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Abstract
It is shown here that a wide, buoyant parcel of air at the surface accelerates far less rapidly than it
does aloft. In particular, analytical formulae are derived for the effective buoyancy (i.e. the net 
vertical acceleration due to parcel buoyancy and environmental response) of idealized cylinders 
of diameter D and height H, located in free space and at the surface. These formulae quantify the 
decrease of effective buoyancy with increasing aspect ratio D/H, and show that this effect is 
more pronounced for surface cylinders, especially when D/H > 1. We gain intuition for these 
results by considering the pressure fields generated by these buoyant parcels, and we test our 
results with large‐eddy simulations. Our formulae can inform parametrizations of the vertical 
velocity equation for clouds, and also provide a quantitative map of the ‘grey zone’ in numerical 
modelling between hydrostatic and non‐hydrostatic regimes.

1 Introduction

The Archimedean buoyancy in the anelastic approximation is given by

(1)
where g is the gravitational acceleration, ρ(z) is a reference density profile, and the density ρis 
decomposed as ρ = ρ+ρ′. It is the driving force behind thermal convection, but is also an 
incomplete and somewhat unsatisfactory measure of buoyant acceleration since, in general, the 
Lagrangian vertical acceleration dw/dt does not equal B, even when the atmosphere is initially 
motionless. This is because the acceleration of a buoyant parcel necessarily produces a back‐
reaction from the environment, which must move out of the way to accommodate the parcel's 
motion. This back‐reaction is given (in the anelastic approximation) by the gradient of the 
buoyancy pressure perturbation pb′, which is defined as the solution to the Poisson equation*

(2)
(cf. Markowski and Richardson, 2011, p. 28). The vertical accelerations B and −(∂zp′b)/ρ are thus 
inseparable, which has led some authors to consider only their combination B − (∂zpb′)/ρ̄ in their 
analyses (e.g. Krueger et al., 1996; Xu and Randall, 2001; Davies‐Jones, 2003; Torri et 
al., 2015). Such an approach was expressly advocated by Doswell and Markowski (2004), who 
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also argue that B − (∂zpb′)/ρ is independent of reference density ρ, resolving another deficiency of
Eq. 1.

While focusing on B − (∂zpb′)/ρ is sensible, this quantity, which we refer to as the ‘effective 

buoyancy’ β following Davies‐Jones (2003), has been relatively little studied as an object in its 

own right. Previous studies and textbook treatments have largely focused on ∇pb′ (e.g. 

Yau, 1979; Markowski and Richardson, 2011; Houze, 2014), though there are exceptions which 

we will discuss below (Pauluis and Garner, 2006; Nugent and Smith, 2014). Parametrizations of 

the vertical velocity equation employed in convection schemes usually strive to account for 

effective buoyancy via a ‘virtual mass’ coefficient, but its value is rather uncertain (de Roode et 

al. 2012). Finally, there are surface effects which are significant but rarely quantified. We 

illustrate these in Figure 1, which shows x–z cross‐sections at y = 0 of B and β for Gaussian 

density bubbles of the form

(3)
with height H = 1000 m, radius R = 1000 m, Δρ =− ρ(zcm)/300 for an approximate temperature 
anomaly of 1 K, and bubble centres zcm=2000,500, and 0 m.† The ratio of the maximum of βto 
the maximum of B is roughly 1/2 for the ‘free’ bubble, and this ratio decreases rapidly as the 
bubble approaches the surface. At the surface one can also see that the maxima of βand B are no 
longer co‐located.

Figure 1
Open in figure viewer  PowerPoint
x–z cross‐sections at y = 0 of (a,c,e) Archimedean buoyancy B and (b,d,f) effective 
buoyancy β= B − (∂zpb′)/ρ (both 10−2 m s−2) for Gaussian bubbles of the form Eq. 3 with R = 1000 
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m, H = 1000 m, and centre height zcm of (a,b) 2000 m, (c,d) 500 m, and (e,f) 0 m. Horizontal and 
vertical dimensions are plotted to scale, though the vertical axes in (a,b) differ from those of (c–
f), and the contour is drawn at the 95th percentile value in each plot. Note the marked difference 
in magnitude between B and β, how this difference becomes more pronounced as the bubble 
moves toward the surface, and how the maximum of β stays a finite height above the surface 
even as the maximum of B approaches z = 0.

At present, we have little quantitative or even qualitative understanding of such behaviour. We 

aim to remedy this by developing and testing analytical expressions for the effective buoyancy of

fluid parcels near the surface and aloft. We will solve the Poisson equation for β given in Davies‐

Jones (2003) (hereafter DJ03) for idealized density distributions, and employ the closely related 

‘buoyancy pressure’ introduced by Jeevanjee and Romps (2015, hereafter JR15) to gain intuition 

for our results.

2 Preliminaries

2.1 The Poisson equation for effective buoyancy

As in JR15, we begin by defining effective buoyancy β as the Lagrangian vertical acceleration 

that would result from zeroing out the wind fields:

(4)
If one starts with the usual approximation of the anelastic equation of motion in the absence of 
viscous and Coriolis forces (Emanuel, 1994, p. 11),

where p′=p − ρ is the perturbation pressure and ρ is a reference pressure profile in hydrostatic 
balance with ρ, then it is straightforward to show that β = B − (∂zpb′)/ρ, where pb′satisfies Eq. 2. 
If, however, one follows DJ03 and Das (1979) and defines a locally hydrostatic pressure field

and corresponding non‐hydrostatic pressure field pnh≡p − phyd, then one obtains an alternate form 
of the anelastic momentum equation

(5)
where ∇h≡∂xx ̂+∂yŷ. It is then straightforward to apply the definition 4 to obtain the following 
simple Poisson equation for β, due to DJ03:

(6)

(Here, , and the difference between  and ∇2 is the source of all the interesting
physics that follows.) Neglecting vertical variations in ρ (since the scale of such variations is 
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larger than the density anomalies we will consider) and noting that , we obtain an 
even simpler form,

(7)
This is the Poisson equation for β that we will use in this article.

2.2 Effective buoyancy and the buoyancy pressure

Though Eq. 7 is all we require to obtain analytical expressions for β, getting intuition for what 

these expressions tell us will require us to consider the buoyancy pressure pβ, first introduced in 

JR15. Analogous to the definition 4, pβ is defined as the non‐hydrostatic pressure that would 

result from zeroing out the wind fields:

Taking the divergence of Eq. 5, invoking anelastic mass continuity, and setting u = 0 yields the 
Poisson equation

(8)
This equation just says that the divergence of −∇pβ must cancel out any divergence produced by 
the horizontal hydrostatic pressure gradient −∇hphyd. That Eq. 8 is reminiscent of Eqs 6 and 7 is no

accident; applying −∂z to both sides of Eq. 8 yields , and it follows 
from Eq. 5 that the boundary conditions of −∂zpβ are identical to that of ρβ, so we conclude that

(9)
Thus, β is essentially the vertical component of the pressure gradient −∇pβ which arises to 
compensate for hydrostatic pressure forces. Considering pβ will give us a picture of the full 3D 
circulation resulting from parcel buoyancy, which will facilitate intuition for β.

2.3 Back‐of‐the‐envelope estimate of effective buoyancy

We will be interested in solutions of Eq. 7 for parcels of characteristic height H and horizontal 

scale D. In terms of these parameters, we can roughly estimate  (here and below, 

 is our cylindrical radial coordinate) and ∂z2 ∼ 1/H2 and plug into Eq. 7to 

obtain

(10)
This suggests that |β|<|B|, as we expect, and that the proportionality factor depends quadratically 
on a parcel's aspect ratio D/H. The exact solutions of Eq. 7 for isolated cylindrical density 
anomalies, which we will present below, confirm this.

Before proceeding to that analysis, let us use Eq. 10 to re‐do the usual linear perturbation 

analysis of a parcel in a stratified environment with potential temperature profile θ(z) and Brunt–

Väisälä frequency  . In the linear regime with no background flow, there 
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is no ‘inertial’ or ‘dynamic’ pressure stemming from the nonlinear advection term in the 

momentum equation, and so dw/dt = β (Jeevanjee and Romps, 2015). Applying this to a small 

displacement δz, and using Eq. 10, we then have

Letting k ≡ 1/D and m ≡ 1/H, this implies that the parcel will oscillate with angular frequency

which is just the usual expression for the frequency of a gravity wave with horizontal and 
vertical wavenumbers k and m. Thus, the reduction of the gravity‐wave frequency from the 
Brunt–Väisälä value can be seen as just the effect of effective buoyancy. That Eq. 10 gives the 
exact right answer for ω is no accident, as Eq. 10 is itself exact for gravity waves, as can be 

checked by plugging in oscillating fields  into Eq. 7.

Despite the applicability of Eq. 10 in the gravity‐wave context, and the fact that it captures the 

reduction of β relative to B as a function of a parcel's aspect ratio, it is just a crude estimate and 

does not capture the dependence of β on a parcel's proximity to the surface seen in Figure 1. To 

make further progress, we will need the exact solutions presented in the next two sections.

3 The free cylinder

We now refine the result 10 for the case of a ‘free’ parcel, i.e. a density anomaly in an infinite 

domain without boundary. The case of a parcel at the surface is treated in the next section. We 

proceed by partially solving the Poisson equation 7 for a uniform cylindrical density anomaly 

centred around the origin with Archimedean buoyancy B0, diameter D, and height H. This is 

illustrated in Figure 2(a). The buoyancy field thus has the form

(11)
where the Heaviside step functions  serve to restrict the density anomaly to our cylinder. 
Plugging this into Eq. 7 yields

(12)

where  is the Dirac delta function.
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Figure 2
Open in figure viewer  PowerPoint
Illustrations of the buoyancy distributions appearing on the right‐hand side of Eq. 7 for (a) the 
free cylinder and (b) the surface cylinder. The distribution is even about z = 0 for the free 
cylinder, but odd for the surface cylinder, enforcing a β(0) = 0 boundary condition for the latter.

A complete analytical solution of Eq. 12 would be arduous, if not impossible, but here we seek 

only the solution for β on the z‐axis, which simplifies the problem considerably. Since the 

Green's function G(x;x′) for the Laplacian ∇2 for a field with ‘open’ boundary conditions (i.e. a 

field which vanishes at infinity) is just 1/(4π|x − x′|), and since we are interested only in x = 

(0,0,z), β(z) on the z‐axis is given by

This double integral can be evaluated using integration by parts, the definition of the delta 

function, and trigonometric substitution. The result is

(13)
This analytical expression is one of the main results of this article.
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The function β(z) is plotted as a function of z/H in Figure 3 for various aspect ratios D/H, which 

are depicted to scale by pink boxes. Note that as D/H increases, the maximum of β decreases. 

This can be further illustrated by evaluating Eq. 13 at z = 0, which yields

(14)
This is plotted as a function of aspect ratio in Figure 4, and quantifies the effect of aspect ratio on
buoyant accelerations: for D/H = 1, the environmental response offsets the Archimedean 
buoyancy by 30%; for D/H = 2, 50%. For small aspect ratios D/H ≪ 1, the plot of Eq. 14 in 
Figure 4 flattens out, so narrow plumes do not become significantly more buoyant by splitting 
apart. In this regime we can also Taylor‐expand the denominator in Eq. 14 to first order which 
yields

an expression very similar to Eq. 10. For the opposite, large aspect‐ratio, regime we have the 
alternate approximation

(15)
We will contrast this expression with its analogue for the surface cylinder in the next section.

Figure 3
Open in figure viewer  PowerPoint
The curves β(z) (green) from Eq. 13 for free cylinders of aspect ratios D/H (a) 0.2, (b) 1.0, and 
(c) 5.0. The cylinders themselves are depicted to scale in pink. As D/H increases, there is a 
marked decrease in the maximum of β(z), as well as an increase in the vertical scale over which β
decays.
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Figure 4
Open in figure viewer  PowerPoint
Effective buoyancies at the centre of the free cylinder (Eq. 14, solid line) and the surface cylinder
(Eq. 23, dashed line) as a function of D/H. Note that β is is always smaller for the surface 
cylinder than for the free one, and that it decreases much more rapidly as D/Hincreases. The thin 
grey line plots the result (29) of Nugent and Smith (2014), which tracks our Eq. 14 very closely.

These formulae quantify the decline of effective buoyancy with aspect ratio. What causes this 

decline, however? And why does it take the form Eq. 15 in the large‐aspect‐ratio limit? To 

answer these questions, we turn to the buoyancy pressure pβ introduced in section 2.2. We must 

first find pβ(z), which is easily obtained via Eq. 9 by integrating Eq. 13. Imposing the boundary 

condition  as  yields
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(16)
where

(17)
is the phyd anomaly at the cylinder's centre. Evaluating Eq. 17 at z = 0 yields

(18)
This simple result is key for understanding the free cylinder, and does not hold for the surface 
cylinder. To gain intuition for it, consider a smooth, cylindrical buoyancy distribution (e.g. a 
Gaussian bubble as in Figure 1), as depicted schematically in Figure 5(a); the cylinder of uniform
buoyancy given by Eq. 11 can be seen as a limit of such distributions. Figure 5(a) gives a 
heuristic derivation of Eq. 18, as follows.

1. The hydrostatic pressure anomaly Δphyd<0 in the cylinder drives convergence into the 
cylinder via −∇hphyd (blue arrows).

2. This must be balanced by divergence from −∇pβ, according to Eq. 8. The 
symmetry of Eq. 7 implies that β at cylinder top and bottom must be equal, however, so the 
vertical component of −∇pβ cannot contribute any divergence (vertical green arrows).

3. The horizontal divergence of −∇pβ must then balance the convergence from 
−∇hphyd(horizontal green arrows). Since this balance occurs over a common length scale D, we 
can infer Eq. 18.

Figure 5
Open in figure viewer  PowerPoint
Cartoon of the gradients −∇hphyd and −∇pβ and associated divergences for (a) the free cylinder and 
(b) the surface cylinder. Note that for the free cylinder, the vertical divergence from −∇zpβ=ρβ is 
0, so the horizontal convergence from −∇hphyd must be balanced entirely by horizontal divergence 
from −∇hpβ, which yields pβ=−Δphyd. For the surface cylinder there is a vertical contribution to the 
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divergence since β(0) = 0, and so a smaller value of |−∇hpβ| (and its divergence) is sufficient to 
balance the divergence from −∇hphyd, yielding pβ<−Δphyd.

Now, a key feature of Eq. 18 is that pβ(0) is independent of horizontal scale. Why, then, does β 

decline with increasing D/H for fixed H? As shown in the Appendix, for large aspect ratios the 

normalized field pβ/pβ(0) is a fixed function of x/D, with negligible H‐dependence. In particular, 

this means that the height at which pβ decays to a given fraction of itself scales with D. 

Thus, β =− (∂zpβ)/ρ must scale as

(19)
If we combine this with Eq. 18 and the definition 17 we get

(20)
which is just the scaling we found in Eq. 15. Thus, the basic reason that aspect ratio matters for a 
free parcel is that the vertical scale of pβ is a function of the parcel's horizontal scale D. (This can
also be inferred from Figure 3.) If D increases while H (and hence pβ(0) =− Δphyd) is fixed, a taller
column of air must be moved with a fixed pressure differential, decreasing the gradient β = 
(−∂zpβ)/ρ.

4 The surface cylinder

We now turn to parcels located at the lower boundary of a domain, where the vertical 

velocity w is identically 0 and hence so is β by Eq. 4. To solve Eq. 7 for a cylinder at the surface 

(where the surface is at z = 0), we employ the method of images (DJ03; Griffiths, 2013). The 

idea of this technique is to enforce a β(0) = 0 boundary condition by solving the open boundary 

condition problem as in the previous section, but with an additional ‘image cylinder’ generated 

by reflecting the original surface cylinder across the z = 0 plane and switching the sign of its 

anomaly (Figure 2(b)). The source term  in Eq. 7 will then be odd with respect to z, which 

implies β will be odd too, ensuring β(0) = 0.

In this case, then, the Poisson equation for β is

(21)
Integration against the Green's function as in the previous section yields the desired formula for β
along the z‐axis:
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(22)
This expression is the other main analytical result of this article. This β(z) is plotted as function 
of z/H for various D/H in Figure 6. Similar to the free cylinder, the overall magnitude of β 
decreases with increasing D/H. To analyze this, we estimate the parcel's overall effective 
buoyancy by evaluating β at the centre of the cylinder, yielding

(23)
We plot this function against D/H as the dashed line in Figure 4. Note that this curve is always 
less than that for the free cylinder, consistent with Figure 1, and declines much more rapidly 
with increasing D/H. In fact, the large‐aspect‐ratio limit gives

(24)
which should be compared with the H/D scaling in Eq. 15.

Figure 6
Open in figure viewer  PowerPoint
As Figure 3, but for surface cylinders with β(z) given by Eq. 22. In addition to a decrease in β 
and increase in vertical scale as D/H increases, the location zmax (light grey dashed line) 
of βmax moves upward, with zmax located just above the cylinder for D/H = 5.

Another noteworthy feature of Figure 6 is that, like the free cylinder, the vertical scale over 

which β declines increases as D increases, but in this case the location zmax of the maximum 

of β(z) (light grey dashed line in Figure 6) also changes, and even appears outside the cylinder 
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for D/H = 5. This may be surprising, but is consistent with the fact that, for D ≫ H, zmax scales 

with D (Appendix).

Why do surface parcels accelerate less than free ones? As in the previous section, we turn 

to pβ for insight. Again invoking Eq. 9, we integrate Eq. 22 with our  as  

boundary condition to obtain

(25)
Taking the D/H ≫ 1 limit in Eq. 25 and evaluating at z = 0 then gives

(26)

This stands in marked contrast to the free cylinder result 18, and is one of the main ways in 

which the surface cylinder differs from the free one. We again give a heuristic derivation for a 

smooth cylindrical density distribution, shown in Figure 5(b), as follows:

1. The hydrostatic pressure anomaly Δphyd<0 in the cylinder drives horizontal convergence 
into the cylinder via −∇hphyd (blue arrows).

2. This must again be balanced by divergence from −∇pβ. For the surface cylinder, however,
there is now a contribution from the vertical component of −∇pβ (vertical green arrow). This is
because the β(0) = 0 boundary condition at the surface breaks the reflection symmetry about 
the horizontal plane passing through the cylinder's centre.

3. The horizontal component of −∇pβ is thus no longer required to balance all of the 
convergence from −∇hphyd (horizontal green arrows), and so can have a smaller magnitude |
−∇hpβ|<|−∇hphyd|. Since these gradients occur over a common length scale D, we can infer pβ(0) 
<− Δphyd, as expressed in Eq. 26.

We can now combine the foregoing with our earlier results to give a heuristic derivation of the 

scaling in Eq. 24. We have three scaling laws concerning the effective buoyancy of a surface 

parcel when D ≫ H:

1. From Eq. 19, we know that βmax∼pβ(0)/(ρD).
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2. From Eq. 26, we know that the effect of a non‐zero vertical divergence of −∇pβ, which 
arises from broken reflection symmetry, gives pβ(0) ∼ ΔphydH/D.

3. Assuming a linear increase of β with height from z = 0 to zmax, the scaling zmax∼D then 
gives β(H/2) ∼ βmaxH/D.

Combining these three scaling laws then gives

Roughly speaking, each of our scaling laws yields a factor of H/D, combining to give 
a H3/D3scaling just as in Eq. 24.

5 LES tests

We now test the dependence of effective buoyancy on parcel‡ aspect ratio and surface proximity 

by performing large‐eddy simulations (LESs) of the motion of our free and surface cylinders, 

using Das Atmosphärische Modell (DAM; Romps, 2008). DAM is fully compressible and relies 

on implicit LES (Margolin et al. 2006) for subgrid‐scale transport, so no explicit subgrid‐scale 

turbulence scheme is used. We use a three‐dimensional domain with doubly periodic boundary 

conditions in the horizontal, and take a neutrally stratified, dry environment with a temperature 

of 300 K at the lower boundary, where w and β are 0. The neutral stratification and surface 

temperature, along with an assumption of hydrostatic balance, are sufficient to determine the 

environmental density profile ρ(z). For given cylinder parameters D (which we vary) 

and H (which we fix at 1000 m), the domain width and height must be taken large enough to 

sufficiently approximate the horizontally infinite and vertically (half) infinite boundary 

conditions of the free (surface) cylinders. Since the scale height of pβ scales with D when D/H > 

1 (Appendix), and since we must leave room for our cylinders to rise, we take the domain height 

 for free cylinders and  for surface cylinders. 

We take the domain width to be 6.4D. This is sufficient to ensure only small§ differences 

between the idealized analytical and finite‐domain numerical profiles of β/B0.
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Our density field is

with ρ = ρ(z) everywhere else. The centre heights zcm are ztop/2 for the free cylinder and H/2 for the

surface cylinder. The grid spacings are dx = dy = D/40 and . The 
adaptive time step is set to a maximum of dz/(10 m s−1) to satisfy the CFL condition 
(Durran, 2010) for velocities up to at least ∼10 m s−1.

The cylinders are initialized with a purity tracer field qpurity which is set to 1 inside the cylinder 

and 0 outside, and is advected passively by the flow. For each time t, we diagnose the cylinder's 

centre of mass z‐coordinate as

where the integrals are taken over the whole model domain. To get a sense of how these parcels 
evolve, the qpurity field, along with zcm(t), is plotted at 3 min intervals for the D = 1000 m free 
cylinder in Figure 7.

Figure 7
Open in figure viewer  PowerPoint
x–z cross‐sections at y = 0 of qpurity, along with zcm(t) (black circles) for the D = 1000 m free 
cylinder at t= (a) 0 min, (b) 2 min, (c) 4 min and (d) 6 min. Only the middle half of the horizontal
domain is shown.

Next, we plot the trajectories zcm(t) − zcm(0) for free and surface cylinders in Figure 8. We take D =

200,1000, and 5000 m, so that D/H = 1/5,1, and 5, just as in Figures 3 and 6. Figure 8shows that 

the zcm(t) trajectories indeed exhibit the expected dependence of effective buoyancy on aspect 

ratio. The effect of the surface is not noticeable for D/H = 1/5 and 1, but is noticeable for D/H = 

5; this is consistent with Figure 4, and suggests that the effect of the surface becomes significant 

when .
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Figure 8
Open in figure viewer  PowerPoint
Diagnosed position of cylinder centre‐of‐mass zcm(t) (open black circles) for our cylindrical 
density anomalies with H = 1000 m and D= (a,d) 200 m, (b,e) 1000 m, and (c,f) 5000 m, as 
simulated by LES. The decreased acceleration with increasing aspect ratio is clear, especially 

when  and for the surface cylinder in particular. The blue line shows the 
Archimedean buoyancy estimate zB(t) from Eq. 27, which for the skinny cylinders agrees with the
LES at early times, but cannot capture the initial acceleration of the wider cylinders. The red line 
shows the effective buoyancy estimate zβ(t) from Eq. 28, which fares better in capturing the 
parcel's initial acceleration for both free and surface cylinders, except for the D/H = 5 cylinders. 
See the text for further discussion.

Figure 8 thus qualitatively confirms the physics presented in sections 3 and 4. Can the 

formulae 14 and 23 derived in those sections be of any quantitative use? And how do they 

compare with the naive predictions of the Archimedean buoyancy? Let us take a first stab at this 

by focusing on the initial acceleration of our cylinders. The Archimedean estimate for this is 

simply the average initial Archimedean buoyancy Bav (B is not exactly constant throughout the 

cylinder, due to small variations in ρ(z)), and so we plot the curve

(27)
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in blue for each panel of Figure 8. For the D/H = 1/5 cylinders, zB(t) matches zcm(t) quite well for 
early times (t < 2 to 3 min), and thus the Archimedean buoyancy is a good approximation to the 
initial acceleration of these parcels. As aspect ratio increases, though, there is a growing 
discrepancy between the initial accelerations of zB(t) and zcm(t) which is most pronounced for the 
surface cylinder. This is no surprise, though, as Bav is insensitive to aspect ratio and surface 
proximity; indeed, the curves zB(t) are virtually identical for all six cases.

Let us now turn to the effective buoyancy β. By its very definition 4 and the fact that our 

simulated atmosphere is initially motionless, we know that the average βav of β over the cylinder 

must equal the initial acceleration of zcm(t). The question, then, is to what degree the 

expressions 14 and 23, which strictly speaking only describe the centre of the cylinder, 

approximate βav. To get a sense of this, we plot the trajectories

(28)
where β0 is just given by Eqs 14 and 23 for the free and surface cases, respectively, against the 
diagnosed zcm(t) in Figure 8. For D/H = 1/5 the curves zB(t) and zβ(t) are virtually identical, as one 
would expect, and both capture the initial acceleration of zcm(t). For D/H = 1, zβ(t) captures the 
diagnosed initial acceleration whereas zB(t) does not. For D/H = 5, zβ(t) underestimates the initial 
acceleration quite significantly. This is because our uniform density anomalies with step function
discontinuities feature a β that actually increases with rup to the cylinder's edge at r = D/2, since 
that is where the singular source for β is located in the Poisson equations 12 and 21. For 

, these radial variations in β are small and so Eqs 14 and 23 are nonetheless good 
approximations to the average β, but for D/H > 1 this is no longer true, and 
Eqs 14 and 23 underestimate the cylinder's average β. This can also be seen in in Figure 9(a,c), 
where the curves (Eqs 14 and 23) are overlain on βav/Bav computed numerically for free and 
surface cylinders with H = 1000 m and various D. In the next section we will come back to this 
figure, and discuss whether Eqs 14 and 23 can be of quantitative use when D/H > 1.
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Figure 9
Open in figure viewer  PowerPoint
Comparison of the analytical expressions Eqs 14 and 23 with numerically diagnosed values 
of βav/Bav for (a) free and (c) surface cylinders, and (b) free and (d) surface Gaussian bubbles of 
the form Eq. 3, with H = 1000 m and various D. Our formulae rather significantly 
underestimate βav/Bav for large‐aspect‐ratio cylinders, but give better agreement for large‐aspect‐
ratio Gaussian bubbles.

As a final aside, we should comment on the over‐prediction of zcm(t) by zβ(t) at later times (t > 3 

min) for the  cases, where there is actually good initial agreement. Once a parcel 

begins to move, it experiences an internal circulation which may change its shape as well as 

entrain environmental air (Figure 7), both of which will reduce its effective buoyancy. 

Furthermore, we expect drag forces to kick in and eventually balance any buoyant accelerations 

(Romps and Charn, 2015; Romps and Öktem, 2015), yielding a terminal velocity rather than 
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continuing acceleration. Such a balance between buoyancy and drag at later times seems 

consistent with the diagnosed zcm(t) in Figure 8, and would also contribute to an overestimation 

of zcm(t) by zβ(t).

6 Summary and discussion

We summarize our results as follows:

 The effective buoyancy of a fluid parcel depends on aspect ratio and surface proximity, as

expressed in Eqs 13 and 22 and depicted in Figure 4.

 These effects can be understood in terms of the buoyancy pressure pβ, of which β is 

essentially just the vertical gradient.

 These effects indeed manifest in parcel motion as simulated by LES.

Many questions and potential applications remain, of course. An obvious first question is: what 

determines the aspect ratio of real convecting elements in the atmosphere? Our work here 

quantifies the well‐known advantage that skinny parcels have over squat parcels in convecting. 

But a parcel that is too skinny will likely suffer too much dilution from entrainment to convect 

very far, and so the aspect ratio of real clouds is most likely determined by a balance between 

effective buoyancy and entrainment. Settling this question quantitatively, however, would require

a more solid understanding of how entrainment varies with aspect ratio (de Rooy et al. 2013).

Another obvious follow‐up question is: to what extent do Eqs 14 and 23, which even for our 

highly idealized uniform cylinders only capture βav for , apply to real convective 

clouds, which have highly heterogenous density distributions and irregular shapes? Interestingly, 

if we consider slightly less artifical density distributions such as Gaussian bubbles of the form 3, 

then we no longer get an increase of β with r (Figure 1), and Eqs 14and 23 give a better 

approximation of βav/Bav, as shown in Figure 9(b,d). Thus, we may hold out some hope that our 

analytical expressions apply to more realistic convection. However, a comparison with density 

distributions derived from (say) cloud‐resolving simulations would be necessary to confirm this.

We should note here that Eq. 14 is not the only published candidate for β as a function of aspect 

ratio. Recently, Nugent and Smith (2014) calculated β for a horizontally infinite slab of 

height H with sinusoidal density variations in x and y, and found that for such density 

distributions
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(29)

where  is an effective diameter and k,l are the horizontal wavenumbers of 
the distribution. This curve is plotted in Figure 4 in light grey, and matches quite closely the 
curve of Eq. 14. Equation 29 can also be obtained by integrating a uniform buoyancy profile of 
height H and centre‐of‐mass height  against the Green's function in Eq. 15 of Pauluis
and Garner (2006). That article also touches upon the effect of the surface, and emphasizes the 
application of formulae such as their Eqs 18 and 21 (analogous to our Eqs 14 and 23) to 
understanding the transition from hydrostatic to non‐hydrostatic regimes in numerical modelling.
In this regard, note that Eq. 23 tells us that a grid‐point surface plume of height 1 km in a 
‘convection‐permitting’ model of horizontal resolution 4 km (the threshold identified in the 
recent review by Prein et al. (2015)) should experience a roughly order‐of‐magnitude reduction 
in acceleration from the Archimedean value.

Finally, we note that the basic physics investigated here, namely the effect of environmental 

inertia on an accelerating parcel, is well known in the fluid dynamics literature as the ‘virtual 

mass’ or ‘induced mass’ effect (e.g. Batchelor, 2000; Falkovich, 2011). This effect is usually 

incorporated into parametrizations of the vertical velocity equation, which often take the form 

(de Roode et al. 2012)

(30)
where a and b are dimensionless; a is often referred to as a ‘virtual mass coefficient’ (e.g. 
Bretherton et al., 2004), and ε is an entrainment rate (units m−1). The −εw2 expression captures the
effect of entrainment (mixing) drag, and b accounts for other types of drag such as form drag and
wave drag, all of which are expected to be proportional to w2. Before relating our results to such 
a parametrization, we should re‐arrange Eq. 30 as it is unsatisfactory on two grounds. First, 
since b multiplies ε, it introduces a spurious connection between (say) form drag and 
entrainment. Second, any force (not just buoyancy) will induce a back‐reaction from the 
environment, and so the virtual mass coefficient a should multiply the drag term as well 
(assuming that the spatial distribution of buoyancy and drag forces is identical, so that we may 
use the same virtual mass coefficient). This suggests a drag term of the form a{(cdA/2V) + ε}w2, 
where A is the projected area of the parcel, V is its volume, and cdis a drag coefficient 
representing form and wave drag. Equation 30 can then be re‐written as

(31)
which combined with the definition 4 yields

(32)
Thus, our results 14 and 23 are just highly idealized calculations of the virtual mass coefficient a.
Furthermore, they show that this coefficient depends on surface proximity.

Other analytical calculations of virtual mass coefficients exist in the fluid dynamics literature, 

but are often for foreign objects such as gas bubbles or solid spheres accelerating through a fluid 

(e.g. Batchelor, 2000; Falkovich, 2011). Our case differs from that treated in textbooks in that the
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mass we are considering is part of the fluid, and so may accelerate non‐uniformly and develop an

internal circulation (as seen in Figure 7). Mathematically, the difference is that we have no 

boundary condition on the environmental fluid velocity at the parcel's edge, as there would be for

a solid body. However, it could be of theoretical and perhaps practical interest to compare our 

expressions 14 and 23 to analogous expressions for solid bodies of similar geometries, such as 

the results of Brumley et al. (2010). That there may be some connection is suggested by the 

special case of a sphere. To approximate this case we set D = H in Eq. 14, which yields an 

acceleration of ; this is quite close to the solid‐body value of 2B0/3, typically

derived by other means (Falkovich, 2011).
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 *This equation just says that the divergence of −∇pb′ must cancel the divergence 
generated by ρBz ̂, a requirement imposed by anelastic mass continuity.

 †The domain set‐up and ρ(z) for the bubbles is the same as for the large‐eddy simulations
discussed in section 5 below, and we compute β numerically as in Jeevanjee and Romps 
(2015).

 ‡In this section we will continue to refer to our cylinders as ‘parcels’, even though the 
heterogeneity they develop over time violates the strict definition of a parcel as a homogenous
entity.

 §More specifically, the difference between the analytical and numerical profiles 
ofβ/B0 never exceeds 0.04, with the relative error in in‐parcel acceleration (the quantity we 
care about) never exceeding 5% at a given height for a given case.
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The invariance of pβ/pβ(0) in the D/H ≫ 1 limit
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Consider the free cylinder's buoyancy distribution, Eq. 11. Setting x′=x/D we can write this as

In the D/H ≫ 1 limit, the product of the last two Heaviside functions becomes a delta function 
(H/D)δ(z′), i.e. the cylinder becomes a horizontal ‘line source’ in the primed coordinates. Feeding
this B field into the definition of phyd and employing Eqs 17 and 18 yields

(A1)
This tells us that pβ/pβ(0) is an invariant function of x′, insensitive to changes in H and Dwithin 
the D/H ≫ 1 regime. In particular, we conclude that pβ/pβ(0) will decay along the z‐axis to a 
given fraction of itself at a fixed z′=z/D, and hence this ‘scale height’ of pβ scales with D.

Repeating this exercise but for the surface cylinder (or for a cylinder close to the surface, 

i.e. zcm≪D) yields an expression identical to Eq. A1, except with the replacement 

. In this case, we conclude that both the scale height as well as the 

height zmax of maximum β scale with D.
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