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Joint Estimation of Behind-the-Meter Solar
Generation in a Community

Farzana Kabir, Student Member, IEEE, Nanpeng Yu, Senior Member, IEEE, Weixin Yao, Member, IEEE,
Rui Yang, Member, IEEE, and Yingchen Zhang, Senior Member, IEEE

Abstract—Distribution grid planning, control, and optimiza-
tion require accurate estimation of solar photovoltaic (PV) gener-
ation and electric load in the system. Most of the small residential
solar PV systems are installed behind-the-meter making only the
net load readings available to the utilities. This paper presents an
unsupervised framework for joint disaggregation of the net load
readings of a group of customers into the solar PV generation and
electric load. Our algorithm synergistically combines a physical
PV system performance model for individual solar PV generation
estimation with a statistical model for joint load estimation. The
electric loads for a group of customers are estimated jointly by a
mixed hidden Markov model (MHMM) which enables modeling
the general load consumption behavior present in all customers
while acknowledging the individual differences. At the same time,
the model can capture the change in load patterns over a time
period by the hidden Markov states. The proposed algorithm is
also capable of estimating the key technical parameters of the
solar PV systems. Our proposed method is evaluated using the net
load, electric load, and solar PV generation data gathered from
residential customers located in Austin, Texas. Testing results
show that our proposed method reduces the mean squared error
of state-of-the-art net-load disaggregation algorithms by 67%.

Index Terms—Behind-the-meter solar generation, net load
disaggregation, mixed hidden Markov model.

NOMENCLATURE

Functions
g Solar PV system performance model
Parameters
δ Initial state distribution of the Markov chain
δnk Initial state probability at state k of customer n
η Inverter efficiency
ηnom Nominal inverter efficiency
Γ Tensor of transition probabilities of customers
Γn Matrix of transition probabilities of customer n
γnjk Transition probability from state j to state k of cus-

tomer n
λ2k Variance of the error term at state k
µ Weight of errors in load estimates
ω Weight of errors in solar PV generation estimates
Φ Tensor of technical parameters of solar panels
Φmax Upper limit of technical parameters of solar panels
Φmin Lower limit of technical parameters of solar panels
Φmn Vector of technical parameters of m-th solar panel of

customer n
Φn Vector of technical parameters of customer n
Φ̂ Tensor of technical parameter estimates of solar panels
Φ̂HMM Tensor of PV system parameter estimates obtained

from the HMM regression
Ψ0 Initial estimates of HMM regression parameters

σ2 Variance of the customer specific random effect
Θ MHMM parameters
Θp MHMM parameter update at iteration p
Θ0 Initial MHMM parameter estimates
θt Solar PV array tilt angle
θaz Solar PV array azimuth angle
ak Common state-specific intercept of all customers for

state k
B Number of random samples
cnk Vector of regression coefficients of explanatory vari-

ables for customer n at state k
K Number of hidden states
l Percentage loss of solar PV array
M Number of solar panels of each customer
N Number of customers
Pac0 AC nameplate rating of solar PV array in KW
Pdc0,inv Inverter DC rating in KW
Pdc0 DC rating of solar PV array in KW
Q Number of explanatory variables
R Dimension of a single solar panel’s parameters
T Time series length
Variables
α Forward variable
β Backward variable
εnt Error term of customer n at time t
τ Temperature in oC
τwmv Weighted moving average of temperature of last 24

hours in oC
ε Tolerance for the convergence of Algorithm 1
ε′ Tolerance for the convergence of the MHMM
εLoad Errors in load estimates
εPV Errors in solar PV generation estimates
ζ Temperature coefficient
b Vector of random effects of all customers
bn Random effect corresponding to customer n
d Day of the year
E Mean MSE of net load of all customers
E0 Reference irradiance in W/m2

En MSE of net load of customer n
Etr Transmitted irradiance in W/m2

h Hour of the day
L Matrix of electric load of customers
Ln Vector of electric load of customer n
Lnt Electric load of customer n at time t in KW
L̂ Matrix of electric load estimates of all customers
L̂HMM Matrix of electric load estimates obtained from the

HMM regression
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L̂n Vector of electric load estimates of customer n
L̂nt Electric load estimate of customer n at time t in KW
NL Matrix of net load of customers
NLn Vector of net load of customer n
NLnt Net load of customer n at time t in KW
N̂L Matrix of net load estimates of all customers
Pac AC power output of solar PV array in KW
Pdc DC power output of PV array in KW
S Matrix of solar PV generation of customers
Sn Vector of solar PV generation of customer n
Snt Solar PV generation of customer n at time t in KW
Ŝ Matrix of solar PV generation estimates of customers
Ŝn Vector of solar PV generation estimates of customer

n
Ŝnt Solar PV generation estimate of customer n at time t

in KW
T0 Reference cell temperature in oC
Tc Cell temperature in oC
x Matrix of explanatory variables
xt Vector of explanatory variables at time t
z Matrix of hidden states of all customers
zn Vector of hidden states of customer n
znt Hidden state of customer n at time t

I. INTRODUCTION

Solar PV generation is the fastest-growing source of new
energy. The introduction of the net metering policy enables
customers to sell excess electricity to the utility at the retail
rate and receive credit on their electricity bill. As a result,
small scale residential solar PV generation constituted 33%
of total solar PV generation in the United States in 2019
[1]. Moreover, 61% of total solar PV systems in the United
States were connected to the distribution system in 2014 [2].
Such high penetration of solar PV poses several challenges in
the distribution system operation and planning processes [3],
[4]. For example, increasing solar PV generation can cause
feeder over-voltage, voltage fluctuations, reverse power flow,
protection system malfunction, and can exacerbate cold load
pickup problem.

To mitigate these problems, it is imperative to design the
system based on the amount of solar PV generation and native
load in the distribution network. Thus, it is critical to develop
a framework to disaggregate the net load measurements into
solar PV generation and electric load. Furthermore, the tech-
nical parameters of solar PV systems need to be estimated for
planning activities such as solar PV hosting capacity analysis.

The existing net load disaggregation algorithms can be clas-
sified into two groups: data-driven methods and model-based
methods. The solar PV technical parameters are generally not
available to the electric utilities. Detailed physical models such
as PVWatts [5] developed by National Renewable Energy
laboratory and PV performance modeling collaborative [6]
developed by Sandia National Laboratory are capable of esti-
mating solar generation with information of solar irradiation,
solar PV location, time, solar PV size, inverter efficiency, solar
PV system loss, module tilt, and module orientation. Such
physics-based behind-the-meter solar generation estimations

are often inaccurate due to unreliable solar PV geometry data
and degradation of PV arrays. The data-driven methods do
not employ parametric physical models to estimate solar PV
generation. Instead, they rely solely on smart meter data,
supervisory control and data acquisition (SCADA), solar irra-
diance, and weather-related data. The data-driven methods can
be further classified into two groups: unsupervised methods
and methods that need supervision such as supervised/semi-
supervised methods and contextually supervised source sepa-
ration methods [7].

Supervised net load disaggregation methods need historical
solar PV generation and load data of all customers whereas
semi-supervised methods need the solar PV generation data
for a small number of customers. The contextually supervised
source separation method lies between supervised and unsu-
pervised methods. This method also needs the solar PV gen-
eration data for a small number of representative customers as
solar proxy. The studies by [8]–[12] leverage semi-supervised
methods or contextually supervised source separation methods
to disaggregate net loads. The supervised data-driven approach
is used in [13] to forecast net load.

The net load disaggregation problem is formulated as an
optimization and a signal separation problem in [8]. The net
load of a customer is modeled as a composite of representative
electric load and solar generation patterns. The study by [12]
estimates the power generation of behind the meter solar
photovoltaic sites using a small set of selected representative
sites while providing information on the uncertainty associated
with the estimated solar PV generation volumes. The studies
by [9] and [10] adapt a contextually supervised source sepa-
ration model to disaggregate the net load signals of individual
homes located on the same distribution feeder while enforc-
ing various constraints. The contextually supervised source
separation model is used to disaggregate the net load signals
of feeder-level measurements in [11]. A supervised machine
learning algorithm is utilized in [14] to solve the solar PV
generation capacity estimation problem as a part of the net
load disaggregation method under the assumption that actual
measured solar PV generation and capacity data are available
for a small number of representative solar PV sites.

Although supervised and semi-supervised net load disag-
gregation methods show great promise, they rely on solar
PV generation data, which are typically not accessible for
behind-the-meter systems. The advanced metering infrastruc-
ture (AMI) measurements only provide net load data which
equals the load consumption minus solar PV generation. Thus,
the historical solar PV generation, load data, and the solar PV
technical parameters are not available to the electric utilities.
Therefore, it is critical to develop an unsupervised framework
to disaggregate the net load measurements into solar PV
generation and electric load.

The studies by [15], [16], and [17] all leverage unsupervised
net load disaggregation methods. The net load disaggrega-
tion problem is formulated as an optimization and a signal
separation problem in [15]. In this study, the electric load
of a customer is modeled as a composite of representative
electric patterns. An unsupervised algorithm is developed in
[16] to disaggregate the net load of a group of customers who
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Fig. 1. The overall framework for joint net load disaggregation for a group of residential customers with behind-the-meter solar PV systems.

have a common point of coupling. The algorithm proposed
by [17] estimates electric load by comparing periods before
PV installation with similar periods after PV installation that
have common weather and activity characteristics and thereby
perform net load disaggregation.

Although pure data-driven methods have achieved some
success, they are incapable of estimating the technical pa-
rameters of solar PV systems such as the tilt and DC size
of the solar panel. These technical parameters of the solar PV
systems are extremely useful for both short-term operation and
long-term planning activities for electric utilities. Furthermore,
the data-driven methods [10], [15], [16] often use a highly
simplified linear model, which is incapable of capturing the
nonlinear relationship among the solar irradiance, solar PV
system geometry, and solar PV generation. In many cases, the
pure data-driven methods [8]–[10], [12], [14] require historical
solar PV generation data of a subset of customers, which can
be difficult for electric utilities to obtain. Some data-driven
methods [9], [10] could suffer from transposition errors if
solar PV systems of different geometry are not available to
serve as solar proxies. Moreover, these two algorithms also
require joint estimation of a large number of hyperparameters,
which makes the algorithm impractical and brittle. Some data-
driven methods, such as [11], [12] only provide estimates
of aggregate solar PV generation instead of the solar PV
generation estimates for individual sites. The net load dis-
aggregation algorithm proposed by [17] is built under the
assumption that energy consumption habits do not significantly
change once PV is installed, which may not always be true.
Moreover, changes in the appliance mix or ownership of the
house may also impact load patterns. Most net load forecasting
algorithms only focus on the net load forecast problem and
do not disaggregate the net load into electric load and solar
PV generation. In addition, some of the net load forecasting
algorithms only provide aggregated net load forecast [13].

Only a few model-based algorithms are developed to es-
timate the behind-the-meter solar PV generation. The ‘Sun-
Dance’ algorithm not only disaggregates the net-load data
but also estimates the solar PV system geometry [18]. It has
two key modules, a clear sky solar generation module and a
module to map weather variables to solar PV output. However,
this algorithm relies heavily on the availability of net-load
data of a house when it is unoccupied on a sunny day. The
aggregate capacity of all solar PV installations in a specific
region is estimated in the algorithm proposed by [19] using
correlation analysis, a grid search method, and a physics-based
solar PV generation model. The estimated PV capacity is used

to decompose the net load and ultimately forecast the net load.
However, this method does not provide net load disaggregation
of individual solar PV installations. We previously developed
an iterative net load disaggregation algorithm for individual
customers by seamlessly integrating a physical PV system
performance model with a statistical load estimation model
[20]. The PV system performance model can capture the
complex relationship among the solar PV geometry, weather
data, and solar PV generation. The hidden Markov model
regression for the electric load is able to capture different
customer consumption patterns over time. This algorithm not
only provides estimates of technical parameters of the solar PV
system but also reduces mean squared error by 44% compared
to the state-of-the-art net load disaggregation algorithm by
[15].

This paper extends our previous work to estimate behind-
the-meter solar generation for a community of customers. This
paper proposes estimating the electric load of a community of
customers simultaneously with a mixed hidden Markov model
(MHMM). The MHMM allows the sharing of information
across individual customers, which leads to more accurate load
and solar PV generation estimates. Specifically, the MHMM
captures both the population-level effects and the individual
differences in the power consumption patterns among the
community of customers. Furthermore, the physical PV system
performance model is extended to account for the case where
a customer has multiple strings of solar panels facing different
directions. At last, the performance of our proposed method
is compared with the state-of-the-art net load disaggregation
algorithms using the data from residential customers in Austin,
Texas [21].

The unique contributions of this paper are as follows:
1) An MHMM is developed to jointly estimate the electric

load of a community of customers, which captures both
the population-level and the individual effects.

2) The proposed net load disaggregation algorithm seam-
lessly integrates a statistical MHMM with a physical
PV system performance model, which accounts for solar
panels facing different directions.

3) The proposed behind-the-meter solar generation esti-
mation algorithm yields significantly higher accuracy
over state-of-the-art net load disaggregation algorithms
including our previous work [20].

The remainder of the paper is organized as follows: Section
II provides the overall framework of the proposed algorithm.
Section III presents the technical methods, which include the
PV system performance model, MHMM, and the net load
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disaggregation algorithm. Section IV shows the numerical
study results. Section V states the conclusions.

II. OVERALL FRAMEWORK

The net load measurement of a residential customer equals
the electrical load of the customer minus the solar PV gen-
eration. Let Lnt be the electrical load and Snt be the solar
generation of a customer n at time t. Then the net load
readings of the customer NLnt for customers n = 1, . . . , N
at time intervals t ∈ {1, 2, ..., T} can be written as follows:

NLnt = Lnt − Snt; Snt ≥ 0 ∀t, n (1)

The aim of the net load disaggregation algorithm is to decom-
pose the net load readings NLnt of a group of N residential
customers with solar PV systems into the corresponding solar
PV generation Snt and electric load Lnt at each time interval t.
The exact location of the customers, historical PV generation
or consumption, solar panel configuration, or other solar PV
system parameters are generally not available. Our proposed
algorithm does not require this information.

The overall framework of the proposed net load disaggre-
gation algorithm is shown in Fig. 1. A statistical MHMM is
first fit to jointly estimate the electric load of all customers
with the initial estimates of the load model parameters while
keeping the solar generation estimates fixed. The parameter
estimation of the mixed hidden Markov model (MHMM)
can be computationally intensive. Therefore, a good initial
estimate of the load is needed as the starting point of the
iterative net load disaggregation algorithm. The electric load
estimates obtained from the iterative algorithm with HMM
regression from [20] is used as the initial load estimates for the
MHMM. Solar PV system parameters and solar PV generation
of individual customers are then estimated with a physical
model while keeping the load estimates fixed. The iterative
estimation procedure continues until the stopping criteria are
met. At last, a post-disaggregation adjustment is performed on
the disaggregated signals to ensure that the equality constraint
(1) relating native electric load, solar PV generation, and net
load is satisfied. The joint modeling of load with MHMM and
the parameter estimation procedure are described in Section
III-A and III-B. The physical solar PV system performance
model and the estimation of the technical parameters of solar
PV systems are presented in Section III-C. The net load
disaggregation algorithm is discussed in detail in Section III-D.

III. TECHNICAL METHODS

A. Mixed Hidden Markov Model

Many regression models are used to model the load con-
sumption of a customer to incorporate the effect of weather
and time. However, the user consumption pattern is expected
to be quite different depending on whether a customer is at
home or not. For example, when a customer is at home, the
load may consist of heating, ventilation, air-conditioning and
other appliance usages. On the other hand, when the customer
is not at home, the load can be very low and may include
power usage from the refrigerator and other appliances, such
as water heaters, and TVs in standby mode. To model such

heterogeneous user consumption patterns, a hidden Markov
model (HMM) regression [22] is used to model individual load
time series of customers in [20]. However, in [20], the HMM
needs to be fitted separately for each customer and thus the
model is incapable of leveraging the community information
to improve the load modeling.

To improve over the individual HMM regression models
in [20], a mixed hidden Markov model (MHMM) [23] is
proposed to provide a joint load estimation of all customers
by modeling both the population-level and the individual
effects. The individual heterogeneity can be captured by the
individual-specific random effects in the MHMM representing
individual deviations from the population averages.

Let Lnt be the load and znt be the hidden state associated
with the customer n at time t, n = 1, . . . , N , t = 1, . . . , T .
Let znt = 1 if the customer is at home and znt = 2, if not
home, making the number of total states K = 2. Let Ln

denote the T -dimensional vector of observations, i.e., load of
customer n across T time points and L denote the T × N -
dimensional matrix of load of all customers. The vectors of
hidden states, zn and z, are defined analogously. Let x be
the T × Q-dimensional matrix of explanatory variables or
fixed effects. The explanatory variables include temperature
(τ ), exponential moving average of the temperature of last
24 hours (τwmv), hour of the day (h), and the interaction of
temperature and hour of the day (τ × h). To capture the non-
linear relationship between temperature and load, a 3rd-degree
polynomial of temperature is used, denoted by τ , τ2, and τ3

following the proposal of Hagan and Behr [24]. Based on some
empirical analysis, a 3rd-degree polynomial of the hour of the
day is also used. The explanatory variable matrix x is denoted
by x =

[
τ, τ2, τ3, τwmv,h,h

2, h3, τ × h
]
.

A hidden Markov model (HMM) is defined as a pair of
stochastic processes {znt,Lnt}, where znt is an unobserved
finite state Markov chain and the output process Lnt is related
to the latent state process znt. An MHMM extends HMMs
to a regression setting in a generalized linear mixed model
framework. MHMM combines HMMs with a linear mixed
effect regression model in a longitudinal setting and enables
the incorporation of covariates and random effects in both the
conditional and/or transition model. A random intercept model
is assumed for the conditional model to allow the customers
to borrow information from each other and to simultaneously
incorporate the heterogeneity across different customers.

Several assumptions are made for the MHMM. First, the
random effects are assumed to follow a normal distribution and
are independent of the hidden states. Second, given the random
effects, the dependence structure of the latent time series
{znt}Tt=1 can be modeled by an underlying Markov chain. The
transition probability from state j to state k for customer n is
denoted by γnjk = P

(
znt = k|zn(t−1) = j, zn(t−2) = l, . . .

)
= P

(
znt = k|zn(t−1) = j

)
where j, k = 1, 2 and γnjk

satisfies
2∑

k=1

γnjk = 1 for each j and n. The initial state

distribution of the Markov chain is denoted by δ and the
transition matrix of all of the customers is denoted by Γ.
Third, conditional on the random effects, the n-th process,
{Lnt}Tt=1, is a HMM, and observations on different processes
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from different customers are independent. Therefore, given
state znt, an MHMM with customer-specific random intercepts
in the conditional model can be written as follows:

Lnt = aznt
+ bn + cn,znt

xt + εnt, n = 1 . . . N, (2)

t = 1 . . . T, bn ∼ N
(
0, σ2

)
, εnt ∼ N

(
0, λ2znt

)
Here, aznt

is the common state-specific intercept of all cus-
tomers, xt is the vector of explanatory variables at time t,
and cn,znt is the Q-dimensional vector of customer and state-
specific regression coefficients of explanatory variables. Both
a and c are fixed effect coefficients. Here, bn is the customer-
specific random effect common to all states and follows a
normal distribution with variance σ2. The individual error term
εnt follows a normal distribution with state-specific variance
λ2znt

. Therefore, conditional on the state znt and random effect,
the distribution of Lnt is

f (Lnt|znt, bn) ∼ N
(
aznt + cn,zntxt + bn, λ

2
znt

)
, (3)

bn ∼ N
(
0, σ2

)
There are a few advantages of using MHMM instead of

HMM to jointly model the electric load of a community
of customers. First, the random effects enter additively in
the linear predictor and thus may represent the influence of
omitted covariates or individual heterogeneity not captured by
the observed covariates. Second, traditional HMM assumes
that the observations are independent given the hidden states.
To meet this assumption, an extremely large number of latent
states is often required. However, in this case, the HMM
becomes uninterpretable. MHMM allows for the dependence
between the longitudinal observations of the same customers
by means of the customer-specific random effect and hence
provides more efficient estimates of fixed model parameters.
As the number of latent states in MHMM is not required
to be large, MHMM is relatively easy to interpret. Third,
MHMM assumes that the random effects follow a common
distribution which makes the estimates of the random effect
shrunk towards their mean (i.e., a weighted average between
the overall mean effect and the individual effect). Thus, the
estimation of individual effects also borrows information from
each other.

Borrowing information across customers as an advantage
of MHMM is further elaborated below. An advantage of joint
load estimation over individual load estimation is its ability
to borrow strength across customers by obtaining estimates of
parameters common to all customers known as the fixed effect
or population-level effect. In addition, MHMM is also able to
capture the individual heterogeneity of customers through the
individual-specific random effects while retaining the strength
of joint load estimation. Thus, MHMM effectively treats
the customers as distinct entities but from the same general
population. Additionally, MHMM provides an estimate of the
variance of the random effect distribution. MHMMs have been
successfully applied in various scientific fields, notably, for
modeling animal movement and behavior [25], lesion count
in multiple sclerosis patients [23], forest tree growth [26], and
teenage driving behavior [27].

B. Estimation of MHMM by MCEM Algorithm

Traditionally, the expectation–maximization (EM) algorithm
has been used to estimate the parameters of a HMM. The
EM algorithm is an iterative method for performing maximum
likelihood estimation when some of the data are missing.
Unfortunately, the basic EM algorithm cannot be applied to
MHMM directly due to the existence of random effects and the
complex numerical integration. The Monte Carlo expectation
maximization (MCEM) algorithm is used [28] to estimate the
unknown parameters of the MHMM denoted by

Θ =
[
{ak}Kk=1 , {cnk}

n=N,k=K
n=1,k=1 ,

{
λ2k
}K
k=1

, δ,Γ, σ2
]

(4)

MCEM is a stochastic approximation method that is especially
useful for cases where numerical integration and maximiza-
tion are not advised, e.g., when there is a large number
of random effects or a large number of parameters. Let
Fnt = f (Lnt|znt, bn,Θ). The likelihood for N customers
can be written as:

L (Θ;L) (5)

=

∫
b

∑
z

f(L|z,b,Θ)f (z; Θ) f (b; Θ)db

=

N∏
n=1

∫
bn

{∑
zn

δzn1
Fn1

T∏
t=2

γzn(t−1),zntFnt

}
f (bn; Θ) dbn

For notational convenience, the following indicator variables
are defined for t = 2, 3, . . . T , untj = 1 if and only if znt = j
and vntjk = 1 if and only if zn(t−1) = j and znt = k.
Defining Fntj = f (Lnt|znt = j, bn,Θ) and treating both the
states of the hidden Markov chain and the random effects as
missing data, the complete data log likelihood (CDLL) can be
written as

logLc (Θ; L, z,b) (6)

=

N∑
n=1

{
log δzn1

+

T∑
t=2

log γzn(t−1),znt

+

T∑
t=1

logFnt + log f (bn; Θ)

}

=

N∑
n=1


K∑
j=1

un1j log δnj +

T∑
t=1

K∑
j=1

K∑
k=1

vntjk log γnjk

+

T∑
t=1

K∑
j=1

untj logFntj + log f (bn)


The MCEM is an iterative algorithm requiring two steps at
each iteration: computation of a particular conditional expec-
tation of the log-likelihood (E-step) and the maximization of
this expectation over the relevant parameters (M-step).

In the E-step, the expectation of the complete data log
likelihood (CDLL) conditional on the observed data L and pa-
rameter estimates at iteration p, Θp are calculated. We replace
the indicator variables by their conditional expectations given
the observations L and the current parameter estimates Θp.
The computation of the conditional expectation of CDLL is
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not easy due to the high-dimensional integration. The MCEM
approximates the conditional expectation of the CDLL by a
Monte Carlo method. Let B random samples b1n, . . . , b

B
n be

generated from the distribution f(bn; Θp). Defining F l
ntj =

f
(
Lnt|znt = j, bln,Θ

p
)
, the following approximation can be

obtained to the conditional expectation of the CDLL.

E [logLc (Θ; L, z,b|L,Θp)] (7)

≈
N∑

n=1


K∑
j=1

ûn1j log δnj +

T∑
t=1

K∑
j=1

K∑
k=1

v̂ntjk log γnjk

+

B∑
l=1

T∑
t=1

K∑
j=1

ûntjh(bln|Ln) logF l
ntj

+

B∑
l=1

h
(
bln|Ln

)
log f

(
bln
)}

where ûn1j and v̂ntjk are defined in (14) and (15), respectively,
and

h
(
bln|Ln

)
=

f
(
Ln|bln,Θp

)
B∑
l=1

f (Ln|bln,Θp)

For ease of implementation of the MCEM algorithm, the
forward variable is defined as follows:

αnt

(
j, bln

)
= f

(
Ln1,...,, Lnt, znt = j|bln

)
(8)

The forward variable can be computed recursively by

αn1

(
j, bln

)
= δnjf

(
Ln1|zn1 = j, bln

)
(9)

αn(t+1)

(
k, bln

)
=

K∑
j=1

{
αnt

(
j, bln

)
γnjk (10)

f
(
Ln(t+1)|zn(t+1) = k, bln

)}
Similarly, the backward variable is defined as follows:

βnt
(
j, bln

)
= f

(
Ln(t+1), . . . , LnT |znt = j, bln

)
(11)

The backward variable can be calculated recursively by

βnT
(
j, bln

)
= 1 (12)

βnt
(
j, bln

)
=

K∑
k=1

{
γnjkβn(t+1)

(
k, bln

)
(13)

f
(
Ln(t+1)|zn(t+1) = k, bln

)}
The conditional expectation of the indicatior variables ûntj

and ûntj can then be defined as follows:

ûntj = f (znt = j|Ln,Θ
p) (14)

=

B∑
l=1

αnt

(
j, bln

)
βnt
(
j, bln

)
h(bln|Ln)

K∑
j=1

B∑
l=1

αnt (j, bln)βnt (j, bln)h (bln|Ln)

v̂ntjk = f
(
zn(t−1) = j, znt = k|Ln,Θ

p
)

(15)

=

B∑
l=1

αn(t−1)
(
j, bln

)
γnjkF

l
ntkβnt

(
k, bln

)
h(bln|Ln)

K∑
j,k=1

B∑
l=1

αn(t−1) (j, bln) γnjkF l
ntkβnt (k, bln)h(bln|Ln)

To avoid numerical underflow when α and β are very small,
ûntj and v̂ntjk can be calculated using logarithms, the approx-
imation of log(p+ q) by [29] and the log-sum-exp trick.

In the M-step, the parameters Θ are updated by maximizing
the expected CDLL in (7) with respect to Θ. The first, second,
and fourth term of (7) are maximized with respect to δ, Γ
and σ2, respectively. The third term of (7) is maximized with
respect to c,a, and λ. Since the conditional distribution and
the random effects follow a normal distribution, closed form
solutions of Θ are available.

aj =

N∑
n=1

B∑
l=1

T∑
t=1

(
Lnt − cnjxt − bln

)
ûntjh

(
bln|Ln

)
N∑

n=1

B∑
l=1

T∑
t=1

ûntjh (bln|Ln)

(16)

cnj =

B∑
l=1

T∑
t=1

(
Lnt − aj − bln

)
ûntjh

(
bln|Ln

)
xt

B∑
l=1

T∑
t=1

ûntjh (bln|Ln)x2
t

(17)

λ2j =

N∑
n=1

B∑
l=1

T∑
t=1

(
Lnt − aj − cnjxt − bln

)2
ûntjh

(
bln|Ln

)
N∑

n=1

B∑
l=1

T∑
t=1

ûntjh (bln|Ln)

(18)

δnj = ûn1j , γnjk =

T∑
t=1

v̂ntjk

T∑
t=1

K∑
k=1

v̂ntjk

(19)

Once the MCEM algorithm converges and the parameter
estimates are available, the random effect estimates can be
calculated by the expectation of bn for each customer,

b̄n =

B∑
l=1

h(bln|Ln)bln (20)

Then the expected load can be estimated using (2). The state
probabilities at each time step can be estimated by calculating
the filtered probabilities of regimes for each customer.

C. PV System Performance Model and Parameter Estimation

In this subsection, the physical PV system performance
model is presented first. Then, the estimation method of the
technical parameters of a solar PV system is described.

A PV system performance model, g calculates the AC out-
put of a solar PV system with the relevant weather data and the
solar PV system specifications. The model used in our study is
based on the PV system performance modeling collaborative
[6] from Sandia National Laboratory and PVWatts from NREL
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[5], [30]. The inputs to the model include the solar PV system
specifications (system nameplate DC rating in kW Pdc0, tilt
angle θt and azimuth angle θaz of the PV array, nominal
efficiency of the inverter ηnom, and loss of the PV system l),
weather-related data (temperature and wind speed), and solar
irradiance data (direct normal irradiance, diffuse horizontal
irradiance, and global horizontal irradiance). The solar PV
performance model has four main submodels, the radiation
submodel, the thermal submodel, module submodel, and the
inverter submodel.

The radiation submodel translates the solar irradiation data
into the energy incident on the PV module cover. First, solar
position algorithms [31] can be used to calculate the sun
position from the date, time, and geographic position data.
The irradiance incident on the plane of the array (EPOA) is
defined as follows.

EPOA = Eb + Eg + Ed (21)

where Eb is the plane of the array (POA) beam component,
Eg is the POA ground-reflected component, and Ed is the
POA sky-diffuse component. The sun position data, albedo,
PV array orientation, solar irradiance data, and array tracking
mode are used to calculate Eb, Eg , and Ed and hence plane of
array irradiance, EPOA. The solar irradiance data is collected
from the National Solar Radiation Database (NSRDB). The
physical solar model (PSM) employed by NSRDB utilizes the
cloud physical and optical properties to produce cloudy-sky
solar radiation [32]. For a fixed system, the angle of incidence
is calculated following the standard geometrical calculation.
Next, to account for reflection losses on the module cover,
a correction is applied for incidence angles greater than 50o

using the polynomial correction from [6] and the transmitted
irradiance, Etr is calculated.

The thermal submodel calculates the operating cell tem-
perature, Tc using the total incident POA irradiance EPOA,
wind speed, and ambient air temperature following the Sandia
module and cell temperature model.

The module submodel computes the DC output power Pdc

by using the DC nameplate rating Pdc0, cell temperature Tc,
transmitted POA irradiance Etr, and loss of the PV array l.
The loss is modeled as a percentage of DC energy. It includes
the impacts of soiling, shading, mismatch, wiring, system age,
etc. The reference cell temperature T0 is 25oC, temperature
coefficient ζ is −0.5%/oC, and reference irradiance E0 is
1000 W/m2.

Pdc = (1− l)× Etr

E0
Pdc0 [1 + ζ (Tc − T0)] (22)

The inverter submodel calculates the AC power output of
the PV system Pac using Pdc. The AC nameplate rating of
the inverter (Pac0) is calculated by Pac0 = Pdc0

DC-to-AC ratio . The
nominal efficiency of the inverter ηnom is defined as the ratio
of the AC nameplate rating of the inverter Pac0 and the inverter
DC rating Pdc0,inv . Then, the inverter efficiency η can be
calculated following [5] and Pac can be calculated as follows:

Pac =

{
Pac0 ifPdc ≥ Pdc0,inv

ηPdc ifPdc < Pdc0,inv
(23)

Next, the description of how to estimate the technical pa-
rameters of a solar PV system with multiple strings of solar
panels facing different directions is provided. Although most
residential houses have a single south-facing solar panel to
maximize solar energy production over the year, many houses
have multiple strings of solar panels often facing south and
west. The west-facing solar installations may receive addi-
tional local government incentives because they produce more
energy during the peak demand hours in the late afternoon.
Our proposed solar PV system technical parameter estimation
algorithm accounts for the cases of both single and multiple
strings of solar panels.

Let Φ denote a tensor of order three with dimensions
N×M×R representing the technical parameters of M panels
of N customers. Let R denote the dimension of a single solar
panel’s parameters and gt (Φmn) denote the solar PV system’s
generation at time t based on a PV system performance model
g. The technical parameters of the m-th solar panel of the
customer n is denoted by Φmn = [Pdc0, θt, θaz, ηnom, l],
which includes the DC rating, array tilt angle, array azimuth
angle, nominal inverter efficiency, and loss of the PV array,
respectively. The vector Φn contains Φmn for m = 1, . . . ,M
for customer n. The inputs to the solar PV system param-
eters estimator are the estimated solar PV generation Snt

of a customer n for time t = 1, 2, ..., T . Solar PV system
parameters are estimated by minimizing the sum of squared
error between the estimated solar PV generation Snt and the
calculated solar generation g (Φmn) from M strings of solar
panels of customer n.

arg min
Φn

T∑
t=1

(
Snt −

M∑
m=1

gt (Φmn)

)2

subject to Φmin ≤ Φmn ≤ Φmax

(24)

where T is the time series length. Φmin and Φmax denote
the lower and upper limits of the solar PV system technical
parameters. The highly nonlinear nature of the solar PV sys-
tem performance model makes (24) a nonlinear optimization
problem, which can be solved by an interior-point algorithm.

D. Summary of Net Load Disaggregation Algorithm

It is proposed to disaggregate the net load measurements
NL into electric load L̂ and solar PV generation Ŝ for a group
of residential customers by integrating the physical solar PV
system performance model introduced in Section III-C and
the statistical MHMM introduced in Section III-A and III-B.
The detailed process for joint net load disaggregation of a
community of customers is shown in Algorithm 1. The MCEM
estimation of the MHMM parameters can be computationally
intensive. Therefore, it is necessary to have a good initial
estimate of load L̂(0) as the starting point of the iterative
algorithm. The initial estimates for electric load L̂HMM and
PV system parameters Φ̂HMM of all customers are set to
be the estimates based on the iterative algorithm with HMM
regression [20].

For each iteration i, an MHMM is fitted to the estimated
load L̂(i−1). There are Ji sets of initial MHMM parameter
estimates Θ

(i,j)
0 with Ji = 2 for the first iteration and Ji = 3
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for the subsequent iterations. The first and second sets of
initial MHMM parameter estimates Θ

(i,1)
0 and Θ

(i,2)
0 are

obtained from fitting HMM regression to the estimated electric
load L̂

(i−1)
n of each customer n where Ψ

(i,j)
0 are the initial

estimates for the HMM regression parameters. Then, Ψ
(i,1)
0

is set to be equal to be the multiple linear regression model
parameters on L(i−1)

n for N customers and their negatives for
states k = 1, 2. To set Ψ

(i,2)
0 , the HMM regression is run with

ten sets of initial values obtained by adding random noise to
Ψ

(i,1)
0 and then choosing the initial value set that yields the

maximum log likelihood for the HMM regression. The third
set of initial MHMM parameter estimates Θ

(i,3)
0 is equal to the

MHMM parameters estimated in the previous iteration Θ(i−1).
Now, the MHMM parameter estimates Θ(i,j) and the updated
load estimates L̂(i,j) for j = 1 . . . Ji are obtained.

For the j-th set of initial value, the estimated solar PV gener-
ation Ŝ(i,j)

n = L̂
(i,j)
n −NLn is calculated for each customer

n. Next, the technical parameter set of M solar PV panels
of customer n, Φ

(i,j)
n is estimated by solving a constrained

optimization following (24). The inputs to the optimization
problem include the estimated solar PV generation Ŝ(i,j)

n and
the solar PV system performance model g. The initial solar
PV system parameter estimates is set to be equal to Φ

(i−1)
n .

The solar PV generation Ŝ(i,j)
n for each customer n can then

be updated by feeding the estimated solar PV parameters
Φ

(i,j)
n into the PV system performance model g. With the

updated estimates for the load and solar generation, the net
load estimate N̂L

(i,j)

n and the average MSE of the customers’
net load E(i,j) can be calculated for the j-th set of initial
MHMM parameter estimates.

At the end of the i-th iteration, among the Ji sets of outputs,
the one that corresponds to the lowest average MSE of the
net load E(i,j) is calculated. The corresponding index of the
initial MHMM parameter estimates is denoted as j∗. In other
words, at the end of iteration i, the following variables are
updated: Ŝ(i) = Ŝ(i,j∗), Φ(i) = Φ̂(i,j∗) and Θ(i) = Θ̂(i,j∗),
and E(i) = E(i,j∗). The load estimate is then updated as
L̂(i) = NL + Ŝ(i). The iterative algorithm continues until
the average MSE of net load, E(i) converges or the maximum
number of iterations is reached. Finally, the solution that
yields the lowest average MSE for the customers’ net loads is
selected.

Post-disaggregation Adjustment: To further improve the net
load disaggregation algorithm, the post-disaggregation adjust-
ment is performed by enforcing the constraint that the electric
load minus solar generation must be equal to the net load
measurement. The following optimization problem inspired
from [9] is solved for each customer n using the disaggregated
signals L̂n and Ŝn.

arg min
Lnt,Snt

T∑
t=0

µ
(
Lnt − L̂nt

)2
+ ω

(
Snt − Ŝnt

)2
subject to Snt ≥ 0, Lnt ≥ 0, Lnt − Snt = NLnt

(25)

Here, µ and ω are parameters that denote the weights for the
errors in the load and solar generation estimates. µ and ω can

Algorithm 1 Algorithm for joint net load disaggregation of N
customers and estimation of their solar PV parameters
Input: A matrix of net load of customers, NL
Output: Matrices of estimates for load L̂ and solar generation

Ŝ, and a tensor of PV system parameters Φ
1: Initialize the matrix of load L̂(0) = L̂HMM with the load

estimates from [20]. Initialize the tensor of PV parameters,
Φ(0) = Φ̂HMM with estimates from [20].

2: for i=1 to maxiter do
3: Determine Ji sets of initial MHMM parameter estimates

Θ
(i,j)
0 . Set them equal to HMM regression model

parameters Θ
(i,j)
HMM based on L̂(i−1) with initial HMM

regression parameters Ψ
(i,j)
0 for j = 1 . . . Ji−1. Set

Θ
(i,Ji)
0 = Θ

(i,Ji)
HMM if i = 1, Θ

(i,Ji)
0 = Θ(i−1) for i > 1.

4: for j=1 to Ji do
5: Fit MHMM, f (x,Θ), to L̂(i−1) with initial param-

eter estimates Θ
(i,j)
0 and calculate Θ(i,j)

6: Update load estimates, L̂(i,j) = f
(
x,Θ(i,j)

)
7: Update solar generation, Ŝ(i,j) = L̂(i,j) −NL
8: for customers n=1 to N do
9: Determine Φn

(i,j) from (24) using initial value
Φn

(i−1)

10: Update solar generation, Ŝ(i,j)
n = g

(
Φn

(i,j)
)

11: Estimate net load, N̂L
(i,j)

n = L̂
(i,j)
n − Ŝ

(i,j)
n and

MSE of the estimated net load, E(i,j)
n

12: end for
13: Calculate E(i,j) = 1

N

N∑
n=1

E
(i,j)
n

14: end for
15: Determine j∗ = argmin

j
E(i,j)

16: Update Ŝ(i) = Ŝ(i,j∗), Φ(i) = Φ(i,j∗), Θ(i) = Θ(i,j∗),
and E(i) = E(i,j∗)

17: Update load estimates, L̂(i) = NL + Ŝ(i)

18: if
∣∣E(i) − E(i−1)

∣∣ ≤ ε Break end if
19: end for
20: Determine i∗ = argmin

i
E(i)

21: Calculate L̂ = L̂(i∗), Ŝ = Ŝ(i∗), and Φ = Φ(i∗)

22: return L̂, Ŝ, and Φ

be calculated as the inverse of the variance of the errors of
the load and solar generation estimates.

µ = 1/V ar (εLoad), ω = 1/V ar (εPV ) (26)

Since the load and solar PV generation data are not available,
the variance of the errors is estimated by the load and solar PV
generation from steps 4 and 7 of the net load disaggregation
algorithm from [20] at step 1 of Algorithm 1.

IV. NUMERICAL STUDY

A. Dataset for Numerical Study

The energy data of 193 residential customers in Austin,
Texas gathered by Pecan Street Inc. [21] are used to validate
our proposed net load disaggregation algorithm. The dataset
includes 15-minute interval net load, electric load, and solar
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PV generation data. The tilt and azimuth angle information is
not available. However, the solar panel’s DC rating data are
reported for 90% customers which can be used for validation.
The study period is selected as 10/03/2015-10/30/2015 to
compare our estimates with [15]. The solar irradiance and
weather-related data is collected with 4×4 km spatial and 30-
minute temporal resolutions from the National Solar Radiation
Database [32]. It is converted into 15-minute interval data by
linear interpolation.

The approximate longitude and latitude of Austin, Texas
(30.29oN,−97.69oE) is used as a common proxy location
for all customers as their exact locations are not available.
Similarly, the same weather variables are used for net load
disaggregation for all of the customers. Since most of the
residential rooftop solar PV systems use a fixed array, it
is assumed that none of the residential solar PV systems
in this study have a tracking system. Note that if the solar
PV system’s tracking mode information is available, then the
incorporation of either 1-axis or 2-axis tracking in the PV
system performance model is straightforward.

B. Experimental Setup

The proposed net load disaggregation method is imple-
mented following Algorithm 1 under two scenarios. In the first
scenario, it is assumed that every customer’s solar PV system
only has one string of solar panels, which means M = 1
and the number of solar PV technical parameters R = 5.
In the second scenario, it is recognized that in the Pecan
Street dataset, 71 out of 193 customers have two strings of
solar panels facing different directions. Thus, it is assumed
that these customers have two solar panels with potentially
different DC ratings but the same tilt angle, nominal inverter
efficiency, and loss. In this scenario M = 2 and R = 7.
The rest of the customers have a single string of solar panels.
Note that the data indicating one or two strings of solar panels
may be erroneous. Thus, the estimated total effective DC sizes
for the 71 customers [20] is compared for both one and two
strings of solar panel installation assumption. If the difference
between the outputs under the two assumptions is significant,
then it is still assumed that the customer has a single string of
solar panels. This is because customers often have larger solar
panels installed on the main roof. The secondary roof usually
can only support smaller solar panels. Thus, the difference
between the total estimated DC ratings of solar PV systems
is typically not significant. When a large difference occurs, it
might suggest that the proposed iterative algorithm with two
strings of solar panels setup has converged to a local optimum.
This is possible given that the dimensionality of the search
space is much larger for the two-string setup. Therefore, when
a large difference in the DC size estimates is encountered, a
single string of solar panels is assumed. Finally, 64 out of 71
customers are identified to have two strings of solar panels.

To strike a balance between the computational efficiency
and accuracy, the number of random samples B of the MCEM
is selected to be 500. The tolerance for the convergence
of the MCEM algorithm is set as ε′ = 0.001. The initial
parameter estimates of the MHMM are obtained from fitting

the HMM regression [20] to the individual customer’s electric
load data. Note that, the HMM regression is fitted using the
EM algorithm [33] instead of MS regress package [34] to
make the parameter estimation procedure comparable to the
MCEM algorithm.

The feasible ranges of solar PV parameters Pdc, θT , θaz ,
ηnom, and l are set as 1-15 kW, 5o−50o, 0o−360o, 0.92−0.99
and 9%− 40%, respectively [20], [35], [36]. The DC-to-AC
ratio is fixed at 1.1. When testing the benchmark algorithm
to perform net load disaggregation for individual customers
with HMM regression [20], 8 initial solar PV system technical
parameter sets are chosen for the single string of solar panel
scenario by gradually increasing Pdc0 in 7 steps from 1 kW to
8 kW. The other initial parameters were set at their most com-
mon values [θT , θaz, ηnom, l] = [25o, 180o, 0.96, 14%]. For the
scenario with two strings of solar PV panels, 64 initial PV
parameter sets are obtained by enumerating the two DC sizes
from 1 to 8 kW. The initial estimates for θaz are set at 180o

and 270o. The tolerance for the convergence of Algorithm
1 is set as ε = 0.001. The performance of the proposed
and benchmark algorithms is evaluated with three commonly
used error metrics: mean squared error (MSE), mean absolute
squared error (MASE), and coefficient of variation (CV) [20].

C. Result and Analysis
In this section, the performance of our proposed Algorithm

1 is compared with four other state-of-the-art net load disag-
gregation algorithms including our earlier work [20] that uses
HMM regression for individual load estimation. In addition,
the benefits of considering multiple strings of solar panels
facing different directions are also evaluated in the numerical
study.

1) Comparison with state-of-the-art net load disaggregation
algorithms: The four state-of-the-art benchmark net load dis-
aggregation algorithms are as follows: the unsupervised con-
sumer mixture model [15], the SunDance algorithm [18], the
algorithm proposed in [16], and our earlier behind-the-meter
solar generation estimation work that uses HMM regression to
model individual customer’s electric load. The details of the
experimental setup of the consumer mixture model and the
SunDance model can be found in [20]. Since method C yields
the best results among the four methods proposed in [16] for
this dataset, it is used as one of the benchmarks. This method
assumes electric load to be piecewise constant and models
the solar PV generation by a linear combination of the solar
irradiance.

The MSE, MASE, and CV for the load and solar generation
estimates of the proposed algorithm and the four benchmark
algorithms are reported in Table I. As shown in the table, our
proposed algorithm which seamlessly integrates the physical
solar PV system performance model with statistical MHMM
significantly outperforms all benchmark algorithms. Our pro-
posed method reduces the MSE of the solar PV generation
estimates by 67% and 33% from the consumer mixture model
[15] and our earlier work that uses HMM regression [20]
respectively.

There are two reasons why our proposed algorithm yields
better results. First, the high fidelity physical PV system per-
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TABLE I
COMPARISON OF VARIOUS NET LOAD DISAGGREGATION METHODS

Error
Metric

Variable MHMM
(solar panel
scenario 1)

HMM reg.
(solar panel
scenario 1)

MHMM
(solar panel
scenario 2)

HMM reg.
(solar panel
scenario 2)

Consumer
Mixture
Model

SunDance
Model

Algorithm
by [16]

MSE Solar 0.13 0.19 0.12 0.18 0.37 0.54 0.42
Load 0.13 0.19 0.12 0.18 0.37 0.49 0.28

MASE Solar 2.13 2.61 2.11 2.58 3.85 3.74 4.44
Load 0.43 0.48 0.42 0.48 0.74 0.81 0.56

CV Solar 0.47 0.58 0.45 0.57 0.77 0.85 0.78
Load 0.29 0.33 0.28 0.32 0.46 0.57 0.43
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Fig. 2. Comparison of disaggregated load and solar PV generation with actual
values for a customer from October 11 to October 12, 2015

formance model incorporated in our proposed algorithm can
better capture the nonlinear relationships between the solar PV
generation, solar PV system specifications, and weather data.
Second, MHMM is better suited to emulate the customers’
energy behavior in different regimes. This is especially evident
during the low load periods when the customer may be absent
as depicted in Fig. 2. As shown in Fig. 2, the MHMM
follows the actual load much more closely than the benchmark
algorithms during the low load periods, which leads to better
solar PV generation estimation. Therefore, the comparative
advantage of our proposed model is more pronounced for
customers who are absent from home for a long period. In
the numerical study, 24 out of 193 customers are suspected
to be absent from their residence for an extended period. For
these customers, our proposed model with MHMM regression
reduces the MSE by 71% compared to the consumer mixture
model.

2) Comparison between MHMM and HMM regression:
The proposed net load disaggregation algorithm with MHMM
outperforms the algorithm with HMM regression by 33%
in terms of MSE of load estimates. The MHMM provides
a more accurate estimation of load compared to the HMM
regression. The proposed net load disaggregation method is
an iterative method that estimates the load and PV generation
parameters in turn. An improved load estimate at step 6 of
the algorithm leads to an improved estimate of solar PV

technical parameters, which in turn leads to an improved solar
PV generation estimate. Our proposed net load disaggregation
algorithm with MHMM outperforms the algorithm with HMM
regression by 33% in terms of MSE of solar PV generation
estimates.

The improved load estimate by MHMM can be attributed
to the following factors. First, MHMM jointly models the
electric load of customers in a community while capturing
the individual heterogeneity by incorporating the individual-
specific random effects. Second, MHMM provides a more
efficient estimation of the fixed model parameters. Third,
MHMM enables information sharing by the population-level
effect and the random effects components that follow a normal
distribution with common variance. As a result, it can be
observed in this study that the algorithm with MHMM yields
more pronounced improvement for customers with unreliable
intercept estimates in the HMM regression. The MHMM
corrects such problems by moving these outliers toward the
mean intercept. As shown in Fig. 3, the histogram of the
intercepts from the HMM regression is skewed to the right
with 54 customers having a very large intercept (> 1). The
intercept estimates of the MHMM for these customers have
been shifted toward the mean. The improvement in MSE of
solar PV generation estimates is 50% for these customers and
only 29% for the rest of the customers.

The histograms of the MSE of the solar PV generation
estimate for the algorithms with HMM regression and MHMM
are shown in Fig. 4. It can be observed that the percentage of
customers with lower MSE of solar PV generation estimates
from the algorithm with MHMM is much higher than that
from the algorithm with HMM regression. For example, the
percentage of customers with MSE of solar PV generation
estimates smaller than 0.1 kW is only 29% for the algorithm
with HMM regression. By adopting the proposed algorithm
with MHMM, this percentage increases to 45%.

The net load disaggregation algorithm with both HMM
regression and MHMM provides accurate solar PV generation
estimates both in sunny and cloudy days. In this study, October
21 to October 26 are cloudy days with low DNI. The average
MSE of solar PV generation estimates is 0.10 KW for
the algorithm with MHMM. The average MSE of solar PV
generation estimates is 0.12 KW for the algorithm with HMM
regression. For both algorithms, the MSE for the cloudy days
is lower than the overall average MSE. As shown in Fig. 6, the
PV generation estimates of the customer with the median MSE
of solar PV generation from HMM regression and MHMM
closely follow the actual solar PV generation.
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Fig. 3. Histogram of the intercepts from the HMM regression (left, std =
0.49) and the MHMM (right, std = 0.14)
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Fig. 4. Histogram of the MSE of solar PV generation estimates for the HMM
regression (left) and the MHMM (right)

3) Advantage of modeling multiple strings of solar panels:
By considering the possibility of having multiple strings of
solar panels facing different directions, our proposed algo-
rithm in scenario 2 further improves the estimation accuracy
when compared to scenario 1. This modeling flexibility better
captures the physical configurations of real-world solar PV
systems. As shown in Table I, a 7% reduction in MSE of
the solar generation estimates is achieved in scenario 2 over
scenario 1.

4) Accuracy of the PV array technical parameters: The
ground truth tilt and azimuth angle of the solar PV installations
are not available. The DC rating of solar PV panels is available
for 90% of the customers. The performance of the proposed
model in estimating the DC size of the solar PV systems is
illustrated in Fig. 5. As shown in Fig. 5, the estimated solar
DC ratings and the actual are quite similar. The MAPE of
the estimated solar DC ratings is 20% for the algorithm with
HMM regression and 18% for the algorithm with MHMM.

5) Computation time and scalability: The computation time
for the net load disaggregation algorithm with MHMM is
6 minutes per hour of net load data using an Intel core i9
processor. The computation time is measured for the case
where the number of initial MHMM parameters Ji is 3. The
number of random samples B equals 500. The tolerance for
the convergence of the MCEM algorithm ε′ is set as 0.001
and the number of customers is 193. However, 45% time is
spent on solving the HMM regression problem which is used
as initial parameters for the MHMM at step 3 of Algorithm
1. This process can be parallelized to save computation time
since the HMM regression is estimated for each customer
separately. To perform net load disaggregation for a large
number of customers, one could first separate all customers
into different communities based on geographical location.
Then the net-load disaggregation problem can be solved for
different communities in parallel, which makes the proposed
algorithm extremely scalable.
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Fig. 6. Comparison of disaggregated solar PV generation with actual values
for the customer with median MSE of solar PV generation for the cloudy
days from October 18 to October 23, 2015

V. CONCLUSION

An unsupervised algorithm is developed to disaggregate the
observed net load signals of a group of residential customers
with behind-the-meter solar PV systems into unknown solar
PV generation and electric load. The iterative algorithm syner-
gistically combines a physical PV system performance model
for individual solar PV generation estimation with a statistical
mixed hidden Markov model for joint load estimation. The
mixed hidden Markov model not only models the general
load consumption behavior of the entire community but also
captures the individual differences with the random effects.
Furthermore, the high fidelity PV system performance model
considers real-world configurations with multiple strings of
solar panels facing different directions. These technical ad-
vancements result in a significant reduction in the estimation
error of the solar PV generation from the state-of-the-art net
load disaggregation algorithms. Once the estimated solar PV
systems’ technical parameters are obtained with the proposed
algorithm, online estimation of behind-the-meter solar PV
generation becomes feasible with real-time solar irradiance
data.

Several interesting extensions of our proposed algorithm
can be explored in the future. First, semi-parametric mixed
hidden Markov model can be developed to further improve the
computational efficiency of the proposed algorithm. Second,
in the current model, the customer-specific random effect and
its variance are assumed to be independent of the hidden
states. The mixed hidden Markov model can be improved
by assuming that the random effect variance depends on the
hidden states. Third, a robust version of the proposed net-load
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disaggregation algorithm can be developed to improve estima-
tion accuracy in the presence of outliers. Finally, a mixed effect
model to jointly estimate load in several communities with a
community-specific random effect along with the customer-
specific random effect will be of interest.
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