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Abstract 
 

Long-term Radiation Monitoring Strategies after Nuclear Power Plant Accidents 
 

by 
 

Dajie Sun 
 

Doctor of Philosophy in Nuclear Engineering 
 

University of California, Berkeley 
 

Professor Haruko Murakami Wainwright, Chair 
 
 

Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011, radiation 
measurements and monitoring have been conducted continuously. Radiation air dose rate 
datasets have been archived extensively in this area. There are several different types of 
measurements: fixed-point measurements, walk surveys, car surveys, airborne surveys, and 
monitoring posts. They have different spatial coverage, footprints, and uncertainty. 
Currently, the monitoring program is expected to transition to long-term monitoring after 
ten years’ monitoring. The challenge of long-term monitoring is to build a cost effective 
and sustainable strategy for minimizing the cost associated with the number of monitoring 
locations or sampling, while maximizing the ability to meet the objectives of long-term 
monitoring.  
 
This study aims to develop the long-term radiation monitoring strategies after the FDNPP 
accident. In this dissertation, we tackle three key challenges: (1) multiscale spatial data 
integration, (2) monitoring optimization, and (3) spatiotemporal data integration. First, 
we developed an efficient algorithm for integrating the multiscale data sets; the algorithm 
is based on Kriging to estimate the dose rates for unobserved locations. Secondly, we 
developed a strategy and an algorithm to optimize the monitoring post placement and 
their number. This strategy is designed in order to reduce the number of sensors while 
capturing spatial heterogeneity. The algorithm is based on Gaussian process model to 
capture and estimate the heterogeneity of air-dose rates across the domain. Lastly, we 
built a Kalman-filter based algorithm combined with Gaussian Process Model to predict 
the spatial–temporal distribution of radiation dose rates. We expect that these methods 
will have valuable contributions for the long-term monitoring in the Fukushima region, 
but also for the preparation for the future nuclear accidents.
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1 Background 
 
 
1.1 Fukushima Accident 
 
The Fukushima Daiichi Nuclear Power Plant (FDNPP) is located on the east coast of 
Japan in the towns of Ōkuma and Futaba in the Fukushima Prefecture—and next to the 
Pacific Ocean (as indicated in Fig. 1.1). On 11 March 2011, the Great East Japan 
Earthquake, magnitude 9.0, hit the east coast of Japan, causing considerable damage to 
that region and creating a large tsunami that destroyed the backup generators of the 
FDNPP. The combined effect of earthquake and tsunami led to the loss of off-site and on-
site electrical power. Then the reactor core lost its cooling function, the water level 
dropped, and hydrogen was generated due to cladding-water reaction at high temperature. 
The hydrogen leaked out from the containment and stayed inside the building in which 
the containment was located. Gradually, the hydrogen accumulated and eventually 
exploded and destroyed the building. Such process led to the discharge of radioactive 
nuclides into the environment (TEPCO, 2013). The entire sequence of events is shown in 
Fig. 1.2.  
 

 
Fig. 1.1 A map of the Fukushima Daiichi Nuclear Power Plant 
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Fig. 1.2 General Outline of the Development of the FDNPP Accident on March 11, 2011 (TEPCO, 

2013)  

Table 1.1 provides an estimation of radionuclide releases into the atmosphere from the 
FDNPP accident, published by the Nuclear Industry Safety Agency (NISA, 2011), based 
on burn-up analysis. It was estimated that the radiocesium (mainly 137Cs and 134Cs) 
released into the atmosphere by FDNPP (about 3.3×1016 Bq) was one order of magnitude 
smaller than that released by the Chernobyl nuclear accident of 1986 (Saito et al., 2015). 
Several long-life radionuclides, especially radiocesium, would remain in the environment 
for decades and pose a risk of exposure to the public.  
 

Table 1.1 Estimated radioactivity releases into the atmosphere in the FDNPP accident given  
by the Nuclear Industry Safety Association (NISA, 2011) 

Radionuclide     Halflife Released radioactivity (Bq) 
 Reactor 1    Reactor 2    Reactor 3    Total 
134Cs 2.1 y 7.1 X 1014    1.6 X 1016    8.2 X 1014    1.8 X 1016 
137Cs 30 y 5.9 X 1014    1.4 X 1016    7.1 X 1014    1.5 X 1016 
89Sr 50.5 d 8.2 X 1013    6.8 X 1014    1.2 X 1015    2.0 X 1015 
90Sr 29.1 y 6.1 X 1012    4.8 X 1013    8.5 X 1013    1.4 X 1014 
140Ba 12.7 d 1.3 X 1014    1.1 X 1015    1.9 X 1015    3.2 X 1015 
127mTe 109 d 2.5 X 1014    7.7 X 1014    6.9 X 1013    1.1 X 1015 
129mTe 33.6 d 7.2 X 1014    2.4 X 1015    2.1 X 1014    3.3 X 1015 
131mTe 30 h 2.2 X 1015    2.3 X 1015    4.5 X 1014    5.0 X 1015 
132Te 78.2 h 2.5 X 1016    5.7 X 1016    6.4 X 1015    8.8 X 1016 
103Ru 39.3 d 2.5 X 1009    1.8 X 1009    3.2 X 1009    7.5 X 1009 
106Ru 368.2 d 7.4 X 1008    5.1 X 1008    8.9 X 1008    2.1 X 1009 
95Zr 64 d 4.6 X 1011    1.6 X 1013    2.2 X 1011    1.7 X 1013 
141Ce 32.5 d 4.6 X 1011    1.7 X 1013    2.2 X 1011    1.8 X 1013 
144Ce 284.3 d 3.1 X 1011    1.1 X 1013    1.4 X 1011    1.1 X 1013 
239Np 2.4 d 3.7 X 1012    7.1 X 1013    1.4 X 1012    7.6 X 1013 
238Pu 87.7 y 5.8 X 1008    1.8 X 1010    2.5 X 1008    1.9 X 1010 
239Pu 24,065 y      8.6 X 1007    3.1 X 1009    4.0 X 1007    3.2 X 1009 
240Pu 6537 y 8.8 X 1007    3.0 X 1009    4.0 X 1007    3.2 X 1009 
241Pu 14.4 y 3.5 X 1010    1.2 X 1012    1.6 X 1010    1.2 X 1012 
91Y 58.5 d 3.1 X 1011    2.7 X 1012    4.4 X 1011    3.4 X 1012 
143Pr 13.6 d 3.6 X 1011    3.2 X 1012    5.2 X 1011    4.1 X 1012 
147Nd 11 d 1.5 X 1011    1.3 X 1012    2.2 X 1011    1.6 X 1012 
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242Cm 162.8 d 1.1 X 1010    7.7 X 1010    1.4 X 1010    1.0 X 1011 
131I 8 d 1.2 X 1016    1.4 X 1017    7.0 X 1015    1.6 X 1017 
132I 2.3 h 1.3 X 1013    6.7 X 1006    3.7 X 1010    1.3 X 1013 
133I 20.8 h 1.2 X 1016    2.6 X 1016    4.2 X 1015    4.2 X 1016 
135I 6.6 h 2.0 X 1015    7.4 X 1013    1.9 X 1014    2.3 X 1015 
127Sb 3.9 d 1.7 X 1015    4.2 X 1015    4.5 X 1014    6.4 X 1015 
129Sb 4.3 h 1.4 X 1014    5.6 X 1010    2.3 X 1012    1.4 X 1014 
99Mo 66 h 2.6 X 1009    1.2 X 1009    2.9 X 1009    6.7 X 1009 

 
1.2 Monitoring Program 

 
In order to protect the public from radiation exposure and take the right countermeasures, 
Japanese government branches and research institutions needed accurate and detailed 
information about the distribution of the deposited radiocesium and resultant air-dose 
rates (i.e., the ambient dose equivalent rate (μSv/h) at 1 m above the ground). Three 
months after the FDNPP accident, the Japan Atomic Energy Agency (JAEA), in 
cooperation with other organizations, conducted a mapping project in order to develop a 
comprehensive elucidation of the contamination conditions (Saito et al., 2019). 
Meanwhile, aerial radiation monitoring (ARM), a separate project that preceded the 
mapping project, had been conducted by the Japanese Ministry of Education, Culture, 
Sports, Science and Technology (MEXT) and the U.S. Department of Energy (DOE). 
These types of radiation measurements have been conducted more than 40 times since the 
accident (extending from the immediate surrounding area of the FDNPP to the entire 
country of Japan), obtained the distribution of ambient dose-rate and deposition of 
radioactive cesium in Japan during this time (Sanada et al., 2014, 2015). The periods of 
each campaign are summarized in Fig. 1.3 (Saito et al., 2019), whereas details of each 
type of measurements are explained in Section 1.3. These methods listed in Fig. 1.3 as 
well as monitoring posts were also used by the national and local government to perform 
continuous environmental monitoring. Furthermore, several nonprofit organizations have 
performed independent environmental monitoring and have accumulated large amounts 
of radiation data; for example, Nursal et al. (2016) made comparisons of data agreeability 
from different organizations.  
 

 
 

Fig. 1.3 Time table of Periods of large-scale environmental monitoring conducted in national 
projects (Saito et al., 2019). 

 

After ten years of monitoring, massive data sets were accumulated and the monitoring 
program is expected to transition from conducting short-term monitoring to long-term 



4 

monitoring. With long-term monitoring, the economic cost of such a program needs to be 
considered along with its effectiveness in meeting its scientific objectives. This cost 
consideration brings up the topic of optimization. While there are many optimization 
algorithms by which to optimize radiation monitoring networks, what makes our study 
unique is that we are building an optimization algorithm to improve radiation monitoring 
based on spatially extensive datasets and spatial information. Details will be given in 
Chapter 3. 
 
 
1.3 Different Type of Measurements 
 
There are four major types of measurements for air dose rates, as indicated in Fig. 1.3: (1) 
measurements at fixed locations (referred to as “fixed-point measurements” in some 
publications), (2) car-borne surveys (shortened to “car surveys” in some publications), (3) 
walk surveys, and (4) helicopter surveys (including unmanned helicopter surveys). In 
some publications (such as in Wainwright et al., 2017), helicopter surveys and unmanned 
helicopter surveys are often merged as “air surveys.” Besides the four major types 
mentioned above, monitoring posts were also used by National and local governments for 
continuous environmental monitoring. Saito et al. (2019) presented a detailed summary 
of the different character of each type of measurement. Here, only a brief description is 
provided. 
 
Measurement at a fixed location is the most accurate method among the four. It uses a 
NaI(Tl) detector and takes measurements at undisturbed fields, such as natural forests, 
where neither human disturbance nor high flooding are expected. Fixed-point 
measurement has the highest accuracy, while its spatial coverage is the smallest among 
the four. 
 
Walk surveys are the second most accurate method among the four. For the period we 
studied, these were accomplished by a person carrying a Kyoto University RAdiation 
MApping system (KURAMA-II) walking around a 1 × 1 km2 square area for as long a 
distance as possible. The KURAMA-II mobile survey system, developed by Kyoto 
University, was updated from the KURAMA-I. The measurement result was 
automatically transferred through a cellular phone network (Tanigaki et al., 2015). 
Continuously measured air dose rates were averaged over a 20 × 20 m2 area to reduce the 
statistical fluctuations, so these walk surveys had a larger coverage area than the fixed 
point measurements. 
 
Car-borne surveys were conducted by a moving car equipped with the KURAMA-II 
system along the road. In order to reduce statistical fluctuations, continuously measured 
air-dose rates were averaged over a 100 × 100 m2 area; thus, the car-borne surveys had a 
larger coverage area than the walk-survey measurements and were less accurate because 
it was averaged over the 100 × 100 m2 area. Furthermore, car-borne surveys were 
restricted to areas with roads and could not cover entire targeted areas.  
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Helicopter surveys involved attaching a large NaI(Tl) detector with high detection 
efficiency placed inside or under a helicopter. The helicopter’s standard fly height was 
300 meters; it had a larger coverage area compared to car-borne surveys; Takahashi et al. 
(2017) presented a coverage model for helicopter surveys. Wainwright et al. (2017, 2018) 
found that, in the case of the Fukushima accident, the values in airborne survey data were 
found to be systematically slightly higher than those measured on land. Unmanned 
helicopter surveys used a LaBr detector and were performed within a 5 km radius of the 
FDNPP site, where it was difficult to enter by land. The standard fly height is 80-100 m, 
which was lower than the manned helicopter surveys, and this led to a higher precision 
and smaller coverage area (Sanada et al., 2015). A comparison summary is listed in Table 
1.2 (Saito et al., 2019) 
 
Table 1.2 Evaluation of each measurement methods employed in large-scale environmental 
monitoring after FDNPP accident. A higher number indicates a higher rank in the evaluation. 

Measurement Method Evaluated score Noteworthy 
Data accuracy Coverage 

Fixed point 
measurement 5 1 Give reference value 

Car-borne survey 4 2 Related to living environment 

Walk survey 3 3 Enormous amount of data 

Air-borne survey 
(unmanned helicopter) 2 4 Supplement helicopter survey 

Air-borne survey 
(helicopter) 1 5 Cover whole area 

 
As shown in Table 1.2, different types of measurement have different spatial coverages 
and precisions (or uncertainties), and calibration is also needed for some types. In fact, 
for this period (the accident and its aftermath), massive data sets from these types of 
measurements have been accumulated, and these different data sets (and the useful 
information from these data sets) have been integrated to generate the most accurate and 
comprehensive dose-rate-distribution maps possible. Chapter 2 will discuss the existing 
algorithm for integrating different types of data sets and the way to extend the existing 
algorithm. 
 
1.4 Time Trend of the Dose Rates for Recent Years 
 

There are three main causes for the decrease in area dose rates:  

(1) Physical decay of radiocesium 
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Radiocecium has two main isotopes:134Cs has a shorter half-life (of 2.1 years), and 137Cs 
is 30.2 years, the ratio of their initial released radioacitivity is approximately 6:5 as 
shown by Table 1.1. As a consequence, 134Cs contributed more to the air dose rate 
reduction than 137Cs initially. However, as time went on, the contribution of 134Cs was 
reduced after certain points in time. Saito et al. (2019) presented a diagram of the 
evolution of their contribution, as shown in Fig. 1.4. 

 

 
Fig. 1.4 Temporal changes in air dose rates as result of decrease in radiocesium deposition 

density 

As shown in Fig. 1.4,  the contribution of 137Cs surpassed 134Cs in around 1100 days after 
the accident, and both of them go down approximately linearly and continuously with 
time under logarithm scale. 

(2) Migration of radiumcesium in the soil 

The soil could shield the gamma ray emitted from the radiocesium underground. In other 
words, the dose rates would decrease as a result of the vertical penetration of the 
radiocesium into the soil (Saito et al., 2018). At the same time, radiocesium is known to 
migrate laterally by sediment transport. Even though the horizontal migration of 
radiocesium in some undisturbed area (such as natural forests) is very small, it can be 
significant in certain circumstances, such as urban areas and cultivated fields. In these 
areas, the horizontal migration would accelerate the decrease in air dose rates. Generally 
speaking, the migration in undisturbed areas, such as natural forests, would be slow, but 
in places with human activity, it would be accelerated. For example, it was found that 
radiocesium deposited on artificial structures (such as paved roads and houses) was 
washed off in a short time in the early stages after deposition, and this resulted in a rapid 
air-dose-rate reduction. In conclusion, due to the influence of migration, the rates of 
decrease for different land-use types are different. 

(3) Human decontamination activities. 
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Decontamination involves removing radioactive materials from areas of human activity 
in order to promptly decrease their impact on human health and the environment. After 
the accident, decontamination was performed extensively over wide areas. Evrard et 
al.(2019) gave a detailed summary and evaluation of the decontamination plan. 
According to the result posted by the Ministry of Environment (Environmental 
remediation subsection), as a result of decontamination, air dose rates were reduced by a 
factor of more than two in residential areas and farmland, by measuring and comparing 
the air dose rates above decontaminated locations before and after the decontamination, 
as shown in Fig. 1.5. Some studies have found that the extensive decontamination effort 
in the region played a critical role in this recovery process (Yasutaka et al., 2013; 
Wainwright et al., 2018). 

 
Fig. 1.5 Effect of Decontamination for different land-use types. The chart shows the air dose 

rate average in each category (Ministry of Environment. Environmental remediation., 2021). 

In Fig. 1.5, the reduction of dose rates in different land-use areas are different. In 
residential areas with extensive human activity, the dose rates were reduced by 60% 
percent due to decontamination, while in the forests, where there are fewer human 
activities, the reduction factor can be 30%. 

Combined with factors mentioned above, the contribution of each factor to the overall 
dose rate reduction was summarized by Saito et al. (2019), as shown in Fig. 1.6. 
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Fig. 1.6 Temporal changes in average air dose rates evaluated by using data from car-borne 

surveys, fixed-location measurements in undisturbed fields, helicopter surveys, and walk 
surveys. Air dose rates were normalized to those in June 2011. 

In Fig. 1.6, the reason air dose rates as measured by helicopter surveys have decreased 
more slowly than those derived from other measurements is because helicopter surveys 
detect gamma rays over wide areas that include forests with little human activity, while 
car surveys and walk surveys only take measurements in places that have human activity, 
which accelerated the rate of decrease. 

The literature reviews (in Chapter 4) have suggested that even though there are many 
data-driven models developed already to predict the decay trend of the average dose rates 
for the same land-use category, the reality is that different locations will decay at 
different speeds, even within the same land-use category. As of now, there is no 
mathematical model for predicting dose-rate decay for certain locations within a certain 
land-use category, soil type, vegetation, etc. In Chapter 4, we fill that gap and build a 
model that would predict decay rates for specific locations and various conditions.  

1.5 Scope of the Dissertation 
 
The above sections have presented the background of the Fukushima Daiichi Nuclear 
Power Plant Accident and revealed the existing challenges in developing a monitoring 
strategy after the accident. They include multiscale data integration, sensor network 
optimization, and dose-rate time-series prediction. The goal of the study presented in this 
thesis is to develop and apply models to solve these challenges. This study adds new 
perspectives for people to evaluate the existing monitoring program and provide possible 
ways to improve it. 
 
This study is unique with respect to the extent of its analysis. Never before has such 
wide-ranging and continuous data sets been collected and readily presented to the public 
for this type of study. Most previous studies in this area have borrowed or extended 
research techniques from the Chernobyl accident or nuclear test monitoring after the 
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Second World War. In addition, this study applies statistical methods, especially machine 
learning techniques, which enables us to extract actionable information from a large 
volume of data sets.  
 
In the following chapters, I will address specifically the issues I brought up at the 
beginning of this section as follows: Chapter 2: Multiscale Data Integration, extending 
the existing algorithm of multiscale datasets integration developed by Haruko Wainright, 
and solving its computation efficiency issue; Chapter 3: Sensor Network Optimization, 
developing a monitoring strategy end with optimized sensor network; Chapter 4: Spatial-
temporal Distribution Prediction, building an approach to predict the radiation level 
spatially and temporally; and Chapter 5: Conclusion, summarizing the work done in this 
thesis. 
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2 Multi-scale data integration 
 
2.1 Introduction 
 
As mentioned in Chapter 1, monitoring of air dose rates (i.e., ambient dose equivalent rates) 
in the area around the FDNPP have been performed continuously and massive 
measurement data has been collected since the accident (e.g., Saito and Onda, 2015; 
Mikami et al., 2015). Generally speaking, there are various techniques applied in the air 
dose rates measurements, such as walk surveys (a person carrying portable monitoring 
systems), fixed-point measurement, car surveys, and airborne surveys. Monitoring posts 
were also widely used in places with a lot of people, such as schools, hospitals, urban area, 
etc. As discussed in section 1.3, different types of measurement have different spatial 
coverage and precision (see Table 1.2 in Chapter 1). 
 
Different measurement devices generate different types of data sets. As different types of 
data sets have different levels of accuracy and different support scale (i.e., support volume, 
resolution), there are discrepancies among these different types of surveys in terms of 
measured air dose rates, even they were collected at around the same time and same 
locations. Different data sets will also have different data sample density and spatial 
coverage. For example, car surveys are only possible along road, but with high spatial 
density; Walk surveys are often limited to selected neighborhoods because of the time and 
labor they require; Airborne surveys were initially conducted in restricted areas where 
human beings are not able to enter due to high radiation level. 
 
For different characteristics mentioned above, there is a need to develop an approach to 
integrate different types of measurements, and to provide an integrated map of air dose 
rates by taking into account the characteristics. 
 
This chapter is an extension of an existing integration method based on Bayesian 
Geostatistical approach, developed by Wainwright et al. (2017). We first summarize this 
existing approach in section 2.2 and 2.3 and then built a new approach in section 2.4 and 
2.5. 
 
2.2 Exploratory Data Analytis 
 

In Wainwright et. al (2017), only walk surveys, car surveys and airbone surveys were 
considered. The comparison of different types of measurements in different type of land 
use are shown in Fig. 2.1 and Fig. 2.2. Fig. 2.1 and Fig. 2.2 not only showed the correlation 
between them, but also provided a way to calibrate the car survey and air survey data sets 
(the walk surveys were set as a standard due to their higher accuracy).  
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Fig. 2.1 Comparison between the walk survey and car survey data: (a) urban, (b) cropland, (c) 

forest and (d) evacuated areas. The blue points are the co-located points identified by the 
minimum distance method. The red points are the average of the walk survey points using the 

simple average method. The correlation coefficients are attached in each plot. Graphic used 
with permission from Wainwright 2017. 

In  Fig. 2.1, the blue points are using the minimum distance to find the co-located points 
for comparison while the red points are using a simple average method. Obviously, the 
blue points have a larger scattering distribution than the red points. It is also obvious that 
the car survey data tends to underestimating the walk survey data in urban, cropland and 
forest. That is probably because the human activity and car activities removed the 
radiocesium in the middle of the roads. 

 

Similar to Fig. 2.1, Fig. 2.2 gives the comparison of air surveys and walk surveys. The 
blue points in Fig. 2.2 mean that the co-locations are selected by minimum distance 
method while the red points by weighted average which average out the small-scale 
variability in the airborne survey data. It is also obvious that the airborne surveys tend to 
overestimate the air dose rates, that is probably because a helicopter flying 300 meters 
above the ground is able to collect more gamma rays from a much larger spatial angle 
than other surveys (Saito et al., 2019). Using the weighted average method (the red points 
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in Fig. 2.2) significantly improves the correlation between airborne data and walk survey 
data. 

 

 
Fig. 2.2 Comparison between the walk survey and air survey data in: (a) urban, (b) cropland, 
and (c) forest. The blue points are the co-located points identified by the minimum distance. 

The magenta points are the average of the walk survey points using the weights computed by 
the radiation transport simulation. Graphic used with permission from Wainwright 2017. 

In summary, Fig. 2.1 and Fig. 2.2 not only show the correlation between different kind of 
measurement but also present a way to calibrate different measurement data (assuming 
the walk surveys are the most accurate and can be used as a reference in calibration). 
However, for measurements that are taken in locations that are far apart, calibration 
method doesn’t work in this context as different types of measurements at different 
locations are not comparable. An integration method must be developed to incorporate all 
these type of measurements. 

 
2.3 Bayesian Hierarchical Approach 
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In Wainwright et al. (2017) paper, the Bayesian hierarchical approach was developed to 
integrate the three type of data sets.  
 
We denote the air dose rate at 𝑖𝑖𝑡𝑡ℎ pixel by 𝑦𝑦𝑖𝑖, where 𝑖𝑖 = 1,⋯ ,𝑛𝑛. The three datasets(walk 
survey, car survey, airborne survey) were denoted by three vectors, representing the 
airborne survey data 𝑧𝑧𝐴𝐴 (each data point is represented by 𝑧𝑧𝐴𝐴,𝑗𝑗, where 𝑗𝑗 = 1,⋯ ,𝑚𝑚𝐴𝐴), car 
survey data 𝑧𝑧𝐶𝐶  (each data point is represented by 𝑧𝑧𝐶𝐶,𝑗𝑗 , where 𝑗𝑗 = 1,⋯ ,𝑚𝑚𝐶𝐶 ), and walk 
survey data 𝑧𝑧𝑊𝑊 (each data point is represented by 𝑧𝑧𝑊𝑊,𝑗𝑗, where 𝑗𝑗 = 1,⋯ ,𝑚𝑚𝑊𝑊). Based on 
Bayes’s rule: 
 
 𝑝𝑝(𝑦𝑦|𝑧𝑧𝐴𝐴, 𝑧𝑧𝐶𝐶 , 𝑧𝑧𝑊𝑊) ∝ 𝑝𝑝(𝑧𝑧𝐴𝐴|𝑦𝑦)𝑝𝑝(𝑧𝑧𝐶𝐶|𝑦𝑦)𝑝𝑝(𝑦𝑦|𝑧𝑧𝑊𝑊) (2.1) 

 
Due to the correlation described in Fig. 2.1 and Fig. 2.2, airborne survey data 𝑧𝑧𝐴𝐴 and car 
survey 𝑧𝑧𝐶𝐶 can be represented as 
 

 �𝑧𝑧𝐴𝐴 = 𝐴𝐴𝐴𝐴 + 𝜀𝜀𝐴𝐴
𝑧𝑧𝐶𝐶 = 𝐶𝐶𝐶𝐶 + 𝜀𝜀𝐶𝐶

 (2.2) 

 
where 𝐴𝐴  is a 𝑚𝑚𝐴𝐴 𝑏𝑏𝑏𝑏 𝑛𝑛  matrix and 𝐶𝐶  is a 𝑚𝑚𝐶𝐶  𝑏𝑏𝑏𝑏 𝑛𝑛  matrix that includes the correlation 
parameters and weights (obtained from the Monte Carlo transport code developed by 
Malins et at. (2015, 2016)), 𝜀𝜀𝐴𝐴 and 𝜀𝜀𝐶𝐶 are all uncertainty vectors with diagonal covariance 
matrix. Furthermore, as 𝑦𝑦 is a multivariate normal distribution, 𝑧𝑧𝐴𝐴 and 𝑧𝑧𝐶𝐶 also follow 
 

 �𝑧𝑧𝐴𝐴~𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴,𝐷𝐷𝐴𝐴)
𝑧𝑧𝐶𝐶~𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝐶𝐶,𝐷𝐷𝐶𝐶) (2.3) 

 
where 𝐷𝐷𝐴𝐴  is 𝑚𝑚𝐴𝐴 𝑏𝑏𝑏𝑏 𝑚𝑚𝐴𝐴  diagonal covariance matrix of 𝜀𝜀𝐴𝐴 , and 𝐷𝐷𝐴𝐴  is 𝑚𝑚𝐶𝐶  𝑏𝑏𝑏𝑏 𝑚𝑚𝐶𝐶  diagonal 
covariance matrix of 𝜀𝜀𝐶𝐶. 
 
we use the walk survey data as conditional points to constrain the distribution of y as 
𝑝𝑝(𝑦𝑦|𝑧𝑧𝑊𝑊). we assume 
 
 𝑦𝑦|𝑧𝑧𝑊𝑊~𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇𝐶𝐶 ,𝛴𝛴𝐶𝐶) (2.4) 

 
where 𝜇𝜇𝐶𝐶 , Σ𝐶𝐶 are parameters estimated from section 2.3. 
 
So, we have the air dose rate vector 𝑦𝑦 follows 
 
 𝑦𝑦~𝑀𝑀𝑀𝑀𝑁𝑁(𝑄𝑄−1𝑔𝑔,𝑄𝑄−1) (2.5) 

 
where  

 �
𝑄𝑄 = 𝛴𝛴𝑐𝑐−1 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶
𝑔𝑔 = 𝛴𝛴𝑐𝑐−1𝜇𝜇𝐶𝐶 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝑧𝑧𝐴𝐴 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝑧𝑧𝐶𝐶

 (2.6) 

 
In the computation, 𝑦𝑦 is a vector representing the dose rate at all the vertices in the grid 
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over the study area(or whole field). So, the means of 𝑦𝑦(which is 𝑄𝑄−1𝑔𝑔) is the integrated 
dose rate map, and 𝑄𝑄−1is the estimation variance. 
 
All the above equations ((2.1) to (2.6)) consist the Bayesian Hierarchical Approach in 
Wainwright’s original paper (Wainwright et al., 2017). 
 
 
2.4 New Approach. 
 

Bayesian Hierarchical Approach does provide a way to integrate different types of datasets, 
but the result (Equation (2.5) and (2.6)) involves a large matrix inversion, which is very 
computation expensive, and requires huge memory to store the 𝑛𝑛 × 𝑛𝑛 matrix 𝑄𝑄. 
 
In this chapter we developed a new method for data integration, which was much more 
computationally efficient and proved to equal the result given by the original method. 
Let us define a new variable: 

 𝑦𝑦∗ =

⎝

⎜
⎛

𝑧𝑧𝐴𝐴
𝑧𝑧𝐶𝐶
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛⎠

⎟
⎞

 

 

(2.7) 

 

𝑝𝑝(𝑦𝑦|𝑧𝑧𝑊𝑊)~𝑀𝑀𝑀𝑀𝑀𝑀(𝜇𝜇𝐶𝐶 ,Σ𝐶𝐶) as the prior distribution of 𝑦𝑦, then, the covariance of y∗is  

 

 cov(y∗,𝑦𝑦∗) = �
𝐴𝐴Σ𝑐𝑐𝐴𝐴𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇 𝐴𝐴Σ𝑐𝑐
𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶 𝐶𝐶Σ𝑐𝑐
Σ𝑐𝑐𝐴𝐴𝑇𝑇 Σ𝑐𝑐𝐶𝐶𝑇𝑇 Σ𝑐𝑐

� (2.8) 

 

Using the simple kriging method, the conditional variance and mean of y based on 𝑧𝑧𝐴𝐴  
and 𝑧𝑧𝐶𝐶 are  

 

⎩
⎪
⎨

⎪
⎧𝜇𝜇𝑦𝑦|(𝑍𝑍𝐴𝐴,𝑍𝑍𝐶𝐶) = 𝜇𝜇𝑐𝑐 + (Σ𝑐𝑐𝐴𝐴𝑇𝑇 , Σ𝑐𝑐𝐶𝐶𝑇𝑇)�

𝐴𝐴Σ𝑐𝑐𝐴𝐴𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝑧𝑧𝐴𝐴 − 𝐴𝐴𝜇𝜇𝑐𝑐
𝑧𝑧𝐶𝐶 − 𝐶𝐶𝜇𝜇𝑐𝑐

�

Σ𝑦𝑦|(𝑍𝑍𝐴𝐴,𝑍𝑍𝐶𝐶) = Σ𝑐𝑐 − (Σ𝑐𝑐𝐴𝐴𝑇𝑇 , Σ𝑐𝑐𝐶𝐶𝑇𝑇)�𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝐴𝐴Σ𝑐𝑐𝐶𝐶Σ𝑐𝑐
�

 (2.9) 

 

The variance of each pixel can even be simplified as 
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�
𝜎𝜎𝑦𝑦12

⋮
𝜎𝜎𝑦𝑦𝑦𝑦2

� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Σ𝑦𝑦|(𝑍𝑍𝐴𝐴,𝑍𝑍𝐶𝐶)�

= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(Σc)− colSums�Σacy(.∗)� (Σac)−1Σacy�� 

(2.10) 

 

Where Σac = �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�, and Σacy = �𝐴𝐴Σ𝑐𝑐𝐶𝐶Σ𝑐𝑐

�,  the operator (.∗) means 

multiplying element by element. 

In the solution above, the �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
� is an (𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐶𝐶) × (𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐶𝐶) 

(where 𝑚𝑚𝐴𝐴 is the number of air surveys and 𝑚𝑚𝐶𝐶 is the number of car borne surveys), as 
(𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐶𝐶) is much smaller than 𝑛𝑛, so the result above (Equation (2.9)) is much more 
computational efficient compared with the result given by Bayesian hierarchical approach 
(Equation (2.5)~(2.6)). A detailed analysis will be made in next section. 

It was proven that, even though the computation complexity of Equation (2.5) and (2.6) 
and Equation (2.9) are different, the two sets of equations are actually equal, the detail 
proof can be found in Appendix I. 

 
2.5 Comparison 
 
Computation complexity 
 
In the original result, 𝛴𝛴𝐶𝐶 is the covariance matrix of the whole field with a dimension of  
n×n,  where n is the total number of pixels in the field and could be tens of thousands or 
hundreds of thousands (in the real dataset, 𝑛𝑛 ≈ 20 000). 
 
The issue is that calculating the inverse of the large matrix 𝛴𝛴𝐶𝐶 and 𝑄𝑄 (both dimension are 
𝑛𝑛 × 𝑛𝑛) is a very difficult due to complexity and memory constraint. In software R, the 
solve.default() function solves the system equation 𝑄𝑄𝑄𝑄 =  𝐼𝐼 to find 𝑍𝑍 = 𝑄𝑄−1. The result 
of  help(solve) command indicates that it called a Lapack routine DGESV (LAPACK 
3.10.0, 2021) which uses the LU decomposition. Specifically, there are two steps to get 
the inverse of the large matrix Q: 
 

(1) Using LU decomposition to transform 𝑄𝑄𝑄𝑄 =  𝐼𝐼 to 𝑈𝑈𝑈𝑈 =  𝐼𝐼∗ (where 𝐼𝐼∗  is no 

longer a diagonal matrix), the complexity is 𝑛𝑛
3

3
 for LU and 𝑛𝑛

3

2
 for 𝐼𝐼∗,  which is 5𝑛𝑛

3

6
 

(2) Solving for Z from 𝑈𝑈𝑈𝑈 =  𝐼𝐼∗, the complexity is 𝑛𝑛
3

2
. 

So, the complexity for matrix inverse of a 𝑛𝑛 × 𝑛𝑛 matrix 𝑄𝑄  is  5𝑛𝑛
3

6
+ 𝑛𝑛3

2
= 4𝑛𝑛3

3
. 

Ignore the lower order term, the total complexity of Equation is  
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 4𝑛𝑛3

3
+ 𝑛𝑛 × 𝑛𝑛𝑎𝑎2 + 𝑛𝑛 × 𝑛𝑛𝑐𝑐2 +

4𝑛𝑛3

3
+
𝑛𝑛3

3
+ 𝑛𝑛 × 𝑛𝑛𝑎𝑎 + 𝑛𝑛 × 𝑛𝑛𝑐𝑐 +

𝑛𝑛3

3
=

10
3
𝑛𝑛3 (2.11) 

 

Which is 𝑂𝑂(𝑛𝑛3). 

On the other hand, for the improved algorithm, to get  (Σac)−1Σacy, we can use Cholesky 
decomposition: 

 Σac = 𝑈𝑈𝑇𝑇𝑈𝑈 (2.12) 
 

  (Σac)−1Σacy = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝑈𝑈,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑈𝑈𝑇𝑇 , Σacy�� (2.13) 
 

Σac is a 𝑛𝑛𝑎𝑎𝑎𝑎 × 𝑛𝑛 dimensional matrix, where 𝑛𝑛𝑎𝑎𝑎𝑎 number of airborne and car survey data, 
and 𝑛𝑛 is the number of pixels of the whole field to predict.  Usually, 𝑛𝑛𝑎𝑎𝑎𝑎 ≪ 𝑛𝑛. 

The complexity of Equation (2.12) is  𝑛𝑛𝑎𝑎𝑎𝑎
3

6
; The complexity of Equation (2.13) is 

𝑛𝑛𝑎𝑎𝑎𝑎(𝑛𝑛𝑎𝑎𝑎𝑎+1)
2

𝑛𝑛 = 1
2
𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎2 ; The complexity of Equation (2.10) is 𝑛𝑛 × 𝑛𝑛𝑎𝑎𝑎𝑎. So, the complexity 

in total is 

  

 𝑛𝑛𝑎𝑎𝑎𝑎3

6
+

1
2
𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎2 +  𝑛𝑛 × 𝑛𝑛𝑎𝑎𝑎𝑎 =

1
2
𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎2  (2.14) 

 

 

 In Equation (2.14), we ignored the lower order terms. 

Compare Equation (2.14) with Equation (2.11), we can see that the complexity reduced 
by  

 
10
3 𝑛𝑛3

1
2𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎

2
= 6.67 �

𝑛𝑛
𝑛𝑛𝑎𝑎𝑎𝑎

�
2
 (2.15) 

 

In our data, 𝑛𝑛
𝑛𝑛𝑎𝑎𝑎𝑎

≈ 10, so the prediction expressed by our new approach can be 600~700  

times faster. 

Furthermore,  once we put matrix Σac into the memory,  Equation (2.10) and (2.13) can 
be calculated  in parallel. So the least memory required is the size of Σac, which is only 
1% the size of Σy in Equation (2.5). 
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However, there is one thing about how to calculate Σac. Define  

 zac = �
𝑧𝑧𝑎𝑎
𝑧𝑧𝑐𝑐� = 𝑃𝑃 �

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� = 𝑃𝑃𝑃𝑃 (2.16) 

 

 Σac = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧𝑎𝑎𝑎𝑎, 𝑧𝑧𝑎𝑎𝑎𝑎) = 𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦, 𝑦𝑦)𝑃𝑃𝑇𝑇 = 𝑃𝑃Σ𝑦𝑦𝑃𝑃𝑇𝑇 (2.17) 
 

The complexity of matrix form of Equation (2.17) is  

 nac × 𝑛𝑛2 + 𝑛𝑛 × 𝑛𝑛𝑎𝑎𝑎𝑎2 = 𝑛𝑛2𝑛𝑛𝑎𝑎𝑎𝑎 (2.18) 
 

If we want to bypass large matrix  Σ𝑦𝑦 due to  memory restraint, we could calculate the 
elements of Σac, and the complexity will be: 

 𝑛𝑛𝑎𝑎𝑎𝑎2 × (2𝑛𝑛 + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 ) = 2𝑛𝑛 × 𝑛𝑛𝑎𝑎𝑎𝑎2  (2.19) 
 

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of pixels around pixel zac that need to be averaged in the 
airborne/car survey model, 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is also the non-zero elements in each row of 
matrix A in the first equation of (2.6). 

The seeming complexity in Equation (2.19) is smaller than Equation (2.17). But when we 
calculate the each element of Σac, we need to select the correlated pixels around (the non-
zero elements in each row of matrix 𝐴𝐴), and build the covariance matrixes one by one. As 
there are nugget effect and 3 different types of land-use  in our dataset, we need piles of 
for loops and if else loops in Python, and this makes the code hundreds of times slower 
than the matrix calculation in Equation (2.17). However, this can be done in parallel, and 
completely removed the memory restraint.  If we can implement this method in Fortran 
or C, it should be much faster. 

Another possible improvement for the future work is about Equation (2.16)~ (2.17): we 
encounter large matrix Σ𝑦𝑦 when calculating the auto-covariance of 𝑧𝑧𝑎𝑎𝑎𝑎. For a stationary 
Gaussian field, the auto-covariance of 𝑧𝑧𝑎𝑎𝑎𝑎 is only determined by the distances within each 
pair of pixels. So, there are two possible solutions: (1) make a table of the auto-
covariance as a function of the distance, and just interpolate from the table to calculate 
each element of  the auto-covariance matrix of 𝑧𝑧𝑎𝑎𝑎𝑎; (2) decompose  𝑧𝑧𝑎𝑎𝑎𝑎 into weighted 
average of the pixels around  𝑧𝑧𝑎𝑎𝑎𝑎 (i.e. 𝑧𝑧𝑎𝑎𝑐𝑐 = 𝑃𝑃′𝑦𝑦′, here 𝑃𝑃′ is a small matrix and 𝑦𝑦′ is a 
small vector) beforehand and each time, just use re-calculate the location of 𝑦𝑦′ to 
calculate its auto-covariance Σ𝑦𝑦′(which is a small matrix), and then use 𝑃𝑃′Σ𝑦𝑦′𝑃𝑃′𝑇𝑇 instead 
of 𝑃𝑃Σ𝑦𝑦𝑃𝑃𝑇𝑇 to calculate the auto-covariance matrix of  𝑧𝑧𝑎𝑎𝑎𝑎, this way will bypass the big 
matrix Σ𝑦𝑦. The two possible improvement will be tried in the future work. 
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3 Sensor network long-term optimization strategy 
 
3.1 Background 
 

After the accident, monitoring programs such as mapping project, ARM, etc. have been 
conducted continuously in Fukushima area. It has been found that the air dose rates (i.e., 
the ambient dose equivalent rate (μSv/h) at 1 m above the ground) has been readily 
decreasing since the accident (Saito, 2016, 2019), and the designated evacuation area has 
shrunk to 370 km2, which is less than 3% of the Fukushima Prefecture (Fukushima 
Prefectural Government, 2017). By now, the monitoring program is expected to transition 
to long-term monitoring after 10 years. Since the extensive data accumulation has led to 
an understanding of contaminant distributions and mobility (Eddy-Dilek et al., 2014), the 
long-term monitoring has different objectives from the monitoring shortly after the 
accident for remedial activities. 

Since the release event, radiation measurements and monitoring have been conducted 
continuously in this region. Monitoring has played a critical role in protecting the public, 
guiding decontamination efforts, and planning the return of evacuated residents. 
Radiation measurements have been carried out using various techniques and platforms. In 
addition to the conventional monitoring posts, new monitoring posts have been installed 
at more than 3,500 locations in the region, providing continuous, real-time air dose rates. 
To quantify the temporal changes in air dose rates, fixed-point measurements and soil 
sampling of undisturbed land have been done once or twice per year to provide the most 
accurate measurements of radiation dose rates (Mikami et al., 2015, 2019). In parallel, 
walk surveys (Andoh et al., 2018a), car surveys (Andoh et al., 2015, 2018b), and airborne 
surveys (Sanada et al., 2014, 2018) have been performed over the region once or twice a 
year to characterize the spatial distribution of radiation dose rates (Saito and Onda, 2015). 
The air dose rates are found to be significantly correlated with Cs-137 concentrations in 
soil (NRA, 2011a; Onda et al., 2015; Masoudi et al., 2019), so that they are considered as 
proxies of soil contamination in the region. 

After 10 years, the monitoring program is expected to transition to long-term monitoring. 
The objectives of long-term monitoring are often different from monitoring during 
remedial activities, since such monitoring starts after extensive data accumulation has led 
to an understanding of contaminant distributions and mobility (Eddy-Dilek et al., 2014). 
The main long-term monitoring objectives are to (1) confirm the continuing reduction of 
contaminant and hazard levels, (2) provide assurance for the public, and (3) accumulate 
basic datasets for scientific knowledge and future preparation. At the same time, long-
term monitoring is critical for detecting changes or anomalies in contaminant mobility (if 
they occur), or for detecting any unexpected processes or events. At the former nuclear 
weapon sites in the U.S.A. for example, monitoring activities have been continuing for 
more than 30 years, providing critical data and assurance for the local communities near 
the sites (Schmidt et al., 2018). This is particularly important for radiologically 
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contaminated sites where the environmental and health impacts are often exaggerated and 
false information can have a significant socioeconomic impact (Sawano et al., 2019).  

The challenge of long-term monitoring is to build a cost effective and sustainable strategy 
by minimizing the cost associated with the number of monitoring locations or sampling, 
while maximizing the ability to meet the objectives listed above. In contrast to the 
monitoring activities during remediation, long-term monitoring has to be carefully 
planned, considering cost, spatial coverage, and the priorities of local communities and 
governments. Although there are a variety of factors to prioritize monitoring locations 
such as population density and socioeconomic and psychological factors, science-based 
methods could support or augment such prioritization. In particular, we may develop an 
optimization strategy for the radiation monitoring network—specifically by providing a 
logical way to determine the number and locations of different monitoring platforms.  

Monitoring network optimization has been widely studied and applied in many fields, 
such as air-pollution monitoring, water-quality monitoring, snow-thickness 
measurements, and soil-pollution measurements. As a result of reviewing literature from 
1978 to 2019, there have been many approaches that are developed for monitoring 
network optimization, such as spatial simulated annealing (SSA), genetic algorithms 
(GA), ant colony optimization (ACO), particle swarm optimization (PSO), the entropy-
based Bayesian method, information theory, and surrogate-based optimization combined 
with random forests or kriging method. (More details regarding these algorithms and 
related literatures can be found in the supplementary material text S1 of Sun et al., 2020). 
In most of these approaches, optimization is done in two steps. The first step involves 
making predictions to create a map of contamination, using contaminant transport 
models, historical data, or the Kriging method. The second step involves optimally 
placing sensors based on objective functions; there are multiple algorithms available such 
as GA, ACO, PSO, and GA.  

There have been several approaches proposed to optimize radiation monitoring networks 
(Melles et al., 2008; Heuvelink et al., 2010). Melles et al. (2008) developed an algorithm 
to optimize the air dose rate monitoring network of point measurement, by minimizing 
the average kriging standard deviation to find the optimal monitoring station locations. 
The approach by Heuvelink et al. (2010) is based on spatial simulated annealing to 
optimize the measurement of radionuclide concentrations spatially based on mobile 
measuring devices or sensors, by minimizing the expected weighted sum of false-positive 
and false-negative detection areas (the definition of positive and negative were in 
Heuvelink et al. (2010)).  

Recently, environmental monitoring has been evolving to deploy airborne platforms and 
technologies, including drone and airborne measurements, that allow spatially extensive 
characterization and mapping (e.g., Wainwright et al., 2017). In particular, airborne 
radiation monitoring technologies have been advanced significantly in the past decade 
(Sanada et al., 2014; Sanada and Torii, 2015; Vetter et al., 2019). Working with multiple 
radiation survey datasets, Wainwright et al. (2017; 2018) has developed a multiscale 
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data-integration methodology – based on Bayesian hierarchical models and geostatistics – 
which has enabled the integration of datasets from these three kinds of surveys with 
different spatial coverage and footprints, as well as the creation of integrated maps of air 
dose rates over the region. Taking advantage of such airborne measurements, Oroza et al. 
(2016) proposed a novel machine-learning-based approach that optimizes the sensor-
network configuration to capture the heterogeneous distribution of snow depths. There 
are now opportunities to improve the radiation monitoring based on spatially extensive 
datasets and spatial information. 

The objective of this chapter is to develop a general methodology for optimizing 
regional-scale radiation monitoring, by extending the methodology developed by Oroza 
et al. (2016) for radiation monitoring. Specifically, for Fukushima, the focus is on either 
reducing the number of existing monitoring posts while keeping the high-priority 
locations (such as at schools and public facilities) and capturing spatial heterogeneity, or 
placing walk/car survey locations at minimum-but-sufficient locations. For simplicity, we 
assume in this study that the monitoring cost is proportional to the number of monitoring 
locations. In parallel, we aim to generalize this concept for any network applied to 
existing or potential contamination events. In principle, we assume that radiation 
monitoring networks are required to capture (1) the spatial heterogeneity of radiation 
dose rates; (2) key locations such as hospitals, schools, and public facilities; and (3) key 
features such as different land uses, terrains, and other factors that are known to control 
radionuclide mobility.  

Our methodology is versatile: we can use the same approach to reduce the number of 
measurements from the existing points, as well as to establish new measurement 
locations, with some constraints such as accessibility (e.g., roads and public lands). 
Compared to the previous studies on radiation monitoring optimization, our unique 
contribution is that we use the spatially distributed radiation air dose rate map during the 
optimization rather than simple interpolation of point measurements. We demonstrate this 
methodology with a limited number of datasets at limited spatial scale, using an 
integrated radiation-dose-rate map created by Wainwright et al. (2017) as the true 
distribution of the air-dose rates. 

 

3.2 Optimization Methodology 
 

Since our methodology has been applied here for long-term monitoring, we assume that 
there has been an accumulation of datasets to aid in identifying the spatial distribution of 
air dose rates and in understanding of their changes. Specifically, in the Fukushima 
region, the air dose rates have been mapped extensively. Soon after the accident, the air 
dose rates indicated different decreasing tendency depending on the locations, since the 
mobile portion of radioceasium migrated at different speeds depending on, for example, 
surface land-cover types and human activities (Kinase et al., 2014; Saito et al., 2019). In 
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this analysis, we considered the geographical range, and also included currently known 
factors (i.e., land-cover type) that influence the radiocesium movement. In recent years 
after the migratory radiocesium has migrated, many studies have reported the spatially 
uniform reduction of dose rates over the region, except for a steeper decrease in the 
decontaminated region (Wainwright et al., 2018). This is because cesium is strongly 
bound to soil particles, and its mobility is quite limited in the environment. Therefore, we 
may assume that the current dose-rate map can be used to plan future monitoring 
activities. We use the current integrated map of air dose rates as a reference map to select 
monitoring locations (Wainwright et al., 2018).  The steps of our methodology are shown 
as Fig. 3.1. Details of each step is discussed later. 

In the following sections, we use the term “monitoring locations” or “monitoring points” 
to represent the locations for monitoring posts, survey data points, or dose-rate 
measurements. This is equivalent to “sensor locations” in Oroza et al. (2016) and other 
literature. 

 
Fig. 3.1 Flowchart of the optimization Method 

Step 1.  Key locations 

In the first step, we place monitoring points at key locations or pre-determined locations 
such as compliance points, schools, or hospitals. Although their number and locations can 
be negotiable, it is often the case that there are a set of locations required for monitoring, 
based on regulations or public need.  

Step 2. Capture the diversity of key controls  



22 

There are key environmental controls that are known to affect the reduction of air-dose 
rates or the heterogeneity of the air-dose rates, such as land-cover types (Saito et al., 
2019). To capture such effects more effectively, we may want to distribute monitoring 
points at the most representative locations of different parameters or features, such as 
elevation, distance/direction from the source, or spatial extent (latitude/longitude). This 
allows us to diversify the monitoring locations across different environmental variables, 
which is particularly important for scientific research and understanding, as well as for 
finding any additional or unexpected effects in the future. Thus, after establishing key 
locations in Step 1, in Step 2 we add more monitoring locations to capture key features.  

Following Oroza et al. (2016), we use the Gaussian mixture model (GMM) to determine 
the monitoring locations so as to identify the most representative locations. A GMM 
assumes that a feature space (e.g., the combined x = [xlat; xlon; xelevation; xdirection; xdistance; 
xlanduse]) is a product of a finite number of latent (unobserved) components (i.e., 
measurements) that follow Gaussian distributions, where xlat, xlon, xelevation, xdirection, 
xdistance and xlanduse are the raster datasets for latitude, longitude, elevation, direction from 
the plant, distance from the plant and land use type, respectively. The purpose of using a 
GMM here is to find the representative values in feature space, (i.e. the center points of 
clusters) rather than to quantify the parameter uncertainty. The monitoring network’s 
ability to observe each point in the feature space is represented using a multivariate 
normal distribution: 𝑁𝑁(𝑥𝑥 | 𝜇𝜇,𝛴𝛴) where μ and Σ are the mean and covariance, respectively. 
This is the parametric expression for each component of the mixture. The mean of the 
normal distribution is selected to be the measurement location in the feature space as a 
representative location. Multiple Gaussian distributions (multiple measurement locations) 
are combined and weighted with mixing parameters πm from an ensemble of M mixture 
elements: 

 𝑝𝑝(𝑥𝑥) = � 𝜋𝜋𝑚𝑚𝑁𝑁(𝑥𝑥 | 𝜇𝜇𝑚𝑚, Σ𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 (3.1) 

 

where 𝑝𝑝(𝑥𝑥) is the probability density at x, and 

 
� 𝜋𝜋𝑚𝑚

𝑀𝑀

𝑚𝑚=1

= 1 

 

(3.2) 

We use the expectation maximization (EM) algorithm to place the Step 2 sets of monitoring 
locations (McLachlan and Peel, 2004; Pedregosa et al., 2011). The EM algorithm is an 
iterative process in which the algorithm identifies the most likely parameter estimates for 
the mixture of multivariate normal distributions to represent the data. Within this algorithm, 
we use a spherical covariance function to update the model weights, covariance, and means 
with each iteration. Once the maximization step no longer increases the log-likelihood, the 
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process terminates, and the optimized monitoring locations have been found. We then 
perform a nearest neighbor search through the full feature space (i.e., not subsampled) to 
find the physical location that most closely matches the features of each mean estimate. 
The previous studies in this region (e.g., Saito et al., 2019 and Kinase et al. 2014) have 
shown that the land-cover type is known to influence the environmental decay of the air 
dose rates. Since GMM does not include categorical variables, we assign a fixed number 
of monitoring locations in each land-cover type and distribute them according to the other 
numerical features within each land-cover type. The feature matrices for each subregion 
are extracted and scaled before the GMM is fit in each region.  
 
Step 3. Capture the spatial variability of air-dose rates 
 
In this step, a Gaussian process model (GPM) is used to add monitoring locations to capture 
the spatial variability across the region, following Oroza et al. (2016). A Gaussian process 
model is based on spatial auto-correlation and covariance models, which are equivalent to 
the geostatistical model used in Wainwright et al. (2017). Although Oroza et al. (2016) 
included the dependency of the target variables on environmental variables such as 
elevation, we use only the spatial correlations, since the spatial distribution of the radiation 
dose rates are largely governed by the plume path and initial deposition—although there 
are also some minor effects caused by environmental controls such as elevation, land use, 
and other parameters which can be expended to depend on needs. We assume an 
exponential covariance model, the parameters of which are simultaneously estimated. We 
assumed the same parameters for the domain without considering the land cover types, 
which is different from Wainwright et al. (2017).  
 
We add one monitoring location at a time, sequentially based on the estimation result. With 
each iteration, the air dose-rate map is estimated using GPM, conditioned on the current 
locations. The values at the monitoring locations are taken from the reference map, which 
in this case is the integrated dose-rate map developed by Wainwright et al. (2017; 2018). 
The difference between the estimated and reference map is quantified by the absolute error 
at each pixel. A new monitoring location is placed at a randomly selected pixel within the 
top three percent of the absolute error. We note that such randomness is necessary to avoid 
the effect of outliers, since the maximum error is often affected by such outliers. At each 
iteration, we compute the Root Mean Square Error (RMSE) over all the pixels that do not 
have monitoring locations. RMSE is used as a summary statistic to quantify the overall 
estimation error of this map. This step is repeated until the RMSE converges, the desired 
number of monitoring locations are placed, or the RMSE falls lower than the required 
threshold. We consider that the convergence-based criteria could be most appropriate, since 
it is often difficult to define the number of monitoring locations based on the absolute 
RMSE values. We may define the minimum-but-sufficient number of monitoring locations 
based on the convergence of RMSE, such that RMSE with the reduced number of 
monitoring locations is within a certain range (i.e., a few percent) from the one of the 
existing locations. 
 
The use of the estimation error is different from Oroza et al. (2016) or other studies (Araki 
et al., 2015; Masoudi et al., 2019; Zhuang et al., 2011), who placed monitoring locations 
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based on the estimation variance. The estimation variance (or often called kriging variance) 
is calculated based on the interpolation of point measurements without using the actual 
values in the reference map. In our case, the reference map – i.e., the integrated map of air 
dose rates – is available over the region (Wainwright et al., 2016), and it is known that the 
relative spatial distribution of the air dose rates does not change over time significantly. 
We hypothesize that, using the estimation error (as the difference between the reference 
map and the interpolated map), we can maximize the use of information currently available 
and we can further improve the monitoring network compared to using the estimation 
variance.  We evaluate the impact of the difference between using the estimation error and 
variance in a synthetic scenario.  
 
We have implemented our algorithms using the Scikit-learn package in PYTHON 
(Pedregosa et al., 2011). We have made multiple improvements in the algorithms compared 
to Oroza et al. (2016), such as restricting monitoring locations (for example, representing 
the availability of power, and the accessibility of locations and existing monitoring 
locations). 
 
3.3  Result and Discussion 
 

 

We demonstrated our methodology by using the datasets in the designated evacuation 
area (as of March 2017). We used the 2016 integrated map created in Wainwright et al. 
(2018), along with other spatially extensive data, including elevation, land-cover type, 
and distance and direction from the NPP (Fig. 3.2). The pixel size was 50 m by 50 m. We 
used the high-resolution land-use and land-cover map of Japan (version 14.02) created by 
the Japan Aerospace Exploration Agency (Takahashi et al., 2013). In this demonstration, 
we focused on the methodology development, aiming to test our algorithm performance. 
We created a hypothetical set of priority locations to be used in Step 1.  
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Fig. 3.2 Input data maps: (a) 2016 integrated air-dose-rate map in log10 microSv/hr, (b) land-

cover map. In (b), the green region is forest, the yellow region is cropland, and red region is 
urban area. The unit of coordinates is meters (m), the black dots in each subplot are the 

location of Fukushima Daiichi Nuclear Power Plant (FDNPP). 

To represent different uses, we considered two cases: (1) across the domain without any 
location restrictions, (2) at the limited locations selected in advance. In Case 1, we 
considered all the pixels that are candidate locations for monitoring. Case 1 was used 
mainly to demonstrate the algorithms and to explore the effect of parameters within the 
optimization algorithms.  Case 2 mimicked the situation in which the goal would be to 
reduce the number of existing monitoring locations, or the restricted locations along the 
roads or accessible locations.  

Case 1: Placement without location constraints 

Fig. 3.3 shows the monitoring locations at each step for Case 1. As mentioned above, the 
Step 1 locations are hypothetical for the demonstration purpose. We assume that the four 
Step-1 locations are the prioritized locations that are fixed a priori (Fig. 3.3a). The 
monitoring points are added to diversify various environmental properties in Step 2, so 
that the monitoring locations are distributed widely throughout the area (Fig. 3.3b). We 
assume ten locations in each land-cover type, so that 30 points are placed in total. The 
points are distributed over the domain to cover the range of dose rates and space. In Step 
3, the algorithm adds 250 points to capture the heterogeneity in the dose rates, so that it 
places monitoring locations in-between the Step 1 and Step 2 points (Fig. 3.3c), as well as 
in the region where the spatial heterogeneity is high and the dose rate changes more 
rapidly in a short distance (e.g., the region near the power plant). There are four points in 
Fig. 3.3a, 34 points in Fig. 3.3b, and 284 points in Fig. 3.3c.   
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Fig. 3.3 Proposed monitoring locations over the 2016 integrated map (in log10 microSv/hr) in 

Case 1 after: (a) Step 1, (b) Step 2 and (c) Step 3. In the figures, the red circles are the 
monitoring locations. 

The overall estimation error (RMSE) is plotted against the number of monitoring 
locations in Step 3 (Fig. 3.4). Fig. 3.4a examines the effect of the randomness, since the 
point at each iteration is selected randomly within the pixels that have the top 3% 
estimation errors. RMSE decreases rapidly at the beginning and converges to a certain 
value. This is because once there are enough monitoring locations to capture the 
heterogeneity, additional locations have a diminishing effect. In addition, such RMSE 
convergence is attributed possibly to random errors in the dose-rate measurements or 
spatially uncorrelated variability in the dose-rate distribution. All the curves are fairly 
similar, suggesting that the randomness effect is quite minimal within the optimization 
algorithm.  

In addition, we compare several numbers for the Step-2 monitoring locations; five, 10, 
and 20 in each land-cover type (i.e., the initial number in Step 3 is 19, 34, and 64, 
respectively), as shown in Fig. 3.4b. Fig. 3.4b illustrates that when the number of 
monitoring locations is high in Step 2, the initial RMSE is low, but it converges to the 
same value. The number of initial monitoring locations does not have a significant impact 
on the final distribution and RMSE, or on the ability of the monitoring network to capture 
the heterogeneity of the dose rates. 
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Fig. 3.4 RMSE vs number of monitoring locations in Step 3 in Case 1: (a) initial monitoring 
locations number is 34, random sampled top 3% highest estimation error, MC simulated 10 
times; (b) random sampled top 3% highest estimation error, with initial monitoring locations 
number 19, 34, 64. 

In addition, we investigated the effect of the selection criteria to select the next 
monitoring location in Step 3. The original algorithm in Oroza et al. (2016) selected the 
next location based on the estimation variance from GPM—i.e., choosing one location 
among the top 3% variance pixels or the largest variance pixel. We proposed an 
alternative for choosing the next location based on the estimation error computed as the 
difference between the reference and interpolated maps in Step 3. 

  

 
Fig. 3.5 Monitoring locations configurations by choosing (a) the top 3% of the estimation 
errors and (b) the top 3% estimation variance and (c) RMSE curves using error criterion vs 
variance criterion. 

The two criteria make a large difference in terms of the RMSE and spatial configuration 
of monitoring locations. When estimation error is used as the criterion (Fig. 3.5a), there 
are many clusters in the map. The clusters tend to be located where the radiation dose rate 
is more heterogeneous over a short distance. In the region where the spatial heterogeneity 
is high, the interpolation becomes high, and more monitoring locations are needed to 
capture the spatial heterogeneity. On the other hand, when estimation variance criterion is 
used (Fig. 3.5b), the monitoring locations are more uniformly distributed over the 
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domain. As a property of GPM, the highest predicted variance is the middle points among 
neighboring sensors. Therefore, this variance-based criterion tends to choose locations in 
the middle of an existing network, which ultimately results in a uniform sensor network 
(Fig. 3.5b). In Fig. 3.5c, the estimation error-based criterion yields a more rapid decrease 
in RMSE than the variance-based criterion, as well as a smaller RMSE when the RMSE 
is converged. This result suggests that the estimation error-based criterion can add points 
more effectively where the heterogeneity is large, and can capture the heterogeneity with 
fewer numbers of monitoring locations. 

 

In our algorithm, we randomly selected one location among the top 3% with largest error 
instead of choosing the largest one to reduce the influence of outliers. However, the 
choice of 3% seems rather arbitrary, and therefore this parameter has to be evaluated. We 
consider that such random selection can effectively attenuate the effect of outliers, 
although such a selection scheme could also reduce the prediction power, since the 
algorithm could choose the pixels with lower estimation error—there is an apparent 
trade-off. To evaluate what is the best sampling scope for our algorithm, we tested 
different percentages: 0.2%, 1%, 3%, 5%, 7.5%, 10%, and compared the reduction of 
RMSE as a function of the number of monitoring locations. Fig. 3.6 shows that the 
reduction is the most effective between 3% and 7.5%. The RMSE is higher for the 
smallest percentage (0.2%) due to the outlier effects, and also for the largest percentage 
(10%) due to the fact that the large estimation-error pixels are missed. This confirms the 
presence of the trade-offs, and the parameters have to be optimized for each case. 

 

 
Fig. 3.6  RMSE as a function of the number of monitoring locations for different parameters 
within the error-based criterion. In the legend, top 10% means randomly sampling one pixel 

out of the pixels with top 10% highest error for next sensor, etc. 

 

Case 2: Placement with the location restriction  
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In Case 2, we demonstrated the monitoring network optimization with location 
restriction. We used actual monitoring post locations except for Step 1. In Step 2, we 
added 10 locations for each land-use type. In Step 3, we selected 100 out of the 255 
existing monitoring locations. Fig. 3.7 shows the sampling locations at each step for Case 
2. Similar to the monitoring configuration without location restriction (Fig. 3.3c), the 
monitoring locations are concentrated in the region where the spatial heterogeneity is 
high. The difference is that there is a missing region around Easting = 4.9 x 105 m, where 
there are no existing monitoring locations. This difference may suggest that locations that 
are currently missing but are needed to capture the regional-scale heterogeneity of 
radiation dose rates. 

 

 
Fig. 3.7 Proposed sampling locations over the 2016 integrated map (in log10 microSv/hr) in 

Case 2 after: (a) Step 1, (b) Step 2 and (c) Step 3. In the Figures, the red dots are the sampling 
locations. 

Fig. 3.8 shows the effect of the randomness within the algorithm and the number of Step 
2 locations, when the locations are restricted to the existing monitoring locations. In Fig. 
3.8a, after repeating the simulations ten times, the RMSE curves are plotted against the 
number of monitoring locations. The RMSE decreases with fluctuation at the beginning 
and converges to a certain value. The converged value is higher than the no-restriction 
case in Fig. 3.4a, and the RMSE converges slowly compared to the no-restriction case, 
since the number of pixels that can be chosen is much smaller. The existing monitoring 
locations are not necessarily capturing the spatial heterogeneity of contamination. In Fig. 
8b, we compare several numbers of Step-2 sampling locations: five, ten, and twenty in 
each land-cover type (i.e., the initial number in Step 3 is 19, 34, and 64, respectively), as 
shown in Fig. 3.8b. As consistent with the no-restriction case (Fig. 3.4b), the number of 
Step 2 locations do not affect the convergence of RMSE.  
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Fig. 3.8 RMSE vs number of monitoring locations in Step 3 in Case 2: (a) initial locations 

number is 34, random sampled top 3% highest error, MC simulated 10 times; (b) random 
sampled top 3% highest error. 

Since our algorithm has a random selection (e.g., within top 3% of largest errors) within 
each iteration, there could be randomness in the final monitoring locations. There is a 
concern that random simulations may yield totally different design networks. We need to 
evaluate how this randomness affects the monitoring locations. We created a probabilistic 
map—the probability of each location to be chosen as a monitoring location — to 
represent the randomness within the algorithm. Using the Monte Carlo simulation, we 
created the 100 sets of monitoring locations that are equally likely (Fig. 3.9). The 
probabilities are computed by the frequency of being selected in the Monte Carlo 
simulations. Within each set, 100 locations were selected out of 255 pre-selected 
locations, since the RMSE appears to converge around 100 locations.  

Fig. 3.9a shows that RMSE generally decreases as a function of the number of 
monitoring locations and converges to a similar value. In the probability-based 
monitoring network (Fig. 3.9b), there are some locations that are always chosen (red dots 
in Fig. 3.9b), while some are less likely to be selected (purple dots in Fig. 3.9b). These 
more-selected locations tend to be located within the high heterogeneity region. In 
addition, the spatial pattern is consistent with Fig. 3.7c, which is just one instance of the 
simulation. Fig. 3.9c shows the probability of being selected for each location sorted from 
high (1.0) to low (0.0). For example, there are 28 locations (from 0 to 27, around 11 
percent out of total) that are 100% (always) selected, while 78 locations (from 177 to 
254, around 30 percent out of total) are never selected during the 100 simulations. The 
slope of the distribution in Fig. 3.9c reflects the ambiguity of our algorithm, i.e., steeper 
means less randomness. The steep curve results suggest that the randomness might not 
affect the monitoring location significantly, and the algorithm can identify both the 
locations that are highly important, as well as the locations that have a negligible impact 
on the ability to capture spatial heterogeneity.  
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Fig. 3.9 Results from generating 100 sets of monitoring locations based on the MC simulation: 

(a) the RMSE curves of the 100 simulations, as a function of monitoring locations, (b) 
probabilistic map of the monitoring locations among monitoring posts based on 100 

simulations, and (c) probability of each location sorted from high (1.0) to low (0.0). In (b), the 
color of each dot is an indicator of probability. 

3.4 Conclusion 
 

In this work, we have developed a methodology for optimizing monitoring locations of 
air dose rates at the regional scale. This methodology can be used as a general 
methodology either for reducing the number of existing monitoring locations (such as 
monitoring posts), or for optimally placing mobile measurements, such as car or walk 
surveys. Three steps are taken in order to determine monitoring locations in a systematic 
manner: (1) prioritizing the critical locations, such as schools or regulatory requirement 
locations, (2) diversifying locations across the key environmental controls that are known 
to influence contaminant mobility and distributions based on a Gaussian mixture model, 
and (3) capturing the heterogeneity of air dose rates across the domain based on a 
Gaussian process model. We use the integrated dose-rate map from Wainwright et al. 
(2017; 2018) as the reference map and distribute the sampling in such a way as to capture 
the heterogeneity of the reference map.  

Our results have shown that this approach enables us to add or subtract monitoring 
locations in a systematic manner such that the heterogeneity of air dose rates is captured 
by the minimal number of monitoring locations. We acknowledge that our algorithm does 
not include socioeconomic factors that influence overall exposure dose to the public. The 
population density or traffic volume (along each road) can be additional spatial layers 
that are readily available and can be included (such as Sun et al., 2019). The algorithm 
can accommodate other factors such as agricultural information or key facilities. At the 
same time, capturing the overall spatial distribution of air dose rates is important for risk 
assessments or decontamination planning. In fact, many people in this region enter the 
non-populated forested area for edible wild plants or for forestry (Miura, 2016). We 
consider that our algorithm in this paper is the first step of monitoring optimization by 
capturing the spatial heterogeneity; we can add other information and their priority 
weights according to the user's needs.  
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In addition, we acknowledge that this algorithm would not provide additional protection 
or remediation methods. However, having an accurate map of contamination allows 
people to avoid highly contaminated areas or to concentrate decontamination resources to 
appropriate areas. In addition, long-term monitoring is important to provide the correct 
information about the stability of the contaminant distribution, and the reduction of 
radiation level to the people in the other regions. Improving air dose rate mapping with 
the limited number of monitoring locations, hence, contributes significantly to protecting 
public health as well as to supporting the local economy.



33 

4 Spatial-temporal dose rate distribution Prediction 
 
4.1 Introduction 
 

During the Fukushima accident, radioactive nuclides were released into the environment 
and deposited around the area of FDNPP; mostly within the 80-km radius. Radiocesium 
is considered the main nuclide that contributes to the exposure dose (IAEA, 2015). Since 
the accident, multiple agencies have performing radiation measurements and monitoring 
in this region (Saito et al., 2018; Kinase et al., 2017; Andoh et al., 2018), which resulted 
in a large volume of well-archived radiation air dose rate data (JAEA, 2021). These 
datasets have been analyzed extensively for the purpose of (1) confirming system 
stability and the continuing reduction of contaminant and hazard levels, (2) providing 
exposure evaluation for the public’s return to the evacuation zone, (3) accumulating the 
basic datasets for scientific knowledge and future preparation. It has been found that the 
air dose rates near FDNPP decreased to approximately 10% of its initial level by 
November 2018 (Saito, 2016, 2019; Andoh et al., 2020). As time goes on, the monitoring 
program is expected to transition from short-term monitoring to long-term monitoring. 
Different with short-term monitoring, the challenge of long-term monitoring is building a 
cost effective and sustainable strategy by minimizing the cost associated with the number 
of monitoring locations or sampling, while maximizing the ability to meet the objectives 
of monitoring, Sun et al., (2020) developed a sensor network optimization method to 
accommodate the transition to long-term monitoring.  

 
However, Sun’s work was based on the assumption that the dose rates distribution map is 
stabilized without significant variation.  Even though the general tendency of air dose 
rates and deposition densities in the 80 km zone is downward, their decreasing speed 
were found to vary significantly according to location (Saito et al., 2018, 2019; Andoh et 
al., 2018).  Specifically, dose rates in the urban area decrease faster that in the area of 
cropland or nature forest. Saito et al. (2018) presented a detailed summary and analysis 
with respect to these variabilities across the region.  

 
In parallel, a data-driven environmental decay model has been developed to predict the 
decay of radiation air dose rates in the environment (Wainwright et al., 2019). Kinase et 
al. (2017) built a prediction model characterized by ecological half-lives of radioactive 
cesium for different land-use type, and predicted distribution maps of ambient dose 
equivalent rates for the next 30 years. Sanada et al. (2018) evaluated the ecological half-
life of dose rate, which is a parameter in the double exponential formula, based on 
airborne radiation monitoring and use this function to predict the air dose rate on average. 
Andoh et al. (2020) modified the double exponential formula of ecological half-life and 
developed a two-group model to model the acceleration of the decrease in the air dose 
rates observed in the evacuation order area.  
 
Although these data-driven models mentioned above can predict the decay trend of the 
average dose rates within the same land-use category, spatial-temporal correlation factors 
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were not considered within previous work. To incorporate this spatial heterogeneity 
factor and enhance the practicability and efficiency of our optimization method, it is 
necessary to integrate the spatial-temporal factor during optimization. 

 
In geostatistics, Gaussian process model (GPM) is a method of interpolation for which 
the interpolated values are modeled by a Gaussian process. Oroza et al. (2016) used the 
GPM to model the snow depth around the network. Following Oroza et al. (2016), Sun et 
al. (2010) used GPM to find locations to add monitoring locations to capture the spatial 
variability across the region. Kalman filter is an algorithm that uses a series of 
measurements observed over time to filter out the noise and other inaccuracies and obtain 
a more accurate estimation of unknown variables than those based on a single 
measurement alone. Kalman filter is a widely applied concept in many fields, such as 
time series analysis in data processing, navigation, and control of vehicles, spacecraft, 
etc. Schmidt et al. (2018) presented a Kalman filter-based framework to establish a real-
time in situ monitoring system for groundwater contamination based on in situ 
measurable water quality variables, such as specific conductance (SC) and pH. In this 
paper, GPM is applied to predict unobserved location conditioning on observed locations 
while Kalman filter is to fill the gap of observed locations using observation of other 
observed locations. 

 
The goal of this study is to develop a spatiotemporal data integration method for creating 
an integrated radiation air dose rate map over space and time, by extending the Bayesian 
hierarchical method developed by Wainwright et al (2017; 2018). The method is based on 
GPM which takes advantage of spatial auto-correlation and covariance models to predict 
variables in unobserved locations. In order to incorporate the spatial correlation 
information of the dose rates field with the temporal information, we combined GPM and 
Kalman filter to predict the spatial-temporal dose rate time-series at a given time and 
location. Specifically, Kalman filter was used to predict the temporal evolution of dose 
rates for pixels with real-time monitoring device (to make them more precise) or only 
segment of historical data (to fill the gap between segments), and then GPM was applied 
to interpolate the dose rates for pixels without observations at each time point. This 
process was repeated for each time point and the spatial-temporal dose rates distribution 
could be constructed. Through this way, our algorithm utilizes the spatial correlation 
information in prediction, which make it different from the models mentioned at the 
beginning of this paragraph. We demonstrate our approach using the dose rate datasets 
from the evacuation zone (as of March 2017) between July 1st 2017 and Nov 22nd 2017. 
 
4.2 Data Description 
 

In this paper, the original dataset is the monitoring poster dataset acquired by JAEA. 
Although JAEA accumulated a large number of datasets of air dose rates since the 
accident, only a subset of datasets was used in this study to demonstrate our approach. 
Fig. 4.1 shows the integrated dose rates map of 2014 provided by Wainwright et al. 
(2017), with the color indicates the dose rates level under logarithm scale based on 10. 
The size of each grid is 50m×50m, the UTM position of the origin is (460101, 4120001). 
The dashed box with dimension of 8550m ×18750m is the study area where contains 17 
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monitoring posts with data collected between July 1st 2017 and Nov 22nd 2017. In 
addition, the car survey data from TEPCO was also used to verify the correlation between 
slope and intercept. In the car survey data set we used, there are 9626 locations, with 29 
time-points for each location, starting from Aug 2nd, 2011 and end on April 3rd 2018. 
 
 

 
Fig. 4.1 Diagram of the Study Area, the background is the integrated dose rates map of 2014. 
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4.3 Methods and Results 
 
4.3.1 Environmental Decay Model:  
 
In our study, the area was discretized into the same grid (with grid size 50m×50m) as the 
integrated map. All the pixels can be classified into three categories: (1) pixels that we 
have real-time monitoring posts which can provide continuous dose rates; (2) pixels at 
which only some segments of historical data are available, such as fixed points 
measurement, car survey, airborne survey; and (3) pixels without any measurements 
except the interpolated value from the Integrated Map. Assume that there are 𝑛𝑛 pixels in 
Category I&II and 𝑚𝑚 pixels in Category III. Since the total number of pixels is (𝑛𝑛 + 𝑚𝑚), 
the average dose rates within each pixel could be indicated as a vector 𝑥𝑥(𝑡𝑡) at time 𝑡𝑡, 
vector 𝑥𝑥(𝑡𝑡) has (𝑛𝑛 + 𝑚𝑚) elements. We assume that the dose rates time-series for pixels 
under logarithm scale can be modeled by a linear trend plus a fluctuation term. For a 
single time step 𝑡𝑡i, the dose rates can be represented as 
 
 𝒙𝒙(𝑡𝑡𝑖𝑖) = 𝒖𝒖 ∙ 𝑡𝑡𝑖𝑖 + 𝒃𝒃 + 𝜺𝜺𝒊𝒊 (4.1) 

 
Although other papers used the two-component models (Kinase et al., 2017; Sanada et al. 
2018;), the decay can be represented by log-linear trends after the 134Cs contribution is 
reduced as 134Cs has a much shorter half-life (2.06 years) than 137Cs (30.2 years). As a 
result, compared with two-component models, the linear model makes the algorithm 
simpler without losing accuracy. 
 
In Equation (4.1), 𝒙𝒙(𝑡𝑡𝑖𝑖), 𝒖𝒖, 𝒃𝒃 and 𝜺𝜺𝒊𝒊 are all vectors of 𝑛𝑛 + 𝑚𝑚 elements. We consider 
discrete time 𝑡𝑡𝑖𝑖(i = 0, 1,…) which is a scale with subscript 𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ time step, 
𝒙𝒙(𝑡𝑡𝑖𝑖) denotes the dose rates at 𝑡𝑡𝑖𝑖, 𝜺𝜺𝑖𝑖 is the fluctuation at 𝑡𝑡𝑖𝑖, and 𝒖𝒖,𝒃𝒃 are the slope and 
intercept of the linear trend. In our study, we assume that 𝜺𝜺𝒊𝒊 is normally distributed and 
independent between different time steps, but that its components are spatially correlated 
among different pixels at the same time step: 
 

 𝑐𝑐𝑐𝑐𝑐𝑐�𝜀𝜀𝑖𝑖, 𝜀𝜀𝑗𝑗� = � Σ,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑖𝑖 = 𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4.2) 

 
where 𝜺𝜺𝒊𝒊, 𝜺𝜺𝒋𝒋 are all vectors of 𝑛𝑛 + 𝑚𝑚 elements and Σ is a (𝑛𝑛 + 𝑚𝑚) × (𝑛𝑛 + 𝑚𝑚) matrix 
which indicates the fluctuation parts are space correlated. 
 
The decay rate 𝒖𝒖 which is determined by the slope of the linear trend (or decay rate) can 
change over locations. The decay rate is known to be correlated with initial dose rates, 
landuse type, spatial position and other factors. For Category I&II pixels, 𝒖𝒖 can be fitted 
from the measurements. For Category III (unobserved locations),  we used random forest 
(trained on Category I and II pixels) to predict 𝒖𝒖. Random Forest is a machine learning 
method for classification or regression that operate by constructing a multitude of 
decision trees at training time and output the mode of the classes (classification) or 
mean/average prediction (regression) of the individual trees (Tin Kam, 1995). 
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4.3.2 Time-series estimation:  
 
Step one: predict the temporal dose rates in the pixels in Category II for a time step 
 
In this step (predicting the temporal dose rates for Category II pixels,) we found four 
possible solutions: Gaussian Process Model, Linear Regression, Kalman Filter and our 
own improved filter. Here, we introduced the details of each solution and a comparison 
from the viewpoint of mathematics was made in Appendix II. 
 
(1). Gaussian Process Model (GPM): 

As the dose rates from different locations are spatial correlated, the GPM is an option to 
interpolate the dose rates for each unmeasured location at each time step, just as we did in 
Chapter 3. Specifically, for each time step, we collect available measurements and (I) 
estimate the spatial parameters (such as variance and length scale), and then (II) use the 
estimated spatial parameters to construct the covariance matrix and apply the kriging 
method for interpolation.  

However, there are many assumptions in the GPM which can’t be strictly followed. For 
example, we assume the covariance is a function only of the distance without considering 
the fact that the covariance for two pairs of locations may be different even the two pairs 
have the same distance within. We also assume that the nugget effect to be a very small 
value based on our experience (such as 0 or 10-8, etc.). These assumptions will deteriorate 
our model’s prediction accuracy.  

 
(2). Linear Regression 
 
Based on the understanding of GPM, some improvements can be done for this problem. 
In this problem, we have some historical measurements of the time-series for some 
locations, and we can extract the covariance information from the historical data rather 
than estimating from the data at each time step.  

Assume we have the covariance matrix as cov��X1
X2
� , �X1

X2
� � = Σ = �Σ11 Σ12

Σ21 Σ22
�, where 

X1 = �
x1
⋮

xk
� is vector of k available measurements, and X2 = �

xk+1
⋮

xk+l
� is vector of l 

unmeasured location to be estimated, then the prediction of X2 conditioning on X1 is 
given by 
 
 X2|1 = μ2 + Σ21Σ11−1(X1 − μ1) (4.3) 

 
The above equation implies that X2|1 is a linear combination of elements of 𝑋𝑋1: 
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 X2|1 = �
𝛽𝛽0,1 𝛽𝛽1,1 ⋯ 𝛽𝛽𝑘𝑘,1
⋮ ⋮ ⋮ ⋮
𝛽𝛽0,𝑙𝑙 𝛽𝛽1,𝑙𝑙 ⋯ 𝛽𝛽𝑘𝑘,𝑙𝑙

��

1
𝑥𝑥1
⋮
𝑥𝑥𝑘𝑘

� (4.4) 

 
 
Or, for a specific (𝑖𝑖𝑡𝑡ℎ) location: 
 

 𝑥𝑥𝑖𝑖|1,⋯𝑘𝑘 = 𝛽𝛽0,𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑥𝑥1 + ⋯+ 𝛽𝛽𝑘𝑘,𝑖𝑖𝑥𝑥𝑘𝑘 
 (4.5) 

Based on equation (4.5), we can do a linear regression from the historical data set to 

predict �
xk+1
⋮

xk+l
� from �

x1
⋮

xk
�. 

The result of this linear regression method is shown as Fig. 4.2 
 

 
Fig. 4.2 (a) Locations of monitoring posts used for estimating the fluctuation, the dose rate at 

the “target” post was estimated; (b) The Prediction result using linear regression for the 
category II pixels. 

To illustrate how linear regression works, we use site 103547 as the target to estimate, 
and other sites as predictors. In Fig. 4.2, plot (a) show the location map of each site, and 
(b) show the prediction vs. observation, the grey band is the 95% confidence interval. 

 
(3). Kalman Filter 
 
The Linear Regression method doesn’t require the covariance function and nugget effect 
assumption, so it is easy to be implemented. However, it requires all the predictors to be 
available at each time step: if one predictor is missing, the prediction can’t be made. Due 
to this reason, we turned to Kalman filter which can be more general to handle the cases 
that some predictors are missing. 
 
At 𝑡𝑡𝑡𝑡ℎ time step, assume we have observation vector 𝑍𝑍𝑡𝑡, whose dimension is 𝑘𝑘𝑡𝑡, and 𝑘𝑘𝑡𝑡 
can be different for different time step. We define a dose rate vector at time step 𝑡𝑡 as  



39 

𝑋𝑋t = �𝑥𝑥1,𝑡𝑡, 𝑥𝑥2,𝑡𝑡,⋯ , 𝑥𝑥𝑛𝑛,𝑡𝑡�
T
, where 𝑥𝑥𝑖𝑖,𝑡𝑡 is the dose rate for pixel 𝑖𝑖 at time step 𝑡𝑡 and 𝑛𝑛 is the 

number of pixels in category I, and define the 𝑛𝑛 × 𝑛𝑛 covariance matrix of 𝑋𝑋𝑡𝑡 as 𝑃𝑃𝑡𝑡. Then, 
𝑋𝑋�𝑡𝑡+1|𝑡𝑡 and 𝑃𝑃�𝑡𝑡+1|𝑡𝑡 represent the prediction of dose rate and covariance matrix for the time 
step (𝑡𝑡 + 1) conditioned on the dose rate at the time previous step 𝑡𝑡.  
 
Based on the decay model of Eq.(4.1), the vector form can be written as 
 
 𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝒖𝒖 + 𝑤𝑤𝑡𝑡 (4.6) 

and 
 𝑤𝑤𝑡𝑡 = 𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡 + 𝒖𝒖 (4.7) 

 

And the 𝑛𝑛 × 𝑛𝑛 covariance matrix 𝑄𝑄𝑡𝑡  between 𝑤𝑤𝑠𝑠 and 𝑤𝑤𝑡𝑡 is 

 𝑄𝑄𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑠𝑠,𝑤𝑤𝑡𝑡) = �𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑠𝑠
0,     𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (4.8) 

 

For every time step, we will have 𝑘𝑘𝑡𝑡-elements measurement/observation vector 𝑍𝑍𝑡𝑡,  

 𝑍𝑍𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑚𝑚𝑡𝑡 (4.9) 
 

where  

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑚𝑚𝑡𝑡,𝑚𝑚𝑠𝑠) = �𝑅𝑅𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑠𝑠
0,     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4.10) 

 
and 𝒖𝒖 is a vector of n elements, representing the slopes of the linear trend of all the pixels 
in Category II, it can be fitted from the historical data; the 𝑛𝑛 × 𝑛𝑛 covariance matrix Σ here 
is the covariance of the noise 𝜀𝜀 among different pixels with dimension 𝑛𝑛 × 𝑛𝑛, and 𝑅𝑅𝑡𝑡 is 
the covariance matrix of additive measurement noise with dimension of 𝑘𝑘𝑡𝑡 × 𝑘𝑘𝑡𝑡. 𝐻𝐻𝑡𝑡 is the 
𝑘𝑘𝑡𝑡 × 𝑛𝑛 observation matrix, is determined by the data model, i.e., how each type of 
measurement (airborne, car, monitoring post) was represented by the dose rates of all 
pixels and integrated in our method, 𝑚𝑚𝑡𝑡 is the additive measurement noise (𝑘𝑘𝑡𝑡 elements 
vector) whose covariance is 𝑅𝑅𝑡𝑡. 
 
Equation. (4.6) to (4.10) match a standard Kalman Filter (Kalman, 1960) model which is 
made up of two steps: 
 
Predict step: 
 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝒖𝒖 (4.11) 

 
 P�t+1|t = P�t|t + Qt (4.12) 

 
Update step: 
 X�t+1|t+1 = X�t+1|t + Kt+1�Zt+1 − Ht+1 X�t+1|t� (4.13) 
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 P�t+1|t+1 = (I − Kt+1Ht+1)P�t+1|t(I − Kt+1Ht+1)T + Kt+1Rt+1Kt+1
T  (4.14) 

 
where, 
 
 Kt+1 = P�t+1|tHt+1

T �HtP�t+1|tHt+1
T + Rt+1�

−1
 (4.15) 

 
is a 𝑛𝑛 × 𝑘𝑘𝑡𝑡+1 matrix called Kalman Gain.  The subscripts of P�t+1|t, X�t+1|t mean the 
prediction of 𝑃𝑃,𝑋𝑋 at time step 𝑡𝑡 + 1 conditioned on time step 𝑡𝑡.  
 
The result of Kalman filter (Equation (4.11) to (4.15)) can be seen at Fig. 4.3 
 

 

Fig. 4.3. Comparison of Category II pixels, (a) for pixel 103547; (b) for pixel 103570; grey band 
is 95% confidence interval. 

The time-series prediction for the Category II pixels is shown in Fig. 4.3. These two 
locations in Fig. 4.3 are from the testing set, which is randomly selected 40% of the data 
set. The predicted and measured values are compared at the two pixels (pixel 103547 
starting from the higher dose rate and pixel 103570 starting from low dose rates). There 
are two characteristics with respect to the 95% confidence interval in Fig. 4.3.  First, the 
width of the confidence interval grows larger with time 𝑡𝑡, this is inconsistent with our 
understanding of Kalman filter that gives a non-increasing confidence interval, such as 
Figure.4 in Schmidt et al.(2018). However, after carefully investigation, we found out the 
increasing width of confidence interval in Fig. 4.3 was due to the weak constraint of 
Equation (4.9). In Equation (4.9), we set the observation matrix as 𝐻𝐻𝑡𝑡 = �𝐼𝐼𝑘𝑘𝑡𝑡×𝑘𝑘𝑡𝑡 ,
0𝑘𝑘𝑡𝑡×(𝑛𝑛−𝑘𝑘𝑡𝑡)�, the constraint applied to the (𝑘𝑘𝑡𝑡 + 1)𝑡𝑡ℎ to the 𝑛𝑛𝑡𝑡ℎ pixels were fulfilled by the 
𝑛𝑛 × 𝑛𝑛 covariance matrix Σ. This constraint reduced the uncertainty induced by Equation 
(4.6)  to an order of √𝑡𝑡. As a result, the width of the confidence interval actually 
increases following shape of a square root function. Furthermore, although the 
confidence interval seems “weird”, the prediction of 𝑋𝑋𝑡𝑡 seems reasonable. Actually, the 
prediction of 𝑋𝑋𝑡𝑡 when 𝑅𝑅𝑡𝑡 = 0 is same as the prediction given by GPM.  All these math 
proofs can be found in Appendix II. Secondly, the 95% confidence intervals are different 
in order between Fig. 4.3a and Fig. 4.3b. In Fig. 4.3a, the 95% confidence interval at 𝑡𝑡 =
1300 day has a width of around 0.2, which includes most of the measured values. The 
Pearson correlation coefficients R is 0.91. In Fig. 4.3b, the 95% confidence interval at 
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𝑡𝑡 = 1300 day is 0.8 in width, and Pearson correlation coefficients R is 0.25 while most 
measurements still fall into the confidence interval. We can find that Fig. 4.3a that started 
from the higher dose rates has smaller uncertainty while Fig. 4.3b that started from low 
dose rate has larger uncertainty. There are many reasons that may cause larger 
uncertainty, the closest distance to the conditioning pixels, the malfunction of the 
measurement device, ration of signal to background etc. After looking into the locations 
of these pixels, we believe that the uncertainty is mostly determined by the distance to the 
closest conditioning pixel. 
 
 
(4). Improved Filter 
 
Even though the prediction of 𝑋𝑋𝑡𝑡 in Kalman filter is reasonable, the predicted uncertainty 
is of little use as it is growing larger with time t. We investigated into this phenomenon 
and found out that the assumption of Kalman filter (Equation (4.8)) was not strictly 
followed in our problem. In our problem,  
 

 𝑄𝑄𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑠𝑠,𝑤𝑤𝑡𝑡) = �
2Σ, 𝑖𝑖𝑖𝑖 t = s
−Σ, 𝑖𝑖𝑖𝑖 |𝑡𝑡 − 𝑠𝑠| = 1
0,            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4.16) 

 
 
where Σ = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑠𝑠, 𝜀𝜀𝑡𝑡). Based on this new 𝑄𝑄𝑡𝑡, our improved filter will be (math details of 
this improved filter can be found in Appendix III) 
 
Predict step: 
 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝒖𝒖 (4.17) 

 
 P�t+1|t = P�t|t + Σ ∙ Ht

T ∙ (Ht ∙ Σ ∙ Ht
T + Rt)−1 ∙ Ht ∙ Σ (4.18) 

 
Update step: 
 X�t+1|t+1 = X�t+1|t + Kt+1�Zt+1 − Ht+1 X�t+1|t� (4.19) 

 
 P�t+1|t+1 = (I − Kt+1Ht+1)P�t+1|t(I − Kt+1Ht+1)T + Kt+1Rt+1Kt+1

T  (4.20) 
 
where, 
 
 Kt+1 = P�t+1|tHt+1

T �HtP�t+1|tHt+1
T + Rt+1�

−1
 (4.21) 

 
Equation (4.17) to (4.21) constitute the new filter we developed in this study.  Compared 
with Kalman filter (Equation (4.11) to (4.15)), only  P�t+1|t in (4.18) and (4.12) are 
different, other equations are the same. 
 
The result of our improved filter is illustrated in Fig. 4.4, 
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Fig. 4.4 Comparison of Category II pixels, (a) for pixel 103548; (b) for pixel 103570; grey band 
is 95% confidence interval. 

Compared with Fig. 4.3,  we can see that Fig. 4.4 presents more reasonable confidence 
interval while their prediction of 𝑋𝑋𝑡𝑡 are same (mathematical explanation of this 
phenomenon can be found in Appendix II). 

As a summary, four possible solutions were discussed in the above, and a comparison 
between the Kalman filter and our own improved filter are made in Appendix II. In the 
end, we chose our own improved filter as the final solution for Step one.  
 
Step two: Predict dose rate time-series for pixels in Category III for the same time step 
as Step one. 
 
Based on Equation (4.1), to predict the dose rates times for pixels in Category III which 
have no historical data, three components are need: (1) initial values (dose rates at 𝑡𝑡 = 0, 
which is b in Equation (4.1)),  (2) the slope of the linear trend (𝒖𝒖 in Equation (4.1)), (3) 
the fluctuation part (𝜺𝜺𝒊𝒊 in Equation (4.1)). So, this prediction step can make up of three 
sub-steps to compute the three components:  
 
(a). Initial values of the time series can be selected from the Integrated Dose Rates map 
of 2014, which was already developed by Wainwright et al. (2017, 2018). 
 
(b). Slope of the linear trend can be predicated using Random Forest with initial values, 
land-use type, x, y coordinate position as predictor variables.  
 
(c). At the same time step, fluctuations around the trends can be predicted by dose rates 
conditioned on the predicted values at the Category I&II pixels, using Gaussian Process 
Model(GPM). GPM assumes that the dose rate values at unmeasured locations follows a 
multivariate normal distribution, and the unobserved variables can be predicted by 
conditioning distribution on the observed variables. 
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Specifically, assume 𝑛𝑛-elements vector 𝐹𝐹1denotes the fluctuation vector for the pixels 
from Category I and II, the 𝑚𝑚-elements vector  𝐹𝐹2 denotes the fluctuation vector for the 
pixels from Category III at the same time step, then the best prediction of 𝐹𝐹2 conditioning 
on 𝐹𝐹1 is 
 F2|1 = μ2 + Σ21Σ11−1(F1 − μ1) (4.22) 

 

 Σ2|1 = Σ22 − Σ21Σ11−1Σ12 
 (4.23) 

 
In the above, F1 is a 𝑛𝑛-elements vector, 𝐹𝐹2|1is a 𝑚𝑚-elements vector,  𝜇𝜇1, 𝜇𝜇2 are prior mean 
vectors which are 0 here, and Σij are covariance matrix between �𝐹𝐹𝑖𝑖,𝐹𝐹𝑗𝑗�. The dimension 
of Σ22 is 𝑚𝑚 × 𝑚𝑚, the dimension of Σ11 is 𝑛𝑛 × 𝑛𝑛, and the dimension of Σ2|1 is 𝑚𝑚 × 𝑚𝑚. 
 
Step three: repeat Step one and Step two for all the time points. 
 
Through the repeating of Step one and two for all the time step, the time series for all the 
pixels (Category II and Category III) can be reconstructed. Alternatively, we can repeat 
step one for all the time steps and then repeat step two for all the time steps. Both ways 
will give the same result. 
 
 
 
4.3.3 Prediction of Trend Slope 
 
In order to estimate the dose rate time-series of pixels in category III, both the fluctuation 
part and the slope of the linear trend need to be estimated. The fluctuation part could be 
estimated through GPM at each time step (will be discussed in section 4.3.5). In this 
section, we investigated how to predict the slope of the linear trend of dose rate time-
series.  For Category I and II pixels, slope of time-series trend can be obtained from 
linear fitting of the measurements. We found that the slope of time-series trend (i.e., 
slope) is correlated with the initial dose rates (i.e., intercept) as shown in Fig. 4.5a. A 
random forest regression was applied to predict the trend (i.e., slope) as a function of the 
intercept, land-use type, spatial coordinates for category III pixels (with no 
measurements). Since the monitoring post datasets are limited in space, we used the car 
survey datasets to characterize the environmental decay trend. 
 
The regression result is presented in Fig. 4.5b, with the predictive performance of 𝑅𝑅2 
equal to 0.934. The random forest method also provides a parameter importance ranking 
in the regression model. We found that the initial dose rate is the most influential factor, 
determining the decay rate (i.e., the slope). The minor contribution is detected from the 
land-use type, and spatial coordinates. 
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Fig. 4.5. Slope prediction result: (a) Slope vs Intercept (initial dose rates); (b) Slope prediction 
using Random Forest vs true value on testing data set, in the Random Forest process, 
indicators are Intercept, land-use type, x,y coordinate position. Data are from TEPCO carborne 
dataset since 2014-01-01. 
In addition, we further investigated the two branches that appear in the correlations 
between the intercept and slope in Fig. 4.5a. We manually separate the data points into 
the two groups: the red cluster (lower part) and blue cluster (upper part) as shown in Fig. 
4.6a. 

 
Fig. 4.6 Slope and intercept correlation and relative distribution: (a) the slope vs intercept 

plot, (b) the spatial distribution of two clusters in (a). In (b), the region closed by lime curves is 
the evacuation zone that is ready to lift, the region closed by yellow curves is evacuation zone 

that still has restriction to return, the region closed by the red curve is the zone of high risk 
that is not allowed to return. 

We found that these two branches correspond the different zones in the region (see Fig. 
4.6b); the Difficult-to-return (or high-risk) zone and Ready/Limited-to-return zone. The 
Difficult-to-return zones have low environmental decay rates (i.e., smaller slopes), even 
though the high initial dose rates are high. It is possibly because the human activities 
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within the Ready-to-return zones mobilized the soil particles and radiocesium, 
accelerating the decay (Saito et al., 2018). In addition, the Difficult-to-return zone is 
dominated by forests, where the environmental decay is reported to be slower (Kinase et 
al., 2014; Saito et al. 2018). As a result, after we included the xy-location, landuse type as 
indicator variables in the random forest model, the two branches in Fig. 4.5a merged and 
we got a good agreement in Fig. 4.5b. 

In order to study the mechanism behind the slope ~ intercept relationship, we went 
through many possible explanations. Firstly, we investigated the influence of the natural 
background. Specifically, when the dose rates level is much higher than the natural 
background, the influence of the natural background can be ignored, then the slope of the 
linear trend equals the ecological half-lives; when the dose rates is not high enough, the 
existence of the background will pull the slope toward zero. As this result, this possible 
explanation predicts that high dose rates have higher slope than the lower dose rates due 
to the influence of natural background. In order to check this, once again, we divided the 
data into three groups: (1) data points that are off the linear trend of Slope ~ Intercept 
(indicated by red points), (2) dose rates in the last day (2580th day) that are higher than 10 
times of the natural background and not in group 1 (indicated by yellow points), (3) dose 
rates in the last day that are lower than 10 times of the natural background and not in 
group 1 (indicated by green points). The three groups are plotted in Fig. 4.7a,b: 

 
Fig. 4.7 (a) Plot of slope vs. intercept; (b) Location map for the three groups; (c) Evacuation 

Zones map. 

In Fig. 4.7a, there are more green points than yellow points, which means most of the 
place in the Ready/Limited-to-return Zones has lower dose rates than 10 times the natural 
background. For these yellow points whose dose rates are far more than 10 times of the 
nature background, their slopes are still varying greatly, which means that the influence 
of natural background can’t tell us the whole story, there probably be other factors that 
influence the slope. 

As for the second possible explanation -- soil influence, we plotted the soil information of 
the Ready/Limited-to-return Zones and Difficult-to-return Zone in Fig. 4.8. As shown in  
Fig. 4.8, the two type of Zones has similar composition of each soil type.  For 



46 

comparison, we also plotted the slope information of the two different Zones, as shown in 
Fig. 4.9. Obviously, the slope of Kuroboku soil (which is the most comman soil type as 
shown in Fig. 4.8) in the Difficult-to-return Zone is slight smaller than the counterpart in 
the Ready/Limited-to-return Zones as indicated in Fig. 4.9. Furthermore, we drew the box 
plot of the intercept (which is equivalent to the initial dose rates under logarithm scale) 
for each soil type, as indicated by Fig. 4.10. In  Fig. 4.10, we could find that the initial 
dose rates are higher in the Difficult-to-return Zone than the  Ready/Limited-to-return 
Zones  for all the soil types.  

Furthermore, we did the one-way ANOVA to check the means of slope/intercept in the 
two groups (Difficult-to-return Zone Vs Ready/Limited-to-return Zones) equal or not.  A 
one-way ANOVA is a test used to determine whether or not there is a statistically 
significant difference between the means of two or more independent groups. If the 
overall p-value from the ANOVA test is less than some significance level (such as 𝛼𝛼 =
0.05), then we have sufficient evidence to say that at least one of the means of the groups 
is different from the others. The result of slope and intercept test is as Table 4.1: 

Table 4.1 One-way ANOVA test of slope/intercept for two groups 

Variable to test Statistic of ANOVA p-value 
Slope 84.43 7.0×10-20 
Intercept 1222.74 3.47×10-227 

 

Therefore, differences in time-series slopes of dose rates under logarithm scale probably 
caused by difference in soil type. Specifically, immature soil is a type of soil that lacks a 
well‐developed profile, usually because it has not had enough time for one to develop by 
normal soil-forming processes, it is characterized by slight weathering of the mineral 
material and generally small amounts of organic matter in the profile (Duchaufour P., 
1982).  Kuroboku soils (black soils rich in humus content) are found on terraces, hills, 
and gentle slopes throughout Japan, soil organic matter also strongly affects the liquid 
limit and plastic limit of Andisols (Aragaki et al., 1987). It is reasonable to infer that the 
high level dose rates radioactive nuclides migrate more easily in the immature soil than 
the Kuroboku soil.  
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Fig. 4.8  Soil type information for (a) Ready/Limited-to-return Zones, (b) Difficult-to-return 
Zone. 

 

 

Fig. 4.9 Box plot of slope for Ready/Limited-to-return Zones vs Difficult-to-return Zone. 
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Fig. 4.10 Box plot of intercept (or initial dose rates) for vs soil type for Ready/limited-to-return 
zone and difficult-to-return zone. 

 

4.3.4 Dose Rate Time-Series Prediction 
 

 

Fig. 4.11 Prediction vs True value for Category II: (a) for pixel 103570 (representing the low 
dose rates pixels) with initial values borrowed from the integrated map; (b) for pixel 103570 
with adjusted initial values from true value, with variance estimated by GPM Python package; 
(c) for pixel 103570 with adjusted the initial values from true value, with variance estimated 
by the mean of the variances of the time-series of the 17 locations;(d) for pixel 103547 
(representing the high dose rates pixels) with adjusted the initial values from true value. In the 
plots, Red line: Measurements; blue dashed line: Prediction; grey band: 95% confidence 
interval. 
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The dose-rate time-series at the Category III pixels are predicted by combining the 
environmental decay rates (i.e., slope) predicted by the random forest and the 
spatiotemporal fluctuations predicted by GPM, results are shown as Fig. 4.11. In Fig. 
4.11a, there is obvious deviation between the prediction and the measurement, that 
discrepancy is due to discrepancy between the initial value extracted from the integrated 
map and the true initial value. After initial value been corrected by the true value, a new 
comparison is presented in Fig. 4.11b. Meanwhile, the confidence interval is exaggerated 
in Fig. 4.11a and Fig. 4.11b, that is due to the over estimation of variance by the GPM 
package in Python (Gaussian Process. scikit-learn 0.24.2., 2011). In this study, we only 
have 17 locations, which led to large uncertainty of estimated variance. Because the GMP 
package doesn’t provide too much flexibility for users, we wrote our own code of 
Kriging method that using the mean of the variances of the time-series of the 17 locations 
instead of the overestimated variance by the GPM package, and got the result as shown in 
Fig. 4.11c and Fig. 4.11d. Comparing Fig. 4.11c and Fig. 4.11d, we can see that Fig. 
4.11d presents a higher Pearson correlation coefficient for higher dose rates, which means 
our algorithm can predict better for higher dose rates pixels, and this conclusion could 
also be found in Fig. 4.5. 

 
Fig. 4.12 provides the predicted spatiotemporal evolution of the dose rates, which is the 
decrease from the initial dose rate at 10 days, 30 days, 80 days and 120 days after the first 
day of this time-series (which is 1156th day after the accident). The color of each pixel 
represents the decrease of dose rates in the log scale, which is heterogeneous across the 
space. The blue/violet region is actually expanding from Fig. 4.12a to Fig. 4.12d, and this 
trend is more obvious north west direction which is supposed to be the high dose rates 
zone, it agrees with the conclusion we draw from Fig. 4.11 that higher dose rates will 
decrease at higher rates.  
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Fig. 4.12 Predicted Dose Rates Decrease for the Study Area: (a) to (d) the dose rate decrease 
from 1156th day to the 1166th,1186th,1236th and 1276th days after the accident. In the color 
bar, negative value means decrease.  

 
4.3.5 Further Discussion 
 
The result in Section 4.3.4 is promising as it provided a way to estimate the radio dose 
rates in the future for any location. It could also provide support for policy makers to 
evaluate the dose exposure at any location within the evacuation zone and decide when to 
lift the evacuation order. Furthermore, the predicted map can merge with the integrated 
map if they are available at the same time point, which will make the dose rates 
distribution information continuous and more accurate. The algorithm to merge 
prediction map with integrated map is provided as 
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⎩
⎪
⎨

⎪
⎧𝑢𝑢′ =

𝑢𝑢1𝜎𝜎22 + 𝑢𝑢2𝜎𝜎12

𝜎𝜎22 + 𝜎𝜎12

𝜎𝜎′2 =
𝜎𝜎22𝜎𝜎12

𝜎𝜎22 + 𝜎𝜎12

 (4.24) 

 
where 𝑢𝑢1,𝜎𝜎1 are predicted value and stand deviation (or uncertainty) from this study, and 
𝑢𝑢2,𝜎𝜎2 are value and stand deviation (or uncertainty) from the integrated map. 
 
Meanwhile, Equation (4.1) can be extended beyond linear trend model. In this study 𝒖𝒖 in 
Equation (4.6) and (4.11) is a constant during each iteration as Equation (4.1) is a linear 
trend model. If the trend in Equation (4.1) is not linear, then 𝑢𝑢 in Equation (4.6) and 
(4.11)  can be obtained by the difference the trend and is not a constant in general, this 
extends our model’s versatility. 
 
As the last point, the observation matrix 𝐻𝐻 can be extended to incorporate multiscale 
measurement, which make our model can be extended to integrated different type of 
measurement. i.e.,  
 

 𝑍𝑍𝑖𝑖 = �𝐻𝐻𝑖𝑖,𝑗𝑗𝑋𝑋𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑚𝑚𝑖𝑖 (4.25) 

 
For different type of measurement, 𝐻𝐻𝑖𝑖,𝑗𝑗 is different and was constructed in the same way 
as in Equation (2.2). 
 
 
4.4 Conclusions 
 
In this chapter, we have verified the spatial correlation of the dose rates time-series and 
developed the methodology to predict spatial-temporal distribution of the dose rates using 
a combination of algorithms, based on the Gaussian process models and our own 
improved filter. We found that: (1) dose rate time-series for a single pixel can be modeled 
as a linear decay trend with random fluctuations around the trend, the linear trend is 
primarily dependent on the initial dose rate (in 2014), and the fluctuation of radiation 
dose rates are spatially correlated among adjacent monitoring posts, (2) the our own 
improved filter can be applied for the dose rates prediction/integration in the pixels with 
part or fully historical data set (pixels in Category I&II), (3) the environmental decay rate 
(i.e., the slope of log-linear trend) can be predicted using the random forest method as a 
function of the initial dose rate, land-use type, and the spatial coordinates as predictors, 
(4) the fluctuations of the time series from the linear trend at the Category III pixels can 
be predicted using the Gaussian Process Model. As a summary, our method can 
successfully estimate the air dose rates continuously over time at the location without 
monitoring posts. As it is able to estimate the dose rates for any location at any time, this 
methodology can be used as a general methodology either for improving the existing 
optimization method or dose rates exposure evaluation for the purpose of planning the 
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return of evacuated residents. 
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5 Conclusion 
 
Radiation monitoring has been continuously performed for over ten years since the 
Fukushima Daiichi Nuclear Power Plant accident, which resulted in a large volume of 
datasets. Analyzing huge-volume data sets, and optimizing the existing monitoring 
network are critical for and scheduling the return of evacuated people. The research studies 
presented in this thesis solved three challenges that emerged from radiation monitoring 
after the FDNPP accident. 
 
First, we extended the existing multiscale-dataset-integration approach to improve 
computational efficiency, including parallelization. We simplified the matrix expression of 
the result and improved the computing efficiency, making it hundreds of times faster and 
enabling it to be run on a PC. Furthermore, the new approach can easily be implemented 
simply by slightly revising the existing computation code. We not only saved 
computational resources in dealing with this problem, but also provided a possible solution 
in the future for similar problems. 
 
Then, we developed a sensor network optimization method for optimizing monitoring 
locations of air-dose rates by reaching its local optima, making it feasible to use fewer 
sensors (approximately half the original number) in monitoring the region without losing 
much spatial information. Since long-term monitoring plays an important role in 
confirming the stability of the contaminant distribution, and in the reduction of radiation 
levels to the public, this optimization method makes a significant contribution to protecting 
public health and to supporting the local community. Furthermore, this method could be 
extended and generalized to other contamination problems that involve reducing the 
number of monitoring locations or optimally placing mobile measurements. 
 
Finally, we further studied the spatial-temporal heterogeneity of environmental decay 
across the regions that had not been analyzed in previous studies. Our model can provide 
a dose-rate time-series estimation for a specific location at given time, something which 
was not available in previous studies. This is critical for exposure evaluations, essential for 
the public’s safe return to the evacuation zone. We also identified the key factors 
controlling environmental decay rates and investigated a possible explanation for the 
dependence of decay rates on soil types and other factors. Such a perspective could be very 
helpful in understanding ecological decay mechanisms. 
 
Overall, this dissertation provided efficient solutions to resolve the three challenges related 
to long-term radiation monitoring strategies after nuclear power plant accidents, and it 
could provide useful suggestions to decision-makers working on long-term monitoring 
programs after nuclear power plant accidents. 
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Appendix I 
 

This appendix is to show that the result got by Bayesian hierarchical approach (section 
2.3) equals the result of our new approach (section 2.4). which is to prove 
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As the first step, we first show that  
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which is also to prove  
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= Σ𝑐𝑐(𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)−1 

As Σ𝑐𝑐 is invertible, it can be canceled the right sides, we have 

 (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)−1 = 𝐼𝐼 − (𝐴𝐴𝑇𝑇 , 𝐶𝐶𝑇𝑇) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝐴𝐴Σ𝑐𝑐𝐶𝐶Σ𝑐𝑐
� (A.4) 

 

Both side multiplying by  (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐), we have 

 𝐼𝐼 = (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐) �𝐼𝐼 − (𝐴𝐴𝑇𝑇 , 𝐶𝐶𝑇𝑇) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝐴𝐴Σ𝑐𝑐𝐶𝐶Σ𝑐𝑐
�� (A.5) 

 

After expansion, Equation (A.5) can be simplified as 

 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶 = (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)(𝐴𝐴𝑇𝑇, 𝐶𝐶𝑇𝑇) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝐴𝐴𝐶𝐶� (A.6) 
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which is  

 (𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1, 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1) �𝐴𝐴𝐶𝐶� = (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)(𝐴𝐴𝑇𝑇, 𝐶𝐶𝑇𝑇) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

�𝐴𝐴𝐶𝐶� (A.7) 
 

As �𝐴𝐴𝐶𝐶� has more columns than rows, the only solution for Equation (A.7) is 

 (𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1, 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1) = (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)(𝐴𝐴𝑇𝑇, 𝐶𝐶𝑇𝑇) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
�
−1

 (A.8) 
 

Multiplied by �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
� on both sides of (A.8), we have 

 (𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1, 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1) �𝐴𝐴Σ𝑐𝑐𝐴𝐴
𝑇𝑇 + 𝐷𝐷𝐴𝐴 𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇

𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶
� = (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)(𝐴𝐴𝑇𝑇, 𝐶𝐶𝑇𝑇) (A.9) 

 

The left side of Equation (A.9) becomes a row vector: 

 �𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1(𝐴𝐴Σ𝑐𝑐𝐴𝐴𝑇𝑇 + 𝐷𝐷𝐴𝐴) + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 ,

𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1(𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 + 𝐷𝐷𝐶𝐶)�
= (𝐴𝐴𝑇𝑇 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐𝐴𝐴𝑇𝑇 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 ,𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇
+   𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇) 

(A.10) 

 

The right side of Equation (A.9) become another row vector 

 

 (𝐼𝐼 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐)(𝐴𝐴𝑇𝑇 , 𝐶𝐶𝑇𝑇)
= (𝐴𝐴𝑇𝑇 + 𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐𝐴𝐴𝑇𝑇 + 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐𝐴𝐴𝑇𝑇 ,𝐶𝐶𝑇𝑇
+ 𝐶𝐶𝑇𝑇𝐷𝐷𝐶𝐶−1𝐶𝐶Σ𝑐𝑐𝐶𝐶𝑇𝑇 +  𝐴𝐴𝑇𝑇𝐷𝐷𝐴𝐴−1𝐴𝐴Σ𝑐𝑐𝐶𝐶𝑇𝑇) 

(A.11) 

 

Compare the right side of Equation (A.10) and (A.11), they are same. So, we have proved 
Equation (A.9)  which is equation to prove  Equation (A.1)
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Appendix II 
 

The appendix provides the Comparison of standard Kalman filter and our own improved 
filter. 

Problem description: 

We have 17 locations (n=17), the dose rates at time step t is 𝑋𝑋𝑡𝑡 = �
𝑥𝑥0
⋮
𝑥𝑥16

�, we want to 

predict 𝑥𝑥10,⋯ , 𝑥𝑥16 conditioning on 𝑥𝑥0,⋯ , 𝑥𝑥9, using standard Kalman Filter, set 

 

 𝑍𝑍𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑣𝑣𝑡𝑡 (A.12) 
 

Where 𝐻𝐻𝑡𝑡 = �𝐼𝐼𝑝𝑝×𝑝𝑝, 0𝑝𝑝×(𝑛𝑛−𝑝𝑝)� = �
1 0 ⋯ 0

⋱ ⋮ ⋱ ⋮
1 0 ⋯ 0

�, and 𝑝𝑝 = 10, 𝑛𝑛 = 17 here. 

𝑣𝑣𝑡𝑡 is the measurement errors, and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑡𝑡, 𝑣𝑣𝑠𝑠) = 𝑅𝑅𝑡𝑡 ⋅ 1(𝑡𝑡 == 𝑠𝑠). In our problem, 𝑅𝑅𝑡𝑡 =
0𝑝𝑝×𝑝𝑝, but for genelization, we keep 𝑅𝑅𝑡𝑡 here. 

 

(1). Standard Kalman Filter  

 𝑋𝑋𝑡𝑡+1 = 𝐹𝐹𝑋𝑋𝑡𝑡 + 𝑢𝑢 + 𝑤𝑤𝑡𝑡 (A.13) 
 

and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑡𝑡,𝑤𝑤𝑠𝑠) = Qt ⋅ 1(𝑡𝑡 == 𝑠𝑠) 

 𝑍𝑍𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑣𝑣𝑡𝑡 (A.14) 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑡𝑡, 𝑣𝑣𝑠𝑠) = 𝑅𝑅𝑡𝑡 ⋅ 1(𝑡𝑡 == 𝑠𝑠). In our problem, 𝑅𝑅𝑡𝑡 = 0. 

It can be solved by two steps: 

(a). Predict Step: 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝑢𝑢 
 

(A.15) 

 𝑃𝑃�𝑡𝑡+1|𝑡𝑡 = 𝑃𝑃�𝑡𝑡|𝑡𝑡 + Qt (A.16) 
 

(b). Update Step 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1�𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� (A.17) 
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 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1|𝑡𝑡(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑇𝑇 + 𝐾𝐾𝑡𝑡+1𝑅𝑅𝑡𝑡+1𝐾𝐾𝑡𝑡+1𝑇𝑇  (A.18) 
 

Where the gain matrix is given by 

 𝐾𝐾𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 �𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1�
−1

 (A.19) 
 

 

Write 𝑃𝑃𝑡𝑡+1|𝑡𝑡 = �
𝑃𝑃𝑝𝑝×𝑝𝑝 𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)

𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
� in blocks form. Then, 

 
𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 = �

𝑃𝑃𝑝𝑝×𝑝𝑝 𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)
𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)

� �
𝐼𝐼𝑝𝑝×𝑝𝑝

0(𝑛𝑛−𝑝𝑝)×𝑝𝑝
� = �

𝑃𝑃𝑝𝑝×𝑝𝑝
𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝

� (A.20) 

 

and 𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 = 𝑃𝑃𝑝𝑝×𝑝𝑝, then the Kalman Gain becomes 

 
𝐾𝐾𝑡𝑡+1 = �

𝑃𝑃𝑝𝑝×𝑝𝑝
𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝

� �𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1

 (A.21) 

 

And 

  

 
𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1 = 𝐼𝐼 − �

𝑃𝑃𝑝𝑝×𝑝𝑝
𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝

� �𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
�𝐼𝐼𝑝𝑝×𝑝𝑝, 0𝑝𝑝×(𝑛𝑛−𝑝𝑝)�

= �
𝑅𝑅𝑡𝑡�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
0

−𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1

𝐼𝐼(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
� 

(A.22) 

 

So, plug above into 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1, (A.22)  can be re-written as 

 (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1|𝑡𝑡(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑇𝑇 = �
𝐵𝐵𝑝𝑝×𝑝𝑝 𝐵𝐵𝑝𝑝×(𝑛𝑛−𝑝𝑝)

𝐵𝐵(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝐵𝐵(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
� (A.23) 

 

Here, 𝐵𝐵𝑝𝑝×𝑝𝑝 = 𝑅𝑅𝑡𝑡�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑃𝑃𝑝𝑝×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
𝑅𝑅𝑡𝑡, 

𝐵𝐵𝑝𝑝×(𝑛𝑛−𝑝𝑝) = 𝑅𝑅𝑡𝑡�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑅𝑅𝑡𝑡�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝), and  𝐵𝐵(𝑛𝑛−𝑝𝑝)×𝑝𝑝 = �𝐵𝐵𝑝𝑝×(𝑛𝑛−𝑝𝑝)�

𝑇𝑇
. 

We really care about 𝐵𝐵(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) because its diagonal elements is the predicted 
uncertainty for (𝑥𝑥10,⋯ , 𝑥𝑥16).  
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 𝐵𝐵(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) = 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑃𝑃𝑝𝑝×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)���������������������������������

(1)

− 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)���������������������

(2)

− 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)���������������������

(3)

+ 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)���������
(4)

= 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)�������������������������������

(𝐼𝐼)

− 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�
−1
𝑅𝑅𝑡𝑡�𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)�������������������������������

(𝐼𝐼𝐼𝐼)

 

(A.24) 

 

We can see that the first term (green, term (I)) of (A.24) is kriging variance (with nugget 
effect), and the second term(blue, term(II)) is not defined, and will be 0 when 𝑅𝑅𝑡𝑡 = 0. 

So, when 𝑅𝑅𝑡𝑡 = 0, the predicted variance equals kriging variance. 

Special case: 𝐑𝐑𝐭𝐭 = 𝟎𝟎 

When  𝑅𝑅𝑡𝑡 = 0,   𝐵𝐵𝑝𝑝×𝑝𝑝 = 0, 𝐵𝐵𝑝𝑝×(𝑛𝑛−𝑝𝑝) = 0,  𝐾𝐾𝑡𝑡+1𝑅𝑅𝑡𝑡+1𝐾𝐾𝑡𝑡+1𝑇𝑇 = 0, and then  

 
𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = �

0𝑝𝑝×𝑝𝑝 0𝑝𝑝×(𝑛𝑛−𝑝𝑝)

0(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)

� (A.25) 

 

Then, due to  
 

 𝑃𝑃�𝑡𝑡+1|𝑡𝑡 = 𝑃𝑃�𝑡𝑡|𝑡𝑡 + Qt (A.26) 
 

We have   

 𝑃𝑃�𝑡𝑡+1|𝑡𝑡

= �
𝑄𝑄𝑝𝑝×𝑝𝑝 𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)

𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) + �𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)�

 
(A.27

) 

 

Then,  
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 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1 = 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)

𝑡𝑡+1|𝑡𝑡 − 𝑃𝑃�𝑡𝑡+1|𝑡𝑡
(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃�𝑝𝑝×𝑝𝑝

𝑡𝑡+1|𝑡𝑡�
−1
𝑃𝑃�𝑝𝑝×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡

= �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)

+ �𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)��

− 𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)

= �𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)�

+ �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)�

= 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡|𝑡𝑡 

+ �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)� 

(A.28) 

 

 

So, each iteration of  𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1  , it will add a term �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) −

𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)�, 

Which is to say  

 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑡𝑡 + 1)

× �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)� 

(A.29) 

 

The constant is determined by the initial state of the covariance, which is to say, 

 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∝ √𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (A.30) 
 

So we have a plot like  

 
Fig. A.1 The plot of prediction (𝑋𝑋𝑡𝑡)  with uncertainty width (𝜇𝜇 − 2𝜎𝜎, 𝜇𝜇 + 2𝜎𝜎), where 𝜇𝜇 is the 

mean of 𝑋𝑋𝑡𝑡 over the plot range. 

The prediction of 𝑋𝑋𝑡𝑡: 
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 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝑢𝑢 (A.31) 
 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1�𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� (A.32) 
 

Then, �𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� = �
𝑥𝑥1
⋮
𝑥𝑥𝑝𝑝
�
𝑡𝑡+1

− �
𝑥𝑥�1
⋮
𝑥𝑥�𝑝𝑝
�

𝑡𝑡+1|𝑡𝑡

 (with hat is prediction, without hat 

is observation)and 𝐾𝐾𝑡𝑡+1 = �
𝑃𝑃𝑝𝑝×𝑝𝑝

𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝
� �𝑃𝑃𝑝𝑝×𝑝𝑝 + 𝑅𝑅𝑡𝑡�

−1
= �

𝐼𝐼𝑝𝑝×𝑝𝑝

𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝𝑃𝑃𝑝𝑝×𝑝𝑝
−1 � ( ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑡𝑡 = 0) 

Then,  

 

𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 =

⎝

⎜
⎛

𝑥𝑥�1
⋮
𝑥𝑥�𝑝𝑝
⋮
𝑥𝑥�𝑛𝑛⎠

⎟
⎞

𝑡𝑡+1|𝑡𝑡

+ �
𝐼𝐼𝑝𝑝×𝑝𝑝

𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝𝑃𝑃𝑝𝑝×𝑝𝑝
−1 ���

𝑥𝑥1
⋮
𝑥𝑥𝑝𝑝
�
𝑡𝑡+1

− �
𝑥𝑥�1
⋮
𝑥𝑥�𝑝𝑝
�

𝑡𝑡+1|𝑡𝑡

�

= �

𝑥𝑥1
⋮
𝑥𝑥𝑝𝑝

𝑥𝑥�𝑡𝑡+1|𝑡𝑡[(𝑝𝑝 + 1):𝑛𝑛] − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝𝑃𝑃𝑝𝑝×𝑝𝑝
−1 �𝑥𝑥[(𝑝𝑝 + 1):𝑛𝑛] − 𝑥𝑥�𝑡𝑡+1|𝑡𝑡[(𝑝𝑝 + 1):𝑛𝑛]� 

� 

 

(A.33) 

 

where we define  𝑥𝑥�𝑡𝑡+1|𝑡𝑡[(𝑝𝑝 + 1):𝑛𝑛] = �
𝑥𝑥�𝑝𝑝+1
⋮
𝑥𝑥�𝑛𝑛

�

𝑡𝑡+1|𝑡𝑡

 

The red term in (A.33) is exactly the same as the kriging prediction. So, we predicted that 
the standard Kalman filter will give exactly the same prediction as kriging method (it is 
easy to verify that the standard kalman filter is still kriging even when 𝑹𝑹𝒕𝒕 ≠ 𝟎𝟎, but 
the covariance matrix used are different)  

(2). Our Own Improved Filter 

The only difference is the update step: 

 𝑃𝑃�𝑡𝑡+1|𝑡𝑡 = 𝑃𝑃�𝑡𝑡|𝑡𝑡 + Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ (A.34) 

Where 2Σ = Qt,  

We calculated that  
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 Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ

= �
Σp×p�Σp×p + 𝑅𝑅𝑡𝑡�

−1
Σp×p Σp×p�Σp×p + 𝑅𝑅𝑡𝑡�

−1
Σp×(n−p)

Σ(n−p)×p�Σp×p + 𝑅𝑅𝑡𝑡�
−1
Σp×p Σ(n−p)×p�Σp×p + 𝑅𝑅𝑡𝑡�

−1
Σp×(n−p)

�

= �
Σp×p Σp×(n−p)

Σ(n−p)×p Σ(n−p)×pΣp×p
−1  Σp×(n−p)

� (𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅𝑡𝑡 = 0) 

(A.35) 

 

So, when 𝑅𝑅𝑡𝑡 = 0, 

 
𝑃𝑃�𝑡𝑡+1|𝑡𝑡 = 𝑃𝑃�𝑡𝑡|𝑡𝑡 + �

Σp×p Σp×(n−p)

Σ(n−p)×p Σ(n−p)×pΣp×p
−1  Σp×(n−p)

� (A.36) 

 

Similar to equation (A.29),  

 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑡𝑡 + 1)

× �𝑄𝑄(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑄𝑄(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑄𝑄𝑝𝑝×𝑝𝑝�
−1
𝑄𝑄𝑝𝑝×(𝑛𝑛−𝑝𝑝)� 

(A.37) 

 

Where  𝑄𝑄 is replaced by �
Σp×p Σp×(n−p)

Σ(n−p)×p Σ(n−p)×pΣp×p
−1  Σp×(n−p)

�, we have 

 

 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑡𝑡 + 1)

× �Σ(n−p)×pΣp×p
−1  Σp×(n−p) − Σ(n−p)×pΣp×p

−1  Σp×(n−p)�
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝑡𝑡 + 1) × 0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(A.38) 

 

(it is also easy to verify that the covariance 𝑃𝑃�(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝)
𝑡𝑡+1|𝑡𝑡+1  is constant when 𝑅𝑅𝑡𝑡  ≠ 0) 

Equation (A.38) explained why our filter will give a constant covariance(uncertainty). 

For prediction of 𝑋𝑋𝑡𝑡: 

As we have previous calculated  in Equation (A.33): 

𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = �

𝑥𝑥1
⋮
𝑥𝑥𝑝𝑝

𝑥𝑥�𝑡𝑡+1|𝑡𝑡[(𝑝𝑝 + 1):𝑛𝑛] − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝𝑃𝑃𝑝𝑝×𝑝𝑝
−1 �𝑥𝑥[(𝑝𝑝 + 1):𝑛𝑛] − 𝑥𝑥�𝑡𝑡+1|𝑡𝑡[(𝑝𝑝 + 1):𝑛𝑛]� 

� 

Which only evolves 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑝𝑝×𝑝𝑝
−1  (upper left and off-diagonal terms of matrix 

P). We also found that  
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𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = �

0𝑝𝑝×𝑝𝑝 0𝑝𝑝×(𝑛𝑛−𝑝𝑝)

0(𝑛𝑛−𝑝𝑝)×𝑝𝑝 𝑃𝑃(𝑛𝑛−𝑝𝑝)×(𝑛𝑛−𝑝𝑝) − 𝑃𝑃(𝑛𝑛−𝑝𝑝)×𝑝𝑝�𝑃𝑃𝑝𝑝×𝑝𝑝�
−1
𝑃𝑃𝑝𝑝×(𝑛𝑛−𝑝𝑝)

� (A.39) 

 

So, the difference of our filter with standard Kalman filter is that, Kalman filter adds 𝑄𝑄𝑡𝑡 
to 𝑃𝑃𝑡𝑡|𝑡𝑡(or 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1) in each time step, while our filter adds  

 

 
�

Σp×p Σp×(n−p)

Σ(n−p)×p Σ(n−p)×pΣp×p
−1  Σp×(n−p)

�

= �

1
2

Qp×p
1
2

Qp×(n−p)

1
2

Q(n−p)×pQp×p
−1  Qp×(n−p) Σ(n−p)×pΣp×p

−1  Σp×(n−p)

� 
(A.40) 

 

 to 𝑃𝑃𝑡𝑡|𝑡𝑡 in each time step. The lower right term(green term) is different with lower right of 
𝑄𝑄𝑡𝑡, but it doesn’t matter because the kriging prediction of 𝑋𝑋𝑡𝑡 only determined  by the 
upper left term and two off-diagonal terms of covariance matrix. In a word, our filter will 
give the same prediction of 𝑋𝑋𝑡𝑡 as standard Kalman filter. 

 

Conclusion: 

 

1. When 𝑅𝑅𝑡𝑡 = 0, the standard Kalman filter will give the same prediction as kriging 
method for 𝑥𝑥10,⋯ , 𝑥𝑥16. When 𝑅𝑅𝑡𝑡 ≠ 0, the standard kalman filter is still Kriging 
method but difference covariance matrix predicted and used, so the prediction will 
be different with kriging. 

2. When 𝑅𝑅𝑡𝑡 = 0, the covariance given by standard Kalman filter will increase 
linearly with step 𝑡𝑡. the uncertainty is 𝛿𝛿 ∝ √𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

3. whether 𝑅𝑅𝑡𝑡 = 0 or not, Our Filter will give a constant covariance matrix 
(uncertainty, confident interval width)  

4. When 𝑅𝑅𝑡𝑡 = 0, the prediction of 𝑋𝑋𝑡𝑡 given by standard Kalman fitler, our Filter and 
kriging method, are the same. 
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Appendix III 
 
This appendix provides the mathematical support for our new filter for dose rates temporal 
prediction. 
 

1. Problem and Assumptions 

Let 𝑋𝑋𝑡𝑡  to be the dose rates vector of all the pixels at time step 𝑡𝑡,  and 𝑋𝑋𝑡𝑡 = �
𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛
�, where 

𝑛𝑛 is the total number of pixels. 

 𝑋𝑋𝑡𝑡 = 𝑇𝑇𝑡𝑡 + 𝜀𝜀𝑡𝑡 (A.41) 
 

Where, we assume 𝑇𝑇𝑡𝑡 = 𝑢𝑢 ∙ 𝑡𝑡 + 𝑏𝑏 is a linear trend , 𝜀𝜀𝑡𝑡 is the random noise and  

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑡𝑡,𝑋𝑋𝑠𝑠) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑡𝑡, 𝜀𝜀𝑠𝑠) = �Σ, 𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑠𝑠
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (A.42) 

from equation (A.41), we have 

𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡 = (𝑇𝑇𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1) − (𝑇𝑇𝑡𝑡 − 𝜀𝜀𝑡𝑡) = (𝑇𝑇𝑡𝑡+1 − 𝑇𝑇𝑡𝑡) + 𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 = 𝑢𝑢 + 𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 

or, 

 𝑋𝑋𝑡𝑡+1 = 𝐹𝐹𝑋𝑋𝑡𝑡 + 𝑢𝑢 + 𝑤𝑤𝑡𝑡 (A.43) 
 

where 𝑢𝑢 is the average dose rate reduction per day; in this problem, 𝐹𝐹 = 1; (𝐹𝐹 was put 
here just to be consistent with a standard Kalman filter) 

 𝑤𝑤𝑡𝑡 = 𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 (A.44) 
 

It is easy to prove that 

 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑠𝑠,𝑤𝑤𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑠𝑠+1 − 𝜀𝜀𝑠𝑠, 𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡) = �

2Σ, 𝑖𝑖𝑖𝑖 t = s
−Σ, 𝑖𝑖𝑖𝑖 |𝑡𝑡 − 𝑠𝑠| = 1
0,            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (A.45) 

 

(Equation (A.45) above is different with Equation (A.43) in Ian Reid’s lecture notes) 

and 

 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋𝑡𝑡,𝑤𝑤𝑠𝑠) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑡𝑡, 𝜀𝜀𝑠𝑠+1 − 𝜀𝜀𝑠𝑠) = �

Σ,            𝑖𝑖𝑖𝑖 t = s + 1
−Σ, 𝑖𝑖𝑖𝑖 t = s
0,            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (A.46) 
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the measurement vector 𝑍𝑍𝑡𝑡 represents 𝑘𝑘 measurements 

 𝑍𝑍𝑡𝑡 = 𝐻𝐻𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑣𝑣𝑡𝑡 (A.47) 
 

𝐻𝐻𝑡𝑡 is 𝑘𝑘 × 𝑛𝑛 matrix,  where  

  𝐻𝐻𝑡𝑡(𝑖𝑖, : ) =

�
(0,⋯ ,1,⋯ 0),                   𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑗𝑗 
�0,⋯ , 1

𝑚𝑚
,⋯ , 1

𝑚𝑚
⋯0� ,    𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

(A.48) 

 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑣𝑣𝑡𝑡, 𝑣𝑣𝑠𝑠) = �𝑅𝑅𝑡𝑡 , 𝑡𝑡 = 𝑠𝑠
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (A.49) 

 

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑡𝑡,𝑣𝑣𝑠𝑠) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡, 𝑠𝑠 (A.50) 
 

Where 𝑅𝑅𝑡𝑡 is a 𝑘𝑘 × 𝑘𝑘 diagonal matrix. 

In Equation (A.48), if the 𝑖𝑖𝑡𝑡ℎ elements of 𝑍𝑍𝑡𝑡 is a point measurement, such as fixed-points 
measurement, monitoring post, walk survey, and that measurement locates within the 𝑗𝑗𝑡𝑡ℎ 

pixel., then 𝐻𝐻𝑡𝑡(𝑖𝑖, 𝑙𝑙) = �1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑙𝑙 = 𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ;  if the 𝑖𝑖𝑡𝑡ℎ elements of 𝑍𝑍𝑡𝑡 is car or airborne survey, 

it can be represented as a weighted average of pixels around, i.e., for 𝑗𝑗𝑡𝑡ℎ
(1), 𝑗𝑗𝑡𝑡ℎ

(2),⋯ , 𝑗𝑗𝑡𝑡ℎ
(𝑚𝑚) 

pixel with weight 𝑤𝑤1,⋯𝑤𝑤𝑚𝑚, then 𝐻𝐻𝑡𝑡(𝑖𝑖, 𝑙𝑙) = �𝑤𝑤𝑡𝑡, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑙𝑙 = 𝑗𝑗(𝑡𝑡),𝑓𝑓𝑓𝑓𝑓𝑓  𝑡𝑡 = 1,2,⋯𝑚𝑚
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

. 

 

The initial system state has a known mean 𝑋𝑋0|0 and covariance matrix 𝑃𝑃0|0 

 
�
𝑋𝑋0|0 = 𝐸𝐸[𝑋𝑋0]

𝑃𝑃0|0 = 𝐸𝐸[�𝑋𝑋0|0 − 𝑋𝑋0��𝑋𝑋0|0 − 𝑋𝑋0�
𝑇𝑇

]
 (A.51) 

 

Given the above assumptions the task is to determine, given a set of observations 
𝑍𝑍1,⋯𝑍𝑍𝑡𝑡+1, the estimation filter that at the (𝑡𝑡 + 1)𝑡𝑡ℎinstance in time generates an optimal 
estimate of the state 𝑋𝑋𝑡𝑡+1, which we denote by 𝑋𝑋�𝑡𝑡+1, that minimizes the expectation of 
the squared-error loss function 

 𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1�
2
� = 𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1�

𝑇𝑇
� (A.52) 

 
2. Derivation 



72 

The prediction of state 𝑋𝑋𝑡𝑡+1 based on the observations up to time 𝑡𝑡, 𝑍𝑍1,⋯𝑍𝑍𝑡𝑡 namely 
𝑋𝑋�𝑡𝑡+1|𝑍𝑍𝑡𝑡, where 𝑍𝑍𝑡𝑡 = [𝑍𝑍1,⋯𝑍𝑍𝑡𝑡] .  

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝐸𝐸[𝑋𝑋𝑡𝑡+1|𝑍𝑍1,𝑍𝑍2,⋯𝑍𝑍𝑘𝑘] = 𝐸𝐸[𝑋𝑋𝑡𝑡+1|𝑍𝑍𝑡𝑡] (A.53) 
 

Then the Predicted state is given by 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝐸𝐸[𝑋𝑋𝑡𝑡+1|𝑍𝑍𝑡𝑡] = 𝐸𝐸[𝐹𝐹𝑡𝑡𝑋𝑋𝑡𝑡 + 𝐺𝐺𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡]
= 𝐹𝐹𝑡𝑡𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝐺𝐺𝑡𝑡𝑢𝑢𝑡𝑡 + 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡) 

(A.54) 

 

 𝑃𝑃𝑡𝑡+1|𝑡𝑡 = 𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= 𝐸𝐸 ��𝐹𝐹𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑤𝑤𝑡𝑡 − 𝐹𝐹𝑡𝑡𝑋𝑋�𝑡𝑡|𝑡𝑡

− 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)� �𝐹𝐹𝑡𝑡𝑋𝑋𝑡𝑡 + 𝑤𝑤𝑡𝑡 − 𝐹𝐹𝑡𝑡𝑋𝑋�𝑡𝑡|𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= 𝐸𝐸 ��𝐹𝐹𝑡𝑡�𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡�

+ �𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�� �𝐹𝐹𝑡𝑡�𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡�

+ �𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)��
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= 𝐹𝐹𝑡𝑡𝑃𝑃𝑡𝑡|𝑡𝑡𝐹𝐹𝑡𝑡𝑇𝑇 + 𝐸𝐸 ��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇
�𝑍𝑍𝑡𝑡����������������������������

(1)

+ 2𝐸𝐸 �𝐹𝐹𝑡𝑡�𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡����������������������������
(2)

 

(A.55) 

 

Item (1) in Equation (A.55) can be simplified as 

 𝐸𝐸 ��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇
�𝑍𝑍𝑡𝑡�

= 𝐸𝐸[‖𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡]
= 𝐸𝐸[‖𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 − 𝐸𝐸[−𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡]
= 𝐸𝐸[‖𝜀𝜀𝑡𝑡+1‖2|𝑍𝑍𝑡𝑡] + 𝐸𝐸[‖𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡]
+ 𝐸𝐸[𝜀𝜀𝑡𝑡+1(𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡])𝑇𝑇|𝑍𝑍𝑡𝑡]
= 𝐸𝐸[‖𝜀𝜀𝑡𝑡+1‖2] + 𝐸𝐸[‖𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡] + 0
= Σ + Σ − Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht

T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ
= 2Σ − Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht

T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ 

(A.56) 

 

Note, 𝐸𝐸[‖𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡] in equation (A.56) is calculated by  

 𝐸𝐸[‖𝜀𝜀𝑡𝑡 − 𝐸𝐸[𝜀𝜀𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡] = 𝐸𝐸[‖𝑋𝑋𝑡𝑡 − 𝐸𝐸[𝑋𝑋𝑡𝑡||𝑍𝑍𝑡𝑡]‖2|𝑍𝑍𝑡𝑡] = Σ𝑋𝑋𝑡𝑡|𝑍𝑍𝑡𝑡 = Σ𝑋𝑋𝑡𝑡|𝑍𝑍𝑡𝑡
= Σ𝑋𝑋𝑋𝑋 − Σ𝑋𝑋𝑋𝑋Σ𝑍𝑍𝑍𝑍−1Σ𝑍𝑍𝑍𝑍
= Σ − Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht

T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ 
(A.57) 
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, which is also called the Kriging variance. 

Item (2) in Equation (A.55) can be simplified as 

 

 2𝐸𝐸 �𝐹𝐹𝑡𝑡�𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= 2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝑤𝑤𝑡𝑡 − 𝐸𝐸(𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= 2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡 − 𝐸𝐸(𝜀𝜀𝑡𝑡+1 − 𝜀𝜀𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= −2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝜀𝜀𝑡𝑡 − 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡� =

= −2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��(𝑇𝑇𝑡𝑡 + 𝜀𝜀𝑡𝑡) − 𝐸𝐸(𝑇𝑇𝑡𝑡 + 𝜀𝜀𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

== −2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝑋𝑋𝑡𝑡 − 𝐸𝐸(𝑋𝑋𝑡𝑡|𝑍𝑍𝑡𝑡)�
𝑇𝑇

|𝑍𝑍𝑡𝑡�

= −2𝐹𝐹𝑡𝑡 ∙ 𝐸𝐸 ��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡��𝑋𝑋𝑡𝑡 − 𝑋𝑋�𝑡𝑡|𝑡𝑡�
𝑇𝑇

|𝑍𝑍𝑡𝑡� = −2𝐹𝐹 ∙ Σ𝑋𝑋𝑡𝑡|𝑍𝑍𝑡𝑡

=  −2F ∙ Σ + 2F ∙ Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ 

(A.58) 

 

Plug Equation (A.58), (A.56) into Equation (A.55), we have 

 𝑃𝑃𝑡𝑡+1|𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑃𝑃𝑡𝑡|𝑡𝑡𝐹𝐹𝑡𝑡𝑇𝑇 + 2(1 − 𝐹𝐹)Σ + (2F − 1)Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1

∙ 𝐻𝐻𝑡𝑡 ∙ Σ 
(A.59) 

 

In our problem, 𝐹𝐹 = 1, Equation (A.59) can be even simplified as 

 𝑃𝑃𝑡𝑡+1|𝑡𝑡 = 𝐹𝐹𝑡𝑡𝑃𝑃𝑡𝑡|𝑡𝑡𝐹𝐹𝑡𝑡𝑇𝑇 + Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ (A.60) 

 

Then, we assume that the estimation of 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 is a linear weighted sum of 𝐾𝐾𝑡𝑡+1 and 
𝐾𝐾𝑡𝑡+1′ , 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝐾𝐾𝑡𝑡+1′ 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1𝑍𝑍𝑡𝑡+1 (A.61) 
 

Where 𝐾𝐾𝑡𝑡+1′  and 𝐾𝐾𝑡𝑡+1 are weighting or gain matrices (of different sizes). Our problem 
now is reduced to finding the 𝐾𝐾𝑡𝑡+1′  and 𝐾𝐾𝑡𝑡+1 that minimize the conditional mean squared 
estimation error where of course the estimation error is given by: 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 − 𝑋𝑋𝑘𝑘+1 (A.62) 
 

3. The Unbiased Condition 

Four the filter to be unbiased, we require that 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1� = 𝐸𝐸(𝑋𝑋𝑘𝑘+1) 
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 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1� = 𝐸𝐸�𝐾𝐾𝑡𝑡+1′ 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1𝑋𝑋𝑡𝑡+1 + 𝐾𝐾𝑡𝑡+1𝑣𝑣𝑡𝑡+1�
= 𝐾𝐾𝑡𝑡+1′ 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡� + 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1𝐸𝐸[𝑋𝑋𝑡𝑡+1] + 𝐾𝐾𝑡𝑡+1𝐸𝐸[𝑣𝑣𝑡𝑡+1]
= 𝐾𝐾𝑡𝑡+1′ 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡� + 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1𝐸𝐸[𝑋𝑋𝑡𝑡+1] 

(A.63) 

 

The prediction is unbiased because 

 

 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡� = 𝐸𝐸[𝐹𝐹𝑡𝑡𝑋𝑋𝑡𝑡 + 𝐺𝐺𝑡𝑡𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡]
= 𝐹𝐹𝑡𝑡𝐸𝐸�𝑋𝑋𝑡𝑡|𝑡𝑡� + 𝐺𝐺𝑡𝑡𝑢𝑢𝑡𝑡 + 𝐸𝐸[𝐸𝐸[𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡]] = 𝐹𝐹𝑡𝑡𝐸𝐸�𝑋𝑋𝑡𝑡|𝑡𝑡� + 𝐺𝐺𝑡𝑡𝑢𝑢𝑡𝑡
= 𝐸𝐸[𝑋𝑋𝑡𝑡+1] 

(A.64) 

 

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐸𝐸[𝐸𝐸[𝑤𝑤𝑡𝑡|𝑍𝑍𝑡𝑡]] = 0) 

Combine Equation (A.63) and (A.64), 

 𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1� = (𝐾𝐾𝑡𝑡+1′ + 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝐸𝐸[𝑋𝑋𝑡𝑡+1] (A.65) 
 

The condition that 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 be unbiased reduce the requirement to 

 𝐾𝐾𝑡𝑡+1′ + 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1 = 𝐼𝐼 𝑜𝑜𝑜𝑜 𝐾𝐾𝑡𝑡+1′ = 𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1 (A.66) 
 

Then, Equation (A.61) can be rewritten as  
 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1𝑍𝑍𝑡𝑡+1
= 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1(𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1)𝑋𝑋�𝑡𝑡+1|𝑡𝑡 

(A.67) 

 

𝐾𝐾𝑡𝑡+1 above is known as Kalman Gain. 

4. The Error Covariance 

 

 𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1 − �(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1𝑍𝑍𝑡𝑡+1�
= 𝑋𝑋𝑡𝑡+1
− �(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1(𝐻𝐻𝑡𝑡+1𝑋𝑋𝑡𝑡+1 + 𝑣𝑣𝑡𝑡+1)�
= (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)�𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� − 𝐾𝐾𝑡𝑡+1𝑣𝑣𝑡𝑡+1 

(A.68) 

 

So, the updated covariance matrix is 
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 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = 𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1�
𝑇𝑇
�

= 𝐸𝐸 ��(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)�𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� − 𝐾𝐾𝑡𝑡+1𝑣𝑣𝑡𝑡+1�
2
�

= (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡�
2
� (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑇𝑇

+ 𝐾𝐾𝑡𝑡+1𝐸𝐸[‖𝑣𝑣𝑡𝑡+1‖2]𝐾𝐾𝑡𝑡+1𝑇𝑇

− 2(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝐸𝐸��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡�𝑣𝑣𝑡𝑡+1�𝐾𝐾𝑡𝑡+1𝑇𝑇  

(A.69) 

 

and with  

𝐸𝐸[‖𝑣𝑣𝑡𝑡+1‖2] = 𝑅𝑅𝑡𝑡+1
𝐸𝐸 ��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡�

2
� = 𝑃𝑃𝑡𝑡+1|𝑡𝑡

𝐸𝐸��𝑋𝑋𝑡𝑡+1 − 𝑋𝑋�𝑡𝑡+1|𝑡𝑡�𝑣𝑣𝑡𝑡+1� = 0
 

We obtain 

 

 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1|𝑡𝑡(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑇𝑇 + 𝐾𝐾𝑡𝑡+1𝑅𝑅𝑡𝑡+1𝐾𝐾𝑡𝑡+1𝑇𝑇  (A.70) 
 

5. Choose the Kalman Gain 

 𝐿𝐿 = min
𝐾𝐾𝑡𝑡+1

𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1
𝑇𝑇 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1|𝑍𝑍𝑡𝑡+1�

= min
𝐾𝐾𝑡𝑡+1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐸𝐸�𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1
𝑇𝑇 |𝑍𝑍𝑡𝑡+1��  

= min
𝐾𝐾𝑡𝑡+1

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑃𝑃𝑡𝑡+1|𝑡𝑡+1� 
(A.71) 

 

For any matrix 𝐴𝐴 and a symmetric matrix 𝐵𝐵,  

 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇) = 2𝐴𝐴𝐴𝐴 (A.72) 

 

So, 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝐾𝐾𝑡𝑡+1

= −2(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 2𝐾𝐾𝑡𝑡+1𝑅𝑅𝑡𝑡+1 = 0 (A.73) 

 

Re-arranging gives an equation for the gain matrix 

 𝐾𝐾𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 �𝐻𝐻𝑡𝑡+1𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1�
−1

 (A.74) 
 

6. Summary for Key Equations of Each Step 
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Predict Step: 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 = 𝑋𝑋�𝑡𝑡|𝑡𝑡 + 𝑢𝑢 (A.75) 
 

 𝑃𝑃�𝑡𝑡+1|𝑡𝑡 = 𝑃𝑃�𝑡𝑡|𝑡𝑡 + Σ ∙ 𝐻𝐻𝑡𝑡𝑇𝑇 ∙ (𝐻𝐻𝑡𝑡 ∙ Σ ∙ Ht
T + 𝑅𝑅𝑡𝑡)−1 ∙ 𝐻𝐻𝑡𝑡 ∙ Σ (A.76) 

 

Update Step 

 𝑋𝑋�𝑡𝑡+1|𝑡𝑡+1 = 𝑋𝑋�𝑡𝑡+1|𝑡𝑡 + 𝐾𝐾𝑡𝑡+1�𝑍𝑍𝑡𝑡+1 − 𝐻𝐻𝑡𝑡+1 𝑋𝑋�𝑡𝑡+1|𝑡𝑡� (A.77) 
 

 𝑃𝑃𝑡𝑡+1|𝑡𝑡+1 = (𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑃𝑃𝑡𝑡+1|𝑡𝑡(𝐼𝐼 − 𝐾𝐾𝑡𝑡+1𝐻𝐻𝑡𝑡+1)𝑇𝑇 + 𝐾𝐾𝑡𝑡+1𝑅𝑅𝑡𝑡+1𝐾𝐾𝑡𝑡+1𝑇𝑇  (A.78) 
 

Where the gain matrix is given by 

 𝐾𝐾𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 �𝐻𝐻𝑡𝑡𝑃𝑃𝑡𝑡+1|𝑡𝑡𝐻𝐻𝑡𝑡+1𝑇𝑇 + 𝑅𝑅𝑡𝑡+1�
−1

 (A.79) 
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