UC Irvine
UC Irvine Previously Published Works

Title
TALL—a list processor for the Philco 2000 computer

Permalink
bttgs:ggescholarshiQ.orgéucéiteméng3672 ZI
Journal

Communications of the ACM, 5(9)

ISSN
0001-0782

Author
Feldman, Julian

Publication Date
1962-09-01

DOI
10.1145/368834.368899

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,

available at https://creativecommons.org/licenses/by/4.0

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6qk36727
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Since £ and 7' consist of z’s with one occurrence of :=, P; for
1 > 0 must take the form

begin real 2U®); U i= gUd) ;= ... ;= zU®) end

containing ¢ occurrences of :=, ¢+2 occurrences of 2 and
therefore (742)(f(¢)) occurrences of z. Since the number of occur-
rences of z is a linear function ¢ + b7 of 7, we have
_a=2+b2+9)
244 2+1

a_——2b
2414

always integer-valued. Then a — 2b is zero, so f(¢) = b; and the
number of occurrences of zin P;forallz = 0is (¢ + 2)b. Then P;is

begin real z®; z® := z® end
and P is
begin real z®; end

which is not a subsequence of P; and cannot be obtained from P,
by deletions.

The conclusion to be drawn is that it is not possible to state the
formation rules of ALgoL 60 as a phrase structure grammar, so
that there must necessarily be syntactic rules stated in other ways.
The principal examples are the rules requiring the declaration of
all variables, procedures, arrays and switches. It seems likely
that similar considerations would apply to any other reasonable
language in which all variables must be declared.

REFERENCES

1. NaAUR, PETER (Ed.) BT AL. Report on the algorithmic language
AvrcoL 60. Comm. ACM 3, 5 (1960), 299-314.

2. CroMsky, N. On certain formal properties of grammars. In-
Jormation and Control 2 (1959), 137-167; A note on phrase
structure grammars. Informaiion and Control 2 (1959), 393
395.

3. Bar-Hitrer, Y., PerLes, M., anp Smamir, E. On formal
properties of simple phrase structure grammars. Zeit. Phone-
tek, Sprachwissenschaft und Kommunikalionsforschung 14
(1961), 143-172.

TALL—A List Processor for the
Philco 2000 Computer

Julian Feldman

System Development Corporation, Santa Monica, Cali-
fornia

Several of the computer languages that are oriented toward
problems in symbol manipulation use a list type of memory
organization.! The advantages of such a memory organization
have been discussed elsewhere and will not be repeated here. The
purpose of this note is to describe the method used in realizing a
list language on the Phileco 2000.

Information Processing Language V (IPL-V) was chosen as
the source language for the list processor for the 2000 because this
language has been well documented and has been implemented on

! Program and Preprints of the ACM Conference on Symbol
Manipulation. Comm. ACM 3, 4 (1960).

484 Communications of the ACM

several computers.? Heretofore, IPL-V has been implemented as an
interpretive system. The interpretive system has three major
components: (1) a loader which translates card images into in-
ternal machine words; (2) an interpreter which decodes instruc-
tions; and (3) a set of primitive processes, the ““J’s,”” which make
up the bulk of the instruction voecabulary. The implementation of
such an interpretive system has been a rather lengthy procedure
usually estimated as taking six man-months.

IPL-V has been implemented on the 2000 as a set of macro-
operations, subroutines and conventions supplementing TAC
(Translator- Assembler-Compiler, the assembly language for the
2000).3 These macro’s, subroutines and conventions will be re-
ferred to as TALL (TAC List Language). TaLL uses the loading
facilities of TAC, the IPL-V primitive processes, and a set of sub-
routines performing the work of the interpreter. The macros aid
in the translation from IPL-V to TAC. The macros and the primi-
tive processes, the J’s, can be placed on the TAC subroutine li-
brary tape and called in as required during assembly.

The implementation of IPL-V in this fashion has several ad-
vantages: (1) the time required to get a basic IPL-V system run-
ning on the 2000 was only three man-weeks; (2) symbolic machine
language instructions can easily be inserted into TALL programs;
(3) IPL-V statements can be used in conjunction with FoORTRAN
statements or JoviaL statements;t and (4) no additional work is
required to make TALL compatible with any monitor system for the
2000. A brief description of the TaLL representations of IPL-V
program and data follows.

TALL Program
The IPL-V program word has the format

P Q SYMB LINK

where P is an octal digit representing an operation code, Q is an
octal digit specifying the degree of indirection represented by
SYMB, SYMB is a machine address, and LINK is the machine
address of the next instruction. In the TarLn system, the P-Q
combinations are represented as maero-operations which have
SYMB and LINK as inputs. Thus the IPL-V program word is
represented by the following line of TAC code:

L COMMAND ADDRESS
PQnn SYMB; LINK

The macro PQnn expands this line of code into two computer
words. The first word has SYMB in the address of the left half-
word and LINK in the address of the right half-word. The second
word has a left half-word instruction which loads the first word
into the A-register and a right half-word instruction which trans-
fers to the subroutine PQnnX which finds its input parameters,
SYMB and LINK, in the A-register. The conversion of program
from IPL-V format to TaLL format is a rather simple and straight-
forward procedure that can easily be accomplished by EAM
equipment (an example is provided in the Appendix).

TALL Data

The TPL-V data word takes on various forms. The format for
IPL-V symbolic data is the same as the format for program. The
TaLL format for symbolic data is the same as the program format
with the exception that a “D”’ is added after the “PQnn.”’

!NEWELL, A., ET AL. Information processing language V
manual. Englewood Cliffs, Prentice-Hall, 1961.

Philco 2000 TAC Manual. Philco Corp., Computer Div,,
Willow Grove, Penn., May 1961.

4 Philco 2000 ALTAC Manual. Phileco Corp., Computer Div.,
Willow Grove, Penn., Feb. 1961; C. J. Suaw, JOVIAL Manual.
TM-555, System Development Corp., Santa Monica, Calif., 1961.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F368834.368899&domain=pdf&date_stamp=1962-09-01

IPL-V PROGRAM TALI, PROGRAM COMMENTS
T.NAME S PQ SYMB LINK L LOCATION COMMAND ADDRESS
1 ACKERMANN-S FUNC I ACKERMANN-S FUNC $ | IDENTIFY PROGRAM 00
2 EO 1 DEFINE IPL-V REGIONS 01
2 A0 1 NOT REQUIRED IN TALL. 02
2 MO 1 03
2 NO 1 ol
2 KO 1 05
5 00 NAME EO BEGIN FIRST ROUTINE 06
EO 03 A0 C EO PQO3 A0 ; (P) + THE LINK "(P) +1" MUST BE o7
10 NO PQ10 NO ; (P) + 1§ | SUPPLIED FOR TALL. 08
00 Ji152 0 PQO0 Jis52; 0 09
5 00 NAME AO 10
A0 4 Mo C A0 PQLL M ; (P) + THE “C" IDENTIFIES AO AS 11
00 J117 PQOO Jii7; (p) + 1 A COMMON SYMBOL. 12
10 NO PQ1L0 NO ; (P) +1 13
70 9-1 PQT0 911 ; (p) + THE "-" SIGN MUST BE 1
00 Ji125 J8 PQO0 Jiz2s; J8 REPLACED BY AN ALPHA 15
9-1 00 Ji17 911 PQOO J117; (P) + 1 CHARACTER 16
70 9-2 Q70 g2 ; (P) + 1
10 NO PQ10 No ; (P) + 18
00 Ji25 9-3 PQOO J125; 9L3 19
9-2 10 K1 912 PQ10 Ki ; (P) + 1 20
10 NO PQ10 No ; (P) +1 21
10 NO PQ10 No ; (P) +1 22
00 J111 PQOO J111; (p) + 1 23
00 AO PQo0 AD ; (P) + 1 2k
9-3 50 Ki 913 50 KL ; (P) + 25
10 M PQlLO M ; (P) + 1 26
10 MO PQL0 M ; (P)+1 27
00 J11l PQOO0 Ju11; (p) + 1 28
00 A0 PQo0 A0 ; (P) + 1 29
00 Jl25 J8 PQOO Jizs; J8 30
5 ol NAME DATA 5 | BEGIN DATA 31
K1 01 1 C Kl PQOID 0;1 THE "D" INDICATES DATA. 32
MO ol 1 C MO PQO1D 0;l1 THE "O;1" STANDS FOR "+1." 33
NO o1 1 C NO PQOD O;l 3k
5 EO END START TRANSFER CARD 35

F1a. 1. IPL-V program and TALL program for Ackermann’s function

For example the IPL-V data word

P Q SYMB LINK

is represented in TALL in the following manner:

L COMMAND ADDRESS

PQOOD SYMB; LINK

This line of TAC code is expanded by the macro PQOOD into a
word which has SYMB in its left-hand address and LINK in its
right-hand address. The other IPL-V data terms, decimal, floating
point, octal, and alphanumeric, are converted into appropriate
TAC constants by macros. The conversion from IPL-V data to
TaLL data is also a straightforward procedure (see Appendix).

Conclusion

The flexibility of currently available symbolic assembly pro-
grams allows the rapid development and modification of advanced
computer languages. When these assembly languages are fully
utilized, development costs of higher order languages are greatly
reduced. In the particular case described here, a list processing
language, IPL-V was implemented on the Philco 2000 as a set of

macro-operations, subroutines, and conventions within TAC, the
assembly program for the 2000. The implementation was accom-
plished rapidly and also enables the user to combine Tac, For-
TRAN, and JoviaL statements with IPL-V statements. An inter-
pretive version of IPL-V, coded in JOVIAL, has also been
implemented on the 2000, see page 479 of this issue. These two
methods of implementing IPL-V are currently being studied. The
results of this study will be presented in the near future.

ACKNOWLEDGMENTS

I am grateful to C. J. Mossman, S. S. Shaffer, D. P. Haggerty,
W. E. Meyer, M. N. Kostiner, H. L. Quon, P. Teas and J. Marx
for their assistance in implementing TALL.

APPENDIX

In order to demonstrate the conversion of IPL-V code to TaLL
code the IPL-V program for computing Ackermann’s Function®
has been translated into TaLr. The IPL-V code and the TaLL code
are presented in Figure 1. The discrepancies between IPL-V and
TaLL not previously mentioned are noted in the “Comments’
column.

5 NEwWELL, A. ET AL. Op. cit., p. 42.

485

Communications of the ACM

