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Abstract

Multiple thoracic imaging modalities have been developed to link
structure to function in the diagnosis and monitoring of lung
disease. Volumetric computed tomography (CT) renders three-
dimensional maps of lung structures and may be combined with
positron emission tomography (PET) to obtain dynamic
physiological data. Magnetic resonance imaging (MRI) using
ultrashort–echo time (UTE) sequences has improved signal
detection from lung parenchyma; contrast agents are used to
deduce airway function, ventilation–perfusion–diffusion, and
mechanics. Proton MRI can measure regional ventilation-perfusion
ratio. Quantitative imaging (QI)–derived endpoints have been
developed to identify structure–function phenotypes, including
air–blood–tissue volume partition, bronchovascular remodeling,
emphysema, fibrosis, and textural patterns indicating architectural
alteration. Coregistered landmarks on paired images obtained at
different lung volumes are used to infer airway caliber, air
trapping, gas and blood transport, compliance, and deformation.

This document summarizes fundamental “good practice”
stereological principles in QI study design and analysis; evaluates
technical capabilities and limitations of common imaging modalities;
and assesses major QI endpoints regarding underlying assumptions
and limitations, ability to detect and stratify heterogeneous,
overlapping pathophysiology, and monitor disease progression and
therapeutic response, correlated with and complementary to,
functional indices. The goal is to promote unbiased quantification
and interpretation of in vivo imaging data, compare metrics obtained
using different QI modalities to ensure accurate and reproducible
metric derivation, and avoid misrepresentation of inferred
physiological processes. The role of imaging-based computational
modeling in advancing these goals is emphasized. Fundamental
principles outlined herein are critical for all forms of QI irrespective
of acquisition modality or disease entity.

Keywords: ventilation-perfusion-diffusion; lung mechanics;
computed tomography; positron emission tomography; magnetic
resonance imaging
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Overview

Quantitative analysis of functional and
structural lung imaging complements
traditional visual assessment, playing an
important role in enhancing the
understanding of physiology and
pathophysiology, as well as diagnosis and
monitoring of lung disease and treatment
response. Structural features such as airway
dimensions and branching patterns can be
quantified down to the seventh generation,
and different approaches, including
threshold, histogram, and morphological
and textural patterns, can be used to
evaluate parenchyma. Functional imaging
with computed tomography (CT), positron
emission tomography (PET), single-photon
emission CT (SPECT), and magnetic
resonance imaging (MRI) use endogenous
molecules, injected contrast agents, or
radioactive isotopes as tracers for
measuring changes in airway caliber and
mechanical properties, regional ventilation
and perfusion distributions, and their
spatiotemporal relationships. Processes such
as gas diffusion across alveolar septal tissue,
through blood, and into capillary red blood
cells (RBCs) can be quantified using

hyperpolarized gas MRI and used to
estimate oxygen transfer. Many of these
techniques require expensive equipment
and sophisticated computations while
hardware and analytical approaches
are rapidly advancing. Major challenges in
the development and application of
imaging metrics include technical and
analytical standardization across modalities
and platforms, effects of differing lung
inflation states, image acquisition,
segmentation and measurement techniques,
quality of training data, lack of gold
standards for validation of imaging-derived
measurements, and the need to verify
interpretation of imaging-based conclusions
against physiological and clinical outcomes.
This workshop statement summarizes the
principles and approaches for quantifying
imaging-based data to yield meaningful
physiological insight, their advantages and
limitations, and future directions.

Introduction

Innovation in Lung Imaging
Thoracic imaging is a rapidly evolving field
with a central role in the diagnosis and

monitoring of lung disease, providing
insights linking structure to function.
Volumetric CT is routinely used to render
three-dimensional (3D) maps of lung
structures (e.g., individual lobes and the
bronchovasculature), and combined with
PET to obtain functional data. Beyond
routine visual assessment, quantitative
imaging (QI) endpoints could be used in
clinical trials to identify anatomical and
physiological phenotypes (e.g., airway
remodeling, progressive emphysema and
fibrosis, textural patterns quantifying
architectural alterations) (1, 2). Intravenous
iodine and dual-energy CT (DECT) are used
to separate blood and tissue volumes. In
addition to imaging static structure,
coregistered landmarks on paired images
obtained at different lung volumes are used to
infer regional air trapping, lung compliance,
and deformation. MRI using ultrashort–echo
time (UTE) sequences improves signal
detection from lung parenchyma, and
contrast agents (e.g., oxygen, hyperpolarized
[HP] noble gases) are used to deduce
physiological processes (e.g., distributions of
ventilation, perfusion, and alveolar diffusion).
ProtonMRI is used to measure regional
perfusion and ventilation-perfusion ratio
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( _VA/ _Q) without injected contrast, while
13N-nitrogen PET provides dynamic data on
physiological processes, yielding novel
insights into physiological and
pathophysiological mechanisms.

Challenges
Advances in QI are crucially dependent on
technology and computational power.
Massive data sets are run through “black box”
algorithms, distilled into selected
“biomarkers” that may be correlated with
global function, e.g., forced vital capacity
(FVC), 6-minute-walk distance, or findings
on biopsy samples, to evaluate their ability
to detect, stratify, andmonitor lung
disease. Numerous imagingmodalities,
manufacturers, platforms, and algorithmsmay
not integrate smoothly (3, 4). Emergent QI
metrics vary among centers in the methods of

acquisition, quantification, interpretation, and
extrapolation; all involve assumptions of how
the imaged structures relate to function.

Technological advances contribute to
difficulty in standardization. In addition, the
use of medical jargonmakes it difficult for
the less initiated to evaluate the potential and
limitations of QI-derived metrics. Systematic
errors may arise at each step (Table 1) of
image acquisition, processing, and analysis,
including 1) technical issues (e.g., depth of
inspiration, acquisition protocol, signal-to-
noise ratio, resolution); 2) nonrepresentative
sampling of parts of interest (e.g., comparing
regions, lobes, or airways); 3) lack of a well-
defined reference space (e.g., lobe volume);
4) inaccurate landmark coregistration for
evaluating paired images obtained at
different lung volumes; and 5) failure to
consider basic physiology and/or biological

or spatiotemporal heterogeneity (e.g.,
anatomical or gravitational gradients,
respiratory cycles, nonuniform disease, or
mixed pathology such as coexisting
emphysema and fibrosis). Tables 1 and 2
summarize the basic steps in lung imaging
and analysis with examples, caveats, and
practice principles.

The lung deforms under its own
weight, much like a vertically stretched
SlinkyVR spring (5). Lung tissue density is
higher in gravitationally dependent than
nondependent regions, as alveolar size at
resting volume is smaller (6–10) except at
total lung capacity (TLC); standardizing lung
volume at acquisition is important. In
addition to ghravitationally based hydrostatic
gradients, variation in alveolar size also
creates apparent perfusion gradients because
capillaries within alveolar walls are closer

Key Conclusions and Recommendations

� Imaging modalities (CT, PET, SPECT, and MRI) offer innovative quantitative information on lung structure and function,
including regional air and tissue volumes, airway and vascular dimensions, lung mechanics, regional alveolar ventilation,
perfusion, ventilation–perfusion matching, and alveolar–capillary diffusion.

� State-of-the-art imaging and analytical techniques evolve rapidly; assumptions and limitations of each should be clearly stated
to avoid misinterpretation of results.

� Lung tissue density is higher in gravitationally dependent than nondependent regions. Lung volume and posture during image
acquisition affect tissue, air and blood distributions, physiology, and quantification. Acquisition conditions (e.g., lung
volume, breath-hold duration, image resolution, both nominally and functionally) should be documented and standardized
when possible and considered in data interpretation.

� Quantitative analysis of imaging data should follow basic principles of unbiased study design and sampling scheme to ensure
that each part of the structure or region of interest has equal probability of being sampled. Measurements should be related
to a well-defined anatomical or volumetric reference space (e.g., per milliliter of lung or lobar volume) and normative data
when appropriate.

� Optimizing the accuracy of landmark segmentation, registration, and automated image analysis protocols are major areas in
need of research and validation. Methodology should be clearly described.

� Established guidelines (e.g., for lung densitometry) and characterized reference standards should be followed to maximize
reproducibility among sessions, scanners, and modalities.

� Automated exhaustive voxel-by-voxel image analysis increases precision (reproducibility of measurements) but not necessarily
accuracy (closeness to the “true” value). High-precision measurements may exacerbate systematic bias and reduce the
accuracy of results.

� Care should be taken to select appropriate physiological parameters for correlation with imaging metrics, and the limitations
of comparisons should be considered (e.g., between imaging-derived supine end-inspiratory lung volume and upright total
lung capacity by plethysmography).

� Gas exchange is determined by alveolar ventilation (rate of fresh gas delivery to the alveoli), diffusion (rate of gas transfer
across the alveolar–capillary–blood barrier), and perfusion (rate of blood delivery to pulmonary capillaries). Terminology
describing these functions inferred from imaging should be precise to avoid confusion, e.g., specific ventilation with
alveolar ventilation, pulmonary blood volume with perfusion.

� Functional lung imaging remains emergent. Many techniques lack rigorous validation or gold standards. There is a need for
more studies using robust animal models of disease to directly validate conclusions on the basis of in vivo imaging against
quantitative structural analysis.

� Computational models of physiological processes, grounded in the laws of physics, may be combined with imaging metrics to
aid the prediction, validation, and mechanistic interpretation linking the imaged findings to function.
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together in dependent lung, which will vary
with lung volume (11). Variation in alveolar
size also creates gradients in regional
alveolar ventilation ( _VA) and fresh gas delivery
to the alveolar space because alveoli in
nondependent regions expand less for a given
change in pressure and are less well ventilated.
These deformable properties of the lung also
vary with posture (6–8, 10, 12, 13). The wedge
shape of the lungmeans that more lung
volume lies in the dependent third in supine
posture than prone posture (13, 14), thus
affecting gravitational deformation. The lung
matches shape with the thorax, resulting in
greater expansion of nondependent lung while
supine, compared with dependent lung (14).
Lung volumesmeasured by spirometry also
vary with posture (15, 16), thereby

complicating comparisons of imaging
data obtained supine with those obtained
prone or on upright pulmonary function tests.

Overcoming these challenges is
critical to ensuring that 1) imaging metric
derivation is accurate and reproducible and
2) measurements accurately represent
(patho)physiology to guard against
misinterpretation of results in all QI
applications irrespective of modalities or
disease entities.

Goal and Significance
This American Thoracic Society
(ATS)–Fleischner Society workshop aims to
promote unbiased quantification and
physiologically accurate interpretation of
in vivo imaging results to enhance

understanding of pulmonary
structure–function relationships and to
compare what are believed to be comparable
metrics obtained using different imaging
modalities. Addressing the challenges of QI
metrics has a high physiological and clinical
impact because these imaging modalities are
not risk free. CT and PET involve radiation
exposure, especially when specialized
protocols (e.g., inspiration–expiration, pre-
and postcontrast) are used. MRI may be time
consuming and cumbersome. Contrast
injections may cause adverse reactions or
impair renal function. Advanced imaging
and analysis require sophisticated equipment,
infrastructure, andmanual steps or edits that
substantially increase the financial burden of

Table 1. Steps and considerations in imaging the lung, examples, and practical principles

Imaging and Analytical Steps Examples Practical Principles and Caveats

Optimize image acquisition End-inspiration vs. end-expiration, supine
vs. prone, before or after bronchodilator
treatment

Standardize when possible

Highlight structures of interest Use of contrast agents, spin states, or
exogenous tracers

Describe methodology in detail

Delineate structures of interest on images Segmentation, landmark registration and
coregistration, image warping

Algorithms are available in the public
domain

Filter images Reduce noise, sharpen edges, and
enhance selected features

Avoid overfiltration, which may introduce
distortion or bias

Measure attenuation/density/signal
intensity/rate of signal change

Compare global or regional histograms.
Select threshold values. Look for
architectural patterns.

Discrete threshold values may not fully
describe a continuum of changes

Select and measure imaged structures
(e.g., airway, blood vessels,
parenchyma)

Determine quality, quantity (e.g., number,
length, diameter, volume), and their
distribution. Compare groups at global,
stratified, or regional level.

Include measures of heterogeneity
(e.g., coefficient of variation or error)

Distill data into selected “imaging
biomarkers”

For example, LAA, fSAD, Pi10, VDP Different metrics are at varying stages of
standardization and validation. Vendor-
specific algorithms may not fully
harmonize with one another despite
each being validated

Incorporate relevant assumptions and
models to infer function

Rates of gas or blood delivery,
conductance or uptake

Examine whether assumptions are free of
bias and have been rigorously validated

Establish reproducibility of biomarkers Repeated measures across platforms,
subjects, and time

Examine factors causing variability

Validate imaging biomarkers against
existing standards depending on
modality

Compared with, for example, lung water
gravimetry, microparticle deposition,
multiple-breath gas washout,
multiple–inert gas elimination technique

Examine limitations of existing standards
to ensure proper use

Correlate imaging biomarkers with regional
and global structural and functional
indices

For example, postmortem morphometry in
animal models, surgical or biopsy
specimens, physiological tests and
standards

Ensure correlation with the
comparable/equivalent parameters

Assess predictive value of imaging
biomarkers

Monitor serial changes across time,
pathological conditions, or before and
after intervention

May require multicenter trials

Definition of abbreviations: fSAD= region of functional small airway disease; LAA= low attenuation area; Pi10=wall thickness of airways with
inner perimeter of 10 mm; VDP=ventilation defect percentage.
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health care. It is imperative that the
fundamental challenges be systematically
addressed to facilitate meaningful advances.

Methods

Amultidisciplinary panel of thoracic
imaging, pulmonary medicine, physiology,
pathology, stereology, bioengineering, and
biophysics experts was convened to examine
the 1) accuracy of major current QI
biomarkers derived from CT, PET, andMRI
in representing underlying structure and
physiology; 2) caveats in methodology,
interpretation, and extrapolation of QI
biomarkers to structure–function endpoints;
and 3) key knowledge gaps for validation and
further exploration. Participants reviewed the
literature and focused on QI metrics used to
infer major pulmonary structural and
physiological processes: volume partition,
attenuation-based parenchymal and
bronchovascular analysis, mechanics
ventilation, perfusion, ventilation–perfusion
matching, and diffusion. Emerging
technology and applications (17, 18) were
discussed. General principles for accurate
quantification are emphasized for all
modalities and diffuse lung diseases
irrespective of specific diagnoses. For each
modality, the committee reviewed current
QI metrics in terms of accuracy, precision

and reproducibility, assumptions, limitations,
validation against independent structural or
functional measures, and howQI metrics
could be incorporated into biophysical
models to predict lung function. Discussion
facilitated consensus on current capabilities,
limitations, and future directions. Findings
were synthesized into this report. Although
specific guidelines are not part of this report,
general “good practice” approaches for
developing and evaluating emergent metrics
are outlined (Table 1).

Lung nodule analysis, covered
separately by both the ATS and the
Fleischner Society, is not included. The
nascent field of artificial intelligence (AI) or
machine learning (ML) is beyond the scope
of the present report (see Reference 19 for
further information); some AI algorithms are
publicly available. The committee believes
that a robust understanding of good practice
principles and the assumptions and
limitations of QI metrics are prerequisites for
the successful development and application
of AI andML to image quantification.
Potential conflicts of interest were disclosed
andmanaged in accordance with ATS
policies. Workshop participants with relevant
industry-funded research participated in the
discussion and writing but were recused
from comparing the imaging or analysis
methods with others in the relevant sections
of the report.

Stereological Principles in
Quantitative Image Analysis
and Basic Measurements

Stereology is the statistical science that
forms the basis of a set of practical
methods (see below) for extracting accurate
and precise quantitative structural
information from imaging data sets of
irregular objects. Stereological methods
make no assumptions regarding shape,
size, orientation, or spatial distribution of
objects and are unbiased by design instead
of relying on geometric model assumptions
(e.g., assuming that alveolar airspaces
are spheres) that may introduce bias.
Stereology is the method of choice for
quantifying lung structure in microscopy,
for which standards, principles, and
practical applications have been rigorously
defined (20–25). The same principles apply
to CT, micro-CT, PET, MRI, and other
modalities (“in vivo morphometry”) (26),
used in the brain (27–30), heart (31),
and lung (26, 32, 33), among other
organs.

Optimizing Accuracy and Precision
In a quantitative data set, “accuracy” refers to
the closeness of the data to the true value and
depends on both sensitivity and specificity (34)
that is, accuracy=number of (true-negative1
true-positive)/(all negative1 all positive)

Table 2. Common sources of systematic errors in imaging and analysis

Type of Error Examples of Error

Technical issues during acquisition Differences in hardware and software, acquisition protocol, signal-to-noise ratio,
and resolution

Differences in posture (supine, prone) and lung volume (full inspiration or
expiration)

Motion artifacts
Biased sampling of structure for analysis Not spatially randomized

Not representative of the whole lung
Comparison of mismatched airways (e.g., from different hierarchical locations)

Failure to define an appropriate reference space Expressing results only as a ratio of two quantities without the absolute volume
of the lung, lobe, or region of interest

Issues with segmentation or registration Inaccurate identification of landmarks
Landmarks have been altered by disease or are congenitally absent
Inability to resolve distal structures (e.g., capillaries from venules on CT,

intraacinar airways on micro-CT)
Inaccurate assumptions or simplifications Assuming alveolar airspaces are spheres

Ignoring postural differences (e.g., between supine imaging and upright lung
function tests)

Assuming blood contained in large vessels represents local perfusion
Failure to consider spatiotemporal

and biological heterogeneity
Anatomical or gravitational gradients in tissue density, ventilation, and perfusion
Variations in respiratory or cardiac cycles
Nonuniform or mixed pathology

Definition of abbreviation: CT=computed tomography.
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measurements. “Bias” refers to systematic
errors leading to inaccuracy, such as improper
sample selection, assumptions that
systematically deviate from reality, incomplete
visualization of the structures of interest, or
overprojection. “Precision” refers to
measurement reproducibility and depends
mainly on sampling design and size and
distribution of the sample (35). Bias can be
neither detected in the data nor decreased by
making more measurements and is avoided a
priori only by rigorous study design and using
unbiased methods throughout the study. In
contrast, precision can be checked and, if
necessary, adjusted by increasing the sample
size or number of measurements. It is more
efficient to invest extra effort into the higher
levels of study design (e.g., more subjects per
study group, more regions of interest per
subject) than the lower levels (e.g., more voxels
per field of view), because the former more
robustly addresses interindividual and
intraindividual variability. Smart data are more
efficient than big data. By applying unbiased
sampling techniques, it is not always necessary
to exhaustively analyze each voxel (the “do
more less well” principle) (25, 36, 37). In a
well-designed study, precision is tuned such
that the coefficient of error within subjects

(“noise”) is significantly smaller than that
between subjects (biological variation) within a
study group (“signal”); exhaustive
measurements to further increase precision
beyond this point are inefficient because of the
extra time and effort required (37) and may
amplify systematic errors (Figure 1). However,
repetitive imaging can often be made to assess
response to intervention. Baseline between-
subject variability becomes less important in
longitudinal studies in which subjects act as
their own controls.

Only Unbiased Sampling Can Yield
Unbiased Data
The practical stereological methods are
sampling andmeasurement. Unbiased
sampling designs guarantee statistically
representative samples and generally must be
spatially randomized (each part of the
structure of interest has equal probability of
being sampled). For anisotropic lung
structures (airways and vessels), some
parameters (surface area, length) also require
spatial orientation randomization. Specific
sampling designs have been developed for
different purposes, such as systematic
uniform random sampling for global
assessment, isotropic uniform random

sampling for randomization of orientation
(e.g., surface area of conducting airways),
stratified sampling for targeting
subcompartments defined by anatomy
(e.g., lobes) or pathology (e.g., normal vs.
diseased regions), fractionator sampling for
estimation of particle numbers independent
of tissue deformation (e.g., alveoli), and
proportionator sampling for weighted
sampling with known probability according
to defined tissue characteristics (e.g., marker-
labeled regions) (20, 35, 38, 39). Voxel-by-
voxel automated image analysis ensures
neither accuracy nor precision of the results,
nor does it obviate the need to strictly follow
stereological sampling principles. Systematic
sampling of micro-CT images has been used
to explore differences between surface and
core alveoli in mouse lung (32) and to
correlate ex vivo imaged small airway gas
trapping to in vivo lung tissue measurements
in chronic obstructive pulmonary disease
(COPD) to characterize terminal bronchiole
loss, narrowing, and obstruction (33).

Basic Stereological Measurements
First-order parameters are volume (three-
dimensional [3D]), surface (two-dimensional
[2D]), length (one-dimensional [1D]), and
number (zero-dimensional [0D]).
Measurements are performed using
geometric test probes, such as points (0D),
lines (1D), planes (2D), or volumes (3D).
The probes interact with the imaged pixels or
voxels, creating “events” that can be counted.
Raw counts provide ratios (volume, surface,
length, and number densities) that are
multiplied by the reference space volume to
obtain absolute measures for the lung or
subcompartment.

Defining the Reference Space
It is crucial to define andmeasure a
biologically meaningful reference space
(e.g., volume of the lung or lobe) as the
starting point for analysis and endpoint for
data reporting. Measurements expressed
only as ratios (e.g., “number per unit
volume”) are subject to the “reference trap,”
whereby a change in the ratio can be due to
a change in the numerator, the denominator,
or both, leading to interpretive ambiguity
(40). An efficient way of measuring volume,
point counting (41), is used to quantify
acinar components by micro-CT (42, 43)
and extrapulmonary organ volume by CT
(44, 45), a forerunner of voxel-by-voxel
summation of the volume of the imaged
structure.

High Low

Accuracy

High

Low

P
re

ci
si

on

Figure 1. Precision, bias, and quality of study design. In an ideal study design (left upper
target), there is no bias, and the measurements (solid dots) cluster tightly (high precision) in
and around the target “true value” (high accuracy). In a less optimal design (left lower target),
precision is lower but without bias, as the measurements scatter near the target. In a poor
study design (right upper target), highly precise but biased measurements ensure that the
target will never be hit. In another poor study design (right lower target), bias combined with
low precision allows a small possibility of hitting the target. Therefore, more measurements do
not increase accuracy if bias exists at higher levels of study design (e.g., sampling of
structures or regions, or intersubject heterogeneity). Automated exhaustive measurements
could aggravate inaccuracy and reduce efficiency because of the time and effort required to
achieve a given coefficient of error (the “do more less well” principle) (25, 36, 37). Adapted by
permission from Reference 35.
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Assessing Heterogeneity with
Stereology
Object size may be expressed as a number- or
volume-weighted mean volume.When both
number- and volume-weighted volumes are
known, an object’s size distribution can be
estimated. Spatial distribution of objects in
subcompartments within a reference space
may be expressed by a “relative labeling
index,” that is, (observed number of objects
per subcompartment)/(expected number of
objects per subcompartment if randomly
distributed) (46). Stereology has been applied
to quantify acinar structures by HP gasMRI
combined with modeling of alveolar gas
diffusion to infer regional gas exchange and
its heterogeneity in normal and pathological
states (26).

Assessing Lung Parenchyma

CT Attenuation
CT lung attenuation (measured in
Hounsfield units [HU]) of a voxel comprises
air, tissue, and blood and is extensively used
in assessing emphysema, air trapping,
fibrosis, and infiltrative conditions (47)
(Table 3). Interscanner variability in
calibration, radiation dose, acquisition and
reconstruction protocol, lung mask, and

other parameters affects comparisons across
platforms and institutions andmay be
minimized by frequent calibrations of air and
water and by using lung-specific phantoms
to ensure measurement consistency (48). The
QIBA (Quantitative Imaging Biomarkers
Alliance) has published a detailed profile for
lung densitometry with standardized
protocols to minimize these issues (49).

Volume Measurement
Segmentation of lungs from other structures
allows calculation of lung volumes (50).
Lung volumes measured using physiological
methods typically refer to gas volume,
while conventional CT attenuation–derived
“anatomical” lung volume also includes
tissue volume and, presumably,
microvascular blood in vessels below the
limits of CT resolution. Lobes may be
segmented on the basis of bronchial and
fissure anatomy (51). Total lung or lobe
volumemay be partitioned into air and
air-free “tissue” volumes (10, 52); the latter
includes microvascular blood volume
(53–56).

Lung segmentation algorithms vary in
their inclusion of central vasculature,
resulting in differences in volume
measurement (57). The QIBA protocol
provides a basis for standardizing the

software for these metrics (49). Incomplete
or partially obliterated fissures could impede
lobar segmentation. Approaches combining
bronchial and fissure anatomy with deep
learning can minimize errors (58, 59).

Parenchymal attenuation varies with
lung volume (10). CT images are typically
acquired at end-inspiration or end-
expiration, with potential variations in
transpulmonary pressure at a given lung
volume, thereby introducing variability in
results. Submaximal inspiration leads to
underestimation of pulmonary emphysema;
both lung inflation and tissue loss influence
CT densitometry (60). Although measuring
transpulmonary pressure is impractical in
most studies, it is imperative to recognize
errors caused by lung volume variations and
train the subject with detailed breathing
instructions (48, 49). Spirometric gating
facilitates a consistent lung volume but is
often impractical for large multicenter
studies (61–64). For longitudinal studies,
density metrics may need to be adjusted for
lung volume. Progressive emphysema or
fibrosis will itself change lung volume.
Alternatively, lung volumemay be included
as a covariate in multivariate analysis.

The attenuation of air is21,000 HU,
and that of water is 0 HU (65). Tissue is a
composite of materials (blood, protein, fat)

Table 3. Types of quantitative computed tomography analysis in diffuse lung disease

Examples Utility

First-order metrics Attenuation histogram
Mean
Median
Skew
Kurtosis (peakness)

Threshold (low or high attenuation)
Matched images at different lung volumes for

PRM or DPM techniques

Summarize statistics of attenuation distribution for
whole lung or ROIs

Calculate lung or lobar volumes and regional
tissue density (fractional tissue volume)

Assess absolute or percentage of low- or high-
attenuation volumes

Distinguish among air trapping, obliteration of
alveoli, and parenchymal abnormalities

Higher order metrics Fractal dimensions
Run-on matrices
Gray-level co-occurrence matrices

Texture analysis
Reticular infiltrate
Consolidation
Ground-glass opacity
Honeycombing
Traction bronchiectasis

Describe spatial relationships among features
Model based (supervised and/or

unsupervised machine learning algorithms)
Optimize (semi)automatic detection and

classification of anatomical features
Detailed comparisons among ROIs within and

among subjects
Use complex mathematical and statistical models

Specific structures Airways
Conducting blood vessels

Measure dimensions (e.g., diameter, cross-sectional
area, length, wall thickness)

Describe branching patterns (e.g., angles,
symmetry) and spatial relationships

Definition of abbreviations: DPM=disease probability measure; PRM=parametric response mapping; ROI= region of interest.
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with nonzero attenuation. Variability in tissue
attenuation can arise from fluctuations in
regional perfusion, blood volume, and
extravascular compartments. High-
attenuation regions (66) may reflect
atelectasis, blood, fluid, cells, or fibrosis.
CT-derived lung tissue volume overestimates
anatomical extravascular lung tissue volume
(55) and correlates poorly with in vivo
alveolar gas-exchanging tissue (including
microvascular blood) volumemeasured using
physiological methods at a similar mean
transpulmonary pressure; discrepancy
remains even after subtracting pulmonary
blood volume (PBV) andmay be due partly
to residual blood within microvessels below
the CT resolution limit (,1mm) (56). These
sources of attenuation changes contribute to
variability in CT-based metrics for assessing
the tissue compartment. Some differentiation
of blood from extravascular tissue is possible
through the use of intravenous contrast agent
or DECT (67, 68). Four-dimensional dynamic
CT (69) permits the quantification of regional
tissue nonlinearity and hysteresis (reflecting
difference between inspiratory and expiratory
lung compliance), although at a lower
resolution and higher radiation exposure.
MRI also provides dynamic imaging, but with
lower resolution, relatively lower air/tissue
contrast, and fewer standardizedmetrics.

First-order CT-derived metrics based on
volume and the attenuation histogram
provide statistical summaries for regions of

interest. Selected attenuation thresholds have
been adopted to quantify low- and high-
attenuation parenchymal volumes as
reflecting alveolar obliteration and/or small
airway obstruction and parenchymal
inflammation and fibrosis, respectively.
The mean lung attenuation with or without
spirometry gating (70) and absolute or
fractional lung volume below selected
attenuation thresholds at full inspiration
(e.g.,2910 HU [71],2950 HU [72, 73], and
2960 or2970 HU [74]), or the lowest 15th
percentile of attenuation histogram (75),
have been used to index terminal air space
enlargement and/or alveolar obliteration in
emphysema (Figure 2). As both radiation
dose and reconstruction algorithm affect
densitometry results, threshold selection
should be adapted to local protocol (76).
CT-derived total lung volume (TLV) may be
statistically adjusted to a “predicted”
physiological TLC (77–79) or the log(TLV)
analyzed as a covariate (79).

Caveats: Formal guidelines are lacking
for the selection of pulmonary function tests
in validating QI metrics. Nonetheless, there
are strong correlations between CT-derived
TLV and plethysmographic TLC in a
normal patient population (80) and in
individuals with idiopathic pulmonary
fibrosis (81). CT-derived indices also
correlate robustly with expiratory sub-
compartments (e.g., functional residual

capacity, residual volume, residual volume/
TLC) in representing gas trapping in small
airway disease (82, 83). In COPD, mea-
sures from inspiratory CT (e.g., low-
attenuation area<2950 HU) show larger
discrepancies against spirometry than pleth-
ysmography and in predicting spirometry
as COPD severity increases (84), whereas
measures from expiratory CT (e.g., low-
attenuation area<2856 HU) correlate
with spirometry in smokers (85). In COPD,
TLC by plethysmography is significantly
larger than that by end-inspiratory high-
resolution CT (86, 87); discrepancy corre-
lates with air trapping and hyperinflation,
possibly reflecting a postural difference
between modalities and/or plethysmo-
graphic underestimation of alveolar pres-
sure as airway resistance increases (88, 89).

Improving the accuracy of segmentation,
landmark registration, and automated
image analysis is under active research.
Advanced imaging techniques and analy-
sis are often at early developmental stages
and not rigorously validated. Vendor-
specific algorithms may provide metrics
incongruent with one another regardless
of separate validation of each.

Small Airway Disease
Pathology of small conducting airways
(<2 mm in diameter) may be detected on
CT images as mosaicism (heterogeneous
parenchymal attenuation on inspiratory CT),
air trapping (expiratory CT), ground-glass
opacities, centrilobular nodules, tree-in-bud
opacities, and subsegmental atelectasis
(90, 91). To quantify air trapping, paired
inspiratory/expiratory CTmay be aligned for
landmark coregistration. Individual voxels
are classified as low attenuation, functional
small airway disease (fSAD), or normal using
either fixed attenuation thresholds
(parametric response mapping [PRM])
(92–99) or continuous distributions of
volume-dependent attenuation changes
(disease probability measure [DPM])
(92, 100). Air-trapped regions on expiration,
without voxels classified as low attenuation
on inspiration, indicate fSAD with normal
attenuation on inspiration but reduced
absolute attenuation on expiration (PRM) or
relative attenuation changes with lung
volume changes (DPM). fSAD from either
method correlates with multivariate lung
function endpoints (95–98, 100). DPM and
PRM yield consistent results in normal
subjects. In subjects with COPD, DPM

20
Emphysema
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(- - - -) lung

Change in voxel
index (–950 HU)

between normal (—)
and emphysematous

(- - - -) lung

Relative
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Figure 2. Attenuation histograms in normal lung and in emphysema and the derivation of
densitometry indices. In this example, the 15th percentile point (in Hounsfield units [HU]) is
defined as the cutoff value below which 15% of voxels with the lowest density are distributed.
The voxel index at a threshold of 2950 HU is shown and defined as the percentage of voxels
with values less than 2950 HU. Adapted by permission from Reference 368.
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classifies more voxels as emphysematous
and gas trapped than PRM andmay be less
influenced by scanner or respiratory effort
variability (92, 100). Compared with
multibreath nitrogen washout testing and
airway oscillometry, both PRM and DPM
correlate with airway resistance and
reactance; DPM correlations are slightly
stronger. Emphysema (%) for both correlates
best with multibreath nitrogen washout
measure of acinar airway inhomogeneity
(100). The practical significance of the
differences between DPM and PRM
remains unclear; more comparisons
are needed.

Caveats: Image coregistration requires
reliable tracking of landmarks; the accu-
racy of landmark identification is usually
impossible to validate. Landmarks may
be affected by disease (e.g., fissures for
tracking lobar volume may be obliterated
in advanced COPD or interstitial lung
disease [ILD] or congenitally incomplete
or absent).

Interstitial Lung Disease (ILD)
Thin-section CT is the standard method for
imaging ILD subtypes, severity of infiltrates,
inflammation, injury, or fibrosis and
monitoring progression and therapy. Subtle
parenchymal changes in subclinical or
regional ILD can be quantified from whole-
lung attenuation histograms (Figure 3).
Architectural distortion and regional
heterogeneity in reticular infiltration,
ground-glass opacity, or consolidation may
be captured using texture-based metrics
(101) (Table 3). Commonmetrics include
the fractional volume of high attenuation
(e.g., between2600 and 250 HU) (102)
and reticular/honeycomb abnormalities
(103, 104). In addition, regional tissue
density calculated from the attenuation
difference between intrathoracic air and air-
free tissue, its coefficient of variation (54),
and the skewness and kurtosis of attenuation
histogram (54, 101) can be used to assess
local or global heterogeneity of attenuation,
discern divergent patterns between
emphysema and ILD progression (Figure 4),

and detect subclinical abnormalities in
kindred with telomerase mutations
predisposing to pulmonary fibrosis (105).

Caveats: Current smoking status increases
baseline lung attenuation independent of
underlying pathology (77). A change in
smoking status could affect the measure-
ment and interpretation of changes in
lung attenuation. Selection and validation
of approaches remain empirical.

Textural Metrics
Measurement of attenuation alone provides
insufficient information. Textural metrics
characterize the 3D architecture of and
relationships among airspaces, lung tissue,
and bronchovasculature (106–112).
Emerging techniques incorporate imaging
data into machine learning and statistical
models to classify disease types and severity,
with optimization algorithms that iteratively
refine model predictions. The optimized
models undergo clinical/physiological
validation against an external unlabeled data
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Figure 3. (A–C) Coronal computed tomography (CT) reconstructions and corresponding CT histograms from (A) a healthy individual, (B) a
patient with mild lung fibrosis, and (C) a patient with advanced lung fibrosis. In the healthy individual with no lung fibrosis, the CT histogram is
sharply peaked and skewed to the left compared with a Gaussian normal distribution. In the patient with mild fibrosis, the curve is less peaked
(less kurtotic) and less skewed. This tendency is even more substantial in the patient with advanced lung fibrosis. Reproduced by permission
from Reference 101.
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set (104, 107, 113, 114). These approaches
(Table 3) seek to standardize the
classification of overlapping heterogeneous
disease phenotypes and validate the utility of
computational and statistical models for
predicting outcome (93, 112).

Caveats: Algorithms for textural analysis
rely on expert training and a fixed or a
mixture of imaging protocols that may
not be transferable to other cohorts that
use a different mix of protocols and scan-
ners. Standardization of proprietary
image reconstruction algorithms poses
challenges in multicenter investigations
regardless of individual validation. Ven-
dor-based differences in image generation
and analysis must be accounted for, often
handled as a statistical model in which
covariates include the scanner and/or
analysis source.

Figure 5 presents a composite of
CT-based methods for assessing lung
structure from which inferences about lung
function may be made.

Assessing Lung Parenchyma:
MRI-Derived Metrics

Conventional 1HMRImeasures tissue signal
intensity using short–echo time and UTE
methods (115–117) but with longer
acquisition times and lower spatial resolution
than CT (comparisons are provided in
Table 4). MRI is advantageous when
radiation exposure is to be avoided or
iodinated contrast is contraindicated (e.g., in
pediatrics, pregnancy, or serial assessment of
disease progression). Inhalation of an HP
noble gas withMRI provides spatial
information about ventilation and perfusion

heterogeneity with higher resolution than
PET and nuclear imaging techniques, with
unique capabilities for measuring
alveolar–capillary gas diffusion and lung
microstructure.

In hyperpolarization, nuclear spins
of gas atoms are aligned in a small magnetic
field outside of the scanner (118). When
inhaled, spatial distribution of the
magnetized exogenous gas can be tracked
using specialized receiver coils. The first
report of 129Xe MRI in a mouse heart–lung
preparation (119) was followed by patient
studies using HP 3He. Hyperpolarization
enhances 129Xe and 3HeMRI signal by
�105. The subject inhales up to 1 L of
gas (for adults) from functional residual
capacity, and scanning occurs during a
breath hold (5–15 s). The doses (mixed with
nitrogen) typically contain no oxygen, as
it shortens the�1-hour “half-life” of
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Figure 4. (A and B) Computed tomography (CT) quantification of disease severity in patients with (A) interstitial lung disease (ILD) (idiopathic
pulmonary fibrosis) or (B) emphysema. In A and B, CT images (upper row), fractional tissue volume (FTV) color maps (middle row), and three-
dimensional renderings (lower row) are shown for representative patients with different degrees of disease severity. (C) Side-by-side comparison
between ILD and emphysema for whole-lung air volume, tissue volume, FTV, and CV of FTV among and within the lobes at prone end-
inspiration. Data are mean6 95% confidence interval. ILD severity was classified according to forced vital capacity (percentage predicted) as
mild (stage II, >80%), moderate (stage III, 50–80%), severe (stage IV, 30–50%), or more severe (stage V, ,30%). Emphysema severity was
classified according to forced expiratory volume in 1 second (percentage predicted) as mild (stage II, .75%), moderate (stage III, 51–75%),
severe (stage IV, 21–50%), or more severe (stage V, <20%). *P,0.05 versus stage I (normal), §P,0.05 and #P=0.06 versus stage II (mild),
†P, 0.05 versus stage III (moderate), and ‡P,0.05 versus stage IV (severe) by analysis of variance. Reproduced by permission from
References 53 and 54. CV=coefficient of variation.
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hyperpolarization (120). Supplemental
oxygen is administered before and after
scanning as required.

Using inhaled HP 3He or 129Xe,
subvoxel resolution (�300 μm)
measurements can be made (121–124) that
exploit the Brownian motion of these gases
and the restriction to gas movement by

alveolar walls and terminal airspaces (125).
MRI-derived apparent diffusion coefficients
(126) are highly sensitive to airspace
enlargement and alveolar recruitment (127),
may be abnormal in the absence of CT
and/or spirometric abnormalities (128), and
correlate highly with histology (122–124,
129–131).

MRI has also been used to quantify lung
cancer (132, 133). Conventional 1HMRI is
useful in differentiating inflammation from
fibrosis (134, 135). Alveolitis presents as high
signal intensity on T2-weighted sequences
and early enhancement on contrast-enhanced
magnetic resonance (MR) sequences, whereas
fibrotic lesions present as low signal with late

A B C

D E F

G H I

Figure 5. Composite of methods using computed tomography (CT) to visualize and assess lung structure and function. (A) Segmentation of
whole lung, left and right lung, and individual lobes down to the sublobar segments, as described in Reference 369. (B) Airway segmentation
with automated naming down to the sublobar segment. (C) Segmentation of pulmonary vascular tree with lobar fissures. Fissure completeness
report is important for endobronchial lung volume reduction approaches in chronic obstructive pulmonary disease. (D) Voxels ,2856
Hounsfield units (HU) at residual volume (or functional residual capacity) have been designated as air trapped. Spheres showing regions of air
trapping concentration are color coded for lobar location. (E) Heated object map of pulmonary blood volume distribution derived using dual-
energy CT (47-year-old female smoker). (F) Voxels below 2950 HU at total lung capacity (spheres) are designated as “emphysema-like.”
(G) Subpleural view. First, the isosurface 2 mm beneath the pleural surface (i.e., lung mask boundary) is computed. A subpleural rendering
uses the posterior-facing portion of the lung isosurface to orthogonally project the density values and render the final topographic multiplanar
reformatted (tMPR) image (patient with idiopathic pulmonary fibrosis). (H) Through matched inspiratory and expiratory images, the ventilation
defect probability map demonstrates regions of functional small airway disease (yellow), emphysema (purple), and normal lung (green) mapped
onto a tMPR image in which the airways and their associated parenchyma are projected onto a flat surface. (I) Adaptive multiple feature
method–defined texture map (370) of ground-glass opacities (green), ground-glass reticular (blue), honeycombing (yellow), emphysema
(light blue), bronchovascular (pink), and normal (gray) (patient with interstitial pulmonary fibrosis). Courtesy of E.A. Hoffman.
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enhancement (136). Lung deformation
evaluated by coregistration of paired
inspiratory/expiratory UTEMRI identifies
regional fibrosis with acceptable
correspondence with CT (137). For assessing
ILD, UTEMRI protocols typically include
noncontrast breath hold, steady-state free
precession, and contrast-enhanced
examinations providing complementary
(138) data to high-resolution thin-slice
CT, providing both functional and
structural information in one examination
(134, 139).

129Xe “dissolved phase”MRI exploits the
relatively high tissue solubility of xenon that
results in its transmembrane diffusion through
the alveolar wall into the bloodstream (140),
where it binds transiently to hemoglobin in a
manner similar to oxygen (140, 141, 142).
Whole-lung spectroscopy (143, 144) has
shown distinct resonance frequencies of xenon
in gas, tissue, and blood compartments so
that alveolar tissue density mapsmay be
acquired to directly and regionally characterize
fibrosis (145).

Caveats: MRI, particularly HP gas MRI,
is expensive; the latter requires specialized
hardware. Proton MRI using low-field
scanners may reduce cost, and advanced
image reconstruction with motion com-
pensation during free breathing is rapidly
evolving; reproducibility and validation
studies are currently limited.

Assessing Airway Structure
and Function

The human airway tree has.23 branching
generations and exhibits 3D hierarchical
heterogeneity in dimension, composition,
and physiology; variations also exist with
respect to sex and body and lung sizes. The
first six or seven airway generations are
readily visualized on inspiratory CT (the
trachea is usually generation 0). The
hierarchy must be considered when sampling
airways for analysis and inferring airway
structure and function. Selection of airways
on the basis of a structural property (e.g.,
luminal diameter) or at randommay result
in comparison of airways from different
hierarchical levels if the disease under study
differentially alters airway structure or loss
(e.g., COPD) (146). Table 5 shows some
objective approaches to selecting
hierarchically “similar” airways. No
approach is perfect, as anatomical variations
within and between individuals can
introduce errors in selection. Multiple
approaches may increase the robustness of
airway structure–function inferences.
Automatic labeling of the airway tree on the
basis of segmental nomenclature has been
used (147). Measurement of spatially
matched airways has revealed that airway
walls are generally thinner rather than
thicker in COPD (146).

Common airway metrics include cross-
sectional luminal diameter and area, wall
thickness, wall area as a percentage of total
airway area, and an estimated perimeter of a
hypothetical “normalized” airway with an
internal perimeter of, for example, 10 or
15 mm (148–152) derived from regression
equations between the square root of airway
wall area and its internal perimeter on the
basis of certain assumptions (Table 5).
Airway centerlines may be segmented and a
branch-growing algorithm applied to
generate distal lobe-filling airways (153). The
resulting airway geometry, CT-derived tissue
density, lung volumes, and pulmonary
function test results may be combined in a
full-scale airway network flowmodel to
simulate whole-lung ventilation (154),
correlated with in vivoHP 129XeMRI and
99mtechnetium-labeled diethylenetriamine
pentaacetate (DTPA) aerosol SPECT
ventilation imaging in COPD (155).

The thinner airway walls in COPD
(146, 156, 157) are collapsible (158).
Expiratory central airway collapse may be
measured on paired inspiratory–expiratory
scans from theminor-axis diameter or cross-
sectional area at selected anatomical levels.
There is normally a wide range of age- and
sex-dependent expiratory tracheal collapse
(159, 160). Airway segmental mucus plugs
have been visually counted, correlating with
pulmonary function, oxygen saturation, MRI-
derived ventilation heterogeneity (161–163),
and locally reduced 3HeMRI signal (164).

Caveats: Static imaging may underesti-
mate tracheobronchial collapse and not
predict dynamic expiratory collapse
(158–160, 165). CT-derived metrics for
lung densitometry and airway structure
may be influenced by age, height, TLC,
gender, and smoking (82, 150, 166, 167).
Sufficient airways should be measured to
ensure an acceptable range of error (168).

Assessing the Vasculature

The human pulmonary vasculature
comprises.23 branching generations from
main pulmonary artery (PA) to alveolar
capillaries, with only the first few generations
being routinely visible. Standard CT using
energy-integrating detectors (in-plane pixel
dimension�0.4 mm) limits the ability to
accurately evaluate spatial properties of
vessels that approach the voxel size
(e.g.,�1 mm) (169). A 0.2-mm in-plane

Table 4. Comparison of magnetic resonance imaging and computed tomography in
the assessment of diffuse lung disease (emphysema, interstitial lung disease, acute
respiratory distress syndrome)

Strengths Limitations

CT Rapid (,10 s) acquisition
High spatial resolution
Excellent contrast among emphysema,

normal lung, and fibrotic lung
Can quantify regional structural features

down to 1–2 mm

Exposure to ionizing radiation
Most acquisitions provide structural

rather than functional information

MRI Sensitive to many aspects of function
Sensitive to alveolar geometry (in vivo

morphometry)
Estimates acinar airspace size and

alveolar wall thickness
Can evaluate perfusion and gas

diffusion

May require specialized hardware
More complex image analysis
UTE sequence requires signal

averaging
Structural imaging generally lower

resolution than CT
Low proton density of aerated lung

tissue
Air–tissue interfaces degrade MR

signal properties and reduce SNR
Long acquisition time increases

cardiorespiratory motion artifacts

Definition of abbreviations: CT=computed tomography; MR=magnetic resonance;
MRI=magnetic resonance imaging; SNR=signal-to-noise ratio; UTE=ultrashort–echo time.
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pixel dimension has been obtained using a
photon-counting scanner with ultrahigh-
resolution matrix (170); even with this, most
of the vasculature is not directly imaged.
Micro-CT uses a small-bore compact
scanner to image only a small volume of
tissue (typical field of view�16 mm vs.
�36 cm for conventional CT), yielding a
spatial resolution of,0.01 mm, commonly
used for ex vivo studies (42, 43, 171) and for
in vivo studies in small animals (172).

Vessel Density, Tortuosity, and
Fractal Dimension
Extraction of pulmonary vascular data from
imaging data sets can be automated or
semiautomated (cf. Reference 173). Arteries
and veins may be automatically mapped,
peripherally matched, and classified (174).
Loss of pulmonary vascular density or distal
PA blood volume is associated with right
heart failure indices in smokers (175),
emphysema progression (176), and asthma
severity (177).

Besides density, vascular branching
pattern is an important determinant of
regional perfusion and function. Vessel
tortuosity can be determined by comparing
the linear distance between two points on a
vessel with the actual 3D path length. This
“distance metric” is increased in patients
with pulmonary arterial hypertension (PAH)
(178) and is correlated with mean PA
pressure, pulmonary vascular resistance, and
arterial and venous oxygen content and
saturation. The fractal dimension, an index
of the complexity of iteratively branching

space-filling structures, may be determined
by dividing the lung into cubes of equal size,
whereupon all cubes containing a vessel are
noted; the process is repeated using cubes of
varying sizes down to a voxel. The number
of vessel-containing cubes is related to cube
size on a double logarithmic plot; fractal
dimension is the slope of the linear portion
of the plot (178). Alternately, fractal
dimension can be estimated from CT or
MRI perfusion scans (179) by calculating the
relative dispersion (standard deviation/
mean) of the image in progressively smaller
blocks and evaluating the slope of the
relationship between log relative dispersion
versus log number of voxels averaged.
See References (179 and 180) for details.

Pulmonary Artery (PA) Size and
Distensibility
Central PA enlargement measured by
CT (181) is commonly associated with, but
not necessarily predictive of, PAH (182–184).
There are insufficient data showing the
clinical significance of PA dilation or
whether PA size decreases with PAH
treatment or if a decrease improves outcome
(184). MRI can image PAs at specific times
throughout the cardiac cycle; vessel cross-
sectional area will change because of
differential systole-to-diastole pressures;
this change yields a measure of mean PA
distensibility (mPAD), which can be
determined without direct pressure
measurements. mPAD can differentiate
PAH from normal (185) and therapeutic
responders from nonresponders (186) and

can predict mortality among individuals with
PAH (187).

Large-Vessel Blood Flow
Specific velocity-sensitive MRI sequences can
characterize PA forward flow, retrograde
flow, average flow velocity, and peak flow
velocity. These metrics correlate with
invasive measures of arterial pressure and
vascular resistance (188).

Caveats: Quantification may be limited
by ability to resolve distal lung structure
(e.g., capillaries from larger vessels) (189).
The spatial resolution of MRI is less than
that of CT; thus, imaging of vascular trees
is limited to visualized larger vessels.

Assessing the Pleura

Imaging metrics of pleural disease (190)
include pleural thickness, percentage
circumferential pleural involvement, and the
number of foci of rounded atelectasis at
anatomically defined levels (191). The
presence and volume of pleural plaques
quantified by CT have not shown significant
association with indices of functional
impairment (192, 193). Ultrasound (194) and
transesophageal echocardiography (195)
have been used to semiquantitatively assess
pleural effusion volume (191).

Potential Caveats: It may be challenging
to delineate indistinct pleural boundaries
or reliably distinguish pleural fluid from
thickening or fibrosis.

Table 5. Common approaches in matching airways for comparative analysis

Selection Criteria Example of Metric Considerations

Anatomical property Designation of “Terminal bronchiole” Pathology may alter airway status
(e.g., if the distalmost conducting airways are destroyed,
the airway labeled as terminal bronchiole
may appear to “migrate” centrally)

Branching hierarchy Designating a generation
number for each airway

There are anatomical variations in branching pattern;
certain nomenclature systems do not cover the entire
airway tree

Distance from landmark Path distance (e.g., 5 cm from carina or pleura) Body and lung size variations
Airway dimension Lumen size (e.g., 2-mm-diameter airways) Risk of bias when pathology alters airway dimension

(e.g., COPD may narrow airway lumens;
therefore, 2-mm airways may occur at a different
generation compared with subjects without COPD)

Airways of a stipulated
inner perimeter (PiX)

Wall thickness of airways
with inner perimeter of 10 mm (Pi10)

Regression assumptions should be confirmed in
the condition(s) under study; potential effects of
outliers on regression equation should be assessed

Definition of abbreviations: COPD=chronic obstructive pulmonary disease; PiX=predicted wall thickness of airways with inner perimeter of X;
Pi10=predicted wall thickness of airways with inner perimeter of 10 mm.
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Assessing Regional
Lung Mechanics

General Considerations
Metrics of lung mechanics reflect gas or
blood transport into or through a structural
compartment, calculated from the ratios of
two primary measurements: 1) elastance (or
stiffness), the ratio of an applied pressure
to a resulting increase in volume, (DP/DV),
and 2) resistance, the ratio of a pressure
difference to the gas or blood flow between
two points (DP/D _Q). Elastance and
resistance are combined into a general
function of impedancewhen the lung can be
approximated as a linear dynamic system
and into multiterm descriptions when
linearity assumption is not applicable.

Whole-lung mechanics may be assessed
from the pressure drop across the lung from
the airway opening (trachea or mouth) to the
pleural surface (often approximated by
esophageal pressure). Inaccessibility of
individual lung compartments impedes the
determination of regional lung mechanics,
but advanced imaging modalities can
provide estimates of regional gas volumes
and flows during ventilation; if regional
pressures are also known, then local stiffness
and resistance can be calculated (although
not always possible to match rapid changes
in local parameters under dynamic
conditions). The difficulty of directly
measuring local gas or blood pressures
hinders validation of imaging-derived
regional mechanics when these local pressure
must be inferred frommathematical models
on the basis of remote pressure
measurements (196).

Measurement Principles and Methods
Imaging coupled with dynamic pressure,
flow, and volumemeasurements enhances
information yield about regional lung
elastance, resistance, impedance, linear strain,
and shear. Most approaches are based on
relationships between gas flow and pressure
at an appropriate entry point (197). The
retrograde catheter technique (198) allows
measurement of the resistance of an airway
segment distal to a wedged catheter. An
equivalent approach, wedging the tip of a
bronchoscope into the lung, has been used in
human subjects (199). Acinar-scale regional
lungmechanics have beenmeasured in
animals by applying flow oscillations through
an alveolar capsule to determine input
impedance at the pleural surface (200).
Invasive tracking of 3Dmovements of

implanted radiopaque markers in the lung as
inflation pressure changes has determined
variations in regional lung compliance at
centimeter resolution (201). Nonrigid
coregistration of landmarks in paired CT
orMR images obtained at different lung
volumes allows quantitative mapping
of regional parenchymal deformation
(strain, shear) (202–204) (Figure 6).
Elastography quantifies parenchymal stiffness
by shear-wave propagation through the lung
and tracking landmarks within high-
resolution 3D images. This approach assumes
a uniform pressure field; this limitation can
be partially avoided bymeasuring regional
pressures using miniature catheter-tip
pressure transducers. 1HMR elastography
noninvasively measures shear stiffness during
respiration in human lung (205) and in ILD
(206). Ultrasound surface elastography could
quantify subpleural shear stiffness as a marker
of fibrosis and in staging ILD (207). Dynamic
(four-dimensional) CT-based lung
deformation analysis and elastography have
mapped lung elasticity distribution in patients
with COPD and lung cancer (208). Even
without regional pleural or elastic
recoil pressure, it is possible to estimate
local air pressures using an anatomically
accurate imaging-derived computational
model of the lung on the basis of the laws of
physics. For example, one canmodel gas
pressures at any point in the airway tree
assuming a standard flow regime along a
network of cylindrical conduits (209, 210)
or by applying computational fluid
dynamics (211).

Caveats: Validation of imaging-based ass-
essment of regional lung mechanics is chal-
lenging because the resolution of imaging
modalities far exceeds that of physical trans-
ducers for measuring local pressures, flow,
and volumes. Validating regional volumes
and flow determined by imaging methods
requires invasive measurement of these
volumes and flow. Acinar-scale regional
lung mechanics have been measured by
applying broadband flow oscillations thro-
ugh an alveolar capsule (200); measure-
ments are limited to pleural surface, and
data from deep lung remain elusive.

Complicated image analysis algorithms
are used to derive structural and fu-
nctional information. There is often
more than one useful way to extract infor-
mation from an image, with limited
understanding of which algorithm is best

for a given application. The warping algo-
rithms for transforming one image into
another (e.g., at different lung volumes)
(212) have been adapted from their appli-
cation in other organs (e.g., brain) but
remain unvalidated for the much greater
deformation experienced by the breathing
lung.

Without experimental gold standards for
measuring regional lung mechanics inde-
pendent of imaging, validation relies on
predictions from computational models
grounded in physics (See section “Applying
Imaging Metrics in Computational Model-
ing to Predict Lung Function”); such mod-
els can be structurally accurate down to a
submillimeter scale (213). Fluid dynamics
enables pressure estimation throughout the
airway tree, while well-studied empirical
equations can estimate how parenchyma
structures affect pressures. Nevertheless,
using models to validate imaging-derived
physiological conclusions is inferential and
remains an open issue.

Assessing Ventilation and
Inhaled Gas Distribution

General Principles
Alveolar ventilation, _VA, is the rate of fresh
gas delivery to the alveolar space (the dot
denotes a rate). The term “specific
ventilation” is used differently between
methodologies, with some including a time
component and some not. Thus, units of
measurement should be stated. In MRI and
nitrogen washout studies, specific ventilation
(SV) is defined as the fraction of the original
regional lung gas volume at end-expiration
(Vr) that is replaced by a volume of fresh air
or tracer gas (Vf) with each breath:

SV5
Vf

Vr
(1)

SV is used to describe overall ventilation
heterogeneity (214) inmultiple-breath washout
studies; this principle is also used in some
imaging techniques (215, 216). Alternatively,
fractional ventilation, a related volume
measure, is sometimes used to measure the
fraction of end-inspiratory lung volume that
is made up of fresh air (or tracer gas):

Fractional ventilation5
Vf

Vr1Vf
5

SV
11SV

(2)

_VA is a metric of primary importance
for gas exchange. SV and fractional
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Figure 6. Computed tomography–derived metrics of regional parenchymal mechanics obtained during lung inflation in an adult canine model
illustrate the use of quantitative imaging to evaluate the effects of posture and compensatory lung growth and remodeling before (PRE) and
4 months after (POST) right pneumonectomy (PNX, removing �58% of lung units). (A) Two-dimensional images. (B) Three-dimensional
rendering of lungs. Color scale shows lung tissue density (fractional tissue volume [FTV]). (C–E) Air volume (C), tissue volume (D), and FTV
measured at a transpulmonary pressure (Ptp) of 30 cm H2O (E). (F) Specific compliance (Cs) of individual lobes (seven PRE-PNX, three POST-
PNX) calculated between Ptp values of 10 and 30 cm H2O. (G and H) Displacement (G) and linear strain (H) vector maps were derived via
coregistration of images obtained at the two values of Ptp, shown in three-dimensional renderings (upper) and two-dimensional (lower) images.
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ventilation can be converted to _VA using
respiratory rate and lung density to estimate Vr.

PET
Assessment of regional ventilation by
PET uses the kinetics of nitrogen-
13–labeled nitrogen (13NN) (217, 218),
neon-19 (19Ne) (219), or gallium-68
(68Ga)–labeled nanoparticles (“Galligas”)
(220). Production and optimization of
radiolabels for ventilation and perfusion in
PET and CT are reviewed elsewhere (221).
Measurements are based on the time
constant of washout curves after intravenous
tracer injection or gas equilibration,
providing regional specific ventilation, s _V,
which combined with measurement
of alveolar volume (resident gas) yields
absolute _VA (222). Exploration of the
multiexponential composition of washout
curves allows assessment of ventilation
heterogeneities below the voxel resolution
that are key to quantifying ventilation
dysfunction during severe bronchoconstriction
(223) and mechanical ventilation (224).

CT, PET–CT, and SPECT–CT have
documented heterogeneous deposition of
inhaled aerosols and particulates (225–229),
validated experimentally against fluorescent
microspheres (230). Imaging data may be
combined with theoretical modeling (231) to
simulate physiological conditions, examine
the factors causing variability, and predict
in vivo response.

MRI
Distribution of ventilationmay be assessed
using proton-based 1HMRI and direct
imaging of exogenous gases using
multinuclearMRI and spectroscopy (Table 6,
including comparison with PET).

Imaging regional lung expansion.
Using 1HMRI with UTE (echo times
<0.2 ms) or fast gradient-echo techniques
(echo times�1 ms), lung density can be
quantified and normalized to nearby tissue
with similar T1 and/or T2 characteristics
(e.g., muscle [232–234]), using reference

phantoms (235), very low flip angles, or
some combination of these. This allows
measurement of changes in macroscopic
density during the respiratory cycle using
deformable image registration techniques.
Density changes provide a proxy measure of
regional ventilation, with modest
correlations to fractional ventilation
measured by HP gas inhalation (236, 237).
1HMRI measurements are relatively simple
using standard hardware, without any need
for tracer gas and with potential for 3D
acquisitions.

HP gas techniques. Using inhaled HP
129Xe or 3HeMRI, gas distribution
abnormalities during static breath-hold
imaging can be assessed by the ventilation
defect percentage (VDP). VDP is the total
volume of lung with signal intensity below a
threshold (typically a small percentage of
average signal intensity) normalized to
thoracic cavity volume (238). VDP derived
from 3He or 129Xe is a safe and reproducible
measure correlating with clinical disease
measures (239–241). In COPD, 3He VDP
correlates with spirometry (242), symptoms,
exercise capacity (128), CT-based measures
of emphysema, and clinical exacerbations
(243, 244). 129Xe MRI has also demonstrated
similar correlations with spirometry (245).
Ventilation defects are spatially related to gas
trapping and emphysemameasured using
CT (246). Bias between VDPmeasured with
3He and 129Xe (242, 247, 248) MRI are likely
due to the density and viscosity of each gas,
resulting in different flow dynamics in
different caliber airways (249), but both
demonstrate higher sensitivity to mild
obstruction than spirometry (250, 251).

Oxygen-enhanced MRI, Fourier
decomposition, and fluorine imaging.
Oxygen-enhanced (OE) MRI and Fourier
decomposition (FD)MRI are performed
during tidal breathing. FDMRI (252)
depends on the periodic 1HMRI signal
intensity fluctuations that accompany
changes in local lung parenchymal density
with respiration and pulsatile blood flow.

OEMRI (253, 254) exploits the paramagnetic
effect of molecular oxygen: as O2 diffuses
into tissues and blood, local MR signals are
altered because local T1 (longitudinal
relaxation time) shortens as local dissolved
oxygen concentration rises (255). SV
imaging (SVI) (215, 256) is an OEmethod
that uses the rate of change in T1, which
depends on the rate of wash-in/washout of
inhaled oxygen to a region to directly
measure regional SV. Recent advances in OE
MRI (257–260) have improved the spatial
resolution and repeatability of
semiquantitative estimates of VDP (258) and
quantitative regional SVmaps (215, 216),
supporting translation in a wide range of
lung diseases. OEMRI and SVI metrics are
strongly correlated with pulmonary function
standards (e.g., multibreath nitrogen
washout [256]) and with HP 3HeMRI
(261, 262).

Alternative approaches using tracers
(e.g., perfluorinated gases) allow direct
measurement of MR signal frommultiple
19F nuclei in each atom of tracer gas (263).
This approach can capture dynamic airspace
filling during tidal breathing (263–265),
providing voxel-wise measures of SV
(Equation 1). Relative to HP 3HeMRI, 19F
imaging is inexpensive because the technique
does not use hyperpolarization.

Caveats: Signal-to-noise ratio and spatio-
temporal resolution are limited. Most
methods depict the distribution of an
inhaled tracer gas that is proportional to
SV (acquired during a breath hold) or
reflect information averaged over multiple
respiratory cycles (e.g., steady-state tidal
breathing). In single-breath tracer inhala-
tion techniques, a “ventilation defect” does
not necessarily represent absent ventilation,
as low-signal regions may reflect poorly
ventilated regions (slow time constants)
that receive less inhaled gas but are not
true ventilation defects. Imaging a tracer
(oxygen or 19F) over multiple breaths
requires long scan times (�10–20 min)
and increased postprocessing complexity.

Figure 6. (Continued ). (I and J) Maximum principal strain (MPS) (I) and shear (in the sagittal plane) (J) of each lobe. Data are mean6 standard
deviation. With respect to postural effects, at PRE-PNX baseline, prone posture is associated with higher FTV in dependent regions (B), lower
Cs, displacement, and strain magnitudes in most lobes, especially the caudal lobes (F–I), and lower interlobar heterogeneity in Cs (F), MPS (I),
and shear (J) but selectively increased lung strain in a small region under the heart (H) compared with prone posture. With respect to PNX
effects, POST-PNX mediastinal shift and expansion of the remaining lobes (A and B) stimulated acinar tissue growth and doubled air and tissue
volumes (C and D) without altering FTV (E), increased parenchymal excursion (G), and altered intralobar regional strain distribution (H) during
lung inflation compared with the corresponding PRE-PNX baseline. Compensatory lung growth and concurrent parenchymal remodeling nearly
normalized average lobar Cs (F), MPS (I), and shear (J) and preserved the normal postural response patterns. Adapted by permission from
Reference 203. A=anterior; L = left; P =posterior; R= right.
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Techniques that rely on imaging of lung
expansion to infer ventilation are critically
dependent on accurate registration.
Regional lung expansion rather than true
ventilation is measured (e.g., gas-trapped
regions may expand with inspiration,
reducing local density even in the absence
of any gas influx, introducing error).

Assessing
Pulmonary Perfusion

Perfusion ( _Q) is the process of delivering
blood to the capillary bed, which, coupled
with _VA, determines pulmonary gas exchange.
Different techniques are shown in Table 7.

CT
Intravenously injected iodine is used in
conventional CT to measure regional PBV as
a proxy for perfusion by subtracting
unenhanced precontrast images from
corresponding postcontrast images
(266, 267). Motion correction is applied to

minimize potential errors in coregistering
paired images; this technique clearly
visualizes regional defects (268).
Alternatively, DECT evaluates PBV after
iodinated contrast injection (269–271) using
two X-ray beams of different energies or
spectral detectors and material
decomposition to visualize iodine
distribution that exhibits differential
attenuation properties at different energies
(272, 273). DECT correlates well with first-
pass kinetics (274) and detects regional
defects with higher sensitivity than
conventional angiography (68, 275). A lower
dose dynamic CT technique that measures
pulmonary perfusion using only two serial
scans has been validated against fluorescent
microspheres in animals (276).

PET
PET assessment of regional perfusion is
based on the kinetics of tracers: 13NN,
oxygen-15–labeled water (15O-H2O),
or gallium-68 (68Ga)–labeled particles/
compounds. Because of its low blood–gas
partition coefficient, intravenously injected

13NN reaching lung capillaries mostly
diffuses into alveoli, allowing assessment
of true capillary perfusion (222, 277).
Main 13NN-based approaches are as
follows:

1. Continuous 13NN infusion, where
perfusion is derived as

_Q5
_VA

_VA= _Q
(3)

while ventilation is computed from
inhalation of neon-19 gas (278), and

2. 13NN-saline bolus: perfusion is
computed from the distribution of an
injected bolus of 13NN-saline during a
breath hold (218, 277), where the
end–of–breath hold activity
characterizes capillary perfusion specific
to aerated regions.

The 15O-H2O–based method measures
perfusion from local kinetics of injected 15O-
H2O, accounting for the input function into
pulmonary circulation and water extraction

Table 6. Comparison of different techniques to measure ventilation and its heterogeneity

HP 3He MRI HP 129Xe MRI 19F MRI OE MRI 13NN PET

Signal-to-noise ratio Higher Higher Lower Lower Higher

Breath hold vs.
free breathing

Breath hold Breath hold Both Free or controlled
breathing

Free breathing

Relative cost Very high Medium Medium Low High

Hardware requirement High High Medium Low High

IND exemption required Yes Yes Yes No Yes

Scan length Seconds Seconds Seconds to minutes 10–20 min Minutes

Major metrics Ventilated volume,
VDP

Ventilated volume,
VDP

VDP, fractional
ventilation

Percentage signal
enhancement, VDP,
specific ventilation,
DPO2

Ventilated volume, VDP,
specific ventilation

Multicenter repeatability
established

Yes No No No No

Advantages Regional measures of
emphysema/gas
trapping and airway
occlusion have high
sensitivity for
longitudinal and
interventional
assessments

Regional measures of
emphysema/gas
trapping and airway
occlusion have high
sensitivity for
longitudinal and
interventional
assessments

Ability to image
gaseous and
dissolved phases
enables assessment
of gas exchange

Regional measures of
emphysema/gas
trapping and airway
occlusion

Can be performed
using conventional
coils without
additional gas
preparation/handling
hardware measures
of heterogeneity
validated against
multiple breath
washout, and
against HP 3He MRI

Regional measure of gas
trapping

Provides direct assessment
of regional alveolar
ventilation

Validated in conjunction
with perfusion against
arterial blood gases

Disadvantages Requires multinuclear,
dedicated
transmit/receive coil,
specialized
sequences, and 3He
hyperpolarizer

Requires multinuclear,
dedicated
transmit/receive coil,
specialized
sequences, and
129Xe hyperpolarizer

Requires multinuclear,
dedicated
transmit/receive coil
and specialized
sequences

Typically long
acquisition times

Radiation exposure
Requires several breaths to

estimate subvoxel
ventilation heterogeneity
from 13NN-washout
curve

Definition of abbreviations: DPO2= change in partial pressure of oxygen; HP=hyperpolarized; IND= investigational new device; MRI=magnetic
resonance imaging; OE=oxygen-enhanced; PET=positron emission tomography; VDP=ventilation defect percentage.
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Table 7. Comparison of different techniques to measure perfusion and its heterogeneity

CT 13NN PET SPECT ASL MRI
Bolus Contrast

Enhancement MRI

Spatial resolution Highest Moderate Low High High

Cost Relatively low Relatively high Low Relatively high Less than ASL

Breath hold vs.
free breathing

Breath hold Breath hold Both Free or controlled
breathing

Breath hold

Scan length Seconds Few minutes Several minutes Minutes Seconds

Major metrics Perfused blood
volume

Perfusion defects

Regional shunt (for early
peak in kinetics)

Perfusion (ml/min/ml)
Relative dispersion
Length-scale perfusion

heterogeneity
Noise-free estimate of

perfusion heterogeneity

Relative perfusion,
perfusion defects

Perfusion (ml/min/ml)
Perfusion (ml/min/g)
Relative dispersion, fractal

dimension
Gravitational gradients

Time to peak contrast
enhancement (transit
time), blood volume,
perfusion defects,
relative perfusion

Validation Validated against
microspheres in
animal model

Combined with ventilation to
give _VA/ _Q validated
against systemic
experimentally assessed
arterial blood gases and
MIGET

Combined with
ventilation to give
_VA/ _Q validated
against MIGET

Validated in phantoms
and against
microspheres

Combined with ventilation
to give _VA/ _Q validated
against MIGET

Limited validation in
cerebrum and in
phantoms

Advantages High spatial
resolution

Widely available
and in use

Highly sensitive
Allows quantification of

gases directly involved in
pulmonary gas exchange

Coregistration with other
tracers allows relevant
association of molecular
and functional information

Short tracer half-life allows
sequential acquisition of
measurements

Enables quantification of
heterogeneity underlying
the imaging resolution

Widely available,
used clinically

Noninvasive and no
“dose”

Combined with density
imaging, provides
insight into effects of
lung deformation

Temporal imaging
possible

Sensitive to modest
physiological
interventions and lung
disease (e.g., PAH)

Uses a standard 1.5-T
clinical scanner without
hardware modification

Uses a standard 1.5-T
clinical scanner without
hardware modification

Widely available

Disadvantages Relatively high
exposure to
ionizing radiation

Requires injection of
iodinated contrast

Relationship between
perfused blood
volume and
perfusion not
established

Conduit vessel
signal requires
removal or
separation to
assess true
perfusion

Exposure to ionizing
radiation

May require a stable
breathing pattern, which
may not be easily
followed by
spontaneously breathing
subjects

Requires cyclotron to be
immediately available

Requires kinetics analysis
(for improved accuracy)
and does not identify the
location of heterogeneity
within the voxel

Low temporal resolution
may underestimate
perfusion

Quality of segmentation is
important, as it cannot
uncouple shunt from
large blood vessels

Requires several breaths for
estimation of alveolar
ventilation and _VA/ _Q
ratios as derived from
washout curve

Exposure to ionizing
radiation

Semiquantitative as
typically
implemented

Low proton density and
short
T2* make SNR an
issue

Currently single slice,
making whole-lung
imaging more time
consuming

Absolute calibration of
signal possible but
requires postprocessing
and reference
phantoms

Conduit vessel signal
requires removal or
separation

Requires cardiac gating
and reliable lung
volume control (or
postprocessing for
registration)

Translation to 3-T is
challenging (but
possible)

Data processing is
cumbersome

Requires contrast
injection, not suitable
for some subjects (e.g.,
impaired renal function)

Indirect measure of
perfusion

Semiquantitative as
typically implemented

Accurate estimation
requires arterial input
function, which is rarely
available

Conduit vessel signal
requires removal or
separation to assess
true perfusion

Definition of abbreviations: ASL=arterial spin labeling; CT=computed tomography; MIGET=multiple–inert gas elimination technique;
MRI=magnetic resonance imaging; PAH=pulmonary arterial hypertension; PET=positron emission tomography; SNR=signal-to-noise ratio;
SPECT=single-photon emission computed tomography; _VA/ _Q=ventilation-perfusion ratio.
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by the lung (279–281). In addition,
pulmonary perfusion has beenmeasured
with intravenously injected positron-
emitting 68Gamicrospheres (282, 283) that
lodge in pulmonary capillaries in proportion
to local perfusion. 68Ga-chelated 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA)–measured perfusion agrees
reasonably with measurements using
fluorescent microspheres (284).

Surrogate PET-basedmethods using
intravenous fluorine-18–labeled
fluorodeoxyglucose (18F-FDG) can assess
pulmonary perfusion in regions of interest
larger than a pixel. The fraction of blood
obtained from 18F-FDG kinetics approximates
15O-H2O perfusionmeasurements in normal
and post–acute lung injury large animals
(285). Relative perfusion is estimated by
accounting for delays in 18F-FDG transport
between plasma sampling site and lung
regions of interest; this method correlates
highly with previously validated 13NN
perfusionmeasurements (286). These positive
results match previous good correlations
found between PBVmeasured using labeled
carbonmonoxide and lung perfusion (287).

Single-photon Emission Computed
Tomography (SPECT)
SPECTmeasures pulmonary perfusion using
injected 99mtechnetium- or 113mindium-
labeled macroaggregated albumin (MAA)
(288–290) (See section “Metrics for
Assessing Regional Rentilation-perfusion
Mismatch”).

MRI
TwomajorMRImethods are used to evaluate
lung perfusion. 1) A bolus of gadolinium, an
injectable contrast agent, is used to enhance
MR signal during its passage. Indicator
dilution techniques are applied (291) to
derive perfusion from the time to peak signal
intensity (reflecting transit time) and the area
under the time–activity curve (reflecting
blood volume) (291, 292), using the central
volume principle (293). 2) The 2D arterial
spin labeling (ASL) flow-sensitive alternating
inversion recovery sequence (FAIRER)
(294–297) uses magnetic field gradients and
radiofrequency pulses to manipulate the
signal of blood delivered to an imaged slice in
different ways: one image with delivered
blood generating a strong signal and one in
which the signal is largely nulled (Figure 7).
Two electrocardiogram-gated images of each
slice are taken�5 seconds apart. The signal in
a voxel of the subtracted image is
proportional to the amount of blood
delivered during the previous cardiac cycle;
multiple slices are acquired sequentially to
cover the entire lung. These techniques
have been validated in animal models (298)
and phantoms (299, 300) or against the
multiple inert gas elimination technique
(MIGET) (301).

Perfusion Metrics
Perfusion measurements may be expressed
as relative perfusion (i.e., a fraction of total
perfusion) or absolute perfusion (i.e., the
volume of blood delivered per unit volume

or mass per unit time); the metric used
should be clearly stated. Perfusion
heterogeneity is affected by gravity, vascular
branching structure, active regulation
(e.g., hypoxic pulmonary vasoconstriction),
and disease (302). The simplest measure of
spatial heterogeneity is the relative dispersion
(RD, or coefficient of variation) of an image
(standard deviation divided by average signal
intensity). RD is independent of absolute
signal quantification, simple to calculate,
and sensitive to physiological interventions
(179, 303–306). Descriptors that account for
signal distribution (e.g., log normality) may
require absolute quantification, adding
complexity (295). Additional metrics include
vertical perfusion gradients (12, 307, 308),
the noise-free estimate of perfusion
heterogeneity (309), and the contribution of
specific ranges of length scales to perfusion
heterogeneity (310, 311) and the fractal
dimension (179, 180). Studies using ASL
measures of perfusion or contrast
enhancement were used to show increased
perfusion heterogeneity in hypoxia, suggesting
uneven hypoxic pulmonary vasoconstriction
(312, 313), in individuals with a history of
high-altitude pulmonary edema. RD is also
elevated in patients with Fontan circulation
and PAH (314). Another example is the
finding that the length scale of perfusion
heterogeneity differs between normal subjects
and patients with COPD (310) and between
patients with exercise-induced PAH and
control subjects at rest (308).

Pulmonary ASL is well suited for
studying temporal perfusion variations; the
technique does not use injected contrast or
ionizing radiation allowing serial image
acquisition. Using a free-breathing scanning
protocol consisting of a series of
electrocardiogram-gated scans (315), an ASL
series can be acquired and registered and
temporal perfusion fluctuations calculated
(316, 317). Results demonstrate active normal
control of pulmonary perfusion (316–318)
andmarked alterations in PAH (319).

Caveats: Tissue deformation with gravity
creates an apparent gradient in alveolar–
capillary perfusion per unit volume even
when perfusion per alveolus is uniform (5).
Lung volume during image acquisition
affects quantification (11, 320, 321) and
perfusion distribution. Depending on the
study, it is important to distinguish between
perfusion per unit lung volume and perfu-
sion per alveolus. Density measure provides
a surrogate for local deformation, and
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Figure 7. Sagittal images showing an arterial spin labeling experiment in the lung to quantify
pulmonary perfusion in a normal subject. Images are shown in the orientation of acquisition to
visualize the large-scale effects of gravity on the lung. In the left-hand “tag” image, a nonselective
inversion pulse has been applied, and the intravascular signal is largely nulled. In the middle
“control” image, a selective inversion pulse has resulted in intravascular signal appearing bright;
lobar fissures can be faintly seen because vessels do not cross lobar boundaries. Subtraction of
the tag and control images results in a map of delivery of one systolic ejection of blood after
quantification (right), showing greater perfusion in the gravitationally dependent lung. The color
scale is blood delivered (ml/min/cm3). The bright structures on the anterior chest wall are
phantoms used in quantification. Courtesy of S.R. Hopkins.
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Figure 9. Representative 129Xe ventilation and gas exchange magnetic resonance imaging maps from a range of disease conditions. Note that
the healthy volunteer is characterized by maps falling in the green range of the healthy reference cohort values. The patient with CTEPH exhibits
primarily defects in red blood cell (RBC) transfer. The subject with IPF exhibits high barrier uptake (interpreted as a thickened diffusion barrier),
with basilar and peripheral loss of RBC transfer. Patients with COPD all exhibit significant ventilation defects, while two exhibit low barrier uptake
(interpreted as emphysema), and all exhibit low RBC transfer. Courtesy of B. Driehuys. COPD=chronic obstructive pulmonary disease;
CTEPH=chronic thromboembolic pulmonary hypertension; IPF= idiopathic pulmonary fibrosis; TX= treatment.
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Figure 8. Representative report showing the use of 129Xe magnetic resonance imaging to evaluate single-breath gas distribution and gas
exchange in a patient with idiopathic pulmonary fibrosis (IPF). The report provides histograms (left), color-coded maps (middle), and
quantitative metrics (right) related to ventilation, interstitial barrier status, and gas transfer to capillary red blood cells (RBC). The quantitative
maps assign each voxel a color code depending on how its intensity deviates from the healthy reference population means (histograms on the
left). Red pixels indicate “defects” (pixel intensities more than 2 standard deviations [SDs] below the mean), while green voxels are those falling
within 1 SD, and blue represent intensities 2 SDs above the mean (for ventilation and RBC transfer maps). Uniquely, the barrier maps have at
their upper scale pink and purple to denote voxels with 129Xe uptake more than 2 SDs above healthy reference, which has been associated with
interstitial thickening. For each map, the percentage of the thoracic cavity falling within the defect, low, and high ranges is provided, together
with reference values from a young, healthy reference population (Ref, gray cells in the table, dotted curves in histograms). Courtesy of
B. Driehuys. SNR=signal-to-noise ratio.
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correction for regional density provides a
useful first-order means to convert between
the two measurements (5).

As the lung normally receives the entire car-
diac output, it is more important to assess
regional distribution of perfusion than total
flow. For evaluation of gas exchange, the
perfusion signal should come from sources
that represent capillary perfusion in the
voxel of interest.

Many so-called perfusion scans actually
reflect blood volume, particularly in larger
vessels; the relationship between blood
volume and flow is not fully established,
particularly in disease. DECT or subtrac-
tion CT perfusion measures yield only
a snapshot of iodine enhancement; pe-
rfusion quantification requires rapid
sequential four-dimensional CT to assess
temporal changes (56, 321, 322), produc-
ing high radiation exposure and lower
image resolution.

Although 13NNPET and SPECT provide sig-
nal specific to blood in pulmonary capillaries,
other techniques (ASL MRI, CT) comprise
signal from both capillaries and conduit ves-
sels carrying blood destined for elsewhere.
Removal of conduit vessel signals (323–325)
is essential to quantify capillary perfusion
participating in gas exchange.

Perfusion heterogeneity can occur at a large
spatial scale (e.g., gravity dependent) (5, 179,
180, 326) and smaller scales. The metrics are
scale dependent; scale information should be
stated when reporting results (180).

Additional metrics are evolving for specific
situations and direct between-technique
comparisons of the magnitude and spatial
distribution of perfusion. Hybrid cameras
(e.g., PET–CT and PET–MRI) advance
accurate quantification and comparisons,
as they incorporate inherent image coregis-
tration. Because of distinct physical princi-
ples of measurement, different techniques
are not equivalent; specific applications for
each method remain to be determined.

Assessing Ventilation and
Acinar Air–Tissue–Blood
Diffusion

HP 129XeMRI permits breath-hold imaging
of inhaled gas distribution in airspaces
(discussed previously) and its uptake in

interstitial tissues and plasma and transfer to
pulmonary capillary RBCs. This capability
provides unique windows into obstructive
conditions such as asthma (327, 328), cystic
fibrosis (329), and COPD (330), while the
ability to probe air–tissue–blood diffusion is
suited for studying interstitial (145) and
pulmonary vascular (331) disease.

HP 129XeMRI can image acinar
diffusion, driven by xenon’s solubility and
diffusion across alveolar septal tissue and
plasma and into capillary RBCs (332). Each
of these compartments is associated with
unique 129Xe resonant frequencies (333),
which combined with novel MR acquisition
strategies allow 129Xe distribution in each to

be 3D encoded during a breath-hold (334);
signal is constrained to arise primarily from
the alveolar–capillary gas exchange interface,
and not larger vessels (142). 129Xe thus
reports on structure and function at much
smaller length scales (micrometers) than the
resolution of the images (3–5 mm isotropic).
Additional 129Xe spectroscopic sampling of
the alveolar–capillary unit every 15 ms
provides metrics of blood oxygenation and
hemodynamics (335).

HP 129XeMRI is fast and well tolerated
(239, 336), allowing visualization of gas
distribution and yielding information on
ventilation, alveolar barrier integrity, and
capillary RBC transfer. Its noninvasive nature
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Figure 10. 13N-nitrogen tracer kinetics showing the derivation of quantitative measures of specific
ventilation (s _V in PET) and perfusion ( _Q). Top: Washout of 13N-nitrogen plotted on a log scale
showing activity versus time in a voxel exhibiting uniform behavior modeled as a single
compartment. 13N-nitrogen is injected during apnea and delivered to the alveolus in proportion to
regional blood flow; thus, the plateau in activity at the time of the first appearance is proportional to
regional perfusion in a given voxel. Then, as the subject begins breathing, the tracer in the alveolus
will wash out proportional to regional s _V, and the slope of washout is equal to 21/s _V. The area
under the curve (light blue) is proportional to the _Q/s _V ratio. Bottom: 13N-nitrogen washout plotted
on a log scale showing activity versus time in a voxel exhibiting two-compartment behavior, with
compartment 1 having high s _V (rapidly clearing) and compartment 2 having low s _V. During
washout, compartment 1 clears tracer rapidly, with a steep initial slope (slope 1) of activity versus
time. Total blood flow in the voxel ( _Q11 _Q2) is again reflected in the plateau but apportioned
between the two compartments on the basis of the back-extrapolated point to the onset of washout
in compartment 2. The _Q/s _V for compartment 1 is shown in light blue and for compartment 2 is
shown in gray. Reproduced with permission from Reference 371.
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permits repeated scanning. Ongoing
methodological innovation (e.g., novel coils
and polarizer technology) seeks to accelerate
image acquisition (337) and identify new
contrast mechanisms (26).

Metrics
Figure 8 illustrates a typical HP 129XeMRI
study (338) reporting on gas distribution in
airspaces, barrier tissues and plasma and
transfer to RBCs, and ability to characterize
abnormalities. Figure 9 shows images from
patients with lung diseases. Dynamic 129Xe
spectroscopic sampling of alveolar–capillary
unit is used to characterize RBC frequency
shift and its cardiogenic oscillations, which
are believed to reflect capillary oxygenation
and capillary blood volume, which may be
used to assess pulmonary hypertension (331).

Caveats: HP 129Xe is a drug/device combi-
nation regulated by federal guide-
lines. Implementation remains expensive,
requiring an MRI scanner with multinuc-
lear capabilities, specific pulse sequences
(339), and custom software (340). The field
is just coming to agreement on the most
useful types of image acquisition or analy-
sis (332, 341). HP 129Xe signal is transient;

imaging is time sensitive and with some
exceptions (342) is limited to single-breath
scans. These factors demand excellent
patient coaching and gas delivery practices
to ensure well-defined lung volumes (343),
adequate inhaled 129Xe, and maintenance
of breath hold during imaging. Reproduc-
ibility and validation studies are limited.

Assessing Regional
Ventilation–Perfusion Mismatch

Matching regional _VA/ _Q, a primary
determinant of pulmonary gas exchange
efficiency, may be assessed using MRI and
nuclear medicine techniques.

PET
Estimates of _VA/ _Q distributions using
PET are based mainly on intravenously
administered 13NN tracer kinetics (222, 277)
(See section “Assessing Pulmonary
Perfusion”) (Figure 10). Continuous infusion
measurements require estimates of mixed
venous 13NN content and alveolar gas (217,
344). In the bolus technique during apnea,
regional _VA/ _Q is computed from the area
under the activity–time curve as steady-
state ventilation begins after a breath hold

(218, 279). Because 13NN diffuses only
into aerated lung units, local 13NN
kinetics allow the estimation of not only
regional _VA/ _Q ratio but also right-to-left
shunt (222, 345, 346).

SPECT
SPECTmeasures ventilation or perfusion
and reconstructs a 3D image (288, 289) after
injecting or inhaling a g-emitting
compound; the photons emitted during
decay are imaged. Pulmonary perfusion
measurements with SPECT typically involve
injection of 99mTc-MAA, 133mIn-MAA
(288–290) particles distributed in proportion
to local blood flow and lodged in small
pulmonary arterioles and capillaries.
Ventilation is measured by inhaled
aerosolized particles (133xenon or
99mtechnetium-labeled diethylenetriamine
pentaacetate) or 99mtechnetium-labeled
nanoparticles (347).

MRI
The most developed technique to quantify
regional _VA/ _Q matching combines three
protonMRI sequences (Figure 11): 1) SVI
(See section “Assessing Ventilation and
Inhaled Gas Distribution” above), 2)
perfusionmeasured using ASL (See section
“Assessing Pulmonary Perfusion” above),
and 3) proton density. Proton density is used
to assess the air compartment of the voxel as
(12density). Whenmultiplied by local SV,
this gives the volume of fresh gas/breath and
is used to calculate regional _VA (301, 348).

Alternately, regional partial pressure of
oxygen (PO2) can be quantified fromHP 3He
MRI by acquiring a back-to-back image
series (349–351) and evaluating regional
changes in signal intensity with time (352);
regional _VA/ _Q ratio is estimated from the
measured PO2 using mass balance equations
for respiratory gases (353).

Metrics
Regional _VA/ _Q heterogeneity can be
described with simple functional models
corresponding to a few compartments and a
narrow unimodal _VA/ _Q distribution (354).
Small-length scale heterogeneity develops in
disease (222, 223, 355) and under mechanical
ventilation (224), resulting in heterogeneous
_VA/ _Q distributions (356, 357) (Figure 12).
Metrics of _VA/ _Q matching include
global heterogeneity, the secondmoments
(log scale) of ventilation (LogSD _V) and
perfusion (LogSD _Q) versus _VA/ _Q ratio
distributions, calculated in a 50-compartment

Quantification of ventilation-perfusion matching in the human lung with proton MRI
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Figure 11. Analysis pathway for the quantification of regional alveolar ventilation/perfusion
( _VA/ _Q) ratio from proton MRI proton density, specific ventilation (SV), and _Q (arterial spin
labeling) images. Quantified density images are used as a measure of regional gas content
and combined with SV images (representing delivery of fresh gas/resident gas) to provide
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model (301, 348, 354) (from a cumulative
plot of _V or _Q vs. _VA/ _Q ratio) binned in
50 equally spaced (log scale) compartments.
_VA/ _Q ratios,0.005 (shunt) and.100 (dead
space) are separately calculated. Relative
dispersion and gravitational gradients (348)
may also be assessed.

Validation Approaches
Arterial O2 and CO2 tensions calculated
from 13NN PET–measured _VA/ _Q
distributions are highly correlated with
arterial blood gases (222) and are consistent
with data from the MIGET technique in
normal, bronchoconstricted, pulmonary
embolism, and pulmonary edema

conditions (222, 223). MRI and SPECT
measurements have been validated against
MIGET (288, 301).

Caveats: Because estimates of _VA/ _Q
ratio in the 13NN-saline bolus technique
are specific to aerated and perfused
regions, estimates of ventilation could be
inaccurate in regions of alveolar dead
space (e.g., pulmonary embolism). This
can be addressed either by implement-
ing a 13NN-gas inhalation technique
(358–360) or introducing additional
terms to the model of 13NN-saline bolus
kinetics. Absolute ventilation at the voxel
level can be computed from the product

of regional (ventilation3 gas volume)
assessed by transmission scan or equili-
bration of inhaled 13NN (222, 359). As
SPECT quantifies relative _VA and rela-
tive perfusion, total _VA and perfusion
must be separately measured for full
quantification (288).

1H MRI–derived regional _VA/ _Q ratio is
time consuming, requiring complex post-
processing. The relationship between alve-
olar PO2 and _VA/ _Q ratio from HP 3He
MRI is insensitive at both high and low
_VA/ _Q ratios: large changes in local _VA/ _Q
ratio result in minimal changes in PO2 in
these regions, thereby limiting utility.
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Figure 12. Regional perfusion and end-of-washout lung images, tracer kinetics of whole-lung field, and PET–derived _VA/ _Q distributions for
single examples of a normal sheep and a sheep after pulmonary embolism, saline lung lavage, and bronchoconstriction. Images are
tomographic sections viewed in craniocaudal direction from top to bottom. Animals were prone for normal, bronchoconstriction, and pulmonary
embolism studies and supine for lung lavage study. In supine position, left side in image corresponds to left side in animal. Note different scales
for images. Regions of unperfused lung are seen after embolism. After lung lavage, there is redistribution of perfusion and increase in residual
tracer at end of washout. Early peak and fast drop to plateau in lung lavage tracer kinetics indicate the presence of intrapulmonary shunt. There
is significant retention of tracer in large areas after bronchoconstriction. Reproduced by permission from Reference 222. PET=positron emission
tomography; _Q=perfusion; _VA=alveolar ventilation.
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Applying Imaging Metrics in
Computational Modeling to
Predict Lung Function

Modeling supports the acquisition, analysis,
and interpretation of images while providing
data to aid in the development and
refinement of physiological models.
Although imaging modalities provide
information on regional ventilation, blood
volumes, perfusion, _VA/ _Q matching, and
blood gas uptake, no method captures all the
information simultaneously. The goal is to
integrate data from different modalities,
together with physiological measurements, to
comprehensively characterize how structure
determines function. Quantitative linking of
structure and function in an intricate organ
such as the lung can be done only through

computational modeling on the basis of the
laws of physics.

Respiratory diseases are complex and
multifactorial, involving remodeling of
tissue, airway, and vessel. This complicates
interpretation of imaging-based metrics and
limits the clinical utility of imaging
biomarkers. Structure-based models
(Figure 13) that include interactions among
tissue, airway, and circulation can facilitate
analysis and interpretation of how
intersubject differences, imaging protocols,
and normal or abnormal physiology
contribute to imaging-based metrics.
Carefully constructed models can be used to
examine contributions of different factors
(361) and provide mechanistic
understanding far beyond that derived using
statistical methods alone.

General Principles
Biophysical computational models can
be used for forward simulations of
function or inverse identification of
system structure and parameters. Forward
models are useful for sensitivity analyses
(e.g., evaluating the contribution of normal
subject variability to imaging metrics to
define a threshold for abnormal) (362).
Forward models can also predict emergent
behavior in response to a parameter
change at the cellular/tissue level (363).
Inverse models are useful for deriving
information that cannot be measured
directly (e.g., distributions of airway or
vascular obstruction that give rise to
specific _VA/ _Q patterns) (364). Both
forward and inverse models can be used
to analyze, interpret, and predict,

Figure 13. Illustration of computational models of lung structure and function. The right lung shows an imaging-based model of the human
airway tree, reconstructed from volumetric computed tomography and a branch-filling tree generation method, placed within a finite element
mesh. The left lung model is overlaid with a Jacobian (vector function) map showing regional parenchymal deformation calculated by
coregistering paired images obtained at two lung volumes. Colors (from blue to green to red) in the left lung indicate increasing magnitudes of
deformation from apex to the costophrenic sulcus. Courtesy of M. Tawhai.
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constrained by physical laws and
physiological variables (e.g., cardiac output
or respiratory rate).

The intimate structure–function
relationships among tissue, airway, and
circulation means that applications of
modeling to imaging require models that
include at least two of these components
and their interactions. Models can be
made more specific by using imaging and
physiological data from individual
patients. However, there is a limit to
which the exact topology of airway and
vasculature can be determined, and
physiological parameters such as elasticity
of the lung tissue or airway wall can only
be estimated. It is critically important to
understand the appropriate model to use
for specific imaging analyses and their
limitations (362).

Applications of Modeling to
Imaging-Based Metrics
Conventional approaches to unifying data
from different modalities use image
registration to provide one-to-one voxel
mapping and calculation of spatial
correlation. Registration can be challenging
when images are acquired in different
anatomical planes, lung volumes, resolutions,
or slice thicknesses. Statistical methods used
to associate imaging with physiological
and/or anthropometric data are limited in
the mechanistic understanding they provide.
Data can also be integrated by using a single
unifying biophysical model to relate
physiological measurements to imaging, as
shown in studies that combine forward and
inverse approaches to predict oscillatory lung
mechanics in an airway tree model that is
matched to images of ventilation defects
(364–366). A realistic model of pulmonary
perfusion has been used to duplicate an ASL
MRI experiment for acquisition of
pulmonary perfusion data to guide selection
of thresholds for removing large-vessel
signals that do not represent capillary
perfusion (323).

Imaging-based metrics rely on
assumptions underlying each imaging
method, analysis, and interpretation. For
example, 1HMR–based SVI uses O2 as a
contrast agent, assuming that local lung
tissue is in equilibrium with the surrounding
alveolar PO2. The potential contribution of
signal fromO2 carried in pulmonary vessels
to SVI may be assessed (367) using a model
that includes tissue mechanics, ventilation,
perfusion, and gas exchange, to simulate the

distribution and exchange of O2 during SVI.
By controlling the presence of signal from
vessels, its impact on heterogeneity and
perfusion gradient could be assessed. This
model provides a simulated “ground truth”
where the exact O2 signal distribution in the
circulation and tissue are both known. The
model-generated image can be “voxelized”
and postprocessed as virtual image data.
Assumptions in imaging or analysis methods
can be tested by comparing derived metrics
with the model ground truth.

Imaging-based biomarkers based on
statistical relationships between imaging
features and clinical outcomes are insufficient
to understand the complexity of interactions
that underlie measurable or imageable
function. For example, several imaging-based
vascular metrics (ratio of PA to ascending
aorta diameter, diameter and volume of
proximal arteries, volume of small arteries,
andmicrovascular blood flow and
heterogeneity) are emerging as potential
biomarkers for disease severity. Although
these metrics are interrelated, it is difficult to
examine their physiological interrelationships
from imaging alone; this represents a prime
example in which image-basedmodel
analysis plays a central role. Biophysical
models can be time consuming to construct
and execute, but when well-designed
and appropriately used, they provide a
sophisticated tool to complement imaging.

Conclusions

QI continues to evolve with advances in
hardware and software capabilities. The
major imaging modalities described above
offer complementary structure–function
data. Despite high-precision measurements,
effective use of QI to enhance understanding
of respiratory (patho)physiology critically
depends on following robust study design
and unbiased sampling. This ensures
accurate representation of the structures and
selection of validated meaningful metrics,
facilitating understanding of the capabilities
and limitations of each modality and
analytical approach and aiding appropriate
interpretation of the results in correlation
with anatomical and clinicophysiological
biomarkers. As in vivo validation of imaging-
derived metrics remains empirical,
computational modeling plays an important
role in elucidating the mechanisms
underlying the imaged perturbations.�
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