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ABSTRACT OF THE DISSERTATION

Optimal Control for Biological Movement Systems

by

Weiwei Li

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2006

Professor Emanuel Todorov, Chair

Professor Robert E. Skelton, Co-Chair

Optimal control model of biological movement provides a natural starting point for

describing observed everyday behavior, and is so far the most successful model in motor

control. However, in their present form, such models have a serious limitation—they

rely on Linear-Quadratic-Gaussian formalism, while in reality biomechanical systems are

strongly non-linear, the disturbances are control-dependent, muscle activations are non-

negative, and performance criteria are rarely quadratic. In order to handle such complex

problems, we develop an iterative Linear-Quadratic-Gaussian method for locally-optimal

control and estimation of nonlinear stochastic systems subject to control constraints. The

new method constructs an affine feedback control law, obtained by minimizing a novel

quadratic approximation to the optimal cost-to-go function. It also constructs a modified

extended Kalman filter corresponding to the control law. The control law and filter are

iteratively improved until convergence. Finally, the performance of the algorithm is

illustrated in the context of reaching movements on a realistic human arm model.

The second focus of this thesis is on the integration of optimality principles with

hierarchical control scheme. We present a general approach to designing feedback control

xv



hierarchies for redundant biomechanical systems, that approximate the (non-hierarchical)

optimal control law but have much lower computational demands. This hierarchy has

two levels of feedback control: the high level is designed as an optimal feedback controller

operating on a simplified plant; the low level is responsible for transforming the dynamics

of the true plant into the desired virtual dynamics. The new method will be useful not

only for modelling neural control of movement, but also for designing Functional Electric

Stimulation systems that have to achieve task goals by activating muscles in real time.

Another contribution of this thesis is to present an estimation design method for

multiplicative noise system using linear matrix inequalities (LMIs) approach. Sufficient

conditions for the existence of the state estimator are provided; these conditions are ex-

pressed in terms of LMIs and the parametrization of all admissible solutions is provided.

We show that a mild additional constraint for scaling will make the problem convex.

xvi



Chapter 1

Introduction

Movements like reaching for a glass of water, pressing the keyboard with the finger,

or hitting a tennis ball are generally accomplished without much difficulty. However,

controlling even the simplest movement such as picking up a glass of water, the brain

must take into account an enormous amount of information processing, including the

starting position and velocity of the arm, the force required in the fingers to hold the

glass, and the knowledge of target position, in order to signal the stimulation of muscle

and certain configuration of joints for the appropriate movement. During the past two

decades, many researchers have been making their efforts to study geometric properties of

movement trajectories, sequence of muscle activations, etc. in the field of motor control.

However, understanding how the brain integrates sensory information and generates the

motor command to produce coherent motor behavior remains a challenging problem

scientifically.

From an engineering perspective, the biological movement system can be considered

as a system whose inputs are the motor commands emanating from the controller within

the central nervous system (CNS), whose outputs are the sensory feedback signals that

is a function of the state variables. For example, considering a human arm model, the

motor command could represent the torques generated around the joints, the state vari-

ables could be the joint angles and angular velocities. Recently, computational models

are being used to simulate simple movement tasks and compare the outcomes with real

1
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human behaviors, thereby testing ideas of how brain achieves all kinds of sophisticated

motor control. Consequently, theories of motor function assume that movement is con-

trolled in the best way — i.e. optimally. Transforming this idea into quantitative models

requires a good understanding of optimal control theory. But the results are well worth

the effort: such optimality models not only provide accurate accounts of many empirical

phenomena, but also elucidate fundamental questions in the field. While traditional em-

phasis has been on optimizing desired movement trajectories, recent work has focused

on optimal feedback control mechanisms which can accomplish complex behavior goals.

This approach provides an elegant theoretical framework for trying to explain why the

system behaves as it does, and to specify the control laws that generate the observed

behavior online.

Understanding the control of movement is not just a theoretical study. There are a

lot of people who suffer from paralysis around the world. They cannot make even the

most basic normal arm movement. Restoring motor function to impaired individuals is

very important for improving the quality of their life. This could be achieved through

functional electric stimulation (FES) of paralyzed muscles, or various robotic prostheses.

Recent technological advances such as implantable muscle stimulators hold great promise

for the restoration of motor function. These sophisticated devices will only become useful

if we can find appropriate methods to control them. Therefore, this thesis research makes

it possible to provide suitable control algorithms for those prosthetic devices.

1.1 Organization of Thesis

The goal of this thesis research is to develop a new theoretical framework for the

sensory-motor control and to advance our understanding how the brain controls the

movement. The main theme is to study and design some novel approaches for this

redundant movement system, and to increase the comprehension how the control com-

mands for generating the movements are implemented in the central nervous system and

how they are acquired via the optimal control strategy. Ultimately, the ideas gained from

these studies will be useful to provide a general framework for constructing computa-
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tional models of biological movement, which could explain why the system behaves as it

does, and to specify the control laws most suitable for generating the observed behavior.

Chapter 2 contains the review of the literature. Some widely known background

material is elaborated here. Included reviews are in the area of computational models of

the motor control, properties of biological movement systems and some approaches for

the control of movement.

Chapter 3 describes a mathematical model for the 2-link human arm including 10

state dimensions and 6 muscle actuators. We then elaborate several cost functions rele-

vant to different tasks that we are interested in. These cost functions combine accuracy

and energetic efficiency, which can predict not only average behavior movement, but also

the task-specific sensorimotor contingencies that the central nervous system(CNS) uses

to make intelligent adjustments. Studying the optimal control problem for this complex

biomechanical system will be the main topic in the remaining chapters of this thesis

research.

Chapter 4 develops an iterative Linear Quadratic Regulator (ILQR) method, and

compares its performance with ordinary differential equation methods, conjugate gradi-

ent descent method and differential dynamic programming algorithm on the challenging

biological movement control problem. This method uses iterative linearization of the

nonlinear system around a nominal trajectory, and computes a locally optimal feedback

control law via a modified LQR technique. This control law is then applied to the lin-

earized system, and the result is used to improve the nominal trajectory incrementally.

Chapter 5 presents an iterative Linear-Quadratic-Gaussian method for locally-optimal

control and estimation of nonlinear stochastic systems subject to control constraints.

This method extends the efficient and well-developed LQG framework to the domain

of nonlinear control. Briefly, the iteration starts with some control law that is applied

to the nonlinear system — obtaining an average trajectory and control sequence. We

then linearize the dynamics and quadratize the cost in the vicinity of that state-control

trajectory, apply dynamic programming locally, and use the result to improve the initial

control law. The algorithm has quadratic convergence, similar to a Newton’s method.
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The main contribution is that the new method constructs an affine feedback control law,

obtained by minimizing a novel quadratic approximation to the optimal cost-to-go func-

tion. It also constructs a modified extended Kalman filter corresponding to the control

law. We illustrate the application of this extended LQG methodology in the context of

reaching movements, and study the properties of the new algorithm through extensive

numerical simulations.

Chapter 6 outlines a general approach to design feedback control hierarchies for

redundant biomechanical systems. The major goal here is to explore a new method for

modelling the neural control of movement, which is accomplished by cooperating the

multiple levels of sensorimotor system. Our hierarchy has two levels of feedback control:

the high level is designed as an optimal feedback controller operating on a simplified

virtual plant; the low level is responsible for transforming the dynamics of the true plant

into the desired virtual dynamics. This approach is then applied to the reaching task

using two detailed models of the human arm developed in chapter 3.

Chapter 7 begins by using linear matrix inequalities (LMIs) approach to design the

state feedback controller for linear discrete time systems with multiplicative noise. An-

other part of this chapter focuses on the state estimator design. The sufficient condi-

tions for the existence of the state estimator are expressed in terms of LMIs, and the

parametrization of all admissible solutions is also addressed. Finally the performance of

this estimator is examined by applying to a simple hand movement system.

Chapter 8 concludes the thesis with some final remarks and proposes some future

research directions.



Chapter 2

Background and Significance

2.1 Optimality Principles in Motor Control

Producing even the simplest movement involves an enormous amount of information

processing. When we move our hand to a target location, there are infinitely many pos-

sible paths and velocity profiles that the multi-joint arm could take, and each trajectory

can be achieved by multiple combinations of joint angles. Furthermore, since we have

many more muscles than joints, each arm configuration can be generated by an infinite

variety of muscle activation patterns. Biomechanical redundancy makes the motor sys-

tem very flexible, but at the same time requires a very well designed controller that can

choose intelligently among the many possible alternatives. Optimal control theory pro-

vides a principled approach to this problem — it postulates that the movement patterns

being chosen are the ones optimal for the task at hand.

2.1.1 Optimal Performance Criteria for Movement Planning

Optimality principles form the basis of many physical sciences. In the field of motor

control, optimality principles not only yield accurate descriptions of observed phenom-

ena, but are well justified a priori. This is because the sensorimotor system is the

product of optimization processes (i.e. evolution, development, learning, adaptation)

5
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which continuously improve behavioral performance. Therefore, optimality provides an

elegant framework for trying to explain why the system behaves as it does, and to specify

the control laws that generate the observed behavior. When dealing with this optimal

control problem, a specific cost function has to be chosen in order to evaluate the per-

formance of the system under control, and the objective is to minimize the value of this

cost function.

Based on the observation that point-to-point movements are smooth in Cartesian

space, Hogan [42] proposed the minimum jerk model in which the cost function depends

on the squared first derivative of Cartesian hand acceleration or ‘jerk’. Such kind of

cost function depends on the kinematics of the motion, and the variables of interest

include the positions (e.g. joint angles or hand Cartesian coordinates), angular velocities,

accelerations and higher derivatives. Let x(t), y(t) denote the Cartesian coordinates of

the hand position at time t, the minimum jerk model is based on the following cost

function:

J =
1

2

∫ T

0

(

(

d3x

dt3

)2

+

(

d3y

dt3

)2
)

dt, (2.1)

where T is the duration of the movement. By assuming the movement to start and end

with zero velocity and acceleration, the optimal trajectory is of the following:

x(t) = x0 + (xT − x0)

(

10

(

t

T

)3

− 15

(

t

T

)4

+ 6

(

t

T

)5
)

y(t) = y0 + (yT − y0)

(

10

(

t

T

)3

− 15

(

t

T

)4

+ 6

(

t

T

)5
)

(2.2)

where (x0, y0) and (xT , yT ) are the initial and final positions at time t = 0 and t = T

respectively. From (2.2), one can see that the trajectory predicted by using this criterion

is a straight-line Cartesian hand path with bell-shaped velocity profile, which is consistent

with the empirical data for rapid movement made without the accuracy constraint. Since

x(t) and y(t) depend only on the initial and final positions of the hand and movement

time T , the optimal trajectory is determined only by the kinematics of the movement and

is independent of the dynamics of musculoskeletal system which generates the motion.

By studying large range movements and the observation of significant curvature

(which is unable to be explained by the minimum jerk model) in the paths of the motion,
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Uno et al. [125] proposed an alternative model — the minimum torque-change model

— in which the trajectories are selected to optimize a function that penalizes the rate of

change of torque. Such kind of cost function depends on the dynamics of the arm, and

the variables of interest contain torque change, muscle tension and muscle command. Let

dτi/dt denote the rate of change of torque at the ith joint, the minimum torque-change

model is based on the following cost function:

J =
1

2

∫ T

0

n
∑

i=1

(

dτi

dt

)2

dt, (2.3)

Because the minimum torque change criterion depends on the arm dynamics, it can

reproduce the gradually curved trajectory which cannot be explained by the minimum

jerk model.

Although the minimum jerk and torque-change models predict many aspects of tra-

jectories which are consistent with empirical data, and inspire a wealth of experimental

and theoretical work, they still have several features which can’t make them satisfy-

ing as models of movement. These models only consider the smooth trajectories, but

don’t propose any advantage for smoothness of movement. Moreover, there has been no

principled explanation why the central nervous system should have evolved to optimize

torque-change or jerk; and how the central nervous system could estimate such complex

quantities and integrate them over the duration of a trajectory is also unknown.

In an attempt to solve for these problems, Harris and Wolpert [38] in 1998 presented

a minimum-variance theory of eye and arm movement based on the assumption that the

neural control signals are corrupted by noise whose variance increased with the size of

the control signal. They proposed that in the presence of such signal-dependent noise,

moving as rapidly as possible requires large control signals, which would carry more noise

and cause the trajectories to deviate from the desired path. These deviations will be

accumulated over the duration of the movement, and finally would increase the variabil-

ity in the final position. Accuracy could be improved by having low amplitude control

signals, but the movement will be accordingly slow. Thus, signal-dependent noise inher-

ently imposes the speed-accuracy trade-off which is in agreement with the well-known

Fitt’s Law. By minimizing the variance of the final eye or arm position for a specified
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movement duration, the minimum-variance solution can capture the important features

of natural saccadic eye movements or goal-directed arm movements. The encouraging

advantage of this approach is that the cost function they chose, such as the variance

of the final position or the consequences of this accuracy, are directly available to the

central nervous system and the optimal trajectory could be learned from the repeated

movements.

So far a number of hypothetical cost function for biological movement have been ex-

amined. How to choose an associated cost function which is more pertinent in predicting

the human movement is still one of the challenging issues in biological motor control.

2.1.2 Open-loop and Closed-loop Control

The majority of existing optimality models in motor control have been formulated

in open-loop (feed-forward), and plan a desired trajectory while ignoring the online

feedback. Actually open-loop control is used by motor system to control posture and

movement. For example, catching a ball is a visually trigged open-loop response. The

key principle of open-loop control is that it depends on the ability of the central nervous

system to predict the consequence of sensory events. The most popular approach has

been to optimize the sequence of muscle activation or limb state [30, 38, 125]. The

widespread use of optimization methods in open-loop trajectory planning creates the

impression that the optimal control necessarily predicts highly stereotyped trajectories.

These are based on the assumption that there is a separation between the trajectory

planning and trajectory execution for the completion of complex task.

However, the most remarkable property of biological movements (in comparison with

synthetic ones) is that they can accomplish complex high-level goals in the presence of

large internal fluctuations, noise, delays, and unpredictable changes in the environment.

For such kind of system, open-loop approaches can only yield suboptimal performance.

Optimal performance can be only achieved through an elaborate feedback control scheme

[73, 41, 60, 67, 116], that predict not only average behavior but also the task-specific

sensorimotor contingencies used to generate intelligent adjustments online. Such ad-
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justments enable biological systems to “solve a control problem repeatedly rather than

repeat its solution, ” [8] and thus afford remarkable levels of performance.

Indeed, focus has recently shifted towards stochastic optimal feedback control models

(Fig. 2.1). This approach has already clarified a number of long-standing issues related

to the control of redundant biomechanical systems. Some of the most surprising results

show that, the optimal feedback controllers for such systems obey a minimal intervention

principle [116, 117]. By correcting only task-relevant errors, the model minimizes the

potential effects of the noise. An optimal feedback controller has nothing to gain from

correcting task-irrelevant deviations, because it only concerns the task performance and

by definition such deviations do not interfere with the performance. Moreover, generating

a corrective control signal can be detrimental, because, in the motor system, the noise is

known to be signal-dependent and therefore could increase, and the cost being minimized

most likely includes a control-dependent effort penalty which could also increase. If

this minimum intervention principle holds, and the noise perturbs the system in all

directions, the interplay of noise and control processes will result in larger variability

in task-irrelevant directions. At the same time, if certain deviations are not corrected,

it implies that certain dimensions of control space are not being used. This model

suggests that rather than specifying a desired trajectory, the motor system use the

optimal feedback control to deal with the deviations that interfere with the goal of the

task.

However, feedback control in biological movement systems is subject to potential

difficulties with stability, because there exist a significant amount of delay in the sensory

feedback. In robotics, almost all practical applications depend on feedback controls. This

is because feedback delays in artificial system can be made very small, hence, sampling

and control frequencies can be quite high. But, in the biological movement control,

such delays are very large compared with the movement duration of fast movement

(e.g.150ms). For example, the delay of visual feedback on arm movements ranges from

100-150ms, and relatively fast spinal feedback loop still requires 30-50ms time delay.

These delays can cause the system unstable when we try to make the rapid movement

under the feedback control [80]. Hence fast or smooth movement cannot be executed
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Figure 2.1. Sensorimotor Closed-loop Control System.

depending only on the feedback control.

Kalman filter plays a significant role in the history of statistical estimation theory

and is the greatest discovery in control and systems theory of the twentieth century. It

has enabled many things that could not have been done without it. It provides immediate

application for the control of complex dynamic systems. To control a dynamic system,

you must first know what it is doing. However, it is not possible to measure every variable

that you want to control, and the Kalman filter provides a means for estimating those

information from noisy measurement. Back to the biological motor systems, in order

to control our movements, the central nervous system needs to know the state variables

that it wants to control. With the combination of sensory feedback information and

forward model, [131, 132] claimed that the Kalman filter can be used in motor control

to compensate for the sensorimotor delays and to reduce the uncertainty in the state

estimate which results from noise inherent in both the sensory and motor signals. This

model has been supported by empirical studies investigating the estimation of hand

position [130] , posture [60] and head orientation.
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2.1.3 Motor Learning

Humans demonstrate a remarkable ability to generate accurate and appropriate mo-

tor behavior under many different and often uncertain environmental conditions. A lot

of researchers have recently shown increasing interests in understanding how we learn to

control our movements and predict the consequences of our actions under a predictably

or unpredictably varying environment.

Shadmehr [103] investigated reaching movements in an altered mechanical environ-

ment. This environment is a force field implemented by a robot manipulandum whose

end-effector is held by the subject while making the reaching movement. The experiment

results show that, with practice, the hand trajectories in the force field converged to a

path observed during unperturbed condition. They found evidence for the existence of a

desired trajectory for moving the hand along this desired path. They also indicated that,

during adaptation to a force field which significantly changes the dynamics of a reaching

movement, the motor controller achieved this desired performance through the updating

of the internal model which predicts the forces acting on the hand as it performs the

tasks.

There are three main computational approaches for motor learning: supervised, un-

supervised and reinforcement learning. In supervised learning, it requires a desired

output corresponding to each input. The error between the desired output and the ac-

tual output is computed and is used to adjust the parameters inside the learning system.

This process is mathematically formulated as an optimization problem in which the cost

function is one-half the squared error. The learning algorithm adjusts the parameters of

the system so as to minimize this cost function. While, for unsupervised learning, the

environment provides inputs but gives neither desired output nor any measurement of

reward. The main problem of the unsupervised learning is that there is no guarantee

whether the learning rules will be useful for the decision making and control or not.

Reinforcement learning differs from supervised learning by requiring significantly less

information to be available to the learner. Rather than requiring a performance error or

a desired target in the control space, reinforcement learning algorithms require only an
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evaluation of total future reward. The only objective of reinforcement learning is to max-

imize the total reward it receives in the long run. The reward function defines whether

the system is performing well or not; it does not provide any information about how to

correct an error. Sutton and Barto [109] have developed a variety of reinforcement learn-

ing algorithms and explained its relationship with optimal control theory. The problem

of this model is that it has only been applied to low-dimensional control problems.

Most recent study by Konrad P. Körding and Daniel M. Wolpert [57] demonstrated

that the central nervous system employs probabilistic models during sensorimotor learn-

ing. If the brain works in the Bayesian way, it would optimally use the prior knowledge.

To use a bayesian strategy, the brain would need to represent the prior distribution and

the level of uncertainty in the sensory feedback. The experiments show that subjects

internally represent both the statistical distribution of the task and their sensory uncer-

tainty, combining them in a manner consistent with a performance-optimizing bayesian

process.

2.1.4 Hierarchical Control

Sensory-motor control occurs simultaneously on many levels [8, 73]. The pioneering

work of Sherrington has emphasized that biological control hierarchies are composed

of a large number of parallel feedback loops, understanding how the multiple levels of

the sensorimotor system cooperate to produce integrated movement has been a central

theme in neuroscience. The most thorough investigation of the levels of human mo-

tor control was undertaken by Bernstein [8] more than 50 years ago, by taking into

account evolutionary, anatomical, and a wide range of behavior evidence. The insight

of Berstein’s hierarchy involves four levels: posture and muscle tone, muscle synergies,

dealing with three-dimensional space, and organizing complex actions that pursue some

abstract goals. Computational modeling that aims to capture the essence of feedback

control hierarchies is still in its infancy [73, 68, 69, 119, 124]. In robotics, the idea of

hierarchical control [14, 54, 92] was popularized by Brooks [14], who constructed low-

level control circuits driving a mobile robot. These circuits were then coordinated by
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a high-level controller that achieved the reasonable locomotion. This work was an ex-

istence proof of the usage of hierarchical control, but it doesn’t point to general design

principles.

By studying optimal control for redundant system, Todorov and Jordan [116, 117]

proposed that the optimal feedback control laws for typical motor tasks obey a “min-

imal intervention” principle: deviations from the average trajectory are only corrected

when they interfere with the task goals. The hierarchical structure of biological system

(Fig. 2.2) and this minimal intervention principle give us a key insight that, most of

the human movements involves at least two levels of feedback control acting simultane-
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ously: a low level loop which provides various automatisms and corrections that help

the leading level; a high level loop which monitors progress and exploits many different

ways of performing goal-directed movement control. Since the low level presents the

intrinsic muscle properties, it has to transform the resulting commands into appropri-

ate muscle activations. Actually, by combining the optimality principle and hierarchical

control strategy, it is possible for us to develop a general method for feedback control

of redundant biomechanical systems, and discover a new framework for sensorimotor

control.

2.2 Properties of Biological Movement Systems

2.2.1 High dimensionality

Biomechanical systems have a number of characteristics that distinguish them from

the synthetic systems commonly studied in control theory. It is very important to un-

derstand those distinguishing characteristics in order to study the control of natural

movement and design control architectures to achieve complex behaviors.

One of most remarkable properties of biomechanical systems is that the state spaces

have unusually high dimensionality. For example, consider a 2-link, 6-muscle arm model

which is often studied in motor control, the state space includes 2 joint angles and 2 joint

velocities — since we are dealing with a second-order system. A realistic state description

should also include 6 muscle activations, because muscles act as low-pass filters of neural

activity, with non-negligible time constant. A similar count for a complete model of the

arm (excluding the hand) yields 20 dynamic states, and 50 muscle states. Such state

spaces cannot be discretized, which rules out all methods relying on discretization.

2.2.2 Uncertainties and Noises

Noise is a very important concept in modelling biological sensorimotor processing.

Back in 1954, Fitts [29] showed the possibility that rapid aimed movements are affected

by stochastic noise in neuromotor channels: the variability of motor errors increases



15

with the magnitude of the movement. However, it only interpreted the effects of noise

in terms of mathematical information theory, and didn’t develop a detailed quantitative

account of the mechanisms responsible for random movement variability.

The substantial variability of biological movements indicates that the sensorimotor

system operates in the presence of large (mostly internal) disturbances. Noise exists

both in the sensory information and the motor commands. For example, noise in the

sensory input will result in uncertainty in the position at which the object is perceived,

and noise in the motor commands describes the uncertainty of actual force produced by

the muscle [79], which will lead to movement inaccuracy and variability.

Noise in the motor commands is signal-dependent — with standard deviation in-

creasing linearly with the magnitude of the motor command signal (control signal). This

is a very important assumption, which is consistent with the observation captured by

the empirical Fitt’s law, and supported by the empirical finding [79, 100]. Optimal con-

trol of such systems should obviously take this phenomenon into account, because an

appropriately chosen control signal can actually decrease the noise. Recently, this model

is widely used in studying biological movement [38, 116, 117, 118, 120, 121].

2.3 Relevant Approaches in Optimal Control Theory

Many theories in the physical sciences are expressed in terms of optimality prin-

ciples, which often provide the most parsimonious description of the laws governing a

system’s behavior. Optimality is also playing an increasingly important role in the field

of motor control. This is partly motivated by the parsimony and empirical success of

optimal control models of biological movement. Perhaps more importantly, such models

are appealing because all the processes that give rise to a specific motor system under

investigation are in a sense optimization processes, that over time cause the system to

perform better and better. It is therefore natural to use the limit of optimal performance

as the starting point for theoretical investigations of motor control. Such investigations

can only be productive, however, if we have efficient numerical methods that are suitable

for controlling biological movement systems. Here we present several of the most popular
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methods for solving optimal control problems. It will be very useful, in later sections,

for comparisons between our approach and currently used methods.

All the numerical algorithms provided in the subsequent sections are aimed at solving

the following problem. Consider a dynamical system with state variable x ∈ R
m and

control signal u ∈ R
n

ẋ(t) = f(x, u, t), x(0) = x0, (2.4)

and the performance criterion to be minimized is expressed as

J0 = Φ
(

x(T ), T
)

+

∫ T

0
L
(

x(t), u(t), t
)

dt, (2.5)

where [0, T] is the time interval of interest. The symbol Φ
(

x(T ), T
)

represents a final time

penalty and the integrand L
(

x(t), u(t), t
)

dictates the nature of the optimizing solution.

The goal of optimal control problem is to find an admissible control u∗(t) that drives the

system to follow a trajectory x∗(t) such that the cost function (2.5) is minimized. Here

we are concerned with comparing the existing algorithms only for deterministic control

problems, but we will include the stochastic case and develop our new algorithm in the

future chapters.

2.3.1 Linear Matrix Inequalities (LMIs)

A wide variety of problems arising in system and control theory can be reduced

to a convex and quasi-convex optimization problems involving matrix inequality. The

history of LMI goes back more than 100 years ago when Lyapunov showed that the

system ẋ(t) = Ax(t) is stable if and only if there exists a positive definite matrix P

such that AT P + PA < 0. The requirement P > 0, AT P + PA < 0 is called Lyapunov

inequality. The important breakthrough came in the early 1960’s when Yakubovich

introduced what we now call the positive-real Lemma, which provided certain ways

to solve LMIs by graphical methods. J.C Willems in 1971 transformed the quadratic

optimal control problem into the LMI





AT P + PA + Q PB + CT

BT P + C R



 ≥ 0 (2.6)
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and pointed out that it can be solved by studying the symmetric solutions of the Alge-

braic Riccati Equation

AT P + PA − (PB + CT )R−1(BT P + C) + Q = 0 (2.7)

The major advance was the observation that the LMIs that arise in system and

control theory can be formulated as convex optimization problems, and what the most

important is that many LMIs for which no analytical solution is likely to be found can

be solved numerically, such as using ellipsoid algorithm and interior-point methods.

2.3.2 Dynamic Programming

Dynamic programming was developed based on Bellman’s Optimality Principle.

Rather than considering a cost function (2.5), we consider the value function

V
(

x(τ), τ
)

= Φ
(

x(T ), T
)

+

∫ T

τ
L
(

x(t), u(t), t
)

dt, (2.8)

which tells us how much cost will accumulate if the system is initialized in state x(τ) at

time τ , and controlled according to a certain control law until the end of the movement.

By defining the Hamiltonian H as

H = L
(

x(t), u(t), t
)

+
∂V ∗

∂x

(

x(t)
)T

f
(

x(t), u(t), t
)

(2.9)

The optimality condition is

∂V ∗

∂t

(

x(t)
)

= −min
u

H
(

x(t), u(t),
∂V ∗

∂x

(

x(t)
)

, t
)

, (2.10)

V ∗
(

x(T ), T
)

= Φ
(

x(T ), T
)

. (2.11)

The partial differential equation (2.10) is known as the Hamilton-Jacobi-Bellman (HJB)

equation. It provides the rule for solving optimal control problems using dynamic pro-

gramming. Bellman’s optimality principle refers to V (t, x(t)) and u∗(t) at all possible

states x(t) , and therefore leads to global methods that compute an optimal control law.

Such methods typically represent the value function on a discrete grid, and use differ-

ence equations to compute the value function in a backward pass through time. On a
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finite grid, it is guaranteed to converge to the globally optimal solution in finite time.

But the problem is that one cannot discretize a high dimensional state space due to the

exponential growth of the number of grid points with dimensionality (i.e.“the curse of

dimensionality”).

2.3.3 Riccati Equations

Riccati equations were originally developed in order to theoretically deal with calculus

of variations problems. They are easily derived from linear quadratic programming

problems. Consider a linear system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2.12)

and the quadratic performance criterion to be minimized is expressed as

J0 =
1

2
x(T )T QT x(T ) +

1

2

∫ T

0

(

x(t)T Qx(t) + u(t)T Ru(t)
)

dt, (2.13)

To use the HJB equation, we first define the Hamiltonian H as

H =
1

2

(

x(t)T Qx(t) + u(t)T Ru(t)
)

+
∂V ∗

∂x

(

x(t)
)T
(

Ax(t) + Bu(t)
)

. (2.14)

A necessary condition for u(t) to minimize H is that ∂H
∂u = 0, thus the optimal control u

is

u∗ = −R−1BT ∂V ∗

∂x

(

x(t)
)

(2.15)

Assuming there is a symmetric matrix S(t) such that V ∗(t) = 1
2x(t)T S(t)x(t) for all

t ≤ T , substitute it and (2.15) into HJB equation (2.10), we obtain

0 =
1

2
xT Ṡx +

1

2
xT Qx − 1

2
SBR−1BT Sx + xT SAx (2.16)

Since the above equation must be hold for all x(t), so

−Ṡ = AT S + SA − SBR−1BT S + Q, S(T ) = QT . (2.17)

This matrix differential equation is called the Riccati equation which could be solved

by the backward integration. Although the HJB equation is very difficult to solve, it

provides a straightforward solution for the linear quadratic-quadratic controller, and it
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gives insight regarding the nature of optimal solutions. In recent years, Riccati equations

are mainly used as a theoretical tool for the study of stability properties of feedback

optimal regulator systems.

2.3.4 Gradient Methods

Gradient methods are characterized by iterative algorithms for improving estimates

of the control history u(t) so that the optimality conditions and the boundary conditions

are satisfied. A particular appeal of this approach is that, the dynamic system equation

is solved exactly on each iteration, with the control being adjusted from step to step to

further reduce the cost. Take, for example, the general system (2.4) with the performance

index (2.5), the optimality conditions are

λ̇T = −∂H
∂x

, λT (T ) =
∂Φ
(

x(t), t
)

∂x

∣

∣

∣

∣

∣

t=T

, (2.18)

∂H
∂u

= 0. (2.19)

where the Hamiltonian is H = L
(

x(t), u(t), t
)

+ λT
[

f(x, u, t)
]

, and λ are lagrange mul-

tipliers.

The goal of gradient methods is to use the gradient information to obtain uk+1 such

that uk converges to the optimal control solution as k → ∞. General first-order gradient

methods that operate on the control variable typically assume the form:

uk+1 = uk + εk∇uH(uk) (2.20)

where εk is a step size chosen by an appropriate line search, which is critical for the

speed of convergence to the minimizing control; and ∇uH(uk) is the gradient of the

Hamiltonian at uk, which defines the magnitude and direction of the local slope of the

function.

First-order gradient methods usually show great improvements in the first few it-

erations but have slow convergence near the optimal solution. While the second-order

gradient methods have fast convergence characteristics as the optimum is approached.



20

The conjugate gradient method combines the advantages of both methods while elimi-

nating their disadvantages. It uses conjugate directions instead of the local gradient for

going downhill. For example, a sequence of directions p1, p2, · · · is generated which is

conjugate with respect to ∇uuH, that is,

pT
i ∇uuHpj = 0, i 6= j (2.21)

The conjugate gradient method is one of the most popular and effective methods for

solving symmetric positive definite systems. It proceeds by generating vector sequences of

iterates, residuals corresponding to the iterates, and search directions used in updating

the iterates and residuals. In this method, each new residual is orthogonal to all the

previous residuals and search directions; and each new search direction is constructed

(from the residual) to be conjugate to all the previous residuals and search directions.



Chapter 3

Modelling of Arm Dynamics and

Behavior Movements

The major objective of this thesis is to explore efficient computational methods for

controlling complex biomechanical systems. While, the development and testing the new

algorithms require detailed biomechanical models. In this chapter, we first formulate the

kinematics and dynamics of a 2-link arm and then add realistic muscle actuators to

it. We then build a much more complicated musculo-skeletal model of the human arm

including 24 muscles which can potentially control 5 degrees of freedom. In addition, we

discuss a small family of motor tasks which will allow us to test those new algorithms

developed in the following chapters. Here we consider tasks such as moving the hand to a

specified target location, or possible passing through some intermediate targets — called

via points, or avoiding the obstacle during the movement. This family of tasks will allow

us to address significant features of human arm movement: the hand path tends to be

straight but slightly curved, the velocity profile of the hand trajectory is smooth and bell-

shaped; and speed-accuracy trade-offs. Finally we provide some numerical analysis of

human movements based on existing optimality models and explain those characteristics

of human movements described in section 3.3.

21
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3.1 Planar Model of the Human Arm

3.1.1 The dynamics of a 2-link arm

Consider an arm model with 2 joints (shoulder and elbow), moving in the horizontal

plane (Fig. 3.1A). The inverse dynamics is

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ, (3.1)

where θ ∈ R
2 is the joint angle vector (shoulder: θ1, elbow: θ2), M(θ) ∈ R

2×2 is a positive

definite symmetric inertia matrix, C(θ, θ̇) ∈ R
2 is a vector centripetal and Coriolis forces,

B ∈ R
2×2 is the joint friction matrix, and τ ∈ R

2 is the joint torque. Here we consider

direct torque control where τ is the control signal. In (3.1), the expressions of the

different variables and parameters are given by

θ =
(

θ1 θ2

)T
, τ =

(

τ1 τ2

)T
, (3.2)

M =





d1 + 2d2cosθ2 d3 + d2cosθ2

d3 + d2cosθ2 d3



 , (3.3)

C =





−θ̇2(2θ̇1 + θ̇2)

θ̇1
2



 d2sinθ2, B =





b11 b12

b21 b22



 , (3.4)

d1 = I1 + I2 + m2l
2
1, d2 = m2l1s2, d3 = I2, (3.5)

where b11 = b22 = 0.05, b12 = b21 = 0.025, mi is the mass, li is the length of link i, si

is the distance from the joint center to the center of the mass for link i, and Ii is the

moment of inertia. See Table 3.1 for detail.

Based on equations (3.1)-(3.5), we can compute the forward dynamics

θ̈ = M(θ)−1
(

τ − C(θ, θ̇) − Bθ̇
)

, (3.6)

and write the 2-link human arm system into a state space form with the state variable

x ∈ R
4, control input u ∈ R

2 as

MODEL 1 : ẋ = F (x) + G(x)u, (3.7)

x =
(

θ1 θ2 θ̇1 θ̇2

)T
, u = τ = (τ1 τ2)

T ,
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Table 3.1. Parameters of 2-link arm

Symbol Value Unit

m1 1.4 kg
m2 1.1 kg
l1 0.3 m
l2 0.33 m
s1 0.11 m
s2 0.16 m
I1 0.025 kg m2

I2 0.045 kg m2

In (3.7), the vector functions F (x), G(x) are given by

F (x) =
(

F1(x) F2(x) F3(x) F4(x)
)T

, (3.8)

where

F1(x) = x3, F2(x) = x4, (3.9)

F3(x) =
1

d(x2)

{

− d2d3(x3 + x4)
2sinx2 − d2

2x
2
3sinx2cosx2 − d2(b21x3 + b22x4)cosx2

+ (d3b11 − d3b21)x3 + (d3b12 − d3b22)x4

}

, (3.10)

F4(x) =
1

d(x2)

{

d2d3x4(2x3 + x4)sinx2 + d1d2x
2
3sinx2 + d2

2(x3 + x4)
2sinx2cosx2

+ d2

[

(2b21 − b11)x3 + (2b22 − b12)x4

]

cosx2

+ (d1b21 − d3b11)x3 + (d1b22 − d3b12)x4

}

, (3.11)

G(x) =
1

d(x2)

















0 0

0 0

d3 −(d3 + d2cosx2)

−(d3 + d2cosx2) d1 + 2d2cosx2

















. (3.12)

note that d(x2) = d1d3 − d2
3 − (d2cosx2)

2 is the determinant of inertia matrix M.
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Figure 3.1. (A) 2-link 6-muscle arm; (B) Joint torques; (C) Length-velocity-tension

curve; (D) Muscle activation dynamics.

3.1.2 A model of muscle actuators

There are a large number of muscles that act on the arm in the horizontal plane. But

since we have only 2 degrees of freedom (Fig. 3.1A), these muscles can be organized into

6 actuator groups: elbow flexors (1), elbow extensors (2), shoulder flexors (3), shoulder

extensors (4), biarticulate flexors (5), and biarticulate extensors (6). The joint torques

produced by a muscle are a function of its moment arms (Fig. 3.1B), length-velocity-

tension curve (Fig. 3.1C), and activation dynamics (Fig. 3.1D), which is given by

τ = M(θ) T
(

a, l(θ), v(θ, θ̇)
)

. (3.13)

The moment arm M(θ) ∈ R
2×6 is defined as the perpendicular distance from the

muscle’s line of action to the joint’s center of rotation. Moment arms are roughly constant

for extensor muscles, but vary considerably with joint angle for flexor muscles. For each

flexor group, this variation is modelled with a function of the form a + b cos(c θ), where

the constants have been adjusted to match experimental data. This function provides
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Table 3.2. The tension T (a, l, v) produced by a muscle

T (a, l, v) = A (a, l) (FL (l)FV (l, v) + FP (l))

A (a, l) = 1 − exp

(

−
(

a

0.56 Nf (l)

)Nf(l)
)

Nf (l) = 2.11 + 4.16

(

1

l
− 1

)

FL (l) = exp

(

−
∣

∣

∣

∣

l1.93 − 1

1.03

∣

∣

∣

∣

1.87
)

FV (l, v) =















−5.72 − v

−5.72 + (1.38 + 2.09 l) v
, v ≤ 0

0.62 −
(

−3.12 + 4.21 l − 2.67 l2
)

v

0.62 + v
,

FP (l) = −0.02 exp (13.8 − 18.7 l)

a good fit to data — not surprising, since moment arm variations are due to geometric

factors related to the cosine of the joint angle. It can also be integrated analytically,

which is convenient since all muscle lengths need to be computed at each point in time.

The tension produced by a muscle obviously depends on the muscle activation a,

but also varies substantially with the length l and velocity v of that muscle. Fig. 3.1C,

based on the publicly available Virtual Muscle model [15], illustrates that dependence

for maximal activation. We will denote this function with T (a, l, v).

Mammalian muscles are known to have remarkable scaling properties, meaning that

they are all similar after proper normalization: length l is expressed in units of L0, where

L0 is the length at which maximal isometric force is generated, and velocity v is expressed

in units of L0/sec. The unitless tension in Fig. 3.1C is scaled by 31.8N per square

centimeter of physiological cross-sectional area (PCSA) to yield physical tension T . The

PCSA parameters used in the model are the sums of the corresponding parameters for

all muscles in each group (1: 18cm2; 2: 14cm2; 3: 22cm2; 4: 12cm2; 5: 5cm2; 6: 10cm2).

Muscle length (and velocity) are converted into normalized units of L0 using information

about the operating range of each muscle group (1: 0.6− 1.1; 2: 0.8− 1.25; 3: 0.7− 1.2;

4: 0.7 − 1.1; 5: 0.6 − 1.1; 6: 0.85 − 1.2).
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Muscle activation ai(i = 1, · · · , 6) is not equal to instantaneous neural input ui, but

is generated by passing ui through a filter that describes calcium dynamics. This is

reasonably well modelled with a first order nonlinear filter of the form

ȧi =
(

(1 + σuε)ui − ai

)/

t(ui, ai), (3.14)

where

t(ui, ai) =







tdeact + ui(tact − tdeact), ui > ai,

tdeact, otherwise.

The input-dependent activation dynamics tact = 30msec is faster than the constant

deactivation dynamics tdeact = 66msec. Fig. 3.1D illustrates the response of this filter

to step inputs that last 300msec. Note that the half-rise times are input-dependent,

while the half-fall times are constant (crosses in Fig. 3.1D). The neural inputs u are

disturbed by multiplicative noise, whose standard deviation is 20% of its magnitude —

which means σu = 0.2 in (3.14), while ε is a zero-mean Gaussian white noise with unity

covariance.

We notice that adding muscles to the dynamical system results in 6 new state vari-

ables. Combining the forward dynamics (3.6) and muscle actuator model (3.14), we

could write the system into a state space form with the state x ∈ R
10 and control u ∈ R

6

as follows

MODEL 2 : ẋ = F(x) + G(x)(1 + σuε)u, (3.15)

x = (θ1 θ2 θ̇1 θ̇2 a1 · · · a6)
T , u = (u1 · · · u6)

T .

3.2 3D Musculo-Skeletal Model of the Human Arm

A large number of research and studies has reported on developing biomechanical

models of human upper limb, including three chained mechanisms — the shoulder girdle,

the elbow and the wrist. The proper description and simulation of the musculoskeletal

structure of the upper limb is necessary to predict realistic human movement. Engin et

al. in 1987 presented a shoulder model with quantitative descriptions of the individual

joint sinus cones [28]. Högfors et al. in 1987 applied the optimization techniques to
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Figure 3.2. Muscle paths of 5-DOF human arm

predict muscle forces as functions of the static arm position and the external loads,

which provided an improved description of the shoulder model [43]. A dynamic shoulder

model was proposed by van der Helm et al. by means of the finite element method [40],

where the bones were modelled as rigid segments connected by ball and socket joints; all

muscles and ligaments were modelled as straight or curved lines of action between their

connections on the bones. Based on the high resolution images obtained from Visible

Human Project (VHP) dataset, in 2001, Garner and Pandy [34] developed a complete

biomechanical model of the arm, which included the three-dimensional movements of

all the bones of the upper limb. The model enclosed seven anatomical joints from the

shoulder girdle down to the wrist, and used thirteen degree-of-freedom to describe the

relative position and orientation of seven upper-extremity bones.

To simplify the problem, we approximate the arm segments (upper arm, forearm and

palm) by rigid cylinders. Our model (Fig. 3.2) uses five degree-of-freedom to describe

the relative movements of the segments: the shoulder is modelled as a three degree-of-

freedom joint (only the glenohumeral joint was taken into account here), with flexion-
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Table 3.3. Musculoskeletal model of the 5DOF upper limb

shoulder shoulder shoulder elbow elbow
θ1 θ2 θ3 θ4 θ5

pectoralis major clavicular
√ √ √

pectoralis major sternal
√ √ √

pectoralis major ribs
√ √ √

latissimus dorsi thoracic
√ √ √

latissimus dorsi lumbar
√ √ √

latissimus dorsi iliac
√ √ √

deltoid clavicular
√ √ √

deltoid acromial
√ √ √

deltoid scapular
√ √ √

supraspinatus
√ √ √

infraspinatus
√ √ √

subscapularis
√ √ √

teres minor
√ √ √

teres major
√ √ √

coracobrachialis
√ √ √

triceps brachii long
√ √ √ √

triceps brachii medial
√

triceps brachii lateral
√

biceps brachii short
√ √ √ √ √

biceps brachii long
√ √

brachialis
√

brachioradialis
√ √

supinator
√

pronator teres
√ √

extension, abduction-adduction and external-internal rotation; the elbow is modelled

as a two degree-of-freedom joint (humeroulnar joint and radioulnar joint), with flexion-

extension and pronation-supination movements. The inverse dynamics of 5-DOF arm

model is

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ, (3.16)

where θ ∈ R
5 is the joint angle vector (shoulder: θ1, θ2, θ3; elbow: θ4, θ5), M(θ) ∈ R

5×5

is a positive definite symmetric inertia matrix, C(θ, θ̇) ∈ R
5 is a vector centripetal and

Coriolis forces, B ∈ R
5×5 is the joint friction matrix, and τ ∈ R

5 is the joint torque.

This 5-DOF arm model contains 24 muscles (Table 3.3 & Fig. 3.2), and most of
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Figure 3.3. Elbow flexion moment arms for (A) biceps brachii, (B) brachialis, brachio-

radialis and pronator teres ; and forearm pronation moment arms for (C) biceps brachii,

(D) brachioradialis and supinator.

muscles in the upper limb potentially control many degrees of freedom, i.e., triceps brachii

long spans glenohumeral and humeroulnar joint (θ1, · · · , θ4), which together accounts

for 4 degrees of freedom in the model. Muscle activation dynamics ai (i = 1, · · · , 24)

is modelled as a nonlinear low-pass filter (Eq. 3.14) as described in section 3.1.2. The

geometry of muscles that wrap around a skeleton in 3-dimensional is rather complex. The

Muscle Wrapping Toolbox developed in our lab can compute musculoskeletal geometry

based on the obstacle-set method [33]. The toolbox computes the shortest muscle paths

that satisfy all obstacle constraints, which then yields the posture-specific moment arms

(i.e., Fig. 3.3) and muscle lengths needed for dynamic simulation. While the dynamic

simulation of serial-link upper limb is implemented using Matlab Robotics Toolbox.
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3.3 Representation of Different Behavior Movements with

Cost Functions

Most existing optimal control models [30, 38, 42, 60, 72, 84, 115, 125] in arm move-

ments, eye movements and some other body movements predict average movement tra-

jectories or muscle activity, by optimizing a variety of cost functions. For example,

smoothness optimization introduced in the minimum-jerk model [30, 42] successfully

predicted the average trajectories in arm movement, where it accounts for the straight

paths and bell-shaped speed profiles of reaching movements. Ideally, the performance

criterion assumed in an optimal control model should correspond to what the sensori-

motor system is trying to achieve. But how could this be quantified? One can simply

optimize whatever subjects were asked to optimize, under the constraint that each mus-

cle can produce limited force in order to satisfy the energy consumption requirement.

However, in many cases, the cost function that is relevant to the sensorimotor function

may not directly correspond to our intuitive understanding of “the task”.

Computational modelling here aims to construct the feedback control strategy that

yields the best possible performance when motor noise as well as sensory uncertainty

and delays are taken into account. In the following section, we illustrate several cost

functions relevant to different tasks that we are interested in. These cost functions will

take into account accuracy and energetic efficiency.

3.3.1 Reaching task

All tasks considered here are spatial. Spatial accuracy is defined in terms of hand

position and sometimes its derivatives. The task we study first is a reaching task, where

the arm has to start at some initial position and move to a target in a specified time

interval. It also has to stop at the target, and do all that with minimal energy con-

sumption. There are good reasons to believe that such costs are indeed relevant to the

neural control of movement [116]. For the 2-link arm model shown in Fig. 3.1A, the cost

function for reaching task will depend on the vector of joint angles [θ1 θ2]
T only through
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the forward kinematic function e(θ), where e and ė are the 2D vectors of Cartesian hand

coordinates computed as the following

e(θ) =





l1 cosθ1 + l2 cos(θ1 + θ2)

l1 sinθ1 + l2 sin(θ1 + θ2)



 , (3.17)

ė
(

θ, θ̇
)

= Γ





θ̇1

θ̇2



 , (3.18)

Γ =
∂e(θ)

∂θ
=





−l1 sinθ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cosθ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)



 , (3.19)

where li is the length of link i. Then the cost function is defined as

J1 = w1

∥

∥

∥e(θ(T )) − e∗
∥

∥

∥

2
+ w2

∥

∥

∥ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2
+

1

2

∫ T

0
r‖u‖2 dt, (3.20)

where e∗ is the desired target position defined in Cartesian hand coordinates, the second

term
∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2
enforces stopping at the target. The two constants w1, w2 specify

the importance of positional versus velocity accuracy, and r is the weight of the energy

term.

3.3.2 Reaching with obstacle avoidance

The second task is to implement the reaching and to avoid an obstacle during the

movement. The obstacle is defined as a circle with a certain radius robstacle, and has

fixed location. The arm starts from rest at some initial position, and has to reach the

specified target and avoid the obstacle during the reaching, with minimal control energy.

The cost function is

J2 = w1

∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2
+ w2

∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2
+

1

2

∫ T

0
r‖u‖2 dt + qobstable, (3.21)

qobstable =







k1
∫ T
0

(

ℓ(θ(t)) − robstacle

)−2
dt when l > r

∞ otherwise

where the target e∗ is defined in Cartesian hand coordinates; ℓ =
√

‖e(θ(t)) − eobstacle‖2

is the distance between the hand position and the center of the obstacle center, where

eobstacle is the Cartesian coordinates of the center of the obstacle; w1, w2, r and k1 are

the weighting coefficients.
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3.3.3 Hitting task

The task of hitting will be modeled by specifying a target position e and a desired

velocity ė at the end of the movement. The cost function now becomes

J3 = w1

∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2
+ w2

∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)

− ė∗
∥

∥

∥

2
+

1

2

∫ T

0
r‖u‖2 dt, (3.22)

where e∗ is the desired target position defined in Cartesian hand coordinates, ė∗ is the

desired velocity at the end of movement, r is the weighting coefficient of energy term;

the two constants w1, w2 specify the importance of positional versus velocity accuracy.

Note that the final velocity is non-zero, and so the hand cannot stay at the target.

3.3.4 Via-point task

The task of passing through via-points, with positions e∗1 · · · e∗nv
and passage times

t∗1 · · · t∗nv
, can be encoded with the cost

J4 = w1

∥

∥

∥e(θ(t∗i )) − e∗i

∥

∥

∥

2
+

1

2

∫ T

0
r‖u‖2 dt, (3.23)

If in addition we want the hand to stop at the final target, or to hit the final target with

specified velocity, the corresponding cost can be added.

3.4 Relevant Features of Human Movement

Considering unconstrained point-to-point reaching movement in the horizontal plane,

humans tend to generate roughly straight hand trajectories with single-peaked, bell-

shaped speed profiles. Several models have been proposed to explain these characteristics

[30, 84, 125, 126]. Slightly curved hand path does occur, depending on the area of the

workspace in which the movement is performed. When subjects were instructed to move

while avoiding an obstacle or through an intermediate point, the hand path appeared

to be curved and the speed profile had often several peaks. In this case, the minima

between two adjacent speed peaks correspond to distinct curvature peaks in the curved

path.
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In moving the arm from one target to another, one usually has to make some com-

promise between the duration and the precision of the movement. This speed-accuracy

trade-off phenomenon, known as Fitts’ law (3.24), states that the faster the movement,

the less accurately will reach the target [29]:

T = a + b

(

log2

(

2A

W

)

)

(3.24)

In (3.24), T is the movement time, a and b are regression coefficients, A is the distance

of movement from starting point to target center, and W is the target width correspond-

ing to “accuracy”. The quantity log2

(

2A
W

)

is called the index of difficulty (ID) which

describes the difficulty of the motor tasks. Fitts’ law has been applied to hundreds of

subsequent studies in human-computer interaction(HCI) and graphical user interfaces.

Its first HCI application was a major factor leading to the mouse’s commercial introduc-

tion. Often, a relatively fast inaccurate movement will be followed by short corrective

movement in order to bring the limb back to the target. This trade-off has also been

extensively studied for a variety of goal-directed reaching movements in the literature.

Another important aspect of human movement is an inverse non-linear relationship

between the velocity and the curvature of its trajectory during the movement, widely

referred to as the two-thirds power law [49]. This relationship is formalized by the

following:

ω = c κβ (3.25)

Equivalently,

v = c r1−β (3.26)

In (3.25), ω is the angular velocity of the hand, κ is the instantaneous curvature of the

path, c is a proportionality constant, and the accepted value of the exponent β = 2
3 . In

(3.26), v is the tangential velocity, r is radius of curvature (1/κ). It has been shown

to exist not only in hand movement, but also in eye-motion, locomotion and was even

demonstrated in motion perception and prediction. People argue that the two-thirds

power law can be derived from smoothness or smoothness inducing mechanisms or to

the result of noise inherent in the motor system.
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A majority of computational models that seek to capture these features are based

on the assumption that they arise from the optimization of some criteria by the sensori-

motor system. In the following section, we will provide some general analysis of human

arm movements and explain those characteristics described so far based on existing op-

timization models: minimum control energy, minimum torque-change (Eq. 2.3) and the

well-known minimum jerk models (Eq. 2.1).

3.5 Movement Analysis with Existing Optimality Models

Figure 3.4 shows hand paths and velocity profiles for ten unconstrained horizontal

movements produced by the minimum torque-change model with 2-link 6-Muscle Arm.

Compared with the results of minimum jerk model—whose hand trajectory are strictly

straight [42] and lack the typical curvature of human movements, the trajectories of

minimum torque-change model are closer to those produced by humans than that of the

purely kinematic minimum jerk model: they are not completely straight but are instead

slightly curved as shown in Fig. 3.4(a); the associated speed profiles (Fig. 3.4(b)) were

single-peaked and bell-shaped. For the minimum control effort model, the simulation

trajectories and velocity profiles shown in Fig. 3.5 are the same as those of the minimum

torque-change model. These predicted trajectories were consistent with the experimental

data reported in [82].

Figures 3.6 and 3.7 describe results from simulation of free movements between two

targets passing through a via-point P1 or P2. Both the minimum torque-change model

and the minimum energy model predict gently curved hand paths with double-peaked

speed profiles. In this group of movements, we consider two subcases, with identical

starting point (shown as circle) and the target (shown as star), but with mirror-image

via-points (see Fig. 3.6(a) and Fig. 3.7(a) shown as cross). That is, the two via-points

P1 and P2 are located symmetrically with respect to the line connecting the common

starting point and the target. Both models generate two different shapes of trajectories

corresponding to the two subcases; for the movement passing through the via-point P1,

a convex curved path is formed; in contrast, for the movement passing through the via-
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point P2, a concave path is formed. In particular, the convex path and the concave path

are not symmetric with respect to the line connecting the starting point and the target.

The associated speed profile has two peaks as illustrated in Fig. 3.6(b) and Fig. 3.7(b),

which are consistent with experimental data shown in [84, 125].

Furthermore, we notice that changing the location of the via-point results in either

a single-peak or double-peak hand speed profile (Fig. 3.8 and Fig. 3.9). Here the

trajectories are generated by moving the hand between two targets and passing through

via-points P0, P1 and P2 respectively within 250ms. In both the models, if the via-

point P0 is located near to the line connecting the initial and the final targets, the hand

path is roughly straight, and the hand speed profile is single peaked (shown as dotted

line); on the other hand, if the via-point P1 or P2 is located further away from the

line connecting two targets, highly curved movements are produced and the hand speed

profiles are double-peaked (shown as solid and diamond curves).

Finally, we illustrate another kinematic feature related to the depth of velocity valley

and the height of the curvature peak. It is easy to see that both the hand paths and

velocity profiles are identical for the minimum torque-change model (Fig. 3.10) and

the minimum energy model (Fig. 3.11). Here three movements with the same 500ms

duration are simulated, the only difference is the timing to pass through the via-point

P1: one is 150ms (dashed curve), and the other two are 250ms (solid curve) and 320ms

(diamond curve) respectively. We notice that the resulting three trajectories are clearly

different (Fig. 3.10(a)). Since the via-point P1 is located symmetrically between the

starting point and target, when the passing time is 150ms, the first part of the movement

(from starting point to via-point P1) has to be faster than the other two cases; hence

the corresponding speed profile has the highest peak (yellow dashed curve), while the

hand path is less curved. After passing through the via-point, there is plenty of time left

(350ms) to reach the target, therefore this slower movement results in much more curved

hand path compared with the other two cases. And we can conclude that, for the highly

curved movements with double-peaked speed profiles, the speed valley is temporally

associated with the curvature peak. The larger the curvature of hand path, the deeper

the valley in the double-peaked speed profile (Fig. 3.10(b)).
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Figure 3.4. Typical trajectories generated by the minimum torque-change model for free

movements between two targets: (a) Hand paths (T1 ↔ T3, T4 ↔ T2, T4 ↔ T3, T5 ↔
T2, T5 ↔ T3. (b) Corresponding hand tangential velocity profiles along the paths.
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Figure 3.5. Typical trajectories generated by the minimum energy model for free move-

ments between two targets: (a) Hand paths and (b) Tangential velocity profiles.
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Figure 3.6. Typical trajectories generated by the minimum torque-change model for free

movements passing through a via-point P1 or P2 within 250ms: (a) Hand paths (Circle

→ P1 → Star and Circle → P2 → Star). (b) Corresponding hand tangential velocity

profiles.
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→ Star and Circle → P2 → Star). (b) Corresponding hand tangential velocity profiles.
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Figure 3.8. Typical trajectories generated by the minimum torque-change model for free

movements passing through via-points P0, P1 and P2 respectively within 250ms: (a)

Hand paths. (b) Corresponding hand tangential velocity profiles.

  -0.2   -0.1 0 0.1 0.2

0.4

0.5

0.6

Hand Trajectory

X position (m )

Y
 p

o
si

tio
n

 (
m

)

P0

P1

P2

start end

0 500

0.5

1.5

2.5
Speed Profile

Time (ms)

T
a

n
g

e
n

tia
l v

e
lo

ci
ty

 (
m

/s
)

(a) (b)

Figure 3.9. Typical trajectories generated by the minimum energy model for free move-

ments passing through via-points P0, P1 and P2 respectively within 250ms: (a) Hand

paths. (b) Corresponding hand tangential velocity profiles.
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Figure 3.10. Typical trajectories generated by the minimum torque-change model for free

movements passing through a via-point P1 within different timing: (a) Hand paths (Solid

line: passing through P1 before 250ms; Dashed line: passing through P1 before 150ms;

Diamond line: passing through P1 before 320ms). (b) Corresponding hand tangential

velocity profiles.
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Chapter 4

Iterative Linear Quadratic Design

for Arm Movement

4.1 Overview

The majority of present optimality models in motor control have a serious limitation

— they rely on the Linear-Quadratic-Gaussian formalism, while in reality biomechanical

systems are strongly non-linear. In this chapter we restrict our attention to developing

an iterative linear quadratic regulator method for optimal feedback control of nonlinear

biomechanical system. This method uses iterative linearization of the nonlinear system

around a nominal trajectory, and computes a locally optimal feedback control law via a

modified LQR technique. The control law is then applied to the linearized system, and

the result is used to improve the nominal trajectory incrementally. We then apply the

new algorithm on a realistic 2-Link 6-Muscle biomechanical model of the human arm,

as well as two simpler dynamical systems: 2-Link torque controlled arm and inverted

pendulum. Comparisons with three existing methods (Ordinary Differential Equations,

Conjugate Gradient Descent and Differential Dynamic Programming) demonstrate that

this method converges substantially faster and finds slightly better solutions.

40
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4.2 ILQR Approach to Nonlinear Deterministic Systems

Consider a discrete time nonlinear dynamical system with state variable xk ∈ R
nx

and control uk ∈ R
nu

xk+1 = f(xk, uk). (4.1)

The cost function is written in the quadratic form

J0 =
1

2
(xN − x∗)T Qf (xN − x∗) +

1

2

N−1
∑

k=0

(

xT
k Qxk + uT

k Ruk

)

, (4.2)

where xN describes the final state (each movement lasts N steps), x∗ is the given target.

The state cost-weighting matrices Q and Qf are symmetric positive semi-definite, the

control cost-weighting matrix R is positive definite. All these matrices are assumed to

have proper dimensions. Note that when the true cost is not quadratic, we can still use

a quadratic approximation to it around a nominal trajectory.

Our algorithm is iterative. Each iteration starts with a nominal control sequence uk,

and a corresponding nominal trajectory xk obtained by applying uk to the dynamical

system in open loop. When good initialization is not available, one can use uk = 0. The

iteration produces an improved sequence uk, by linearizing the system dynamics around

uk, xk and solving a modified LQR problem. The process is repeated until convergence.

Let the deviations from the nominal uk, xk be δuk, δxk. The linearization is

δxk+1 = Akδxk + Bkδuk, (4.3)

where Ak = Dxf(xk, uk), Bk = Duf(xk, uk). Dx denotes the Jacobian of f(·) with

respect to x, Du denotes the Jacobian of f(·) with respect to u, and the Jacobians are

evaluated along xk and uk.

Based on the linearized model (4.3), we can solve the following LQR problem with

the cost function

J =
1

2
(xN + δxN − x∗)T Qf (xN + δxN − x∗)

+
1

2

N−1
∑

k=0

{

(xk + δxk)
T Q (xk + δxk) + (uk + δuk)

T R (uk + δuk)

}

. (4.4)
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We begin with the Hamiltonian function

Hk =
1

2
(xk + δxk)

T Q (xk + δxk) +
1

2
(uk + δuk)

T R (uk + δuk)

+ δλT
k+1(Akδxk + Bkδuk), (4.5)

where δλk+1 is Lagrange multiplier.

The optimal control improvement δuk is given by solving the state equation (4.3),

the costate equation

δλk = AT
k δλk+1 + Q(δxk + xk), (4.6)

and the stationary condition which can be obtained by setting the derivative of Hamil-

tonian function with respect to δuk to zero

0 = R(uk + δuk) + BT
k δλk+1 (4.7)

with the boundary condition

δλN = Qf (xN + δxN − x∗). (4.8)

Solving for (4.7) yields

δuk = −R−1BT
k δλk+1 − uk. (4.9)

Hence, substituting (4.9) into (4.3) and combining it with (4.6), the resulting Hamilto-

nian system is





δxk+1

δλk



 =





Ak −BkR
−1BT

k

Q AT
k









δxk

δλk+1



+





−Bkuk

Qxk



 . (4.10)

It is clear that the Hamiltonian system is not homogeneous, but is driven by a forcing

term dependent on the current trajectory xk and uk. Because of the forcing term, it

is not possible to express the optimal control law in linear state feedback form (as in

the classic LQR case). However, we can express δuk as a combination of a linear state

feedback plus additional terms, which depend on the forcing function.

Based on the boundary condition (4.8), we assume

δλk = Skδxk + vk (4.11)
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for some unknown sequences Sk and vk. Substituting the above assumption into the

state and costate equation, and applying the matrix inversion lemma yields the optimal

controller.

Theorem 1 Given the system xk+1 = f(xk, uk) and its linearization around the nominal

trajectory δxk+1 = Akδxk +Bkδuk with the performance index given in (4.4), the optimal

controller is given by

δuk = −Kδxk − Kvvk+1 − Kuuk, (4.12)

K = (BT
k Sk+1Bk + R)−1BT

k Sk+1Ak, (4.13)

Kv = (BT
k Sk+1Bk + R)−1BT

k , (4.14)

Ku = (BT
k Sk+1Bk + R)−1R, (4.15)

Sk = AT
k Sk+1(Ak − BkK) + Q, (4.16)

vk = (Ak − BkK)T vk+1 − KT Ruk + Qxk (4.17)

with boundary conditions

SN = Qf , vN = Qf (xN − x∗). (4.18)

Proof 1 In order to find the equations (4.12)-(4.17), use (4.11) in the state equation

(4.3) to yield

δxk+1 = (I + BkR
−1BT

k Sk+1)
−1(Akδxk − BkR

−1BT
k vk+1 − Bkuk). (4.19)

Substituting (4.11) and the above equation into the costate equation (4.6) gives

Skδxk + vk =Qδxk + AT
k Sk+1(I + BkR

−1BT
k Sk+1)

−1

(Akδxk − BkR
−1BT

k vk+1 − Bkuk) + AT
k vk+1 + Qxk.

By applying the matrix inversion lemma 1 to the above equation, we obtain

Sk = AT
k Sk+1

[

I − Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1

]

Ak + Q,

1(A + BCD)−1 = A
−1

− A
−1

B(DA
−1

B + C
−1)−1

DA
−1.



44

and

vk =AT
k vk+1 − AT

k Sk+1

[

I − Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1

]

BkR
−1BT

k vk+1

− AT
k Sk+1

[

I − Bk(B
T
k Sk+1Bk + R)−1BT

k Sk+1

]

Bkuk + Qxk.

By using (R + BT
k Sk+1Bk)

−1 = R−1 − (R + BT
k Sk+1Bk)

−1BT
k Sk+1BkR

−1, the second

term in vk becomes

−AT
k Sk+1Bk(R + BT

k Sk+1Bk)
−1BT

k vk+1,

while the third term in vk can also be written as

−AT
k Sk+1Bk(R + BT

k Sk+1Bk)
−1Ruk.

Therefore, with the definition of K in (4.13), the above Sk, vk can be written into the

forms as given in (4.16) and (4.17).

Furthermore, substituting (4.11) and (4.19) into (4.9) yields

δuk = − (R + BT
k Sk+1Bk)

−1BT
k Sk+1Akδxk − (R + BT

k Sk+1Bk)
−1BT

k vk+1

− (R + BT
k Sk+1Bk)

−1Ruk.

By the definition of K, Kv and Ku in (4.13)-(4.15), we can rewrite above δuk as the

form in (4.12). �

With the boundary condition SN given as the final state weighting matrix in the

cost function (4.4), we can solve for an entire sequence of Sk by the backward recursion

(4.16). It is interesting to note that the control law δuk consists of three terms: a term

linear in δxk whose gain is dependent on the solution to the Riccati equation; a second

term dependent on an auxiliary sequence vk which is derived from the auxiliary difference

equation (4.17); and a third term dependent on the nominal control uk whose gain also

relied on the Riccati equation solution. Once the modified LQR problem is solved, an

improved nominal control sequence can be found: u∗
k = uk + δuk.
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4.3 Application to Nonlinear System

4.3.1 Optimal control problems to be studied

We have implemented a 2-DOF torque controlled model and a 2-DOF 6-muscle model

of the human arm in the horizontal plane at chapter 3. Here we also include an inverted

pendulum problem often used for numerical comparisons.

2-link Torque-controlled and 2-link Muscle-controlled arm

Using the standard equation of motion for a 2-link arm given in (3.6), the dynamics

of this arm model can be rewritten here in a state space form

ẋ = F (x) + G(x)u,

For the torque controlled arm model (MODEL 1), the state and control are given by

x = (θ1 θ2 θ̇1 θ̇2)
T , u = (τ1 τ2)

T .

while for the 2-link 6-muscle arm model (MODEL 2), because muscles have activation

states, the state vector is 10-dimensional and the control vector is 6-dimensional

x = (θ1 θ2 θ̇1 θ̇2 a1 · · · a6)
T , u = (u1 · · ·u6)

T .

The task we study is a reaching task, where the arm has to start at some initial position

and move to a target in a specified time interval. It also has to stop at the target, and

do all that with minimal energy consumption. The cost function is redefined as

J0 =
1

2

(

θ(T ) − θ∗
)T (

θ(T ) − θ∗
)

+
1

2

∫ T

0
ruT u dt, (4.20)

where r = 0.0001 and θ∗ is the desired target posture. In the definition of the cost func-

tion, the first term means that the joint angle is going to the target θ∗ which represents

the reaching movement; the second term illustrates the energy efficiency.

Inverted Pendulum

Consider a simple pendulum where m denotes the mass of the bob, l denotes the

length of the rod, θ describes the angle subtended by the vertical axis and the rod, and
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µ is the friction coefficient. For this example, we assume that m = 1kg, l = 1m, g =

9.8m/s2, µ = 0.01. The state space equation of the pendulum is

ẋ1 = x2, (4.21)

ẋ2 =
g

l
sinx1 −

µ

ml2
x2 +

1

ml2
u, (4.22)

where the state variables are x1 = θ, x2 = θ̇. The goal is to make the pendulum swing

up. The control objective is to find the control u(t), 0 < t < T and minimize the

performance index

J0 =
1

2

(

x1(T )2 + x2(T )2
)

+
1

2

∫ T

0
ru2dt, (4.23)

where r = 1e − 5.

4.3.2 Optimal Trajectories

Here we illustrate the optimal trajectories found by iterating equations (4.12)-(4.18)

on each of the three control problems. Fig. 4.1A and Fig. 4.1B show the optimal

trajectory of the arm joint angles θ1 (shoulder angle) and θ2 (elbow angle). We find that

the shoulder angle and the elbow angle arrive to the desired posture θ1 = 1rad, θ2 =

1.5rad respectively. Fig. 4.1C shows a set of optimal trajectories in the phase space, for

a pendulum being driven from different starting points to the goal point. For example,

S2 describes a starting point where the pendulum is hanging straight down; trajectory

2 shows that the pendulum swing directly up to the goal.

For the 2 link muscle-controlled arm model, Fig. 4.2 illustrates how the current joint

space trajectory converges with the number of iterations. Although the iteration starts

from poor initial control — which produces an arbitrary movement (it 0), it has the

rapid improvement and the ILQR method can find a good control in about 5 iterations.
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4.4 Comparison with Existing Local Algorithms

Existing algorithms for nonlinear optimal control can be classified in two groups,

based respectively on Bellman’s Optimality Principle and Pontryagin’s Maximum Prin-

ciple [16, 63]. The former yields globally optimal solutions, but involves a partial dif-

ferential equation (Hamilton-Jacobi-Bellman equation) which is only solvable for low-

dimensional systems. While various forms of function approximation have been explored,

presently there is no known cure for the curse of dimensionality. Since the biological con-

trol problems we are interested in tend to have very high dimensionality (the 10 dim arm

model is a relatively simple one), we do not believe that global methods will be applicable

to such problems in the near future.

Therefore we have chosen to pursue local trajectory-based methods related to the

Maximum Principle. These methods iteratively improve their estimate of the extremal

trajectory. We compare: (1) ODE solves the system of state-costate ordinary differen-

tial equations resulting from the Maximum Principle, using the BVP4C boundary value

problem solver in Matlab; (2) CGD is a gradient descent method, which uses the Max-

imum Principle to compute the gradient of the total cost with respect to the nominal

control sequence, and then calls an optimized conjugate gradient descent routine; (3)

differential dynamic programming (DDP) [45] performs dynamic programming in the

neighborhood of the nominal trajectory, using second order approximations.

All algorithms were implemented in Matlab, and used the same dynamic simulation.

Table 4.1 compares the CPU time and number of iterations for all algorithms on all three

problems. Note that the time per iteration varies substantially (and in the case of ODE

the number of iterations is not even defined) so the appropriate measure of efficiency is

the CPU time. On all problems studied, the new ILQR method converged faster than

the three existing methods, and found a better solution. The speed advantage is most

notable in the complex arm model, where ILQR outperformed the nearest competitor

by more than a factor of 10.

Figure 4.3 illustrates how the cost of the nominal trajectory decreases with the

number of iterations for 8 different initial conditions. Compared with CGD and DDP
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Table 4.1. Comparison of four methods

Method Time Iteration
(sec)

ODE 11.20 N/A
Torque control CGD 8.86 17

arm DDP 2.65 15
ILQR 0.41 6

ODE >400 N/A
Muscle control CGD 91.14 14

arm DDP 181.39 15
ILQR 8.31 8

ODE 6.33 N/A
Inverted CGD 4.95 9

pendulum DDP 1.61 20
ILQR 0.26 5

method, the new ILQR method converged faster than the other methods, and found a

better solution. Also we have found that the amount of computation per iteration for

ILQR method is much less than the other methods. This is because gradient descent

requires a line search (without which it works poorly); the implementation of DDP

uses a second-order approximation to the system dynamics and Levenberg-Marquardt

algorithm to compute the inverse matrix – both of which take a significant amount of

time to compute. But we also need Levenberg-Marquardt method to achieve stable

iterations.

Trajectory-based algorithms related to Pontryagin’s Maximum Principle in general

find locally-optimal solutions, and complex control problems may exhibit many local

minima. It is useful to address the presence of local minima. Fig. 4.4 shows how the

cloud of 100 randomly initialized trajectories gradually converge for the muscle-controlled

arm model by using the ILQR method. The black curves describe the top 50% results

where the shoulder angle and elbow angle arrive to their desired posture respectively,

while the light curves show the bottom 50% results. There are local minima, but half

the time the algorithm converges to the global minimum. Therefore, it can be used with

a small number of restarts.
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Figure 4.3. (a) Cost vs. Iterations for 2-link 6-muscle Model. (b) Comparison of Cost

vs. Iterations for 2-link 6-muscle Model based on 8 different initial conditions.
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Figure 4.4. Trajectories of 2-link torque-controlled model (left) and 2-link 6-muscle

model (right) for different initial conditions (Black color describes the top 50% results,

light color describes the bottom 50% results)



51

4.5 Summary

Here we developed a new Iterative Linear Quadratic Regulator (ILQR) algorithm for

optimal feedback control of nonlinear dynamical systems. We illustrated its application

to a realistic 2-link, 6-muscle arm model, as well as simpler control problems. The

simulation results suggest that the new method is more effective compared to the three

most efficient methods that we are aware of.

While the control problems studied here are deterministic, the variability of biological

movements indicates the presence of large disturbances in the motor system. It is very

important to take these disturbances into account when studying biological control. In

particular, it is known that the motor noise is control-dependent, with standard deviation

proportional to the mean of the control signal. Such noise has been modelled in the

LQG setting before [117]. Since the present ILQR algorithm is an extension to the LQG

setting, it should be possible to treat nonlinear systems with control-dependent noise

using similar methods. And we will do that in the next chapter.

Furthermore, the present formulation assumes that all of the state variables are

available, which is not the case in the real world. Therefore, the method developed in

the future should be extendable to situations that we can design the filter to provide

state estimate for the optimal feedback control purpose. However, the difficulty is that

the separation principle of estimation and control is violated in the presence of signal-

dependent noise (which is one of characteristics in our biological movement models). The

related work in [120] only showed the result for the linear dynamical system. In the next

chapter, we will discuss iterative optimal control and estimation design for nonlinear

stochastic systems, which will extend the ILQR setting as much as possible, and adapt

it to the online control and estimation problems that nervous system faces.

This chapter, in part, was originally published in Proceedings of the 1st Interna-

tional Conference on Informatics in Control, Automation & Robotics. The thesis author

was the primary researcher and author in these works and the co-author listed in this

publication directed and supervised the research which forms the basis for this chapter.



Chapter 5

Iterative Stochastic Optimal

Control and Estimation Design

for Human Arm Movement

5.1 Motivation

Solving complex optimal control and estimation problems with stochastic uncertainties—

that do not fit in the well-developed Linear-Quadratic-Gaussian (LQG) formalism—

remains a challenge in many fields of science and engineering. Most existing numerical

methods has followed two different approaches. Global methods based on the Hamilton-

Jacobi-Bellman (HJB) equations and the powerful idea of dynamic programming can

yield globally-optimal feedback control laws for general stochastic systems. While, such

methods involve discretization of the state and control spaces — which makes them in-

applicable to high-dimensional problems, due to the curse of dimensionality. Given the

large number of variables needed to capture the state of the biomechanical system (e.g.

joint angles, joint velocities, muscle activations), we believe that global methods are not

well suited for Motor Control problems. Local methods based on Pontryagins Maxi-

mum principle avoid the curse of dimensionality, by solving a set of ordinary differential

equations (ODEs) — via shooting, relaxation, collocation, or gradient descent. But the

52
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resulting locally-optimal control laws are open-loop, and stochastic dynamics cannot be

taken into account.

By taking the advantage of both local and global methods, Jacobson and Mayne

[45] introduced Differential Dynamic Programming (DDP) — a successive approxima-

tion technique for solving nonlinear dynamic optimization problems. This method finds

a local minimizing solution by applying the principle of optimality locally, in the imme-

diate neighborhood of the current nominal trajectory. The improvement does not rely

on the calculus of variations, but is based on dynamic programming. DDP is known to

have second-order convergence and numerically appears to be more efficient [64] than

efficient implementations of Newton’s method [91]. We recently applied iterative Linear-

Quadratic Regulator design (ILQR) to study the biological movement, it turns out to be

significantly more efficient than DDP: by a factor of 10 on reasonably complex control

problems [67]. This ILQR method uses iterative linearization of the nonlinear dynamics

around the current trajectory, and improves that trajectory via modified Riccati equa-

tions. It yields feedback control law — which is a major advantage compared to open-loop

methods. However, this method is still deterministic. Another shortcoming is that, un-

like open-loop methods, it cannot deal with control constraints and non-quadratic cost

functions. Our goal here is to remove these limitations.

While the new algorithm should be applicable to a range of problems, our specific

motivation for developing it is the modelling of biological movement. Such modelling

has proven extremely useful in the study of how the brain controls movement [115]. Yet,

progress has been impeded by the lack of efficient methods that can handle realistic

biomechanical control problems. The most remarkable characteristics of such problems

are: high-dimensional nonlinear dynamics; control constraints (e.g. non-negative muscle

activations); multiplicative noise, with standard deviation proportional to the magni-

tude of control signals or state variables; complex performance criteria, that are rarely

quadratic in the state variables.

Before deriving our new iterative Linear-Quadratic-Gaussian (ILQG) method, we

give a more detailed overview of what is new here:
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1. Most dynamic programming methods use quadratic approximations to the optimal

cost-to-go function. All such methods are “blind” to additive noise. However, in many

problems of interest the noise is control-dependent, and such noise can easily be captured

by quadratic approximations as we show below. Our new ILQG method incorporates

control-dependent and state dependent noise — which turns out to have an effect similar

to an energy cost. In practical situations, the state of the plant is only available through

noisy measurement. When the state of the plant is fully observable, optimal LQG-like

solutions can be computed efficiently as shown by several authors [6, 36, 78, 129, 96].

Such methodology has also been used to model reaching movements [41]. Most relevant

to the study of sensorimotor control, however, is the partially-observable case, our goal

here is to address that problem.

2. Quadratic approximation methods are presently restricted to unconstrained prob-

lems. Generally speaking, constraints make the optimal cost-to-go function non-quadratic.

But since we are approximating that function anyway, we might as well take into account

the effects of control constraints to the extent possible. Our new ILQG method does

that — by modifying the feedback gain matrix whenever an element of the open-loop

control sequence lies on the constraint boundary.

3. Quadratic approximation methods are based on Riccati equations: define a

quadratic optimization problem that the optimal controls satisfy at time step t, solve it

analytically, and obtain a formula for the optimal cost-to-go function at time step t− 1.

Optimizing a quadratic is only possible when the Hessian is positive-definite. This is of

course true in the classic LQG setting, but when LQG methods are used to approximate

general nonlinear dynamics with non-quadratic costs, the Hessian can (and in practice

does) have zero and even negative eigenvalues. The traditional remedy is to “fix” the

Hessian, using a Levenberg-Marquardt method, or an adaptive shift scheme, or simply

replace it with the identity matrix (which yields the steepest descent method). The

problem is that after fixing the Hessian, the optimization at time step t is no longer

performed exactly — contrary to what the Riccati equations assume. Instead of mak-

ing this invalid assumption, our new method takes the fixed Hessian into account, and

constructs a cost-to-go approximation consistent with the resulting control law. This is
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done by modified Riccati-like equations.

Of course, many techniques are already available for solving non-linear optimal con-

trol problems. You could find a detailed description of early techniques through [16]. Rel-

evant iterative method has also been described by Luus [75], who used the dynamic pro-

gramming in an iterative fashion. This chapter presents an iterative Linear-Quadratic-

Gaussian method for locally optimal control and estimation of nonlinear stochastic dy-

namical systems subject to control constraints. The main contribution of the new method

derived in the current research is that it constructs an affine feedback control law, ob-

tained by minimizing a novel quadratic approximation to the optimal cost-to-go function.

It also constructs a modified extended Kalman filter corresponding to the control law.

The key important thing is that the two results together provide an iterative coordinate-

descent algorithm, which is guaranteed to converge to a filter and a control law optimal

with respect to each other.

The organization of this chapter is as follows. Section 5.2 formulates the original

optimal problem we want to solve. In section 5.3 and 5.4 we present an LQG approxi-

mation to the original optimal control problem and compute an approximately-optimal

control law under the assumption that state estimates are already obtained by unbiased

linear filter. Section 5.5 designs the optimal filter corresponding to the given control law.

The control law and filter are iteratively improved until convergence. Finally, section 5.6

illustrates the application of this extended LQG methodology in the context of reaching

movements and obstacle avoidance, and explores numerically the convergence proper-

ties of the algorithm on a complex biomechanical control problem involving a stochastic

model of the human arm.
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5.2 Problem Formulation

Consider the nonlinear dynamical system described by the stochastic differential

equations

dxp = f(xp,up)dt + F(xp,up)dω, (5.1)

along with the output equation

dyp = g(xp,up)dt + G(xp,up)dv, (5.2)

where state variable xp ∈ R
nx , control input up ∈ R

nu , measurement output yp ∈ R
ny ,

and standard Brownian motion noise ω ∈ R
nω , v ∈ R

nv are independent of each other.

Let ℓ(t,xp,up) be an instantaneous cost rate, h(xp(T )) be terminal cost incurred at

the end of the process, T a specified final time. Define the cost-to-go function vπ(t,xp)

as the total cost expected to accumulate if the system is initialized in state xp at time

t, and controlled until time T according to the control law π

vπ(t,xp) , E

[

h(xp(T )) +

∫ T

t
ℓ(τ,xp(τ), π(τ,xp(τ))) dτ

]

(5.3)

The expectation is taken over the instantiations of the stochastic process ω. The admis-

sible control signals may be constrained: up ∈ U .

The objective of optimal control is to find the control law π∗(t,xp) that minimizes

vπ(0,xp(0)). Note that the globally-optimal control law does not depend on a specific

initial state. However, finding this control law in complex problems is unlikely. Instead,

we seek locally-optimal control laws: we will present an LQG approximation to our

original optimal control problem and compute an approximately-optimal control law.

The present formulation in this chapter assumes that the state of system is measurable

through delayed and noisy sensors, therefore we will also design an optimal filter in order

to extract the accurate state information from noisy measurement data.
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5.3 Local LQG Approximation

5.3.1 Linearization

In this section the locally-optimal control law is computed using the method of

dynamic programming. Time is discretized as k = 1, · · · , N , with time step ∆t =

T/(N − 1). Our derived algorithm is iterative. Each iteration starts with a nominal

control sequence ūp, and a corresponding nominal trajectory x̄p obtained by applying

ūp to the deterministic system ẋp = f(xp,up) with x̄p(0) = xp
0. This can be done by

Euler integration x̄p
k+1 = x̄p

k + ∆t f(x̄p
k, ū

p
k).

By linearizing the system dynamics and quadratizing the cost functions around

(x̄p, ūp), we obtain a discrete-time linear dynamical system with quadratic cost. Im-

portantly the linearized dynamics no longer describe the state and control variables, but

instead they describe the state and control deviations xk = xp
k − x̄p

k, uk = up
k − ūp

k, and

yk = yp
k − ȳp

k. Written in terms of these deviations — state variable xk ∈ R
nx , control

input uk ∈ R
nu , measurement output yk ∈ R

ny , the modified LQG approximation to

our original optimal control problem becomes

xk+1 = Akxk + Bkuk + Ck(xk,uk)ξk, (5.4)

yk = Fkxk + Ekuk + Dk(xk,uk)ηk, (5.5)

costk = qk + xT
k qk +

1

2
xT

k Qkxk + uT
k rk +

1

2
uT

k Rkuk + uT
k Pkxk, (5.6)

where

Ak = I + ∆t
∂f

∂xp
, Bk = ∆t

∂f

∂up
, Fk =

∂g

∂xp
, Ek =

∂g

∂up
, (5.7)

Ck(xk,uk) ,

[

c1,k + Cx
1,kxk + Cu

1,kuk, · · · , cnω ,k + Cx
nω ,kxk + Cu

nω ,kuk

]

, (5.8)

Dk(xk,uk) ,

[

d1,k + Dx
1,kxk + Du

1,kuk, · · · ,dnv ,k + Dx
nv,kxk + Du

nv,kuk

]

, (5.9)

ci,k =
√

∆t F [i], Cx
i,k =

√
∆t

∂F [i]

∂xp
, Cu

i,k =
√

∆t
∂F [i]

∂up
, (5.10)

di,k =
1√
∆t

G[i], Dx
i,k =

1√
∆t

∂G[i]

∂xp
, Du

i,k =
1√
∆t

∂G[i]

∂up
, (5.11)
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and

qk = ∆t ℓ, qk = ∆t
∂ℓ

∂xp
, Qk = ∆t

∂2ℓ

∂(xp)2
, (5.12)

rk = ∆t
∂ℓ

∂up
, Rk = ∆t

∂2ℓ

∂(up)2
, Pk = ∆t

∂2ℓ

∂up∂xp
, (5.13)

are computed at each (x̄p
k, ū

p
k).

The initial state has known mean x̂1 and covariance Σ1. All the matrices Ak, Bk, Fk,

Ek, ci,k, C
x
i,k, C

u
i,k,dj,k, D

x
j,k, D

u
j,k (i = 1, · · · , nω, and j = 1, · · · , nv) are assumed to be

given with the proper dimensions. The independent random variables ξk ∈ R
nω and

ηk ∈ R
nv are zero-mean Gaussain white noises with covariances Ωξ = I and Ωη = I

respectively. Note that F [i] and G[i] denote the ith column of matrix F ∈ R
nx×nω

and G ∈ R
ny×nv respectively. At the final time step k = N , the cost is defined as

qN + xT
NqN + 1

2x
T
NQNxN , where qN = h,qN = ∂h

∂xp , and QN = ∂2h
∂(xp)2

.

Here we are using a noise model which includes control-dependent, state-dependent

and additive noises. This is sufficient to capture noise in the system — which is what we

are mainly interested in. Considering the sensorimotor control, noise in the motor output

increases with the magnitude of the control signal. Incorporating the state-dependent

noise in analysis of sensorimotor control could allow more accurate modelling of feedback

form sensory modalities and various experimental perturbations. In the study of esti-

mation and control design for the system with control-dependent and state-dependent

noises, the well-known Separation Principle of standard LQG design is violated. This

complicates the problem substantially, and forces us to develop a new structure of re-

cursive controller and estimator.

5.3.2 Computing the cost-to-go function (Partially observable case)

In practical situations, the state of the controlled plant are only available through

noisy measurement. While the implementation of the optimal control law depends on

the state of the system, we have to design an estimator in order to extract the correct

information of the state. Here we are assuming that the approximately-optimal control

law is allowed to be an affine function of x̂k — the unbiased estimate of state xk, and
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the estimator has the form

x̂k+1 = Akx̂k + Bkuk + Kk(yk − Fkx̂k − Ekuk), (5.14)

where the filter gains Kk are non-adaptive, i.e., they are determined in advance and

cannot change as a function of the specific controls and observations within a simulation

run. Detailed derivation for computing the filter gain Kk will be presented in section

5.5.

The approximately-optimal control law for the LQG approximation will be shown to

be affine, in the form

uk = πk(x̂k) = lk + Lkx̂k, k = 1, · · · , N, (5.15)

where lk describes the open-loop control component (it arises because we are dealing

with state and control deviations, and is needed to make the algorithm iterative), Lk is

the feedback control gain. The control law we design is approximately-optimal because

we may have control constraints and non-convex costs, and also because we use linear

Gaussian approximations. Let the cost-to-go function vk(xk, x̂k) be the total cost ex-

pected to accumulate if the system (5.4) is initialized in state xk at time step k, and

controlled according to πk for the remaining time steps.

Lemma 1 Suppose the control law πk for system (5.4)-(5.5) has already been designed

for time steps k + 1, · · · , N . If the control law is affine in the form (5.15), then the

cost-to-go function vk(xk, x̂k) has the form

vk(xk, x̂k) =
1

2
xT

k Sx
k xk +

1

2
x̂T

k Sx̂
k x̂k + xT

k Sxx̂
k x̂k + xT

k sxk + x̂T
k sx̂k + sk (5.16)

where the parameters Sx
k , Sx̂

k , Sxx̂
k , sxk , sx̂k , and sk can be computed recursively backwards

in time as

Sx
k = Qk + AT

k Sx
k+1Ak + F T

k KT
k Sx̂

k+1KkFk + 2AT
k Sxx̂

k+1KkFk

+

nω
∑

i=1

(Cx
i,k)

T Sx
k+1C

x
i,k +

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1KkD
x
i,k, Sx

N = QN , (5.17)

Sx̂
k = (Ak − KkFk)

T Sx̂
k+1(Ak − KkFk) + LT

k HLk + LT
k Gx̂ + (Gx̂)T Lk, Sx̂

N = 0, (5.18)

Sxx̂
k = F T

k KT
k Sx̂

k+1(Ak − KkFk) + AT
k Sxx̂

k+1(Ak − KkFk) + (Gx)T Lk, Sxx̂
N = 0, (5.19)
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sxk = qk + AT
k sxk+1 + F T

k KT
k sx̂k+1 + (Gx)T lk +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1ci,k

+

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1Kkdi,k, sxN = qN , (5.20)

sx̂k = (Ak − KkFk)
T sx̂k+1 + LT

k Hlk + LT
k g + (Gx̂)T lk, sx̂N = 0, (5.21)

sk = qk + sk+1 + lTk g +
1

2
lTk Hlk +

1

2

(

nω
∑

i=1

cT
i,kS

x
k+1ci,k +

nv
∑

i=1

dT
i,kK

T
k Sx̂

k+1Kkdi,k

)

,

sN = qN . (5.22)

and

H , Rk + BT
k (Sx

k+1 + Sx̂
k+1 + 2Sxx̂

k+1)Bk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

u
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
u
i,k, (5.23)

g , rk + BT
k (sxk+1 + sx̂k+1) +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1ci,k +

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1Kkdi,k, (5.24)

Gx , Pk + BT
k (Sx

k+1 + Sxx̂
k+1)Ak + BT

k (Sx̂
k+1 + Sxx̂

k+1)KkFk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

x
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
x
i,k, (5.25)

Gx̂ , BT
k (Sx̂

k+1 + Sxx̂
k+1)(Ak − KkFk). (5.26)

Proof. Consider the control law which has been designed for time steps k +

1, · · · , N , and at time step k is given by uk = πk(x̂k) = lk + Lkx̂k (note that in the

later derivation we will use the shortcut πk in place of the control signal πk(x̂k) that our

control law generates). Let vk(xk, x̂k) be the corresponding cost-to-go function, then the

Bellman equation is

vk(xk, x̂k) = immediate cost + E [vk+1(xk+1, x̂k+1)|xk, x̂k, πk] (5.27)

Based on the dynamics function (5.4) and (5.14), the conditional mean and covariance
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of xk+1 and x̂k+1 are

E [xk+1|xk, x̂k, πk] = Akxk + Bkπk, (5.28)

E [x̂k+1|xk, x̂k, πk] = (Ak − KkFk)x̂k + Bkπk + KkFkxk, (5.29)

Cov [xk+1|xk, x̂k, πk] =

nω
∑

i=1

(

ci,k + Cx
i,kxk + Cu

i,kπk

) (

ci,k + Cx
i,kxk + Cu

i,kπk

)T
, (5.30)

Cov [x̂k+1|xk, x̂k, πk] = Kk

nv
∑

i=1

(

di,k + Dx
i,kxk + Du

i,kπk

) (

di,k + Dx
i,kxk + Du

i,kπk

)T
KT

k .

(5.31)

Since

E
[

xk+1x
T
k+1|xk, x̂k, πk

]

= Cov [xk+1|xk, x̂k, πk]

+ E [xk+1|xk, x̂k, πk]
(

E [xk+1|xk, x̂k, πk]
)T

, (5.32)

E
[

x̂k+1x̂
T
k+1|xk, x̂k, πk

]

= Cov [x̂k+1|xk, x̂k, πk]

+ E [x̂k+1|xk, x̂k, πk]
(

E [x̂k+1|xk, x̂k, πk]
)T

, (5.33)

E
[

x̂k+1x
T
k+1|xk, x̂k, πk

]

=
(

(Ak − KkFk)x̂k + KkFkxk + Bkπk

)

(Akxk + Bkπk)
T ,

(5.34)

applying the formulation of cost-to-go function defined in (5.16), substituting (5.28)-

(5.34) into the conditional expectation in Bellman equation, it yields

E [vk+1(xk+1, x̂k+1)|xk, x̂k, πk]

=
1

2
trSx

k+1

[

nω
∑

i=1

(

ci,k + Cx
i,kxk + Cu

i,kπk

) (

ci,k + Cx
i,kxk + Cu

i,kπk

)T

]

+
1

2
trSx

k+1

[

nω
∑

i=1

(Akxk + Bkπk)(Akxk + Bkπk)
T

]

+
1

2
trSx̂

k+1

[

Kk

nv
∑

i=1

(

di,k + Dx
i,kxk + Du

i,kπk

) (

di,k + Dx
i,kxk + Du

i,kπk

)T
KT

k

]

+
1

2
trSx̂

k+1

[

(

(Ak − KkFk)x̂k + KkFkxk + Bkπk

)(

(Ak − KkFk)x̂k + KkFkxk + Bkπk

)T
]

+ trSxx̂
k+1

[

(

(Ak − KkFk)x̂k + KkFkxk + Bkπk

)

(Akxk + Bkπk)
T
]

+ (Akxk + Bkπk)
T sxk+1 +

(

(Ak − KkFk)x̂k + KkFkxk + Bkπk

)T
sx̂k+1 + sk+1
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Using the fact that tr(UV ) = tr(V U) in the above equation, and substituting the

immediate cost (5.6) and the above equation into (5.27), the resulting cost-to-go function

becomes

vk(xk, x̂k)

=
1

2
xT

k

[

Qk + AT
k Sx

k+1Ak + F T
k KT

k Sx̂
k+1KkFk + 2AT

k Sxx̂
k+1KkFk +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1C

x
i,k

+

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1KkD
x
i,k

]

xk

+
1

2
x̂T

k (Ak − KkFk)
T Sx̂

k+1(Ak − KkFk)x̂k

+
1

2
π

T
k

[

Rk + BT
k (Sx

k+1 + Sx̂
k+1 + 2Sxx̂

k+1)Bk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

u
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
u
i,k

]

πk

+ xT
k

[

F T
k KT

k Sx̂
k+1(Ak − KkFk) + AT

k Sxx̂
k+1(Ak − KkFk)

]

x̂k

+ π
T
k

[

Pk + BT
k (Sx

k+1 + Sxx̂
k+1)Ak + BT

k (Sx̂
k+1 + Sxx̂

k+1)KkFk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

x
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
x
i,k

]

xk

+ π
T
k BT

k (Sx̂
k+1 + Sxx̂

k+1)(Ak − KkFk)x̂k

+ xT
k

[

qk +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1ci,k +

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1Kkdi,k + AT
k sxk+1 + F T

k KT
k sx̂k+1

]

+ x̂T
k (Ak − KkFk)

T sx̂k+1

+ π
T
k

[

rk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1ci,k +

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1Kkdi,k + BT
k (sxk+1 + sx̂k+1)

]

+ qk + sk+1 +
1

2

(

nω
∑

i=1

cT
i,kS

x
k+1ci,k +

nv
∑

i=1

dT
i,kK

T
k Sx̂

k+1Kkdi,k

)

(5.35)

Substituting (5.23)-(5.26) into the above equation, the πk-dependent terms in (5.35)

becomes
1

2
π

T
k Hπk + π

T
k (g + Gxxk + Gx̂x̂k) (5.36)

Since we assume that the control law has the general form given in (5.15), replacing πk
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with lk + Lkx̂k, it yields

1

2
x̂T

k

(

LT
k HLk + LT

k Gx̂ + (Gx̂)T Lk

)

x̂k + xT
k (Gx)T Lkx̂k

+ xT
k (Gx)T lk + x̂T

k

(

LT
k Hlk + LT

k g + (Gx̂)T lk

)

+ lTk g +
1

2
lTk Hlk (5.37)

Now the cost-to-go function vk(xk, x̂k) becomes

vk(xk, x̂k)

=
1

2
xT

k

[

Qk + AT
k Sx

k+1Ak + F T
k KT

k Sx̂
k+1KkFk + 2AT

k Sxx̂
k+1KkFk +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1C

x
i,k

+

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1KkD
x
i,k

]

xk

+
1

2
x̂T

k

[

(Ak − KkFk)
T Sx̂

k+1(Ak − KkFk) + LT
k HLk + LT

k Gx̂ + (Gx̂)T Lk

]

x̂k

+ xT
k

[

F T
k KT

k Sx̂
k+1(Ak − KkFk) + AT

k Sxx̂
k+1(Ak − KkFk) + (Gx)T Lk

]

x̂k

+ xT
k

[

qk +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1ci,k +

nv
∑

i=1

(Dx
i,k)

T KT
k Sx̂

k+1Kkdi,k + AT
k sxk+1

+ F T
k KT

k sx̂k+1 + (Gx)T lk

]

+ x̂T
k

[

(Ak − KkFk)
T sx̂k+1 + LT

k Hlk + LT
k g + (Gx̂)T lk

]

+ qk + sk+1 +
1

2

(

nω
∑

i=1

cT
i,kS

x
k+1ci,k +

nv
∑

i=1

dT
i,kK

T
k Sx̂

k+1Kkdi,k

)

+ lTk g +
1

2
lTk Hlk

(5.38)

By applying the defined formulation of cost-to-go function given in (5.16), we could ob-

tain (5.17)-(5.22) immediately which completes the proof.

5.3.3 Computing the cost-to-go function (Fully observable case)

Suppose the state of system (5.4) are available in the implementation of the optimal

control design, Lemma 1 readily leads to the following corollary.

Corollary 1 Suppose the control law πk for system (5.4) has already been designed for

time steps k + 1, · · · , N . If the control law is affine in the form uk = lk + Lkxk, where
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k = 1, · · · , N , then the cost-to-go function vk(xk) has the form

vk(xk) =
1

2
xT

k Sx
k xk + xT

k sxk + sk (5.39)

where the parameters Sx
k , sxk , and sk can be computed recursively backwards in time as

Sx
k = Qk + AT

k Sx
k+1Ak +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1C

x
i,k + LT

k HLk + LT
k G + GT Lk, Sx

N = QN ,

(5.40)

sxk = qk + AT
k sxk+1 +

nω
∑

i=1

(Cx
i,k)

T Sx
k+1ci,k + LT

k Hlk + LT
k g + GT lk, sxN = qN , (5.41)

sk = qk + sk+1 +
1

2

nω
∑

i=1

cT
i,kS

x
k+1ci,k +

1

2
lTk Hlk + lTk g, sN = qN , (5.42)

and

H , Rk + BT
k Sx

k+1Bk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

u
i,k, (5.43)

g , rk + BT
k sxk+1 +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1ci,k, (5.44)

G , Pk + BT
k Sx

k+1Ak +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

x
i,k. (5.45)

5.4 Optimal Controller Design

As we saw in (5.35), the cost-to-go function vk(xk, x̂k) depends on the control uk =

πk(x̂k) through the term

a(xk, x̂k, πk) =
1

2
π

T
k Hπk + π

T
k (g + Gxxk + Gx̂x̂k)

This expression is quadratic in πk and can be minimized analytically, but the problem is

that the minimum depends on xk while πk is only a function of x̂k. To obtain the optimal

control law at time step k, we have to take an expectation over xk conditional on x̂k,

and find the function πk that minimizes the resulting expression. Since E [xk|x̂k] = x̂k,

we have

α(x̂k, πk) , E [a(xk, x̂k, πk) | x̂k] =
1

2
π

T
k Hπk + π

T
k (g + Gx̂k) (5.46)



65

where G = Gx + Gx̂. Ideally we would choose πk that minimizes α(x̂k, πk) subject to

whatever control constraints are present. However, this is not always possible within the

family of affine control laws πk(x̂k) = lk + Lkx̂k that we are considering. Since the goal

of the LQG stage is to approximate the optimal controller for the nonlinear system in

the vicinity of x̄p
k, we will give preference to those control laws that are optimal/feasible

for small xk, even if that (unavoidably) makes them sub-optimal/infeasible for larger xk.

5.4.1 Second-order methods

If the symmetric matrix H in (5.46) is positive semi-definite, we can compute the

unconstrained optimal control law

πk = −H−1(g + Gx̂k), (5.47)

and deal with the control constraints as described below. But when H has negative

eigenvalues, there exist π
′
ks that make a arbitrarily negative. Note that the cost-to-go

function for the nonlinear problem is always non-negative, but we are using an approxi-

mation to the true cost, we may encounter situations where a does not have a minimum.

In that case we use H to resemble H, because H still contains correct second-order in-

formation; and so the true cost-to-go decreases in the direction −H−1(g + Gx̂k) for any

positive definite matrix H.

One possibility is to set H = H +
(

ǫ − λmin(H)
)

I where λmin(H) is the minimum

eigenvalue of H and ǫ > 0. This is related to the Levenberg-Marquardt method, and

has the potentially undesirable effect of increasing all eigenvalues of H and not just

those that are negative. Another possibility is to compute the eigenvalue decomposition

[V, D] = eig(H), replace all elements of the diagonal matrix D that are smaller than ǫ

with ǫ (obtaining a new diagonal matrix D), and then set H = V DV T . The eigenvalue

decomposition is not a significant slowdown, because we have to perform a matrix inver-

sion anyway and we can do so by H−1 = V D−1V T . It is not yet clear which of the two

methods works better in practice. Note that we may also want to use H instead of H

when the eigenvalues are positive but very small — because in that case H−1 can cause

very large control signal that will push the original system outside the range of validity



66

of our LQG approximation.

Lemma 2 The optimal control law is computed as

uk = lk + Lkx̂k, (5.48)

where

lk = −H−1g, Lk = −H−1G, (5.49)

H =







H +
(

ǫ − λmin(H)
)

I, ǫ > 0 (Method 1)

V DV T , [V, D] = eig(H) (Method 2)
(5.50)

H , Rk + BT
k (Sx

k+1 + Sx̂
k+1 + 2Sxx̂

k+1)Bk +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

u
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
u
i,k, (5.51)

g , rk + BT
k (sxk+1 + sx̂k+1) +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1ci,k +

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1Kkdi,k, (5.52)

G , Pk + BT
k (Sx

k+1 + Sx̂
k+1 + 2Sxx̂

k+1)Ak +

nω
∑

i=1

(Cu
i,k)

T Sx
k+1C

x
i,k

+

nv
∑

i=1

(Du
i,k)

T KT
k Sx̂

k+1KkD
x
i,k, (5.53)

where Sx
k+1, S

x̂
k+1, S

xx̂
k+1, s

x
k+1, s

x̂
k+1, sk+1 can be obtained through (5.17)-(5.22) backwards

in time.

5.4.2 Constrained second-order methods

The problem here is to find the control law uk = πk(x̂k) = lk + Lkx̂k minimizing

(5.46) subject to constraints uk + ūp
k ∈ U , assuming that H has already been replaced

with a positive definite H (see the above section). Given that xk is unconstrained, the

only general way to enforce the constraints U is to set Lk = 0. In practice we do not

want to be that conservative, since we are looking for an approximation to the nonlinear

problem that is valid around xk = 0. Either way we can ignore the Lkxk term in the

constraint satisfaction phase, and come back to the computation of Lk after the open-

loop component lk has been determined.
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The unconstrained minimum of uT
k g + 1

2u
T
k Huk is u∗

k = −H−1g. If it satisfies the

constraint u∗
k + ūp

k ∈ U we are done. Otherwise we have two options. The more efficient

but less accurate method is to backtrack once, i.e. to find the maximal ǫ ∈ [0; 1] such

that ǫu∗
k + ūp

k ∈ U . This is appropriate in the early phase of the iterative algorithm when

the nominal trajectory x̄p
k is still far away from x̄p∗

k ; in that phase it makes more sense

to quickly improve the control law rather than refine the solution to an LQG problem

that is an inaccurate approximation to the original problem. But in the final phase of

the iterative algorithm we want to obtain the best control law possible for the given

LQG problem. In that phase we use quadratic programming. When the constraint set is

specified by a collection of linear inequalities, and given that H is positive definite, the

active set algorithm (which is a greedy quadratic programming method) can be used to

quickly find the global constrained minimum.

Once the open-loop component lk is determined, we have to compute the feedback

gain matrix Lk. If lk + ūp
k is inside U , small changes Lkxk will not cause constraint

violations and so we can use the optimal Lk = −H−1G. But if lk + ūp
k lies on the

constraint boundary ∂U , we have to modify Lk so that Lkxk can only cause changes

along the boundary. This is not only because we want to avoid constraint violations.

The fact that lk + ūp
k is on ∂U means that the unconstrained minimum u∗

k is actually

outside U , and so a change Lkxk orthogonal to the boundary ∂U cannot produce a better

feasible control.

Modifying Lk is straightforward in the typical case when the range of each element

of uk is specified independently. In that case we simply set to zero the rows of −H−1G

corresponding to elements of lk + ūp
k that have reached their limits.

5.5 Optimal Estimator Design

It is well known that, for models with control-dependent and state-dependent noises,

the optimal filter is very difficult to compute in practice. For this kind of models,

the construction of suboptimal filters that approximate the optimal one becomes very

important.
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So far we computed the optimal control law for any fixed sequence of filter gains Kk.

In order to preserve the optimality of the control law obtained in the previous section

and attain an iterative algorithm with guaranteed convergence, we need to compute a

fixed sequence of filter gains that are optimal for a given control law. Thus our objective

here is the following: given the control law u1, · · · ,uN−1 (which is optimal for the

previous filter K1, . . . , KN−1), compute a new suboptimal filter evaluated by minimizing

the magnitude of its estimation errors, in conjunction with the given control law. Once

the iterative algorithm has converged and the control law has been designed, we could

use an adaptive filter in place of the fixed-gain filter in run time.

Lemma 3 With the definition of the unconditional means me
k , E [ek], mx̂

k , E [x̂k],

and the unconditional covariances Σe
k , E

[

eke
T
k

]

, Σx̂
k , E

[

x̂kx̂
T
k

]

, and Σx̂e
k , E

[

x̂ke
T
k

]

,

the optimal filter gain for system (5.4)-(5.5) is computed as

x̂k+1 = Akx̂k + Bkπk + Kk(yk − Fkx̂k − Ekπk), (5.54)

Kk = AkΣ
e
kF

T
k

(

FkΣ
e
kF

T
k + Pk

)−1
, (5.55)

mx̂
k+1 = (Ak + BkLk)m

x̂
k + KkFkm

e
k + Bklk, mx̂

1 = x̂1, (5.56)

me
k+1 = (Ak − KkFk)m

e
k, me

1 = 0, (5.57)

Σx̂
k+1 = (Ak + BkLk)Σ

x̂
k(Ak + BkLk)

T + KkFkΣ
e
kA

T
k + (Ak + BkLk)Σ

x̂e
k F T

k KT
k

+ KkFkΣ
ex̂
k (Ak + BkLk)

T +
(

(Ak + BkLk)m
x̂
k + KkFkm

e
k

)

lTk BT
k

+ Bklk

(

(Ak + BkLk)m
x̂
k + KkFkm

e
k

)T
+ Bklkl

T
k BT

k , Σx̂
1 = x̂1x̂

T
1 , (5.58)

Σe
k+1 = (Ak − KkFk)Σ

e
kA

T
k + Mk, Σe

1 = Σ1, (5.59)

Σx̂e
k+1 = (Ak + BkLk)Σ

x̂e
k (Ak − KkFk)

T + Bklk(m
e
k)

T (Ak − KkFk)
T , Σx̂e

1 = 0, (5.60)

and

Pk =

nv
∑

i=1

[

di,k(m
x̂
k + me

k)
T (Dx

i,k)
T + Dx

i,k(m
x̂
k + me

k)d
T
i,k + di,k(lk + Lkm

x̂
k)T (Du

i,k)
T

+ Du
i,k(lk + Lkm

x̂
k)dT

i,k + di,kd
T
i,k + Dx

i,k

(

(mx̂
k + me

k)l
T
k + (Σx̂

k + Σex̂
k )LT

k

)

(Du
i,k)

T

+ Du
i,k

(

lk(m
x̂
k + me

k)
T + Lk(Σ

x̂
k + Σx̂e

k )
)

(Dx
i,k)

T + Dx
i,k(Σ

x̂
k + Σx̂e

k + Σêx
k + Σe

k)(D
x
i,k)

T

+ Du
i,k

(

lkl
T
k + lk(m

x̂
k)T LT

k + Lkm
x̂
k lTk + LkΣ

x̂
kLT

k

)

(Du
i,k)

T
]

, (5.61)
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Mk =

nω
∑

i=1

[

ci,k(m
x̂
k + me

k)
T (Cx

i,k)
T + Cx

i,k(m
x̂
k + me

k)c
T
i,k + ci,k(lk + Lkm

x̂
k)T (Cu

i,k)
T

+ Cu
i,k(lk + Lkm

x̂
k)cT

i,k + ci,kc
T
i,k + Cx

i,k

(

(mx̂
k + me

k)l
T
k + (Σx̂

k + Σex̂
k )LT

k

)

(Cu
i,k)

T

+ Cu
i,k

(

lk(m
x̂
k + me

k)
T + Lk(Σ

x̂
k + Σx̂e

k )
)

(Cx
i,k)

T + Cx
i,k(Σ

x̂
k + Σx̂e

k + Σêx
k + Σe

k)(C
x
i,k)

T

+ Cu
i,k

(

lkl
T
k + lk(m

x̂
k)T LT

k + Lkm
x̂
k lTk + LkΣ

x̂
kLT

k

)

(Cu
i,k)

T
]

. (5.62)

Proof. Rewrite the system dynamics and state estimator as the following

xk+1 = Akxk + Bkuk + Ck(xk,uk)ξk,

yk = Fkxk + Ekuk + Dk(xk,uk)ηk,

x̂k+1 = Akx̂k + Bkuk + Kk(yk − Fkx̂k − Ekuk),

where uk = πk(x̂k) = lk+Lkx̂k, (k = 1, · · · , N−1), note that we will use the shortcut πk

in place of the control signal for the convenience, and Kk is the filter gain that minimizes

the functional

J = E
[

eT
k+1T ek+1

]

, T ≥ 0, (5.63)

where the estimation error ek+1 = xk+1 − x̂k+1, and the estimation error dynamics is

given by

ek+1 = (Ak − KkFk)ek + Ck(xk, πk)ξk − KkDk(xk, πk)ηk. (5.64)

Based on the estimation error dynamics (5.64), the conditional mean and covariance

of ek+1 are

E [ek+1|xk, x̂k, πk] = (Ak − KkFk) ek, (5.65)

Cov [ek+1|xk, x̂k, πk] = Ck(xk, πk) Ck(xk, πk)
T + KkDk(xk, πk) Dk(xk, πk)

T KT
k ,

(5.66)

By applying the properties of conditional expectation, we obtain

E
[

ek+1e
T
k+1|xk, x̂k, πk

]

= Cov [ek+1|xk, x̂k, πk] + E [ek+1|xk, x̂k, πk]
(

E [ek+1|xk, x̂k, πk]
)T

,

(5.67)

E
[

ek+1e
T
k+1

]

= E
[

E
[

ek+1e
T
k+1|xk, x̂k, πk

]

]

, (5.68)
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The terms in E
[

ek+1e
T
k+1|xk, x̂k, πk

]

that dependent on Kk are

(Ak − KkFk)eke
T
k (Ak − KkFk)

T + KkDk(xk, πk)Dk(xk, πk)
T KT

k .

With the definition of Σe
k , E

[

eke
T
k

]

and

Pk = E
[

Dk(xk, πk) DT
k (xk, πk)

]

, (5.69)

the unconditional expectation of the Kk-dependent expression above becomes

(Ak − KkFk)Σ
e
k(Ak − KkFk)

T + KkPkK
T
k ,

Using the fact that E
[

eT
k+1T ek+1

]

= tr(E
[

ek+1e
T
k+1

]

T ), it follows that the Kk-

dependent terms in J becomes

β(Kk) = trT (Ak − KkFk)Σ
e
k(Ak − KkFk)

T + trT KkPkK
T
k , (5.70)

the minimum of β(Kk) is found by setting the derivative with respect to Kk to zero.

Using the matrices identities ∂
∂X tr(XA) = AT and ∂

∂X tr(AXBXT ) = AT XBT + AXB,

we obtain
∂β(Kk)

∂Kk
= T

(

Kk

(

FkΣ
e
kF

T
k + Pk

)

− AkΣ
e
kF

T
k

)

= 0, (5.71)

hence

Kk = AkΣ
e
kF

T
k

(

FkΣ
e
kF

T
k + Pk

)−1
. (5.72)

To complete the proof of the lemma, we need to compute the unconditional covari-

ance. By substituting the control law uk = πk(x̂k) = lk +Lkx̂k, we can rewrite the state

estimator as

x̂k+1 = (Ak + BkLk)x̂k + Bklk + KkFkek + KkDk(xk, πk)ηk, (5.73)

With the definition of the unconditional means me
k, m

x̂
k , the unconditional covariances

Σx̂
k , Σx̂e

k and the additional definition

Mk = E
[

Ck(xk, πk) CT
k (xk, πk)

]

, (5.74)
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given in lemma 3, using the fact that Σêx
k = (Σx̂e

k )T and Σx
k = E

[

(x̂k + ek)(x̂k + ek)
T
]

=

Σx
k +Σx̂e

k +Σêx
k +Σe

k and the equation (5.64) and (5.73), the updates for the unconditional

means and covariances are

mx̂
k+1 = (Ak + BkLk)m

x̂
k + KkFkm

e
k + Bklk,

me
k+1 = (Ak − KkFk)m

e
k,

Σx̂
k+1 = (Ak + BkLk)Σ

x̂
k(Ak + BkLk)

T + KkFkΣ
e
kF

T
k KT

k + KkPkK
T
k

+ (Ak + BkLk)Σ
x̂e
k F T

k KT
k + KkFkΣ

ex̂
k (Ak + BkLk)

T

+
(

(Ak + BkLk)m
x̂
k + KkFkm

e
k

)

lTk BT
k

+ Bklk

(

(Ak + BkLk)m
x̂
k + KkFkm

e
k

)T
+ Bklkl

T
k BT

k , (5.75)

Σe
k+1 = (Ak − KkFk)Σ

e
k(Ak − KkFk)

T + KkPkK
T
k + Mk, (5.76)

Σx̂e
k+1 = (Ak + BkLk)Σ

x̂e
k (Ak − KkFk)

T + Bklk(m
e
k)

T (Ak − KkFk)
T

+ KkFkΣ
e
k(Ak − KkFk)

T − KkPkK
T
k , (5.77)

By substituting (5.72) into the above equations and combining the term KkFkΣ
e
kF

T
k KT

k +

KkPkK
T
k , we can rewrite the update equations (5.75)-(5.77) into forms (5.58)-(5.60)

which are exactly the same as what we obtain in lemma 3.

Furthermore, based on the definition of Pk and Mk given in (5.69) and (5.74), and all

the definitions of the unconditional means and unconditional covariances, Pk and Mk can

be computed using (5.61)-(5.62) which completes the proof. �

5.6 Application to 2-link Torque-controlled Arm Movements

We have thus far tested the algorithm on the reaching movements for a 2-link arm

model as described in section 3.1.1. However, what the most important here is that

we take into account the disturbance existed in the motor system — in particular, the

motor noise is modelled as control-dependent, with standard deviation proportional to

the mean of the control signal. Rewrite the dynamics of system as following

ẋ = F (x) + G(x)(1 + σuε)u, (5.78)
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where the state and control are given by x = (θ1 θ2 θ̇1 θ̇2)
T , u = τ = (τ1 τ2)

T . The

control inputs u is disturbed by the multiplicative noise, whose standard deviation is

20% of its magnitude — which means σu = 0.2 in (5.78), while ε is a zero-mean Gaussian

white noise with unity covariance.

The sensory feedback carries the information about position and velocity

y = (θ1 θ2 θ̇1 θ̇2)
T + ζ, (5.79)

where the sensory noise ζ has zero-mean Gaussian distribution with unity covariance.

5.6.1 Center-out reaching task

In order to demonstrate the effectiveness of our design, we applied ILQG method

to the human arm model described above. Note that, in this model, we introduce a

signal-dependent noise whose standard deviation is 20% of the control signal magnitude.

Here we use the center-out reaching task which is commonly studied in the Motor

Control — the targets e∗ (shown as stars in Fig. 5.1A) are arranged in a circle with 0.1m

radius around the starting position. The arm starts from rest at (θ1 = π/4, θ2 = π/2),

and has to reach a specified target in 0.5s, with minimal control energy. The cost function

is defined as

J1 =
∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2
+ 0.001

∥

∥

∥
ė
(

θ(T ), ˙θ(T )
)∥

∥

∥

2
+

1

2

∫ T

0
0.0001‖u‖2 dt, (5.80)

where e(θ) and ė(θ, θ̇) is the forward kinematics transformation from joint coordinates

to Cartesian hand coordinates.

Figure 5.1 shows average behavior for the fully observable case: hand paths in (A),

tangential speed profiles in (B). We find out that the movement kinematics share many

features with experimental data on human arm movements — nearly straight movement

paths and bell-shaped speed profiles.

Now we look at the partial observable case where the states of system are obtained by

the estimator. Although the state of the controlled plant are only available through noisy

measurement, the movement trajectories shown in Fig. 5.2A illustrates that the hand
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Figure 5.1. Fully observable case: average behavior of the ILQG controller for reach-

ing movements, using a 2-link human arm model. (A) Hand paths for movement in 8

directions; (B) Speed profiles.

could still arrive to the desired target position accurately. Another encouraging result is

that in terms of CPU time. Fig. 5.2B shows how the total cost decreased over iterations

of the algorithm, for reaching in 8 different directions. On average, ILQG found a locally-

optimal time-varying feedback control law in about 8 seconds (on a 2.8GHz Pentium 4

machine, in Matlab).

Trajectory-based algorithms related to Pontryagins Maximum Principle in general

find locally-optimal solutions, and complex control problems may exhibit many local

minima. Finally, we explored the issue of local minima for the arm control problem. We

used 50 different initializations, for each of 8 movement directions. The final trajectories

are given in Fig. 5.3, where Fig. 5.3A shows that, for the fully observable case, all the

optimization runs converge to a solution very similar to the best solution we find for the

corresponding target direction. Fig. 5.3B shows how the cloud of 50 randomly initialized

trajectories gradually converge for the partial observable case by using ILQG method.

There are local minima, but half the time the algorithm converges to the same result.

Therefore, the derived algorithm is relatively very robust, and a small number of restarts

of ILQG are sufficient to discover what appears to be the global minimum in a relatively

complex control problem.
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Figure 5.2. Partial observable case: average behavior of the ILQG controller and esti-

mator for reaching movements, using a 2-link human arm model. (A) Hand paths for

movement in 8 directions; (B) Cost over iterations.
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Figure 5.3. Hand paths for random 50 initial control laws (blue, inset) and optimized

paths (black) to 8 targets obtained by using those initial conditions. (A) fully observable

case; (B) partial observable case.

5.6.2 Reaching task with the obstacle avoidance

The second task is to implement the reaching task and to avoid the obstacle during

the movement, while the obstacle is defined as a circle with a certain radius robstacle =

0.02m, and is arranged in the fixed position. The distance between the starting position

and the target is about 0.15m. The arm starts from rest at θ1 = π/4, θ2 = π/2, and has

to reach the specified target and avoid the obstacle during the reaching, with minimal
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Figure 5.4. Average behavior of the ILQG controller and estimator for reaching move-

ment with obstacle avoidance, using a 2-link human arm model. Blue curve: fully

observable case; green dashed curve: partial observable case. Note that obstacle circle

radius r = 0.02m.

control energy. The cost function (3.21) is rewritten here as

J2 =
∥

∥

∥
e(θ(T )) − e∗

∥

∥

∥

2
+ 0.001

∥

∥

∥
ė
(

θ(T ), θ̇(T )
)∥

∥

∥

2
+

1

2

∫ T

0
0.0001‖u‖2 dt + qobstable,

qobstable =







k1
∫ T
0

(

ℓ(θ(t)) − robstacle

)−2
dt when l > r

∞ otherwise
(5.81)

where the target e∗ is defined in end-point coordinates; the weighting coefficient k1 =

1e − 8, the obstacle radius robstacle is equal to 0.02m.

Figure 5.4 shows the movement trajectories and illustrates how the hand avoid the

obstacle circle (marked as dark) and arrive to the desired target position (marked as

red star) as close as possible. The blue curve is obtained under the condition that

the state variable of the controlled plant is available; while the green dashed curve

illustrates the hand movement trajectory tying together the optimal feedback control and

estimation design. In the later case, the state of the controlled plant are approximately

computed, because of the existence of estimation error, we found out that the green

curve becomes more curved at the beginning of the movement compared with the result

on fully observable case.

Here the optimal control problem is solved for minimizing a performance criterion.

Fig. 5.5(a) shows the behavior of movement trajectories by changing the penalty weight-

ing k1 on the obstacle avoidance in the objective function (5.81). The bigger the weight
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Figure 5.5. (a) Comparison of movement behavior by choosing different weighting coeffi-

cients k1 on the obstacle cost rate (fully observable case). Magenta diamond: k1 = 1e−7;

Blue solid: k1 = 1e− 8; Yellow dashdot: k1 = 1e− 9; Black dashed: k1 = 1e− 10; Green

dotted: k1 = 1e−11. (b) Comparison of movement behavior by choosing different move-

ment duration (fully observable case). Blue solid: 700msec; Red dashdot: 500msec;

Black dashed: 350msec; Green dotted: 200msec. The obstacle r = 0.02m.

penalty k1 is, the hand movement trajectory is further away from the obstacle, and Fig.

5.5(a) exactly explains this phenomena. Another interesting result in behavioral experi-

ments shows that a longer movement duration can be predicted to cause a more curved

trajectory. Our simulation result Fig. 5.5(b) quantitatively supported those previous

studies with an enormous amount of data.

5.6.3 Comparison on a family of robotic manipulators

Our method was compared on a family of robotic manipulators (Fig. 5.6a), which

were simulated with the Matlab Robotics Toolbox [20]. The manipulators had between

2 and 7 hinge joints and moved in the plane. The kinematics were scaled so that all links

of a given manipulator were equal in length, and the end effector (filled circle) was 1 m

away from the base in the shown configuration. The dynamics were also scaled, so that

all links had the same mass and the sum of all link masses was 1 kg. Material density

was kept constant, and set so that a 1 m cylindrical link with diameter 0.1 m had mass
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Figure 5.6. Comparison of control methodologies on a family of robotic manipulators.

1 kg. The link diameter for each manipulator was computed given the constraint on

total mass and the fixed material density. Link inertia was then found assuming uniform

density.

We defined an optimal control problem with the following total cost:

J3 =
∥

∥

∥p(T ) − p∗
∥

∥

∥

2
+ 0.001

∥

∥

∥ṗ(T )
∥

∥

∥

2
+

1

2

∫ T

0
0.0001‖u‖2 dt, (5.82)

where p∗ is the target (in cartesian space) of a reaching movement executed with the

manipulator, N = 50 is the number of time steps, step duration is △t = 0.01s (resulting

in a T = 0.5s movement). Target is 0.1m away from the starting position.

We compared two indices of performance for each manipulator. The first index is

movement trajectories (Fig. 5.6b). In the non-redundant case (degree of freedom (DOF)

= 2), the movement trajectory is almost straight, but as redundancy increases we see

clear difference, the movement path is getting curved. The second index is the efficiency
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of the derived algorithm. Fig. 5.6c illustrates how the cost of the nominal trajectory

decreases with the number of iterations. Compared with the 2DOF manipulator, the

more complicated manipulator will take longer time to converge and find the optimal

solution.

5.7 Application to 2-link 6-muscle Arm Movements

Now we applied iLQG method to the 2 link 6 muscle arm (MODEL 2) given in

(3.15). Note that this model is stochastic: we include signal-dependent noise in the

control signal, with standard deviation equal to 20% of the control signal. Again we

test the algorithm on the center-out reaching task — where the targets are arranged in

a circle with 0.1 m radius around the starting position. The arm starts from the rest

position at (θ1 = π/4, θ2 = π/2), and has to reach a specified target in 350ms.

Figure 5.7 shows average behavior for the fully observable case: hand paths in (A),

tangential speed profiles in (B), and muscle activations in (C). We find out that both the

movement kinematics and the muscle activations share many features with experimental

data on human arm movements — but a detailed discussion of the relevance to Motor

Control is beyond the scope of this thesis. Another encouraging result is that in terms of

CPU time. On average, the algorithm can find a locally-optimal time-varying feedback

control law in about 12 seconds (on a 2.8GHz Pentium 4 machine, in Matlab) on the

arm reaching task in the absence of noise, and 16 seconds when multiplicative noise is

included.

Figure 5.8 illustrates the robustness to noise: open-loop control in (A), closed-loop

control in (B), and closed-loop control optimized for a deterministic system in (C).

Closed-loop control is based on the time-varying feedback gain matrix L generated by the

ILQG method, while open-loop control only uses the final u constructed by the algorithm.

As the endpoint error ellipses show, the feedback control scheme substantially reduces

the effects of the noise, and benefits from being optimized for the correct multiplicative

noise model.
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Figure 5.7. Fully observable case: average behavior of the ILQG controller for reaching

movements, using a 2-link 6-muscle human arm model. (A) Hand paths for movement

in 16 directions; (B) Speed profiles; (C) Muscle activations.

Figure 5.8. Effects of control-dependent noise on hand reaching trajectories, under dif-

ferent control laws. (A) open-loop control; (B) closed-loop control; (C) closed-loop

controller optimized for deterministic system.



80

-0.12 -0.02 0.08

0.35

0.45

0.55

0 350

S
p

e
e

d

Time (ms)

Elbow Flexor Elbow Extensorr Shoulder Flexor

Time (ms)

T
a
rg

e
t 
D

ir
e
ct

io
n
 (

d
e
g
) Shoulder Extensor

0 300

90

180

270

360

Biarticulate Flexor Biarticulate Extensor

A) B)

C)

Figure 5.9. Partial observable case: average behavior of the ILQG controller and esti-

mator for reaching movements, using a 2-link 6-muscle human arm model. (A) Hand

paths for movement in 16 directions; (B) Speed profiles; (C) Muscle activations.

Now we look at the partial observable case where the state of the controlled plant

are only available through noisy measurement. Using the optimal estimator designed in

section 5.5, Fig. 5.9A shows that the hand could still reach the target position (shown

as red stars in Fig. 5.9A) as accurately as possible. Fig. 5.9B shows tangential speed

profiles, for reaching in 16 different directions, and they remain in bell-shaped. Fig. 5.9C

shows the muscle activation patterns for elbow flexor, elbow extensor, shoulder flexor,

shoulder extensor, biarticulate flexor and biarticulate extensor.

To test for the presence of multiple local minima on this arm control problem, we

initialize the ILQG algorithm with 50 random control sequences, for each of 8 movement

directions. Fig. 5.10 illustrate the final optimal movement trajectories. For the fully
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Figure 5.10. The optimized hand paths obtained by using 50 different initial conditions

for each of 8 movement directions. (A) fully observable case; (B) partial observable case.

observable case, Fig. 5.10A shows that, Over 97% of the optimization runs (10 out of

400) converge to a solution very similar to the best solution we find for the corresponding

target direction. Fig. 5.10B shows how the cloud of 50 randomly initialized trajectories

gradually converge for the partial observable case.

5.8 Summary

Linear quadratic Gaussian (LQG) control is one of the most fundamental and widely

used tools in modern engineering. However, the most problematic assumption of classi-

cal LQG control theory for stochastic linear systems is that the stochastic disturbances

are additive and not control or state dependent. Motor noise in biological movement

systems that we are interested in has been found to be multiplicative [38, 116], with

standard deviation proportional to the magnitude of the control signal. And it is be-

coming increasingly clear that some extensively studied phenomena, such as trajectory

smoothness, speed-accuracy trade-offs, task-dependent impedance, and structured vari-

ability, are closely related to the multiplicative nature of motor noise. For the real control

system design, feedback is based on delayed and noisy sensors that may not measure all

the state variables, it is therefore desirable to extend the algorithm to the partially ob-

servable case by combining it with an extended Kalman filter. This results in a coupled

estimation-control problem, which is more complicated in the presence of multiplicative

noise.

This chapter presents an iterative Linear-Quadratic-Gaussian method for locally-
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optimal control and estimation of nonlinear stochastic dynamical systems subject to

control constraints. The new method constructs an affine feedback control law obtained

by minimizing a novel quadratic approximation to the optimal cost-to-go function. It

also constructs a modified extended Kalman filter corresponding to the control law. The

control law and filter are iteratively improved until convergence. Although our work

is motivated by studying biological movement control, the present results could be of

interest to a wider audience. The most important is that our approach yields a numer-

ical algorithm with stable convergence achieved through backtracking line search; and

convergence in the vicinity of a local minimum is quadratic. Finally, the application of

the algorithm is illustrated in the context of reaching movements and obstacle avoidance

on a complex biomechanical control problem involving a stochastic model of the human

arm.

The text of this chapter, in part, has been submitted for publication in Automatica.

The thesis author was the primary researcher and author in these works and the co-

author listed in this publication directed and supervised the research which forms the

basis for this chapter.



Chapter 6

Hierarchical Optimal Control for

Biological Movement Systems

6.1 Introduction

Neural control of movement is accomplished by a complex hierarchy of recurrently

connected brain regions. Understanding how the multiple levels of the sensorimotor sys-

tem cooperate to produce integrated action has been a central theme in Neuroscience

since the pioneering work of Sherrington. Perhaps the most thorough investigation of

the levels of human motor control was undertaken by Bernstein [8], who concluded that

every motor skill involves at least two levels of feedback control: a leading level that

monitors progress and steers the biomechanical plant towards the achievement of the

task goals, and a background level that provides various automatisms and corrections

that help the leading level. More recently, recordings in a variety of motor areas have

revealed a progression of increasingly abstract (and increasingly hard to describe) neu-

ral representations. The development of the so-called hierarchical control has also been

extended to large-scale control systems [46, 65, 105]. Through multilevel methodologies,

a large-scale control system’s complexity can be relaxed by solving a family of subprob-

lems which are of smaller dimensions and are more easily handled. But despite this

long standing interest and the wealth of relevant data and intuitive notions, quantita-

83
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Figure 6.1. Illustration of the hierarchical control structure

tive theories of hierarchical sensorimotor control are surprisingly rare [73]. Indeed, the

computational ideas that can provide a solid foundation for such theories have emerged

only recently. The objective here is to synthesize these ideas into a general approach to

hierarchical feedback control, and illustrate the approach with a specific model of arm

movement control.

The structure of biological movements examined in this chapter involves two-level

feedback control hierarchies (Fig. 6.1): a low-level controller is responsible for transform-

ing high-level commands into appropriate muscle activations, and also for transforming

the dynamics of the real plant into the virtual dynamics assumed by the high level.

The high-level controller performs goal-directed movement control, but is partly isolated

from the complexity of the physical plant. As shown in Fig. 6.1, the low-level controller

receives information about the plant state x, as well as a high-level control signal uy, and

generates appropriate muscle activations ux. It also produces a more abstract state rep-

resentation y that is sent to the high-level controller. The high-level controller receives

y and generates abstract control command uy to coordinate the low-level unit.

Here we focus on the study of hierarchical optimal control for human arm move-

ments. The optimal feedback controller on the high-level will be designed using an iter-

ative Linear-Quadratic-Gaussian (iLQG) method derived in the previous chapter. The
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simplified virtual model assumed on the high-level may not be a perfect model of the

augmented plant, therefore, an identification process is also included which can continu-

ously calibrate the expectations on the high level. The low-level has to activate muscles

so as to accomplish desired effects in the task-relevant space. Since there are more mus-

cles than task variables, the low-level faces a redundancy problem which will be solved

using static optimization. The control of biological movement systems is a very com-

plex problem, because such systems have nonlinear dynamics and high-dimensionality,

preventing the use of many traditional methods for controller design. The goal of this

chapter is to combine the optimality principle and hierarchical strategy in order to de-

velop a new framework for the sensorimotor system, which hopefully could better reflect

the real control problem that the brain faces.

This chapter is organized as follows. In section 6.2 we introduce the biological mo-

tivation of hierarchical control scheme and its relation to optimal feedback control. In

section 6.3 the general hierarchical feedback control framework for the nonlinear system

is formulated. Section 6.4 presents the numerical results for a realistic human arm model,

in the context of reaching task.

6.2 Biological Motivation, and relation to Optimal Control

6.2.1 Minimal intervention principle

The recent theory of motor coordination [116, 117] has revealed a somewhat sur-

prising fact about the optimal way to control redundant systems. They have shown

that optimal feedback controllers obey a “minimal intervention” principle: rather than

correcting all deviations from a desired trajectory, such controllers only act in the task-

relevant subspace and leave task-irrelevant deviations uncorrected. Loosely speaking,

this is done by extracting a small set of task-relevant features (through a set of sensory

synergies), performing feedback control in that feature space, and mapping the result-

ing abstract controls into control signals for the real actuators (through a set of motor

synergies). The difficulty with optimal feedback controllers for complex systems is that
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they are extremely hard to design — perhaps even for the brain.

The minimal intervention principle suggests a natural approximation to optimal feed-

back control in redundant tasks, using a two-level feedback control hierarchy. The basic

idea (see Fig. 6.1) is to design optimal feedback controllers that optimize the true cost

function, but for a simpler virtual plant with state y(x). This corresponds to Bernsteins

leading level of control, where the brain monitors a small number of task parameters

y instead of the full state x, and generates an abstract control signal uy interpreted as

desired change in y. The background level then has the job of transforming the dynamics

of the actual plant into that of the virtual plant, i.e. computing the real control signal

ux(x, uy) such that the desired change in y(x) is accomplished, with minimal control

effort.

6.2.2 Structured motor variability

A signature of both optimal feedback control and hierarchical control schemes is

selective control of task-relevant parameters, which implies increased variability in task-

irrelevant parameters. This phenomenon has been observed in a wide range of behaviors,

and has been quantified via the “uncontrolled manifold” method for comparing task-

relevant and task-irrelevant variance [101]. It is also illustrated here with data from the

following experiment. Six subjects were asked to move repeatedly between three targets

attached to their body (one target on each leg, and one on the left upper arm). Subjects

held a 25 cm wooden pointer in their right hand, and always used the same tip (TIP 1) to

touch the center of the targets. We measured the position and orientation of the center

of the pointer with a Polhemus Liberty sensor (240 Hz sampling rate), which allowed us

to calculate the positions of both TIP 1 and TIP 2. The experimental setup is shown in

Fig. 6.2(a). The goal of the experiment was to quantify the positional variance of the

movement paths.

The data were analyzed as follows. The start and end times of each movement were

found using a velocity threshold, applied when TIP 1 was within 10 cm of a target.

Outlier movements, that failed to reach within 10 cm of their target, were eliminated.
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Each movement was resampled in space, at equal intervals with length 2% of the total

path length for that movement (this resampling is needed to suppress temporal misalign-

ment). The mean and covariance for each sample point were computed, separately for

each subject and movement target. Positional variance was defined as the trace of the

covariance matrix. The means and covariances were then averaged over subjects, and

plotted in Fig. 6.2(b) (±1 standard deviation ellipsoids are shown at 25% intervals).
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Figure 6.2. Experimental illustration of increased variability in redundant dimensions.
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To facilitate comparison, we further averaged over the three targets and plotted the

positional variances of the two tips of the pointer in Fig. 6.2(c).

The main result shown in Fig. 6.2(c) nicely illustrates the typical structure of motor

variability. The position of the task-relevant TIP 1 is less variable than the task-irrelevant

TIP 2. Furthermore, both variances are smaller in the task-relevant portions of the

movement (when the pointer approaches the target) compared to the middle of the

movement. The latter effect is much stronger for the task-relevant TIP 1.

These observations make it clear that the nervous system is not using the classic

robotics approach — which is to plan a trajectory in joint space, and then execute that

trajectory using some combination of computed torque and servo control. Since a joint-

space trajectory plan contains no information regarding task relevance, the execution

system would have no choice but to track faithfully all details of the plan — including

the irrelevant ones. This would result in increased energy consumption, and increased

errors due to control-dependent noise.

6.3 General Hierarchical Control Approach

Consider a continuous nonlinear dynamical system with state x(t) ∈ R
nx and control

signal ux(t) ∈ R
nux , whose dynamics is

ẋ = a
(

x(t)
)

+ B
(

x(t)
)

ux(t), x(0) = x0. (6.1)

Let ℓ(x(t), u(t), t) = q(x(t)) + r(x(t), ux(t)) be the instantaneous cost rate, h(x(T )) the

final cost and T a specified final time, then the performance index is defined as

J = h(x(T )) +

∫ T

0
ℓ(x(t), ux(t), t)dt, (6.2)

Our goal is to design controllers for the dynamical system (6.1) that minimize the above

performance criterion. Here we focus on hierarchical control approach to solve for this

general nonlinear optimal control problem. Fig. 6.1 shows that the decision making of

this problem could be divided into two levels which are coordinated each other.
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6.3.1 High-level dynamics model

Let x ∈ R
nx be a state vector of a redundant biomechanical plant (representing joint

angles, joint velocities, muscle activation states, and relevant aspects of the environment),

and q(x) be a cost function that quantifies the notion of a “task”. Redundancy means

that the function q(x) depends on the state x only through a reduced set of (more

abstract) variables p(x), i.e. q(x) can be written as q(p(x)). In the task of reaching, for

example, performance depends only on the position of the hand relative to the target.

We propose the following principles for designing the task features and the desired

high-level dynamics. First, it should be sufficiently simple, so that optimal control

methods become feasible; second, it should be sufficiently close to the true dynamics, so

that the transformer does not have to guess blindly (recall that the transformer does not

know what the task is); third, it should contain p(x) as state variables, so that the true

cost q(p(x)) can be measured and optimized by the leading level.

We emphasize that setting the high-level state vector y = p(x) will most likely

violate the principle. Instead, we include in the virtual dynamical state y both p(x) and

its derivatives, so as to match the order of the differential equations governing the true

dynamics. In the task of reaching, the virtual state will include hand position, velocity,

and net muscle force (expressed in hand space); the virtual control signal will specify

desired change in force.

The high-level state vector y ∈ R
ny , ny ≤ nx, is a static function of the plant state:

y = ϕ(x) (6.3)

The function ϕ defines the mapping between the plant state x and the high-level state

y, and it is supplied by the user. For example, if x is joint angle and angular velocity, y

is end-effector position and velocity, the mapping function could be easily defined using

the transformation between joint space and end-effector coordinates.

Now the question here is how to define high-level dynamics. Of course we can choose

whatever high-level dynamics we desire. But what should we desire? One possibility is

to choose a linear y dynamics. However we believe that the y dynamics should mimic
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the x dynamics to the extent possible, so that the high-level controller can exploit the

natural plant dynamics while operating on a lower-dimensional system. Differentiating

(6.3) with respect to t and using (6.1), the actual dynamics of y becomes

ẏ = Φ(x)
(

a(x) + B(x)ux

)

(6.4)

where Φ(x) ,
∂ϕ
∂x is the Jacobian of the function ϕ.

Our design method seeks to create a desired high-level dynamics

ẏ = g(y) + G(y) uy, (6.5)

where uy is the high-level control signal, g, G are assumed to be some known functions

for now. Therefore, matching the passive dynamics in (6.4) and (6.5) yields

g
(

ϕ(x)
)

= Φ(x)a(x), (6.6)

Matching the control-dependent terms in (6.4) and (6.5) yields

G
(

ϕ(x)
)

ũy(x, ux) = Φ(x)B(x)ux, (6.7)

where ũy(x, ux) corresponds to the desired high-level control signals, and should be

chosen using physical intuition. For example, if ux is joint torque and y is end-effector

position and velocity, ũy(x, ux) could be either end-effector acceleration or force.

In addition to this standard technique for designing the high-level dynamics, the

hierarchical framework here allows another novel method. In this method, the passive

dynamics is no longer modeled explicitly on the high level, instead, it is obtained through

the online estimation. Initially, we could use a linear model to describe the high-level

dynamics followed by the learning of high-level dynamics.

6.3.2 High-level controller design

What we provide here is a way to generate control law uy which affects x in such

a way that the corresponding changes in y are as desired. Of course, optimization of

the high-level controller will be facilitated if the cost function can be captured on the



91

high level. At the beginning, we have already assumed that y should contain enough

information to compute the state-dependent cost q(x). Therefore, given y = ϕ(x), we

could easily compute the high-level state-dependent cost term

q(ϕ(x)) ≈ q(x). (6.8)

However, the control cost r(x, ux) cannot be represented exactly on the high level, be-

cause it typically contains independent contributions from all components of ux. This

is the reason why the proposed hierarchical scheme is only an approximation to optimal

control. But still we would like an approximation to the control energy term r(x, ux).

This requires a function r̃ such that

r̃(ϕ(x), uy) ≈ r(x, ux). (6.9)

The objective of the high-level is to find the control uy that minimizes the following

performance criterion

J = h
(

ϕ
(

x(T )
))

+

∫ T

0

[

q
(

ϕ(x(t))) + r̃(ϕ(x), uy

)

]

dt. (6.10)

The optimal feedback controller on the high level will be designed using an iterative

Linear-Quadratic-Gaussian (iLQG) method that we have developed in the precious chap-

ter. This method extend the efficient and well-developed LQG framework to the domain

of nonlinear control. Briefly, the iteration starts with some control law that is applied

to the nonlinear system — obtaining an average trajectory and control sequence. We

then linearize the dynamics and quadratize the cost in the vicinity of that state-control

trajectory, apply dynamic programming locally, and use the result to improve the initial

control law. The algorithm has quadratic convergence, similar to a Newton’s method.

6.3.3 Low-level controller design

In section 6.3.1, we define that the high-level state vector is a static function of the

plant state (6.3), and obtain the actual and the desired high-level dynamics. The key

of low-level controller design is the following: choose ux(x, uy) so that the desired y

dynamics (6.5) and the actual y dynamics (6.4) are identical; when multiple solutions
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exist, use the control cost r(x, ux) to resolve redundancy. Setting “desired y = actual y”

yields

Φ(x)B(x)ux = g(y) + G(y)uy − Φ(x)a(x)

Hence the low-level control law ux is obtained by solving the following constrained

optimization problem:

Given uy and x, find ux that minimizes

1

2

∫ T

0
r(x, ux) dt subject to

Φ(x)B(x)ux = g(y) + G(y)uy − Φ(x)a(x). (6.11)

In addition to the above equality constraint, we can incorporate inequality constraints on

ux. The latter are particularly important in biological movement control where muscle

activations are always nonnegative.

Generally the control energy term has the quadratic form as the following

r(x, ux) = uT
x Rux, (6.12)

where R is symmetric positive definite. When r(x, ux) is in the above form, and control

inequality constraint is absent, by assuming that Φ(x)B(x) has full row rank, the low-

level controller can be uniquely computed as

ux =
(

Φ(x)B(x)
)†

R

(

g(y) + G(y)uy − Φ(x)a(x)
)

. (6.13)

One can transform the above constrained optimization problem (6.11) into an un-

constrained one, and use a mixed cost that absorbs all constraints. Then the low-level

control law ux is obtained by solving the following unconstrained optimization problem:

Given uy and x, find ux that minimizes

∫ T

0

(

r(x, ux) + λ1

∥

∥

∥g(y) + G(y)uy − Φ(x)
(

a(x) + B(x)ux

)∥

∥

∥

2
+ λ2 c(t, ux)

)

dt. (6.14)

The constants λ1, λ2 set the relative importance of satisfying constraint versus minimiz-

ing energy.
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6.3.4 Dynamic compatibility between levels of control

A potential problem of the above method is lack of “dynamic compatibility” between

the two levels. This occurs when Φ(x)B(x) = 0. For example, suppose y is end-effector

position, uy is end-effector velocity, and ux is joint torque. This is problematic be-

cause torque cannot affect velocity instantaneously. However torque has a predictable

effect when applied over time, in the following, we will present a method for computing

temporal prediction ã, B̃ in place of “instantaneous” a and B.

Consider the discrete-time representation of system (6.1) with time step ∆:

x(t + ∆) = x(t) + ∆
(

a
(

x(t)
)

+ B
(

x(t)
)

ux(t)
)

(6.15)

We now analyze this system within a single step, from time t to time t+∆. Define xτ =

x(t + τ), τ ∈ [0, ∆], so that x0 = x(t). Assuming that the control term b = B(x) ux(t)

is constant in the single time step, the changes of a(x) can be obtained by

a(xτ ) ≈ a(x0) + A(xτ − x0), A =
∂a(x)

∂x

∣

∣

∣

∣

x=x0

(6.16)

Then, we have continuous dynamics

ẋτ = Axτ +
(

a(x0) + b − Ax0

)

(6.17)

The solution of the above ordinary differential equation is

x∆ = x0 + ∆ T (∆A,∞)
(

a(x0) + b
)

(6.18)

where

T (X) = lim
n→∞

1

n

(

I +
(

I +
X

n

)

+ · · · +
(

I +
X

n

)n−1
)

=
(

exp(X) − I
)

X−1

Switching back to continuous notation, we have the following modified integration

scheme

x(t + ∆) = x(t) + ∆T (∆A,∞)
(

a
(

x(t)
)

+ B
(

x(t)
)

ux(t)
)

(6.19)

which differs from Euler integration (6.15) only by T . This motivates the construction

of the “predictive” dynamics ã, B̃ from the following condition: Euler integration (6.15)
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with ã, B̃ should be equivalent to the modified scheme (6.19) with the original a, B. This

condition is satisfied by

ã = T (∆A,∞) a(x) (6.20)

B̃ = T (∆A,∞) B(x) (6.21)

6.4 Application to 2-Link 6-Muscle Arm Movements

6.4.1 The two levels

The approach outlined above will now be applied to the problem of reaching with

a realistic arm — 2 links, 6 muscles arm model. The high-level dynamics is defined in

end-effector space (hand Cartesian space), and modelled using end-effector equations of

motion. Initially, we use a linear model to describe the high-level dynamics by choosing

y = [p v f ]T , where the high-level state variable y ∈ R
6 and control signal uy ∈ R

2,

and the construction of this end-effector linear model is achieved by expressing the

relationships of hand position p, velocities v, as well as the net muscle force f acting on

the hand:

ṗ = v, (6.22)

v̇ = f/m, (6.23)

ḟ = −α(f − mg) + uy, (6.24)

where m is the average hand mass, α is the muscle decay constant. Since the model

(6.22)-(6.24) is only an approximation, we need to use some learning processes in the

hierarchical control architecture, which can estimate those unknown quantities iteratively

online before a successful implementation can be achieved.

The control signal uy is the output of the high-level loop which specifies a desired

change of force in the end-effector space. The objective is to find the control uy that

minimizes the performance criterion

V =
1

2

∫ T

0

[

r1‖uy(t)‖2 + s(t) ‖p(t) − p∗‖2
]

dt, (6.25)
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where p∗ is the target, r1 = 1e − 6, and s(t) is 0 when the hand is allowed to move,

and 1 when the hand is required to be at the target. The optimal feedback controller is

designed using the iLQG method developed in chapter 5.

The forward dynamics of the arm can be expressed as

θ̈ = M(θ)−1(τmus − C(θ, θ̇) − G(θ)), (6.26)

where θ ∈ R
2 is the joint angle vector (shoulder: θ1, elbow: θ2), M(θ) ∈ R

2×2 is a positive

definite symmetric inertia matrix, C(θ, θ̇) ∈ R
2 is a vector centripetal and Coriolis forces,

G(θ) is the gravity, and τmus ∈ R
2 is the joint torque.

The tension T (a, l, v) produced by a muscle obviously depends on the muscle activa-

tion a, but also varies substantially with the length l and velocity v of that muscle

T (a, l, v) = aFvl(l(θ), v(θ, θ̇)) + Fp(l(θ)). (6.27)

The joint torque generated by the muscles is given by

τmus = M(θ) T (a, l(θ), v(θ, θ̇)), (6.28)

Muscle activation a is modelled as the following

ȧ = α(ux − a), (6.29)

where α is the muscle decay constant. Combining (6.26)-(6.29), the low-level dynamic

system can be obtained with state x = (θ1 θ2 θ̇1 θ̇2 a1 · · · a6)
T ∈ R

10, and control

ux ∈ R
6.

Based on the characteristics of the transformation from the joint space to the end-

effector space [54], the mapping y = ϕ(x) —between the state of low-level dynamic model

x and the high-level state y (containing hand position p, velocity v, as well as the net

muscle force f in hand space)—can be written specifically as

p = K(θ), (6.30)

v = J(θ)θ̇, (6.31)

JT (θ)f = τmus, (6.32)
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where K is the transformation of position θ from joint space to the end-effector space

(hand space) as described in (3.17); the Jacobian matrix J(θ) = ∂K/∂θ transforms

velocities in joint space, θ̇, to Cartesian velocity v of the end-effector expressed in hand

space, as given in (3.19).

Here we use additional assumption and wrote this problem in an analytical formu-

lation. Equation (6.32) represents the fundamental relationship between the net muscle

force f and the joint torque τmus consistent with the end-effector and arm dynamic

equations. With (6.27), (6.28), (6.32) and the assumption ȧ ≫ θ, θ̇, we can derive

ḟ = J†(θ)M(θ)Fvl(θ, θ̇) ȧ, where J+(θ) denotes the pseudo inverse. Based on (6.29) and

the assumption ḟ = −α(f − mg) + uy, we obtain

uy = αQux, Q = J†(θ)M(θ)Fvl(θ, θ̇). (6.33)

And the low-level controller for 2 Link 6 Muscle arm movement can be obtained by

solving a constrained quadratic optimization problem

min
ux

∫ T

0

1

2
uT

x Hux + bT uxdt (6.34)

subject to

0 ≤ ux ≤ 1, (6.35)

where H = α2QT Q + R, b = −αQT uy. The diagonal matrix R has entries proportional

to PCSAi (given in section 3.1.2)—because larger muscles generate more force per unit

activation, and therefore consume more metabolic energy. Eq. (6.35) explains that the

allowed range of muscle control signals is between 0 and 1. Therefore we can find the

low-level control ux which activates the muscles in a way that achieves the specified

change of force acting on the hand.

The low-level has to activate muscles so as to accomplish desired effects in the task-

relevant space. Since there are more muscles than task variables, the low-level faces a

redundancy problem which will be solved using static optimization. At each point in

time, we will obtain a linear relationship between muscle activations and task variables,

and then find the minimal feasible muscle activations via Quadratic Programming.
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Figure 6.3. Trajectories in Cartesian hand space. Gray lines – trajectories obtained

by applying the high-level feedback controller to the virtual dynamics. Black lines –

trajectories obtained by applying the hierarchical control scheme to the real plant.

6.4.2 Application to Arm Movements

The task we study here is reaching: the arm starts from rest position and has

to reach a specified target with minimal control energy. We chose different pairs of

starting postures and targets, and applied the hierarchical control scheme described

above. POSTURE 1 : θ1 = 1.5rad, θ2 = 1.05rad; POSTURE 2 : θ1 = 1.3rad, θ2 =

1.5rad; TARGET 1 : p∗ = [0.05m; 0.5m] ; TARGET 2 : p∗ = [0.1m; 0.4m]. Hand tra-

jectories are shown in Fig. 6.3. The black curves are the actual trajectories of the hand,

that result from the coupling of the two-level hierarchy with the detailed arm model.

The gray curves are the trajectories that would have resulted from applying the feed-

back control law to the virtual dynamical system. Note that before learning the ”virtual

trajectories” are straight, because we do not have nonlinearities in the initial virtual

model. However, after the system identification stage the virtual model is improved,

and it now contains nonlinear terms. As a result, both the virtual and real trajectories

become curved, and more importantly, they get closer to each other.

Figure 6.4 illustrates the high-level optimal control commands uy which were sent

to the low-level loop, and the low-level optimal control sequences ux that were used

to activate the muscles. It also shows optimal hand trajectory (high level trajectory) in

Cartesian space, and shoulder and elbow angle movement trajectory (low level trajectory)
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Figure 6.4. Optimal control sequences and trajectories of hierarchical control system

(results obtained after learning). Circle: start position. Star: target position.

in joint space. We found that hand arrives to the desired position X = 0.05m, Y = 0.5m

respectively. Additionally, the cost achieved by the hierarchical control system after

learning was 21% lower compared to its value before learning.

Furthermore, we compared the behavior of the hierarchical control scheme to that

of an optimal (non-hierarchical) controller designed for the real plant. Note that the

plant we are studying, although quite complex, is still amenable to iterative methods

for nonlinear optimal control. We used the control sequences generated by our control

scheme as an initial control law, and then improved that control law via gradient descent

on the performance criterion. Both before and after learning, we found that the controls

generated by our method are close to a local minimum of the unconstrained problem

(see Fig. 6.5). After learning, the distance to the nearest local minimum was about 50%

less than it was before learning.
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Figure 6.5. Comparison of the muscle control sequences generated by our hierarchical

controller (dashed lines) vs. the non-hierarchical optimal controller (thick gray lines).
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Figure 6.6. Effects of adapting the high-level dynamics to the plant dynamics.

Finally, we applied this hierarchical control scheme to the center-out reaching task

which is commonly studied in the Motor Control — the targets are arranged in a circle

with 15cm radius around the starting position. Note that the high level dynamics y

here is a 6-dimensional vector containing the hand position, velocity and net muscle

force. Results are shown in (Fig. 6.6). For the trivial dynamics in the high level (before

learning) the end-effector paths were straight as expected, because we did not include

nonlinearities in the initial high level virtual model, and we assumed that it was linear.

For the adapted dynamics (after learning) the paths became systematically curved. As

a result of this strategy, the total cost was reduced by 23%.

Figure 6.7 illustrates the reaching trajectories in hand space both before and after
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Figure 6.7. Reaching trajectories in hand space obtained before and after learning with

y containing hand position, velocity and net muscle force. Dotted lines — trajectories

obtained by applying the high-level feedback controller to the virtual dynamics. Solid

lines — trajectories obtained by applying the hierarchical control scheme to the real

plant. Circles — target positions.

learning. The solid lines are the actual trajectories of the hand, obtained by applying the

two-level hierarchy to the real detailed arm model. The dotted lines are the trajectories

that would have resulted from applying the feedback control law to the virtual dynamical

system. We notice that, in Fig. 6.7, the “expected trajectories” before learning are

straight. However, after the system identification stage, the virtual model is improved,

and it now contains nonlinear terms. As a result, both the virtual and real trajectories

become curved, and more importantly, they get closer to each other. Therefore, the

high-level dynamics model that was learned is a good approximation to the dynamics

of the real plant. Furthermore, the comparison of hand trajectories (solid blue curves)

shows that, after learning the hand can reach the target positions (green circles shown

in Fig. 6.7) as accurately as possible.

6.4.3 Different Representation of High-level Feature Space and Com-

parison to Optimal Control

The key to our hierarchical framework for redundant biomechanical systems is to

design the high-level and low-level controllers, as well as the construction of high-level
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dynamics that approximately mimic the plant dynamics. How to choose appropriate

high-level parameters is a hard question, so we seek that the high-level state contains

task-related parameters that enter in the computation of the performance index, and

perhaps other closely related parameters. The following simulation will reveal a benefit

of including velocity or net muscle force as high-level parameters for the application of

reaching movements, even though the state-dependent cost is only a function of position.

Here we designed three hierarchical controllers for different representations of high-

level dynamics. In the first case, y is a 6-dimensional vector containing the hand position,

velocity and muscle force y = [p; ṗ; f ]. In the second case, y is a 4-dimensional vec-

tor containing the hand position and velocity y = [p; ṗ]. In the third case, y is a

2-dimensional vector containing only the hand position y = p. The control inequality

constraints (the range of muscle control signals is between 0 and 1) made the explicit

solutions inapplicable, and therefore, the low-level controller used Quadratic Program-

ming at each time step to compute ux(x, uy). In addition to the three hierarchical

controllers, we also computed the optimal feedback controller in each case, using our

iterative linear-quadratic-Gaussian (iLQG) method derived in chapter 5. Furthermore,

the variability of biological movements indicates the presence of large disturbances in

the motor system. In particular, it is known that the motor noise is control-dependent

[38, 116, 117, 118, 120], with standard deviation proportional to the mean of the control

signal. Hence it is also very important for us to take these disturbances into account.

Figure 6.8 shows deterministic and stochastic hand paths for each controller. Stochas-

tic trajectories were simulated by corrupting each control signal with 50% control-

multiplicative noise. The differences on the level of kinematics are small among optimal

controller and another two hierarchical controllers (y = [p; ṗ] and y = [p; ṗ; f ]), and the

reaching trajectories shown in Fig. 6.8 are similar to the experimental data of human

movement. While for the y = p controller, the high-level dynamics only includes the

information of hand position, which can’t approximate the real plant dynamic very well.

Therefore comparing with the other two hierarchical controllers, the performance of the

y = p controller is poor, and the hand is hard to reach the targets accurately.

Figure 6.9 shows the muscle activations. Each subplot is one muscle-controller com-
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bination. The horizontal axis corresponds to movement direction, while the vertical axis

is time during the movement (increasing downward). Dark means higher activation. We

now see a much more clear distinction between the three hierarchical controllers. The

muscle activations found by the y = [p; ṗ; f ] controller are quite similar to the optimal

muscle activations, and furthermore resemble many features of experimentally observed

muscle activations. On the other hand, the y = p controller misses the elaborate tem-

poral pattern of muscle activation, although it still activates the appropriate muscles.

The relatively poor performance of the y = p controller suggests that controlling hand

position through instantaneous velocity commands is not a good idea—because such

commands are too far removed from the muscles that have to carry them out. In con-

trast, high-level commands related to hand force rather than velocity afford hierarchical

control that is much closer to optimal. Overall we conclude that our hierarchical control

scheme is reasonably close to the behavior of the optimal controller when the high-level

state contains hand position and force.
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6.5 Application to 5-Link 24-Muscle Arm Movements

Now the hierarchical control approach outlined above will be applied to a much

more complicated and realistic arm. This arm model contains 5 links and 24 muscles with

varying moment arms, muscle length-velocity-tension curves based on the Virtual Muscle

model, and activation dynamics modelled as a nonlinear low-pass filter. The detailed

model is given in section 3.2. In this case the state of the high-level virtual dynamics is

6-dimensional, which contains hand position and velocity expressed in Cartesian hand

space. We use an initial linear model of the y dynamics, where the velocity is the

derivative of position, and the control signal uy is the derivative of velocity. The high-

level controller is designed to implement the goal of the movement: flexing the shoulder

to 30 degree and the elbow to 90 degree from the neutral position (where the upper arm

is adjacent to the torso, the elbow is fully extended, and the palm of the hand is facing

anteriorly). Fig. 6.10 illustrates how the shoulder flexion angle and elbow flexion angle

converge by applying the hierarchical control scheme to this complicated 5DOF arm.

While the low-level controller is designed to activate the appropriate muscles, and Fig.

6.11 shows the reasonable temporal muscle activation patterns for deltoid, supraspinatus,

infraspinatus and subscapularis muscle.
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Figure 6.10. Application of hierarchical control to 5-Link 24-Muscle arm movement:

shoulder flex to 30 degree, and elbow flexed to 90 degree.
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Figure 6.11. Muscle activation patterns of deltoid, supraspinatus, infraspinatus and

subscapularis muscle for 5-Link 24-Muscle arm movement.

6.6 Summary

Here we present a general approach to approximately-optimal hierarchical feedback

control of redundant systems, and illustrate its application in the context of reaching

with a realistic model of the human arm. The design of the proposed control hierarchy

involves: (i) specifying a set of task-relevant parameters for constructing the desired

high-level dynamics that mimic the plant dynamics but has reduced dimensionality;

(ii) designing a low-level feedback controller which yields an augmented plant with the

specified input-output behavior; (iii) designing a high-level feedback controller that solves

the original control problem but operates on a simplified system. The resulting control

hierarchy makes it possible to solve the optimal control problem without running into the

curse of dimensionality. Imposing any predefined control structure is likely to result in

suboptimal performance. However, our simulations demonstrate that the suboptimality

due to the hierarchical structure is negligible (especially after learning). At the same

time, the computational demands are much lower than what is required for designing an

optimal feedback controller.

While this may be the first comprehensive approach to hierarchical sensorimotor

control, the main computational ideas underlying it are not entirely new. Feedback
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transformations that create easier-to-control virtual plants have been used in robotics

[14]; the Operational Space Framework [54] and Virtual Model Control [92] are particu-

larly relevant. The new computational aspects of our work are: (i) application of optimal

feedback control to the virtual plant; (ii) principles for designing the virtual model that

make it suitable for optimal control; (ii) continuous improvement of the internal model

of virtual dynamics, compensating for unavoidable transformation errors.



Chapter 7

Estimation and Control Design

via Linear Matrix Inequalities

7.1 Motivation

The filtering and control problem for the systems with multiplicative noise has re-

cently received a great deal of attentions, and has found applications in many fields of

sciences and engineering. Different from the traditional additive noise, multiplicative

noise is more practical, since it allows the statistical description of the multiplicative

noise be not known a prior but depend on the control and state solution. Such models

are found in many physical systems, such as signal processing systems [35], biological

movement systems [38, 116, 117, 118, 120] and aerospace engineering systems.

One important benefit of the multiplicative noise in a linear control problem is that

the controllers for multiplicative systems appear robust. This is in contrast to LQG

theory, where the minimum variance occurs at infinite control gain, which renders the

solution of problem unstable. Therefore, the multiplicative noise system has a significant

effect on the robustness of the overall control system [36, 74, 89, 114].

So far, many researchers have been working on various kinds of analysis of filtering

and control in systems with multiplicative noise, and there have been several approaches

107
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for dealing with this problem, including the linear matrix inequality approach [35, 36],

the Riccati difference equation method [93, 96, 117, 120, 133], and the game theoretic ap-

proach [94]. Since this model reflects more realistic properties in engineering, a complete

theory which includes control and estimation should be developed.

Here we focus on the study of estimation problem for multiplicative noise system us-

ing LMIs. Reference [36, 74] devised an LMI approach to the robust control of stochastic

systems with multiplicative noise. In [66] we study the state estimation with signal-

dependent noise model for the continuous time systems. The contribution here is to pro-

pose an LMI method to cope with the estimation problem for the discrete time systems

with multiplicative noise. We shall show that a mild additional constraint for scaling

will make the problem convex. The basic problem solved is to find a state estimator that

bounds the estimation error below a specified error covariance.

This chapter is organized as follows. In section 7.2 the filtering and control problem

for discrete time system subject to multiplicative noise is formulated. The design of

the state feedback controller is developed in section 7.3. In section 7.4, the sufficient

conditions for the existence of the state estimator are given, and an algorithm for the

filtering design is derived which guarantees the performance requirement. Section 7.5

presents two numerical examples, and some concluding remarks are drawn in section 7.6.

7.2 System Model and Problem Formulation

Consider the following discrete time system with state space representation

xk+1 = (Ak + As,kηk)xk + (Bk + Bs,kεk)uk + Dkωk,

zk = (Hk + Hs,kζk)xk + vk, (7.1)

yk = Ckxk,

where xk ∈ Rnx is the state variable, zk ∈ Rnz is the measurement output; yk ∈
Rny is the output of interest for performance evaluation; ωk ∈ Rnw and vk ∈ Rny

are the process and measurement noises; ηk, εk and ζk are the multiplicative noises;

Ak, As,k, Bk, Bs,k, Dk, Hk, Hs,k and Ck are constant matrices which have proper dimen-



109

sions. The independent random variable ωk, vk, ηk, εk and ζk have zero-mean gaussian

distributions with covariances W, V , and Ωη = Ωε = Ωζ = I respectively.

Here we consider the following problems. First, we look for the state feedback control

law uk = Kxk such that the closed loop system (7.1) is mean square stable. And we will

determine if there exists a control gain K such that ε∞{yT
k yk} < µ is satisfied for the

given µ.

Second, we consider (7.1) where Bk and Bs,k are zero. The objective is to design a

linear filter with the state space representation

x̂k+1 = Akx̂k + F (zk − Hkx̂k), (7.2)

ŷk = Ckx̂k, (7.3)

where x̂k is the unbiased estimate of the state xk, F is the filter gain to be determined

such that (Ak − FHk) is asymptotically stable, and the estimation error has covariance

less than a specified matrix. The estimation error is x̃k = xk − x̂k, and the estimation

error system is given by

x̃k+1 = (Ak − FHk)x̃k + ω̄k, (7.4)

ỹk = Ckx̃k, (7.5)

where

ω̄k = Dkωk + As,kηkxk − FHs,kζkxk − Fvk, (7.6)

and ỹk denotes the estimation error of particular interests. We will explore the existence

condition of the state estimator. And we will be able to provide the sufficient conditions

for the existence of the state estimator based on Linear Matrix Inequalities (LMIs).

The key idea of this filtering problem is to find the estimate x̂k of xk such that the

performance criterion ε∞{ỹkỹ
T
k } < Ω is satisfied for the given Ω.
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7.3 State-feedback Controller Design

Consider the system (7.1) where zk is excluded, the state-feedback control law is the

form uk = Kxk, now the closed loop system is the following

xk+1 = (Ak + BkK)xk + (As,kηk + Bs,kKεk)xk + Dkωk,

yk = Ckxk. (7.7)

Definition 1 (Mean Square Stable) The system (7.7) with multiplicative and

additive noise inputs is mean square stable if the state covariance matrix associated with

this system exists and is positive definite.

We first find the state feedback control gain K such that the closed loop system is

mean square stable. Assuming that the upper bound of state covariance matrix associ-

ated with system (7.7) exists, which is described as X ≥ ε∞{xkx
T
k }, it should satisfy the

following Lyapunov inequality

(Ak + BkK)X(Ak + BkK)T − X + As,kXAT
s,k + Bs,kKXKT BT

s,k < 0. (7.8)

Theorem 2 There exists a state feedback controller gain K such that the closed loop

system (7.7) is mean square stable if, and only if, there exist a symmetric positive definite

matrix X and a matrix L such that
















X AkX + BkL As,kX Bs,kL

XAT
k + LT BT

k X 0 0

XAT
s,k 0 X 0

LT BT
s,k 0 0 X

















> 0. (7.9)

And the corresponding feedback control gain is given by K = LX−1.

Proof 2 With the change of variable L := KX, (7.8) can be written as

(AkX + BkL)X−1(Ak + BkL)T − X + As,kXAT
s,k + Bs,kLX−1LT BT

s,k < 0.

Utilizing the Schur complement formula, the above inequality can be immediately written

as (7.9).
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Theorem 3 For a given scalar µ > 0, if there exist a symmetric positive definite matrix

X and a matrix L such that (7.9) is satisfied and

trace[CkXCT
k ] < µ, (7.10)

then there exists a state feedback controller gain K such that the closed loop system (7.7)

is mean square stable and ε∞{yT
k yk} < µ. And the corresponding feedback control gain

is given by K = LX−1.

Proof 3 The result follows from Theorem 1 and

ε∞{yT
k yk} = trace[Cε∞{xkx

T
k }CT ] < trace[CkXCT

k ] < µ,

which concludes the proof.

7.4 Filter Design

7.4.1 Existence Condition

To solve the filter design, we will consider the augmented adjoint system. Combining

the filter (7.2) and the estimation error dynamics (7.4), it yields

xk+1 = Axk + Nηkxk + Hζkxk + Dwk, (7.11)

where

xk =





x̃k

x̂k



 , wk =





ωk

vk



 , (7.12)

A =





Ak − FHk 0

FHk Ak



 = A0 + B0FC0, (7.13)

N =





As,k As,k

0 0



 , (7.14)

H =





−FHs,k −FHs,k

FHs,k FHs,k



 = B0FG0, (7.15)



112

D =





Dk −F

0 F



 = D0 + B0FE0, (7.16)

A0 =





Ak 0

0 Ak



 , B0 =





−I

I



 , (7.17)

C0 =
(

Hk 0
)

, D0 =





Dk 0

0 0



 , (7.18)

G0 =
(

Hs,k Hs,k

)

, E0 =
(

0 I
)

. (7.19)

We start by defining the upper bound of the state covariance matrix of system (7.11)

as

X ≥ ε∞{xkx
T
k }, (7.20)

if it exists, it should satisfy the following Lyapunov inequality:

0 > AXAT −X + NXN T + HXHT + DWDT , (7.21)

where W =





W 0

0 V



 is symmetric and positive definite. Substitution of (7.13),

(7.15)-(7.19) into the above inequality, yields

0 > (A0 + B0FC0)X (A0 + B0FC0)
T −X + (B0FG0)X (B0FG0)

T

+NXN T + (D0 + B0FE0)W(D0 + B0FE0)
T (7.22)

Lemma 4 The inequality (7.22) can be rewritten in a form

ΓFΛ + (ΓFΛ)T + Θ < 0, (7.23)

where

Θ =

















−X + NXN T 0 A0X D0W
0 −X 0 0

XAT
0 0 −X 0

WDT
0 0 0 −W

















, (7.24)
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Γ =

















B0

0

0

0

















, (7.25)

Λ =
(

0 G0X C0X E0W
)

. (7.26)

Proof 4 We start by using the Schur complement, the inequality (7.22) can be written as

















−X + NXN T (B0FG0)X AX DW
X (B0FG0)

T −X 0 0

XAT 0 −X 0

WDT 0 0 −W

















< 0,

where A is defined in (7.13), D is defined in (7.16). Utilizing the structure of the above

matrix and substituting (7.24) into the above inequality, it obtains

Θ +

















0 (B0FG0)X (B0FC0)X (B0FE0)W
X (B0FG0)

T 0 0 0

X (B0FC0)
T 0 0 0

W(B0FE0)
T 0 0 0

















< 0.

With the use of Γ and Λ given in (7.25)-(7.26), the above condition can be equivalently

written as (7.23).

It is important to notice that the filtering design problem has been converted into

looking for the solution of F in the inequality (7.23). In order to find the existence con-

ditions of the state estimator and the parametrization of all the solutions, the following

lemma will be introduced from [108].

Lemma 5 (Finsler’s Lemma) Let x ∈ Rn, Θ = ΘT ∈ Rn×n, Γ ∈ Rn×m and Λ ∈
Rk×n. Let Γ⊥ be any matrix such that Γ⊥Γ = 0. Let ΛT⊥

be any matrix such that
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ΛT⊥

ΛT = 0. The following statements are equivalent:

(i) xT Θx < 0, ∀ΓT x = 0, Λx = 0 x 6= 0. (7.27)

(ii) Γ⊥ΘΓ⊥T

< 0, (7.28)

ΛT⊥

ΘΛT⊥
T

< 0. (7.29)

(iii) ∃µ1, µ2 ∈ R : Θ − µ1ΓΓT < 0, (7.30)

Θ − µ2Λ
T Λ < 0. (7.31)

(iv) ∃F ∈ Rm×k : ΓFΛ + (ΓFΛ)T + Θ < 0. (7.32)

Note that Finsler’s Lemma can be applied to obtain LMI formulations in control and

estimation theory. By applying the Finsler’s lemma, we obtain the following theorem.

Theorem 4 The condition (7.28) and (7.29) are equivalent to the following statement:

there exist symmetric positive definite matrices X , P ∈ R2nx×2nx that satisfy

XP = I, (7.33)

B⊥
0 (A0XAT

0 −X + NXN T + D0WDT
0 )B⊥T

0 < 0, (7.34)
















0

GT
0

CT
0

ET
0

















⊥















−P + PNXN T P 0 PA0 PD0

0 −P 0 0

AT
0 P 0 −P 0

DT
0 P 0 0 −W−1

































0

GT
0

CT
0

ET
0

















⊥T

< 0. (7.35)

Proof 5 According to Lemma 1 and Finsler’s Lemma, we substitute the following matrix

Γ⊥ =

















B0

0

0

0

















⊥

=

















B⊥
0 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

















and (7.24) into (7.28), it yields
















B⊥
0 (−X + NXN T )B⊥T

0 0 B⊥
0 (A0X ) B⊥

0 D0W
0 −X 0 0

XAT
0 B⊥T

0 0 −X 0

WDT
0 B⊥T

0 0 0 −W

















< 0.
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A Schur complement of this matrix is





B⊥
0 (A0XAT

0 −X + NXN T + D0WDT
0 )B⊥T

0 0

0 −X



 < 0,

which is equivalent to (7.34) and X > 0. Furthermore, noting that

ΛT⊥

=

















0

GT
0

CT
0

ET
0

















⊥















X−1 0 0 0

0 X−1 0 0

0 0 X−1 0

0 0 0 W−1

















,

defining X−1 = P , and substituting (7.24) and the above matrix into (7.29), the inequal-

ity (7.35) can be verified which completes the proof.

The previous theorem provides the existence condition for the state estimator, and

the characterization given in Theorem 3 is necessary and sufficient. However, we intro-

duce a nonconvex constraint XP = I, which makes the problem more difficult to solve.

The next theorem shows how to rewrite these conditions into convex constraints by using

Finsler’s Lemma again.

Theorem 5 There exists a state estimator gain F to solve (7.21) if there exist a sym-

metric matrix P ∈ R2nx×2nx and µ1 < 0, µ2 < 0 ∈ R that satisfy

P > 0, (7.36)























−P PA0 PN PD0 PB0

AT
0 P −P 0 0 0

N T P 0 −P 0 0

DT
0 P 0 0 −W−1 0

BT
0 P 0 0 0 µ−1

1 I























< 0, (7.37)
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



























−P 0 PA0 PD0 0 PN
0 −P 0 0 GT

0 0

AT
0 P 0 −P 0 CT

0 0

DT
0 P 0 0 −W−1 ET

0 0

0 G0 C0 E0 µ−1
2 I 0

N T P 0 0 0 0 −P





























< 0. (7.38)

Proof 6 According to Theorem 3 and Finsler’s Lemma, we notice that the inequality

(7.34) holds if and only if there exists a µ1 ∈ R such that

A0XAT
0 −X + NXN T + D0WDT

0 − µ1B0BT
0 < 0.

Applying the congruence transformation yields

X−1(A0XAT
0 −X + NXN T + D0WDT

0 − µ1B0BT
0 )X−1 < 0.

With the definition P := X−1 > 0 and the assumption µ1 < 0, the above condition can

be equivalently written as (7.37) by using the Schur complement.

Similarly, if the inequality (7.35) holds, it is equivalent to the existence of a µ2 ∈ R

such that














−P + PNXN T P 0 PA0 PD0

0 −P 0 0

AT
0 P 0 −P 0

DT
0 P 0 0 −W−1















− µ2















0

GT
0

CT
0

ET
0















(

0 G0 C0 E0

)

< 0.

By assuming µ2 < 0 and applying Schur complements twice on the above inequality,

it obtains (7.38) which is the desired conclusion.

Since the inequality (7.37) and (7.38) are LMIs, the existence of a feasible solution

for the state estimator is a convex problem which can be solved with the use of many

available algorithms.

7.4.2 Filter Design

In the previous section, a sufficient LMI condition for checking the existence of state

estimator has been given. Here it is dedicated to provide the conditions that guarantee
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the additional closed loop system performance. We will determine a state estimator

F such that the performance criterion, ε∞{ỹkỹ
T
k } < Ω, is satisfied. The fundamental

algorithm that enables us to solve the filtering problem is derived from the following

theorem.

Theorem 6 There exists a state estimator gain F such that ε∞{ỹkỹ
T
k } < Ω if there exist

a positive definite symmetric matrix P ∈ R2nx×2nx and µ1 < 0, µ2 < 0 ∈ R that satisfy

(7.37), (7.38) and




Ω C̄k

C̄k
T

P



 > 0, (7.39)

where

C̄k = Ck

[

I 0
]

. (7.40)

All the solutions F are given by

F = −R−1ΓT ΦΛT (ΛΦΛT )−1 + S1/2L(ΛΦΛT )−1/2, (7.41)

where

S = R−1 − R−1ΓT [Φ − ΦΛT (ΛΦΛT )−1ΛΦ]ΓR−1. (7.42)

L is an arbitrary matrix such that ‖L‖ < 1 and R is an arbitrary positive definite matrix

such that

Φ = (ΓR−1ΓT − Θ)−1 > 0, (7.43)

and

Θ =

















−P−1 + NP−1N T 0 A0P
−1 D0W

0 −P−1 0 0

P−1AT
0 0 −P−1 0

WDT
0 0 0 −W

















,

Γ =

















B0

0

0

0

















, Λ =
(

0 G0P
−1 C0P

−1 E0W
)

.
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Proof 7 We know that

ε∞{ỹkỹ
T
k } = Ck ε∞{x̃kx̃

T
k }CT

k = C̄kX C̄k
T

< Ω,

where the state covariance matrix X is defined in (7.20) and C̄k is given in (7.40). With

the definition P := X−1 > 0, the inequality (7.39) can be manipulated by using the Schur

complement. And the proof for solving F follows a similar approach in [108].

We observe that the optimization approach proposed in this theorem is a convex

programming problem stated as LMIs, which can be solved by efficient methods.

7.5 Numerical Example

In order to determine the applicability of the method, two examples to solve for the

system design are presented next.

7.5.1 Four Mass Mechanical System

Consider the four mass mechanical system with springs and dampers depicted in Fig.

7.1. The discrete-time system dynamics is described in the following state space form

xk+1 =





I ∆I

−∆M−1K I − ∆M−1G



xk +





0

∆M−1D



ωk, (7.44)

with the measurement

zk = (H + Hsζk)xk + vk, (7.45)

and the desired output

yk = Cxk, (7.46)

q1 q2 q3 q4

m1 m2 m3 m4

b1

y1=q1 y2=q4

k2 k3 k4

k5

b5

2

k1

1

Figure 7.1. Four mass mechanical system with springs and dampers
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where

M =

















m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

















, G =

















b1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 b5

















,

K =

















k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4

0 0 −k4 k4 + k5

















, D =

















1 0

0 1

0 0

0 0

















,

H =





1 0 0 0 0 0 0 0

0 0 k4

m4
−k4+k5

m4
0 0 0 − b5

m4



 , C = H,

Hs =





0.5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



 ,

and

m1 = m2 = m4 = 1, m3 = 2, b1 = 5, b5 = 2,

k1 = k3 = k4 = 1, k2 = 2, k5 = 4.

Note that ωk, vk and ζk are uncorrelated zero mean Gaussian white noise sequences

with unity covariance. And ∆ is the time step (0.01sec). The performance criterion for

the filter design is [ε∞{ỹkỹk
T }]i,i < Ω where Ω = 0.01.

Figure 7.2 and 7.3 demonstrate the performance of the filter introduced in this chap-

ter, where the error of each state variable is plotted. The simulation result shows that the

output covariance of the estimation error are [ε∞{ỹkỹk
T }]1,1 = 0.001, [ε∞{ỹkỹk

T }]2,2 =

0.0005, which satisfy the design requirement, since both of 0.001 and 0.0005 < 0.01.

7.5.2 Biomechanical Hand Movement System

Consider the hand modelled as a point mass (m = 1kg) whose one-dimensional

position at time t is p(t), and the velocity at time t is v(t). The combined action of all
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Figure 7.2. Estimation error (from state 1 to 4)
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Figure 7.3. Estimation error (from state 5 to 8)

muscles is represented with the force f(t) acting on the hand. The control signal u(t) is

transformed into force by adding control-dependent noise and applying a second order

muscle-like low-pass filter

τ1τ2
¨f(t) + (τ1 + τ2) ˙f(t) + f(t) = u(t),

where τ1 = τ2 = 0.04sec. We know that the above filter can be written as a pair of

coupled first-order filters

τ1ġ + g = u, τ2ḟ + f = g.
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The sensory feedback carries the information about position, velocity and force. The

discrete-time system dynamics is described as following

xk+1 = Axk + B(1 + σcεk)uk + ωk,

zk = (H + Hsζk)xk + vk, (7.47)

yk = Hxk.

where

xk =
(

pk vk fk gk

)T
, yk =

(

pk vk fk

)T
,

A =

















1 ∆ 0 0

0 1 ∆/m 0

0 0 1 − ∆/τ2 ∆/τ2

0 0 0 1 − ∆/τ1

















, B =

















0

0

0

∆
τ1

















,

H =











1 0 0 0

0 1 0 0

0 0 1 0











, Hs =











0 0 0 0

0 0 0 0

0 0 0.125 0











,

and ωk, vk, εk, ζk are independent zero-mean Gaussian white noise sequences with covari-

ance

Ωω = (diag[0.01, 0.001, 0.01, 0.01])2, Ωε = I,

Ωv = (diag[0.01, 0.1, 0.5])2, Ωζ = I.

Note that σc = 0.5 is a unitless quantity that defines the noise magnitude relative to the

control signal magnitude. And the time step ∆ = 0.01sec.

Given a controller uk =
[

−1.6032 −3.0297 −0.3361 −2.7793
]

xk such that the

system (7.47) is mean square stable, the objective is to find a state estimator that bounds

the estimation error below a specified error covariance: [ε∞{ỹkỹk
T }]i,i < 0.1.

Figure 7.4 illustrates the performance of the filter introduced here, where the error

of each state variable is plotted. The simulation result shows that the output covari-

ance of the estimation error are [ε∞{ỹkỹk
T }]1,1 = 0.0198, [ε∞{ỹkỹk

T }]2,2 = 0.0037,

[ε∞{ỹkỹk
T }]3,3 = 0.0018 < 0.1, which satisfy the design requirement.
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Figure 7.4. Estimation error for hand movement system

7.6 Summary

Multiplicative noise models are more practical than normal additive noise models,

since they allow the statistical description of the multiplicative noise be not known a

prior but depend on the control and state solution. Such models are found in many

physical systems, such as signal processing systems, biological movement systems, and

aerospace engineering systems.

An LMI based approach is examined in this chapter for the design of the state esti-

mator with multiplicative noise systems. The proposed approach provides the sufficient

conditions for the existence of state estimators and a parametrization of all admissible

solutions. By adding a mild constrain, the original filtering problem is solved as a convex

problem. The simulation results demonstrate the convergence of the system design.



Chapter 8

Conclusions and Future

Directions

8.1 Iterative Optimal Estimation and Control Design

Optimal control theory plays a key role in the study of biological movement. One

major goal of this thesis is to provide efficient computational methods for optimal control

of complex biomechanical system. Given a realistic model of a biomechanical system,

and a task goal specified as a quantitative performance criterion, our tools will attempt

to design the control strategy that optimizes the performance. Here we present an it-

erative Linear-Quadratic-Gaussian method for locally-optimal control and estimation of

nonlinear stochastic dynamical systems subject to control constraints. The main con-

tribution is that the new method constructs an affine feedback control law obtained by

minimizing a novel quadratic approximation to the optimal cost-to-go function. It also

constructs a modified extended Kalman filter corresponding to the control law. The

control law and filter are iteratively improved until convergence. What the most impor-

tant is that our approach yields a numerical algorithm with stable convergence achieved

through backtracking line search; and convergence in the vicinity of a local minimum

is quadratic. Finally, the application of the algorithm is illustrated in the context of

reaching movements and obstacle avoidance on a complex biomechanical control prob-
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lem involving a stochastic model of the human arm. Although our work is motivated by

studying biological movement control, the present results could be of useful to a wider

audience.

8.2 Hierarchical Optimal Control Scheme

Sensorimotor control occurs simultaneously on multiple levels, and involves a large

number of parallel feedback loops. Here we present a new framework to designing feed-

back control hierarchies for redundant biomechanical systems, that approximate the

(non-hierarchical) optimal control law but have much lower computational demands.

This feedback control hierarchy has two levels: the high level is designed as an opti-

mal feedback controller operating on a simplified virtual plant, which is partly isolated

from the complexity of the physical plant; the low level is responsible for transforming

high-level commands into appropriate muscle activations, and also responsible for con-

verting the dynamics of the true plant into the desired virtual dynamics assumed by the

high level. The resulting control hierarchy makes it possible to solve the optimal control

problem without running into the curse of dimensionality. Besides its engineering ap-

plications, the new hierarchical control framework addresses a key unresolved problem

in modelling the neural control of movement, and its performance is demonstrated on

the task of reaching movement, using two detailed models of the human arm: 2-Link

6-Muscle arm model including 2 degrees of freedom; and 5-Link 24-Muscle arm model

which includes 5 degrees of freedom.

The present approach is also related to the idea of simplifying feedback transforma-

tion combined with high-level optimal control [119]. Those feedback transformation was

“extracted” from the plant dynamics using unsupervised learning, rather than being de-

signed to capture the task-relevant variables as we did here. As a result they were forced

to use inefficient policy-gradient methods for controller optimization, rather than the ef-

ficient model-based ILQG method we employed here. Both approaches have advantages,

and it is possible to combine them together in the future work. The basic idea is to make

the low-level itself hierarchical: starting with a task-independent virtual model that cap-
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tures the properties of the plant (and is acquired via unsupervised learning), and then

creating higher-level virtual models suitable for specific tasks. Furthermore, it will be

particularly interesting to examine the behavioral differences between the present hierar-

chical control scheme and the (unstructured) optimal controller in light of experimental

data.

8.3 Future Directions — Inverse Optimal Control Design

When we are examining the human movement, such as reaching, throwing, orienting,

it is usually hypothesized that natural control systems may be implicitly optimizing an

objective function. However, it is not known what this performance criterion might be.

In order to establish the correspondence between the natural and the artificial systems,

we need to ascertain what it is that the natural control system is optimizing. Surprisingly,

the novel inverse optimal control approach gives us a clue to determine the cost function

by fitting the mathematical model to real behavior in a variety of circumstances.

Over the last few years, great interest has been achieved in optimal control of

stochastic nonlinear system. One way of approaching these problems involves solving

the Hamilton-Jacobi-Bellman (HJB) partial differential equation, which turn out to be

an infeasible task. However, the inverse optimal control approach circumvents the task

of solving HJB equation, whenever the optimal cost-to-go function is known (i.e. in-

ferred from the data), it becomes an explicit formula and results in a meaningful cost

functional.

The viewpoint of inverse optimum control problem was originated in the early 1960s

by Kalman [50]: ”Given a control law, find all performance criteria for which this control

law is optimal.” Kalman considered a precise formulation of this problem for determin-

istic linear systems and derived a beautiful conclusion for linear quadratic regulators.

Given a feedback control u = −kx for the system ẋ = Fx + gu, which is known to yield

an asymptotically stable closed-loop system, then a necessary and sufficient condition

for this control law to be optimal with respect to a performance index
∫∞

t0
(u2 +xT Qx)dt

is that the return difference condition is hold for all real frequencies.
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The inverse optimal control approach was introduced into nonlinear control in [83,

113, 134], while the main results of [113] are restricted to system processing an optimal

performance that is quadratic in the state, and [83] establishes a certain nonlinear return

inequality which implies robustness to some input nonlinearities. To our knowledge,

this method has not been well-studied until it was recently revived for the design of

robust nonlinear controller [102]. The main task of that inverse design method is the

construction of control Lyapunov function as optimal value function for some meaningful

cost functionals. And this approach has been applied to construct optimal feedback

control laws for rigid spacecraft [59] and some other stochastic nonlinear systems [23,

24, 112].

The main goal is to address the problem of inverse optimal control to the biolog-

ical movement systems, that is, the problem of extracting the objective function that

can explain the observed, optimal movement behavior. Such a goal is possible because

of significant experimental advances in our understanding of motor control systems in

humans, and because of the increased knowledge in computational models for control

learning. It will create a new way not only to analyze the natural movement phenomena,

but also to derive much more effective methods in modelling all kinds of purposive(or

skilled) behavior.

8.3.1 Preliminary Results

Investigations of general optimal control problems assume that the performance cri-

teria are known. Based on this performance criterion and a given dynamic system, an

optimal feedback control law is derived to satisfy the HJB equation. The inverse problem

of optimal control, on the other hand, solves for the coefficients of cost function for which

a given control law is optimal. Consider the problem of minimizing the discounted cost

function subject to the nonlinear dynamic system

ẋ = f(x) + G(x)u, (8.1)

V (x(0)) =

∫ ∞

0
e−s/τ

[

q(x(s)) +
1

2
u(s)T Ru(s)

]

ds, R > 0. (8.2)
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where q(x) and R are unknown, f(x) and G(x) are known nonlinearities, and τ is the

time constant for discounting future cost. A necessary and sufficient condition for a

control law

u∗(t) = −R−1G(x)T V ∗
x (x(t)) (8.3)

to be an optimal control law is that it satisfies the following optimality condition

1

τ
V ∗(x(t)) = min

u(t)

[

q(x(t)) +
1

2
u(t)T Ru(t) + V ∗T

x (f(x) + G(x)u(t))

]

. (8.4)

where V ∗(x(t)), known as the optimal value function (optimal cost-to-go), is the accu-

mulated expected cost if the system is initialized in state x at time t, and the optimal

control law u∗(t) is applied until the end of optimal control history. By substituting (8.3)

into the above equation, we obtain the HJB equation as

1

τ
V ∗(x(t)) = q(x(t)) + V ∗T

x f(x) − 1

2
V ∗T

x G(x)R−1GT (x)V ∗
x . (8.5)

Given the dynamic system (8.1) and a control law u(t), the objective here is to

recover the cost function (including q(x) and R) for which the control law is optimal.

By using some form of function approximation

V (x(t)) ∼=
m
∑

i=1

wiΦi(x) = wT Φ(x), (8.6)

and

Φi(x) = exp

(

−‖x − ci‖2

r2
i

)

, (8.7)

Φ(x) = (Φ1(x) · · · Φm(x))T , w = (w1 w2 · · · wm)T , (8.8)

where wi are weights of Gaussian Basis Function Φi(x), ci and ri define the center

and width of the ith Gaussian basis function. Actually the basis function Φ(·) plays

an important role in traditional neural networks. The linear parameters wi can be

determined by the linear regression method. By choosing R as a positive definite matrix,

the cost function can be recovered by computing

q(x) =
1

τ
wT Φ(x) + (wT Φx(x))f(x) +

1

2
(wT Φx(x))T G(x)R−1GT (x)(wT Φx(x)), (8.9)

where Φx(x) defines the derivative of Φ(x) over x.
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Here we will give a simple example to demonstrate the feasibility of the above idea.

Consider a scaler system

ẋ = −x + u, (8.10)

and the performance criterion

V (x(0)) =

∫ ∞

0
e−s/τ

[

q(x(s)) +
1

2
ru(s)2

]

ds, r > 0. (8.11)

where the discounted factor τ = 5, and q(x) and r are unknown. Given a control law u

under a quadratic cost function where q(x) = 1
2(x−xtarget)

2 and r = 1, the main objective

here is to find q(x) and r for which this control law u is optimal, which means, we would

like to know whether the estimated q(x) can recover the original quadratic performance.

Fig. 8.1 illustrates the cost function q(x) for three different targets: xtarget = −4, 0 and

4. Black line describes the original function, circle describes the recovered q(x) based on

inverse optimal control approach. The simulation demonstrates that, by changing the

targets, the cost function can still be recovered very well.
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−20
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80

100
q(x)
recovered q(x)

x 

q(x) 

Figure 8.1. Cost function q(x) for three different targets: xtarget = −4, 0 and 4. (Cir-

cle describes the recovered q(x) based on inverse optimal control approach, dark line

describes the original q(x) function)
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8.3.2 Future Work

1. Currently we only show the preliminary results on the inverse optimal control

problem of the deterministic linear system under the quadratic cost assumption, how

about the nonlinear stochastic system? Given a nonlinear stochastic system and a control

law under a non-quadratic cost function, the main objective is to find whether the

estimated cost function can recover the original non-quadratic performance for which this

control law is optimal. Actually our proposed method used the general HJB equation

which can deal with nonlinear dynamic cases, and our approximation to cost function

uses Gaussian basis functions which do not assume a quadratic form. However it will

be very useful to study how well this inverse optimal control approach works on some

specific nonlinear problems.

2. When we apply the inverse optimal control approach to the biological movement

system, there are at least two sources of error which can affect the performance of the

final result: (a) the data we obtained is noisy (or the biological control system is not

entirely optimal); (b) our function approximation has limited capacity which cannot

describe the real cost function very well. In both cases, the inferred optimal cost-to-go

function will be somewhat inaccurate. How severe are those inaccuracies numerically?

3. To control a dynamic system, you must first know what it is doing. However, it is

not possible to measure every variable that you want to control. Back to the biological

motor systems, in order to control our movements, the central nervous system needs to

know the state variables that it want to control. Suppose there exist an state estimator

which provides a means for estimating those information from noisy measurement, there-

fore, controls will depend on the state estimate x̂ rather than the true state x. Another

interesting question is: could we formulate the inverse optimal control problem in this

kind of setting?

4. In our proposed work, combining (8.3) and (8.6), and fixing R, the weights of

Gaussian basis function is determined by solving the following equation using linear

regression method: u∗(t) = −R−1G(x)T Mw, where M is the function of Φx(x). What

happens if the matrix R−1G(x)T M is rank deficient? We will obtain a family of solution
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for w. In this case it is very hard to infer the optimal cost-to-go function from data.

Perhaps we can infer a whole family of optimal cost-to-go functions that are all consistent

with the data, and that leads to a family of costs.

5. In the actual psychophysical experiments, one usually records movement kinemat-

ics (which could infer the dynamics), but the muscle activations (which are real control

commands) are hard to record. Can we formulate the problem so that the control are in-

ferred from motion rather than being measured? Probably we have to infer a probability

distribution (or family) of plausible controls, rather than a specific set of controls.

6. In order to evaluate the effectiveness of the inverse optimal control approach, we

will design some motor psychophysics experiments where this approach can be validated.

For example, we ask the subjects to make planar arm movements through sequences of

targets. In condition A, we use five widely spaced targets, whereas in condition B,

we include additional targets chosen to fall along the average trajectory produced in

condition A. The goal here is to investigate whether the inverse optimal control approach

can distinguish these two different task goals with similar average movements.
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