
UC Irvine
UC Irvine Previously Published Works

Title
TALL—a list processor for the Philco 2000 computer

Permalink
https://escholarship.org/uc/item/6qk36727

Journal
Communications of the ACM, 5(9)

ISSN
0001-0782

Author
Feldman, Julian

Publication Date
1962-09-01

DOI
10.1145/368834.368899

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qk36727
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Since R and 7' consist of x's with one occurrence of := , Pi for
i > 0 must take the form

b e g i n r e a l x(S(1)); x(S(,)) := x(S(O) : := x(S(1)) e n d

containing i occurrences of := , i + 2 occurrences of x(S(~)), and
therefore (i+2)(f (i)) occurrences of x. Since the nmnber of occur-
rences of x is a linear function a + bi of i, we have

a + b i a - 2b + b (2 + i) a - - 2b
f (i) -- = b + - - - -

2 + i 2 + i 2 + i

always integer-valued. Then a -- 2b is zero, so f (i) = b; and the
number of occurrences of x in Pi for all i ~ 0 is (i + 2)b. Then P1 is

b e g i n rea l x(b); x (b) : = X (b) e n d

and P0 is

b e g i n r ea l x(2b); e n d

which is not a subsequence of P~ and cannot be obtained from P~
by deletions.

The conclusion to be drawn is tha t it is not possible to s tate the
formation rules of ALGOL 60 as a phrase s t ructure grammar, so
tha t there must necessarily be syntact ic rules s ta ted in other ways.
The principal examples are the rules requiring the declarat ion of
all variables, procedures, arrays and switches. I t seems likely
tha t sinfilar considerations would apply to any other reasonable
language in which all variables must be declared.

R E F E R E N C E S

1. NAUR, PETER (Ed.) ET AL. Report on the algorithmic language
ALGOL 60. Comm. A C M 3, 5 (1960), 299-314.

2. C~OMSKY, N. On certain formal properties of grammars. In -
formation and Control 2 (1959), 137-167; A note on phrase
s t ructure grammars. Informat ion and Control 2 (1959), 393-
395.

3. BAR-HILLEL, Y., PERLES, ~VI., AND SKAMIR, E. On formal
propert ies of simple phrase s t ructure grammars. Zeit . Phone-
tik, Sprachwissenschaft und Kommunikat ionsforschung 1~
(1961), 143-172.

several computers3 Heretofore, IPL-V has been implemented as an
interpret ive system. The interpret ive system has three major
components: (1) a loader which t ransla tes card images into in-
ternal machine words; (2) an in terpre ter which decodes instruc-
t ions; and (3) a set of primitive processes, the " J ' s , " which make
up the bulk of the instruct ion vocabulary. The implementat ion of
such an interpret ive system has been a ra ther lengthy procedure
usually es t imated as taking six man-months .

IPL-V has been implemented on the 2000 as a set of macro-
operations, subroutines and conventions supplement ing TAC
(Translator-Assembler-Compiler , the assembly language for the
2000)? These macro's , subroutines and conventions will be re-
ferred to as TALL (T A C List Language). TALL uses the loading
facilities of TAC, the IPL-V primitive processes, and a set of sub-
routines performing the work of the in terpreter . The macros aid
in the t ransla t ion from IPL-V to TAC. The nmcros and the primi-
t ive processes, the J 's , can be placed on the TAC subroutine li-
brary tape and called in as required during assembly.

The implementat ion of IPL-V in this fashion has several ad-
vantages: (1) the t ime required to get a basic IPL-V system run-
ning on the 2000 was only three man-weeks; (2) symbolic machine
language instruct ions can easily be inserted into TALL programs;
(3) IPL-V s ta tements can be used in conjunction with FOlZTRAN
s ta tements or JOVIAL s ta tements ; 4 and (4) no addit ional work is
required to make TALL compatible with any monitor system for the
2000. A brief description of the TALL representat ions of IPL-V
program and data follows.

TALL P r o g r a m

The IPL-V program word has the format

P Q SYMB L I N K

where P is an octal digit represent ing an operation code, Q is an
octal digit specifying the degree of indirection represented by
SYMB, SYMB is a machine address, and L I N K is the machine
address of the next instruct ion. In the TALL system, the P-Q
combinations are represented as macro-operat ions which have
SYMB and L I N K as inputs. Thus the IPL-V program word is
represented by the following line of TAC code:

TALL A List Processor for the
Philco 2000 Computer

Julian Feldman
System Development Corporation, Santa Monica, Cali-
fornia

L C O M M A N D A D D R E S S

PQnn SYMB; L I N K

The macro PQnn expands this line of code into two computer
words. The first word has SYMB in the address of the left half-
word and L I N K in the address of the right half-word. The second
word has a left half-word inst ruct ion which loads the first word
into the A-register and a right half-word inst ruct ion which t rans-
fers to the subroutine PQnnX which finds its input parameters ,
SYMB and LINK, in the A-register. The conversion of program
from IPL-V format to TALL format is a ra ther simple and s t ra ight-
forward procedure tha t can easily be accomplished by EAM
equipment (an example is provided in the Appendix).

T A L L D a t a

Several of the computer languages tha t are oriented toward
problems in symbol manipulat ion use a list type of memory
organizat ion? The advantages of such a memory organization
have been discussed elsewhere and will not be repeated here. The
purpose of this note is to describe the method used in realizing a
list language on the Philco 2000.

Informat ion Processing Language V (IPL-V) was chosen as
the source language for the list processor for the 2000 because this
language has been well documented and has been implemented on

1 Program and Prepr ints of the ACM Conference on Symbol
Manipulat ion. Comm. A C M 3, 4 (1960).

The IPL-V data word takes on various forms. The format for
IPL-V symbolic data is the same as the format for program. The
TALL format for symbolic data is the same as the program format
with the exception tha t a " D " is added after the " P Q n n . "

2NEWELL, A., ET AL. Informat ion processing language V
manual. Englewood Cliffs, Prentice-Hall , 1961.

3Philco 2000 TAC Manual. Philco Corp., Computer]_)iv.,
Willow Grove, Penn. , May 1961.

4 Philco 2000 ALTAC Manual. Philco Corp., Computer Div. ,
Willow Grove, Penn. , Feb. 1961; C. J. SrlAW, JOVIAL Manual.
TM-555, System Development Corp., Santa Moniea, Calif., 1961.

484 C o m m u n i c a t i o n s o f t h e A C M

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368834.368899&domain=pdf&date_stamp=1962-09-01

IPL-V PROGRAM TALL PROGRAM COMMENTS

T .NAME S PQ SYMB LINK L LOCATION COMMAND ADDRESS

I ACKERMANN- S FUNC 1 ACKERMANN-S FUNC
2 EO 1
2 AO 1
2M0 1
2NO 1
2 KO 1
5 oo

EO 03 AO
lO NO
O0 J152 0

5 oo
AO 114 MO

oo ~17
i0 NO
70 9-1
O0 J125 J8

9-i oo Jll7
70 9-2
10 NO
O0 J125 9-3

9-2 10 K1
i0 NO
10 NO
O0 Jlll
O0 AO

9-3 50
10
10 MO
O0 J l l . 1
O0 AO
oo J125 J8

5 Ol
K1 01 1
M0 01 1
NO 01 1

5 EO

NAME EO
CE0 m03 AO ; (P)+

PQiO NO ; (P) + i I
PQO0 J152; 0
NAME AO

C AO PQ14 M0 ; (P) +
PQ00 j l l T ; (P) + 1;
m z o NO ; (P) + I ~,
PQ7O 9L1 ; (P) +
PQO0 J125; J8 i

9Li PQO0 Jl17; (P) + 11
PQTO 9L2 ; (P) +
PQiO NO ; (P) +
~00 J125; 9L3

9L2 m).o KZ ; (P) + i;
PQiO NO ; (P) + 1
PQiO NO ; (P) + 1
~oo jnl; (P) + .z,
~oo AD ; (P)+Z

9L3 PQ5O K1 ; (P) + 1
m~.o Mo ; (P)+1
m3.o m ; (P) + Z
PQoo jnz; (P) + :z
PQO0 AO ; (P) + 1
~00 ,.13-25; j8

DATA
C K1 PQOiD O; 1
C MO PQOiD 0;1
C NO PQOiD 0;1

END START

IDENTIFY PROGRAM
DEFINE IPL-V REGIONS
NOT REQUIRED IN TALL.

BEGIN FIRST ROUTINE
THE LINK "(P) +1" MUST BE
SUPPLIED FOR TALL.

THE "C" IDENTIFIES AO AS
A COMMON SYMBOL.

THE "-" SIGN MUST BE
REPLACED BY AN ALPHA
CHARACTER

BEGIN DATA
THE "D" INDICATES DATA.
THE "O;l" STANDS FOR "+l."

TRANSFER CARD

O0
Ol
02
o3
04
05
06
o7
08
09
i0
Ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3l
32
33
34
35

FIG. 1. IPL-V program and TALL program for Ackermann's function

For example the IPL-V data word

P Q SYMB L I N K

is represented in TALL in the following manner:

L COMMAND A D D R E ~

PQOOD SYMB; L I N K

This line of TAC code is expanded by the macro PQOOD into a
word which has SYMB in its lef t -hand address and L I N K in its
r ight-hand address. The other IPL-V data terms, decimal, floating
point, octal, and alphanumeric, are converted into appropriate
TAC constants by macros. The conversion from IPL-V data to
TALL data is also a s t raightforward procedure (see Appendix).

C o n c l u s i o n

The flexibility of current ly available symbolic assembly pro-
grams allows the rapid development and modification of advanced
computer languages. When these assembly languages are fully
utilized, development costs of higher order languages are greatly
reduced. In the part icular case described here, a list processing
language, IPL-V was implemented on the Philco 2000 as a set of

macro-operations, subroutines, and conventions within TAC, the
assembly program for the 2000. The implementat ion was accom-
plished rapidly and also enables the user to combine TAc, FOR-
TRAN, and JOVIAL s ta tements with IPL-V s ta tements . An inter-
pret ive version of IPL-V, coded in JOVIAL, has also been
implemented on the 2000, see page 479 of this issue. These two
methods of implementing IPL-V are current ly being studied. The
results of this s tudy will be presented in the near future.

ACKNOWLEDGMENTS

I am grateful to C. J. Mossman, S. S. Shaffer, D. P. Haggerty,
W. E. Meyer, M. N. Kost iner , H. L. Quon, P. Teas and J. Marx
for their assistance in inlplementing TALL.

A P P E N D I X

In order to demonstra te the conversion of IPL-V code to TALL
code the IPL-V program for computing Ackermann's Funct ion 5
has been t rans la ted into TALL. The IPL-V code and the TALL code
are presented in Figure 1. The discrepancies between IPL-V and
TALL not previously mentioned are noted in the "Commen t s "
column.

5 N E W E L L , A. ET AL. Op. cir., p. 42.

C o m m u n i c a t i o n s o f t h e ACM 485

