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Acquiring Computer Skills by Exploration versus Demonstration

Franz Schmalhofer and Otto Kiihn!
McGill University / Canada, and Universitit Freiburg / West Germany

It is well known that more effective learning can be achieved by tailoring the learning episodes to
the particular needs of an individual rather than presenting the same sequence of instructions to all learners.
There are two ways by which this can be achieved: a tutor can adjust its instructions to the learner's
previously acquired knowledge or it may simply allow the learners themselves to determine the sequence
of learning episodes. In the first case, the individualization is determined by the prior learning histories
with the global leaming goals being assumed identical for all learners. The LISP tutor of Anderson, Boyle
& Reiser (1984) is an example for such a system, in which the learning goals are determined by the
tutoring system, and the instructions which assist the leamners in performing the respective task are
adjusted to the learners' knowledge. Further individualization can be achieved by having the learners learn
by exploration: the learners themselves can now set their own learning goals according to their specific
interests. Student-driven exploration can be enhanced by providing instructions on those occasions where
learning by exploration fails. For example, the redundancy checkers discussed by Brown (1984), can be
used to detect weaknesses in a student's exploration.

In a number of cases leamning by exploration may be more appropriate. For example, in application
systems such as text editors or spreadsheets depending on their needs users may learn different parts of the
system. Under such circumstances it can be quite frustrating to the learners when they are taught system
components in which they are not interested. Contrary to instruction-based learning, in which advanced
learners may still be presented with introductory materials due to the difficulties of knowledge diagnosis,
learning by exploration allows the learners themselves to decide what to learn. Under certain circum-
stances learning by exploration may well be more effective then learning from instruction. For example
Carroll et al. (1985) have shown that a text editing system may be learned more effectively by exploring it
than by studying a conventional manual.

The advantages of learning by exploration may be caused by a number of different factors.
Learners can selectively acquire that knowledge which they consider most important. They can be more
active and set their own learning goals. In order to achieve their learning goals, they can engage in problem
solving (Robert, 1986). This may lead to procedural and problem solving oriented knowledge repre-
sentations which are better suited for solving computer tasks. Successfully solving these problems may be
quite motivating for the learner. Since learning by exploration originates from the student's own domain
knowledge, the newly acquired knowledge becomes inherently connected and interwoven with the prior
knowledge. Therefore, it may be better remembered.

However, each of these advantages may also turn into a disadvantage. A student could have
insufficient domain knowledge to set appropriate learning goals. Because of insufficient domain
knowledge the students may not be able to determine which knowledge is really important. They may
acquire suboptimal procedures for achieving their goals or in the extreme case no successful procedures at
all. Problem solving processes may not always be successfully completed and can be more time
consuming than learning from instructions. This causes frustration for the learner. A student's lack of
domain knowledge can thus put severe limitations on what can be learned by exploration.

Although learning by exploration and learning by instructions (or, more specifically, demonstra—
tions) differ in a number of interrelated ways, one difference appears to be most fundamental. While in-
structional materials are determined by the teacher, who is very knowledgeable of the domain, in explo—
ration the learning episodes are generated by the students who know about their particular knowledge
desires. The advantages and disadvantages of learner versus teacher generated learning episodes were
investigated in an experiment in which 80 students from the University of Freiburg acquired some
elementary LISP programming knowledge. The results of this study show how the effectiveness of
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learning by exploration depends upon the amount of relevant knowledge which the learner can utilize for
generating learning episodes. These results suggest a particular combination of the two learning methods.
On this basis, a supervised exploration environment for acquiring some elementary LISP knowledge was
develop;:d. implemented on an IBM PC/AT, and consequently evaluated through two learners' think aloud
protocols.

Experiment

Forty students who had some previous experience with computers (either they had taken a BASIC
programming course or had used some application software such as word processors or database
programs) and 40 students without any prior computer experience were first instructed about some
fundamental LISP concepts (atoms and lists). Then they acquired additional knowledge about some simple
LISP functions either by exploration or by learning from demonstration examples. In particular the
function FIRST, which extracts the first element from a list, and the function SET, which binds a LISP-
expression to some symbol, were learned. Simple LISP functions were used as the learning domain
because modularity is a prerequesite of explorability and the LISP functions satisfy this requirement. Also,
the subjects of the study should not have had any specific domain knowledge. Whereas this was true for
LISP, they may have already been familiar with text processing.

Exploration condition: In the exploration condition the learners could enter LISP expressions with
an editor providing help for generating syntactically correct inputs. A LISP interpreter evaluated these
expressions and gave appropriate feedback. The exploration condition was divided into three blocks so
that each of the functions which were to be learned would be noticed by the subjects. For each block the
subjects generated either 8 inputs (first and second block) or 16 inputs (third block). At the beginning of
each block one or two simple meaningful inputs to the LISP system were presented, namely

1. "(FIRST '(A B))", 3. "(SET 'FRIENDS '(JACK JOHN))
2. "(FIRST (FIRST '((A B) C)))", (FIRST FRIENDS)".

Instruction condition: In the instruction condition 32 appropriately selected examples were
presented where each block started with the example which was also presented in the exploration
condition. In each condition 32 training examples were thus generated or presented. The exploration sub-
jects who entered the presented inputs had to create another 28 inputs on their own, whereas the subjects
in the demonstration condition were presented with 32 examples and could not generate any examples by
themselves.

Programming and evaluation tasks: The acquired knowledge of each learner was tested by 10
programming tasks in which the subjects had to generate an input to the LISP-system in order to obtain
some prespecified result. The inputs were evaluated by the LISP-interpreter and the result was shown to
the subjects. If the result of the subjects' input was not the result that was to be achieved, the subjects were
given two more trials to achieve the correct result. Thereafter, the subjects' knowledge about the LISP-
system was examined by evaluation tasks, in which inputs to the LISP-system were presented, and the
subjects, rather than the LISP interpreter, had to generate the results. The whole experiment took between
1.25 and 3 hours. For a more detailed description see Kiihn & Schmalhofer, 1987.

Results :

For the novices and the computer users the relative frequencies of correct solutions in the
programming and the evaluation tasks as a function of instruction method are shown in Figure 1. A
(2x2x2) ANOV A with the factors prior knowledge, instruction method and test task showed that overall
the two tasks were about equally difficult (F(1,76)=0.31), and that computer users performed better
(F(1,76)=21.6, MSE=0.35, p<.001). More interestingly, novices performed better in the evaluation tasks
and computer users performed better in the programming tasks, resulting in a prior knowledge by test task
interaction (F(1,76)=20.5, MSE=0.14, p<.001). In addition, learning from demonstrations was more
useful for correctly solving the evaluation tasks und learning by exploration was more effective for the
programming tasks, resulting in an instruction method by test task interaction (F(1,76)=5.13, MSE=0.14,
p<.05). Supposedly, in the exploration condition the generation of inputs was trained which is an
important component for successfully solving programming tasks. The instruction groups had some
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advantage in the evaluation tasks, possibly because the self generated learning examples provide less
complete information about the system than the examples selected by a teacher.

Figure 1: Proportions of correctly solved test tasks
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In order to analyse the relation between the subjects (programming and evaluation) performance
and the studied examples, the training examples generated by the subjects in the exploration condition as
well as the training examples presented by the tutor in the instruction condition were classified as
belonging to one of four categories which were definied as follows: 1) positive examples that contain new
information about the system, 2) redundant positive examples, 3) "near misses" (Winston, 1987), i.e.
negative examples that are very similar to positive examples and thus convey information about the
system, and 4) all other inputs were classified as "far misses". This classification was performed with a
LISP programme, which constructed generalized templates representing the knowledge that may be
acquired from the training examples (see Schmalhofer, 1986). The classification was performed according
to the model of knowledge acquisition of the learning environment that is presented in the next section of
this paper. ,

Table 1 shows the relative frequencies of the four types of examples generated by the novices, the
computer users and the tutor. It can be seen that the exploration subjects generated fewer negative
examples than were presented in the instruction condition. Both novices and computer users generated
more redundant inputs than were presented in the instruction condition. Also, computer users generated
more positive new examples than novices (t(38)=2.45, p<.05). Furthermore, a considerable proportion of
the generated inputs in the exploration condition were far misses which do not provide useful information.

Although the training examples generated in the exploration condition were of poorer quality than
those presented in the instruction condition, the computer users of the exploration condition performed
better in the programming tasks than the computer users of the instruction condition. For the programming
tasks, the advantage of generating training examples apparently can outweigh the disadvantage due to the
usually poorer quality of selfgenerated training examples.

Table 1: Proportions of 4 types of training examples as generated by novices and
computer users, or presented in the instruction condition

Type of example : Novices Computer Instruction
Users

positive new 0.23 0.31 0.38

positive redundant 0.28 031 0.13

"near misses"” 0.24 0.19 0.50

"far misses" 0.26 0.19 0.00
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Thus, the knowledge that can be acquired from leamning by exploration depends upon the quality of
the generated training examples, which itself depends upon the subjects' prior knowledge. Two multiple
regression analyses were conducted for the proportions of correctly solved programming and evaluation
tasks with the proportions of the first 3 types of training examples (positve new, positive redundant, and
near misses) and prior knowledge (with the dummy coding O for novices and 1 for computer users) as
predictors. Initially, all 4 predictors were entered into the regression equation and then insignificant
predictors were dropped stepwise. The results of these analysis are shown in Table 2.

Table 2: Prediction of correctly solved tasks from prior knowledge and 3 types of
generated training examples in the exploration condition

programming tasks evaluation tasks

B-weight correlation B-weight correlation
prior knowledge 0.200%** 0.605*** 0.104* 0.457**
positive new 1. 328" (LG22 vwe 0.399* 0.433*
positive redundant -0.421% -0.038

*k* = p<.001, ** =p<.01, * =p<.05, +=p<.10

It can be seen that the proportion of positive new training examples is a good predictor of the performance
in the two tasks, even after the effect due to differences in prior knowledge has been taken into account.
The results furthermore show that the more redundant training examples were generated the less
programming tasks could be solved in the test phase. The results demonstrate that the effectiveness of
learning by exploration depends on the learners' domain knowledge and their ability to generate
appropriate training examples .

Combining exploration and instruction in a tutoring component

The experimental results indicate that learners with sufficient prior knowledge benefit from
exploring a computer system, and that instructions are more efficient when that knowledge is not yet
available. Thus instructions can be used to induce the knowledge which is necessary for more successful
exploration. The correlation between the type of generated training example and task performance shows
that the generated training examples can be used to diagnose whether the learner has sufficient prior
knowledge for successful exploration. On the basis of such a diagnosis specific instructions can be
presented to provide the information which is needed to make exploraton successful.

Rather than starting learning by instruction it thus seems feasible to have all learners start by
exploring the system, monitor their exploration behavior and provide instructions as needed. Thereby the
learners can engage in active learning and determine themselves what to learn. Instructions are only
presented when they are needed to maintain this active learning process. The advantages of learning by
exploration can thus be utlized while its disadvantages are avoided. Such an exploration environment was
developed for learning some elementary LISP functions.

The basic exploration environment:

The learning environment is based upon a reduced LISP interpreter which is written in TURBO
PASCAL on an IBM PC/AT. It can handle the functions LIST, FIRST, REST, SET, DEFUN as well as
any combination and any list structure. By acting in the learning environment the student should learn:

- the number and type of arguments which a function requires

- the correct syntax for an input to the LISP system

- how a given input is evaluated and what result is returned

- that quoted expressions, bound atoms or function calls can be specified as arguments.

At the beginning of the learning session only the names of the functions which the learner can
explore are shown on the top of the screen. The learner must then generate an input to the LISP system. In
order to avoid unnecessary typing errors, only characters that are valid in LISP (letters, digits, blank,
parentheses and the quote) can be typed, and only lines with balanced parentheses are accepted as inputs.
In addition colors are used to indicate the level of nesting in the expressions. As these features help
generating syntactically correct training examples, they should reduce the number of trivial syntax errors
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that result from typing errors and limitations of a learner's memory. Such errors don't convey useful
information about the system to be studied, and they reduce the efficiency of learning by exploration by
increasing the study time (see Kohne & Weber, 1987; Waloszek, Weber, Wender, 1986)

The generated inputs are evaluated by the LISP interpreter and the result of the evaluation or an
error message are displayed. If the monitor which supervises the learning process detects a sequence of
training examples that supposedly do not contain useful information, the learner is prompted to press a key
in order to get help. The detection of inefficient exploration as well as the assistance that is provided are
based upon the monitoring of the knowledge acquisition process.

Monitoring of the knowledge acquisition process

Every input of a student is immediately analyzed by the monitor. Ideally such an analysis should be
conducted according to psychological principles. In particular it should render a description which is
closely related to the information which the learners store in their memories. It is known that rather than
individually storing every example in memory learners only remember those things which they consider
generally relevant and ignore the very specific information. The knowledge of the general form of correct
inputs to the LISP system can be described by templates (Anderson, Farrell & Sauers, 1984).

The monitor models a template construction process by an inductive learning mechanism which
creates increasingly general template representations. For the first and all other inputs the LISP interpreter
determines whether or not it is syntactically correct. Syntactically correct inputs are called positive
examples. The first positive example is stored in memory. When a second positive example is generated
the two examples are compared from left to right in order to construct a template. As long as the respective
elements of the two examples are equal they are taken as constants of the template. When they are unequal
but are named as belonging to the same class, a variable is introduced into the template with the constraint
that it may take as a value any member of the respective class. If the two elements that are being compared
belong to different classes it is checked whether or not they both belong to a more general superclass. If
this is the case, a variable is introduced with the constraint that it must be bound to a member of the
respective superclass. If no common superclass can be found, the generated input is used to build a
separate template.

Since the generated inputs may differ in the number of elements, generalizations are made not only
with respect to the class membership, but also with respect to the number of elements. The latter
generaiizations are performed as follows: If during the comparison from left to right either in the input or
the template all elements have been processed, while in the other additional elements are available, the class
memberships of these elements are determined, and if a common supertype can be found, an additional
variable is added to the generalized template which can match any number of elements of that class; if no
common class can be determined, different variables are used. For a sequence of input examples Table 3
shows the template, which is constructed from the first example and how this template is modified and a
separate template is constructed from the forth example. (?A denotes a single member and +A an arbitrary
number of members of a class.)

Table 3: Templates formed from a sequence of inputs

input sequence Constructed templates and modifications

1. (FIRST '(A B)) (FIRST '(A 'B)), (A is-atom), (B is-atom)

2. (FIRST '(X (Y 2)) (FIRST '(?A '?B)), (?A is-atom), (?B is-expr)
3. (FIRST '((A B))) (FIRST '(?A +B)), (?A is-expr), (+B is-expr)
4. (FIRST FRIENDS) (FIRST ?A), (?A is-bound-atom)

(FIRST '(?A +B)), (?A is-expr), (+B is-expr)

A think-aloud study showed, that three causes of negative examples can be distinguished: 1)
accidental errors such as misspelling a function name or forgetting to type a quote, 2) errors that are made
to determine what elements of a template are necessary and whether it can be further generalized, and 3)
errors that occur when a learner attempts new and more complex inputs.The verbal protocols showed that
for incorrect inputs of type 1) or 2), the error message provided by the system contained sufficient
information for the learner. Therefore, no intervention of the tutor is required. It can therefore be assumed
that a negative input of type 1) or 2) is likely to be followed by a positive input. When learners make errors
while trying something new, the system error message may not provide enough information. In this case,
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a learner will produce a sequence of errors. Since only type 3 errors are likely to occurr in a sequence
without intermittent positive examples, they can be easily detected by the monitor.

Providing examples and text-information to assist exploration

Assistance to learning by exploration is provided by the tutor on two occasions: 1) when a
sequence of n (=2 in the current version of the tutor) redundant inputs has been detected, or 2) when a
sequence of m (=2) errors has been detected.

Since redundant examples are usually generated when a learner does not know what else can be
learned about the system, information about more general or presently not yet explored features of the
system should be provided. Such information can best be provided in the form of a short text. The
template that matched the last example is examined as to whether it can be further generalized or whether it
already describes some unit of the expert knowledge. If further generalization is possible, a verbal
description of more general inputs is presented. If no further generalization of the particular template is
possible, a general verbal description of the not yet learned functions is presented. The verbal descriptions
that are provided as help are all prestored so that they can simply be selected for presentation. Table 4
shows the help information for some redundant examples.

Table 4: Help information for some redundant inputs

example 1: (FIRST (A B))

example 2: (FIRST (X Y))

help information: The argument for the function FIRST can be a list of any complexity.

example 1: (FIRST ((A B) (CD)))

example 2: (FIRST (X Y))

help information: The argument for the function FIRST can also be a bound atom or a function call.

When a sequence of errors is detected, it can be assumed that the learner wanted to perform a more
complex task and did not know how to correctly specify the parameters of the task. Based upon the PUPS
theory (Anderson & Thompson, 1987), it may be suspected that such errors occur because the specific
form is unknown. A form can best be taught by giving an example. Since the learner wanted to generate a
particular example the correct form for that particular example should be presented. To accomplish this
goal, the last incorrect input of the error sequence is corrected and then presented to the learner. The
correction is accomplished by analyzing the incormrect input from left to right. Parenthese and quotes are
deleted or added if needed, with the following restriction: If a symbol is identified as being a function
name, the input is corrected whenever possible in a way so that the function name yields a function call.
Table 5 shows how some incorrect inputs are corrected.

Table 5: Correction of negative examples

incorrect: corrected:

(FIRST (FIRST '(a (b)))) (FIRST (FIRST '((a) (b))))

(FIRST (REST '(a b)) (REST c d)) (FIRST (REST '(a b (rest ¢ d))))
(LIST (FIRST '(a b) (REST '(c d)))) (LIST (FIRST '(a b)) (REST '(c d)))
I AM HERE '( AM HERE)

A preliminary evaluation of the appropriateness of the provided instructions was performed by
having two subjects, who were first instructed about data representations in LISP, think aloud while
learning the elementary LISP functions by exploration. They were instructed to explore as long as they
found it to be a useful learning experience, which was about 1.5 hours. In order not to interfere with the
learners' usual exploration, no tutor assistance was provided to the learners. The sequences of the subjects
interactions with the LISP-system were recorded and then used to determine the first learning episodes of
each block where assistance would Lave been provided by the tutor. Only the first occasions of each of the
16 blocks in which the tutor would have provided assistance were used for evaluating the appropriateness
of the tutor's assistance. In one block the tutor would not have provided assistance, so that only 15
assistances were to be evaluated. In 10 cases explanatory text and in 5 cases corrected examples would
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have been presented. The tutor's assistance was then compared to the learners’ verbalisations, which were
used to judge whether the tutor assistance would have been adequate. The tutor's assistance was judged as
helpful in 6 cases, as neutral in 6 cases, and as inappropriate in 3 cases. In two of the 6 helpful cases the
tutor's corrected example would have prevented an error path of nine episodes, which may be judged to be
quite effective.

Discussion

Most Intelligent Tutoring Systems are more instruction- than exploration-based and provide the
student with rather little possibility to learn by exploration. However, for acquiring computer knowledge
learning by exploration may be quite fruitful. The studied material may be better remembered when
learning by exploration because students themselves can select what to learn and because the learning
material originates from the students' own memory, and for whatever reason self-generated information is
better remembered (Slamecka & Katsaiti, 1987). With respect to performing simple programming tasks
this prediction was confirmed for learners who had some very general prior domain knowledge (computer
users), but not for complete computer-novices. Learning by exploration allows to practise the generation
of possible system inputs, which appears to be an important computer skill component. We suggest that
learning by exploration can become even more effective when a learner's exploration is monitored so that
often occuring problems can be detected and bypassed by giving appropriate instructions. A supervised
exploration environment for the learning of some LISP-basics was described. In this environment
explanatory text and an error-correction facility are used to provied leamers with general information as
well as with information about the specific forms of system-inputs. A preliminary empirical evaluation was
performed for an implementation on a PC.

We believe that supervised exploration may be particularly suited for learning the specific forms for
coding some already known procedures in a new environment. This may occur when writing a program in
a new programming language or using some new application software. Since the commands of a system
may be separately learned, they can be learned by exploration and may be even better learned by
supervised exploration. However, instruction-based learning may be necessary for acquiring more
complex knowledge. Learning by supervised exploration is therefore only proposed as a component for
Intelligent Tutoring Systems.
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