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Abstract A new general process for constructing ortho-tert-butyl
phenols is presented within the context of other known methods. All
are briefly evaluated with regards to regioselectivity, efficiency, and
functional group tolerance. In addition, we present an assortment of
tert-butyl substrates accessed through o-QM chemistry. Our conclusion
is that the o-QM process provides greater yields, flexibility, and general-
ity than most other known methods for delivering ortho-tert-buytlated
phenols and their derivatives.
1  Introduction
2  Friedel–Crafts Alkylation
3 Addition of t-Bu– or t-Bu• to Carbonyl Compounds
4 ipso-SNAr Reactions of Aryl Methoxy and tert-Butylsulfoxide Moi-

eties
5 Metal-Mediated Coupling of Aryl Bromides
6 Applications of o-Quinone Methides (o-QMs)
7 Conclusion

Key words ortho-tert-butyl phenol, ortho-quinone methide, Friedel–
Crafts Alkylation, SNAr reactions, ipso substitution, metal-mediated aryl
coupling

1 Introduction

Often an aromatic compound displaying a methyl resi-

due is identified from a high-throughput screen of its bio-

logical potency (Figure 1). However, when a methyl substit-

uent is positioned ortho with an oxygen substituent, as in

compound 1, it renders the methyl residue oxidatively vul-

nerable. One plausible solution replaces the simple methyl

residue with a more oxidatively sturdy tert-butyl residue.1

Instances abound amongst many pharmaceutical agents.

Compound 2, disclosed as a potent NS5B polymerase inhib-

itor for example, has been explored as a treatment for HVC

by AbbVie.2 Similar tert-butyl phenolic skeletons have been

studied by Roche for numerous therapeutic applications.3a

BMS has further investigated this motif, reporting com-

pound 3 as an antithrombotic and P2Y1 inhibitor.3b Thus,

important ortho-tert-butyl phenols need efficient and ro-

bust strategies for their construction. However, it was not

until Vertex adopted our method to deliver ivacaftor (4) and

its deuterated counterpart on kilogram scale that we be-

came fully enlightened as to the challenges presented by

this venerable motif and the utility that o-QM chemistry
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provides to solve this long-standing problem.4 We therefore

wish to share our analysis of existing tert-butylation tactics,

along with their respective strengths and shortcomings,

and conclude with some additional o-QM examples.

2 Friedel–Crafts Alkylation

Friedel–Crafts alkylation has been a mainstay for the in-

troduction of tert-butyl groups onto various anisole deriva-

tives (Scheme 1). However, this strategy provides poor or-

tho regiocontrol. Introduction of additional electron-donat-

ing groups only further complicates matters. In attempt to

address these issues, researchers have investigated a num-

ber of tert-butyl cation precursors in conjunction with vari-

ous Lewis acid promoters. Sharma found Amberlyst-15 pro-

vided the greatest amount of the corresponding para prod-

uct (97:3:0), performing better than either p-toluene

sulfonic acid, aluminum trichloride, or many other Lewis

acids investigated.5a Hojo has reported the highest ortho-

yielding examples by using tert-butyl bromide impregnated

onto silica gel. The reaction results in a 41% overall conver-

sion with a distribution of 32% (ortho), 58% (para) and 10%

(bis) amongst products.5c Application of the Lewis acid tert-

butyl dimethylsilyltrifluoromethane sulfonate has been re-

ported to produce ortho-tert-butylated phenols and naph-

thols, but again with poor regiocontrol.5d,e More recently,

ortho-tert-butylation of aryl methyl ethers have been stud-

ied by deploying Keggin tungstophosphoric acid

(H3PW2O40) or Santa Barbara Amorphous clay (SBA-15) in

conjunction with similar tert-butyl cation precursors, and

all have illuminated similar regiocontrol problems.5f Given

these and many other studies, it should be apparent to all

that cationic alkylation regimes fail to provide much syn-

thetic utility. However, if the para site is blocked with a de-

activating group, such as a bromo substituent, then a com-

bination of isobutylene and sulfuric acid has been shown to

smoothly afford the corresponding mono-ortho-tert-butyl-

ated para-bromo phenol, whereupon the bromide atom can

be reductively removed by Raney nickel as shown by Hart.5b

However, such strategies require regioselective access to the

desired precursor, which can prove problematic as well.

Scheme 1  Isomeric mixtures and bisaddition given by Friedel–Crafts 
alkylation

3 Addition of t-Bu– or t-Bu• to Carbonyl 
Compounds

Scheme 2  Examples deploying tert-butyl anions and tert-butyl radicals 
with carbonyl and enone acceptors followed by aromatization

Both radical and anionic formation of a carbon–carbon

bond containing a tert-butyl group is a challenging prob-

lem. Nevertheless, there are several examples where this

strategy has proven effective to arrive at ortho-functional-

ized phenols from carbonyl and alkene substrates. For ex-

ample, Hammond deployed a four-step sequence to pro-

duce the desired 4-tert-buytl-5-hydroxy-benzofuran

(Scheme 2, i).6 Remarkably, he observed that a tert-butyl

lithium anionic nucleophile participated in the desired 1,2-

reaction with a vinylogous ester carbonyl, whereupon an

acidic workup promoted the elimination of the correspond-

ing tertiary alcohol. Further oxidative hydroboration of the

intermediate cyclohexene afforded the secondary alcohol

shown. Swern oxidation of this material, followed by both

enolization and a sulfur-prompted dehydrogenation pro-

duced the desired tert-butylated hydroxy benzofuran in

16% overall yield.6 Barton reported that pivylate esters, out-

fitted as N-hydroxy-3-thiopyridinones, participated in a

1,4-conjugate radical addition with 1,4-quinones under UV

light resulting in the hydroquinone shown (Scheme 2, ii).7

In a related strategy, Baran reported that silver nitrate had

prompted cross-coupling of an assortment of alkyl boronic

Figure 1  Examples of some tert-butyl-phenolic therapeutic derivatives
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acids with para-quinones mediated by ammonium persul-

fate as a co-oxidant (Scheme 2, iii).8a However, low yields

were observed amongst tert-butyl examples. Baxter subse-

quently described a slightly modified procedure that led to

a similar tert-butylated quinone in a 51% yield,8b and ex-

tended this reaction to the direct use of carboxylic acids, in-

cluding pivalic acid.8b,c While these Scheme 2 strategies are

not particularly high yielding for the introduction tert-butyl

residues, they have proven exceedingly effective for incor-

poration of less congested alkyl groups onto p-quinone pre-

cursors.

4 ipso-SNAr Reactions of Aryl Methoxy and 
tert-Butylsulfoxide Moieties

ipso-SNAr reactions have also been extensively studied

for tert-butylation (Scheme 3, i–iii). In the 1940’s Richtzen-

hain described the addition of various Grignard reagents to

2,3-dimethoxy benzonitriles. However, the reaction was

lower yielding for Grignard reagents and nearly failed for

tert-butyl lithium (Scheme 3, i).9 In the 1970’s Myers ex-

plored using an aryl oxazoline as a surrogate to the earlier

nitrile system (Scheme 3, ii.) The reaction proved very use-

ful for less congested aliphatic and aryl nucleophiles. How-

ever, the introduction of tert-butyl residue only proceeded

if a meta-methoxy oxazoline was present (43% yield), and it

failed altogether when not (R = H, 0% yield).10a,b Myers also

investigated other leaving groups and found that fluoride

could be used in place of the ortho-methoxy residue. How-

ever, these substrates failed altogether to provide tert-butyl

products.10c More recently, Clayden has shown that aryl

tert-butyl sulfoxides undergo ipso-SNAr reactions with an-

ionic nucleophiles (Scheme 3, iii).11 Remarkably, these reac-

tions proceed with neighboring electron-withdrawing

groups (R), such as an oxazoline or an amide, or with elec-

tron-donating groups, such as a methoxy residue. Examples

outfitted with electron-withdrawing groups afforded great-

er overall yields across the two steps. Indeed, the 75% yield

in the methyl anisole example is extraordinary (Scheme 3,

iii). Nevertheless, construction of the respective sulfoxide

precursors proves cumbersome (<40%) and leads to an inef-

ficient overall process.

5 Metal-Mediated Coupling of Aryl Bro-
mides

Metal-mediated cross-couplings have also been investi-

gated for producing tert-butylated aromatics (Scheme 4).

The reaction has been shown to proceed moderately well,

despite the risk of -elimination with ortho OR substitu-

ents.12 However, there are two obstacles one must consider

before implementing this strategy. First, halogenated mate-

rials with ortho-donating substituents (R = OH, OMe, etc.)

often prove resistant to oxidative insertion.13,14 Second, re-

gioselective ortho bromination of phenols15 and particular-

ly anisoles can prove very challenging in its own regards.

However, if the desired halogenated material can be pro-

cured, then copper, nickel, zinc, and even chromium species

have proven to be effective in arbitrating couplings with

various tert-butyl nucleophiles. For example, Glorius has

recently achieved moderate yields (33%) by combining or-

tho-bromo anisole with tert-butyl magnesium chloride in

the presence of a NHC catalyst. However, similar reactions

of nonanisole derivatives provided greater yields.13

Scheme 4  Metal-mediated couplings of aryl halides

6 Application of o-Quinone Methides

In 2000, we published a communication describing a

general method to access o-quinone methide intermediates

under basic conditions. It was a disruptive process, because

for the first time it enabled o-QM to form and engage an-

ionic carbon nucleophiles at low temperatures (Scheme 5,

i).16a While the construction of ortho-tert-butyl phenols

was not our focus, a solitary example delivering the phenol

9 from the ortho-OBoc acetophenone 5 (p-OBoc) was in-

cluded. In our early study, three important conclusions

were made. First, from screening acyl residues, which en-

abled a controlled o-quinone methide formation, we deter-

mined tert-butyloxycarbonate (Boc) to be superior in both

formation and subsequent reactions from among methoxy-

carbonate, acetyl, and pivalate alternatives. Second, from

screening several solvents, we determined that dilute solu-

tion of diethyl ether provided superior yields to tetrahydro-

furan, benzene, and toluene; possibly owing to subtle

changes in the Schlenk equilibrium. Third, application of an

organomagnesium reagent proved indispensable in deliver-

ing the tert-butylated product(s) B, as the corresponding

Scheme 3  SNAr reactions of aryl rings with methoxy and sulfoxide moi-
eties
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organolithium led to the corresponding styrene product A;

presumably by a 1,5-sigmatropic shift. Expanding upon this

earlier work, in 2001 we investigated acetophenones 7 and

8 resulting in the tert-butyl compounds 10 and 11.16b These

compounds were accessed from both their corresponding

o-OBoc acetophenones 5–8 as well as their ortho-OBoc

methyl esters 12–14. In both cases, these one-pot transfor-

mations were demonstrated in diethyl ether with the requi-

site 2 or 3 equivalents of methyl magnesium chloride.16b

However, methyl benzoate examples were noted to afford

undesired methyl benzylic ethers 15 in about 20% yield

along with the desired tert-butyl adducts (9b–11b) in a

similarly decreased yield. Some years later, while perusing

curcuphenol (17) from the benzaldehyde 16, we explored a

slight modification to our original protocol, whereby two

equivalents of methyl lithium were deployed to cause both

phenol deprotonation and methyl addition, followed by in-

troduction of Boc2O, whereupon addition of the organo-

magnesium reagent caused o-QM formation and incorpora-

tion of the desired side chain.16c However, this modification,

in so far as tert-butyl formation, was never investigated.16d

Scheme 5  o-QM reactions furnishing ortho-tert-butyl phenols
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In 2017, Vertex informed us that due of the pitfalls of

other tert-butylation methods, they were testing our o-QM

method for preparation of ivacaftor (4). In 2020, they re-

ported some of their findings in regard to deuterated deriv-

atives (Scheme 5, ii).17 Their tactics closely mirror our earli-

er work. However, their evaluations were more thorough

and exhaustive, resulting in some additional observations

and refinements. First, after preparing the diol 19 from the

aryl bromide 18, they surveyed several additional acylation

reagents, including PivCl, and BzCl, and reported trifluoro-

acetic anhydride (TFAA) to be equal, if not superior to our

original selection of Boc2O for the conversion of the diol 19
into derivative 20. Moreover, their entire sequence begin-

ning from the aryl bromide 18 could be carried out in a sin-

gle pot, if so desired. Second, they indicated that a solvent

mixture comprised of n-butyl ether and THF to be slightly

better than our original choice of diethyl ether. They imple-

mented this change with the ester 21 to arrive at the per-

deuterated tert-butyl derivative 22 in 64% (>10 kg). Third,

they indicated that organomagnesium iodides, which are

easier to prepare on industrial scale, performed marginally

better than other organomagnesium halides, and they fur-

ther postulated that this was perhaps due to perturbations

in the Schlenk equilibrium. Lastly, they indicated that some

metal additives, particularly CuBr–SMe2, in small quantities

improved overall yields.

Given the importance of this motif, we decided to exam-

ine a few additional cases to better demarcate our method’s

scope. Because our yields with acetophenones were usually

better than those the corresponding methyl benzoates, we

focused our attention upon these starting materials. The

tert-butyl-ortho-phenols 23–30 and 32 were all prepared

following our traditional protocol from their corresponding

ortho-OBoc methyl ketone derivatives. Toleration of several

new functional groups was demonstrated to include me-

thoxy, halogen, unprotected phenol, and amide residues, as

well as reactions upon naphthalene and benzofuran cores.

Relative higher yields amongst the various products likely

reflect an o-QM intermediate of greater stability in our

opinion. Of special note, we found that the reaction pro-

ceeds with an unprotected NH-amide and phenol function-

ality yielding compounds 25 and 26, respectively; an addi-

tional equivalent of methyl magnesium chloride is added to

deprotonate their acidic Ar–X–H functionality In addition,

we found that when the starting compound was the bis-or-

tho-OBoc acetophenone 31, our method delivered four

methyl residues arriving at the bis-ortho-tert-butyl resorci-

nol 32 in a 63% yield.

7 Conclusion

We hope our review of o-phenolic tert-butylation meth-

ods has illuminated the difficulties surrounding the con-

struction of this medically relevant functionality as well as

offered a potential solution. We find, when an o-OBoc ace-

tophenone18,19 is deployed in this o-QM generation and

consumption method by action of methyl Grignard, the re-

action often provides the corresponding ortho-tert-butyl

phenol with good substrate scope and in high efficiency;

thereby it constitutes a new tool for synthetic chemists.
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