaceae (e.g. Pinus spp. Abies spp. Picea spp.) (Ting 1965, Bortenschlager 1990, 
Schwendemann et al. 2007).  It is important to note that estimates of dispersal using the 
Twogener method are highly tied to effective density (Smouse and Sork 2004). Here, we assume 
that effective density is between 10-50 percent of census density. Yet, we recognize that no 
formal studies have examined the effective density of any giant sequoia populations. Our results 
suggest a general tendency for increased average dispersal when effective density is reduced. 
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Thus, our estimates of average dispersal are likely an underestimate if effective density is lower 
than 10 percent of census density.   

 
Evidence for long-distance pollen dispersal 

In some conifer species, wind dispersed pollen can account for extremely long-distance 
dispersal (O’connell et al. 2007, Robledo‐Arnuncio 2011, Chybicki and Dzialuk 2014, Colabella 
et al. 2014). Here, we find leptokurtic pollen dispersal for four out of five populations examined, 
highlighting the potential for long-distance dispersal in giant sequoia. This finding is consistent 
with our previous research that indicates connectivity in the southern range of giant sequoia 
across populations between 2-10km apart (DeSilva and Dodd 2020). Yet, it is at odds with the 
apparent lack of gene flow between adjacent giant sequoia populations in the north (DeSilva and 
Dodd 2020). In the southern section of giant sequoia range, multiple populations are often within 
10km of each other, potentially allowing for more regional LDD opportunities than in the north 
where very few populations exist. Our progeny data from the northern section of giant sequoia 
range has important limitations. The indirect TwoGener method works best when few offspring 
are sampled from many mother trees that are sampled both near and far (Smouse and Sork 2004). 
Our data has relatively few maternal trees representing CALN and CALS populations. Thus, a 
more extensive sampling of mother trees, or a detailed parentage analysis, is likely needed to 
determine the existence of gene-flow across these populations. Empirical studies consistently 
suggest that ‘fat-tailed’ pollen dispersal curves are typical for many wind-dispersed tree species 
(Robledo-Arnuncio and Gill 2005, de-Lucas et al 2008, Marchelli et al. 2012, Chybicki and 
Diazuk 2014, Colabella et al. 2014, Moracho et al. 2016, Burczyk et al. 2019). Although we find 
evidence for leptokurtic dispersal kernels, due to the lack of air sacs in giant sequoia pollen, its 
capacity for LDD may be more limited than many conifers with which it shares habitat. Fat-
tailed dispersal curves allow more opportunities for gene flow among fragmented populations 
(Nathan et al. 2008). Gene flow can be a crucial factor facilitating population persistence as it 
can replenish diversity lost through genetic drift and introduce new variation into populations, 
which can be a source of adaptive potential (Young et al. 1996, Kremer et al. 2012). 

 
Evidence for demic structure in giant sequoia groves  

The reproductive dynamics of giant sequoia suggest that demes within populations are an 
important factor influencing changes in genetic diversity over time. Dispersal limitation can 
result in demic structure within non-selfing species, as mating among close relatives becomes 
more important. Our data indicate relatively high rates of bi-parental inbreeding that were more 
or less consistent across groves and highest in GRNT and GFOR groves. We observe 
predominantly local dispersal, which, coupled with low diversity in the effective pollen pool 
sampled by mother trees, indicates the importance of reproductive groupings within populations. 
Moreover, the coupling of high levels of FSGS with predominantly local dispersal can beget 
further clustering of related individuals over time. Demic patterns within populations are 
important because small reproductive neighborhoods can reduce the effective population size 
and increase the risk of diversity erosion due to genetic drift (Whitlock and Barton 1997, Willi 
and Määttänen 2011). Moreover, reduced genetic diversity can eventually lead to inbreeding 
depression, which is a potential threat to population survival (Frankham 1995b).  

 
CONCLUSIONS 
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 We present evidence for predominantly local pollen dispersal in giant sequoia and 
potential for a limited degree of long-distance dispersal. The spatial restriction of the majority of 
pollen dispersal has likely influenced the observed strong spatial genetic structure and created 
demic structure within giant sequoia groves. We warn of potential genetic diversity loss in many 
giant sequoia populations that may be effectively operating as smaller reproductive units. Thus, 
we suggest that small, isolated, and highly structured giant sequoia populations are at highest risk 
for erosion of genetic diversity. These populations include, but are not limited to, CALN, NELD, 
GRNT, and DCRK. We end on the hopeful note that evidence of fat-tailed dispersal suggests 
some of this diversity loss may be mitigated by long distance gene-flow. We suggest that 
assisting in the movement of genetic resources by planting seedlings from both local and non-
local sources in these high-risk populations can be an effective means to enhance genetic 
diversity. As climate changes, extant genetic diversity will be important for the long-term 
persistence of giant sequoia populations.  
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TABLES AND FIGURES 
 

Table 1: Seed collection and mating system parameters for five populations.   
Population 
(ha) 

Seed 
collection 
sites  

Average 
Maternal 
Family Size  

Census 
Density 
(m2) 

Multi-locus 
outcrossing 
rate 
 tm (SD) 

Sinlge-locus 
outcrossing 
rate 
 ts (SD) 

Bi-parental 
inbreeding  
tm-ts 

Nep 
(TwoGener) 

CALN (25) 7 10 0.00052 0.92 (0.11) 0.81 (0.09) 0.117 (0.09) 8.5 

CALS (182) 9 11 
0.00055 

0.94 (0.12) 0.76 (0.04) 0.178 (0.11) 8.4 

GRNT (163) 11 14 0.00099 0.84 (0.03) 0.66 (0.03) 0.180 (0.03) 4.7 

LOST (21) 8 13 0.00127 0.88 (0.04) 0.77 (0.04) 0.112 (0.04) 7.8 

GFOR (935) 18 12 0.00104 0.95 (0.12) 0.76 (0.02) 0.189 (0.11) 7.0 

AVERAGE - - - 0.91 0.75 0.155 7.5 

 
Table 2: Sp-statistic and estimated gene dispersal for twelve giant sequoia populations 
distributed across the range, based on analyses using SPAGeDi. 

Population (ha) Sp-statistic 
Sigma*2 (mean gene dispersal 
distance, m)  

CALN (25) 0.0354* 252.6 

CALS (182) 0.0444** 374.0 

NELD (195) 0.0417** 153.6 

GRNT (163) 0.0388** _ 

RMNT (1466) 0.0235* 120.4 

LOST (21) 0.0339NS _ 

GFOR (935) 0.0238** 185.6 

ATWL (542) 0.0292 NS _ 

MCTR (700) 0.0414** 264.2 

FMAN (580) 0.0397** 159.0 

LMDW (138) 0.0308* 260.2 

DCRK (21) 0.0303* 236.0 
*indicates a significant result (p 0.05), **(p 0.01) 
NS = result is not significant  
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Table 3: Pollen dispersal parameters obtained using the TwoGener approach.  
 (Ne/N=0.5)   (Ne/N=0.1)   
Population Scale (a) Shape (b) Average 

distance, d (m) 
Scale (a) Shape (b) Average 

distance, d (m) 
CALN 34.62 0.93 80.7 215.96 6.84 141.9 
CALS 98.54 25.94 64.6 82.85 1.05 152.5 
GRNT 0.55 0.37 74.2 4.75 0.47 129.0 
LOST 34.62 0.93 80.7 1.05 0.35 213.5 
GFOR 0.004 0.22 203.0 0.37 0.31 252.1 

 
 
Figure 1: A) Range map of giant sequoia. Populations where seeds were collected indicated are noted by a 
population code. B) Pollen dispersal kernels for CALN (left) and GRNT (right) estimated in TwoGener by fitting an 
exponential power distribution with effective density set to ½ census density. 
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APPENDIX 
 
Appendix 2.1: Grove size, number of spatial groups, and distance within the first distance class 
for populations analyzed with SPAGeDi 
Population Code Grove Size 

(ha) 
Number of spatial 
groups 

Distance range within the 
first distance class (m) 

CALN  25  2 0 – 428 
CALS  182 3 0 – 403 
NELD  195 3 0 – 558 
GRNT  163 3 0 – 293 
RMNT  1466 6 0 – 415 
LOST  21 2 0 – 138 
GFOR  935 6 0 – 767 
ATWL  542 5 0 – 236 
MCTR  700 5 0 – 419 
FMAN  580 5 0 – 456 
LMDW  138 3 0 – 347 
DCRK  21 2 0 – 269 
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TRANSITION TO CHAPTER THREE 
 
  

The first two chapters of this dissertation have provided a comprehensive picture of 
patterns in extant genetic diversity across giant sequoia range at neutral markers and how they 
are influenced by dispersal and gene-flow. Chapter Two adds detail to patterns of genetic 
diversity in the species, showing that within groves diversity is highly structured, meaning 
related genotypes tend to cluster in space. Thus far, we have addressed how non-selective factors 
(dispersal and gene flow) shape genetic diversity of at multiple spatial scales. Yet, natural 
selection is of key importance in shaping patterns of genetic diversity across a species range. 
Therefore, in Chapter Three we complete our genetic diversity assessment by seeking to better 
understand adaptively important genetic variation and its distribution across giant sequoia range. 

 
Building on the knowledge regarding gene flow gained from Chapter One, Chapter Two 

provided evidence that the majority of pollen and gene dispersal occurs over short distances, 
while also highlighting a non-trivial potential for long distance pollen dispersal. Moreover, in our 
study of the factors shaping gene-flow (Chapter One) we found some evidence for isolation by 
environment (IBE), linking genetic divergence at putatively neutral loci to dissimilarity in 
precipitation and temperature related variables. Although IBE is consistent with local adaptation 
of populations, many other factors can create or contribute to patterns of IBE. Thus, in Chapter 
Three we build upon this earlier work by assessing the prevalence of local adaptation to climate 
among giant sequoia populations.  

 
Adding to the knowledge contained in the earlier chapters of this dissertation, Chapter 

Three provides a more complete understanding of how giant sequoia may respond to global 
change. Specifically, in the next chapter we assess the distribution of adaptive variation across 
giant sequoia range, which is a prerequisite to predicting this species’ response to climate 
change. In addition, we uncover signatures of local adaptation through association of genomic 
and climatic variation. These associations provide a glimpse into the climatic factors that have a 
major influence on selection, which in turn inform us about the environmental tolerances of giant 
sequoia. Lastly, we highlight specific populations that may offer genetic variants that represent 
‘pre-adaptations’ to future conditions.   
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Chapter 3 

 

 

Association of genetic and climatic variability in giant 
sequoia, Sequoiadendron giganteum, reveals signatures of 

local adaptation along moisture-related gradients. 

 

Rainbow DeSilva, Richard S. Dodd 

 

 
ABSTRACT 

Uncovering the genetic basis of local adaptation is a major goal of evolutionary 
biology and conservation science alike. In an era of climate change, an understanding of 
how environmental factors shape adaptive diversity is crucial to predicting species response 
and directing management. Here, we investigate patterns of genomic variation in giant 
sequoia, an iconic and ecologically important tree species, using 1364 bi-allelic single 
nucleotide polymorphisms (SNPs). We use an FST outlier test and two genotype-
environment association methods, latent factor mixed models (LFMM) and redundancy 
analysis (RDA), to detect complex signatures of local adaptation. Results indicate 79 
genomic regions of potential adaptive importance, with limited overlap between the 
detection methods. Of the 58 loci detected by LFMM, 51 showed strong correlations to a 
precipitation driven composite variable and seven to a temperature-related variable. RDA 
revealed 24 outlier loci with association to climate variables, all of which showed strongest 
relationship to summer precipitation. Nine candidate loci were indicated by two methods. 
After correcting for geographic distance, RDA models using climate predictors accounted 
for 49% of the explained variance and showed significant correlations between SNPs and 
climatic factors. Here, we present evidence of local adaptation in giant sequoia along 
gradients of precipitation and provide a first step towards identifying genomic regions of 
adaptive significance. The results of this study will provide information to guide 
management strategies that seek to maximize adaptive potential in the face of climate 
change. 

 
INTRODUCTION 

 In an era of unprecedented climate change, the adaptive potential of populations has 
become an increasingly important topic to conservation biologists, raising questions of 
landscape partitioning of adaptive variation and management strategies to maintain 
population viability. Given the rapid rate of climate change, new beneficial mutations are 
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expected to play a limited role for species with low mutation rates and long generation 
times. Therefore, adaptive evolution under climate change for many species will depend on 
standing genetic variation (Aitken et al. 2008; Barrett and Schluter 2008) that may vary 
across the landscape and include alleles that gain adaptive value as selection pressures 
change (Olson-Manning et al 2012). Reliance on standing genetic variation is likely to be 
particularly true for long-lived sedentary species, such as forest trees that are characterized 
by adaptive constraints that can limit their evolutionary response to rapid environmental 
change: extended generation times that result in local persistence, increased rates of genetic 
drift associated with overlapping generations (Rogers and Prügel-Bennett 2000) and limited 
rates of migration due to long generation times. For these species, understanding the 
distribution of adaptive diversity in relation to recent, or past climatic gradients is a critical 
first step in promoting the adaptive potential of populations in hopes of maintaining future 
viability (Holderegger et al. 2006; Aitken and Whitlock 2013).   

  
The rich history of field research on phenotypic traits in plants (common gardens and 

reciprocal transplant studies) provides evidence for abundant heritable variation for quantitative 
traits that is organized along environmental clines (Morgenstern 1996; Savolainen et al. 2007). 
Until recently, determining the molecular basis of this variation has been less tractable. However, 
the rapid advances in genome sequencing, including methods that use reduced genomic 
complexity (e.g. Genotyping-By-Sequencing (GBS), Restriction-site Associated DNA 
sequencing (RADseq)), has opened the door to more comprehensive assessments of population 
level diversity and allowed for the detection of regions under selection. Although some instances 
of strong selection on few genes of major effect have been noted (Akey 2009; Linnen et al. 2009; 
Sella et al. 2009), many traits of adaptive importance in plants are believed to be polygenic in 
nature (Holland 2007; Pritchard and Di Rienzo 2010; Le Corre and Kremer 2012; Yeaman et al. 
2016). Under selection these traits can exhibit subtle changes in frequency across many loci of 
small effect. Further, demographic processes can shape genetic diversity in ways that mimic 
selective gradients, as geographic distance and climatic gradients are often autocorrelated. As a 
result, imprints of selection within the genome can be difficult to detect (Yeaman 2015), and it is 
necessary to parcel out the contribution of geographic space in order to successfully identify 
regions of functional importance (Excoffier et al. 2009; Rellstab et al. 2015).  

 
By coupling genome-wide markers with landscape genomics analyses, many researchers 

have successfully uncovered patterns of adaptive variation and identified potential genomic 
regions under selection across a wide variety of species (De Kort et al. 2014; Benestan et al. 
2016; Pais et al. 2016; Harrisson et al. 2017; Lind et al. 2017; Dudaniec et al. 2018). FST outlier 
tests, that scan for highly differentiated loci as candidates for divergent selection, have proven 
useful in detecting regions under selection but often cannot detect weak or polygenic selection 
(Pritchard and Di Rienzo 2010; Narum and Hess 2011; Lotterhos and Whitlock 2015). 
Genotype-environment association (GEA) tests have demonstrated high power to detect signals 
of adaptive evolution under varying demographic scenarios (de Villemereuil et al. 2014; 
Lotterhos and Whitlock 2015; Forester et al. 2018). Univariate association methods that test for 
single-locus-single-predictor correlation after accounting for population structure are powerful 
tools to accurately detect even weak signatures of adaptation (Frichot et al. 2013; Gunther and 
Coop 2013; de Villemereuil et al. 2014; Lotterhos and Whitlock 2015; Rellstab et al. 2015). 
However, a short-coming of assessing each locus independently is a potential failure to detect 
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signals of polygenic selection (Forester et al. 2018). Multivariate approaches can fill this gap by 
assessing the combined effects of multiple loci and predictors (Rellstab et al. 2015; Capblancq et 
al. 2018; Forester et al. 2018), which is perhaps more reflective of real-life evolutionary 
pressures. Given the advantages of each method, combining outlier tests with GEA can increase 
the likelihood of detecting complex patterns of selection (Rellstab et al. 2015).  

 
Determining the presence of adaptively important genetic variation and its distribution 

across a species range is crucial to predicting species’ responses to global climate change and 
directing biodiversity conservation and management efforts (Sgrò et al. 2011; Funk et al. 2012; 
Aitken and Whitlock 2013; Alberto et al. 2013; Sork et al. 2013). This has become an urgent 
challenge in California, where a protracted drought has resulted in massive tree mortality (USDA 
2016). The Sierra Nevada of California is a high mountain range that collects precipitation from 
the Pacific Ocean mostly in the form of winter rain and snowfall. The slow release of water from 
snowmelt in the spring is an important source of moisture for seedling growth and establishment. 
Sierra snowpack has declined in recent years (Fyfe et al. 2017) and high-resolution regional 
climate models suggest that spring snow water equivalent will decline by 73% by the end of the 
century, with mid-elevations (1500-2500m) experiencing the greatest declines (Sun et al. 2018).  

 
This elevational range includes the extant groves of the iconic, long-lived conifer, giant 

sequoia (Sequoiadendon giganteum [Lindl.] Buchholz) that occur in a highly disjunct range 
consisting of ~70 groves spanning approximately 400km north-to-south (Figure 1). Currently, 
most giant sequoia populations are in protected areas as this species is valued both culturally and 
for ecotourism. However, despite this protected status, a key question is whether populations of 
giant sequoia will remain viable under changing climate. Our previous work has shown very 
restricted gene flow (DeSilva and Dodd 2020), suggesting that natural dispersal outside of 
existing groves will be unlikely. Long generation times, (~305 years; Dodd and DeSilva 2016) 
will slow the expansion of new variants that may arise through mutation, which underscores the 
role of standing genetic variation in determining the future viability of giant sequoia populations. 
In our landscape genetics study of microsatellite variation, we found some evidence for isolation 
by environment (IBE), linking genetic divergence at putatively neutral loci to dissimilarity in 
precipitation and temperature related variables (DeSilva and Dodd 2020). Although IBE is 
consistent with local adaptation, it is dependent on a reduction of gene flow from divergent 
habitats due to selection against non-adapted immigrants, and therefore, patterns of IBE may not 
be reflective of local adaptation when gene flow is low or absent (Nosil et al. 2005; Wang and 
Bradburd 2014), as is likely the case in sections of giant sequoia range (DeSilva and Dodd 2020). 
A recent common garden study reported provenance variation in growth performance, providing 
support for the existence of adaptive genetic variation across the species’ range (Valness 2016). 
Yet, to date, no studies have investigated local adaptation in giant sequoia using genomic data. 
Our ultimate goal is to detect populations that may be genetically responsive to anticipated 
climate change, so here, we build upon this earlier work by reporting on genomic signatures of 
selection using a range-wide Genotyping-By-Sequencing dataset. Specifically, we utilize an FST 
outlier test and gene-environment association methods (LFMM, and RDA), to find signatures of 
local adaptation among giant sequoia populations and locate potential genomic regions under 
selection.  

 
METHODS 
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DNA extraction, GBS library preparation, and data processing 
Foliage was collected from 6-9 trees within each of 18 populations of giant sequoia 

distributed throughout the range (Figure 1). To reduce the potential of sampling related 
individuals, we aimed to sample individual trees >40 meters apart. However, this was not 
possible in some small and highly clustered populations. In this latter case, we attempted to 
maximize the distance between sampled individuals, with the exception of the PLAC population, 
where all individuals were sampled. Our goal is to maximize the capture of variation across the 
range of our study species. Thus, we prioritize increased sampling of populations across the S. 
giganteum range, with the tradeoff of limited sampling within each population. Appropriate 
permits were obtained for all sampling. 

 
High purity genomic DNA from 143 individuals was isolated from leaf tissue using 

Plant/Fungi DNA Isolation kits (Norgen Biotek, Thorold, ON, Canada). We constructed three 
sequencing libraries using a double-digest restriction-enzyme associated genotyping-by-
sequencing (GBS) protocol outlined in Peterson et al. (2014). Genomic DNA was digested using 
SbfI and EcoRI restriction enzymes (New England Biolabs, Ipswich, MA, USA). The resulting 
product was ligated to barcoded adapters and purified, 46-48 individuals per-library were then 
pooled and subjected to PCR amplification using Phusion High Fidelity PCR Kit (New England 
Biolabs) and an automated size selection for fragments between 430-570bp using Pippen Prep. 
The resulting three libraries were sequenced on an Illumina HiSeq 4000 platform using 150bp 
pair-end reads. Sequence data were then demultiplexed using the process_radtags module within 
the STACKS pipeline (Catchen et al. 2013), during which reads with a phred quality score < 10 
were removed. Sequences were then aligned to the giant sequoia reference genome v1.0 
(Redwood Genome Project 2019), using the software Bowtie-2 and SAMtools (Li et al. 2009; 
Langmead and Salzberg 2012). Variable sites were called using FreeBayes (Garrison and Marth 
2012) and filtered to remove low quality reads, potential sequencing errors, and paralogs. Data 
filtering steps included removing loci with uneven mapping quality and those with average read 
depth > 200, requiring a minimum read depth of 5x and a minor allele count > 3, removal of loci 
with more than 80% missing data, and a thinning step that retains one SNP per DNA fragment to 
remove potentially linked loci (Appendix 3.1). This filtering protocol resulted in a final data set 
of 1364 bi-allelic SNPs used for outlier tests and environmental association analyses and to 
obtain genetic diversity statistics.  

 
Environmental data 

To characterize the climatic conditions for each population, we used the spatial centroid 
of each population to extract and compile twenty-one environmental variables at a spatial 
resolution of approximately 1km2. Nineteen climate variables were obtained from the WorldClim 
database (Fick and Hijmans, 2017), and elevation and Climate Water Deficit (CWD) were 
obtained from the California Basin Characterization Model (Flint et al. 2013). CWD provides an 
indication of aridity that is important for Mediterranean climate systems, such as in California 
(Stephenson, 1998). We conducted a principal component analysis (PCA) on the full 
environmental data set (twenty-one variables) after standardization, to reduce dimensionality in 
the climate data. We retained the first two axes (hereafter PC1 and PC2), which together 
explained 82% of the climate variation (Appendix 3.2, and 3.3). PC1 was driven predominantly 
by temperature and elevation variables, with a small contribution from annual and winter 
precipitation, whereas PC2 was determined mostly by precipitation related variables and CWD 
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with a minor contribution from variables related to temperature seasonality (Appendix 3.2, and 
3.3). 

 
Genetic diversity 

Genetic diversity and differentiation statistics were calculated using both the 
‘diveRsity’ package in R and GenoDive (Meirmans and Van Tienderen 2004, Keenan et al. 
2013). Calculated statistics included observed and unbiased expected heterozygosity (Ho 
and uHe respectively), the inbreeding coefficient (FIS) and the pairwise fixation index 
(G’ST). Since the removal of rare alleles (minor allele count filtering) can bias genetic 
diversity estimation, we also calculated genetic diversity statistics without this filtering step 
for comparison. To further investigate the partitioning of genetic variation, we used 
AMOVA with 10000 permutations to estimate FST across all populations as well as between 
northern and southern regions which previous evidence suggested were divergent (Dodd and 
DeSilva 2016; DeSilva and Dodd 2020). For regional diversity comparisons, groves north of 
GRNT were grouped as northern populations and groves from GRNT to the south as 
southern populations (Figure 1; Dodd and DeSilva 2020). 

 
Genomic signatures of selection: FST outliers and gene-environment association tests  

To detect FST outliers that are candidates for selection we utilized the Bayesian 
likelihood approach implemented in BayeScan v.2.1 (Foll and Gaggiotti 2008). This method 
scans the genome for highly differentiated SNPs that potentially have been subjected to 
divergent selection while accounting for neutral genetic structure (Narum and Hess 2011). 
BayeScan was run using the false discovery rate (FDR) set to 0.05 under the following 
parameters: 20 pilot runs of 5000 with an additional burn in of 50000 iterations and a 
subsequent run with 5000 iterations and a thinning interval of 10. The prior odds for the 
neutral model was increased to 100 (default is 10) as raising this value has been shown to 
reduce false positives with little effect on false negatives (Lotterhos and Whitlock 2014). 
Loci with Log10 values of the posterior odds > 1.0 were retained, as the program 
documentation suggests these loci show ‘strong’ evidence for selection (Foll 2010).  

 
To test for associations between genomic variation and environmental factors, we 

utilized latent factor mixed models (LFMM; Frichot et al. 2013), as implemented in the 
LEA package in R (Frichot and Francois 2015a). LFMM is a univariate approach that treats 
each individual locus as a response variable with climate data (PC1 and PC2 separately) as 
the explanatory variable, while incorporating neutral structure using latent factors (Frichot 
et al. 2013). In simulation studies, LFMM has demonstrated a good balance between high 
power and low false-positive rate (Frichot et al. 2013; de Villemereuil et al. 2014). As 
suggested by Frichot et al. (2013) and Frichot and Francois (2015a), we used two methods 
to determine the optimal number of latent factors (K-value) that correct for the neutral 
genetic structure of our data. First, we ran a principal components analysis on the individual 
allele frequencies. We then determined the number of components that explain the genetic 
variance, based on the Tracy-Wisdom test on the eigenvalues, as an estimate of K (Frichot 
and Francois 2015a). Second, we utilized the Bayesian clustering algorithm STRUCTURE 
that estimates the number of genetic clusters (K) without prior information about geographic 
origin (Pritchard et al. 2000). The best K value was determined using the ∆K statistic as 
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suggested by Evanno et al. (2005). We used four replicates and a burnin of 300000 and 
1000000 MCMC repeats after burnin for K = 2 - 12.  

 
We ran LFMM to test for associations between SNP’s and two composite climate 

variables (PC1 and PC2) using ten independent replications at 50000 iterations after a burnin 
period of 25000 with the number of latent factors (K) ranging from 8 to 12, as the methods 
outlined above suggested K equal to 10 and 9 respectively. We chose high run length parameters 
because of the relatively small number of individuals and loci. LFMM uses the z-scores to 
indicate the strength of the gene-environment association (Frichot and Francois 2015b). As 
suggested by the authors, we calculated the median z-score from ten replicate runs, re-adjusted 
the p-values, controlled for FDR using the q-value of 0.05, and determined candidate SNPs 
based on the Benjamini-Hochberg procedure (Frichot and Francois 2015b).  

 
We also utilized RDA, a multivariate GEA method, to test for more subtle polygenic 

signatures of adaptation and detect outlier loci as candidates of functional importance. 
Redundancy Analysis (RDA) is an extension of multiple regression to multivariate response 
variables (Legendre and Legendre, 2012). In finding the ideal combination of predictor and 
explanatory variables RDA has shown high power to detect potential signals of polygenic 
adaptation (Harrison et al. 2017; Forester et al. 2018). For these analyses, Hellinger transformed 
allele frequencies (Legendre and Gallagher 2001) were treated as response variables. Because 
RDA models do not allow missing data, we imputed allele frequency data using probabilistic 
principal components analysis (ppca) as implemented in the ‘pcaMethods’ package in R 
(Stacklies et al. 2007). Ppca uses a decomposition of SNP frequencies to create principal 
components, the components with the largest eigenvalues are then used to impute the missing 
data. We evaluated space and climate as explanatory variables. Space was defined by distance-
based Moran’s eigenvector maps (dbMEMs; Borcard and Legendre 2002, Dray et al. 2006) 
based on Euclidean distances between all giant sequoia groves (sampled and unsampled) and 
extracting the values that correspond to our sample sites. Then we conducted backward model 
selection, using the ‘ordistep’ function within the vegan package for R (Oksanen et al. 2013), to 
reduce the number of dbMEM vectors. For climate, we reduced the twenty-one untransformed 
environmental variables described above, first by removing highly correlated environmental 
variables, (|r| < 0.7), and subsequently by using the ‘ordistep’ function for backwards model 
selection to remove variables lacking explanatory power. The above process resulted in climate 
being represented by ‘Isothermality’ (ISO), a measure diurnal and annual temperature 
fluctuation, ‘Precipitation of Driest Quarter’ (PDQ), a measure of summer precipitation in 
Mediterranean climates, and ‘Climate Water Deficit’ (CWD) , a measure of aridity, in all RDA 
models, and space represented by two dbMEM vectors, MEM3 and MEM5. All variables were 
centered and standardized before use in each model.   

 
We set up multiple RDA models to determine the relative amount of variation in allele 

frequency explained by climate after correcting for geographic space as a signature of local 
adaptation (Lasky et al. 2012; Sork et al. 2016; Harrison et al 2017). First, to elucidate the major 
factors shaping genetic variation and to detect potential signals of local adaptation, we set up 
three models for comparison: a full RDA model where allele frequencies were associated with 
both climate and spatial explanatory variables, a partial RDA in which the effects of climate 
were conditioned on geography (dbMEMs) and a second partial RDA, where the effects of 
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geography were conditioned on climate. Next, to detect outlier loci, allele frequencies were 
associated with climate predictors after removing the effects of spatial predictors (Lasky et al. 
2012; Harrison et al. 2017; Forester et al. 2018). Using the first constrained axis, we identified 
candidate SNPs of potential adaptive importance as those with loadings in the tails of a 95% 
confidence interval from the mean, or (2.0SD from the mean loadings). One risk of using such a 
low cutoff is an elevated rate of false positives. However, we chose this to maximize the number 
of SNPs detected, as we did not expect to find single loci that would be under very strong 
selection for climate variation in the range of giant sequoia. Moreover, we also identified the 
climate predictor with the highest correlation to each indicated SNP. In all RDA models we 
assessed model and constrained-axis significance using 999 permutations.  

 
Genomic context of outlier loci 

To gain insights into the potential adaptive significance of outlier loci, we obtained the 
flanking sequence of each outlier SNP locus from the giant sequoia reference sequence 
(Redwood Genome Project 2019). Since the giant sequoia reference genome is not annotated, 
functional annotation was performed using the online BLAST (Basic Local Alignment Search 
Tool) database. Using a 601bp sequence (300bp up and downstream of the SNP site) we 
searched the NCBI database using BLASTn with an e-value cut-off set to 1 x 105 and the 
requirement of > 70% sequence similarity.   

 
RESULTS 
Genetic diversity and differentiation  

Genetic diversity and differentiation differed substantially across the eighteen sampled 
populations (Table 1). Observed heterozygosity (Ho) ranged from 0.09 to 0.17 and was lowest in 
PLAC and highest in ATWL and FMAN (Table 1). Unbiased expected heterozygosity (uHe) was 
also lowest in PLAC (0.07) and highest in ATWL (0.21) (Table 1). Average pairwise population 
differentiation (G’ST) varied from 0.09-0.32 and was lowest for GFOR and highest for PLAC 
(Table 1). Average G’ST was significantly higher in the northern populations than in the southern 
populations (G’STN = 0.235 G’STS = 0.109, Prob G’STN ≠ G’STS = 0.017). Diversity analysis of 
SNP’s without minor allele count (MAC) filtering yielded significantly different results: Ho and 
uHe were lower and ranged from 0.08 to 0.15 and 0.06 to 0.18 respectively (P < 0.001, P = 0.01 
respectively, Table 1). Whereas, G’ST was slightly higher in the dataset without MAC filtering 
(G’ST 0.09-0.34, P = 0.003, Table 1).  

 
Hierarchical AMOVA found a small, but significant variance due to regions (Fct = 0.02, 

P = 0.000) and a larger portion of genomic variation distributed among populations (FST = 0.15, 
P = 0.000; Appendix 3.4). Population clustering (STRUCTURE) at K = 9, indicated strong 
differentiation among many of the northern populations (north of GRNT) with little admixture 
(Figure 2). In addition, populations NELD, GFOR, ATWL, GRNT, MCTR, and FMAN were 
assigned to the same cluster and the four southernmost populations, LMDW, CNHM, PKSD, and 
DCRK, consisted of two clusters with PKSD as a transitional population exhibiting admixture 
from both clusters (Figure 2). Finally, RMNT and GRNT show admixture between the 
neighboring GFOR, ATWL, GRNT, MCTR, FMAN, cluster, and the geographically separate 
LMDW, CNHM, cluster (Figure 2). 

 
FST outliers 
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BayeScan indicated seven FST outliers, six demonstrating evidence for divergent selection 
with FST values ranging from 0.55-0.72 (Table 2, Appendix 3.5) and one showing signs of 
balancing selection (locus 1114, FST = 0.04). Since our focus here is on patterns of spatially 
varying selection, no further discussion is presented for locus 1114. A BLAST search found one 
of these loci exhibited functional significance (Locus 828; Table 2).  

 
Candidate genomic regions associated with climate variables 

Univariate environmental association analyses (LFMM with K = 9) indicated a total of 58 
loci with strong correlations to composite environmental variables (Figure 3; Appendix 3.5). Of 
these, 51 were correlated with PC2 that was predominantly driven by precipitation, and seven 
were correlated with the temperature-driven PC1 (Figure 3; Table 2; Appendix 3.5). An 
examination of the adjusted P-values from all runs (K set from 8-12) provided additional support 
for K = 9 (Frichot and Francois 2015b). Our BLAST analysis was successful in finding 
functional annotation for three loci that were strongly associated with PC1 and 11 loci that were 
associated with PC2 (Table 2). 

 
We used the partial RDA model to detect outlier loci as candidates of importance in 

selection in a multivariate context, where allele frequencies were associated with climate after 
removing the effect of spatial predictors. Using the SNP loadings on the first RDA axis, we 
identified 24 outlier loci beyond the 95% confidence that demonstrated strong correlations to 
environmental variation, all of which were most correlated with Precipitation of the Driest 
Quarter (PDQ) (Figure 4; Appendix 3.5 and 3.6). Our annotation procedure supported functional 
importance for seven of the 24 loci (Table 2). 

 
Concordance among tests for signatures of selection  

Overall, eight loci were detected as outliers by both RDA and LFMM. All of these loci 
were most associated with precipitation related variables (PC2 in LFMM, and PDQ in RDA). 
Annotation through BLAST identified two of these loci as having a putative function (Table 2). 
Overlap was found between a BayeScan (FST outlier) and LFMM at one locus (1123; Table 2).  

 
 Partitioning Variation Between Climate and Geographic Space 

The full RDA model explained 45 percent of the total variation in allele frequency and 
supported an influence of climate and/or space in shaping allelic variation (P = 0.001; adjusted 
R2 = 0.22). The first two canonical axes from the full RDA model were significant (P = 0.002, 
and 0.013 respectively) and together accounted for 77 percent of the explained variation (Figure 
4). The partial RDA model, with climate conditioned on space, was significant (P = 0.019; 
adjusted R2 = 0.09) and constrained 49 percent of the variance explained by the full model. The 
first partial RDA axis was significant at the 0.1 level (P = 0.098) and accounted for 45 percent of 
the variation. The partial RDA model with space conditioned on climate accounted for 24 
percent of the explained variation and was non-significant (P = 0.207). The remaining 27 percent 
of the explained variation was confounded between climate and geography. 

 
DISCUSSION 

Giant sequoia is a paleoendemic of California that has likely suffered from a long-term 
demographic decline (Dodd and DeSilva 2016). Today, it is limited to a number of restricted 
groves in the Sierra Nevada mountain chain. Small grove sizes and limited gene exchange 
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among populations (DeSilva and Dodd 2020) might be expected to limit its adaptive potential 
through inbreeding effects and genetic drift. However, through different approaches we have 
found evidence for a signal of spatially varying local adaptation associated with climate variables 
and, in particular, along gradients dominated by precipitation. We report here that population 
genetic structure in giant sequoia has been shaped by local adaptation overlain on historical 
population processes. From our study of genomic variation, we detected 79 loci as either FST 
outliers, or loci with strong associations to climate as candidate regions of adaptive importance. 
Of these, we highlight 26 SNPs, found from multiple methods, or that correspond with functional 
annotation, as prime candidates for additional research. We emphasize that these outlier loci may 
include false positives and that experimental studies are needed to demonstrate functional 
significance of putative adaptive genomic regions (Kawecki and Ebert 2004; Barrett and 
Hoekstra 2011). Here, we present a first step towards understanding local adaptation in an iconic 
forest tree. 

 
Population divergence and structure  

We found evidence for strong population differentiation in our genomic data (FST = 0.15), 
which was close to our earlier estimate of FST = 0.14 from microsatellite variation (DeSilva and 
Dodd 2020). Such high levels of differentiation are unusual in wind-pollinated tree species, for 
which population differentiation is typically low and suggests that, at least some populations 
have been isolated for a considerable time (McKay and Latta 2002; Petit and Hampe 2006). The 
18 giant sequoia populations that we sampled, covering the range of the species, could be 
partitioned into nine clusters. Six of these clusters were restricted to northern isolated groves and 
the remaining three clusters include all southern populations that are somewhat more contiguous. 
Our results confirm the previously report of strong population structure among populations north 
of GRNT based on microsatellite data (Dodd and DeSilva 2016; DeSilva and Dodd 2020). 
Genetic diversity (unbiased heterozygosity) was no lower in the northern fragmented groves than 
in most populations within the range, supporting our earlier inference that northern groves have a 
long evolutionary history (Dodd and DeSilva 2016). Moreover, estimates of uHe (calculated 
after removing putative adaptive sites; see Appendix 3.7), show consistent patterns across 
populations as previous estimates of He from microsatellite markers (Dodd and DeSilva 2020), 
although uHe is lower in the SNP dataset. This pattern of population and genetic structure is 
unusual for north temperate conifers, for which higher latitude populations are commonly 
thought of as “leading edge” colonization following glacial retreat. Current groves extend above 
the lower extent of late Pleistocene glaciers (Moore and Moring 2013), so either some short 
distance upward colonization must have occurred, or pockets of unglaciated terrain may have 
served as very local refugia. Given the pattern of genomic diversity that we have detected and 
the long generation time (~300 years) of giant sequoia, it seems most likely that extant groves 
have either persisted through many generations or were colonized by short distance migrations. 

 
 Evidence for local adaptation   

Despite the strong structure among populations, analysis of our genomic data revealed a 
signal of divergent selection associated with climatic variables. BayeScan detected few FST 
outliers due, in part, to the high population structure and increasing the prior odds for the neutral 
model to 100. However, each of these outliers exhibited high levels of differentiation (FST 0.55 - 
0.72; Appendix 3.5). Univariate (LFMM) and multivariate (RDA) environmental association 
approaches identified more loci indicative of local adaptation. Although FST outlier approaches 
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have been found to be more robust with respect to false positives than other methods (Lotterhos 
and Whitlock 2014), environmental association studies are more successful in detecting loci 
under selection and can provide context for selective forces as well (De Mita et al. 2013). Our 
environmental association studies found climate to be an important predictor of allele frequency 
and accounted for the largest portion of explained variation after correcting for geographic space; 
a pattern consistent with local adaptation. Signatures of local adaptation to climate are prevalent 
in many tree species, including Picea mariana, Alnus glutinosa, Populus trichocarpa, Cornus 
florida, and Quercus lobata (Prunier et al. 2011; De Kort et al. 2014; Geraldes et al. 2014; Pais et 
al. 2016; Sork et al. 2016). Moreover, the association of genomic variation with climate in giant 
sequoia is consistent with our previous work that found precipitation-related variables play a role 
in patterns of isolation by environment at neutral genetic markers (DeSilva and Dodd 2020). 
Here, a genome-wide data set that includes putative functional regions showed a signal of 
climatic factors shaping genomic variation, which suggests that local adaptation in-situ, likely 
under conditions of limited gene-flow, is important in this species.  

 
Local adaptation is further supported by nine loci detected by multiple methods and 19 

candidate loci with functional annotation (Table 2). Overlap in detection of outlier loci has been 
reported in numerous field studies (Hess et al. 2016; Sork et al. 2016; Harrison et al. 2017). A 
carefully designed simulation study demonstrated that overlap between GEA methods was found 
more often for actual targets of selection rather than false positives (Forester et al. 2018). In 
addition, two of the eight loci detected by both RDA and LFMM have relevant functional 
annotation, (loci 827 and 1229; Table 2). A BLAST search suggests that Locus 827 is a kinesin-
like protein, KIN-13A, which has been found to be involved in trichome morphogenesis (Lu et 
al. 2005). In plants, trichome occurrence and density is associated with increased drought 
resistance (Sletvold and Agren 2012; Galdon-Almero et al. 2018). Locus 1229 represents a 
potential pollen allergen gene, which is thought to be involved in plant responses to stress (Chen 
et al. 2016). Although our BLAST search suggested functional importance for 20 loci, many of 
the annotated regions are characterized only as mRNA with further functional roles yet to be 
determined (Table 2). The non-annotated outlier loci are promising candidates for future research 
as they may be of unknown importance, linked to adaptive genes, in regulatory regions, or 
represent false positives. Any future annotation of the giant sequoia genome will provide 
valuable clarity as to the specific role of all outlier loci. Yet, we emphasize the candidate loci 
noted in this study demonstrate only strong associations with climate and identifying the exact 
targets of selection involves rigorous experimental research. Taken together, outlier loci with 
functional annotation or those detected by multiple methods provide strong support for adaptive 
variation across the range of giant sequoia.  

 
Outlier SNPs driven by precipitation 

Interestingly, variables associated with precipitation appeared to be the major drivers of 
local adaptation, which perhaps reflects the strong gradients of water relations on the western 
slope of the Sierra Nevada. Using gene-environment association methods (LFMM and RDA) we 
found evidence for adaptive differentiation across giant sequoia populations in response to 
gradients in precipitation and a more limited signal of local adaptation to temperature. LFMM 
analyses demonstrated seven times as many outliers correlated with precipitation-related PC2 
than to temperature-related PC1 (Figure 3, Appendix 3.5). Although, all RDA outliers were 
correlated with three environmental factors, PDQ, a measure of summer precipitation, CWD, a 
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measure of aridity, and ISO, a measure diurnal and annual temperature fluctuation, outlier loci 
showed the strongest relationship to PDQ (Appendix 3.6). Thus, both LFMM and RDA indicate 
a subtle signal of adaptation to temperature and a stronger signature of divergent selection in 
response to gradients in water-related variables. Gradients of water availability are important 
selective agents for many tree species including Picea mariana, Cornus florida, Fagus sylvatica, 
Quercus spp., and Pinus albicaulis (Prunier et al. 2011; Pais et al. 2016; Pluess et al. 2016; Sork 
et al. 2016, Lind et al. 2017; Martins et al. 2018). In addition, many ecological studies have 
noted that giant sequoia is sensitive to water availability during its establishment phase (Rundel 
1972; Hartesveldt et al. 1975; York et al. 2003; Shellhammer and Shellhammer 2006). Giant 
sequoia is known to have bursts of reproduction after fire and subsequently experience high 
seedling mortality due to desiccation (Weatherspoon 1990). Considering the reproductive 
biology of this species, water availability is a highly plausible selective agent. For Mediterranean 
type climates PDQ is of particular relevance for desiccation sensitive species as it equates to 
summer precipitation, which may represent a vital water source for giant sequoia seedlings 
during a vulnerable establishment phase. 

 
Limitations, opportunities, and future implications 

It is important to note that GEA methods can suffer from low power or high false positive 
rate under some demographic scenarios. Although LFMM has been shown to be robust to 
various demographic scenarios, including those that create high levels of population structure, 
this method can have elevated false discovery rates (FDR) under scenarios that create IBD (de 
Villemereuil et al. 2014; Lotterhos and Whitlock 2015; Forester et al. 2016). Here, we do not 
find a significant signal of IBD in our data. Yet, the role of IBD or other neutral factors affecting 
population structure in giant sequoia has not been fully elucidated. Previous research has 
indicated isolation by distance (IBD) and/or ancient divergence separating the northern and 
southern populations of giant sequoia (Dodd and DeSilva 2016; DeSilva and Dodd 2020). Here, 
a large portion of the explained variance in our data (27%) was confounded between climatic 
variation and geographic space, which is perhaps due, to the strictly north-south range of giant 
sequoia, making it inherently difficult to decouple distance from environmental gradients that 
vary latitudinally. Therefore, LFMM results should be treated with some caution due to the 
potential contribution of IBD to population structure. In contrast to LFMM, RDA models show 
high power and low false positive rates under IBD (Forester et al. 2016). Simulation studies 
indicate that the performance of RDA also remains high when population structure and selective 
gradients are explicitly correlated (Capblancq et al. 2018). Yet, RDA is not without limitations, 
as it can have low power under island demographic models (Forester et al. 2018) or when 
selective pressures are highly clustered (Capblancq et al. 2018). Given that each GEA method 
has particular limitations, we believe the outlier loci detected by both LFMM and RDA, as well 
as outliers with functional annotation remain strong candidate regions of adaptive importance. 

 
There is an ongoing need for future studies to provide additional clarity on the 

distribution of adaptive variation and genetic architecture of local adaptation in giant sequoia. To 
our knowledge, this study represents the first investigation of adaptive variation using genome-
wide data. Yet, the results presented here are based on a small subset of the genomic variation 
within the species, as the giant sequoia genome is very large (8.5Gb, Redwood Genome Project). 
More comprehensive sampling of the genome as well as an incorporation of phenotypic 
information will greatly improve our understanding of local adaptation in this species. In 
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addition, future annotation of the giant sequoia genome will provide opportunities to better 
understand the genetic underpinnings of many phenotypic traits.  

 
A trend towards increased aridity along mid-elevation Sierra Nevada forests could 

undermine the long-term persistence of giant sequoia. With end-of-century predictions for this 
region that include decreasing snowfall and earlier snowmelt, forests of the Sierra Nevada 
mountains will likely experience an accentuation of the summer drought that is typical of 
Mediterranean climates (Stewart et al. 2004; Fyfe et al 2017; Sun et al. 2018). Considering the 
evidence presented here, we highlight the potential that increased water stress may create mal-
adaptation of giant sequoia populations to their environment. It has been suggested that a long-
term decline (over the last ~2My) of giant sequoia is tied to increasing aridity during the 
development of current climate regimes (Dodd and DeSilva 2016). Moreover, some giant 
sequoia populations suffered extensive foliage die back during the drought period from 2012-
2016 (Stephenson et al. 2018), providing further indication of sensitivity of giant sequoia to arid 
conditions.  

 
CONCLUSIONS 

We provide evidence of local adaptation along gradients of precipitation and highlight 
genomic regions of potential adaptive importance for additional research. This information can 
aid in determining the best course of action to preserve giant sequoia into the future. Locally 
adapted populations of giant sequoia are facing an accentuation of summer drought to which they 
may be mal-adapted. Genomic variation currently present in more arid regions of the giant 
sequoia range could include ‘pre-adapted’ variants that might enhance the adaptive response of 
nearby populations (Kremer et al. 2012; Aitken and Bemmels 2016). Currently, DCRK, GRNT, 
MCTR, and RMNT inhabit areas experiencing the lowest levels of summer precipitation (PDQ), 
and thus may provide potential sources of adaptive alleles. Given the limited gene flow in much 
of giant sequoia range, it is unlikely this variation will spread quickly by natural means (DeSilva 
and Dodd 2020). Thus, forest managers may consider assisting in the movement of genetic 
resources in order to enhance the adaptive potential of giant sequoia populations.   
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TABLES AND FIGURES 
 

 
Table 2: Functional significance, detection method, and associated variable for highly supported outlier loci  

Locus 
ID 

Detection 
Method 

Associated 
Variable* (FST) 

Adjusted 
P-value  

| Axis 1 Loading | Annotation 

828 BayeScan (0.58)   Unknown mRNA  
1123 BS, LFMM PC1(0.66) 1.72E-04  -- 
186 LFMM PC1 7.39E-06 -- Unknown mRNA  
218 LFMM PC1 5.50E-05 -- Unknown mRNA  
452 LFMM PC1 5.30E-05 -- Unknown mRNA  
251 LFMM PC2 1.91E-05 -- Unknown mRNA  
722 LFMM PC2 1.52E-03 -- Unknown mRNA  
870 LFMM PC2 9.48E-04 -- Unknown mRNA 
1029 LFMM PC2 6.56E-06 -- Unknown mRNA  
1062 LFMM PC2 1.66E-04 -- Unknown mRNA  
1214 LFMM PC2 1.52E-03 -- magnesium transporter MRS2-4-like 
1253 LFMM PC2 2.91E-04 -- Unknown mRNA 
1313 LFMM PC2 5.87E-06 -- Pleiotropic drug resistance protein 1-like 
368 LFMM, RDA PC2, PDQ 2.35E-05 -0.21132 -- 
421 LFMM, RDA PC2, PDQ 9.56E-05 -0.19423 -- 
471 LFMM, RDA PC2, PDQ 2.03E-05 -0.19892 -- 
515 LFMM, RDA PC2, PDQ 1.46E-03 0.21181 -- 
679 LFMM, RDA PC2, PDQ  3.51E-04 0.22348 -- 
827 LFMM, RDA PC2, PDQ 9.12E-04 0.20579 kinesin-like protein KIN-13A mRNA 
1229 LFMM, RDA PC2, PDQ 1.65E-03 0.17822 pollen allergen gene 
1286 LFMM, RDA PC2, PDQ 4.41E-07 0.26369 -- 
338 RDA PDQ -- 0.18769 Wall-associated receptor kinase-like 1 
612 RDA PDQ -- -0.24267 arogenate dehydratase gene 
617 RDA PDQ -- 0.17057 Unknown mRNA 
940 RDA PDQ -- 0.23536 signal peptidase I AT2G30440 mRNA 
1066 RDA PDQ -- 0.19520 Unknown mRNA 
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Figure 1: Range map of giant sequoia (black) showing the gradient of Precipitation of Driest 
Quarter (mm) across a section of California. Sampled populations indicated by a population 
code. 

 
 
 
 
 
Figure 2: Results of population structure analyses from STRUCTURE. Vertical bars represent a 
sampled individual, color-coded for assigned cluster at K=9.  
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Figure 3: Adjusted P-values from LFMM for association with PC1 and PC2. Outliers are 
outlined in blue. 

 
 
 
 
Figure 4: Triplot from Redundancy analysis showing how each explanatory variable affects the 
RDA axis with (A) representing the full RDA model and (B) a partial RDA model with the 
effects of climate conditioned on geography. 
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APPENDIX 
 

 
 
Appendix 3.1: Additional data filtering details: Number of Contigs and SNP’s at each filtering 
step. 

 
 
 
 
Appendix 3.2: Variable loadings and proportion of variance explained by each axis for Principal 
Components Analysis  

Environmental Variable  Loadings on PC1 (47% of 
variance) 

Loadings on PC2 (35% of 
variance)  

Annual Mean Temperature 0.30533764 0.08895816 
Mean Diurnal Range 0.23382154 -0.1319765 
Isothermality 0.14402502 -0.1584969 
Temperature Seasonality 0.2610051 -0.0711812 
May Temperature of Warmest Month 0.3128064 0.00651353 
Min Temperature of Coldest Month 0.25664444 0.15588655 
Temperature Annual Range 0.26828944 -0.0980023 
Mean Temperature of Wettest Quarter 0.27880069 0.16738419 
Mean Temperature of Driest Quarter 0.30597282 0.07812717 
Mean Temperature of Warmest Quarter 0.30670671 0.07428924 
Mean Temperature of Coldest Quarter 0.28724379 0.1406514 
Annual Precipitation 0.12018293 -0.3250514 
Precipitation of Wettest Month 0.11053911 -0.3215777 
Precipitation of Driest Month -0.1120967 -0.3191191 
Precipitation Seasonality 0.14263436 0.12207502 
Precipitation of Wettest Quarter 0.11777354 -0.3202812 
Precipitation of Driest Quarter 0.04615045 -0.3459344 
Precipitation of Warmest Quarter -0.0576154 -0.3355527 
Precipitation of Coldest Quarter 0.11802076 -0.3218542 
Elevation  -0.2902339 0.08573527 
Climate Water Deficit  0.05050955 0.28198092 

 
 
 
 
 
 

Filtering Step  Number of Contigs Number of SNPs  
Total Variable sites 8701 3,915,935 
Removal of loci with uneven mapping quality 8333 1,344,117 
Removal of unbalanced reads in heterozygotes 8329 1,300,206 
Remove sites with average read depth >200 8329 1,299,461 
Remove samples with read depth <5 8329 1,299,461 
Remove sites with MAC <3 7557 244,489 
Remove sites with >80% missing data  1133 4,276 
Remove Indels 1120 4,235 
Remove multiallelic sites 1118 4,208 
Thinning to 1-SNP per fragment 1118 1,364 
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Appendix 3.3: PCA plot showing the behavior of the climate variables across PC1 and PC2. 
Genomic data is represented by individual ID’s and blue shading represents populations, with 
color becoming lighter from North-to-South. 

 
 
 
 
 
Appendix 3.4: Full AMOVA results  

Source of Variation F-stat F-value Std.Dev. c.i.2.5% c.i.97.5% P-value 

Among population FST 0.151 0.005 0.141 0.161 0.000 

Among Group F_ct 0.023  0.002 0.018 0.027 0.000 

 
 
 
 
Appendix 3.5: All outlier loci detected by BayeScan, LFMM, and RDA 

Locus 
ID 

Detection 
Method 

Associated 
Variable 

FST Adjusted P-
value 

Axis 1 
Loading 

Annotation 

522 BS -- 0.59 -- -- -- 
701 BS -- 0.72 -- -- -- 
801 BS -- 0.55 -- -- -- 
828 BS -- 0.58 -- -- Unknown  mRNA 
1324 BS -- 0.55 -- -- -- 
1123 BS, LFMM PC1 0.66 1.72E-04 -- -- 
186 LFMM PC1  7.39E-06 -- Unknown mRNA  
218 LFMM PC1  5.50E-05 -- Unknown mRNA  
385 LFMM PC1  3.07E-07 -- -- 
452 LFMM PC1  5.30E-05 -- Unknown mRNA  
470 LFMM PC1  1.39E-04 -- -- 
604 LFMM PC1  9.89E-05 -- NA 
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92 LFMM PC2  2.99E-05 -- -- 
125 LFMM PC2  8.62E-04 -- -- 
126 LFMM PC2  1.59E-03 -- -- 
151 LFMM PC2  5.59E-05 -- -- 
193 LFMM PC2  7.66E-06 -- -- 
196 LFMM PC2  9.55E-04 -- -- 
251 LFMM PC2  1.91E-05 -- Unknown mRNA 
253 LFMM PC2  4.10E-04 -- -- 
306 LFMM PC2  2.14E-04 -- -- 
319 LFMM PC2  1.78E-03 -- -- 
351 LFMM PC2  1.22E-03 -- -- 
518 LFMM PC2  8.94E-05 -- -- 
526 LFMM PC2  1.05E-03 -- -- 
547 LFMM PC2  5.54E-04 -- -- 
552 LFMM PC2  4.40E-05 -- -- 
562 LFMM PC2  1.06E-03 -- -- 
641 LFMM PC2  9.30E-04 -- -- 
653 LFMM PC2  7.57E-04 -- -- 
654 LFMM PC2  7.42E-04 -- -- 
690 LFMM PC2  3.01E-05 -- -- 
693 LFMM PC2  7.09E-04 -- -- 
695 LFMM PC2  1.24E-03 -- -- 
722 LFMM PC2  1.52E-03 -- Unknown mRNA 
730 LFMM PC2  8.95E-05 -- -- 
764 LFMM PC2  5.68E-04 -- -- 
868 LFMM PC2  1.07E-03 -- -- 
870 LFMM PC2  9.48E-04 -- Unknown mRNA 
935 LFMM PC2  6.01E-05 -- -- 
1024 LFMM PC2  7.43E-04 -- Retrotransposon 
1029 LFMM PC2  6.56E-06 -- Unknown mRNA 
1054 LFMM PC2  1.04E-03 -- -- 
1059 LFMM PC2  1.04E-03 -- -- 
1062 LFMM PC2  1.66E-04 -- Unknown mRNA 
1076 LFMM PC2  8.18E-04 -- -- 
1115 LFMM PC2  1.41E-05 -- -- 
1167 LFMM PC2  9.34E-05 -- -- 
1191 LFMM PC2  2.34E-05 -- -- 
1214 LFMM PC2  1.52E-03 -- magnesium transporter MRS2-4-like 
1253 LFMM PC2  2.91E-04 -- Unknown mRNA 
1295 LFMM PC2  1.43E-03 -- -- 
1307 LFMM PC2  1.28E-03 -- -- 
1313 LFMM PC2  5.87E-06 -- pleiotropic drug resistance protein 1-like  
1332 LFMM PC2  1.46E-03 -- -- 

368 
LFMM, 
RDA PC2, PDQ 

 2.35E-05 
-0.211321 -- 

421 
LFMM, 
RDA PC2, PDQ 

 9.56E-05 
-0.194232 -- 

471 
LFMM, 
RDA PC2, PDQ 

 2.03E-05 
-0.198918 -- 

515 
LFMM, 
RDA PC2, PDQ  

1.46E-03 
-0.211814 -- 

679 
LFMM, 
RDA PC2, PDQ 

 3.51E-04 
-0.223479 -- 

827 
LFMM, 
RDA PC2, PDQ 

 9.12E-04 
-0.205785 kinesin-like protein KIN-13A mRNA 

1229 
LFMM, 
RDA PC2, PDQ 

 1.65E-03 
-0.178222 pollen allergen gene 

1286 
LFMM, 
RDA PC2, PDQ 

 4.41E-07 
 0.263690 -- 

5 RDA PDQ  -- -0.171565 -- 
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90 RDA PDQ  -- -0.167273 -- 
122 RDA PDQ  -- -0.167507 - 
166 RDA PDQ  -- -0.202460 -- 
273 RDA PDQ  -- -0.166244 -- 
338 RDA PDQ  -- -0.187693 Wall-associated receptor kinase-like 1 
494 RDA PDQ  -- -0.163779 -- 
572 RDA PDQ  -- -0.171818 -- 
612 RDA PDQ  -- -0.242672 arogenate dehydratase gene 
617 RDA PDQ  -- -0.223479 Unknown mRNA 
673 RDA PDQ  -- -0.175162 -- 
709 RDA PDQ  -- -0.175226 -- 
940 RDA PDQ  --  0.235355 signal peptidase I AT2G30440 mRNA 
1066 RDA PDQ  -- -0.195195 Unknown mRNA 
1116 RDA PDQ  -- -0.163279 -- 
1305 RDA PDQ  --  0.235376 -- 

  
 
 
Appendix 3.6: Results from partial redundancy analysis, with climate conditioned on geographic 
space, showing loadings of climate variables on RDA axis 1, and the relative contribution of 
each climate factor.  

SNP_ID Loading PDQ ISO CWD 
5 -0.172 0.585 0.237 -0.079 
90 -0.167 0.529 0.028 -0.024 
122 -0.168 0.533 0.072 -0.169 
166 -0.202 0.748 0.165 -0.313 
273 -0.166 0.294 0.046 0.266 
338 -0.188 0.584 0.258 -0.189 
368 -0.211 0.607 0.321 -0.084 
421 -0.194 0.822 0.257 -0.599 
471 -0.199 0.633 0.163 -0.144 
494 -0.164 0.768 0.294 -0.584 
515 -0.212 0.696 0.265 -0.229 
572 -0.172 0.470 -0.089 0.040 
612 -0.243 0.690 0.252 -0.208 
617 -0.171 0.713 0.278 -0.351 
673 -0.175 0.603 0.158 -0.161 
679 -0.223 0.710 0.635 -0.397 
709 -0.175 0.619 -0.069 -0.194 
827 -0.206 0.682 0.012 -0.148 
940 0.235 -0.755 -0.048 0.300 
1066 -0.195 0.632 0.258 -0.257 
1116 -0.163 0.590 0.212 -0.205 
1229 -0.178 0.429 0.219 -0.115 
1286 0.264 -0.812 -0.294 0.389 
1305 0.235 -0.710 -0.364 0.183 
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Appendix 3.7: Population information and Genetic diversity summary statistics calculated for 
each population after removal of putative adaptive loci. 

Grove Name Population 
Code 

GPS Location Sample 
Size 

Ho uHe FIS  G’st 
(average) 

Placer PLAC 39.06, -120.57 6 0.09 0.07 0.02 0.34 
North Calaveras CALN 38.28, -120.30 8 0.14 0.18 0.16 0.17 
South Calaveras CALS 38.24, -120.25 8 0.15 0.18 0.13 0.15 
Tuolumne TUOL 37.77, -119.81 8 0.16 0.16 -0.03 0.25 
Merced MERC 37.75, -119.84 8 0.16 0.17 0.00 0.21 
Mariposa  MPSA 37.51, -119.60 8 0.13 0.14 0.12 0.20 
Nelder NELD 37.43, -119.59 8 0.16 0.19 0.12 0.14 
McKinley  MKLY 37.03, -119.11 8 0.15 0.17 0.07 0.17 
Grant GRNT 36.75, -118.97 8 0.12 0.13 0.17 0.15 
Redwood Mountain RMNT 36.60, -118.92 8 0.12 0.11 0.16 0.13 
Giant Forest GFOR 36.57, -118.76 8 0.15 0.20 0.18 0.09 
Atwell ATWL 36.47, -118.67 8 0.17 0.21 0.08 0.11 
Mcintyre MCTR 36.13, -118.58 8 0.13 0.11 0.09 0.13 
Freeman Creek  FMAN 36.14, -118.52 8 0.17 0.18 0.08 0.11 
Long Meadow LMDW 35.96, -118.60 8 0.12 0.11 0.16 0.16 
Cunningham  CNHM 35.92, -118.57 9 0.16 0.17 0.00 0.16 
Packsaddle PKSD 35.93, -118.59 8 0.15 0.15 0.08 0.16 
Deer Creek  DCRK 35.88, -118.61 8 0.16 0.18 0.04 0.16 
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CONCLUSIONS 
 

 
Trends in extant genetic diversity 
 Within populations, spatial genetic structure is often high with significant clustering of 
related individuals on the landscape. Although giant sequoia is predominately an outcrossing 
species, both selfing and bi-parental inbreeding occur at low to moderate rates. Yet, perhaps due 
to selection against inbred progeny, established populations do not show strong inbreeding. 
Across the range, giant sequoia populations exhibit relatively low levels of genetic diversity with 
the smallest and most isolated populations often being the most depauperate. Groves with the 
lowest levels of genetic diversity include Placer, Tuolumne, Merced, Deer Creek, and 
Packsaddle.  
 

We found a high degree of divergence among populations across many parts of the range. 
Northern and extreme southern populations are divergent from each other and the remaining 
groves and, thereby, represent important facets of the diversity within the species. We highlight 
the distinct genetic composition of the following groves, Placer, the two Calaveras groves, 
Tuolumne, Merced, Nelder, Mariposa, McKinley, and Deer Creek.   

 
Populations appear to be locally adapted to gradients in water availability. Thus, the 

distribution of functional genetic variation will likely show correspondence with climatic 
gradients. Since Deer Creek, Grant, McIntyre, and Redwood Mountain are in areas with 
increased summer aridity, these groves represent important potential sources of drought adaptive 
variation. 

 
Dispersal and gene flow 

Likely due to biological constraints on dispersal capability (wingless seed and pollen 
lacking sacci), giant sequoia populations show a predominance of short distance dispersal. This 
has resulted in groves that exhibit a high degree of genetic structure at fine spatial scales and 
varying degrees of isolation from neighboring groves. Although many pollen dispersal kernels 
show evidence of ‘fat-tails’, indicating potential for long-distance dispersal, much of the range 
appears to lack direct gene flow between adjacent populations. Gene flow is low or absent in the 
northern and southernmost populations although some are only 2-7km away from neighboring 
groves. In contrast, the less fragmented central-southern range appears to maintain genetic 
connectivity. Yet, our estimates of average dispersal distances do not support high rates of gene 
flow across large spatial distances. Detailed future research can provide more clarity as to the 
extent to which the observed connectivity in the central-southern range is due to long-distance 
gene flow or a lack of time that would allow populations to diverge.    
 
Adaptive capacity 

Giant sequoia is a moisture-sensitive species whose natural distribution is becoming 
increasingly arid. Populations that are locally adapted to historic climate regimes will likely 
become mal-adapted to future conditions. Thus, adaptation to increased water stress is vital to the 
future viability of giant sequoia populations. Genetic diversity is the fuel for adaptive evolution. 
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This pool of diversity will be predominantly determined by extant diversity within groves and 
the potential for an influx of diversity from neighboring populations via gene flow.  

Currently, genetic diversity is low in many groves and small population sizes, fine-scale 
spatial genetic structure, and lack of gene-flow among many groves all point to potential erosion 
of genetic diversity over time. Although some populations may be more drought tolerant than 
others, due to constraints on dispersal, the genetic variation underlying these traits is unlikely to 
move rapidly via gene-flow or spread to distant populations unaided. For these reasons, the 
adaptive capacity of giant sequoia appears to be quite limited. This void can be filled by 
carefully employed management that seeks to enhance adaptive capacity. An effective strategy to 
facilitate adaptation would involve collecting genetic resources (seed stock) from around the 
range, with special attention paid to capturing variation from potentially drought adapted 
populations, and planting seeds within current range boundaries in a way that maximizes the 
genetic diversity on the landscape.  

  




