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Summary

Quality assessment is critical for healthcare reform but data sources are lacking for measurement 

of many important healthcare outcomes. With over 49 million people covered by Medicare as of 

2010, Medicare claims data offer a potentially valuable source that could be used in targeted 

health care quality improvement efforts. However, little is known about the operating 

characteristics of provider profiling methods using claims-based outcome measures that may 

estimate provider performance with error. Motivated by the example of screening mammography 

performance, we compared approaches to identifying providers failing to meet guideline targets 

using Medicare claims data. We used data from the Breast Cancer Surveillance Consortium and 

linked Medicare claims to compare claims-based and clinical estimates of cancer detection rate. 

We then demonstrated the performance of claim-based estimates across a broad range of operating 

characteristics using simulation studies. We found that identification of poor performing providers 

was extremely sensitive to algorithm specificity, with no approach identifying more than 65% of 

poorly performing providers when claims-based measures had specificity of 0.995 or less. We 

conclude that claims have the potential to contribute important information on healthcare 

outcomes to quality improvement efforts. However, to achieve this potential, development of 

highly accurate claims-based outcome measures should remain a priority.
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1. Introduction

Quality assessment and improvement using quantitative measures of provider performance 

has become a high profile activity and is emphasized by the Patient Protection and 

Affordable Care Act of 2010 as a key element of healthcare reform. One of the challenges to 

this effort is lack of available data on key health outcome measures. Screening 

mammography is one area of healthcare in which provider performance has been assessed 

for some time. The Mammography Quality Standards Act of 1992 (MQSA) mandated that 

facilities providing screening mammography maintain standardized records of patient 

outcomes. The policy goal of this requirement was that mammography facilities would use 

these metrics to monitor and improve the quality of mammography interpretation. However, 

while these data are available for review by the individual facility, they are not available for 

public reporting or benchmarking. Thus, even in the case of a healthcare service that is 

carefully regulated, additional data sources are needed for public reporting and evaluation.

Medicare claims are a potentially rich source for evaluating performance of medical 

providers. With over 49 million people covered by Medicare [1], these data represent a vast 

source of information on health care provider performance. Medicare data are already being 

used to provide healthcare quality information through the Center for Medicare & Medicaid 

Services’ (CMS) Hospital Compare website [2]. As efforts to develop and validate claims-

based measures for provider performance outcomes continue, Medicare claims will gain 

additional value as a potential tool for quality assessment and improvement. However, no 

existing research has investigated classification accuracy associated with using claims-based 

measures to classify providers as succeeding or failing to meet performance targets.

Previous literature has developed statistical methods for provider profiling and investigated 

their performance. Specifically, several alternative methods have been proposed for 

identifying providers with outlying performance. Hierarchical models that incorporate 

information about the distribution of performance across providers have been favored by 

some because they stabilize estimates from providers with smaller patient volumes and 

decrease the risk of penalizing small providers due to high variability in their performance 

estimates [3, 4]. Conversely, by shrinking provider estimates towards the population mean, 

hierarchical methods tend to have poorer sensitivity for identifying providers with extreme 

performance values and have been criticized on this basis [5, 6]. Fixed effects approaches 

including indirect standardization may be favored if identifying extreme outliers is a high 

priority.

The statistical properties of alternative profiling methods also depend on the goal of the 

profiling activity. Possible objectives of the analysis include obtaining good estimates of 

individual provider performance measures, comparing the relative performance of providers 

via ranks, or generating a reliable estimate of the distribution of provider performance. As 

discussed by Shen and Louis [7], no single statistical method will be optimal for all three of 

these goals. In the context of screening mammography, estimation of provider performance 

measures is mandated by the MQSA and benchmarks for acceptable performance have been 

developed and are a focus of quality assessment and improvement activities. Estimation of 

provider performance and evaluation of performance estimates relative to existing 

Hubbard et al. Page 2

Stat Med. Author manuscript; available in PMC 2016 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



benchmarks is thus of primary interest. More broadly, evaluation of performance estimates 

relative to fixed benchmarks is of interest because the majority of programs offering 

financial incentives for high quality care award incentives to providers who exceed fixed 

thresholds [8]. However, accurately identifying providers at the extremes of the performance 

distribution is also of great clinical importance and has been undertaken in many prior 

studies [5]. Providers with outlying poor performance are of interest for intervention such as 

re-training, while outliers with excellent performance may receive bonuses or other 

incentives.

Using Medicare claims-based quality measures for provider profiling may compound the 

challenges to estimation of provider performance by introducing an additional source of 

error. While methods based on clinical performance measures are subject to error due to 

random variability, claims-based approaches may introduce error due to misclassification if 

the measure fails to identify clinical events for some patients and erroneously identifies 

events for others. Although several prior clinical studies have investigated agreement of 

clinical and claims-based provider performance estimates [8, 9], to our knowledge, no 

previous study has evaluated the effect of operating characteristics of claims-based measures 

on alternative statistical approaches to profiling.

This investigation was motivated by the need for standard methods and data sources for 

evaluating screening mammography performance. The rate at which mammography detects 

breast cancers that are present at the time of the screening mammogram (the cancer 

detection rate) is one example of a widely used metric for screening mammography 

performance. Performance based on this metric has been demonstrated to vary widely 

between radiologists [10, 11], and there has been interest in identifying poor performing 

providers. Claims from over 8.5 million women receiving mammograms paid for by 

Medicare annually [12] coupled with established thresholds for minimally acceptable 

mammography provider performance may allow for public evaluation of provider 

performance on a broad scale. We recently developed and validated claims-based algorithms 

to measure mammography facility interpretive performance including the breast cancer 

detection rate [13]. While these algorithms have good sensitivity and specificity for 

identifying individual events, the implications of using algorithms such as this for provider 

profiling are unknown.

The broad objective of this study was to assess the performance of claims-based approaches 

to provider profiling using the breast cancer detection algorithm as a motivating example. 

Our specific objectives were: (1) to compare alternative statistical methods commonly used 

for profiling when applied to performance estimates based on claims and (2) to evaluate the 

performance of claims-based provider performance estimates as a function of the operating 

characteristics of the claims-based algorithm used for outcome ascertainment. In Section 2, 

we introduce notation and methods for conducting provider profiling using claims-based 

algorithms and describe an illustrative approach to estimating breast cancer detection rates 

using Medicare claims data. We then describe simulation studies conducted to characterize 

performance of claims-based algorithms for estimating provider performance. We also 

introduce data from the Breast Cancer Surveillance Consortium (BCSC) and matched 

Medicare claims that were used to estimate breast cancer detection rates using claims and 
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clinical outcomes. Section 3 provides results of simulation studies and analyses of the 

Medicare-linked BCSC data. Finally, in Section 4, we summarize these results and draw 

conclusions on the contexts in which provider profiling may be feasible using claims data.

2. Methods

2.1 Notation and definitions

In estimation of provider performance, we assume there are N providers, with ni patients 

observed for the ith provider and a total of yi events observed across the ni patients. We 

assume that yi, the clinical outcome measure, is unobserved because claims do not directly 

capture outcomes of interest. We focus on binary outcomes, although similar considerations 

would apply to continuous outcomes. We assume that each provider has an underlying, true 

performance measure, θi, arising from a possibly unknown distribution with mean μ and 

variance σ2. Our objective is to classify providers as to whether their performance measures 

fail to meet some performance benchmark. Without loss of generality, we assume a provider 

fails to meet the guideline target and is a true poor performer if θi < k.

2.2 Claims-based outcome measures

We assume the existence of an algorithm based on claims data that can be used to predict the 

outcome of interest, yi. Let zij represent a binary indicator of whether the jth patient of the ith 

provider experienced an event and  represent a binary classification derived from the 

claims-based algorithm indicating whether claims identified an event as having occurred. 

The claims-based measure of the number of events for provider i is thus given by 

. We characterize the claims-based algorithm in terms of its sensitivity, 

, and specificity, . Claims-based performance 

estimates are based on outcomes, , obtained by applying an algorithm to claims data, while 

clinically-based performance measures are based directly on yi. It can also be seen that 

, where  is binomially distributed with mean S and sample size yi and  is 

binomially distributed with mean (1-P) and sample size ni-yi. Since 

,  and yi differ in expectation except in the case of an 

algorithm with perfect sensitivity and specificity. Indeed, in the case of an algorithm with 

perfect sensitivity and specificity, clinical and claims-based measures are identical. Holding 

specificity constant, as algorithmic sensitivity decreases, yi will tend to be underestimated 

and, holding sensitivity constant, as specificity decreases yi will tend to be overestimated. 

We can correct this by using a bias-adjusted estimator that explicitly accounts for the known 

bias in . We define , where  is an estimate of the 

population mean, to be the bias-adjusted claims-based number of events observed for the ith 

provider.

Any of the three outcome measures described above, yi, , or  can be used in standard 

statistical methods for provider profiling. Below we illustrate approaches using yi. However, 

statistical methods based on  or  are analogous.
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2.3 Methods for estimating provider performance

2.3.1 Fixed effects estimates of provider performance—A standard approach to 

provider profiling is to estimate θi using the maximum likelihood estimator (MLE). In the 

simple setting of a binomial outcome with no patient or provider characteristics to be 

adjusted for as described in Section 2.1, the MLE is simply the sample mean, yi/ni. In many 

cases, patient-characteristics will be strongly associated with the probability of an event, and 

adjustment for these characteristics will be important for obtaining unbiased estimates of 

provider performance. In this case, a generalized linear model of the form

(1)

can be used, where g(.) is a link function relating the expectation of an event to patient- and 

provider-specific characteristics, Xij is a vector of covariates for the jth patient of the ith 

provider, and γi is a provider-specific fixed effect. Predicted provider performance measures 

can then be derived either by calculating  for some set of covariates, X*, 

with the same vector of covariates used for all providers or by computing a standardized 

version of , estimated by taking a weighted average of  for all values of X 

with weights proportional to the representation of each value of X in the population of 

interest. Upper and lower confidence limits can also be constructed for our fixed effects 

estimates using standard methods.

2.3.2 Hierarchical Bayesian estimates of provider performance—Although 

straightforward, using a fixed effects approach for classifying providers has been criticized 

for failing to account for instability of estimates for providers with small patient volumes. 

Performance estimates from providers with small patient volumes will be unstable and 

hence extreme performance values may be observed by chance. In order to stabilize 

performance estimates, a number of authors have proposed using hierarchical Bayesian 

methods to estimate provider performance [3-5, 14-18]. In addition to stabilizing estimates 

from providers with small sample sizes, Bayesian methods are also appealing because they 

allow for direct estimation of the probability that a provider’s true performance score falls 

below a performance threshold.

The first level of the Bayesian hierarchical model takes the form given in equation (1). 

However, we further assume a second-level model in which provider-specific effects arise 

from a common distribution, γi ~ G(α), where α is a vector of hyperparameters. A prior 

distribution for the hyperparameters, π(α), is also assumed. Based on this model, the 

posterior distribution for θi can be derived either conditional on a specific vector of 

covariates which is used in common for all providers or by standardizing across the 

distribution of covariate vectors as described under the fixed effects approach. For some 

choices of link functions and prior distributions the posterior distribution may be available in 

closed form. However, this will not be the case in general, and a Markov Chain Monte Carlo 

approach for simulating from the posterior distribution will typically be required.

An empirical Bayes approach to estimating provider performance is an alternative to the 

fully Bayesian approach described above. The empirical Bayes approach may be preferred 
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over a fully Bayesian framework because it avoids the necessity of specifying a prior 

distribution for the hyperparameters and can lead to computationally efficient, closed form 

estimators in some cases. In the simple case of a binary outcome with no covariate 

adjustment and assuming a conjugate beta distribution with parameters a and b for θi, the 

posterior distribution for θi is available in closed form as Beta(yi + a,ni + b). In the empirical 

Bayes framework, a and b are obtained using estimates of the parameters of the marginal 

distribution of the observed data. In the case of binomial data with beta distributed provider-

specific means, this marginal distribution is beta-binomial. MLEs for a and b are not 

explicitly available but can easily be obtained through numerical maximization of the beta-

binomial marginal likelihood. Alternatively, method of moments estimators are available in 

closed form [19].

Once the posterior distribution for θi has been obtained, point estimates and interval 

estimates can be directly derived from the posterior. Alternatively, in the case of 

classification relative to a fixed threshold it may be of interest to estimate the posterior 

probability that a provider falls above or below a target performance level.

2.3.3 Classification using fixed effects or hierarchical Bayesian estimates—
Using the ML and Bayesian provider performance estimation approaches described above, 

we will evaluate four methods for identifying providers performing below specified 

benchmarks:

1. Classification based on ML fixed effects estimates. Providers with  are 

classified as failing to meet performance benchmarks.

2. Classification based on ML fixed effects confidence intervals. Providers with 

 are classified as failing to meet performance benchmarks, where 

represents the upper α/2 confidence interval limit for .

3. Classification based on Bayesian posterior means. Providers with E(θi | yi) < k are 

classified as failing to meet performance benchmarks.

4. Classification based on posterior probabilities. Providers with posterior 

probabilities of failing to meet performance targets greater than some threshold 

probability, P(θi < k|yi) > p*, are classified as failing to meet performance 

benchmarks.

We contrast approaches 1 and 3 based on provider performance point estimates with 

approaches 2 and 4 which incorporate uncertainty in our estimates based on sampling error. 

Additionally, approaches 1 and 2 are based on fixed effects estimates which may be unstable 

for providers with small volumes while approaches 3 and 4 use a hierarchical Bayesian 

model to stabilize estimates for small volume providers by shrinking them towards the 

population mean. Choice of the probability threshold for method 4, p*, can be based on the 

relative costs of failing to identify a truly poor performing provider compared to erroneously 

labeling a provider with acceptable performance as poor [16, 18]. In numerical examples 

presented below, we chose to use a probability threshold of 75%, representing a case in 
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which the cost of falsely labeling a provider as a poor performer is three times greater than 

the cost of failing to identify a truly poor performing provider.

As an alternative to evaluating performance relative to a fixed threshold, we can also explore 

the relative ordering of providers based on either fixed effects or hierarchical Bayesian point 

estimates using receiver operating characteristic (ROC) curves. By using ROC curves we are 

able to compare the sensitivity and specificity of classification for a range of thresholds 

rather than focusing on classification accuracy relative to a fixed benchmark. The ROC 

analysis also allows us to evaluate the accuracy of provider rankings rather than focusing on 

absolute performance estimates.

2.4 Claims-based algorithms for breast cancer detection rate

We use a claims-based algorithm for breast cancer detection as an example claims-based 

approach to identifying outcomes. Like many outcomes of interest for quality assessment 

and improvement, breast cancer detection is a rare event, with a prevalence of approximately 

0.5% [20]. In the context of screening mammography interpretive performance, the 

objective is to achieve a high cancer detection rate and providers with very low cancer 

detection rates would be flagged as poor performers.

We have previously developed a simple claims-based algorithm for estimating the breast 

cancer detection rate. The breast cancer detection rate algorithm uses procedure codes for 

imaging and biopsy subsequent to the mammogram as well as diagnosis codes for invasive 

breast cancer and carcinoma in situ to identify detected cancers. This algorithm had a 

sensitivity of 94% and specificity of 99.9% [13]. In simulation studies below, we illustrate 

the performance of profiling methods for identifying providers failing to meet guideline 

thresholds when outcomes are estimated from claims using algorithms with operating 

characteristics similar to this existing algorithm. In the context of screening mammography, 

the objective of profiling is to identify providers with cancer detection rates below targets. 

Previous work has proposed a benchmark of 0.2% as a minimally acceptable performance 

target for cancer detection rate [21].

2.5 BCSC and Medicare data

We used data on screening mammography to compare the agreement of performance 

estimates based on claims and clinical outcomes using data from the National Cancer 

Institute-funded Breast Cancer Surveillance Consortium (BCSC) (http://

breastscreening.cancer.gov). The BCSC links information on women who receive a 

mammogram at a participating facility to regional cancer registries and pathology databases 

to determine breast cancer outcomes. BCSC facilities submit prospectively collected patient 

and mammography data to regional registries, which link the data to breast cancer outcomes 

ascertained from cancer registries. Mammography data include radiologist information on 

the purpose for the examination (screening or diagnostic) and interpretations (normal or 

abnormal). The BCSC has established standard definitions for key variables and multiple 

levels of data quality control and monitoring [22]. BCSC sites have received institutional 

review board approval for active or passive consenting processes or a waiver of consent to 

enroll participants, link data, and perform analytic studies. All procedures are Health 
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Insurance Portability and Accountability Act compliant, and BCSC sites have received a 

Federal Certificate of Confidentiality to protect the identities of patients, physicians, and 

facilities.

Medicare claims from 1998 to 2006 were linked with BCSC mammography data derived 

from regional mammography registries in four states (North Carolina; San Francisco Bay 

Area, California; New Hampshire; and Vermont). We used data from Medicare claims files 

(the Carrier Claims, Outpatient, and Inpatient files) and the Medicare denominator file, 

which provides demographic, enrollment, and vital status data.

We identified a sample of screening mammograms performed in 2003-2005 appearing in 

both Medicare claims and BCSC data with the same date of service using a validated claims-

based algorithm based upon Healthcare Common Procedure Coding System (HCPCS) 

mammography codes and International Classification of Diseases, Ninth Revision, Clinical 

Modification (ICD-9-CM) codes for breast cancer [23]. We selected mammograms for 

women age 68 years and older with continuous enrollment in fee-for-service Medicare (parts 

A and B) for twelve months after mammography and three years prior to mammography, 

required by the claims based algorithms, enabling both prospective assessment of outpatient 

claims that might indicate incident breast cancer following abnormal screening 

mammography, and retrospective assessment for claims indicating prevalent breast cancer.

Our clinical breast cancer detection outcome was defined as a screening mammogram with a 

positive result based on the radiologist’s assessments and recommendations followed by a 

diagnosis of invasive cancer or ductal carcinoma in situ based on cancer registry data within 

one year. For each mammogram in the linked BCSC-Medicare data we defined both a 

clinical breast cancer detection outcome and a claims-based outcome derived by applying 

the previously developed algorithm described in Section 2.4.

We compared clinical and claims-based estimates of facility-level breast cancer detection 

rates using ML fixed effects and posterior means estimated via an empirical Bayes approach 

in terms of Spearman’s correlation. We also compared the concordance of classification of 

facilities as failing to meet guideline thresholds based on either clinical or claims-based 

estimates of provider performance using the four methods described in Section 2.3.3. For 

claims-based estimates we computed both unadjusted and bias-adjusted measures. 

Concordance was estimated using the kappa statistic.

Facilities with less than 50 mammograms observed over the three-year study period were 

excluded from analysis. We investigated alternative minimum volume criteria up to a 

minimum of 1000 mammograms for facility but results were not qualitatively different. 

Facilities were classified as failing to meet guideline thresholds using the previously 

proposed standards for mammography performance of 0.2% for cancer detection rate [21].

2.6 Simulation study design

In addition to comparing the observed agreement between performance estimates based on 

BCSC clinical data and Medicare claims, we conducted simulation studies to evaluate the 

performance of claims-based algorithms for classifying providers as failing to meet 
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guideline thresholds across a range of values for sensitivity and specificity of the claims-

based algorithm for identifying events. These simulation studies were undertaken because 

comparing the observed performance of clinical and claims-based approaches provides 

information on the concordance of these two measures but is not informative with respect to 

the underlying true performance of the provider. In order to understand performance of 

clinical and claims-based estimates relative to true provider performance, we have 

conducted a simulation study which allows us to know the underlying, true value of θi.

For each simulation scenario, we simulated 1000 samples consisting of an average of 1000 

providers. In our simulation studies, patient volume was generated using the distribution of 

volumes observed for mammography facilities. However, in general, providers can be 

considered to be facilities or physicians. For each provider we simulated a patient volume, 

ni, and a true performance measure value, θi. We assumed that provider volumes were 

gamma distributed and that performance measures were beta distributed across providers. 

Conditional on a provider’s true performance and volume, we then simulated a true number 

of events, yi, from a binomial distribution with mean θi. Conditional on yi, we sampled from 

binomial distributions with sample size yi and mean S to obtain  and with sample size (ni 

− y) and mean (1 − P) to obtain . The observed number of events based on claims was 

. Note that in the setting where S = 1 and P = 1, , that is, the clinical and 

claims-based measures are identical. Therefore, this setting provides information on the 

performance of the clinical measure and can be contrasted with the performance of claims-

based measures as S and P deviate from 1.

Parameters for the distribution describing provider volume was chosen based on the 

distribution of 3,687 mammography outpatient facilities with reported Medicare claims data 

for 2010 that were included as part of the CMS Hospital Compare Program. The distribution 

data used in this study was supported by the Centers for Medicare & Medicaid Services 

(contract HHSM-500-2008-00020I/Task Order 0002) as part of its Hospital Outpatient 

Quality Reporting program. We used BCSC data on screening mammograms performed in 

2010 to select parameters for the beta distribution for facility breast cancer detection rates 

used in simulation studies. Based on these data, in simulations reported below provider 

volumes were assumed Gamma(0.29, 1835.67) distributed. Simulated facilities with volume 

less than 50 mammograms were removed from the sample. Cancer detection rates were 

assumed Beta(1.36, 372.69) distributed.

We first evaluated performance by computing the sensitivity and specificity of classification 

into a “poor” performance category based on failure to meet the guideline threshold of 0.2% 

using unadjusted and bias-adjusted claims-based outcomes and each of the four 

classification approaches described in Section 2.3.3. We then compared discrimination of 

adjusted and unadjusted ML and posterior mean estimates without requiring a known fixed 

threshold using receiver operating characteristics (ROC) curves.
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3. Results

3.1 Agreement of BCSC and Medicare performance estimates

We identified a sample of 134,330 screening mammograms performed between 2003 and 

2005 that were included in both Medicare claims and BCSC records. Data were from 106 

mammography facilities with a range of 52 to 5,925 mammograms per facility. Based on the 

ML fixed effects approach, BCSC clinical data produced an estimate of 0.56% for the 

cancer detection rate, while claims data resulted in an estimate of 0.59%. Using a proposed 

benchmark of 0.2% screen-detected cancers, ML point estimates from clinical data indicated 

that 19 facilities (18%) were below the cancer detection rate target, while unadjusted claims 

data identified 18 (17%) such poor performing facilities, and adjusted claims data flagged 21 

(20%) poor performing facilities. Bayesian estimates based on either clinical or claims-

based outcome measures failed to identify any poor performing facilities. Fixed effects ML 

point estimates and hierarchical Bayesian posterior means both displayed substantial 

uncertainty (Figure 1). Bayesian estimates also showed notable shrinkage towards the 

population mean, diminishing the overall range of variability observed in estimates of 

provider performance.

ML estimates of facility-level cancer detection rates from the BCSC and Medicare claims 

were strongly correlated (R = 0.962), as were Bayesian posterior means (R = 0.937). Clinical 

and claims-based classifications of facilities as failing to meet the 0.2% benchmark also 

showed strong agreement with kappa in excess of 0.87 for both the point estimate and 

confidence interval-based approaches (Table 1). Using either BCSC clinical data or 

Medicare claims data, no facilities were classified as poor providers by either the Bayesian 

posterior mean or posterior probability approaches. Kappa statistics are thus omitted for 

these approaches.

3.2 Simulation study results

3.2.1 Comparison of alternative methods—Across all algorithm operating 

characteristics investigated, classification based on point estimates was more sensitive and 

less specific than either the confidence interval or posterior probability approaches, which 

incorporate uncertainty (Figures 2 and 3). For instance, for a claims-based algorithm with 

sensitivity of 0.9 and specificity of 1.0, similar to the operating characteristics of an existing 

cancer detection rate algorithm, the ML and Bayesian point estimate approaches had 

sensitivity of 0.858 and 0.563, respectively, and specificity of 0.692 and 0.890. The 

confidence interval and posterior probability approaches had sensitivity of only 0.093 and 

0.377, respectively, and specificity of 0.999 and 0.963. Fixed effects estimates also had 

greater sensitivity and poorer specificity than Bayesian methods. Incorporating the bias 

adjustment substantially improved the sensitivity of all four approaches, but at the cost of 

decreased specificity. Bias-adjusted approaches also had more stable performance across the 

range of algorithm operating characteristics investigated than did unadjusted approaches.

Comparing the discrimination of the fixed effects ML and hierarchical Bayesian approaches 

without requiring a fixed threshold, we found little difference between bias-adjusted and 

unadjusted methods (Figure 4). The hierarchical Bayesian approach outperformed the ML 
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approach in the low specificity range because fixed effects estimates are unable to 

distinguish between the relatively large population of providers with no observed events, all 

of whom were classified as poor performers. No method was able to simultaneously achieve 

both good sensitivity and specificity for identifying poor performers.

3.2.2 Classification performance as a function of algorithm sensitivity and 
specificity—In the case of perfect algorithmic sensitivity and specificity, corresponding to 

a clinical outcome measure, the fixed effects ML point estimate achieved a sensitivity of 

0.834 and specificity of 0.728 for classifying providers as failing to meet the guideline target 

for cancer detection rate (Figures 2 and 3). Other measures performed more poorly with the 

ML confidence interval approach performing the most poorly with classification sensitivity 

of only 0.082 and specificity of 1.0. As algorithm specificity decreased, the performance of 

the unadjusted approaches declined. For instance, at algorithmic sensitivity of 1 and 

specificity of 0.995 the ML fixed effects approach achieved a sensitivity of only 0.164. 

Correspondingly, classification specificity increased to near 1 for all unadjusted methods. 

Performance was relatively insensitive to algorithm sensitivity. Across a range of 

sensitivities from 0.7 to 1.0, classification sensitivity increased by only about 8% for the ML 

fixed effects method. Changes in classification sensitivity were similar for other approaches.

4. Discussion

We investigated the performance of provider profiling methods using claims-based 

approaches for measuring outcomes. In comparisons of provider performance estimates 

based on BCSC clinical data and Medicare claims data, we found that claims-based 

estimates of cancer detection rates corresponded well with estimates based on information 

from the radiology practice and cancer registry data. Classification of providers as poor 

performers also agreed closely when clinical or claims-based outcomes were used. In 

simulation studies, we found that claims-based provider performance estimates based on the 

ML fixed effects approach achieved fair performance when algorithmic specificity was high. 

In the context of a rare outcome like cancer detection rate, a highly specific algorithm is 

required because even minor deviations from perfect algorithmic specificity compromise the 

ability of claims-based approaches to identify providers failing to meet targets.

Both fixed effects and hierarchical Bayesian estimates incorporating uncertainty via 

confidence intervals or posterior probabilities had poorer sensitivity than classification based 

on point estimates because they are by design more conservative. The choice of whether or 

not to incorporate uncertainty should be based on the relative impact of failing to identify a 

truly poorly performing provider vs. erroneously classifying a truly acceptably performing 

provider as failing to meet guideline targets. Previous work has noted that hierarchical 

Bayesian methods may result in failing to identify truly outlying providers, especially for 

providers with small sample sizes [5, 6]. The relative drawback of such approaches depends 

on the purpose of the profiling effort and the importance of identifying as many providers 

failing to meet targets as possible. In the case of the posterior probability approach, the 

relative importance of the two types of classification errors can be tuned by varying p*, the 

posterior probability required before a provider is classified as failing to meet the target. 

Previous work has placed the choice of posterior probability required for classification of a 
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provider as failing to meet targets in a decision theoretic context [16, 18]. Such 

considerations may be useful in selecting a posterior probability threshold for this purpose. 

Because confidence interval and hypothesis testing-based approaches to provider 

classification may result in undesirably high rates of misclassification of truly acceptably 

performing providers, thresholds that correct for the number of comparisons, i.e. number of 

providers, may be preferred. Jones et al. [24] have proposed the use of the false discovery 

rate to limit this type of misclassification.

One previous investigation explored the effect of errors in outcome ascertainment on 

provider profiling [25]. In the context of provider performance estimates based on claims 

data, bias may arise through imperfect sensitivity and specificity of the claims-based 

algorithm for event ascertainment and through variability in coding practices across 

providers which may result in differential performance of the algorithm for some providers. 

Previous work [25] proposed a method using auxiliary data measured without error to 

correct for this bias. However, such auxiliary data are not generally available. It is also 

important to note that systematic error due to imperfect outcome ascertainment is only one 

component of the challenge to claims-based provider profiling. Random variability also 

plays a critical role, particularly for rare outcomes. In our simulation study, we found that 

performance of provider profiling methods was relatively constant across a range of values 

for algorithm sensitivity and specificity. Thus random variability appears to be the dominant 

factor in provider misclassification for algorithms with excellent operating characteristics 

such as the cancer detection algorithm used as the motivating example for this study as well 

as for those with more modest operating characteristics. We also found relatively little 

improvement in classification accuracy after applying a bias-adjustment factor to provider 

outcome counts, corroborating the finding that error in outcome ascertainment plays less of 

a role in classification accuracy than random error does. Past research has emphasized the 

importance of quantifying random error when determining whether provider profiling will 

be feasible in a given context [26, 27]. Our results reinforce this idea by demonstrating that 

although clinical and claims-based measures may agree closely, performance of both 

approaches may be quite poor when evaluated relative to true provider performance as 

demonstrated in our simulation studies which incorporated both random error and systematic 

error due to imperfect claims-based algorithm operating characteristics.

Previous studies of profiling for mammography performance measures have focused on the 

importance of covariate adjustment [28]. In the context of Medicare claims, it may be 

possible to adjust for a limited set of patient characteristics such as age, race, and measures 

of comorbidity. Both the fixed effects and hierarchical Bayesian methods discussed here can 

accommodate covariate adjustment. Challenges associated with using Medicare claims for 

profiling will persist regardless of whether case-mix adjustment is carried out or not. Indeed, 

incorporating covariates may exacerbate issues of variability by introducing an additional 

source of error. Previous research on mammography provider performance that incorporated 

covariate effects found that no providers could be classified as failing to meet standards for 

identifying breast cancers due to the rarity of this outcome and resultant substantial 

uncertainty in performance estimates [28].
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An inherent limitation of using Medicare claims for provider profiling is that performance 

estimates can only be obtained for the population of patients over age 65. To the extent that 

performance in this population differs from performance in a younger population, Medicare-

based estimates may be biased relative to performance estimates for the total population of 

patients. This limitation could be mitigated by using other claims databases that include 

patients of all ages or by restricting inference to the population age 65 years and older.

Our simulation studies suggest that cancer detection algorithms hold promise for evaluation 

of provider performance. However, because of sampling variability in facility-specific 

estimates of cancer detection rate due to low outcome prevalence, methods incorporating 

uncertainty performed poorly. Performance of Bayesian approaches to classification in the 

rare outcome setting could be improved if substantial prior information were available. 

Classification based on the MLE has reasonable sensitivity but should be interpreted 

cautiously as our simulation studies demonstrated that, for an algorithm with operating 

characteristics similar to an existing cancer detection rate algorithm, about 30% of providers 

exceeding the cancer detection rate threshold will be erroneously classified as poor 

performers. As new algorithms for performance measures emerge our simulation study 

results will provide a guide to the expected classification accuracy of profiling approaches 

using these measures.

Our results indicate that Medicare claims can be used for estimating provider performance 

measures, but only when the operating characteristics of the claims-based algorithm for 

event ascertainment are known to be good. Using the example of the cancer detection rate 

algorithm, we were able to identify poorly performing providers with a sensitivity of 86% 

and specificity of 70%. This specificity is likely insufficient for the purposes of public 

reporting where the cost of erroneously classifying a good performer as poor is high. 

However, for the purposes of providing feedback to mammography facilities for quality 

improvement this may be adequate. For rare outcomes, such as breast cancer detection, a 

highly specific claims-based algorithm is required in order to achieve reasonable estimation 

of provider performance. Given the vast quantity of data on provider performance available 

via Medicare claims data and the importance of quality assessment and improvement for 

healthcare reform, development of high quality claims-based outcome measures should 

remain a priority.
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Figure 1. 
Fixed effects maximum likelihood estimates and 95% confidence intervals (left) and 

Bayesian posterior mean estimates and 95% credible intervals (right) based on a Medicare 

claims-based algorithm for cancer detection rate vs BCSC clinical data for 106 

mammography facilities. Horizontal and vertical lines represent thresholds for poor 

performance. Dotted line represents perfect agreement between BCSC and Medicare 

performance estimates.

BCSC=Breast Cancer Surveillance Consortium; CDR=Cancer detection rate.
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Figure 2. 
Simulation results for sensitivity of classification of a provider as failing to meet guideline 

thresholds vs specificity of the claims-based algorithm used to obtain performance 

estimates. Reported for four levels of sensitivity of the claims-based algorithm. Black lines 

represent unadjusted estimates and red lines represent bias-corrected estimates. Solid = 

maximum likelihood, dashed = Bayesian posterior mean, dotted = maximum likelihood 95% 

confidence interval, dashed-and-dotted = Bayesian posterior probability.
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Figure 3. 
Simulation results for specificity of classification of a provider as failing to meet guideline 

thresholds vs specificity of the claims-based algorithm used to obtain performance 

estimates. Reported for four levels of sensitivity of the claims-based algorithm. Black lines 

represent unadjusted estimates and red lines represent bias-corrected estimates. Solid = 

maximum likelihood, dashed = Bayesian posterior mean, dotted = maximum likelihood 95% 

confidence interval, dashed-and-dotted = Bayesian posterior probability.
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Figure 4. 
Receiver operating characteristic curves for unadjusted (black) and adjusted (red) maximum 

likelihood (solid) and posterior mean (dashed) estimates based on claims-based algorithms 

with sensitivity and specificity similar to an existing algorithm for cancer detection rate (S = 

0.940, P = 0.999).
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Table 1

Correlation of BCSC clinical measures and Medicare claims-based measures of cancer detection rate (CDR) 

estimated using fixed effects maximum likelihood (ML) or Bayesian hierarchical estimation methods. Kappa 

was computed by comparing agreement of classification of facilities as failing to meet a benchmark of 0.2% 

cancer detection rate.

Correlation
Unadjusted

Kappa
Adjusted
Kappa

ML 0.962 0.902 0.877

ML confidence interval -- 0.958 0.918

Posterior mean 0.937 -- --

Posterior probability -- -- -
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