
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Adaptive Policy Tree Algorithm to Approach Collision-Free Transmissions in Slotted ALOHA

Permalink
https://escholarship.org/uc/item/6qc017tz

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2020

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qc017tz
https://escholarship.org
http://www.cdlib.org/

Adaptive Policy Tree Algorithm to Approach
Collision-Free Transmissions in Slotted ALOHA

Molly Zhang
University of California Santa Cruz

mollyzhang@ucsc.edu

Luca de Alfaro
University of California Santa Cruz

luca@ucsc.edu

Marc Mosko
PARC

mmosko@parc.com

Colin Funai
Raytheon BBN Technologies

colin.funai@raytheon.com

Tim Upthegrove
Raytheon BBN Technologies

tim.upthegrove@raytheon.com

Bishal Thapa
Raytheon BBN Technologies
bishal.thapa@raytheon.com

Daniel Javorsek
US Air Force

daniel.javorsek@us.af.mil

J.J. Garcia-Luna-Aceves
University of California Santa Cruz

jj@soe.ucsc.edu

Abstract—A new adaptive transmission protocol is introduced
to improve the performance of slotted ALOHA. Nodes use known
periodic schedules as base policies with which they collaboratively
learn how to transmit periodically in different time slots so
that packet collisions are minimized. The Adaptive Policy Tree
(APT) algorithm is introduced for this purpose, which results
in APT-ALOHA. APT-ALOHA does not require the presence
of a central repeater and uses explicit acknowledgements to
confirm the reception of packets. It is shown that nodes using
APT-ALOHA quickly converge to transmission schedules that are
virtually collision-free, and that the throughput of APT-ALOHA
resembles that of TDMA, where slots are pre-allocated to nodes.
In particular, APT-ALOHA attains a successful utilization of time
slots - over 70% on saturation mode.

I. INTRODUCTION

The ALOHA channel [1] was the first example of
contention-based medium access control (MAC) protocols.
Its key feature is simplicity; a node with a packet to send
simply transmits. This inherent simplicity makes ALOHA
and its variants an attractive choice for channel access in
such untethered networks as underwater acoustic networks,
satellite networks, space networks, and wireless networks in
which hidden-terminal interference is prevalent. However, the
simplicity of ALOHA comes at the price of performance,
with a maximum throughput of only 18% of the bandwidth
available for transmission to active receivers.

As Section II summarizes, many approaches have been pro-
posed over the years to improve the performance of ALOHA,
and all of them have been based on the assumption that
nodes transmit at the beginning of time slots in order to
reduce multiple-access interference. Even when transmissions
are organized into time-slots, the fraction of time slots that

This material is based upon work sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL). Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author and do not necessarily reflect the views
of DARPA or AFRL or U.S. Department of Defense or the U.S. government.

can be successfully used is limited to twice the pure ALOHA
limit, or about 37%, unless the nodes somehow coordinate
their transmissions.

Section II describes prior work on the use of reinforcement
learning aimed at allowing nodes to learn how to coordinate
their use of time slots. These protocols attain remarkable
channel efficiency and approach the performance of TDMA
with fixed-schedules. However, a major limitation of all these
reinforcement-learning methods, including recent proposals
based on deep learning [2], is that they require immediate
acknowledgements to operate, such that a transmitting node
knows whether or not its transmission is successful at the
end of the time-slot in which the transmission takes place.
This assumption is viable in a centralized setting like the
one assumed for the original work on ALOHA and slot-
ted ALOHA, where every transmission is immediately re-
broadcast or acknowledged by a central node, and an up-link
and down-link channel are used. However, this is not realistic
in ad-hoc scenarios, where a single shared channel is used
and half-duplex nodes must switch their radios from receive
to transmit mode when transmitting packets, and switch the
radios back to receive mode once their transmissions are over.
Thus, nodes cannot detect collisions or corruption of their own
transmission.

In this paper, we extend the reinforcement-learning ap-
proach proposed in [3] to make it suitable to general time-
slotted ad-hoc networks. Sections III and IV describe the
resulting algorithm, which we call APT-ALOHA for Adaptive
Policy Tree ALOHA. The approach is based on associating with
each node a tree of periodic schedules of different periods.
The nodes adapt to each other’s transmissions by selecting
schedules that minimize conflicts. The tree structure guides
adaptation, and enables high network utilization under a wide
range of network conditions.

Adapting reinforcement learning protocols to delayed ac-
knowledgements requires the introduction of a new acknowl-

edgement scheme, as well as new methods to perform the
learning and to ensure the fairness of bandwidth use. To this
end, we introduce an acknowledgement scheme based on a
gossip protocol, and we propose new techniques for adapting
the transmission policies and achieving fair bandwidth sharing
in spite of the delayed acknowledgement information.

Section V analyzes the performance of APT-ALOHA using
detailed ns-3 simulations that take into account the nodes’
spacial distribution, interference, propagation delays, signal
to noise levels, and capture (different receivers receiving
different packets). The results of the simulation experiments
show that APT-ALOHA achieves channel utilization exceed-
ing 70%, successfully adapting to variable network conditions.
This high utilization is achieved while dividing the available
bandwidth fairly among the active network nodes. This is
far better throughput and fairness than ALOHA-EB, and it
closely matches the throughput achieved via AT-ALOHA and
ALOHA-QT, in spite of the reliance of the two latter protocols
on immediate acknowledgements.

Section VI presents our conclusions.

II. RELATED WORK

Roberts [4] introduced slotted ALOHA to improve on the
performance of pure ALOHA by forcing transmissions to
occur at the beginning of time slots. The key benefit derived
from slotted ALOHA, over pure ALOHA, is that it reduces the
time during which transmissions are vulnerable to multiple-
access interference (MAI) by half.

Jeong and Jeon [5] presented ALOHA with exponential
backoff (ALOHA-EB), where a node transmits in slot t with
probability p(t); this probability is updated via p(t+1) = p(t)
on success, p(t+1) = p(t)·q on failure, and p(t+1) = p(t)/q
on idle, where q is between 0 and 1.

If every node transmits in a time-slot with the same proba-
bility p, the optimal value for p is 1/n, where n is the number
of active nodes, and as n grows, the network utilization is
bounded by 1/e ≈ 0.37. To break through this bandwidth
bound, it is necessary to achieve a deeper level of coordination,
in which nodes adapt to each other’s behavior so that most
transmission slots can be utilized with only a few collisions.

One way to achieve this coordination is to endow each node
with transmission policies consisting of the union of periodic
schedules that reduce conflict, along with a way to choose
among such policies. We consider here periodic schedules of
the form (i,m), where schedule (i,m) prescribes transmitting
every i-th slot in a period of length 2m. These schedules can
be arranged in a policy tree, where the schedule (i,m) has as
descendants the schedules (i,m + 1), and (i + 2m,m + 1).
Sibling schedules do not conflict, and descendant schedules
transmit in a subset of the slots of their ancestors.

In ALOHA-QT [6], the nodes choose among these sched-
ules using a reinforcement learning algorithm that associates
with each schedule a “quality” that represents how successful
the schedule has been in prescribing conflict-free transmis-
sions. ALOHA-QT was shown to lead to high network uti-

lization, typically above 80% in steady-state, with few empty
slots and even fewer collisions.

An alternative scheme, termed AT-ALOHA [3] uses an
adaptive algorithm for the selection of schedules that determin-
istically considers, at each step, a subset of active schedules
which are followed The set of active schedules is updated
according to the outcome of each transmission slot.

The schedule tree used in AT-ALOHA, ALOHA-QT, and in
the present paper are closely related to the collision resolution
scheme introduced by Capetanakis et al. [7]. While the sched-
ule tree in [7] is used to resolve every individual collision as it
occurs, the algorithms developed in these later papers use the
trees to learn a long-term transmission policy that minimizes
collisions. The schedule tree has been used also by Jakllari
et al. [8], who propose a bandwidth reservation scheme over
time-slotted channels.

Another approach based on reinforcement learning is the
ALOHA-Q protocol (framed slotted ALOHA with Q-learning)
by Chu et al. [9], [10]. In ALOHA-Q, the time slots are
grouped in frames of fixed length M . Each node has available
M schedules, where schedule i ∈ [1, . . . ,M] prescribes
transmitting in the i-th slot of the frame, and keeps track of the
quality qi of each such schedule. When a new frame starts, the
node selects the schedule with the highest quality, and updates
the schedule quality according to the success or failure (due
to collisions) of the schedule. In case of collisions, the nodes
resort to skipping frames with a backoff mechanism. Similarly
to AT-ALOHA and ALOHA-QT, the protocol is presented for
networks were transmission outcomes are available immedi-
ately due to repeaters or similar mechanisms.

Deep reinforcement learning (DRL) has been recently pro-
posed by Yu el al. [2] to overcome the limitations of ALOHA-
Q stem from relying on a small, fixed set of policies. In
DRL, a neural network is trained to predict the value (in
our case, probability of success) or each action (in our case,
transmit or wait) as a function of the system history (in our
case, the time-slot contents in the last n time-slots, for some
n > 0). Due to the large state-spaces needed to represent
network histories, neural networks take a long time to learn
effective strategies. Adaptation has been demonstrated only for
networks up to two DRL nodes, and even for those, adaptation
required tens of thousands of time-slots (alongside a complex
node architecture).

What is critical to point out is that all of this prior work
relies on the assumption of immediate acknowledgements.

III. THE SCHEDULE TREE

APT-ALOHA is a protocol designed for nodes that share
a time slotted transmission channel. To share the channel
efficiently, the nodes coordinate their transmissions by trans-
mitting according to one or more periodic schedules with
periods that are powers of 2. We assume that every node has
a clock t that counts the number of time slots. A periodic
schedule (i,m) prescribes sending at all times t such that
t mod 2m = i; we let T (i,m) = {t | t mod 2m = i}
be the set of times associated with schedule (i,m). Let

S = {(i,m) | m > 0, 0 ≤ i < 2m} be the set of all such
periodic schedules. The schedules in S can be arranged in a
tree with root (0, 0), where the schedule (i,m) has (i,m+ 1)
and (i + 2m,m + 1) as children. A child schedule transmits
in only half the time slots as its parent. A policy for a node
is a subset π ⊆ S of schedules, called the active schedules.

The transmit times of a policy π are the union of the transmit
times of the individual schedules in π, or T (π) =

⋃
s∈π T (s).

We require policies to be in normal form: a policy should not
contain schedules that are one the descendant of the other, nor
sibling schedules that can be merged into a single schedule.
Figure 1 depicts the schedule tree, along with a policy in
normal form.

(0, 0)

(0, 2) (2, 2) (1, 2) (3, 2)

(0, 1) (1, 1)

(2, 3) (6, 3)

Fig. 1: A (partial) depiction of the tree of all schedules.
The dark nodes in the tree correspond to policy π =
{(1, 2), (6, 3)}. That policy achieves a throughput of 1/22 +
1/23 = 1/4 + 1/8 = 0.375 in absence of collisions.

A node updates a policy by means of four operations:

• A demotion operation either removes a schedule from
the set of active schedules, or replaces the schedule
with a descendant in the tree. Demotion is used to help
resolve conflicts: when a node determines that a collision
occurred, it demotes the responsible schedule.

• A barge-in operation adds a schedule to the set of active
ones. When nodes detect an empty time slot, with a
certain probability they do a barge-in, in an attempt to
make use of future periodic occurrences of the time slot.

• A normalization operation ensures the minimal and
canonical representation of the set of active schedules.

• A pruning operation ensures that every policy, after nor-
malization, contains at most a fixed number of schedules.
This bounds the computation and memory requirements
of the protocol.

Nodes start with a simple policy consisting of a single active
schedule, and evolve their policy in response to the empty
slots, collisions, and packet acknowledgements they receive
using the above operations. Since the set of active schedules
evolve in time, and as the schedules have different periods,
the APT-ALOHA protocol is frameless.

We present in this section the operations, and in the next
their use by the protocol. The four operations were introduced
in [3]; we have refined here the definitions of demotion and
barge-in to allow for a faster adaptation, necessary under the
delayed feedback provided by delayed acknowledgements.

Demotion: The procedure demote(π, t, k) is illustrated
in Figure 2. If t 6∈ T (π), then demote(π, t, k) leaves π
unchanged. If t ∈ T (π), the procedures removes from π the
unique schedule (i,m) ∈ π such that t ∈ T (i,m). Further, if
{(i′,m′) ∈ π | m′ < m} = ∅, that is, if the removed schedule
was at minimal distance from the tree root, then the procedure
will add a descendant schedule to the policy as follows. Let

k′ = max{m+ 1, k}, (i′,m′) := (i,m),

and repeatedly pick

(i′,m′) := pick
{

(i′,m′ + 1), (i′ + 2m
′
,m′ + 1)

}
until m′ ≥ k′, then add (i′,m′) to π. The random choice
of descendant helps nodes settle on non-conflicting policies;
the level k to which demotion proceeds is discussed in
Section IV-C.

(1,2)

(1,2)

p = 0.5

p = 0.5

Demotion of schedule
not at minimal distance from root

Demotion of schedule at
minimal distance from root

Fig. 2: Two cases of of demoting the starred schedule (1, 2)
in the policy via demote(π, 1, 3).

Barge-in: When a node detects that a time slot at time
t is empty, it may add to the policy a schedule that causes
it to transmit at future periodic occurrences of the slot.
Precisely, bargein(π, t,m) adds to π the schedule (i,m) with
t mod 2m = i. The added schedule will cause the node to
transmit at t+ 2m, t+ 2 · 2m, t+ 3 · 2m, and so forth.

Barge-ins are not performed deterministically: doing so
would cause many collisions, as all network nodes would try
to exploit the same transmission opportunities. The probability
of doing a barge-in, and the schedule insertion level m, are
tuned by the protocol as detailed in Section IV-C1.

Policy normalization: The normalization operation
normalize(π) performs descendant elimination and sibling
merging:
• Descendant elimination: If there are (i,m), (j, k) ∈ π

with k > m and j mod 2m = i, remove (j, k) from π.
• Siblings merging: If there are (i,m), (j,m) ∈ π with
j = i + 2m−1, then replace both (i,m) and (j,m) in π
with (i,m− 1).

Descendant elimination and sibling merging do not modify the
transmission times of the policy.

Policy pruning: After the policy is normalized, the policy
is pruned to enforce a maximum number of active schedules.
The pruning is performed in two steps, first limiting the policy
depth in the tree, then the number of active schedules in it,
as illustrated in Figure 3. The procedure prune(π,∆,M) is
defined as follows.
• Let k = min{m | (i,m) ∈ π} be the top level of an active

schedule. First, we prune all schedules of level below
k + ∆, letting π := {(i,m) | (i,m) ∈ π ∧m ≤ k + ∆}.

• Second, we prune π to ensure it contains at most M
schedules. If |π| ≤ M , we leave pi unchanged. Other-
wise, let nk = |{(i,m) ∈ π | m ≤ k}|, and let k be
the largest integer such that nk ≤ m. We remove from π
all schedules (i,m) with m > k + 1, and we randomly
remove M − nk of the schedules at level k + 1, that is,
of the form (j, k + 1) for some j.

In the protocol implementation for which we will provide
experimental results, after each demote and bargein operation,
we normalize and prune the policy according to ∆ = 2 and
M = 10, thus setting π := prune(normalize(π), 2, 10).

Pruning by max number of nodes = 2

Pruning by max depth = 3

p = 0.5

p = 0.5

Fig. 3: Policy pruning operations: limiting the depth (top), and
limiting the number of nodes (bottom).

IV. THE APT-ALOHA PROTOCOL

The APT algorithm is presented schematically in Algo-
rithm 1; we describe below its structure and behavior.

A. Protocol Structure

State variables: The state variables of an APT node
include the time slot counter t, the policy π ∈ P and its
labeling ` tracking which schedules have caused transmis-
sions, the list Aout of outgoing acknowledgements, and the
list Apending of pending acknowledgements along with their
expiration times η. Acknowledgements and node labeling `
are described subsequently. A node maintains an estimate N̂

Constants:
s: ID of local node where APT is running;
α = 0.98: kindness inertia;
β = 0.05: target fraction of empty slots;
qk = 10−2: kindness probability lower bound;
∆new = 2: schedule insertion delta;

State Variables:
active: True if the node is active; false otherwise;
t: time slot counter;
π: APT policy, with schedule labeling `;
Apending , Aout : lists of pending and outgoing

acknowledgements;
η: expiry time for acknowledgements;
N̂ : estimated number of active network nodes (see

Sec IV-C1);
pk: kindness probability (see Sec IV-C2);

Channel Variables:
h ∈ {S,E,C,R}: channel state at the end of a time slot.

Initialization:
t := 0; pb := 0.1; π := choice{(0, 1), (1, 1)};

At the beginning of each timeslot:
h := channel outcome of previous slot in {S,E,C,R};
if h = E then

pk := min(0.5, pk · α1/β);
with probability 1/N̂ :
π = bargein(π, t, blog2(N̂ − 1)c)

else
pk := max(qk, pk/α)

foreach t′ ∈ Apending do (ack expiration)
if t− t′ > η(t′) then

ldemote(π, t′, dlog2 N̂e);
Apending := Apending \ {t′}

π := prune(normalize(π), 2, 10);
t := t+ 1;
if there is (i,m) ∈ π with t mod 2m = i then

(transmit)
remove from Aout a set A of acknowledgements in

FIFO order;
send a packet with acknowledgements A;
Apending := Apending ∪ {t};
η(t) := t+ 2m;

Upon receiving packet from sender u with acks A:
Aout := Aout ∪ {(u, t, T)};
foreach (s′,∆, b) ∈ A do

t′ := t−∆;
if s′ = s ∧ t′ ∈ Apending then (own ack)

Apending := Apending \ {t′};
if b = T then (kindness)

with probability pk do
ldemote(π, t′, dlog2 N̂e)

else (demotion due to collision)
ldemote(π, t′, dlog2 N̂e)

if s 6= s′ then (ack for another node)
if t′ ∈ Apending then (virtual collision sender)

Apending := Apending \ {t′};
ldemote(π, t′, dlog2 N̂e)

if b = T ∧ ∃s′′.s′ 6= s′′ ∧ (s′′, t′, T) ∈ Aout then
(virtual collision receiver)
Aout := Aout ∪ {(s′′, t′, F)} \ {(s′′, t′, T)}

if b = T ∧ (s′, t′, b) ∈ Aout then (redundant ack)
Aout := Aout \ {(s′, t′, b)}

Algorithm 1: The APT Algorithm.

of the number of other active network nodes, and a kindness
probability pk, tuned as described in Sec IV-C.

These state variables are local to each node; in particular,
nodes do not need to agree on the numbering of time slots.
A policy π associated with a time slot counter t is equivalent
to a policy shift(π,∆) = {((i + ∆) mod 2m,m) | (i,m) ∈
π} associated with counter t + ∆, both in its transmission
times, and in its update behavior. Thus, nodes can simply start
counting slot when they join the protocol. Because APT uses
a binary policy tree, a node may freely wrap its counter t at
any sufficiently large power of two, such as a common 32-bit
counter.

Time slot decisions, and transmission attribution: At each
time slot t, APT transmits if there is a schedule (i,m) ∈ π
such that t mod 2m = i, and waits otherwise.

Furthermore, we need to mind a subtle interaction between
schedule tree updates and delayed acknowledgements. Due
to a demotion or other tree operation, a policy (i,m) that
caused transmission might have been replaced by another
policy (i′,m′), with also t mod 2m

′
= i′ by the time the

acknowledgement is known to have failed (due to either
timeout or a negative acknowledgement). We do not want
to demote policies that were not the ones that caused the
original transmission. To this end, we use a labeling ` tracking
which schedules triggered transmissions. When a schedule
(i,m) is added to the policy (by a demotion, barge-in, or
renormalization) we set `(i,m) = F; we set `(i,m) = T
when the schedule triggers a transmission. We also introduce
a procedure ldemote, such that demote(π, t, k) modifies π only
if both conditions apply:
• there is (i,m) ∈ π with t mod 2m = i (as in normal

demotion), and
• `(i,m) = T.

This transmission attribution and modified demotion are nec-
essary in presence of delayed acknowledgements.

Time slot status: At the end of each time slot, the
node’s radio communicates to the protocol the status h ∈
{D,E,C,R} of the time slot, where:
• S (send) indicates that the node transmitted a packet.
• E (empty) indicates that the time slot was empty: no

energy above a certain threshold was detected, indicating
that no node transmitted.

• C (collision) indicates that energy was detected, but no
packet could be decoded.

• R (reception) indicates that the radio correctly decoded
a packet during the time slot.
Acknowledgements: In order to determine which pack-

ets are received correctly, APT-ALOHA relies on positive
acknowledgements (ACKs) and negative acknowledgements
(NAKs). Every node maintains two acknowledgement queues:
• the pending acknowledgements queue Apending , which

stores the timestamps of the node’s transmitted, and thus
far unacknowledged packets;

• the outgoing acknowledgements queue Aout , which stores
the acknowledgements for received packets the node is

waiting to transmit. These acknowledgements are stored
in the format (s, t, b), where s is the ID of the node
whose packet is acknowledged, t is the local node time
of the packet being acknowledged, and b ∈ {T, F} is the
Boolean value of the acknowledgement, which is b = T
for an ACK and b = F for a NAK.

When a node transmits at time t due to schedule (i,m),
it inserts t in the pending acknowledgements queue Apending ,
and sets η(t) = t+2m as the expiry time of such acknowledge-
ment. In this fashion, the expiry time of acknowledgements is
dependent on the periodicity of the policies, and automatically
adjusts to the number of active nodes.

Time
slot 1

Time
slot 2

A B C

tA = 8 tB = 3 tC = 6

tA = 9

tA = 10

tB = 4

tB = 5

tC = 7

tC = 8

Time Slot Node Apending Aout Sent acks
1 A {8} ∅ ∅

B ∅ {(A, 3, T)}
C ∅ {(A, 6, T)}

2 A ∅ {(B, 9, T)}
B {4} ∅ {(A,−1, T)}
C ∅ {(B, 7, T)}

Fig. 4: Packet acknowledgements in APT-ALOHA. The table
states the state of the Aout and Apending queues at the
end of each time slot, along with any acknowledgements
sent. Squares denote transmission events, and circles reception
events.

When an outgoing acknowledgement (s, t, b) is sent over the
channel at sender time t′ > t, it is re-encoded as (s, t′− t, b),
so that in the channel acknowledgement times are expressed
as difference from the current time. When a node receives an
acknowledgement (s,∆, b) at time t′′, the acknowledgement
is translated back into (s, t′′−∆, b) before processing, and is
thus translated back into the local time of the receiving node.

Acknowledgements are sent using a gossip protocol: if a
node hears an acknowledgement coming from another node,
it removes the acknowledgement if it is also present in its
own queue, as the corresponding packet has already been
acknowledged. In our implementation, in order to guarantee
an upper bound to the transmission length, we include in each
transmission Nacks acknowledgements, adding then as many
as can fit if the packet to be transmitted is short; we select

which acknowledgements to send on an older-first basis. In
our simulations we use Nacks = 2.

The acknowledgement mechanism is illustrated in Figure 4.
In the first time slot, A sends a packet, which is received at B
at local time 3, and at C at local time 6. Acknowledgements
for this packet are stored in the outgoing queues of nodes
B and C. In the second time slot, B sends a packet, and
adds to it an acknowledgement for A’s previous packet: the
(A, 3, T) in B’s outgoing queue is transmitted in relative time
as (A,−1, T). This packet is received at A at local time 9,
and at C at local time 7. Note how node C drops its outgoing
acknowledgement (A, 6, T) when it hears (A,−1, T) from B:
as acknowledgements are a gossip protocol, C no longer needs
to acknowledge A’s packet in time slot 1.

B. APT-ALOHA Events

The APT-ALOHA protocol responds to two events: the
time-tick event, which occurs at time slot boundaries, and the
packet reception event, which occurs whenever a packet is
correctly received and decoded, and passed to the protocol.

1) Time-tick event: When the time-tick event occurs, the
protocol first finalizes the time slot that just completed, and
then decides whether to send a packer or wait.

Time slot finalization: When finalizing the time slot t, the
node examines the outcome h ∈ {S,E,C,R}, and handles
h = E and h = C as follows:
• h = E (empty): the node with probability pb executes

bargein(π, t, κ); the choice of the insertion level κ will
be detailed in Subsection IV-C1.

• h = C (collision): the node executes
ldemote(π, t, dlog2 N̂e), where N̂ is an estimate of
the number of active nodes, obtained as in Sec IV-C1.

Next, the node checks the acknowledgements in the pending
queue Apending . If t′ ∈ Apending and t > η(t′), the packet
sent at t′ is considered lost: t′ is removed from Apending ,
and the node executes ldemote(π, t′, dlog2 N̂e) to demote the
schedule that caused the lost transmission. The policy π is then
normalized and pruned, and time-counter t is incremented.

Send decision: The node transmits if t ∈ T (π) and it has
a data packet ready, and waits otherwise. If the node transmits,
it adds t to Apending , and sets η(t) = t+ 2m, where (i,m) is
the schedule in π that caused the transmission. If a packet is
sent, the node dequeues in FIFO order due acknowledgements
in Aout , translates them into transmission format, and adds
them to the packet. In our implementation, a minimum of two
such acknowledgements can be fit into a transmission.

2) Packet reception event: A packet, as received from the
network, consists of a sender ID, a destination ID, a list
of acknowledgements, and a message. If the destination ID
is equal to the ID s of the receiving node, the message is
passed to the node for processing. All acknowledgements
a = (s′, t′, b) received are processed as follows:
• Virtual collision sender. If s 6= s′, but t′ ∈ Apending , this

means that a node is acknowledging a packet sent at the
same time in which the node s also sent a packet. The

node s can infer that a collision occurred, and it executes
ldemote(π, t′, dlog2 N̂e).

• Virtual collision receiver. If b = T and there is
(s′′, t′, T) ∈ Aout with s′′ 6= s′, we have two acknowl-
edgements for two different senders, both at time t′.
This is an indication of a collision, and thus, we replace
(s′′, t′, T) ∈ Aout with (s′′, t′, F).

• Removal of redundant acknowledgements. If b = T,
the acknowledgement (s′, t′, T), if found in Apending , is
removed, as the packet has already been acknowledged. If
b = F, remove any (s′′, t′′, b′′) ∈ Apending where t′′ = t′.
Thus, a NAK erases both ACKs and NAKs for the same
time slot from Apending .

• Acknowledgements of own packets. If s′ = s, and t′ ∈
Aout , then t′ is removed from Aout . There are then two
cases, for positive and negative acknowledgements.

– If b = T, with probability pk, the node executes
ldemote(π, t′, dlog2 N̂e). Thus, after a successful
transmission, a node relinquishes use of the time
slot with small probability. This ensures that even in
the absence of collisions, time slots are not forever
allocated to the same node, helping to make the
protocol fair in the long term.

– If b = F, the node accounts for the collision by
executing ldemote(π, t′, dlog2 N̂e).

C. Neighborhood Size and Kindness Probabilities

The estimated number of network nodes N̂ , and the kind-
ness probability pk of relinquishing a schedule, are dynami-
cally tuned as follows.

1) Network neighborhood size, demotion level, and barge-
in probability: Every APT node computes an estimate N̂
of the number of active network nodes by observing how
many distinct node IDs it receives as part of messages or
acknowledgements in recent time slots. For this purpose, the
node collects pairs (s, t) of sender IDs s and times t into a
list I , built as follows:
• in a message, s is the sender id, and t is the message’s

time;
• in an acknowledgement, s is the id of the message being

acknowledged, and t is the time of the message being
acknowledged.

The node then computes an estimate N̂ of the neighborhood
as teh number of IDs that have been seen in the last L times:

N̂ = 1 +
∣∣{s | ∃(s, t′) ∈ I ∧ t− t′ ≤ L}∣∣ ,

where t is the current time, and the 1 accounts for the node
itself.

Once the estimate N̂ is available, we choose for the “barge-
in” probability pb = 1/N̂ : if all the N̂ nodes transmitted at the
same time with probability p, the value of p that maximizes
success (one, and only one, node transmitting) is p = 1/N̂ .
The new policy is added at level κ = blog2(N̂ − 1)c, to
ensure that its period is sufficient to accommodate existing
transmissions. This level κ is also used for the demotion

operation. For the length of the observation window, we
choose L = 3κ, ensuring the window is large enough to
observe most nodes.

2) Tuning the kindness probability: The kindness probabil-
ity pk is tuned so that a prescribed fraction β of time slots
are left free. This ensures fairness, since it forces nodes to
relinquish their time-slots with non-zero probability, and the
free time slots can be claimed by any node via a barge-in.
In our implementation, we use β = 0.05, striking a balance
between high network utilization, and fairness. Initially, when
a node becomes active, we arbitrarily set pk = 0.05. There-
upon, nodes update pk according to the channel outcomes E
and C,R,D, as follows:

E : pk := pk · α1/β C,R,D : pk := pk/α

where αk = 0.98 is a coefficient determining the adaptation
speed. Thus, the value of pk decreases whenever there is an
empty slot, and increases otherwise. The value stabilizes when
the fraction of empty slots is β. The choice of α = 0.98 leads
to an adaptation time of the order of 1/α = 50 transmission
slots. The use of the lower bound qk for pk stabilizes the
algorithm.

V. PERFORMANCE EVALUATION

We simulate the performance of APT-ALOHA in the NS3
simulator [11]. Our scenario consists of a peer-to-peer single-
hop network using a long-range PHY with a time-slotted chan-
nel. This is similar to some tactical waveforms, though these
results could apply to some long-range commercial systems
such as Wi-Fi HaLow (802.11ah) or the LoRa LPWAN, which
uses ALOHA.

We use a frequency-hopping spread-spectrum physical layer
operating around 1 GHz. The time-slot length is approximately
7 msec, and the maximum MAC payload is 52 bytes per
slot. The PHY data rate is just under 64kbps. The PHY,
as simulated, has a maximum transmission distance of over
50Km. In each simulation run, nodes are uniformly distributed
random in a 50 Km by 50 Km grid, which has just under a 167
µsec maximum propagation time. Nodes transmit at 50 dBm,
and the average receive power of decoded packets is -68 dBm
with a standard deviation of 6.28 dBm. In receive mode, if
APT-ALOHA or ALOHA-EB do not decode a packet, they
use a noise threshold of -80 dBm to determine if a slot is
occupied based on energy detect. In such a case, they label
the slot as a collision instead of empty.

A key feature of APT-ALOHA is the minimal information
exchanged between nodes. The only required signaling is
the acknowledgements (ACK). Neighbor discovery rides on
existing transmitter source IDs and source IDs in ACKs. In
our experiments, the average wait time to receive an ACK is
under 1.2 slots (stdev 0.08 slots) at steady state. The maximum
wait time we observed was 19 slots.

Comparable low-power wide-area networks (LPWANs)
are SigFix, LoRaWAN, NB-IoT, and Wi-Fi HaLow
(802.11ah) [12], [13]. These protocols have maximum
payloads of 12 bytes (SigFox), 243 bytes (LoraWAN),

1600 bytes (NB-IoT), and 100 bytes (802.11ah). They are
intended for use over ranges from 1km (802.11ah) to 40km
(SigFox rural). NB-IoT and 802.11ah both rely on base
stations or access points to coordinate communications.
LoRaWAN class A devices use ALOHA channel access with
acknowledgement. Our evaluation indicates that LoRaWAN
is a prime candidate for improved channel access by adopting
APT-ALOHA and should be evaluated in future work.

We compare APT-ALOHA with ALOHA-EB with delayed
ACKs [5], and with AT-ALOHA [3], ALOHA-QT [6], and
ALOHA-Q [9], [10] relying in immediate ACKs.

In ALOHA-EB, a node updates its transmission probability
p(t) at every slot and transmits in a slot with probability p(t).
ALOHA-EB assumes instantaneous knowledge of the outcome
of each transmission. For comparison purposes, ALOHA-
EB and APT-ALOHA must have the same ability to sense
outcomes. Accordingly, we modified ALOHA-EB to use the
same slot outcome detection mechanism as APT-ALOHA,
with ACK messages sent in subsequent time slots. In our
implementation, ALOHA-EB uses the same PHY layer as
APT-ALOHA with the same PDU size and slot size, and the
same ACK data structure, so the protocol overhead from each
ACK is the same. ALOHA-EB does not use the APT-ALOHA
NACK mechanism.

A. Metrics and Simulation Runs

In our simulations, each node is always backlogged with
traffic to send. This models the most difficult situation for
ALOHA, when the channel demand is G = 1. For each
time slot, we observe the radio channel to determine if there
was 0, 1, or more than one transmission. If there was 0, we
declare the slot Empty; tf there was 1, we declare the slot
a Success; and if there was more than one transmission, we
declare the slot a Collision. We measure the fraction of slots
that are empty, success, or collisions; in particular, the network
utilization is the fraction of slots that are declared Success.
We note that in some slots, it is possible that a node is able
to capture a packet even though multiple packets were sent;
thus, each node may measure more successes than the above,
network-wide, statistics. To compute the metrics, we group
time slots into blocks of 100, and we compute the fraction of
Empty, Success, and Collision slots in a block as our main
performance benchmarks.

We also compute Jain’s fairness index [14, p. 36] for the
successful transmissions. For n active nodes, let xi be the
number of successful transmissions by node i in a given
interval, 1 ≤ i ≤ n. The Jain’s fairness index is computed as(∑n

i=1 xi
)2 / (

n
∑n
i=1 x

2
i

)
, and has value between 1/n and 1;

the value is 1 for a perfectly fair distribution x1 = · · · = xn,
and 1/n when only one of the xi is non-zero. To compute
Jain’s index, we consider groups of 10 blocks (i.e., 1000 time
slots), to minimize variations due to statistical fluctuations in
the number of transmissions per block.

To show both the fast initial adaptation of the protocol,
and the subsequent adaptation to network changes, we ran a
simulation that begins with 10 nodes, ramps up to 50 nodes,

then ramps down to 30 nodes. The simulation is repeated
for 10 trials with different random seed; our figures display
the average and sample standard deviation of the measured
metrics.

B. APT-ALOHA Compared with ALOHA-EB

Fig. 5 shows the simulation scenario, which is made up of 5
segments, as shown in Fig. 5(d). 10 nodes are active and then
40 nodes begin joining one per block. Then all 50 nodes are
then active until the first 20 begin deactivating one per block,
leaving the remaining 30 nodes stay active to the end of the
simulation.

Table I summarizes the protocol performance per segment.
The numbers reported in the table are the average rate for
each metric during that period. The ALOHA-EB success rate
during the steady-state periods is between 12.7% and 26.3%.
These are very good numbers for a slotted ALOHA protocol
under constant channel demand, as the maximum performance
of traditional slotted ALOHA is 36.8% under optimal load and
near 0% for 10 or more nodes always ready (immediate first
transmission).

Segment Success Collision Empty
APT EB APT EB APT EB

10 nodes 83.8% 26.3% 2.1% 61.3% 14.1% 12.4%
ramp up 69.9% 16.4% 12.0% 77.3% 18.1% 6.3%
50 nodes 88.1% 12.7% 3.0% 83.0% 8.9% 4.3%
ramp dn 67.9% 12.7% 8.4% 82.9% 23.7% 4.4%
30 nodes 87.2% 15.9% 4.3% 78.0% 8.5% 6.1%

TABLE I: Average network utilization during different phases
of the ramp simulation, for APT-ALOHA and ALOHA-EB.

The bulk of the channel time (61.3% - 83.0%) is spent in
the collision state, even during the steady-state periods.

In contrast, the APT-ALOHA success rate during the steady-
state periods is between 83.8% and 87.2%. During the ramp
up segment, when 30 nodes are added, the APT-ALOHA
success rate dips to 69.9% with a corresponding increase in
the collision rate to 12.0% as nodes learn new non-conflicting
schedules. During the ramp down segment, the APT-ALOHA
success rate dips to 67.9% with a corresponding rise in the
empty rate as the neighborhood sizes adjust down to 30 nodes.
There is a slight rise in the collision rate as nodes probe
for new non-conflicting schedules. Fig. 5c shows the Jain’s
Fairness index for the two protocols.

C. APT-ALOHA Compared to AT-ALOHA and ALOHA-QT

As we mentioned in our review of prior work, AT-ALOHA
and ALOHA-QT depend on the ability of nodes to deter-
mine the success of transmissions through the intervention
of a central node and two orthogonal channel. By contrast,
APT-ALOHA with can work on single-channel ad-hoc net-
works. Therefore, a direct comparison APT-ALOHA with AT-
ALOHA and ALOHA-QT is not possible. However, we offer
a comparison in which the protocols were subjected to the
same network dynamics (number of active nodes through
time, and transmission load) used for Figure 5. APT-ALOHA

0 50 100 150 200 250 300

Time blocks (1 block = 100 time slots)

0.00

0.25

0.50

0.75

1.00

N
et

w
o
rk

u
ti

li
za

ti
on

(a) ALOHA-EB

success

empty

collision

0 50 100 150 200 250 300

Time blocks (1 block = 100 time slots)

0.00

0.25

0.50

0.75

1.00

N
et

w
or

k
u

ti
li
za

ti
o
n

(b) APT-ALOHA

success

empty

collision

0 50 100 150 200 250 300

Time blocks (1 block = 100 time slots)

0.00

0.25

0.50

0.75

1.00

J
ai

n

(c) Fairness

ALOHA-EB

APT-ALOHA

0 50 100 150 200 250 300

Time blocks (1 time block = 100 time slots)

0

20

40

60

A
ct

iv
e

n
o
d

es

(d) Number of active nodes

Fig. 5: Network utilization in the ramp experiment for
ALOHA-EB (a) and APT-ALOHA (b), and Jain’s Fairness
(c). The number of active nodes is shown in (d).

was simulated in our described scenario, whereas AT-ALOHA
and ALOHA-QT were simulated in an ideal network with
immediate acknowledgements, no capture, no signal-to-noise
ratio problems, and no propagation issues.

The results are presented in Figure 6. As we can see, the
network utilization achieved by APT-ALOHA is very close to
the one of AT-ALOHA and ALOHA-QT, indicating that our
adaptation scheme is effective in presence of delayed acknowl-

edgements. The main difference consists in a temporarily
lower network utilization when the number of active nodes
decreases from 50 to 30; APT-ALOHA is apparently slightly
slower in exploiting newly available empty slots, compared to
AT-ALOHA and ALOHA-QT.

0 50 100 150 200 250 300
Time blocks (1 block = 100 time slots)

0.00

0.25

0.50

0.75

1.00

N
et

w
or

k
ut

ili
za

tio
n

APT-ALOHA
ALOHA-QT
AT-ALOHA

Fig. 6: Network utilization of ramp experiment for APT-
ALOHA, ALOHA-QT and AT-ALOHA performs similarly

D. APT-ALOHA Compared to ALOHA-Q

Again, a direct comparison for APT-ALOHA and ALOHA-
Q is not possible, because ALOHA-Q relies on immediate
acknowledgements. Nevertheless, some general comparison
is possible. The chief limitation of ALOHA-Q is its fixed
frame-length: for a frame-length M , and n active nodes, the
utilization of ALOHA-Q is bounded by n/M if n < M , and
rapidly degrades to the one of ALOHA-EB for n > M . Thus,
even with a repeater, ALOHA-Q is not able to achieve high
utilization for all of n = 10, 50, 30, regardless of the chosen
value for M .

0 50 100 150 200 250 300
Time blocks (1 block = 100 time slots)

0.00

0.25

0.50

0.75

1.00

N
et

w
or

k
ut

ili
za

tio
n

APT-ALOHA
ALOHA-Q

Fig. 7: Network utilization comparison of APT-ALOHA and
ALOHA-Q in ramp experiment

The comparison results are provided in Figure 7. We used
the same simulation scenario as for the previous cases, and
used a frame length equal to the maximum number of ac-
tive nodes in our simulation (i.e., 50) for ALOHA-Q. We
observe that the performance of ALOHA-Q is inferior to APT-
ALOHA, even when the number of active nodes is 50. Indeed,
while in this case the theoretical utilization of APT-ALOHA
approaches 1, from [15, Section 5.4.1], an adaptation period
of the order of hundreds of thousands of time slots would be
needed to reach such utilization.

VI. CONCLUSIONS

We introduced the Adaptive Policy Tree (APT) algorithm to
quickly approach collision-free transmissions and fairness over
a common channel using the slotted ALOHA protocol. In con-
trast to prior approaches that use machine learning to improve
the performance of slotted ALOHA, the resulting protocol,
APT-ALOHA, does not assume immediate acknowledgements,
repeaters, or dedicated uplink and downlink channels, and
does not require the definition of transmission frames with
a fixed number of time slots per frame. Simulation results
illustrate that APT-ALOHA attains far better throughput and
fairness than slotted ALOHA with exponential backoff, and
incurs only a fraction of the collision rate of ALOHA-EB.
The performance of APT-ALOHA is close to that AT-ALOHA
and ALOHA-QT, in spite of the reliance of these protocols on
immediate acknowledgements.

REFERENCES

[1] N. Abramson, “The throughput of packet broadcasting channels,” IEEE
Transactions on Communications, vol. 25, no. 1, pp. 117–128, 1977.

[2] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning multiple
access for heterogeneous wireless networks,” IEEE Journal on Selected
Areas in Communications, 2019.

[3] M. Zhang, L. de Alfaro, and J. Garcia-Luna-Aceves, “Collision-free
channel access with delayed acknowledgements using collaborative
policy-based reinforcement learning,” in ACM SIGCOMM Conference,
NetAI Workshop, 2020.

[4] L. G. Roberts, “ALOHA packet system with and without slots and
capture,” ACM SIGCOMM Computer Communication Review, vol. 5,
no. 2, pp. 28–42, 1975.

[5] Jeong DG and Jeon WS, “Performance of an exponential backoff
scheme for slotted-aloha protocol in local wireless environment,” IEEE
Transactions on Vehicular Technology, vol. 44, no. 3, pp. 470–479, Aug
1995.

[6] L. de Alfaro, M. Zhang, and J. Garcia-Luna-Aceves, “Approaching
fair collision-free channel access with slotted aloha using collaborative
policy-based reinforcement learning,” in IEEE IFIP Networking Confer-
ence, 2020.

[7] J. Capetanakis, “Tree algorithms for packet broadcast channels,” IEEE
transactions on information theory, vol. 25, no. 5, pp. 505–515, 1979.

[8] G. Jakllari, M. Neufeld, and R. Ramanathan, “A framework for frameless
tdma using slot chains,” in 2012 IEEE 9th International Conference on
Mobile Ad-Hoc and Sensor Systems (MASS 2012). IEEE, 2012, pp.
56–64.

[9] Y. Chu, P. D. Mitchell, and D. Grace, “ALOHA and q-learning based
medium access control for wireless sensor networks,” in 2012 Interna-
tional Symposium on Wireless Communication Systems (ISWCS). IEEE,
2012, pp. 511–515.

[10] Y. Chu, S. Kosunalp, P. D. Mitchell, D. Grace, and T. Clarke, “Applica-
tion of reinforcement learning to medium access control for wireless
sensor networks,” Engineering Applications of Artificial Intelligence,
vol. 46, pp. 23–32, 2015.

[11] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34. [Online].
Available: https://doi.org/10.1007/978-3-642-12331-3 2

[12] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative
study of lpwan technologies for large-scale iot deployment,” ICT
Express, vol. 5, no. 1, pp. 1 – 7, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405959517302953

[13] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “Ieee
802.11ah: the wifi approach for m2m communications,” IEEE Wireless
Communications, vol. 21, no. 6, pp. 144–152, 2014.

[14] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John
Wiley & Sons, 1991.

[15] Y. Chu, “Application of reinforcement learning on medium access
control for wireless sensor networks,” Ph.D. dissertation, University of
York, 2015.

