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CONGRUENCE MODULES IN HIGHER CODIMENSION AND

ZETA LINES IN GALOIS COHOMOLOGY

SRIKANTH B. IYENGAR, CHANDRASHEKHAR B. KHARE, JEFFREY MANNING,
AND ERIC URBAN

Abstract. This work builds on that in [8] where a notion of congruence mod-

ules in higher codimension is introduced. The main new results are a criterion
for detecting regularity of local rings in terms of congruence modules, and a
more refined version of a result tracking the change of congruence modules
under deformation is proved. Number theoretic applications include the con-
struction of canonical lines in certain Galois cohomology groups arising from
adjoint motives of Hilbert modular forms.

1. Introduction

Let p be a prime number, O the ring of integers of a finite extension of Qp, and
R a complete noetherian local O-algebras with an O-algebra morphism λ : R → O

such that the local ring Rp, where p := Ker(λ), is regular.
In [8] we develop an analog of the Wiles-Lenstra-Diamond numerical criterion

in arbitrary codimension, with the original criterion (see [4, 15]) corresponding to
the codimension 0 case. This gives a criterion for finitely generated R-module M
to have a free direct summand and for R to be a complete intersection ring. This
involves two invariants associated to λ: the torsion Φλ(R) of the cotangent space
of λ, and the congruence module Ψλ(M). The codimension c of the augmentation
λ is the height of p, or equivalently under our regularity assumption, the dimension
of Rp. We denote the category of such pairs (R, λ) by CO(c). The earlier work of
[4] corresponds to the case c = 0 in which case p/p2 = Φλ(R).

Wiles uses the criterion in his work on the modularity of elliptic curves over Q
to go from modularity lifting theorems in the minimal case to those in the non-
minimal case. In [8] the numerical criterion in higher codimension is used along
the same lines to prove integral modularity lifting results for non-minimal lifts in
situations of positive defect which arise in considering Galois representations over
imaginary quadratic fields.

In this work we explore the meaning of the invariants Φλ(R) and Ψλ(M) in
certain number theoretic situations, relating them to the index of zeta elements in
global Galois cohomology groups.

To begin with we focus on one of the key ideas of [8], namely the definition and
properties of congruence modules, and congruence ideals, associated to an augmen-
tation λ in arbitrary codimension. This is the content of Section 2. The highlights
are a characterisation, Theorem 2.6, of regularity of rings (A, λ) in our category
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CO(c) in terms of vanishing of the invariants Φλ(A) and Ψλ(A)); a more trans-
parent description, in §2.10, of the connection between duality and our congruence
modules than in the earlier paper, and a refinement, Theorem 2.32, of a result
about deformation invariance of Wiles defect.

Section 3 focuses on number theoretic applications, and concerns the congru-
ence ideal attached to an augmentation of Hida’s ordinary Hecke algebra Tord, or
ordinary deformation ring Rord, arising from cohomological Hilbert modular forms
f over totally real fields F . The functorial properties of the congruence ideal are
used to relate it to lines (that is to say, free O-modules of rank one) in the Ga-
lois cohomology with coefficients in ad ρf ; see Theorem 3.7. The index of their
image under global-to-local restriction maps to singular local Galois cohomology
H1

ord/f (Gp, ad ρf ) is related to classical congruence module of f , and to special

values of adjoint L-function

Lalg(1, ad ρf ) ,

by work of Hida [7] and its generalization by Dimitrov [5]. This is connected to the
“zeta elements” of [14, Theorem 1.1]. The terminology is due to Kato [9], who used
it for elements of Galois cohomology he constructs in a related context, arising from
Beilinson-Flach classes. In [14] exact sequences of Selmer groups are used while here
we use in addition our congruence modules in higher codimension, allowing one to
eliminate some hypotheses which arise from relying on R = T theorems.

This connection arises from the following circumstance. Let t := t1, . . . , tc be
indeterminates, Λc := O[[t]] the power-series ring, and Λc → O the natural augmen-
tation. Fix (A, λ) in CO(c) equipped with a finite flat map ι : Λc → A of O-algebras
over O, so that composite map

Λc
ι

−−→ A
λ

−−→ O ,

is the augmentation. For A0 = A/(t) one has a map

ExtcA(O, A)(= A0[kerλ]) →

c∧

O

Hom(p/p2,O) ,

whose cokernel is Ψλ(A). Abstractly both domain and range are simply O’s. In
applications when A is a nearly ordinary deformation ring and λ arises from the
classical form f , the range is a Selmer group as Hom(p/p2,O) = H1

L
(GF,S , ad ρf ),

with local conditions L = (Lv) such that Lv ⊂ H1(Gv, ad ρf) for v ∈ S and Lv is
the unramified subspaceH1

unr(Gv, ad ρf ) for v not in S. When A is a nearly ordinary
Hecke algebra Hom(p/p2,O) is a subspace of H1(GF,S , ad ρf ). This gives a “pure
thought” construction of canonical lines in Galois cohomology; see Theorem 3.7.

2. Higher congruence modules and Wiles defects

We being by recalling the setup of [8]. This section complements the material
presented in [8, Part 1], where the commutative algebraic aspects of the theory of
congruence modules is developed. There are some new results, the main ones being
Theorems 2.6 and 2.32, and Proposition 2.20. Along the way we provide also a
different perspective and new proofs of some key results from [8].

2.1. Let O be a complete discrete valuation ring, with valuation ord(−) and uni-
formizer̟. Throughout we fix a complete localO-algebraA and a finitely generated
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A-module M . Given a map λ : A → O of O-algebras, set

pλ := Kerλ and c := height pλ .

For any finitely generated A-module M , set

Fi
λ(M) := ExtiA(O,M)

tf

the torsion-free quotient of the O-module ExtiA(O,M). Here O is viewed as an
A-module via λ. The congruence module of M at λ is the O-module

Ψλ(M) := coker

(
Fc
λ(M)

Fc
λ(λ⊗M)

−−−−−−−→ Fc
λ(M/pλM)

)
.

We have also to consider O-module

Φλ(A) := tors(pλ/p
2
λ) ,

namely, the torsion part of the cotangent module pλ/p
2
λ of λ.

We say an A-module M has a certain property at λ if the Apλ
-module Mpλ

has the stated property. For instance we say A is regular at λ to mean that the
local ring Apλ

is regular. The starting point of our work is the following result; see
[8, Theorem 2.5 and Lemma 2.6].

Theorem 2.2. With λ : A → O as above, the following conditions are equivalent:

(1) The local ring A is regular at λ.
(2) The rank of the O-module pλ/p

2
λ is height pλ.

(3) The O-module Ψλ(A) is torsion.

(4) The O-module Ψλ(M) is torsion for each finitely generated A-module M .

Moreover, when these conditions hold the O-module Ψλ(A) is cyclic. �

Condition (2) is that the embedding dimension of the ring Apλ
equals its Krull

dimension, so (1)⇔(2) is one definition of regularity; see [2, Definition 2.2.1]. The
key input in proving (1)⇔(3) is the following result due to Lescot [10]; see also [1].

2.3. A noetherian local ring R is regular if and only if the map

ExtR(k,R) −→ ExtR(k, k)

induced by the canonical surjection R → k to the residue field of R, is nonzero.
When this is the case, the map above is nonzero in (upper) degree dimR.

The result below is implicit in the proof of (1)⇒(4) in Theorem 2.2, in [8]. We
make it explicit, for it is used also in proving Lemma 2.5 and Theorem 2.6 below.

Lemma 2.4. Let ε : R → S be a surjective map of noetherian rings such that the

ideal Ker(ε) is generated by a regular sequence, and set c := dimR − dimS. For

any R-module M the map below is bijective:

ExtcR(S, ε⊗R M) : ExtcR(S,M) −→ ExtcR(S, S ⊗R M) .

Proof. The Koszul complex, say K, on any regular sequence generating Ker(ε) is
a minimal resolution of S as an R-module. The map ExtcR(S, ε ⊗R M) is the one
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obtained in cohomology in (upper) degree c from the morphism in the upper row
of the following commutative diagram of complexes:

HomR(K,M) HomR(K,S ⊗R M)

HomR(K,R)⊗R M HomR(K,R)⊗R (S ⊗R M)

HomR(K,ε⊗M)

∼=

HomR(K,R)⊗(ε⊗M)

∼=

The vertical maps are isomorphisms because K is a finite free R-complex. It is
clear that the map in the lower row induces a bijection in cohomology in the top
degree, c. Thus the same holds for the one in the upper row, as claimed. �

We denote CO the category whose objects are pairs (A, λ) satisfying the equiv-
alent conditions in Theorem 2.2. A morphism ϕ : (A, λ) → (A′, λ′) in this category
is a map of O-algebras ϕ : A → A′ over O; that is to say, with λ′ ◦ϕ = λ. We write
CO(c) for the subcategory of CO consists of pairs (A, λ) such that height pλ = c.

Lemma 2.5. For any (A, λ) in CO(c) and finitely generated A-module M the map

Fc
λ(λ⊗A M) : Fc

λ(M) −→ Fc
λ(M/pλM)

is one-to-one.

Proof. Set R := Apλ
and let ε : R → E be the map obtained by localizing λ at

pλ; here E is the residue field of R, which is also the field of fractions of O. Since
injectivity of a map of torsion-free O-modules can be detected after passing to the
field of fractions, it suffices to check that the map

Fc
λ(λ⊗A M)pλ

∼= ExtcR(E, ε⊗R M)

is one-to-one. Since R is regular the ideal Ker(ε) is generated by a regular sequence
of length c; see [2, Proposition 2.2.4]. It remains to apply Lemma 2.4. �

In the work of Hida [7] and Ribet [12] congruence modules (for codimension
c = 0) are attached to augmentations T → O of Hecke algebras T that act faithfully
on certain localized Betti cohomology groups H1(X1(N),O)m. They measure the
complexity of T and their vanishing is equivalent to T being smooth, namely just
O. Analogously we show in the result below that for rings A ∈ CO the vanishing of
either the congruence module Ψλ(A) or Φλ(A), the torsion part of the cotangent
module, at any augmentation λ : A → O implies A is smooth.

Unlike most results in [8, Part 1], the following theorem does not make assump-
tions on the depth of the ring A.

Theorem 2.6. For (A, λ) in CO, the local ring A is regular if and only if Φλ(A) =
0, if and only if Ψλ(A) = 0.

Proof. We first verify that A is regular if and only if Φλ(A) = 0. As A is a complete
O-algebra, one has A ∼= P/I where P := O[[t1, . . . , tn]], a ring of formal power series
over O, the ideal I ⊆ (̟)(t) + (t)2, and λ : A → O is quotient by (t).

Let f := f1, . . . , fm be a minimal generating set for I. The cotangent module
pλ/p

2
λ depends only on n and the linear part of the fi, in the following sense: By

our assumption on I, each fi has an unique expression of the form

(2.7) fi :=

n∑

j=1

uijtj + gi with uij ∈ (̟)O and gi ∈ (t)2.
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Then one has a presentation

O
m (uij)

−−−−→ O
n −→ pλ/p

2
λ −→ 0 .

The torsion part of pλ/p
2
λ is zero if and only if (uij) = 0, that is to say, (f ) ⊆ (t)2.

Since A is regular at λ this condition is equivalent to f = 0, as desired.
Next we verify the claim that A is regular if and only if Ψλ(A) = 0.
When A is regular, Ker(λ : A → O) is generated by a regular sequence of length

c := height(Kerλ); see [2, Proposition 2.2.4]. Thus Lemma 2.4 yields that the map
ExtcA(O, λ) is one-to-one so Ψλ(A) = 0.

Assume Ψλ(A) = 0. To verify that A is regular it suffices to verify that the map

ExtA(k, ε) : ExtA(k,A) → ExtA(k, k) ,

induced by the quotient map ε : A → k, is non-zero, for then Lescot’s result 2.3.
Let M be a finitely generated A-module. The exact sequence

(2.8) 0 −→ O
̟

−−→ O −→ k −→ 0

of A-modules induces exact sequences of k-modules

0 −→ k ⊗O ExtiA(O,M)
ð
i+1(M)

−−−−−−−→ ExtiA(k,M) −→ Exti+1
A (O,M)[̟] −→ 0

For what follows the relevant point is that the maps ði(M) are inclusions. Set
c := height(pλ) and consider the following commutative diagram of k-vector spaces:

k ⊗O ExtcA(O, A) k ⊗O ExtcA(O,O)

Extc+1
A (k,A) Extc+1

A (k,O) Extc+1
A (k, k)

ð(A) ð(O)

Extc+1

A
(k,ε)

The map in the top row is induced by λ : A → O and the ones in the lower row
are induced by A → O → k. That the map in the lower right is one-to-one
follows by considering the long exact sequence in cohomology that arises by applying
HomA(k,−) to the exact sequence (2.8). It is easy to verify that the hypothesis
Ψλ(A) = 0 implies the map in the top row is nonzero, and hence so is the diagonal
map. It then follows from the commutative diagram that the map Extc+1

A (k, ε) is
nonzero. This is as desired. �

Remark 2.9. Consider the ordinary Hida Hecke algebra Tord of tame level N . It is
finite flat over Λ := O[[t]], with t the weight variable, and Tord/(t) = T is a classical
Hecke algebra, acting faithfully on H1(X1(Np),O)m. Consider an augmentation
λ : Tord → T → O arising from a (p-stabilized) newform f ∈ S1(Γ1(Npr)). The
vanishing of the congruence module of T for the augmentation T → O implies T = O

and Tord = Λ while the vanishing of the congruence module for Tord → O implies
that Tord is smooth, while T may not be smooth. In other words Ψλ(T

ord) = 0
implies Tord = O[[x]], furthermore x can be taken to be the weight variable t if and
only if the classical congruence module Ψλ(T) = 0 also vanishes.

Next we describe a pairing associated with the definition of congruence modules.
This too appears in [8], but does not play a major role in the development there.
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The presentation below is more transparent, and is used to give another perspective
on some of the subsequent results.

2.10. For any finitely generated A-module M , one has natural isomorphisms

ExtcA(O,M/pλM)
tf ∼= ExtcA(O,O)

tf
⊗O (M/pλM)

tf

∼= HomO(HomO(M,O),ExtcA(O,O)
tf
) .

Thus, the map

Fc
λ(λ⊗M) : ExtcA(O,M) −→ ExtcA(O,M/pλM)

tf

whose cokernel is the congruence module of M , is adjoint to the map

〈−,−〉M : ExtcA(O,M)
tf
⊗O HomA(M,O) −→ ExtcA(O,O)

tf
.

The congruence ideal of M , with respect to the augmentation λ, is the image of
this pairing:

ηλ(M) := Image〈−,−〉M .

Localizing at pλ, it is easy to verify that the free O-modules Fc
λ(M) and HomA(M,O)

have the same rank and that Fc
λ(O) has rank one, so

lengthO(O/ηλ(M)) ≤ lengthO Ψλ(M) ≤ rankλ(M) · lengthO(O/ηλ(M)) .

Here rankλ(M) denotes the rank of M at λ, that is to say, the rank of the Aλ-
module Mpλ

. In particular, when this rank equals 1, the length of the congruence
module can be computed from the pairing.

The pairing above is induced–by passage to torsion-free quotients–by the natural
pairing given by composition of morphisms:

(2.11) 〈−,−〉M : ExtcA(O,M)⊗O HomA(M,O) −→ ExtcA(O,O) .

Namely, ExtcA(O,M) can be realized as HomD(O,M [c]), the morphisms in the de-
rived category of A from O to M [c], and given such a morphism f and a map
g : M → O, the pairing above is

〈f, g〉 := g ◦ f : O → O[c] .

In terms of the Yoneda interpretation of ExtcA(O,M) as equivalence classes

0 −→ M −→ Xc−1 −→ Xc−1 −→ · · · −→ X0 −→ O −→ 0

of exact sequences, the pairing is given by taking push-out along g : M → O.

Cohen-Macaulay modules. When M is Cohen-Macaulay of dimension c + 1, local
duality yields an identification

HomA(O,M) ∼= ExtcA(O,M
∨) where M∨ ∼= Hc+1(RHomA(M,ωA))

Here ωA is the dualizing complex of A, normalized as in [13]; see [8, §4] for details.
With this identification, the pairing (2.11) takes the form

(2.12) 〈−,−〉 : ExtcA(O,M)⊗O ExtcA(O,M
∨) −→ ExtcA(O,O) .

See [8, Proposition 4.7].
The pairing (2.11) can be described concretely when c ≤ 1. One simplification

that occurs then is that Ext1A(O,O) is already torsion-free, as is explained below.
Consider the exact sequence

(2.13) 0 −→ pλ −→ A −→ O −→ 0 .
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Applying HomA(−,M) yields the exact sequence

M ∼= HomA(A,M) −→ HomA(pλ,M) −→ Ext1A(O,M) −→ Ext1A(A,M) = 0 .

This justifies the following result.

Lemma 2.14. For any c ≥ 0, and any A-module M , there is a natural isomorphism

of O-modules

Ext1A(O,M) ∼= coker(M → Hom(pλ,M)) . �

The isomorphism above assigns to any A-linear map f : pλ → M the exact
sequence obtained by push-out of the exact sequence in (2.13) along f :

0 pλ A O 0

0 M X O 0

f

The natural map O → HomA(pλ,O) is zero, so for M := O the isomorphism in
Lemma 2.14 becomes

(2.15) Ext1A(O,O)
∼= HomA(pλ,O) ∼= HomO(pλ/p

2
λ,O)

which is already torsion-free.
Now we return to the pairing (2.11).

The case c = 0. Since HomA(O,M) = M [pλ], the pλ-torsion submodule of M ,
the pairing (2.11) becomes

M [pλ]⊗O HomA(M,O) −→ O

m⊗ f 7→ f(m)

When depthA M ≥ 1, one has M∨ ∼= HomO(M,O) this pairing is equivalent to the
one given by the composition

M [pλ]⊗O M∨[pλ] −→ M ⊗O M∨ −→ O

where the map on the right is the obvious one.

The case c = 1. With this description, for c = 1 the pairing (2.11) is induced by
the obvious pairing

HomA(p,M)⊗A HomA(M,O) −→ HomA(p,O) ∼= HomO(p/p
2,O)

given by composition of maps. Since Ext1A(O,O) is torsion-free, as in the case c = 0
the ideal ηλ(M) is just the image of the pairing above.

Structure of F∗A(O). A key input in the development of the commutative algebraic
properties of the congruence module is a structure theorem for F∗A(O). The Yoneda
product gives Ext∗A(O,O) the structure of a graded O-algebra, and this is inherited
by its torsion-free quotient, F∗λ(O). The remarkable fact [8, Theorem 6.8] is that
although the Ext-algebra itself can be highly non-commutative, and infinite, F∗λ(O)
is just an exterior algebra generated by its degree one component

F1
λ(O)

∼= HomO(pλ/p
2
λ,O) .

See 2.15 for the isomorphism above. As explained in [8, Introduction], this may be
seen an an integral version of a result, due to Serre, on the structure of the Ext
algebra of a regular local ring. The proof of this structure theorem for F∗λ(O) uses
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ideas from the theory of differential graded algebras. For the present purpose the
important takeaway is that there is an natural isomorphism of O-modules

(2.16)

c∧
HomO(pλ/p

2
λ,O)

∼=
−−→ Fc

λ(O) .

The naturality assertion is that given any morphism ϕ : (A, λ) → (A′, λ′) in CO(c),
the induced map pλ/p

2
λ → pλ′/pλ′ gives rise to commutative square
∧c

HomO(pλ/p
2
λ,O) Fc

λ(O)

∧c
HomO(pλ′/p2λ′ ,O) Fc

λ′(O)

∼=

∼=

of maps of O-modules. This leads to the following invariance of domain property
for congruence modules; see [8, Theorem 7.4].

Theorem 2.17. Given a surjective map ϕ : (A, λ) → (A′, λ′) in CO(c), and an

A′-module M ′ with depthA′ M ′ ≥ c, there is a natural isomorphism of O-modules

Ψλ′(M ′) ∼= Ψλ(M
′). �

Since ϕ is surjective, pλ · A′ = Kerλ′. The hypotheses in the statement above
imply that ϕpλ

: Apλ
→ A′pλ

is surjective map of regular local rings of dimension c
and hence an isomorphism.

Freeness criterion. Fix (A, λ) in CO and a finitely generated A-module M . For
any A-module X one has a map

ExtcA(O, X)⊗O (M/pλM) ∼= ExtcA(O, X)⊗A M −→ ExtcA(O, X ⊗A M)

where the one on the right is a Künneth map. This is functorial in X , and one gets
the commutative diagram below:

ExtcA(O, A)
tf
⊗O (M/pλM)

tf
ExtcA(O,O)

tf
⊗O (M/pλM)

tf

ExtcA(O,M)
tf

ExtcA(O,M/pλM)
tf

The horizontal maps are one-to-one, by Lemma 2.5. Moreover, the one on right
is an isomorphism, as can be verified easily. It follows that the map on the left is
one-to-one. This justifies the following result.

Lemma 2.18. The diagram above induces a natural surjective map of O-modules

aλ(M) : Ψλ(A)
µ
։ Ψλ(M) , where µ := rankλ(M).

In particular there is an equality

length
O
Ψλ(M) = µ · length

O
Ψλ(A)− length

O
Ker(aλ(M)) . �

When A is Gorenstein and M is maximal Cohen-Macaulay, Ker(aλ(M)) can be
interpretted as a“stable” cohomology module of the pair (A,M). This identification
leads to the criterion below for detecting free summands of M ; see [8, Theorem 9.2].

Theorem 2.19. With notation as above, when A Gorenstein and M is maximal

Cohen–Macaulay, lengthO Ψλ(M) = µ · lengthO Ψλ(A) if and only if

M ∼= Aµ ⊕W and Wpλ
= 0,

as A-modules. In this case, when µ 6= 0 the A-module M is faithful. �
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Isomorphism criteria. The preceding results leads to a criterion for detecting
isomorphisms between rings, in terms of congruence modules.

Proposition 2.20. Let ϕ : A → B be a surjective map of complete local O-algebra.

Assume there exists an augmentation λ : B → O such that (A, λϕ) and (B, λ) are

in CO(c) for some c ≥ 0, and either of the following conditions hold:

(1) The ring A is Gorenstein, B is Cohen-Macaulay, and

lengthO Ψλϕ(A) = lengthO Ψλ(B) ;

(2) The ring B is complete intersection and

lengthO Φλϕ(A) = lengthO Φλ(B) .

Then the map ϕ is an isomorphism.

Proof. (1) The hypotheses imply that ϕ is an isomorphism at λϕ so rankλϕ B = 1.
Thus Theorem 2.19 implies that B is a faithful A-module, so Kerϕ = (0).

(2) is an simple argument using the Jacobi-Zariski sequence arising from maps
A → B → O and Nakayama’s Lemma; see [8, Lemma 5.10] for details. �

The isomorphism (2.16) is also a critical input in tracking the behavior of con-
gruence modules under deformations.

Deformations. Fix (A, λ) in CO(c) and elements f := f1, . . . , fn in pλ such that
their residue classes in the O-module pλ/p

2
λ form a linearly independent set. Set

A := A/fA. The augmentation λ : A → O factors throughA so we an augmentation
λ : A → O. The hypotheses on f is equivalent to saying that the pair (A, λ) is in
CO(c− n); see [8, §8]. A straightforward computation yields an equality

(2.21) lengthO Φλ(A) = lengthO Φλ(A) +
∑

i

ord(fi) ,

where ord(fi) is the order of fi in pλ/p
2
λ, defined by

(̟ord(fi))O = {α(fi)|α ∈ HomO(pλ/p
2
λ,O)};

see [8, §8.5].

Theorem 2.22. In the context above, let M be a finitely generated A-module with

depthA M ≥ c+ 1 and set M := M/fM . If f is M -regular, then

lengthO Ψλ(M) = lengthO Ψλ(M) + (rankλ M)
∑

i

ord(fi) .

Sketch of proof. It is enough to consider the case when n = 1. One first reduces to
the case when f is not a zerodivisor on A as well; this uses the invariance of domain
property for congruence modules, Theorem 2.17. See [8, Proof of Theorem 8.2] for
details. The essence of the argument is captured c = 1, so we start with a sketch
of the proof in that context. Since f is in pλ, and it is not a zerodivisor on A nor
on M one gets the isomorphism on the right:

coker(M → Hom(pλ,M))
∼=
−−→ Ext1A(O,M)

∼=
−−→ HomA0

(O,M0)

The one on the left is from Lemma 2.14. It is straightforward to check that the
composite isomorphism is induced by the assignment

α 7→ −α(f) mod fM for α ∈ HomA(pλ,M).
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Consider the commutative diagram

HomA(pλ,M)⊗A HomA(M,O) HomO(pλ/p
2
λ,O)

M [pλ]⊗A HomA(M,O) O

α7→α(f) ∼= ∼= β 7→β(f)

The image of the vertical map on the right is precisely the order ideal of f , that is
to say, (̟ord(f)). Since Ψλ(M) and Ψλ(M) are cokernel of the maps adjoint to the
top and bottom row, respectively, the desired equality follows.

To tackle the general case where c ≥ 2, consider a commutative diagram analo-
gous to the one above:

ExtcA(O,M)⊗A HomA(M,O) ExtcA(O,O) Fc
λ(O)

Extc−1
A

(O,M)⊗A HomA(M,O) Extc−1
A

(O,O) Fc−1

λ
(O)

∼=∼=

The isomorphism on the left is by [2, Lemma 1.2.4]. What is left is to identify the
vertical map on the right, and this exploits the isomorphism (2.16). �

Wiles defect. Fix a pair (A, λ) in CO and a finitely generated A-module M . Since
A is regular at pλ, and in particular a domain, the Apλ

-module Mpλ
has a rank.

The Wiles defect of M at λ is the integer

δλ(M) := rankλ(M) · lengthO Φλ(A)− lengthO Ψλ(M) .

In particular the Wiles defect of A at λ is

lengthO Φλ(A)− lengthO Ψλ(A) .

We refer to [8, Introduction] for a discussion on precedents to this definition.
Theorem 2.22 and (2.21) give the following result, which is [8, Theorem 8.2]:

Theorem 2.23. One has δλ(M/fM) = δλ(M) for M,f as in Theorem 2.22. �

Also, Theorem 2.17 implies the following (which is [8, Theorem 7.4]):

Lemma 2.24. If ϕ : (A′, λ′) → (A, λ) is a surjective map in CO(c), then

δλ′(M) ≥ δλ(M)

with equality if and only if Φλ′(A′) ∼= Φλ(A) holds. �

With aλ(M) as in (2.25), one gets a “defect formula”:

(2.25) δλ(M) = rankλ(M) · δλ(A) + lengthO Ker(aλ(M)) .

In particular δλ(M) ≥ 0 for all M if and only if δλ(A) ≥ 0.

Theorem 2.26. When (A, λ) ∈ CO(c) with depthA ≥ c + 1 one has δλ(A) ≥ 0,
and equality holds if and only if A is complete intersection.

In [8] this result was proved by reduction to the case c = 0, using Theorem 2.22.
Here is an alternative argument, under the slightly more restrictive case where A
is Cohen-Macaulay (so dimA = c+1), that argues by “going up” to a regular ring.



CONGRUENCE MODULES AND GALOIS COHOMOLOGY 11

Proof. First we verify that δλ(A) = 0 when A ∈ CO(c) is complete intersection,
that is to say, isomorphic to

O[[t1, . . . , tn]]/(f1, . . . , fm)

for some regular sequence f := f1, . . . , fm in (t). Since A is in CO(c) it follows that
n−m = c and that f satisfies the hypothesis of Theorem 2.22, so we get the first
equality below

δλ(A) = δλε(O[[t]]) = 0 .

The second equality is by Theorem 2.6. This is as desired.
Next we verify that when A is Cohen-Macaulay δλ(A) ≥ 0, and that if equality

holds A is complete intersection. Since dimA = c + 1 one can find a surjection
ε : C → A where C is a complete intersection in CO(c) and ε induces an isomorphism
Φλε(C) ∼= Φλ(A); see [8, Theorem 5.6]. Thus

lengthO Ψλε(C) = lengthO Φλε(C)

= lengthO Φλ(A)

= length
O
Ψλ(A) ,

where the first equality holds because C is complete intersection; the second is by
the invariance of domain property 2.17, and the last one is the hypothesis δλ(A) = 0.
Thus Proposition 2.20 yields that ε is an isomorphism. �

Theorem 2.26 extends to modules, in the following sense; this is [8, Theorem 9.6].

Theorem 2.27. When depthA M ≥ c + 1 and Mpλ
6= 0 one has δλ(M) ≥ 0, and

equality holds if and only if A is complete intersection and

M ∼= Aµ ⊕W and Wpλ
= 0.

Sketch of proof. When depthA ≥ c+1 also holds, the inequality δλ(M) ≥ 0 follows
from (2.25) and Theorem 2.26. Given this, the other part of the statement follows
from Theorems 2.26 and 2.19.

The argument in the general case is a reduction to the case where A has positive
depth, and an induction on c. This uses the invariance of domain property and the
behavior of defects under deformations, stated below. �

2.1. Λ-structures. Motivated by number theory, we consider a setting where the
algebra A in CO has additional structure, and give a variant of the computation of
change of congruence modules in §2 on going modulo regular sequences.

Let t := t1, . . . , tc be indeterminates, Λc := O[[t]] the power-series ring, and
Λc → O the natural augmentation. Fix (A, λ) in CO(c) equipped with a finite flat
map ι : Λc → A of O-algebras over O, so that composite map

Λc
ι

−−→ A
λ

−−→ O ,

is the augmentation (that is, so that ι is a morphism in CO(c)). Since ι is flat the
sequence ι(t1), . . . , ι(tc) is A-regular. We assume also that the residue classes of
t in pλ/p

2
λ form a linearly independent set. Thus, setting A0 := A/tA, the map

λ factors through A0, yielding an augmentation λ0 : A0 → O, and (A0, λ0) is in
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CO(0). One gets a commutative diagram of O-algebras

(2.28)

Λc A

O A0 O

ε

ι

α

λ0

all augmented to O, via λ0. We wish to track the change in contangent modules
and congruence modules along α, and we do that by using the diagram above, to
reducing the problem to one about the map ε, where it is trivial, and the map ι,
where it is easier to handle.

In the rest of this discussion we write p and p0 instead of pλ and pλ0
, respectively.

We first discuss the change in cotangent modules in passing from λ to λ0. Since
A0 is regular at λ0, the O-module D2(O/A0,O), the second André-Quillen homology
of the map A0 → O, is torsion. Moreover one has

D1(A0/A,O) ∼= D1(O/Λc,O) ∼= m/m2 where m := (t)Λc.

In particular, this is a free O-module, of rank c. Thus the Jacobi-Zariski sequence
arising from the maps A → A0 → O yields an exact sequence of O-modules

0 −→ m/m2 ι
−−→ p/p2 −→ p0/p

2
0 −→ 0 .

where we use ι also to denote the map induced on cotangent modules by the ring
map ι. One gets an exact sequence

0 −→ m/m2 ι
−−→ (p/p2)

tf
−→ Φλ0

(A0)/Φλ(A) −→ 0 .

From a number theory perspective, it is more natural to consider the exact sequence
obtained by applying (−)∗ := HomO(−,O), namely the sequence

(2.29) 0 −→ (p/p2)∗
ι∗

−−→ (m/m2)∗ −→ Ext1
O
(Φλ0

(A0)/Φλ(A),O) −→ 0 .

On the subcategory of torsion O-modules one has an isomorphism of functors

Ext1O(−,O) ∼= HomO(−, E/O) .

where E is the field of fractions of O. Since the functor on the right preserves
lengths, the computations above yield

(2.30)

lengthO Φλ0
(A0)− lengthO Φλ(A) = lengthO(Φλ0

(A0)/Φλ(A))

= length
O
coker(ι∗)

= lengthO coker(∧cι∗) .

The second equality holds because ι∗ is a map between free O-modules of rank c.
Now we move on to the congruence modules. Given commutative diagram 2.28

of algebras over O and the functorial properties of F−−(O) one gets a commutative
diagram of O-modules

Fc
λι(O) Fc

λ(O)

O = F0
id(O) F0

λ0
(O) = O

∼=

The isomorphism in the lower row is clear from the definitions; the vertical isomor-
phism is by a direct computation. The identity map on O is a canonical generator
for F0

B(O) = HomB(O,O), for any B in CO; this is why we write equalities in the
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last row. Using the commutative diagram above and the functoriality of the map
(2.16), one gets a commutative diagram

∧c
(p/p2)∗ Fc

λ(O)

∧c
(m/m2)∗ F0

λ0
(O)

∼=

∧cι∗

∼=

Consider a finitely generated A-module M such that t is also regular on M and
depthA M ≥ c+1. Setting M0 := M/(t)M and using the identifications above, one
gets a commutative diagram like so:

(2.31)

ExtcA(O,M)⊗O HomA(M,O)
∧c

(p/p2)∗

Ext0A0
(O,M0)⊗O HomA0

(M0,O)
∧c

(m/m2)∗

∼=∼= ∧cι∗

All these lead to the following structural refinement of Theorem 2.22.

Theorem 2.32. Viewing ηλ(M) and ηλ0
(M0) as submodules of ∧c(p/p2)∗ and

∧c(m/m2)∗, respectively, there is an equality

ηλ0
(M0) = (∧cι∗)(ηλ(M)) .

Moreover, with µ := rankλ M there are equalities

lengthO Ψλ0
(M0)− lengthO Ψλ(M) = µ · lengthO coker(∧cι∗)

= µ · (length
O
Φλ0

(A0)− length
O
Φλ(A)) .

Proof. The first part of the proposition is immediate from the commutative dia-
gram (2.31). The second part then follows, given also (2.30). �

3. Zeta lines and congruence modules

We focus on number theory applications of the results in Section 2, notably the
exact sequence (2.29) and Theorem 2.32. The main result is Theorem 3.7. We
begin with Proposition 3.3, which is a simple consequence of the Poitou-Tate exact
sequence and is used to prove Proposition 3.10.

Let F be a number field, S a finite set of places of F , and GF,S the Galois group
of FS/F , the maximal extension of F unramified outside the places above S in an
algebraic closure of F . Fix a prime number p, a finite extension E/Qp, and let O

denote the ring of integers of E. Let A be a O-module, which is finitely or cofinitely
generated, with an action of GF,S . The Pontryagin dual and the twisted Pontryagin
dual of A, respectively, are the GF,S-modules

A∨ := HomO(A,E/O) and A′ = A∨(1) = HomO(A,E/O(1)) .

A Selmer datum for S and A is a collection L = {Lv}v, where Lv is an O-
submodule of H1(Gv, A) for each v ∈ S. The corresponding Selmer group is

H1
L
(F,A) := Ker

(
H1(GF,S , A) −→

∏

v∈S

H1(Gv, A)/Lv

)
.

Local Tate-duality induces the perfect pairing

(3.1) H1(Gv, A)×H1(Gv, A
′) → H2(Gv, E/O(1)) ∼= E/O.
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The dual Selmer datum L
⊥ (for S and A′) is defined with L

⊥
v ⊂ H1(Gv, A

′) the
annihilator of Lv under this pairing. The dual Selmer group of A is H1

L⊥(F,A
′).

For i = 1, 2, set Xi
S(F,A) := Ker

(
Hi(GF,S , A) →

∏
v∈S Hi(Gv, A)

)
. The result

below is standard; see [11, 8.7.9]. The argument is based on notes of Boeckle.

Lemma 3.2. One has an exact sequence

0 → H1
L
(F,A) → H1(GF,S , A) →

∏

v∈S

H1(Gv, A)

Lv
→ H1

L⊥(F,A
′)∨ → X

2
S(F,A) → 0 .

If A is finite, then

#H1
L
(F,A)

#H1
L⊥(F,A′)

=
#H0(F,A)

#H0(F,A′)
·
∏

v∈S

#Lv

#H0(Fv, A)
. �

Given Selmer datum L and L̃ for S and A, we write L ⊆ L̃ if Lv ⊆ L̃v for all v.

Proposition 3.3. Suppose that A is compact or cocompact and that L ⊆ L̃ are

Selmer data. Then one has a natural exact sequence

0 −→
H1

L̃
(S,A)

H1
L
(S,A)

−→
∏

v∈S

L̃v

Lv
−→

(
H1

L⊥(S,A
′)

H1
L̃⊥

(S,A′)

)∨
−→ 0

Proof. From the definitions one gets that the following natural maps are injective:

H1
L(S,A) −→ H1

L̃
(S,A) and H1

L̃⊥
(S,A′) −→ H1

L⊥(S,A
′) .

Setting K := Ker(H1
L⊥(F,A

′)∨ → X
2
S(F,A)) and similarly K̃ with L̃ in place of L,

the naturality of the exact sequence in Lemma 3.2 yields the commutative diagram

0
H1(GF,S , A)

H1
L
(F,A)

∏
v∈S

H1(Gv, A)

Lv
K 0

0
H1(GF,S , A)

H1
L̃
(F,A)

∏
v∈S

H1(Gv, A)

L̃v

K̃ 0

The Snake Lemma yields the exact sequence

0 −→
H1

L̃
(F,A)

H1
L
(F,A)

−→
∏

v∈S

L̃v

Lv
−→ K −→ K̃ −→ 0 .

By applying the Snake Lemma to the commutative diagram

0 K H1
L̃⊥

(F,A′)∨ X
2
S(F,A) 0

0 K̃ H1
L⊥(F,A

′)∨ X
2
S(F,A) 0

and using Pontryagin duality, we obtain isomorphisms

Ker(K → K̃) ∼= Ker(H1
L⊥(F,A

′)∨ → H1
L̃⊥

(F,A′)∨)

∼=

(
H1

L⊥(F,A
′)

H1
L̃⊥

(F,A′)

)∨
,

concluding the proof of the proposition. �
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Nearly ordinary Hilbert modular forms. We specialize to a situation which
corresponds to that of [14]. Thus F is a totally real number field, p an odd prime and
f a nearly ordinary at p, holomorphic and cohomological cuspidal Hilbert modular
newform for GL2(AF ). Our coefficients A as in the section above arise from the
adjoint ad ρf (and ad(ρf ⊗O E/O)) of (an) integral Galois representation

ρf : GF,S → GL2(O)

associated to f and an embedding of Q →֒ Qp. We assume the residual repre-
sentation ρf : GF,S → GL2(k) is irreducible (which implies that it is absolutely
irreducible as ρf is totally odd and p > 2), and thus there is a unique integral
representation ρf associated to f (by a well-known result of Carayol).

We apply the results of the previous section to study the Galois cohomology of
the adjoint representation of ρf with several local conditions at places dividing p.
For each v|p, we fix a decomposition subgroup Dv at v. We call Iv ⊂ Dv the inertia
subgroup, Fv the completion of F at v, and dv its degree over Qp. By nearly
ordinarity of f , for each v|p there exists gv ∈ GL2(O) such that the restriction
to the decomposition subgroup Dv at v of gvρfg

−1
v is upper triangular. We also

assume that it is v-distinguished (that is, the characters appearing on the diagonal
are distinct modulo the uniformizer ̟ of O) and indecomposable. We then consider
the following summands:

F
+
v := {gv

(
0 ∗
0 0

)
g−1v } ⊂ F

0
v := {gv

(
∗ ∗
0 ∗

)
g−1v } ⊂ ad ρf

We denote Gr0v := F
0
v/F

+
v and fix an isomorphism of Dv-modules Gr0v

∼= O. Let B
be a O-module. The ordinary condition H1

ord(Fv, ad ρf ⊗ B) at v is given by the
image ofH1(Fv,F

0
v⊗B) in H1(Fv, ad ρf⊗B), and (in the terminology of Wiles [15])

the Selmer condition H1
Sel(Fv, ad ρf ⊗B) at v is given by the image of

Ker(H1(Fv,F
+
v ⊗B) −→ H1(Iv, Gr0v ⊗B))

in H1
ord(Fv, ad ρf ⊗ B). Since the representation ρf is v-distinguished, we get an

exact sequence:

0 → H1
Sel(Fv , ad ρf ⊗B) → H1

ord(Fv, ad ρf ⊗B) → H1(Iv , B)
Dv
Iv → 0

The orthogonal of the finite Selmer condition H1
Sel⊥

(Fv, ad ρf ⊗ B(1)) and of the

ordinary condition H1
ord⊥(Fv, ad ρf ⊗B(1)) are respectively given by the images of

H1(Fv,F
0
v ⊗B(1)) and of H1(Fv,F

+
v ⊗B(1)) in H1(Fv , ad ρf ⊗B(1)).

Remark 3.4. If the action of Dv on F
+
v is distinct from the cyclotomic character,

then the finite Selmer condition is nothing else but the finite Bloch-Kato condition.
In that case one has

H1
Sel(Fv, ad ρf ⊗B) = H1

f (Fv, ad ρf ⊗B)

H1
Sel⊥(Fv, ad ρf ⊗B(1)) = H1

f (Fv, ad ρf ⊗B(1)) .

Next we interpret some higher congruence modules in terms of Galois cohomology
(local and global) and by applying Theorem 2.32 in the situation described below.
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Congruence modules and Galois cohomology. We recall some ingredients of
the set up of [14]; most of the notation is borrowed from it.

Let κ := (
∑

σ kσ.σ,
∑

σ lσ.σ, ) ∈ Z[ΣF ]
2 be the weight of the cohomological

Hilbert modular cusp form f . We have kσ ≥ 2 for all σ ∈ ΣF and w = kσ + 2lσ
is independent of σ. For such a weight and a OF ′ -algebra S with F ′ the normal
closure of F , we consider the algebraic representation of GL2(OF ′ ):

L(κ, S) :=
⊗

σ

Symkσ−2(S2)⊗ detlσ .

For each neat open compact subgroup K ⊂ GL2(Af ⊗ F ), this defines a local
system L(κ,C) on the Hilbert modular variety

X(K) := GL2(F )\GL2(A⊗ F )/KK∞Z(F )

where Z stands for the center of GL2 and K∞ is the maximal compact (modulo
the center) subgroup of GL2(R⊗ F ).

Let n ⊂ OF be the tame conductor of f . It is a nonzero integral ideal of OF

prime to p. Let Kp
11(n) ⊂ GL2(Ẑ

p ⊗ OF ) be the subgroup of matrices which are

upper unipotent modulo n and where we have written Ẑp for the prime-to-p part
of the profinite completion of Z. We will assume that Kp

11(n) is neat. Let ω be the
central character of the cuspidal representation attached to f . It is an idèle class
character of conductor dividing np∞ and infinity type | · |w.

For each positive integer n, we denote K0(p
n) the subgroup of GL2(OF ⊗Zp) of

matrices which are upper triangular modulo pn and by K1(p
n) its subgroup of those

such that the diagonal entries are congruent modulo pn. We identifyK0(p
n)/K1(p

n)

with (OF /p
nOF )

× via the map

(
a b
c d

)
7→ a−1d.

Let hord
κ (npn, ω) be the nearly ordinary Hecke algebra of level Kp

11(n)K1(p
n),

weight κ and central character ω. We then consider the universal nearly ordinary
Hecke algebra of weight κ and tame level Kp and action of the center given by ω.

hord = hord
κ (n) := lim

←
n

hord
κ (npn)

The Hecke ring hord
κ (npn) has a natural structure of O[(OF /p

nOF )
×]-algebra which

induces a structure of ΛF -algebra on hord with

ΛF := O[[O1
F,p]]

∼= O[[t1, . . . , td]]

and O1
F,p

∼= Zd
p the subgroup of O×F,p of local units congruent to 1 modulo p. Let m

be the kernel of the map ΛF → O corresponding to the trivial character of O1
F,p.

The Hecke eigensystem attached to our nearly ordinary Hilbert modular form f
gives us an homomorphism:‘1

λf : h
ord → hord

κ (npr) → O.

with r the smallest integer so that f is K1(p
r)-invariant.

We now denote by Tord (resp. T0) the localisation of hord (resp. hord
κ (npr) ) at

its maximal ideal mf containing kerλf . It is known thanks to the work of Hida
that Tord is free of finite rank over ΛF . Moreover, we have a canonical isomorphism

Tord ⊗ΛF
O ∼= T0 .
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We now construct a Tord-module which is free over ΛF and interpolates the nearly
ordinary cohomology of the Hilbert modular variety localized at the maximal ideal
associated to f . For any p-adically complete O-algebra A and n ≥ r, let

Cn(κ,A) := Ind
K1(p

r)
K1(pn)L(κ,A)

and write C(κ,A) for the direct limit of the Cn(κ,A) for the obvious transition
maps, and C(κ,O) for the inverse limit of the C(κ,O/pmO) as m varies. It is clearly
a ΛF [K1(p

r)]-module.
Let ηλf

(M) be the congruence ideal of M with respect to λf introduced in 2.10.

Proposition 3.5. Assume the image of ρ̄f is not solvable. Then for any ǫ in

{±1}ΣF , the Tord-module

Mǫ := Hd(X(K11(np
r),C(κ,O))ǫmf

is free of finite rank over ΛF , and

Mǫ/mMǫ = Mǫ
0 := Hd(X(K1(np

r),L(κ,O))ǫmf
.

Moreover ηλf
(Mǫ

0) = (ξǫf ), where

ξǫf :=
Γ(ad ρf , 1)L

Sf (ad ρf , 1)

Ωǫ
fΩ
−ǫ
f

where Sf is the set of finite places where ρf is ramified and (Ωǫ
f )ǫ∈{±1}ΣF are the

canonical complex periods attached to the Hilbert modular form f in1 [5, §7.1].

Proof. This is a classical exercise in Hida theory since the localization at mf capture
a direct factor of the nearly ordinary part of the cohomology. The fact that the
module is free over ΛF follows from a control theorem and the vanishing Theorem
7.1.1 of Caraiani and Tamiozzo [3]. The last part of the proposition follows from
a computation of Dimitrov in the sections 7.2 and 7.3 of [5],and in particular its
equations (50) and (51). �

We use the inclusion ηλf
(Mǫ) ⊂ F d

λf
(O) =

∧d
O
(p/p2)∗ to define the zeta O-

module associated to f .

Construction of zeta lines. Given an O-module A we set

A∗ := HomO(A,O) .

Let Rord (resp. R0) be the universal deformation ring of ρ̄f with fixed determinant
equal to det ρf and with nearly ordinary conditions (resp. with ordinary condition
of weight κ) at places dividing p and the unramified condition at finite places away
from those dividing np∞.

We have a canonical surjective map Rord → Tord. Set

p := Ker(Tord → O) and pR := Ker(Rord → O) ,

and consider the natural surjection

H1
full,ord(F, ad ρf ⊗ E/O)∨ ∼= pR/p

2
R ։ p/p2 .

1In [5], the ǫ-parts of the cohomology and the periods are indexed by the subsets J ⊂ ΣF

corresponding to the character ǫJ
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The subscript full means that no local conditions are required at places dividing
n. The isomorphism is standard; see, for example, [14, Lemma 3.3]. This induces
maps

F d
λf
(O) =

d∧

O

(p/p2)∗ −→

d∧

O

(pR/p
2
R)
∗ ∼=

d∧

O

H1
full,ord(F, ad(ρf )) .

Definition 3.6. The image of the submodule ηλf
(Mǫ) ⊂

∧d
(p/p2)∗ under the

composition of maps above is a cyclic O-submodule; we write it as (zǫf ) and call it
the zeta line. Thus zǫf is well-defined only up to multiplication by a unit in O.

For each v, the quotient map F
0
v → Gr0v induces the map

H1(Fv,F
0
v) −→ H1(Fv, Gr0v)

∼= H1(Iv, Gr0v)
Dv/Iv ∼= O

dv .

Since
∑

v|p dv = [F : Q] = d these induce the isomorphism

d∧
(
∏

v|p

H1(Fv,F
0
v))

∼=
−−→

⊗

v|p

dv∧

O

H1(Iv , Gr0v)
Dv/Iv ∼= O .

Precomposing this with the dth exterior power of the restriction map

resp : H
1
full,ord(F, ad ρf ) →

∏

v|p

H1(Fv,F
0
v) .

yields the map

d∧
resp :

d∧
H1

full,ord(F, ad ρf ) −→
⊗

v|p

dv∧

O

H1(Iv, Gr0v)
Dv/Iv .

The following theorem is the main result of this section.

Theorem 3.7. Assume that the residual representation ρ̄f has non solvable image

and choose ǫ ∈ {±1}ΣF . Then

(

d∧
resp)(z

ǫ
f ) = (ξǫf )

where as before

ξǫf :=
Γ(ad ρf , 1)L

Sf (ad ρf , 1)

Ωǫ
fΩ
−ǫ
f

.

Proof. Let R0 be the universal deformation ring of ρ̄f with fixed determinant equal
to det ρf and with ordinary condition of weight κ at places dividing p and the un-
ramified condition at finite places away from those dividing np∞, and R0 → T0 the
canonical surjection. The restriction of the universal deformations to the decompo-
sition subgroups at places dividing p gives an homomorphism ΛF → Rord making
the map Rord → Tord an ΛF -algebra homomorphim and a canonical isomorphism
Rord ⊗ΛF

O ∼= Rord
0 . Setting

p0 := Ker(Tord
0 → O) = p/m and pR,0 := Ker(Rord

0 → O) = pR/m
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the isomorphism and surjective maps induces the following commutative diagram
of Kähler differentials (see §2.1).

0 m/m2 p/p2 p0/p
2
0 0

0 m/m2 pR/p
2
R pR,0/p

2
R,0 0

0
⊕

v|p(H
1(Iv,

E
O
)

Dv
Iv )∨ H1

full,ord(F, ad ρf ⊗ E
O
)∨ H1

full,Sel(F, ad ρf ⊗ E
O
)∨ 0

Here H1
full,Sel(F, ad ρf⊗

E
O
) means no condition at primes dividing n, and the Selmer

condition at places of F above p. The exactness on the left in the top row follows
from Hida’s theorem that Tord is unramified over the weight space ΛF at the aug-
mentation λf arising from the holomorphic cohomological newform f . The vertical
arrows are surjective and that the O-module p0/p

2
0
∼= ΩT0/O ⊗λf

O is torsion, and

therefore both m/m2 and (p/p2)tf are free of rank d over O. The diagram above
yields the commutative diagram

∧d
(m/m2)∗

∧d
(p/p2)∗

∧d
(m/m2)∗

∧d
(pR/p

2
R)
∗

⊗
v|p

∧dv H1(Iv ,O)
Dv
Iv

∧d
H1

full,ord(F, ad ρf )

Given this diagram, Proposition 3.5, and Theorem 2.32, it follows that the image
of zǫf under the local restriction map at p is ξǫf , fixing an isomorphism with O. �

Remark 3.8. Our hypothesis here are less restrictive than in [14]. Moreover, the
method used here allows us to bypass the use of local complete intersection re-
sults on the corresponding Hecke ring used in [14], and therefore to remove some
hypotheses; in particular, it does not require us to have a R = T theorem.

As explained in [14], (zǫf ) is the bottom class of an Euler system of rank d. It
would be interesting to extend our new method to construct the other classes using
higher congruence modules for the base change of f to abelian extensions of F . We
have shown that (zǫf ) is related to the L-value ξf . If we could extend our method

we would be able to construct the p-adic L-function L
Sf
p (ad ρf , s).

Remark 3.9. By (2.29), cokernel of (p/p2)∗ → (m/m2)∗ has length equal to

length
O
(Φλf

(T))− length
O
(Φλf

(Tord)) .

This results in “factorizing” classical Selmer groups Φλ(R) into a part coming from
Φλ(R

ord) and a part coming from the cokernel of (p/p2)∗ → (m/m2)∗.

The co-torsion in Galois cohomology. In this section, we assume that ρf is a
minimal deformation of ρ̄f as in [5, §4.2]. We replace the rings Rord and R0 by their
minimal deformation analogues. Then it is known that the maps Rord

min → Tord and
R0,min → T0 are isomorphisms of complete intersection rings thanks to the works
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of Fujiwara [6] and Dimitrov [5] (note that we can and do replace the big image
assumption of Dimitrov for ρ̄f by the much weaker one of [3] of being non solvable).
In addition, we make the following hypothesis justified by the Remark 3.4. For all
v|p, we assume that the action ofDv on F

+
v is distinct from the cyclotomic character.

By our minimality assumption, the local conditions at places away from p are the
finite Bloch-Kato conditions for all the Galois cohomology groups considered in this
section, so that we can now make the following identifications:

• Hom(p/p2,O) = H1
ord(F, ad ρf )

• Hom(m/m2,O) = H1
ord /f (Fp, ad ρf ) = ⊕v|pH

1(Iv,O)
Dv
Iv

• H1
f (F, ad ρf ⊗O E/O) = p0/p

2
0 := Φλf

since T0 is finite over O,

• cotors(H1
Lord(Q, ad ρf ⊗O E/O)) = tors(p/p2) = Φord

λf
:= Φλf

(Tord)

We abbreviate ηλf
(T0) and ηλf

(Tord) to ηλf
and ηordλf

, respectively, and view

them as ideals of O. Since we have assumed that the Hecke rings are complete
intersection we have

ηλf
= FittO(Φλf

) ⊂ ηordλf
= FittO(Φ

ord
λf

)

Here is an interpretation of the invariants Φord
λf

and Ψord
λf

.

Proposition 3.10. With the minimality assumptions as above we have

(1) the isomorphisms:

Φord
λf

∼= cotors(H1
ord(F, ad ρf ⊗O E/O))

and an equality lengthO(Φ
ord
λf

) = lengthO(H
1
ord⊥(F, ad ρf ⊗O E/O(1))).

(2) an isomorphism:

Ψord
λf

∼=

∧d
H1

ord(F, ad ρf )

(zǫf )
.

Proof. From (2.29) we get the exact sequence

0 −→ (p/p2)∗ −→ (m/m2)∗ −→

(
Φλf

Φord
λf

)∨
−→ 0 .

Comparing with the following Poitou-Tate duality exact sequence

0 → H1
ord(F, ad ρf ) → H1

ord /f (Fp, ad ρf ) →

(
H1

f (F, ad ρf ⊗O E/O(1))

H1
ord⊥(F, ad ρf ⊗O E/O(1))

)∨
→ 0

from Proposition 3.3 and the identifications recalled above, we get

Φλf

Φord
λf

∼=
H1

f (F, ad ρf ⊗O E/O(1))

H1
ord⊥(F, ad ρf ⊗O E/O(1))

On the other hand, we have the canonical isomorphisms

Φλf
∼= H1

f (F, ad ρf ⊗ E/O)∨ .

It remains to note that by the balanced properties of Bloch-Kato Selmer groups
and Lemma 3.2, the O-module above has finite length, equal to

lengthO(H
1
f (F, ad ρf ⊗ E/O(1))) .
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(2): From Theorem 2.32 one gets an exact sequence

0 −→
d∧
(p/p2)∗ −→

d∧
(m/m2)∗ −→

Ψλf

Ψord
λf

−→ 0.

and therefore

0 −→

∧d(p/p2)∗

(zǫf )
−→

∧d(m/m2)∗

(
∧d resp)(zǫf )

−→
Ψλf

Ψord
λf

−→ 0 .

The desired isomorphism follows since after identification of ∧d(m/m2)∗ with O, we

have
∧d

resp(z
ǫ
f ) = (ξǫf ) which is the same as the ideal ηλf

by construction. �

The next result is immediate from Proposition 3.10 and Theorem 2.6.

Corollary 3.11. With our previous assumptions, the following are equivalent

(1) Tord is regular

(2) H1
ord⊥(F, ad ρ̄f (1)) = 0

(3) (zǫf ) =
∧d

H1
ord(F, ad ρf ). �

Remark 3.12. This corollary is an analog of the well-known fact that the p-part of
the class group of Q(ζp)

+ being trivial (Vandiver’s conjecture is that this should
always be the case) is equivalent to the group of cyclotomic units having index
prime to p inside the global units of Q(ζp).

We end this section with the the following proposition whose proof we owe to
Gebhard Boeckle. It should be compared to the statement in Proposition 3.10 for
Selmer groups arising from motives associated to adjoints of modular forms. Recall
that the Leopoldt conjecture state that if F is a number field and F ab,p/F is the
maximal abelian p extension of F unramified outside the primes above p and ∞,
then the Zp-rank of Gal(F ab,p/F ) is r2 + 1.

Proposition 3.13. Let F be a number field and assume the Leopoldt Conjecture.

One has an exact sequence

0 →

∏
v∈Sp

µp∞(Fv)

µp∞(F )
→ A → B → 0 ,

where A := tors(Gal(F ab,p/F )) and B := H1
Sp−split

(FSp
/F,Qp/Zp(1)).

Proof. Note that A∗ := cotor(H1(FSp
/F,Qp/Zp)). Consider

H1(GF,Sp
,Qp/Zp) = Hom(Gab

F,Sp
,Qp/Zp) = (Gab

F,Sp
)∗ = (Qp/Zp)

r2+1 ×A∗ .

By [11, 2.7.11] the kernel of the map

H1(GF,Sp
,Qp/Zp) → H2(GF,Sp

,Zp)

is the divisible part of H1(GF,Sp
,Qp/Zp), that is to say, (Qp/Zp)

r2+1, and its image

is the torsion subgroup of H2(GF,Sp
,Zp), that is to say, all of H2(GF,Sp

,Zp), under
the Leopoldt conjecture.

Further note that by Poitou-Tate one gets the isomorphism

B = X
1(GF,Sp

,Qp/Zp(1)) ∼= X
2(GF,Sp

,Zp)
∗ .

So there is a map B∗ → A∗ that is the inclusion X
2(GF,Sp

,Zp) → H2(GF,Sp
, Zp).

The cokernel is isomorphic to the dual of the cokernel of µp∞(F ) →
∏

v∈Sp
µp∞(Fv),

by Poitout-Tate and local Tate duality. �
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