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Gold nanocrystals are increasingly important for a wide range of potential

applications in photonics, nanoelectronics, biological imaging, and biosensors. Al-

though various synthesis methods for Au nanocrystals have been developed, most

synthesis technique employ surfactants to control shape and/or size. However,

we synthesized polyhedral shaped gold nanocrystals in the absence of any foreign

catalysts so that we were able to avoid any influences of surfactants on the phys-
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ical properties of the nanocrystals. We then used coherent diffractive imaging to

investigate the nanoscale internal structure, shape, and lattice distortion of the

Au nanocrystals and understand growth dynamics and suitability of the synthesis

technique.

This is the first study of both curvature-induced strain under a locally

rounded surface and the effect of thermally induced lattice strain at the nanocrystal-

substrate interface in a single Au nanocrystal. It is confirmed that the strain dis-

tribution on the locally curved surface of the Au nanoparticle is consistent with the

theoretical prediction known as the Young-Laplace effect. In contrast, the strain

at the interface with the substrate is anomalous. We attribute it to the dissimilar

interfacial energies between Au/Air and Au/Si and to the difference in thermal

expansion between the nanocrystal and the substrate during the cooling process.

These results indicate that the lattice strain of nanocrystals is influenced both by

their interactions with the substrate as well as the geometric details.
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Chapter 1

Introduction

Gold nanocrystals are attracting increasing interest within the scientific

community due to the inherent differences between their optical and electronic

properties and those of their bulk counterparts. Gold nanocrystals are important

for a wide range of potential applications in photonics, nanoelectronics, biological

imaging, and biosensors [1, 2, 3, 4]. Although various synthesis methods for Au

nanocrystals have been developed, most synthesis technique employ surfactants

to control shape and/or size. However, we synthesized polyhedral shaped gold

nanocrystals in the absence of any foreign catalysts so that we were able to avoid

any influences of surfactants on the physical properties of the nanocrystals.

We then used coherent diffractive imaging to investigate the nanoscale inter-

nal structure, shape, and lattice distortion of the Au nanocrystals and understand

growth dynamics and suitability of the synthesis technique. Coherent x-ray diffrac-

tive imaging is a technique that probes not only the overall shape of a nanocrystal,

1
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but also the displacement of individual atoms because coherent x-ray diffraction

is highly sensitive to internal strains within a crystal, which appear as a change

of phase in the complex image [5, 6, 7, 8, 9, 10]. A coherent x-ray diffraction

pattern can be inverted to a complex-valued density function. The amplitude of

this complex function is proportional to the electron density in the crystal, and

the phase corresponds to the displacement of the lattice as projected onto the

momentum transfer vector, which is determined by the direction of incident and

scattered x-ray, of the Bragg peak. This non-destructive way of probing internal

3D properties of single nanocrystals allows us to investigate strain of objects in the

as-prepared state. In principle, more than three independent momentum transfer

vectors have allowed a full mapping of the strain tensor within a nanocrystal [11].

This technique has been used to explore interdisciplinary science, including metal-

lic nanostructures, strain evolution of a single nanoparticle in a LNMO cathode

during charging/uncharging, and topological defect dynamics in nanostructures,

and so on [8, 9, 10, 12].

Coherent x-ray diffractive imaging relies on the fact that the x-ray beam

is non-destructive due to weak interaction with matter. In other words, x-ray

radiation does not affect a sample so that its properties and positions are not

altered while the sample is rocked to collect 3D diffraction pattern. However, it

is sometimes observed that the Bragg peak shifts during rocking scan, which is

undesirable. This phenomenon is analyzed based on the conservation of photon

energy and wave momentum.



Chapter 2

Coherent x-ray diffraction

imaging

This chapter reviews theoretical background needed to understand coherent

x-ray diffractive imaging technique commonly used throughout this thesis. X-ray

microscopy has been attractive for study of materials structures because of one of

characteristics of x-ray beam, diffraction. Recently, the advent of highly coherent

and bright x-ray sources at synchrotrons has enabled a lensless imaging technique

called coherent diffractive imaging. Since it was first demonstrated in 1999 [13],

there has been significant progress in coherent diffractive imaging technique with

resolutions approaching a few nanometers. Each fundamental concept for coherent

x-ray diffractive imaging such as x-ray diffraction, synchrotron radiation, and phase

retrieval will be addressed in this chapter.

3
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2.1 Coherent x-ray diffraction

A measurement of coherent x-ray diffraction pattern followed by phase re-

trieval has to be performed for coherent x-ray diffraction imaging. In this section,

coherent x-ray diffraction, which is fundamental concept for understanding exper-

imental data will be reviewed. The Bragg’s Law, which is illustrated in Fig 2.1,

and specific description of the x-ray diffraction associated with crystals will be

discussed from a crystallographic point of view in the following subsections. In

the last, coherent properties which is essential for synchrotron light sources will be

discussed.

2.1.1 Bragg’s Law

X-rays are a form of electromagnetic radiation and were discovered in 1895

by Wilhelm Conrad Röntgen. Due to the ability of penetration and short wave-

length of x-ray, it has been useful and powerful in a wide range of fields such as

crystallography, radiography, astronomy and material science.

We exploit the exceptionally coherent high-brightness of x-rays produced

by third generation synchrotron sources. The hard x-rays with a wavelength of

1.36 Å (9keV ) and a bandwidth of 1eV were utilized mostly in our experiments.

If we assume the incident x-rays are plane waves and it scatters elastically, the

diffraction occurs due to interference between spherical waves scattered from the

atoms in the crystal. The interference pattern can be explained by the Bragg



5

Figure 2.1: Schematic of Bragg’s Law. An incident x-ray beam diffracted from
atomic layers. If n is an integer, the scattered beam from different layers are
perfectly in phase with each other and produce a bright spot in a far field.

Law: The incident waves are scattered from lattice planes separated by distance d.

They remain in phase when the path length difference 2dsinθ is an integer multiple

of the wavelength. Thus, constructive interference occurs when the phases are

equal. Figure 2.1 shows the extra distance traveled by the wave scattered from

the second lattice plane is 2dsinθ. When that distance is set equal to nλ (where

n is an integer), the result is Braggs Law nλ = 2dsinθ. Bragg diffraction was first

proposed by William Lawrence Bragg and his son, William Henry Bragg, in 1913

in response to their discovery that crystalline solids generated special patterns of

reflected x-rays.
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2.1.2 Diffraction from crystals

An ideal crystalline material consists of regularly repeated basic units,

known as unit cells. In a crystalline material, all the atoms are placed highly

ordered fashion with periodic positions so that the three dimensional lattice can

be defined by a vector set. The scattering amplitude of an atom can be written as

[14, 15]

A(Q) = −r0f(Q) = −r0
∫
ρ(r)eiQ·rdr (2.1)

where ro is the Thomson scattering length, Q is a momentum transfer

vector, f(Q) is the atomic form factor, r is the position of atoms, and ρ(r) is

electron density. The position of any atom in a crystal can be decomposed into

Rn and rj, where Rn are the lattice vectors and rj the position of the atoms with

respect to particular lattice position. The scattering amplitude for a crystal can

be expressed as,

A(Q) = −r0
∑
n

eiQ·Rn
∑
j

fj(Q)eiQ·rj (2.2)

Two terms are called the lattice sum, and the unit cell structure factor,

respectively. If the scattered waves interfere constructively, the following equation

can be satisfied.

Q ·Rn = 2π × integer (2.3)
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The lattice vectors Rn are of the form

Rn = n1a1 + n2a2 + n3a3 (2.4)

where (a1, a2, a3) are the basis vectors of the lattice and (n1, n2, n3) are

integers. A solution to Eq. (2.2) can be found by employing the concept of the

reciprocal lattice. The reciprocal lattice is formed by the three basis vectors.

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
, a∗2 = 2π

a3 × a1
a1 · (a2 × a3)

, a∗3 = 2π
a1 × a2

a1 · (a2 × a3)
(2.5)

so that any lattice site in the reciprocal lattice is given by

G = ha∗1 + ka∗2 + la∗3 (2.6)

where (h, k, l) are all integers. We can obtain the product of a lattice vector

in the reciprocal (G) and direct (Rn) spaces is

G ·Rn = 2π × (hn1 + kn2 + ln3) = 2π × integer (2.7)

and therefore, Eq. (2.2) requires that

Q = G (2.8)

This represents that A(Q) is non-vanishing if and only if Q is a reciprocal

lattice vector. This is the Laue condition for the observation of diffraction from a

crystalline lattice which is completely equivalent to Bragg’s law.
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2.1.3 Coherent scattering on finite size crystals

In the preceding section, it was assumed that coherent x-ray radiation il-

luminates on infinitely extended and ideal crystals. However, in reality crystal

is finite and the periodicity is truncated at free surface, which leads to a spread-

ing of intensity distributions around Bragg peaks. The following approach was

demonstrated by Vartanyants et al. [16].

The finite volume of a crystal is given by the shape function.

s(r) =


1 x ∈ crystal

0 otherwise

The infinite lattice of the crystal can be defined by

ρ∞(r) =
∞∑
n=1

δ(r −Rn) (2.9)

where Rn = n1a1 + n2a2 + n3a3 is the position of the unit cell (see Eq.

(2.4)). The electron density of one unit cell in the crystal can be expressed as

ρuc(r) =
∑
j

ρj(r − rj) (2.10)

where rj is a coordinate and ρj(r) is the electron density of individual atoms

in a unit cell. Now the electron density for a finite size crystal can be written

ρ(r) = [s(r) · ρ∞(r)]⊗ ρuc(r) (2.11)

where ⊗ denotes a convolution.
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The electron density can be expressed in terms of a sum of corresponding

individual atoms:

ρ(r) =
N∑
n=1

S∑
j=1

ρnj(r − (Rn + rj)− u(Rnj)) (2.12)

where Rn is the position of the nth unit cell in a perfect lattice, rj is the

coordinate of atom j in this unit cell and u(Rnj) is the displacement from this

ideal lattice point. Replacing Eq. (2.1) with this equation for the electron density,

the scattering amplitude can be written as an infinite sum over the unit cells:

A(q) =
∑
n=1

(∑
j=1

(∫
ρnj(r

′)e−iq·r
′
dr′
)
e−iq·rj

)
e−iq·u(Rn)e−iq·Rn (2.13)

The term in the inner parenthesis can be replaced by Eq. (2.11) and using

the convolution theorem for Fourier transforms, we get the scattered amplitude:

A(q) = F (q)

∫
ρ∞(r)S(r)e−iq·rdr (2.14)

where

F (q) =

∫
ρuc(r)e

−iq·rdr (2.15)

is the structure factor of the nth unit cell. It is assumed that the structure

factors are identical (Fn(q) = F (q)) and integration is carried out over the whole

space.

ρ∞(r) =
∞∑
n=1

δ(r −Rn) (2.16)

is a periodic function over all points of an infinite ideal lattice. The shape

function multiplied by the exponential term regarding displacement is also included
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in the integral.

S(r) = s(r)e−iq·u(r) (2.17)

Equation (2.14) is a Fourier transform of periodic function multiplied by

the shape function. Using the convolution theorem, we can get the scattering

amplitude as follows.

A(q) = F (q) · [ρ∞(q)⊗ S(q)] (2.18)

This equation can be rewritten based on the definition of convolution.

A(q) =
F (q)

(2π)3

∫
ρ∞(q′)S(q − q′)dq′ (2.19)

where S(q′) is the Fourier integral of S(r) and ρ∞(q) is the Fourier transform

of the lattice function, which reduces to the sum of δ-functions in reciprocal space

ρ∞(q) =

∫
ρ∞e

−iq·rdr =
(2π)3

v

∑
n

δ(q − hn) (2.20)

where v is the volume of the unit cell and hn is the reciprocal space lattice

vector. The function S(r) has been introduced in Eq. (2.17). It has the amplitude

s(r) and the phase φ(r) = q · u(r), including the displacement field u(r). The

queation (2.19) can be rewritten as follows.

A(q) =
F (q)

v

∑
n

An(q − hn) (2.21)

with An(q − hn) = S(q − hn). The scattered intensity from the finite-sized

crystals is determined by a sum over reciprocal lattice points. The small cross-

terms are neglected.
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I(q) = |A(q)|2 =
|F (q)|2

v2

∑
n

|An(q − hn)|2 (2.22)

When the Laue condition is satisfied for the particular Bragg peak, hn = h

and q ≈ h , the intensity reduces to

I(q) =
|F (q)|2

v2
|Ah(Q)|2 (2.23)

where Q = q − h and

Ah(Q) =

∫
s(r)e−ih·u(r)e−iQ·rdr (2.24)

This equation indicates that the scattering amplitude is directly associated

with the shape function and the phase factor.
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2.1.4 Coherence

A synchrotron facility provides x-ray beams with coherent characteristics

and low divergence. Interference is one of the most essential phenomena for x-ray

diffractive imaging and it can occur because of coherence effects. The coherence of

a beam of light, including undulator x-ray beams has two distinguishable compo-

nents, both transverse and longitudinal coherence lengths, ξT and ξL respectively.

The transverse coherence is defined as the lateral distance along a wavefront

over which the phase is completely canceled out, which result from two separate

points in space. If we assume that the two waves emit from points with a small

angular separation ∆θ, the transverse coherence length is given by:

λ

2ξT
= tan∆θ ≈ ∆θ (2.25)

D

R
= tan∆θ ≈ ∆θ (2.26)

ξT =
λR

2D
(2.27)

where λ is the wavelength of incident x-ray and ∆λ is the difference in

wavelength between different incident waves, and D is the finite source sizes of

accelerated electrons from which x-ray is produced, R being the distance the inci-

dent x-ray travels and it is considered that R � D, and it is the distance between

sample and x-ray detector.

The longitudinal coherence is defined as the distance over which two waves

from the same source point with slightly different wavelengths will be completely

out of phase. Two waves of slightly different wavelengths λ and λ−∆λ are emitted
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Figure 2.2: Transverse coherence length and longitudinal coherence length, repec-
tively. (a) Two waves emitted from different sources interfere until the waves are
out of phase is called transverse coherence length 2ξT . (b) Two waves with slightly
different wavelength are emitted in the same direction. The distance between two
phase matches is defined as 2ξL.

from the same point in space simultaneously. The two waves will be exactly out

of phase after a distance ξL, followed by in phase after ξL more.

ξL =
λ2

2∆λ
(2.28)

The longitudinal coherence is dependent on the bandwidth of the monochro-

mator (∆λ/λ). This is related to the Optical Path Length Difference (OPLD) of

x-ray through the sample. In order to meet the requirement for coherent x-ray

diffraction measurement, the OPLD has to be smaller than the sample size. The

longitudinal coherence length at 34-ID-C at the Advanced Photon Source was de-

termined to be, ξL= 0.66µm [17].
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Equation (2.21) can be rewritten taking time into account [16].

A(q′, t) =
F (q)

v

∑
n

An(q′ − hn, t) (2.29)

where

An(q, t) =

∫
dr s(r)Ain(r, t− τr)e−iq·r (2.30)

Here, τr is the time delay for the radiation propagation between the same points.

The intensity near the one of Bragg points, hn = h:

I(Q) =
〈
A(Q, t)A∗(Q, t)

〉
T

=
F (h)2

v2
|Ah(Q, t)|2 (2.31)

=
F (h)2

v2

∫ ∫
drdr′s(r)s(r′)Γ(r, r′,∆τ)e−iQ·(r−r

′) (2.32)

where ∆τ is a time delay and Γ(r, r′, τ) =
〈
A(r, t)A∗(r′, t + τ)

〉
T

is the

mutual coherence function. It can be expressed as a product [18].

Γ(r, r′, τ) =
√
I(r)

√
I(r′)γ(r, r′)F (τ) (2.33)

where I(r) =
〈
|A(r, t)|2

〉
T

and I(r′) =
〈
|A(r′, t)|2

〉
T

are the averaged inten-

sities of the incoming radiation at points r and r′, γ(r, r′) is a normalized mutual

coherence function and F (τ) is the time autocorrelation function.

If the x-ray beam is completely coherent, Γ(r, r′, τ) =
√
I(r)

√
I(r′) and if

it is partially coherent, Γ(r, r′, τ) <
√
I(r)

√
I(r′). Thus, the value of γ(r, r′)F (τ)

represents the degree of coherence.
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2.2 Synchrotron Radiation

Synchrotron radiation has a large impact on nanoscience and interdisci-

plinary science. Many scientific research area have been tremendously successful

with the advent of synchrotron x-ray sources. A synchrotron radiation source is

a storage ring in which the charged particles are accelerated radially. It produces

highly coherent and brilliant x-ray beam using bending magnets that keep the

electron beam on its circular path.

The first generation synchrotron light sources were parasitically on accelera-

tions for particle physics studies in 1950s [19] . The second generation synchrotron

light sources were designed for the production of synchrotron radiation and em-

ployed electron storage rings. The third generation sources started operation in

the early 1990s. The synchrotron light sources optimize the intensity of the light

by incorporating insertion devices into the storage ring. The insertion devices

consist of a periodic sequence of dipole magnets with alternating orientation, and

force the electron beam on a trajectory. Wigglers create a broad but intense beam

of incoherent light. Undulators create a narrower and significantly more intense

beam of coherent light, with selected wavelengths, or harmonics, which can be

tuned by manipulating the magnetic field in the device [20]. Laboratories around

the world are now working to overcome the technical challenges associated with

the development of fourth-generation light sources, which are likely to utilise hard

x-ray free-electron lasers (FEL).
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2.2.1 X-ray beam source

Synchrotron radiation is simply radiation from electrons moving in a uni-

form magnetic field. The acceleration of an electric charge leads to the emission

of electromagnetic waves. However, synchrotron sources can achieve x-ray beams

that have high frequencies due to the relativistic effects [21]. The emitting elec-

trons travel at nearly speed of light c. This leads to a series of relativistic effects

that bring the emitted frequencies to the x-ray regime. In addition, the extreme

angular collimation of the emitted x-rays is possible due to relativistic effects.

The relativistic frame change rules show that the electron sees an oscillating

magnetic field and an oscillating electric field in the perpendicular direction in

the undulator. Its wavelength in the electron frame, L/γ, equals the undulator

period L after Lorentz contraction by the ‘γ-factor’. Here, the γ characterizes the

relativistic properties of the moving electron, and is defined as the electron energy

mc2 divided by its Einstein’s rest energy, moc
2:

γ =
mc2

moc2
(2.34)

We use the standard relativistic factors β = u/c and γ = 1/
√

1− β2. The

corresponding wavelength in the laboratory frame is subject to the Doppler effect.

The multiple Doppler factor is
√

(1− β)/
√

(1 + β) ≈ 1/2γ because the relativistic

factor β is close to 1.
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The emitted wavelength in the laboratory frame is:

λ ≈ L

2γ2
(2.35)

Therefore, the macroscopic undulator period can be transformed into the

angstrom-size wavelength of x-ray due to the relativistic effects such as Lorentz

contraction and Doppler shift. These relativistic effects shrink the wavelength by

a factor 2γ2.

In practical, the energy of an electron beam that are generated at Advanced

Photon Source is 7GeV with γ ≈ 104. Table 2.1 presents a brief list of the main

parameters of these sources in operation world-wide [19]. The electron energy is an

important parameter since it determines the size of the facility and a wavelength

of beam in the x-ray regime.

Table 2.1: The list of synchrotron light sources.

The parameters of high and intermediate energy synchrotron light sources [19].

Name Location Energy (GeV) Perimeter (m) Emittance (nm rad)

SPRING-8 Japan 8 1436 3
APS US 7 1060 3

ESRF France 6 844 3.8
PLS Korea 2.5 281 12

ANKA Germany 2.5 240 70
SLS Switzerland 2.4 240 5

ELETTRA Italy 2-2.4 260 7
Nano-Hana Japan 2 102 70

ALS US 1.9 197 6.8
BESSY-II Germany 1.7-1.9 240 5.2
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2.2.2 The brilliance

The quality of a synchrotron source can be assessed with several parameters.

The brilliance is one of major parameters to reflect the capability of x-ray sources.

It is a combination of the radiation flux, the angular divergence of the light, and

the size of source [20, 22]. A excellent brilliance implies a high x-ray radiation flux,

a small angular divergence, and a small size of a source. Therefore, a source can

be made brighter by increasing the flux, by decreasing the size or by enhancing

the angular collimation.

Brilliance =
The number of photons/s

(mrad)2 (mm2 source area)(0.1% bandwidth)
(2.36)

The beam intensity (in units of photons per second) after the monochroma-

tor can be further calculated as the a product of the brilliance, angular divergences

set by the horizontal and vertical apertures (in milli-radian), the source area (in

mm2) and the bandwidth of the monochromator relative to 0.1%. Where the

source flux is given as the number of photons per second per unit surface area.

Modern hard X-ray third generation synchrotron sources such as the Ad-

vanced Photon Source (APS) in the United States, the European Synchrotron

Radiation Facility (ESRF) in France, and the Super Photon Ring-8 (SPring-

8) in Japan operate with a brilliance (or equivalently brightness) at or above

1019(photons/s/0.1bw/mm2/mr2).
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2.2.3 Beamline setup

The beamline 34-ID-C at APS is optimized for Bragg coherent x-ray diffrac-

tive imaging. It consists of an undulator, primary slits, a Si(111) monochromator,

aperture, Kirkpatrick-Baez (KB) focussing mirrors, a goniometer, devices for pre-

cise translations of a stage, and a detector [23].

The primary slits define a beam of 150 microns in the horizontal and are

open (guarding) in the vertical. The coherence-defining slits (50m) are usually set

to 50×20 microns (V×H) since the vertical coherence length (90µm) is determined

by the source size, the horizontal (25µm) by the primary slit and the longitudinal

(0.5µm) by the monochromator [24]. The monochromator is used to select 9.0 keV

monochromatic x-rays (λ = 1.39Å) with a bandwidth (1eV) small enough to pro-

vide a longitudinal coherence length. Focused beams act as local probes allowing

to investigate submicron parts of an extended sample. Kirckpatrick-Baez (KB)

mirrors are reflective optics at near-glancing angle of incidence, largely used today

with hard x-rays. They consist of two mirrors that are bent with elliptical profile

and are aligned orthogonally with respect to each other to focus to the same point.

A deviation from orthogonal alignment can cause both mirrors to be defocused.

The enlargement of the focal spot can be achieved by the mirror rotations in three

directions. The aperture is placed before the mirrors and adjusted so that x-ray

beam illuminates a given area of the KB mirror surfaces.
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The nanocrystals on the stage are centered and aligned in the focussed

beam. The stage moves the sample into the beam, illuminating all crystals in

the beam foot-print. The beam footprint on the sample is dependent on incident

angle. As the incident angle decreases, the illuminated area on the sample, which

is beam footprint will increase accordingly. The footprint is varied to locate and

isolate crystals on the substrate.

A laser scanning confocal microscope is attached to the diffractometer above

the sample. Three objective lenses (5x, 10x, and 20x)are fitted to the microscope

[25]. A Charge-Coupled Device (CCD) area detector with 22.5 µm pixel size is

placed away from the sample so that the fringes arise sufficiently. The position

of the detector is governed by a particular Bragg angle. The coverage of the

Bragg angle is subject to the constraints of the movement of CCD detector arm.

The nanocrystal is rocked through the Bragg peak with small steps to sample the

intensities sufficiently. A complete 3D diffraction pattern of the Bragg peak can

be obtained by collecting the 2D diffraction patterns that are oversampled in all

directions with respect to the spatial Nyquist frequency, which is inverse of the

sample size. In practice, to ensure correct oversampling, the amplitude has to be

sampled at least at both peaks and troughs, which meets sampling requirement

for phase retrieval.
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Figure 2.3: Image of experimental setup at 34-ID-C beamline in Advanced Photon
Source. An incident x-ray beam comes from the undulator is focused by KB mirror
and illuminated an sample (right image). A diffracted x-ray beam goes into CCD
detector (left image).
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Figure 2.4: Schematic of the experimental set-up and sample at 34-ID-C beam-
line in Advanced Photon Source. Monochromatic x-ray beam of wave vector im-
pinges on to Kirkpatrick-Baez mirrors, which creates a localized illumination on the
sample. Coherent x-ray diffraction patterns are recorded with a two-dimensional
pixelated detector.
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2.3 Phase Retrieval

The fact that the intensities (I = |E|2 where E is the amplitude of the

diffracted wave) are measured with the loss of information regarding the phase of

the waves gives rise to the so-called phase problem. It has been a recurring issue

in crystallographic reconstructions although a significant research effort has been

made to develop a method to solve the phase problem over most of the past hundred

years. None of methods provide the solution to the phase problem directly. It can

be mitigated on the condition that the sampling frequency in reciprocal space is at

least twice the bandwidth of the real space frequency, which is called oversampling

[26, 27]. If we use iterative algorithm that goes back and forth between real and

reciprocal space, we can get a converged solution. The algorithm starts with ‘first

guess’ and applies constraints in each space during iteration. By employing an

iterative algorithm, the phase information from the oversampled diffraction data

of a nanocrystal has been successfully retrieved.

2.3.1 Oversampling

According to the Shannon sampling theorem which is introduced in 1949, to

record all the signal information, the sampling frequency must be at least twice of

the maximum present frequency [28]. In 1952, Sayre reasoned that the lost phase

information of a scattered x-ray beam might be recovered if the Bragg diffraction

intensity are measured at Nyquist frequency (the inverse of the size of the diffract-
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ing specimen) [29]. This is a result of the fact that if the original signal A(q) can

be written as the Fourier transform of ρ(r),

A(q) = F{ρ(r)} (2.37)

then its square modulus I(q) = A∗(q)A(q) , where A∗(q) is the complex conjugate

of A(q) then I(q) can be written as the Fourier transform of the autocorrelation

function.

I(q) = F{ρ(r)⊗ ρ(r)} (2.38)

Because the maximum possible extent of the autocorrelation of a discrete function

is twice the size of the extent of the original function, the band limit of I(q) is

twice that of A(q). Therefore, it has to be ensured that a sampling frequency is

finer than Nyquist frequency. In a practical way, the no-density region should be

larger than the electron-density region so that sufficient data points are collected

to retrieve phase information [26, 27].

σ =
no density region+ electron density region

electron density region
(2.39)

The phase retrieval from an oversampled diffraction pattern is possible if

the ratio σ is larger than 2 [30].
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2.3.2 Gerchberg-Saxton Algorithm

In 1972, Gerchberg and Saxton proposed a method to recover the phase of

wavefront knowing both a density of sample and its diffraction pattern [31]. In

other words, the constraints to the algorithm are the amplitudes of the images in

both spaces and they should be known.

The phases are initially generated randomly between π and −π. These are

then multiplied by the respective sampled image amplitudes and are taken Fourier

Transform. The phases of the complex function resulting from this transformation

are calculated and combined with the corresponding sampled diffraction intensity.

This function is then inverse Fourier Transformed, the phases are computed and

combined with the sampled image amplitude function to form a new estimate of

the complex sampled image and the process is repeated [31].

The procedure can be summarized as follows:

1. Fourier transform the current estimate of image.

2. Replace the magnitude of the resulting image with the known amplitude to

form a new estimate of the image in reciprocal space.

3. Inverse Fourier transform the estimate of image.

4. Replace the magnitude of the resulting image with the known amplitude to

form a new estimate of the image in real space.
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Figure 2.5: A diagram of Gerchberg-Saxton algorithm. A loop between real and
reciprocal space by means of Fourier Transformation back and forth and using
constraints in each space.
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2.3.3 Fienup Algorithm

As mentioned in previous section, Gerchberg and Saxton developed an it-

erative algorithm that would reconstruct amplitudes and phases of an object from

intensity measurement |f | in real space and a measurement of the Fourier mod-

ulus |F | in reciprocal space. The algorithm iterates and exploits the modulus

constraint in both spaces, while keeping phases updated. Fienup improved on the

Gerchberg-Saxton algorithm to reconstruct phase information just using measure-

ment of the Fourier modulus in reciprocal space, without measuring |f | which is

essential for the Gerchberg-Saxton algorithm [32]. In the algorithm which is called

error-reduction (ER) algorithm, the modulus constraint is applied in the reciprocal

space. The Gerchberg-Saxton algorithm and ER algorithm were widely used to

solve phase problem.

ρk+1(x) =


ρ

′

k(x) x ∈ S

0 otherwise

where S represents a finite support whose size has to be at most 1/8 of

entire density in three dimensional space. All data outside the support, where

an object is assumed to exist, are set to zero. In reciprocal space, the modulus

which is Fourier transformed from real space has to be replaced with the square-

root of measured intensity. These steps are repeated until the convergence of the

algorithm.
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Although the ER algorithm minimizes the error throughout the iterations,

it suffers from the failure of convergence and stagnation problems. Fienup proposed

a hybrid input-output algorithm (HIO) to avoid local minima and approach the

vicinity of the global minimum [32, 33, 34]. This algorithm differs from the error-

reduction algorithm in the object domain.

ρk+1(x) =


ρ

′

k(x) x ∈ S

ρk(x)− βρ′

k(x) x /∈ S

where S represents a finite support and β is a parameter ranges between

0.5 and 1. In reciprocal space, constraint is applied in the same manner as in

ER algorithm. But in the real space, the current input ρk+1(x) is made up of a

combination of the previous input ρ
′

k(x) and the output ρk(x). This algorithm

is much stronger in avoiding stagnation and local minima. The combination of

HIO and ER algorithm consists of iterations of the HIO algorithm followed by

iterations of the ER algorithm. This combination is more successful than both

algorithms on their own as it was observed in practice [33, 34]. To date variations

on the existing ER and HIO algorithms have been used as iterative approaches

to the phase problem in the form of Millanes HIO [35] and Solvent Flipping (SF)

[36]. Alternative algorithms include Difference Map (DM) [37], Averaged Succes-

sive Reflections (ASR) [38], Hybrid Projection Reflection (HPR) [39] and Relaxed

Averaged Alternating Reflectors (RAAR) algorithm [40].
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2.3.4 Shrink-wrap

In 2003 Marchesini et al. proposed a method for the reconstruction algo-

rithms, the so-called shrink-wrap algorithm [41]. The main idea is that this method

allows a support to change in certain intervals during the iterative reconstruction

process. A support in a real space is one of main constraints in the reconstruction

algorithm. If the shrink-wrap is used, the support is refined during reconstruction

based on a thresholding operation so that it helps the convergence of the algorithm.

2.3.5 Uniqueness

The phase-retrieval real space density distribution is well-known to have a

two-fold degeneracy because the combination of inversion symmetry and complex

conjugate to any complex function solution can be an indistinguishable solution,

resulting in identical experimental data [33]. This non-uniqueness problem arises

because diffraction is inherently centrosymmetric with all intensity. Consider an

image denoted by f(x), where x is the position vector in real space. The Fourier

transform of the image, or the visibility, F (u) is given by

F (u) =

∫ ∞
−∞

ρ(x)exp(i2πu · x)dx (2.40)

where u is the position vector in reciprocal space. The image is given by

the inverse Fourier transform of the visibility, so that
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ρ(x) =

∫ ∞
−∞

F (u)exp(i2πx · u)du (2.41)

and recovery of the image is straightforward if F (u) is measured. A phase

problem arises when only the amplitude |F (u)| can be measured. Since the image

is given uniquely by Eq. (2.40), recovery of the image is equivalent to recovering

the phase φ(u), where

F (u) = |F (u)|exp[iφ(u)] (2.42)

As a result of the autocorrelation theorem, the autocorrelation A(x) of the

image, where

A(x) =

∫ ∞
−∞

ρ(y)ρ∗(x+ y)dy (2.43)

can be reconstructed from the magnitude, since |F (u)|2 is the Fourier trans-

form of A(x). Therefore, the complex density image, ρ(x), obtained from Fourier

inversion of the measurement is indistinguishable from ρ∗(x).

One of these two solutions is arbitrarily picked in the phasing algorithm.

There is no direct method to determine the ‘correct’ solution for phase information.

In order to identify the uniqueness of the solutions of the phase retrieval algorithms,

practically prior knowledge such as SEM image or optical microscopy images, are

used. But if an absolute phase value is needed for very symmetric object, additional

information is needed [12].



Chapter 3

Theoretical background for

equilibrium crystal shape

3.1 Wulff construction

Wulff Victorovich (George) Wulff was a Russian crystallographer known in

crystal growth theory for his construction of the ideal equilibrium form (Wulff,

1902). So-called Wulff plots are constructions used to predict the equilibrium form

of crystals. He developed the construction of the stereographic net as an equivalent

to the stereographic projection (Wulff, 1908) [42]. This theory was not proved until

Conyers Herring demonstrated the method to determine the equilibrium shape of

a crystal based on a polar plot of surface energy as a function of orientation in

1953 [43].

31
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For an equilibrium crystal, the distance between a center of a crystal and

any given surface facet is proportional to the surface free energy of that facet. This

statement can be expressed as follows [44]:

γ1
l1

=
γ2
l2

= ... =
γi
li

(3.1)

where γi is the specific surface free energy of the ith crystal plane and li

is the central distance of the ith crystal plane. It is applicable to the equilibrium

crystal shape (ECS) in not only two dimensions, but also can be extended to three

dimensions in spherical coordinates is typically utilized to describe ECS.

If a γ plot that represent the anisotropy of the surface tension by drawing

a vector from the origin is given, the equilibrium crystal shape can be identified

based on the concept that the crystal minimize total surface energy in a given

volume. It is obvious that the planes on the cusps of the γ plot have low energies.

Thus, if there are cusps in the γ plot, the equilibrium shape would be determined

in such a way that it contain facets made up by those planes [45].

The procedure to construct the equilibrium crystal shape at fixed temper-

ature is shown in Fig 3.1. In order to obtain equilibrium crystal shape, we need

to make a polar plot of the specific surface free energy γ as a function of local

orientation and draw all tangents around γ plot. The inner contour inside the

polar plot will represent the equilibrium crystal shape.
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Figure 3.1: The Wulff construction. The Wulff plot constructed by placing points
in various directions corresponding to the surface energy for a plane with that
direction as the normal [45].
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3.2 Young-Laplace (Gibbs-Thomson) equation

A pressure on a side of the surface which is different from the pressure in the

other side can cause a normal force, which is proportional to the pressure difference

and surface area, to arise and lead to curved surface. This is the Young-Laplace

equation developed by Thomas Young in 1804 [46] and independently studied by

Pierre Laplace in 1805. This equation originates from fluid statistics with capillary

pressure difference across the interface, interfacial tension, and curvature, which is

equivalent to the inverse of the radius, of the interface.

This equation can be applicable to various systems such as the raindrops,

soap bubbles, and nanopoweders that are associated with surface tension.

∆P =
2σs
R

(3.2)

In nanocrystals, the equations for the lattice distortion and surfaces stress

have been established based on the Laplace-Young equation. Recently, it has been

used to observe the change in lattice parameter of nanopowders [47]. If there are

surface stresses on a rounded surface of particle, the pressure difference between

the inside and outside can be evaluated using this equation. It is proportional to

the surface stress, which is usually tensile in the range of 2 N/m for metals [48, 49],

and the curvature of the rounded surface.
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Figure 3.2: A locally rounded surface with radius R. A locally rounded surface
with radius R is determined Young-Laplace (Gibbs-Thomson) equation.

Equation (3.2) can be rewritten using materials property and the change

of lattice constant so that the strain in the rounded surface can be estimated

quantitatively.

∆a

a
=

2σs
3KR

(3.3)

where bulk modulus, K, of the material, radius R, lattice constant a. This

equation will be used for polyhedral gold nanocrystal to compare the theoretical

prediction with the one results from the reconstruction of diffraction pattern in

Chap. 5.



Chapter 4

Coherent x-ray diffractive

imaging of Ni nanocube

Ni-YSZ (Nickel-Yttria-stabilized-Zirconia) materials are being developed

for implementation as anodes in solid oxide fuel cells (SOFC). Due to difficulties

in storing and transporting pure hydrogen gas, there has been significant effort

invested in SOFC anode materials capable of functioning with complex hydrocar-

bons like natural gas [50]. In this case, sulfur impurities in the fuel stream can

poison the anode leading to degraded function. This poisoning likely occurs with

the formation of Nickel Sulfides at the triple phase boundaries (TPB) within the

anode. The TPB is widely accepted as the catalytically active site in the anode,

where the fuel gas is oxidized, and is the boundary between Nickel, YSZ and elec-

trolyte. The formation of Nickel Sulfides at these points in the material effectively

blocks the power generating reaction.

36



37

4.1 Chemical vapor deposition

Chemical vapor deposition (CVD) can be classified by the method employed

to apply the energy necessary to activate the reaction (i.e. temperature, photon,

or plasma). We used temperature-activation process commonly known as thermal

CVD. In typical thermally activated CVD, high substrate surface temperature is

required to provide sufficient energy for diffusion and chemical reactions to take

place during the CVD process. In a thermal chemical vapor deposition process,

the resulting products are strongly dependent on the growth parameters such as

temperature, pressure, moisture on samples, and so on.

During a chemical vapor deposition process, the complicated reactions oc-

cur based on the thermodynamics, mass transport, and chemistry. The net change

in energy for the reaction needs to be negative in terms of thermodynamics. As

the gaseous mixture flows across a solid surface there is a boundary layer di-

rectly over the surface through which the reactants will diffuse. Following diffusion

through the boundary layer, adsorption onto the surface takes place and reactions

occur on this solid surface. Next, any reaction by-products and other escaping

atoms/molecules will desorb from the surface and diffuse back through the bound-

ary layer where it will then be carried off with the main stream of flow outside the

boundary layer.
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Figure 4.1: Lindberg Blue furnace for thermal chemical vapor deposition.

Figure 4.2: Schematic of a CVD reactor.
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Figure 4.3: Nickel nanocubes grown at low temperature, 600oC and nanowires
grown at higher temperature, 650oC [51].



40

4.2 Growth of Ni nanocrystals

Chemical vapor deposition (CVD) is a promising technique for the syn-

thesis of a wide range of nanostructured materials. Recently, Chan et al. [52, 51]

extended a traditional CVD process to achieve a significantly increased degree of

morphological control for the growth of Ni nanostructures onto SiO2||Si substrates.

This approach has been proved to be high-performance and low-cost method to

grow Ni nanowires. The isolation of several distinct nanostructured Ni products

in a well-controlled chemical vapor deposition process has been demonstrated [51].

Nickel chloride hexahydrate is used as the precursor material for Ni depo-

sition onto 500nm amorphous SiO2||Si substrates. The growth parameters such as

the moisture content and temperature is varied to achieve the various nanostruc-

tured products. Ni nanocubes and vertically oriented Ni nanowires are distinctively

synthesized by ramping temperature from 200◦C to 650◦C and 600◦C, respectively,

at a rate of 25◦C/min following thorough thermal dehydration of the precursor at

200◦C (Figure 4.3) [51]. High temperature growth with moisture results in poly-

crystalline, core-shell structured NWs. Several distinct shapes are created due to

the use of an amorphous SiO2 growth surface that allows liberation from the con-

straints inherent in epitaxial substrate - deposit relationships resulting in greater

flexibility [51]. This study of Ni nanostructure growth can be slightly modified for

the growth of other materials. This approach was employed to form single-crystal

polyhedral gold nanocrystals.
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4.3 Results and discussion

We have measured a diffraction pattern of Ni nanocube, which has a 4-fold

symmetry and got preliminary result of reconstruction as shown in Fig 4.4. Figure

4.4 (a) shows local value of phase on the surface of Ni nanocube. The momentum

transfer vector is normal to the substrate so that the phase is interpreted as the

displacement along vertical direction. The fact that the phase distribution looks

mostly red near the bottom surface indicates that the atoms move up. This is con-

sistent with the recent study about the displacement in the metallic nanocrystals

[53]. The displacement at the bottom surface is substantially larger than the one

at top surface. It is attributed to the interfacial strain from the substrate surface.

The strain distribution which is obtained by taking derivative of the displacement

as shown in Fig 4.4 (b) shows that there is compressive strain predominantly along

vertical direction and the atoms at the top surface are move towards the center of

the nanocube.

This results from the reconstruction of the diffraction pattern which is mea-

sured without sulfur poisoning. The measurement with the same Ni nanocube

should be done under the circumstances with sulfur poisoning. Our goal is to

understand which crystallographic surface facets on the nanocrystal impact the

poisoning process in SOFCs. There may be obvious changes in the production

of Ni-YSZ anodes as a result of a deeper understanding of which facets are more

easily poisoned.
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Figure 4.4: Results of reconstructed phase and strain for the nickel nanocube.



Chapter 5

Coherent x-ray diffractive imaging

of polyhedral gold nanocrystals

Au nanocrystals were grown using thermal chemical vapor deposition (CVD)

onto a Si (100) substrate. A wide range of polyhedral Au nanocrystals with well-

defined facets were produced. These nanocrystals are relatively pure because this

approach requires neither surfactants nor catalysts of any kind. We were able to

study the intrinsic and extrinsic effects on the strain of metallic nanocrystals so

that we use coherent x-ray diffractive imaging to map the local distribution of

strain in gold polyhedral nanocrystals grown on a silicon substrate by a single-step

thermal chemical vapor deposition process. The lattice strain at the surface of

the octahedral nanocrystal agrees well with the predictions of the Young-Laplace

equation quantitatively, but exhibits a discrepancy near the nanocrystal-substrate

interface.

43
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5.1 Introduction

Gold nanocrystals are attracting increasing interest within the scientific

community due to the inherent differences between their optical and electronic

properties and those of their bulk counterparts [54]. Gold nanocrystals are im-

portant for a wide range of potential applications in photonics, nanoelectronics,

biological imaging, and biosensors [1, 2, 3, 4] due to their ability to enhance sig-

nal in surface plasmon resonance (SPR) absorption and surface enhanced Raman

spectroscopy (SERS) measurements, as well as their chemical and thermal sta-

bility. The optical and electronic properties of these nanocrystals are strongly

dependent on the morphology, size, and strain [55, 56]. Thus, the investigation

of nanoscale internal structure, shape, and lattice strain is crucial for the devel-

opment of suitable synthesis techniques and in understanding growth dynamics

on the nanoscale. It has been unclear whether the strain distribution in metallic

nanocrystals is intrinsic or if it is a consequence of surface contamination and in-

terfacial stress from the substrate [57]. Au nanocrystals with a face centered cubic

(fcc) lattice are characterized by different surface energies for different crystallo-

graphic planes. The low-index facets (e.g. (111)) have the smallest specific surface

energies that can be found in fcc crystals [58]. The Wulff construction theorem

[44], which has been used to predict the equilibrium shape of nanoparticles, offers a

geometrical approach to determining the facets which minimize the surface energy

of a free floating nanoparticle.
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We map the internal strain of Au nanocrystals and find the strain is in-

fluenced both by their interaction with the substrate as well as the details of the

facet geometry. Coherent x-ray diffractive imaging (CXDI) is a technique that

probes the overall shape of a nanostructure [5] and the displacement of individual

atoms from an ideal periodic lattice [6, 7, 8, 9, 10]. A mathematical inversion of

the coherent x-ray diffraction pattern results in a complex-valued density function.

The amplitude of this complex function is proportional to the electron density in

the crystal, while the phase can be interpreted as the deformation of the lattice

as projected onto the momentum transfer vector, which is determined by the di-

rection of incident and scattered x-ray, of the Bragg peak [59]. The fact that the

intensities (I = |E|2, where I = E is the amplitude of the diffracted wave) are

measured with the loss of information regarding the phase of the waves gives rise

to the so-called phase problem [60]. The phase problem has been a recurring issue

in crystallographic reconstructions for many decades. However, it can be mitigated

on the condition that the sampling frequency in reciprocal space is at least twice

the bandwidth of the real space frequency [26, 27].
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5.2 Growth of Au nanocrystals

There have been so many different ways of synthesis for gold nanocrys-

tals. In most cases, the surfactants play important role in controlling crystal

growth. The concentration of surfactants and/or the ratio between the surfactant

and the co-surfactant are critical to producing well-defined sizes and shapes of gold

nanocrystals. However, we obtained various shapes of gold nanocrystals without

surfactants or catalysts of any kind, which is one of advantages for this approach.

The approach we used is similar to one that has been used to form Ni

nanocrystals [52] and yields single-crystal gold nanocrystals with well-defined facets.

The operating temperature is 475◦C, which is about 150◦C lower than that for Ni

nanostructures and the gold nanocrystals were grown on a Si (100) substrate, not

on SiO2||Si substrate. Au nanocrystals were grown with the native oxide using

a catalyst-free thermal approach with AuCl3 as a precursor. Approximately 1.0

g of powdered AuCl3 was loaded in a boat and placed within a quartz tube at

the center of a Lindberg Blue furnace at 475◦C, where the silicon substrate still

remains unoxidized because the oxidation of silicon is performed above 800◦C [61].

An Ar carrier gas was flowed through the quartz tubing while the downstream end

of the CVD setup remained isolated from the outside atmosphere. The system

was left at 475◦C for about an hour, after which it was allowed to cool down to

room temperature. The Ar flow through the quartz tube was maintained for the

duration of the cooling process.
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Figure 5.1: SEM image for gold nanocrystals. Gold nanocrystals grown using a
catalyst-free thermal chemical vapor deposition (CVD) onto a Si (100) substrate.
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5.3 Sample preparation

In this study, Au nanocrystals were grown using thermal chemical vapor de-

position (CVD) onto a Si (100) substrate with the native oxide using a catalyst-free

thermal approach with AuCl3 as a precursor. Approximately 1.0 g of powdered

AuCl3 was loaded in a boat and placed within a quartz tube at the center of a

Lindberg Blue furnace at 475◦C, where the silicon substrate still remains unoxi-

dized because the oxidation of silicon is performed above 800◦C[61]. An Ar carrier

gas was flowed through the quartz tubing while the downstream end of the CVD

setup remained isolated from the outside atmosphere. The system was left at

475◦C for about an hour, after which it was allowed to cool down to room tem-

perature. The Ar flow through the quartz tube was maintained for the duration

of the cooling process. Through this process, nanocrystals form in the absence of

any foreign catalyst. In contrast, most synthesis techniques for Au nanocrystals

employ surfactants to control shape or size. The roles of surfactants are widely

reported. A growth mechanism is proposed linking both structural characteris-

tic of the nanoparticles and the surfactants. A catalyst-assisted approach can be

used to produce polyhedral shapes of nanocrystals and polyhedron with truncated

corners/edges and also be involved in twinning growth of crystals. The shape

control of gold nanocrystals can be done with the assistance of appropriate surfac-

tants (e.g. cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium

tosylate (CTAT), tetrabutylammonium bromide (TBAB), sodium dodecyl sulfate
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Figure 5.2: Octahedral and triangular-plate shaped gold nanocrystals in SEM
image.

(SDS)) [62, 63, 64, 65]. These surfactants remain after the synthesis process is

complete and can affect the physical properties of the nanocrystals. This synthesis

method can be used to create many different shapes of gold nanocrystals, ranging

from triangular plates, octahedra, and 26 faceted polyhedron to multiple twinned

particles such as decahedra and icosahedra.
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5.4 Coherent x-ray diffraction experiment

The coherent x-ray diffraction measurements were performed at Sector 34-

ID-C of the Advanced Photon Source (APS) synchrotron facility. Figure 2.4 shows

a schematic image of the setup we used for measurements of coherent x-ray diffrac-

tive imaging. An upstream monochromator was used to select E = 9.0 keV x-rays,

which were focused onto the sample using Kirkpatrick-Baez mirrors that restricted

the beam size to a region. The resulting diffraction patterns were measured using

a charge-coupled device (CCD) with 22.5 pixels located along the detector arm at

a distance of 0.9 m beyond the sample. The measured 2D diffraction patterns for a

triangular nanoplate and an octahedral nanoparticle are shown in Fig. 5.2. These

coherent diffraction patterns were recorded for the rocking curves of the (111)

Bragg reflections by rotating the sample through the Bragg peak in increments of

0.005◦. 121 frames were collected in this manner for each nanocrystal, covering a

total angular range of 0.6◦. Isosurfaces of the 3D diffraction patterns, obtained by

stacking up the 2D diffraction data collected during rocking scans. The fringes,

seen as spatial modulations in the signal, originate from the interference between

waves diffracted from pairs of sharply terminated crystalline facets. Accordingly,

the four pairs of fringe modulations in the diffraction pattern imply the presence of

eight facets (i.e. an octahedron). The lack of inversion symmetry in the diffraction

pattern reflects the strain in the nanocrystal [66].
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Figure 5.3: Measured 2D and 3D diffraction patterns from (111) Bragg reflec-
tions for triangular plate and octahedral gold nanocrystals. (a) and (c) measured
2D coherent x-ray diffraction patterns from (111) Bragg reflections for a triangu-
lar nanoplate and an octahedral gold nanoparticle, respectively, (b) and (d) 3D
diffraction patterns for each particle obtained by rocking scans with a total 121
frames.
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5.5 Phase retrieval procedure

The displacement field projected along the {111} Bragg plane direction was

measured to quantify the internal nanoscale strain field within the nanocrystals.

The missing phase of the diffracted wave was retrieved by using an iterative algo-

rithm. The retrieval algorithm begins by taking a Fourier transformation of the

amplitude from the measured diffraction pattern and coupling it with a random

guess for the phase. The algorithm iterates back and forth between real and re-

ciprocal space while applying constraints in every cycle [31, 32]. The real space

constraints ensure that the amplitude, corresponding to the electron density, out-

side of the support, in which the object is assumed to exist is set to zero. In

reciprocal space, the computed modulus is replaced with the square root of the

measured intensity. Alternations of error reduction (ER) and hybrid input output

(HIO) phase retrieval algorithms are applied [32]. In addition, the shrink-wrap al-

gorithm is applied periodically to optimize the support as the algorithm progresses

[41].

5.6 Results and discussion

These equilibrium nanocrystal shapes can be understood by employing the

Wulff construction theorem [44]. We further studied the three-dimensional electron

density, lattice displacement and strain distribution in these gold nanocrystals by

using synchrotron-based coherent x-ray diffractive imaging [6]. In addition to
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the nanocrystals enclosed by identical polygonal surfaces, plate-like flat crystals

are also formed during synthesis. These plate-like structures exhibit a triangular

morphology with basal surfaces bounded by two (111) facets and three (100) facets

along the sides [58]. This shape is not explained by conventional thermodynamical

arguments due to a relatively large surface area-to-volume ratio. However, it can

be explained from the growth of a nanocrystal seed in the presence of a stacking

fault [67]. If the planar seed exhibits a stacking fault, Au atoms added in close

proximity to the fault give rise to crystal growth [67, 68]. Regardless of this

difference in process of formation, gold nanocrystals with both triangular plate

and octahedral shapes retain symmetries inherent to the fcc unit cell [69].

5.6.1 Octahedral nanocrystal

The geometry of gold nanocrystals on a silicon substrate with momentum

transfer wave vector Q for the (111) Bragg reflection is shown in Fig 5. 4(a).

Q is normal to the substrate for both crystals. Figure 5.4 (b) and (c) show the

shapes of the reconstructed crystals. The top and bottom surface of the octahedral

nanocrystal are identified by the same transformation of triangular plate, which

has distinguishable top and bottom surface from the diffraction pattern to the ob-

ject on the substrate in real space. The edge length of the octahedral nanocrystal

is about 220 nm. The triangular plate has an edge length of about 600 nm and a

thickness of about 60 nm. The phase (shown on the color scale) indicates a pro-

jection of the deformation onto the reciprocal lattice vector Q. Thus, the phase
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is the deformation along the normal to the substrate surface in both nanocrys-

tals. In the case of the triangular plate, due to the small thickness of a plate-like

nanocrystal, area of contact with the substrate is so large that the physical defor-

mation is closely associated with the direct interaction between a nanocrystal and

its substrate. Two perpendicular cross-sectional planes, both containing the {111}

Q vector were chosen for detailed analysis of displacement and strain distributions

as shown in Fig 5.5(b). Figures 5.5 (c) and (d) show the phase shifts on the planes

depicted in Fig 5.5(b). Both images clearly show that the displacements along

the vertical direction, which corresponds to the {111} Qvector, occurred primarily

near the surfaces. Moreover, the phase shifts near the top and bottom surfaces

are colored blue (negative) and red (positive), respectively. This pattern indicates

that the atoms near the top and bottom surfaces moved towards the center of

nanocrystal. A distinct contraction of the surface layers of a gold nanocrystal has

been confirmed by Huang et al in models of experimental diffraction patterns and

molecular dynamics simulations [53].

The normal strain is generally defined as the derivative of the displacement,

where is the normal strain along the x-direction. The 3D strain distribution of

the entire volume along the {111} Qvector direction was obtained by taking the

derivative of the displacement field resulting from algorithmic phase reconstruction.

Figures 5.5 (e) and (f) show the perpendicular slices that represent strain fields

on the planes depicted in Fig 5.5 (b). The concentration of compressive strain in

particular regions, as well as the overall inward contraction, is readily apparent.
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Strong compressive strains are located mainly at the vertices or edges, whereas

the weaker strain distribution appears on the flat surfaces. The center of the

crystal remains nearly strain-free. This observation is in good agreement with

recent studies of strain distribution in metal nanocrystals. These studies found

evidence of compressive strain under the locally rounded surface regions of metallic

nanocrystals where (111) planes intersect, and exhibit relatively less compressive

strain near flat surface regions [70, 71].

We observed that the strain near the bottom surface of the octahedral

nanocrystal is significantly stronger than that near the top surface. The measured

strain is−4.2×10−4 and−5.0×10−4 near the top and bottom surfaces, respectively,

as in Fig 5.5 (e). The phase-retrieval real space density distribution is well-known

to have a two-fold degeneracy because the combination of inversion symmetry and

complex conjugate to any complex function solution is also a solution, resulting in

identical experimental data [33]. Therefore, while Figure. 5.5(e) and (f) show an

octahedron with greater compressive strain at the bottom facet based on diffrac-

tion data alone, it is not possible to completely rule out an inversion symmetry,

equivalent solution where the top facet is unusually strained instead. However, we

postulate that it is much more likely that the bottom facet has the greater com-

pressive strain, since such orientation of octahedron (see Fig 5.5(e) and (f)) would

be consistent with the strain induced by the underlying substrate, whereas the top

facet solution lacks any clear explanation for such substantial strain modification.

This assumption is further supported by greater compressive strain induced by
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the substrate also observed in triangular nanoparticles, a case in which the correct

orientation can be determined from independent SEM measurement. The strain

on the rounded surface of a particle of radius R can be estimated quantitatively by

the Young-Laplace equation for a given bulk modulus K of the material. Surface

stress results in a pressure difference between the inside and outside regions of a

material that effectively compresses an isotropic particle. For a lattice constant of

a:

∆a

a
= − 2σs

3KR
(5.1)

Surface stresses for metals are usually tensile in nature, in the range of

2N/m [48, 49]. The bulk modulus of gold is 180 GPa and the radius of the lo-

cally rounded region is 18 nm in the upper right portion of Fig 5.5 (e). According

to Eq. (5.1), the strain under the rounded surface should be −4.1 × 10−4. This

value is in good agreement with the measured strain of −4.2× 10−4. However, the

strain at the bottom surface is approximately 20 % higher than that at the top

surface. In general, inhomogeneous internal strain in nanocrystals can be caused

by irregular surface relaxations [72]. Surface stress, which is coupled with internal

strain, depends on the chemical composition of the surface and its interfaces with

neighboring particles, substrates, solvents, surfactants, etc [71]. In our experimen-

tal environments, the irregular relaxations at the surfaces may be attributed to

the dissimilarity in interfacial energies at the substrate. The different surface en-
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ergies at Au/Air and Au/Si interfaces determine an internal strain accumulation

during the growth of a nanocrystal [73]. Furthermore, when the nanocrystals are

cooled down to room temperature, the strain at the interface is induced by the

difference in the thermal expansion coefficients between the Au nanocrystals and

the Si substrate.

Within the temperature range of the synthesis process, the thermal ex-

pansion coefficient of Au, αAu = 1.4 × 10−5K−1, is greater than that of Si,

αSi = 0.3× 10−5K−1. As a result, the Au nanocrystal contracts more than the Si

substrate as they are cooled down. Therefore, compressive strain fields along the

Qvector are induced by the tension along the bottom surface, which is parallel to

the substrate surface. As shown in Fig 5.5 (e) and (f), these compressive strains

are not distributed uniformly across the bottom surface. This distribution can

be attributed to a partial relaxation of the strain due to an incomplete contact

between the nanoparticle and the substrate surface. Since strain is calculated with

respect to the normal direction of the substrate surface, the strain distribution at

the right and left sides of Fig 5.5 (e) and (f) lie nearly in-plane, while the strain

distribution in other regions show out-of-plane components. Most metal surfaces

exhibit tensile surface stress because they tend to reduce interatomic distances in

surface planes [49]. Accordingly we are seeing the signature of tensile surface strain

in the octahedral nanocrystals.
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Table 5.1: The coefficients of linear thermal expansion (α)

α Au Si

10−6/K 14.3 3

Table 5.2: The comparison of strains

Strain Young-Laplace equation Reconstruction

× 10−4 -4.1 -4.2

Table 5.3: The maximum compressive strain values at top and bottom

Strain Top Bottom

× 10−4 -4.2 -5.0
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Figure 5.4: The geometry of octahedral gold nanocrystal with momentum trans-
fer vector and results of reconstruction. (a) The geometry of gold nanocrystals on
a silicon substrate. The momentum transfer wave vector Q for the (111) Bragg
reflection is oriented normal to the substrate. (b) Isosurfaces of the reconstructed
shape for an octahedral nanoparticle. The normal directions of two sets of crys-
talline planes (111) and (100) are marked by red and black arrows, respectively.
(c) The color represents the local value of the phase at the surface, indicating the
presence of strain.
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Figure 5.5: The phase and strain distribution on two cross-sections inside octa-
hedral gold nanocrystal. (a) The geometry of the nanocrystal and outlines of two
cross-sections, (b) which are perpendicular to the bottom surface, and contain the
{111} Q vector. 2D phases on the cross-sections, depicted in (b), are shown in (c)
and (d). Strain fields, calculated by the gradient of the displacement on plane (i)
and (ii), are shown (e) and (f), respectively.
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Figure 5.6: The plot of phases on a slice of a octahedral gold nanocrystal. Three
line scans of phases along the plane of the inset. Brown, blue, and red lines
represent phases along the left, center, and right white dashed line, respectively in
the inset.
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Figure 5.7: The geometry of triangular plate gold nanocrystal with momentum
transfer vector and results of reconstruction. (a) The geometry of gold nanocrystals
on a silicon substrate. The momentum transfer wave vector Q for the (111) Bragg
reflection is oriented normal to the substrate. (b) Isosurfaces of the reconstructed
shape for a triangular plate nanoparticle. The normal directions of two sets of
crystalline planes (111) and (100) are marked by red and black arrows, respectively.
(c) The color represents the local value of the phase at the surface, indicating the
presence of strain.
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Figure 5.8: Averaged phase and strain of triangular plate gold nanocrystal. (a)
and (b) Phase and strain along the normal to the basal plane of the triangular
nanoplate, averaged over the depth.

5.6.2 Triangular plate nanocrystal

Figures 5.8 represent phases and strains, respectively, averaged over the

depth of the triangular plate. A primarily negative distribution of phases shows

that the triangular plate deformed downwards. The compressive strain along the Q

vector is induced in much the same way as the compressive strain near the bottom

of the octahedral nanocrystal, as discussed in the preceding paragraph. The height-

to-length ratio of the triangular plate is so small that the displacement of the

entire volume is affected predominantly by the difference in thermal expansion

between the nanocrystal and the substrate. Figure 5.9 shows the distinct strain

distribution at top and bottom surfaces. The fact that there is more compressive

strain at the bottom surface compared to the top surface is consistent with the

strain distribution of octahedral nanocrystals as shown in the table 5.3.
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Figure 5.9: Strain distribution of triangular plate at top and bottom surfaces.
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5.6.3 A 26 faceted polyhedral nanocrystal

We have found a 26 faceted polyhedral nanocrystal and reconstructed it as

shown in Fig 5.10. This polyhedral nanocrystal is surrounded and bound by the

six (100), twelve (110), and eight (111) facets. It was found that the gold nanocrys-

tals were transformed from rhombic dodecahedron to octahedron enclosed by the

most stable (111) facets via 26 faceted polyhedron driven by the concentration of

PVP (poly-vinylpyrrolidone) and the water content [74]. In lithium ion storage,

ferroferric oxide, Fe3O4, appears as not only 26 facted form of nanoparticle, but

also 14 faceted truncated octahedron containing six (111) and eight (111) facets

[75]. This gold nanocrystal could be an intermediate state in the process of shape

evolution.

Because of this particular shape, which has Oh symmetry same as octa-

hedral nanocrystal, it is not possible to assign top and bottom facets since the

solution of phase retrieval has essentially inversion symmetry. However, this prob-

lem can be overcame with the help of prior knowledge. The facet that contacts

with the substrate surface can be identified based on the fact that the atoms near

the top and bottom surfaces moved towards the center of nanocrystal [53]. In our

study, one of (100) or (111) facets of 26 faceted polyhedron gold nanocrystal is

likely on the substrate surface. This is also consistent with the strain distribution

of octahedral and triangular plate gold nanocrystals as discussed in the preceding

sections.
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Figure 5.10: The reconstructed amplitude and phase of the 26 faceted polyhedron
nanocrystal.
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5.7 Inversion symmetry

It is important to identify sign of the displacement of the nanocrystals

since the diffraction is inherently centrosymmetric with all measured intensity. So

the complex density image, ρ(r), obtained from mathematical inversion of the

measurement is indistinguishable from ρ∗(−r), which is a complex conjugate. The

solution results from the phasing algorithm can be one of the two solutions, which

is arbitrarily determined. Therefore, if the nanocrystal has 2-fold symmetry, it is

not possible to find ‘true’ solution using the measurement data, which is diffraction

pattern itself.

For the triangular plate gold nanocrystal, the inversion symmetry can be

ruled out based on comparison with SEM image as shown in Fig 5.11. The phase

and strain distributions of this nanocrystal (see Fig 5.8 and 5.9) indicate that

there are more compressive strain at the interfacial surface with the substrate.

This result of phase retrieval implies that the strain distribution of the surface

adjacent to substrate is affected by the substrate significantly. We can find a ‘true’

direction of displacement for the other nanocrystals such as octahedron and 26

faceted polyhedron gold nanocrystal in such a way that the strain distributions

are consistent with those of triangular plate, which is known. So we were able

to identify top and bottom surfaces for these two nanocrystals. We can avoid

the inversion symmetry with the help of prior knowledge such as other images or

evident results.
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Figure 5.11: Identification of inversion symmetry. For triangular plate, inversion
symmetry can be rule out based on the comparison with SEM image. The study of
internal structure of triangular plate helps the identification of inversion symmetry
for octahedral gold nanocrystal, which is not possible using diffraction data alone.
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5.8 Conclusion

In conclusion, we have observed the atomic-level structures and internal

strain distributions in Au nanocrystals with the morphology of an octahedron,

triangular plate, and 26 faceted polyhedron grown by CVD at a temperature of

475◦C. Phase reconstruction reveals the lattice distortion of the three nanocrys-

tals along the {111} direction. In the octahedral nanocrystal, it is observed that

there is a contraction of the lattice near the surfaces, accompanied by a compres-

sive strain beneath these surfaces, especially near locally rounded surface regions.

The strain on the surface of these rounded regions is in good accordance with the-

oretical predictions from the Young-Laplace equation. However, the strain near

the bottom surface shows a discrepancy. We conclude that this inhomogeneous

internal strain distribution is caused not only by the dissimilar surface energies

of the interfaces during the growth process, but also by differing thermal expan-

sions between gold nanocrystals and the silicon substrate when they are cooled

down to room temperature. In the case of a thin nanoplate crystal, the difference

in thermal expansion is the primary contributor to the strain fields of the entire

particle. The 26 faceted polyhedral gold nanocrystal, which is likely intermediate

state of shape evolution, has shown the same tendency of strain distribution with

octahedral nanocrystal. This is the first study of both curvature-induced strain

under a locally rounded surface and thermal strain at the nanocrystal-substrate

interface in a single Au nanocrystal.
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Chapter 5, in full, is a reprint of the material “Curvature-induced and

thermal strain in polyhedral gold nanocrystals” as it appears in the Applied Physics

Letters, Jong Woo Kim, Sohini Manna, Sebastian H. Dietze, Andrew Ulvestad,

Ross Harder, Edwin Fohtung, Eric E. Fullerton and Oleg G. Shpyrko, 2014, 105,

173108. The dissertation author was the primary investigator and author of this

paper.



Chapter 6

Radiation pressure on

nanocrystals

Coherent x-ray diffraction imaging is a powerful technique that can be used

to explore the internal structure of nanoscale objects. When a coherent x-ray beam

is incident on and scattered by an object, a diffraction pattern appears in the far

field. These diffraction patterns can be collected on a 2D detector within a certain

range of incident angles and combined to obtain a 3D diffraction pattern. During

this process, the integrated intensity can be described by a bell-shaped distribution.

However, we observed that the Bragg peak from a Ni nanowire abruptly shifted in

the middle of rocking scan without a drop of intensity. We demonstrated that this

phenomenon can be attributed to radiation pressure on the nanowire. Having ruled

out motion due to thermal effects on the sample and the substrate, we revealed

that the nanocrystal was pushed by x-ray radiation pressure.

71
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6.1 Introduction

Third generation synchrotron facilities provide brilliant x-ray beams with

a very high degree of coherence and high flux, allowing researchers to make great

advances in the study of nanostructures [7, 54]. Bragg coherent x-ray diffraction,

combined with computational phase retrieval techniques, has proven useful for

understanding the structure of nanocrystalline materials [71]. When a sample is

exposed to monochromatic x-ray radiation, the x-rays scatter from different regions

of the sample and interfere constructively or destructively at angles that fulfill a

particular relationship set by the Bragg equation. Three-dimensional diffraction

patterns in the far field can be comprised from an appropriately collected set of

2D diffraction patterns via a technique known as a rocking scan. In a rocking

scan, the sample is rotated relative to the incident x-ray beam such that the

entire volume of the sample can be illuminated by the beam at slightly different

angles. A mathematical inversion of the 3D diffraction pattern results in a complex-

valued density function. The amplitude of this complex function is proportional

to the electron density in the crystal, while the phase can be interpreted as the

deformation of the lattice as projected onto the momentum transfer vector [59].

This technique relies on the fact that the x-ray beam is non-destructive so that

the location of sample and its properties are not altered during the measurement.

Some biological samples and protein crystals, however, can be damaged or even

destroyed by an x-ray beam [76]. This radiation damage has been acknowledged
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as major problem in x-ray science, resulting in a rigorous study of the minimum

dose required to produce an image with a given resolution [77, 78, 79]. However,

inorganic materials have higher radiation tolerance and are largely invulnerable to

synchrotron x-ray radiation.

The x-ray radiation pressure was measured using diffracted x-ray tracking

of gold nanocrystals, which are designed to be linked to a substrate with a fila-

ment [80]. However, we present here some intriguing data that we obtained while

performing a Bragg coherent x-ray diffraction experiment to study the internal

structure of nanowires. We observed a substantial shift in the Bragg peak while

monitoring a 2D diffraction pattern. This fact is indicative that something unde-

sirable occurred in the sample or its environment during the experiment, resulting

in an unsuccessful collection of 3D diffraction data. It is necessary to investigate

this phenomenon in order to determine appropriate corrections for Bragg coherent

x-ray diffractive imaging.
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Figure 6.1: (a) A series of 2D diffraction patterns collected during a rocking
scan. 51 frames of 2D diffraction patterns were collected over a time period of
51 minutes. The four images are selected at t1 (35th min), t2 (40th min), t3 (45th

min), and t4 (50th min), respectively. (b) The experimental setup. The incident
and diffracted beam angles are chosen to produce an intense peak, which is the
Bragg peak. The theta motor rotates by 0.01◦ incrementally.
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6.2 Experiment

Ni nanowires were grown vertically on a silicon substrate using chemical

vapor deposition (CVD) technique [52]. These nanowires exhibited a large height-

to-width ratio with a height 2 µm and a width of 200 nm. They took the form of

an inverted pyramidal structure at the bottom portion, so that the sample looked

like a long nanowire with tapered base. Coherent x-ray diffraction measurements

were performed at beamline 34-ID-C of the Advanced Photon Source at Argonne

National Laboratory, with an x-ray energy of 9 keV selected by a monochromator.

The coherent beam was then focused with horizontal and vertical Kirkpatrick-Baez

mirrors to a size of about 1.5 µm in both directions.

The off-specular (111) Bragg plane direction of Ni nanowires was chosen

for coherent x-ray diffraction measurements. The x-ray beam illuminated the Ni

nanowire on the silicon substrate and the far-field diffraction intensity was mea-

sured by a charged coupled device (CCD) detector with 22.5 µm pixels, placed 0.5

m away from the sample. A 3D diffraction pattern was measured around the Ni

(111) Bragg peak as a function of the wave transfer vector Q = kf −ki, where ki is

the incident wave vector and kf is a diffracted wave vector. The measured recip-

rocal space positions are given by q = Q−G111 around the (111) reflection (Bragg

vector G111 ) with the components q1,2 lying in the detector plane, vertically and

horizontally, respectively [81].

The qθ component is the offset from the Bragg angle. It is perpendicular to
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both in-plane components q1 and q2, and increases linearly with the motor angle

θ, which is responsible for the rotation of the sample:

∆qθ =
2π

d111
×∆θ (6.1)

where ∆qθ is the reciprocal space unit vector in the θ (rocking) direction,

d111 is the lattice constant of the nickel (111) direction [82]. The component qθ

increases linearly over the scanning time so that the entire 3D diffraction pattern

can be obtained. The distribution of integrated intensities is a normally bell-

shape along qθ direction. Figure 6.1 (a) shows a series of measured 2D diffraction

patterns during a rocking scan. The sample was rocked within a range of ±0.25◦

in 0.01◦ increment. The angle was incremented every minute so that the rocking

scan consists of 51 frames and 51 minutes in total.

Figure 6.2 (a) shows the 3D diffraction pattern obtained by stacking up

51 2D diffraction patterns along qθ direction, which is equivalent to time frame.

Figure 6.2 (b) represents four contours extracted from corresponding 2D diffraction

patterns shown as Fig 6.2 (a). The fact that the 3D diffraction pattern is bent

and the four contours look almost same indicates that the center of the Bragg

peak started to shift along a particular direction in the middle of the rocking scan

and the 2D diffraction patterns are maintained within the detector area during the

entire scan time. The Bragg peak shifts by 100 pixels on the CCD detector, which

is equivalent to a 0.2 nm−1 shift in reciprocal space.
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Figure 6.2: (a) 3D diffraction is obtained by stacking up 2D diffraction patterns.
The four slices represent four 2D diffraction patterns measured at different times
shown as Fig 6.1(a). (b) Four contours are extracted from each 2D diffraction
pattern measured at at t1, t2, t3, and t4 shown as (a). The origin point (0,0) is
defined as the spot where the Bragg peak starts to shift.

6.3 Results and discussion

To analyze the Bragg reflections along the qθ direction, the curves at each

2D diffraction pattern was fitted to a Gaussian and the position of the brightest

spots were extracted. This quantity is plotted versus time in Fig. 6.3 (a). After

some initial variation, there is a roughly linear increase in the Bragg peak shift

after t=35 minutes, which is defined as t1. During this period, the 2D diffraction

patterns are maintained, as shown in Fig 6.3 (b).

h(m,n) =

∑
k,l

(It1(k, l)− I t1)(Ix(m− k, n− l)− Ixth(m,n))

(
∑
k,l

(It1(k, l)− I t1)2
∑
k,l

(Ix(m− k, n− l)− Ixth(m,n))2)0.5
(6.2)
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wehre h(m,n) a normalized cross correlation function, It1 a diffraction in-

tensity at time t1 and Ix a diffraction intensity at the xth frame. Normalized cross

correlations are calculated between the 2D diffraction intensities and the intensity

measured at time t1, where the Bragg peak starts to shift. The maximum values

are extracted from each function and plotted as a function of time. This value

represents the similarity of the diffraction pattern with the one measured at the

time t1. It decreases just by 2.3% since the time t1

Typically, the from of 2D diffraction pattern changes during the rocking

scan because its shape is determined by the part of the Ewald sphere in reciprocal

space that is rotated through a particular angle of the sample with respect to

incident beam. In addition, the diffraction intensity typically drops to the level of

noise at the end of rocking scan. However, Figure 6.3 indicates that undesirable

effects such as an abnormal rotation of the Bragg plane (111) occurred, since the

Bragg peak shifts without decay of intensity, which is not expected during the

rocking scan.

There are no other factors than x-ray radiation that can influence both the

sample and the substrate during a rocking scan unless the experimental devices

touch the sample. X-ray radiation can deliver photon energy to the sample and/or

its substrate. It can also exert radiation pressure on the sample. In the following

paragraphs, we present our evidence that x-ray radiation pressure caused the Bragg

peak to shift during this rocking scan.

As the temperature of a Ni nanowire increases, the vibration of atoms in
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a lattice around their equilibrium position increases so that the overall diffraction

intensity decreases by Debye-Waller factor without a spatial shift of the Bragg

peak [83]. FFurther increase of temperature can expand d-spacing, which is the

distance between adjacent atomic Bragg planes, in such a way that the Bragg

peak moves out of the Debye-Scherrer (D-S) ring, whose radius depends on the

lattice constant. In our experiment, however, it was observed that the Bragg peak

consistently sits on the D-S ring, around which it rotates by an angle of 0.4◦. This

evidence indicates that the thermal effect of x-ray radiation on the sample is not

the cause of the Bragg peak shift. If the substrate was deformed by a thermally-

induced strain due to x-ray radiation, a tilt of the Ni nanowire can occur leading

to a shift of the Bragg peak. The estimate of the temperature increase that could

be caused by x-ray radiation in a substrate based on heat transfer analysis is less

than 1K even without taking heat loss due to natural convection into account. For

this estimation, we have assumed that the entire photon energy is absorbed and

converted to heat on the substrate surface over the illuminated beam foot-print.

An overall x-ray power of 1.44×10−6W results from the calculation with a photon

energy 9 keV at a rate of 109photons/s. We can thus conclude that the x-ray

radiation plays a negligible role in raising the temperature of the substrate and

therefore, the thermal effect on the both sample and substrate is insignificant.
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Figure 6.3: (a) Position of the (111) Bragg peak versus time. The peaks were
fitted to a Gaussian to extract the position. There is a variation of peak shift
followed by a roughly linear increase of peak position in time. (b) The normalized
cross correlation of the 2D diffraction intensities with the 2D diffraction intensity
measured at t1 (35th min).
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Figure 6.4: (a) Incident x-ray beam diffracts from the (111) Bragg plane. The
direction of x-ray radiation pressure is determined by the opposite to the transfer
wave vector. It is decomposed into three vectors Px, Py, and Pz. (b) The pressure
vector Px is responsible for shift of the Bragg peak and the pressure vector Py
forces the Bragg peak to move away from a detector plane.
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We can evaluate the movement of the Bragg peak based on the assumption

that the Bragg reflection plane was pushed by x-ray radiation pressure. The ge-

ometrical analysis was performed in a Cartesian coordinate system, The y-axis is

defined parallel to the incident beam and the z-axis is normal to the ground, while

the x-axis is orthogonal to both the y and z-axes (see Fig 6.4 (a)). The direction of

the x-ray radiation pressure is opposite to the wave transfer vector. If the Bragg

plane of the Ni nanowire was pushed towards the direction in which the radiation

pressure was applied, the sample would tilt accordingly. The radiation pressure

can be decomposed into three vectors with respect to x, y, and z directions. The

pressure Px and Py can make the (111) Bragg reflection plane tilt along x- and

y-direction, respectively. The tile of (111) Bragg reflection plane along x-direction

can cause the Bragg peak to shift on D-S ring, which is transverse movement and

the tilt along y-direction can move the Bragg peak away from a detector plane,

which is longitudinal movement. The transverse movement of the Bragg peak is

consistent with our observation, the shift of the Bragg peak as shown in Fig 6.4 (b).

However, the Bragg peak does not seem to move in a longitudinal direction because

the diffraction intensity does not decay, but rather is maintained. Regardless of

the x-ray radiation pressure, the rocking scan should inherently make the Bragg

peak move away or come closer to the detector plane so that the 2D diffraction

pattern disappears by the end of the end. Thus, the longitudinal movement of the

Bragg peak that resulted from x-ray radiation pressure can be canceled out by the

angular rotation of the rocking scan.
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If the (111) Bragg reflection plane rotates around y-axis Ry by the angle

that the Bragg peak shifts on the detector, which is 0.40◦, the Bragg plane would

rotate around x-axis Rx by −0.18◦ based on the ratio of radiation pressure vector

components Px and Py. The θ motor rotates by 0.15◦ during the shift of the

Bragg peak between the beginning t1 and the end. This rotation contributes

to the rotation of the Bragg plane around x-axis by 0.19◦, which is the almost

same magnitude, but the opposite direction with the rotation caused by radiation

pressure. Thus, the longitudinal movement of the Bragg peak can be canceled out

by the rocking scan. As a result, x-ray radiation pressure can cause the Bragg

peak shift along D-S ring direction while keeping the 2D diffraction pattern from

changing shape or intensity.

Therefore, the postulation that the rotation of the Bragg plane results from

x-ray radiation pressure is consistent with our observations of Bragg peak shift

without change of the overall 2D diffraction pattern. In addition, the Bragg peak

disappeared as soon as the rocking scan was finished. This represents that the

Ni nanowire did not exist any more in the region where the x-ray beam passed

through because the θ motor returned to the original position automatically and

illuminated the sample right after the rocking scan was done. The Ni nanowire

may be down after the rocking scan.

The x-ray radiation pressure on the Ni nanowire can be calculated by the

following equation.
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Prad =
〈S〉
c

(6.3)

where 〈S〉 is a power flux density which is defined as the photon energy per unit

time per unit area, and c is the speed of light. In this study, the photon energy

was 9keV with a flux of 109 photons/s and the contribution of the photons on the

x-ray radiation is about 0.5% because most of photons pass through the sample.

Thus, the radiation pressure Prad turns out to be approximately 2.4 × 10−5Pa.

According to the study of x-ray radiation pressure force, it was revealed that the

force resulted from x-ray radiation at 10KeV is 0.33aN [80].

This tiny force is not enough to bend nor break normal Ni nanowire because

the fracture strength of the same-sized nanowire is about 10 GPa [84]. Ni nanowire

was likely standing or weakly attached on the substrate. The nanowire was pushed

by radiation pressure and fell down on the substrate. This is supported by the facts

that the Bragg peak disappeared following the rocking scan and the base of the

nanowire is likely the weakest region because it is tapered at the bottom and stress

would be concentrated on it. The shift of Bragg peak is rarely observed during

rocking scan. This indicates that the radiation pressure force is generally not

enough to exceed the normal fracture strength or adhesion of Ni nanowire to its

substrate. The sample in which we observed the shift of Bragg peak may have

contained a defect such that it was easily pushed by even a tiny x-ray radiation

pressure.
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In summary, we have observed the abnormal 3D diffraction patterns during

the rocking scan for a Ni nanowire. This intriguing data results from the effect of

x-ray radiation pressure on the samples. X-ray radiation inherently carries energy,

the pressure of which can cause a sample to move if it exceeds the adhesion strength

between the sample and a substrate. As a sample size gets smaller and photon flux

increases, the x-ray radiation pressure on a sample has to be taken into account

for hard x-ray scattering at synchrotrons.

Chapter 6, in full is currently being prepared for submission for publication

of the material “Observation of x-ray radiation pressure on a Ni nanowire”. Jong

Woo Kim, Edwin Fohtung, Sohini Manna, Ross Harder, Andrej Singer, Leandra

Boucheron, Eric E. Fullerton, Oleg G. Shpyrko. The dissertation author was the

primary investigator and author of this paper.



Appendix A

Strain in elasticity

A strain is one of fundamental concepts from the mechanics of materials.

It is a normalized measure of deformation representing the displacement between

particles in the body relative to a reference length. The understanding and man-

agement of strain is of fundamental importance in the design and implementation

of materials.

Let us consider now a cubic crystal with the elementary volume dV =

dxidxjdxk centered in a stressed material. The direction of xk is defined as normal

to the plane that the other two components make xij. The stress tensor is defined

as a force per unit area σik, where i = 1, 2, 3. If i = k, the force is applied normally

to the ith face, otherwise the shear stress is applied to the kth face. The tensor σ

consists of a total of 9 elements.

For mechanical equilibrium maintained under external forces fi applied to

the crystal, excluding torsion and/or rotation, we get the following condition

86
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∂σij
∂xj

= fi (A.1)

The notation is employed to define tensor components and associated op-

erations with tensors. The sum is performed on the repeated indices using the

notation. When the stress is applied on a crystal, the deformation can be ob-

served. In the x, y, z coordinates, r is the radial vector that points each atomic

position in the volume. The displacement field u(r) is defined as follows:

r
′
= r + u(r) (A.2)

where r is the original vector in the case of an unstressed crystal and r
′

is current vector under the deformation. Thus, the strain can be introduced as

follows:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(A.3)

The strain defines the infinitesimal deformation related to the gradient of

the displacement ∂ui
∂xj

. εij can be decomposed into normal (symmetric) and shear

(asymmetric) components. The asymmetric contribution is carried by the tensor

wij, defined as:

wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(A.4)



Appendix B

Convolution

A crystal is a periodic array of structural units such as atoms or molecules.

It can be constructed by the infinite or unit cells or the basis. This is relevant

to a convolution operation, one of the most important concepts in Fourier The-

ory. Mathematically, a convolution is defined as the integral over all space of one

function f(x) at a position x′ multiplied by another function g(x), reversed and

shifted, at (x− x′). The convolution, denoted by ⊗ is defined as

(f ⊗ g)(x) =

∫ +∞

−∞
f(x′)g(x− x′) dx (B.1)

The convolution is very useful until it has been applied to the Fourier trans-

form. It can be expressed in two different ways:

The Fourier transform of a convolution is the product of the Fourier trans-

forms.

88
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F(f · g) = F(f)⊗F(g); (B.2)

The Fourier transform of a product is the convolution of the Fourier trans-

forms.

F(f ⊗ g) = F(f) · F(g) (B.3)

According to the above equations, the convolution of two functions is equiv-

alent to the multiplication of the Fourier transforms of the two functions, and vice

versa. For example, when the Fourier transform is applied on time domain signals

to obtain frequency spectra, the convolution of the original time domain signals

is equal to multiplying the two frequency spectra. This is shown in the following

equation:

f(t)⊗ g(t) = F(f(t)) · F(g(t)) = F (w) ·G(w) (B.4)



Appendix C

Undulator radiation

The emission angle θ is assumed to be 0 in equation (2.30). It can be

extended to a general case (i.e. θ 6= 0). The Doppler effect varies with the emission

angle θ. The correct Doppler multiplication factor is γ(1−βcosθ). Assuming small

angles β ≈ 1 and take cosθ = 1− θ2

2
+ ...

f =
c

L(1− βcosθ)
(C.1)

f =
c/L

1− β(1− θ2/2 + ...)
=

c/L

1− β + βθ2/2−
=

c/(1− β)L

1 + βθ2/2(1− β)...
(C.2)

f =
2γ2c/L

1 + γ2θ2
=

2γ2c

L(1 + γ2θ2)
(C.3)
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The observed wavelength is then

λ =
L

2γ2
(1 + γ2θ2) (C.4)

An electron passing through an undulator with N periods produces a wave

train with N oscillations. For the first harmonic:

∆λ

λ
=

1

N
(C.5)

Write the wavelength twice, one for off-axis (θ 6= 0), and one for on-axis

radiation (θ = 0).

∆λ

λ
=
λ(1 + γ2θ2)− λ

λ
= γ2θ2 (C.6)

Combining two equation (C.5) and (C.6):

θ ≈ 1

γ
√
N

(C.7)

This is the half-angle of the central radiation cone, defined as containing

radiation of ∆λ/λ = 1/N .
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