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§ Abstract

A constitutive model for martensitic solid-solid phase transformations is developed.
Specifically, we investigate and model the one-dimensional behavior of shape memory al-
loys, with the purpose of capturing both the shape memory effect and the pseudoelasticity
effect which are uniquely exhibited by this class of alloys. The model is of tlie popular phase
space type and an appropriate numerical approximation of the constitution is developed
which robustly handles arbitrary one-dimensional thermomechanical loading. Heuristics
are provided for treating two types of non-uniqueness issues that have been identified to
arise with such models. Representative simulations demonstrate the ability of the formu-
lation to capture the essential macroscopic behavior of shape memory alloys. In particular
examples are shown solving truss bar and beam finite element problems.
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§1. Introduction

General Characteristics of Shape Memory Alloys

Shape memory alloys are materials that display a very particular type of martensitic
transformation. These transformations are classified as first order diffusionless displacive
transformations, and consist of lattice transformations involving a shearing deformation,
which results from a cooperative motion of atoms over a small distance; see e.g. FUNAKUBO
[1984] or DUERIG ET.AL. [1990]. The movement is such that there exists a one-to-one
correspondence between lattice points in the parent phase (austenite) to the lattice points
in the product phase (martensite), known as lattice correspondence. The parent phase
typically has a high symmetry group whereas the product phase usually has a low symmetry
group; e.g. In NiTi alloys the austenite may be cubic and the martensite monoclinic.
During the production of martensite from austenite several different orientations of the
martensite are from an energetic point of view equally likely to be produced. The differing
orientations are often referred to as martensitic variants. The existence of the variants is
one of the micromechanical features of these materials that give them their unique material
properties since it is possible to convert one variant to another with little added energetic
input — an additional transformation process known as reorientation.

Admissible
Transformation
Region

Tes Thns Tys Tar T
FIGURE 1.1. Phase space diagram depicting transformation
zones and their associated values of stress and temperature for
activation.

The activation of a martensitic transformation occurs due to the presence of driving
forces, either thermal of kinetic. To initiate a transformation, the chemical free energy
difference between the parent and product phases must be greater than the necessary
free energy barriers, such as transformational strain energy or interface energy. For the
determination of when transformations initiate, the space parameterized by stress and
temperature is commonly used. The stress-temperature space is referred to as the phase
space and is depicted in Figure 1.1 for tensile states of stress. The arrows indicate the
direction of travel needed for an active transformation through the shaded transformation
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regions, while 0. and o/ denote the critical start and finish stresses of a martensite
reorientation transformation and C,, and C, represent the slopes of the transformation
lines. The transformation temperatures, Tr, ¢, Tms, Tas and 7,5 indicate the start and finish
temperatures at zero stress for martensite and austenite production, respectively. Lastly,
oy indicates the value of stress above which plastic slip will occur. Dependant upon the
path taken within the phase space, certain characteristic features of the stress-strain (o —¢)
response will manifest themselves.

O 100% Single Variant
Mortensite ~

100% Multiple
Variant Martenisite
\

100% Austenite
\

T
FIGURE 1.2." Shape memory effect. The material begins
stress free at a high temperature and is cooled under zero load to
form martensite. The specimen is then loaded and unloaded at
constant temperature. Lastly, the specimen is heated to return
to its original austenitic state.

If austenite is cooled from above T,y to below T, at zero stress the resulting effect
will be the creation of a “self accommodating” or “twinned” microstructure. This process
begins at T,,s and completes at T,,¢. The ensuing multiple variants which form tend to
average the overall deformation to a net zero change in shape on the macroscopic scale
(neglecting any thermal expansion). If this material is subsequently mechanically stressed
above o, the multiple variants will coalesce into one variant in the preferred direction of
loading, in a process known as detwinning or re-orientation. This process begins at o,
and finishes at 0. Upon removal of the mechanical load, a permanent deformation is
retained in the specimen. If the material is now heated above the critical temperature,
T,y it reverts to austenite and completely recovers its original shape — i.e. the so-called
shape memory effect. This recovery process begins at T,, and completes at T;; see Figure
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c 100% Single Variant
— Martensite

w——100% Austenite

3
FIGURE 1.3. Pseudoelastic process begins stress free at a
high temperature and is then loaded to a martensitic state and
unloaded at constant temperature to its original austenitic state.

1.2 for a schematic of the process just described in the temperature-strain-stress space.
Note that the amount of recoverable strain can easily exceed 5%.

When the temperature is above the finish temperature T,y and the specimen is loaded
mechanically above a critical stress level 0., 71, austenite will transform into a single vari-
ant martensite oriented in the direction of loading, accompanied by a large macroscopic
strain. The strain is recovered upon removal of the mechanical load, since martensite is
not stable at low stress and high temperatures. Typically this type of process is called
pseudoelasticity, since the behavior is such that the material returns to its initial configu-
ration upon removal of the loading. A schematic of this process in the strain-stress space
is shown in Figure 1.3.

Modeling approaches

There are a variety of approaches that have been taken to model and understand the
behavior of shape memory alloys. One approach is concerned with describing the process
of the phase transformation on a local level. In this approach models are based upon non-
convex multi-well free energy functions with the addition of non-local interaction terms
to account for interfacial energy at the phase boundaries. Using a Landau-Devonshire
based model FALK [1980] applied a multi-well free energy function to describe both stress
and thermally induced phase transformations. Additional work along these lines can be
found in BALL & JAMES [1992], SUN & HwaNG [1993A,B], ABEYARATNE & KNOWLES
[1993], KAFKA [1994A,B], ABEYARATNE ET.AL. [1994], KiM & ABEYARATNE [1995],
and PATOOR ET. AL. [1996]. Extending these developments MULLER & XU [1991]
modeled the characteristics of the phase transformations at high temperatures, specifically
pseudoelasticity. Similar in nature are the works of MULLER & WILMANSKI [1981],
ACHENBACH & MULLER [1985], ACHENBACH ET. AL. [1986], and ACHENBACH [1989],
where arguments from statistical physics have been used to develop a rate-dependent
constitutive model to describe the martensitic phase transformation under mechanical and
thermal loading. Work ezplicitly examining the computational aspects associated with
these types of models does not appear in the literature to the authors’ knowledge.

t The symbol o, denotes the critical stress above which only martensite is stable.
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The significant work done in the area of multi-well models has enabled the develop-
ment of a phenomenological approach in which the microstructure is accounted for by the
introduction of internal variables and the temperature-stress phase space map. TANAKA
& IWASAKAI [1985] and TANAKA [1986] utilized the earlier work on free energy functions
to develop a rate-independent model which describes the phenomenological behavior of
martensitic phase transformations for a one-dimensional bar under a tensile stress state.
LiaNG & ROGERs [1990] and BRINSON & LAMMERING [1993] were able to build upon
this work by creating explicit algebraic evolution equations for the internal variables in con-
junction with a phase space diagram; the latter authors also incorporated their model into
a finite element setting with finite kinematics for a one-dimensional bar, again restricted
to a tensile state of stress. Other numerical work using the internal variable formulation
with a phase space diagram in the high temperature regime has been done by AURICCHIO
[1995].

Efforts have only recently begun in the area of computational mechanics in regard to
general phenomenological shape memory alloy models. The numerical models which have
been developed thus far are limited in range of application. To overcome these deficiencies
we have developed a one-dimensional constitutive model and algorithm which is applicable
to processes from below the martensite finish temperature to above the austenite finish
temperature and is good for both tensile and compressive states of stress. The constitutive
model is based upon the introduction of internal variables and a phase space map for both
tensile and compressive states from which we develop evolution equations which capture
the phenomenological behavior of the martensite phase transformations for all temperature
and stress states. In addition, an algorithm for state determination is developed which
recognizes the possible non-uniqueness of the processes. The issue of state determination,
as will been seen, is the most critical aspect of numerical modeling with respect to these
‘materials when they are described by internal variables and a phase space diagram.

The remainder of the paper proceeds as follows. In Section 2 we briefly outline two
one-dimensional boundary value problems - a truss bar and a beam. In Section 3 we
present the constitutive model. In Section 4 we discuss its integration and in Section 5 we
examine several examples.

§2. General Boundary Value Problem

In this section we consider the formulation of a multi-dimensional truss bar and a two
dimensional beam element for both linear and nonlinear kinematics. The purpose here is
merely set up the problems to be examined and motivate the utility of a one-dimensional
constitutive relation.

2.1. Truss Equations.

For the truss examples considered we utilize two types of models: one based entirely
on linear kinematics and one based on finite kinematics. The linear case simply assumes
that the strain measure is the gradient of the axial displacement of the truss bar. The



6 S. Govindjee € E.P. Kasper

expression for the nonlinear strain measure is given by the logarithmic strain measure

cn (L), o)

where L is the initial length and [ is the deformed length of the truss bar. In the constitutive
equations to be presented later in this paper, the strain measure that appears can be taken
to be either Eq. (2.1) or the standard linear measure. The stress measure in both cases can
be taken as the Cauchy stress. The governing weak form equations and their finite element
approximations are well known and will not be presented here; see e.g. HUGHES [1987]
or ZIENKIEWICZ & TAYLOR [1989]. It is noted that in order to solve a finite element
truss problem, what is needed is a prescription for computing the element axial stress and
tangent given an element strain (in one-dimension).

2.2. Two-dimensional Beam.

For the beam examples given at the end of the paper, the beam formulation of SIMO
ET.AL. [1984] is utilized. This formulation assumes that plane sections remain plane, but
not necessarily normal after deformation. The strain measures used in this beam are of a
full finite deformation character. In the constitutive relation to be presented later in this
paper, one can take the stress measure shown to be the axial 2nd Piola-Kirchhoff stress and
the strain measure to be the axial component of the Green-Lagrange strain measure. The
resultant stress measures for the beam are an axial force, a shear force and a moment. For
the problems at hand the shear force is obtained from the penalization of the zero shear
strain constraint in thin beams. The axial force and moment are produced by a numerical
integration through the thickness of the axial 2nd Piola-Kirchhoff stress. The required
resultant tangent is obtained likewise through an integration through the thickness of the
variation to the 2nd Piola-Kirchhoff stress measure. Additional details can be found in
KASPER [1997].

£3. Constitutive Model

T [TTT T TIT7]7
NV , /
(RN \ /
[RERAE a) 177177
Y Y
S SR 7]
\ 3 T 1177777717
17 /
TLT TV 7177777777
£ Ea 1
FIGURE 3.1. Conceptual picture of the variants associated
with various lattice configurations.

—
P~
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]
|
.

As noted, the boundary value problem for the truss bar and beam is completed by
specifying the one-dimensional stress response. Here we assume:

azE[E—sp—sL(§+—£”)—a(T~TO)] (3.1)
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where o is the appropriate stress measure, E is the elastic modulus, € is the appropriate
total strain measure, ¢P is the plastic strain, e is the maximum residual strain obtained
by detwinning multiple variant martensite (Bain or transformation strain), £+ and £~ are
the volume fractions of the positive and negative variants of the martensite twins after
ACHENBACH ET.AL. [1986] (see Figure 3.1), « is the coefficient of thermal expansion and
T and Tj are the current and reference temperatures, respectively.

Remark 3.1.

1. For any state, the simple algebraic relation é*+£~+£4 = 1 holds, where £ 4 represents
the volume fraction of austenite present. Note that the total martensite fraction is
the sum of the variants £ = ¢+ + £, while the absence of both ¢+ and ¢~ indicate
the material is completely austenite.

2. For states where £* = £~ the material is considered to be in a self-accommodating
state and is termed to be 100% multiple variant martensite. Although its configura-
tion is similar to 100% austenite with regard to the overall deformation, the crystal
structure is not the same.

3. For a one-dimensional system we may accurately capture the behavior of the phase
transformation using only two internal variables, namely £+ and ¢~. For higher
dimensions, the underlining physics is more complicated and thus additional internal
variables or variants are needed; see BOyD & LAGOUDAS [1996A,B].

4. Authors such as TANAKA [1986], LiaNG & ROGERs [1990], Brinson [1993] and
BRINSON & LAMMERING [1993] have utilized linear mixture rules for the elastic
material modulus £ = E, + {(E,, — E,) and coefficient of thermal expansion o =
ag + &(am — ay), where E,;, E,,, oy and a,, are the elastic moduli and thermal
coefficients of expansion for pure austenite and martensite. The mixture rules enhance
the model by accounting for different pure state material properties. The addition of
these mixtures rules presents no conceptual difficultly in the present formulation; for
simplicity we will assume the moduli to be constant. [J

In the following subsections, we develop explicit expression for the evolution equations
for the martensite fractions for various regions within the phase diagram. To account for
both tensile and compressive behavior, we consider a reflection of the standard phase
diagram for the tensile stress region onto the compressive region. For the present work,
the constitutive transformation parameters are denoted with either a superscript * or
~ representing the parameters in the tensile and compressive regions, respectively. The
ability to differentiate between the various transformation parameters enables the model
to capture the proper behavior.

3.1. Production of Austenite.

Since austenite has only one form (variant), it is sufficient to consider the evolution
of the total martensite fraction. The positive and negative variants are assumed to evolve
proportional to the total martensite fraction. Further, the evolution of the total martensite
fraction may be expressed in an integrated form as a linear interpolation between the start
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100% Positive Single Variant Martensite

+
4 Vas

Vif

100% Austenite

T

Martensite

Variants

Vaf

: Vas

100% Negative Single Variant Martensite

Tas =c Taf=d Transformation Zone

FIGURE 3.2. Admissible transformation regions for the pro-
duction of austenite. The points ‘¢’ and ‘d’ denote the start
and finish temperatures for the transformation, while V. and
Vaj]i are the start and finish lines for the transformation; the

directionality of the evolution is indicated by the arrows.

and finish transformation lines within the phase transformation region shown in Figure
3.2.

In the production of austenite from martensite we also consider the effects of plastic
deformations. When material in the detwinned (single variant) phase is deformed plasti-
cally, the single variant martensite structure becomes “locked in” by the dislocation arrays.
This effect prevents the material from subsequently being transformed into austenite or
multiple variant martensite; see VANDERMEER ET.AL. [1981], JING-CHEN ET.AL. [1990],
and DUTKIEWICZ [1994]. To model this effect, we consider a modification of the usual
linear evolution law during this transformation to account for equivalent plastic strain.
The evolution equation is expressed as follows:

- V=
E=6+(1- () -6) (;,5'-;——_—_—‘/;) - (3.2
af as

In (3.2) f(&P) can be interpreted as the maximum amount of austenite that can be pro-
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duced for a given equivalent plastic strain. The parameter &, is introduced to account for
cyclic behavior within the transformation zone and represents the maximum value of £ for
any previous loading history. The parameters V.= and Va‘; denote the critical values of
stress between which the phase transformation occurs at a fixed temperature, where the
subscripts as and af designate stress values on modified (by the initial conditions) austen-
ite start and finish lines, respectively. The starting value of the phase transformation is
taken to be a function of the initial fractions present, while the finish value is taken to be
constant; thus

+_ o+ Ep—Co( 1 +
Vas =0gs T 1-& <Uaf - Uas) (3 3)
+ + e
Var =%y

where & represents the initial fraction of martensite for the first occurrence of the trans-
formation and o2, and o;tf are defined from the virgin phase transformation lines in the
stress-temperature space as

0f =CE(T—T,) and oF =CF (T —Tay) (3.4)

and CF are the slopes of the transformation lines, assumed fixed. The evolution of the
positive and negative variants are assumed to occur in proportion to their existence at the
beginning of the phase transformation:

£t = g{ and &7 = S ) (3.5)
fp ép

Remark 3.2.
The choice of the superscript (T or =) depends on whether one transverses the trans-
formation zone with tensile or compressive stresses. Note that the choice is non-trivial
since the stress is not known in general a priori. This point is discussed in detail in
Section 4. [

Remark 3.3.
A suitable two parameter functional form for f(&?) is:

f(&P) = (1= B)exp[—ke?]+ 3 . (3.6)

When there is no plastic strain, equation (3.6) allows for 100% austenite production
during the phase transformation. For finite values of &P, the maximum amount of
producible austenite is limited to a value between unity and the asymptotic value of
3, taken as a material constant. The rate at which this asymptotic value is approached
depends on the material parameter k. For moderate ranges of temperature this model
adequately captures the interaction between the plasticity and the shape memory
effect. For larger changes in the temperature, considerations such as annealing of
the material have to be accounted for; see GOVINDJEE & KASPER [1998] for further
details. [
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State and Internal Variables

If one assumes that the phase transformation is occurring, then for a given total strain
value and temperature the stress and internal variables can be determined by simultane-
ously solving the constitutive equation (3.1) and the evolution equation for the production
of austenite (3.2). Explicitly one has:

+
0:%(5-—-51’——6,;[{;—55]4—[170—-1]%—a[T——TO])
(3.7)
— Y=
£=¢ +<1~—f<é'p>~s><—”———“f—-)
P \vE—vE
where
E v [1—=Ff-
bo:—”lﬁ—ié:(f;—fp)(”#_%) . (38)

To obtain the mechanical moduli for the inelastic case we take the variation of the stress
response (3.7);. If 6 is taken as the variation operator, then:

bo = Qgés = Eés . (3.9)

Remark 3.4.
In contrast to the above relations, during an elastic process we would simply have

o=E(e-ef —elh - &1 - alT — Ty))

3.10
fzfp . ( )

The tangent would be

bo = 52(55 = Eéc . (3.11)

O

3.2. Production of Single Variant Martensites.

For the production of single variant martensites it is sufficient to consider the evolution
of one of the variants, either the positive or the negative variant depending on whether the
stress state is tensile or compressive. The remaining variant is then evolved proportional
to the chosen variant. The evolution of the chosen variant fraction may be expressed in
an integrated form as a linear interpolation within the phase transformation zones shown
in Figures 3.3 and 3.4:

o-V=
=16 (Ftis ) 12

Vi - ViE
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100% Single Variant Martensite

100% Austenite

T

T =@ Ths = b [] Transformation Zone
FIGURE 3.3. Admissible transformation regions for the pro-
duction of positive single variant martensite. The point ‘b’ de-
notes the temperature below which austenite is not stable. The
parameters V' and VI ¢ are the start and finish lines for the
transformation and the directionality of the transformation is
indicated by the arrow.

(0]

100% Austenite
_mite_ Al T

100% Sirgle Variant Martensite ms
Vmf
TIrEE = a Tms =b Transformation Zone

FIGURE 3.4. Admissible transformation regions for the pro-
duction of negative single variant martensite. The parameters
Vins and V. indicate the start and finish lines for the transfor-
mation and the direction for the production of negative single
variant martensite is depicted by the arrow.

11
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The parameters Epi are introduced to account for cyclic behavior within the transforma-
tion zones and represent the maximum values of £* for the previous loading history. The
parameters V&, and Vrff denote the critical values of stress between which the phase
transformations occur at a fixed temperature, where the subscripts ms and mf designate
stress values on modified (by the initial conditions) martensite start and finish lines, re-
spectively. The starting value of the phase transformations is taken to be a function of the
initial fractions present, while the finish value is taken to be constant; thus
_ (¢ _
V’nfs = Vnrmts + __;L:_fo?o (Vrff - Vﬂ:’iz:s)

+ _ 4+ 3.13

V2 = ok, + (HO)EE + [ - M) — minled, €F]) (o, - o,) |

where & represent the initial fraction of martensite for the first occurrence of the trans-
formations, H(c) is the step function, and o, and ofrj s are defined from the virgin phase
transformation lines in the stress-temperature space as

Opms =05 +C(T = Tre) and o, = olE+ CE(T - T,,.,), (3.14)

ms
where (-} is the Macauley bracket and CZ is the slope of the transformation lines, assumed

fixed. The evolution of the remaining variant is assumed to occur in proportion to its
existence at the beginning of the phase transformation:

1= +
F = (1._;&) & - (3.15)

Remark 3.5.
In equation (3.13)3 the second term on the right hand side is introduced to ensure that

only the single variant states affect the initial critical stress. [

Remark 3.6.
Again, the choice of which transformation is presently occurring for a given strain and
temperature can be non-trivial. Section 4 discusses this issue in more detail. [7]

State and Internal Variables

If as before one assumes that a transformation is occurring with given total strain
and temperature, then the constitutive equation (3.1) and the evolution equation for the
production of single variant martensite (3.12) may be explicitly solved to determine the
stress and martensite fractions during the inelastic process as

F V?‘r:i:f
o=—le—el —ep+ (bop—1)—== — a[T — Ty}
bo E

(3.16)
_y*
E=1+(1-¢) (UTjﬂf—)
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where
1— &5 +6F
The tangent for the inelastic case is given by the variation of the stress response (3.16);
as:
do E
00 = —8e = —fe . 18
7= 5-be W 5 (3.18)

8.8. Production of Multiple Variant Martensite.

o]

100% single Variant Martensite

100% austenite

Variants T

100% Single Variant Martensite

Tpe =2 The =P [] Trensformation zone
FIGURE 3.5. Admissible transformation regions for the pro-
duction of multiple variant martensite. The points ‘a’ and ‘b’
denote the start and finish temperatures for the phase transfor-

mation; the direction of the evolution is depicted by the arrow.

Since multiple variant martensite is produced in equally distributed proportions of
positive and negative variants, from a zero initial statet, it is sufficient to consider the
evolution of the total martensite fraction. The positive and negative variants are then
evolved proportional to the total martensite fraction present. In an integrated form, this
evolution may be expressed as a linear interpolation within the phase transformation zone
shown in Figure 3.5:

E=14(1-6) (-0-7;—92—&) . (3.19)

mf 7 Ums
Again the parameter £, is introduced to account for cyclic behavior within the transfor-
mation zone and represents the maximum value of ¢ for the previous loading history. The
parameters 6, and 8,y denote the critical values of temperature between which the phase

T Producing multiple variant martensite from 100 % austenite.
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transformation occurs, where the subscripts ms and mf designate temperature values on
modified (by the initial conditions) martensite start and finish lines, respectively. The
starting value of the phase transformation is taken to be a function of the initial fractions
present, while the finish value is taken to be constant; thus

fp—fo

ems = Tms +
1-¢&o

(Tms = Tms) (3.20)

Oms = Ty

where &y represents the initial fraction of martensite for the first occurrence of the trans-
formation and T, and T, are material parameters taken from the virgin phase trans-
formation lines in the stress-temperature space.

The evolution of the positive and negative variants are assumed to occur in proportion
to their existence at the beginning of the phase transformation

=g rzE-g) and =6 +o(E-6) (3:21)

State and Internal Variables

During this phase transformation one can solve for the stress and internal variables
given the total strain and temperature by first noting that the evolution equation for
the production of multiple variant martensite (3.19) is independent of the constitutive
equation (3.1). Hence one may simply calculate the martensite fractions (assuming a known
temperature) from Eqs. (3.19)-(3.21) and substitute these values into the constitutive
equation (3.1) to get the stress. The variation of the the stress response gives the elastic
modulus for the tangent.

3.4. Plasticity.

To account for the behavior of the material at high values of stress we utilize a linear
isotropic hardening model and assume that the evolution of the plastic variables occurs
independent of any phase transformations. Hence, the plasticity model described below is
not intended for use at high temperatures where transformations occur at high stress. (Note
adequate experimental data does not exist in this regime, thus modeling is unrealistic.)

The internal variables used for the plasticity model are plastic strain and equivalent
plastic strain and their evolution is given by

eP = Asign [o]
. 3.22
&= (8.22)

where A is the plastic consistency parameter and the yield function is defined as
¢(U> 5{}?) = IUI - (Uy + ng) ’ (323)

where o, is the uniaxial yield stress, H the isotropic hardening modulus and the Kuhn-
Tucker conditions are given as

$<0; A>0; M\p=0; Xp=0. (3.24)

For further details on the plasticity portion of our model see StMoO & HUGHES [1998].
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§4. Integration and State Determination

This section covers the algorithmic approximation of the constitutive theory in the
setting of the finite element method and the integration pathologies which arise. In par-
ticular we restrict ourselves to a single Gauss point and assume the state of the material is
known at time ¢,,. The solution is to be advanced to a new time ¢, ;1 and the temperature
and strain are assumed given to the constitutive routine by the general FEM machinery
with the goal being to compute the stress, material tangent, and internal variables. Due to
the nature of the nested elastic and inelastic regions, the determination of the activation
of a transformation is paramount to the model’s implementation. This detection proce-
dure is known as state determination and although seemingly straight-forward has several
subtleties, which if not accounted for can lead to global convergence problems. Note that
the stress is not known; thus one’s position of the phase space diagram is unknown.

There are two basic pathologies that must be treated. First, when considering an
individual transformation three possible events can occur (a) elastic “unloading” with no
change in the internal variables, (b) forward transformation with evolution of the internal
variables as specified in the previous sections, and (c¢) completion of the transformation
with the evolution of the internal variables restricted by the physical phase fraction lim-
its. In terms of the evolution equations for the internal variables, this actually makes
them piecewise linear in the stress-internal variable space with three “branches”. When
computing the intersection of this piecewise linear evolution equation and the constitutive
relation (3.1) it is possible to have multiple intersections, e.g. multiple admissible states.
The primary algorithmic issue then is the “state determination” — i.e. which of the three
possibilities is the correct one. This non-uniqueness is termed an intra-transformation
pathology. Below we propose a heuristic for making the seemingly correct determination
among the three possible choices. The second pathology that must be considered is that
at any given temperature and strain increment there are multiple types of transformations
possible; e.g. if T > T,f, then one can have the production of positive single variant
martensite, the generation of austenite from above or below the zero stress axis, and the
production of negative single variant martensite. It is possible for a given history, tempera-
ture, and strain increment to have three of these as valid possibilities. This non-uniqueness
is termed an inter-transformation pathology. Here too we propose a simple heuristic that
allows us to choose the seemingly correct transformation path.

4.1. Intra-transformational Pathology.

Production of Austenite

Consider the production of austenite with initial conditions at time ¢, shown in Fig-
ure 4.1. Given a temperature increase to T, 11 and a strain increment to €,41 we wish to
determine the state for time t,,.3. In Figure 4.1 (b) the abscissa is the total martensite
fraction that is decreasing from its current value &, to zero by an increase in the system
temperature. If at time t,.; the stress 0,41 is above o, then the transformation is com-
pleted and &, equals zero. If on the other hand o9 > 0,41 > 01, then the transformation
takes place partially and the value of £, is given as in Section 3. If ¢,4; < o then
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(SN
€, o)

Evolution Law

Constitutive~, ¢~
®

(b)
FIGURE 4.1. Production of austenite. (a) phase space dia-
gram of initial state at time ¢,, and possible final states at time
t,+1 and temperature T, 1. (b) piecewise linear evolution law
and two cases for the constitutive relation (3.1).
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ént1 = &, and an elastic “unloading” takes place. Also shown in Figure 4.1 (b) is equa-
tion (3.1); it is shown for two cases — one where £ > £~ and the other for £ > £+, The
difference between the two cases changes the slope and thus the intersection characteristics
of (3.1) with the evolution law (also shown in Figure 4.1 (b) as the piecewise linear curve).
For the case of a negative slope, three constitutively consistent possibilities can arise.

To algorithmically determine the correct solution the three cases above (elastic un-
load, partial transformation, and complete transformation) are each assumed correct and
evaluated. Next consistency checks are performed:

e For the elastic case if the stress is less than the value of the stress at the
iso-fraction line for € = &, at T = T,,41 (0 < 01) then the path is admissible.

e For the partial transformation case if the stress is less than the value of the

stress at the iso-fraction line for { = {gpe, = max {50 +(1-f- Eg)%‘—_%—i%, O}

at T = Tp41 (0 < 02) and greater than the value of the stress at the iso-fraction
line for € = €, at T = T,,41 (0 > o1) then the path is admissible.

o For the complete transformation case if the stress is greater than the value of
the stress at the iso-fraction line for £ = £,per at T = Tp41 (0 > 02) then the
path is admissible.

If no paths are found admissible, then this transformation is inactive. If only one path
is found admissible it is taken as active. If multiple paths are found to be admissible, as
depicted in the stress-fraction map in Figure 4.1 (b) then the trajectory which minimizes
the phase space norm d(o,,, 0;) is chosen as active. Minimizing the distance in phase space
aids in controlling the local behavior of the constitution. Note that an active path may
not be the actual path due to inter-transformational pathologies.

Production of Positive Single Variant Martensite

Consider now the production of positive single variant martensite with initial condi-
tions at time ¢,, shown in Figure 4.2. Given a temperature increase to 7,,+1 we wish to
determine the state for time t,11. From the stress-phase fraction map in Figure 4.2 (b)
we see that there are three branches to the evolution equation, viz.

o An elastic unload branch in which the stress is below the iso-fraction line

£t = &+ (0 < o) in phase space. For this path the internal variables re-

main constant.

o A partial transformation branch in which positive single variant martensite is
produced if the state of stress is above the iso-fraction line é* = £ at T = T4

(0 > 01) and below the completion line V. 7 (0 < 02). For this trajectory both

the stress and the internal variable are computed via the constitution as in

Section 3.
e A complete transformation branch in which the internal variable £ = 1 with
the final state (o > o3).

To determine which, if any, of these paths are admissible the three cases are evaluated
assuming they are each active. Next consistency checks are performed:
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o] <Tn+1'02) +

Evolution Law

(1,0)

A 4

Constitutive
Law

(b)
FIGURE 4.2. Production of positive single variant marten-
site. (a) phase space diagram of initial state at time ¢, and
possible final states at time ¢,y; and temperature T, 1. (b)
piecewise linear evolution law and the constitutive relation (3.1).
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o For the elastic unload case if the stress 0,11 < o3 then the path is admissible.

e For the partial transformation case if the stress o7 < 0,41 < 02 then the path
is admissible.

e For the complete transformation case if the stress 0,41 > o2 then the path is
admissible.

Although not shown in the stress-fraction map in Figure 4.2 (b) multiple admissible
paths may arise if £& < &7. If multiple paths are found then the phase space norm is
utilized to determine which path is chosen.

Remark 4.1.

1. An identical situation exists with respect to the creation of negative single variant
martensite and it can be treated in a similar manner.

2. For multiple variant martensite production, pathologies of the type being delineated
do not exist since the constitutive relation (3.1) is decoupled from the phase frac-
tion evolution. The only consideration is that one cannot produce more than 100%
martensite. [

4.2. Inter-transformational Pathology.

The inter-transformational pathology can most easily be appreciated by looking at
a specific example. Consider the case shown in Figure 4.3, where at time ¢,, the phase
fractions are assumed to be given by £ = 0 and £, = 1. Further, consider an increment
in the temperature to above T,y as shown. In the FEM solution procedure a value of
strain will be passed to the constitutive routine and the stress, material tangent, and
phase fractions will need to be computed. Consider for concreteness the possible partial
generation of austenite via a path below the zero stress axis, one above the axis, and the
possible generation of positive single variant martensite. It can be shown that a given
value of strain can be compatible with all of these transformation paths. Using Eq. (3.1),
one can show that if

V. %
Ent1 € (ff + aAT + P, ;58 +ep + aAT +€P), (4.1)

then one has an admissible partial production of austenite that results in a negative value
for the stress, V; < onq1 < V5. Further, also using (3.1), if

v vt
5n+1€(——§—- + aAT + &P, g,s +er +aAT +€P), (4.2)

then one has an admissible partial production of austenite that results in a positive value
for the stress, V. < ony1 < Vb, Again, using (3.1), if

Vi v
Entl E(%i+aAT+6p,T+EL + aAT + Py, (4.3)
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O\

t
n+l

FIGURE 4.3. An example of an inter-transformational in-
tegration pathology when & < ;. Shaded zones indicate
trial stress values that produce nominally admissible partial
transformations; light-bar — production of positive single vari-
ant martensite, med-bar — production of austenite with nega-
tive stresses, dark-bar — production of austenite with positive
stresses.

then one has an admissible partial production of positive single variant martensite that
results in a positive value for the stress, V.}, < opy1 < VI - The three strain ranges given
can easily overlap each other leading to multiple admissible transformations of differing
types — i.e. an inter-transformational pathology or non-uniqueness in the constitution.

Remark 4.2.
Consider for instance: V;t = =V, =100, V;, = -V~ = 50, V£, = 200, Ve =250,
a=0,e"=0,er = 0.05 and E = 100x103. Then the three ranges given above for the
strain at time ¢, are (—0.5,49.0), (0.5,51.0), and (2, 52.5) milli-strain, respectively.
The regions clearly overlap [J

Remark 4.3.
A useful pictorial representation is given in Figure 4.3, where the strain ranges have
been converted to “trial-stress” values. In other words the end points of the strain
ranges have been used to compute stresses from the constitutive relation (3.1) with the
phase fractions fixed at the ¢,, values. Trial stress values falling on a particular shaded
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bar will result in an admissible partial transformation of a particular type. The lightest
bar is for positive single variant martensite production, the intermediately shaded bar
is for austenite production with negative stresses and the darkest bar is for austenite
production with positive stresses.  []

Once all possible transformation zones have been computed for a given tempera-
ture state and the individual intra-transformation non-uniquenesses treated, an inter-
transformational check is performed to determine which transformation is admissible. To
perform this check the mixture energy is computed for all admissible transformations and
the path which yields the minimum mixture energy is chosen as the state for the current
iteration: '

min I, = (i iE(e+er) P+ & sE(e—e)* + (1 - &8 — &)1 EE2. (4.4)

The combination of these two simple heuristics provides the “desired” constitutive behavior
in a robust fashion.

§5. Numerical Simulations

In this section we consider the application of the proposed model and algorithm to
several test cases. In particular we consider 3 isothermal processes (' < Tip, Tps < T <
Tay, and T' > T,5) and one shape memory cycle. The material under consideration will
be a Nickel-Titanium alloy whose relevant properties are listed in Table 1. For examples
involving plasticity, the reader is referred to GOVINDJEE & KASPER [1998]. All the
examples shown will involve spatially inhomogeneous states of deformation and involve
partial transformations at certain spatial locations.

Table 1:  Material Properties for NiTi.(BRINSON & LAMMERING [1993])

Young’s Moduli E,,, = E, = 67 GPa

Critical stresses for de-twinning o$¥ = 4100 MPa and o/* = £170 MPa
Martensite production temperatures Tp,s = 18.4 C and T,y =9 C
Austenite production temperatures T,; = 34.5 C and T,5 =49 C
Austenite production slope CF = £13.8 MPa/C

Martensite production slope C£ = +8 MPa/C

Maximum transformation strain e = 0.067

Thermal expansion coefficient o = 6.5 ustrain/C

5.1. NiTi Truss-Bridge Under Cyclic Loading.

FIGURE 5.1. Reference configuration for the truss-bridge.
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We consider a NiTi cantilever truss-bridge consisting of 53 elements shown in Figure
5.1. The bridge is 20 (m) long by 2 (m) deep and all elements have an initial area Q¢ = 1
(m?). Two simulations are performed to demonstrate the ability of the algorithm to predict
the behavior of a system with spatial inhomogeneities for T' < T;,,5 and in a shape memory
cycle.

- |Linear Kinematics /,’ o
--=~--  Finite Kinematics : L

Tip Reaction (MN)

W5 "o 3 0 5 10 15
Tip Displacement (m)

FIGURE 5.2. Simulation # 1: Response curves for isothermal
conditions at 5 C for both linear and finite kinematics.

Simulation #1

The truss-bridge is isothermally cycled to a peak load of £15 MN at a temperature of 5
C. The initial state of the material is 100% multiple variant martensite (i.e. {5 = £; = 0.5).
The response curve at the tip is shown in Figure 5.2.

Tip Reaction (MN)

i2

Termperature (C) Tip Displacement (m}

FIGURE 5.3. Simulation # 2: Thermo-mechanical response
curve for linear kinematics.
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Simulation #2

The truss-bridge is isothermally loaded at a temperature of 5 C to a peak load of
15 MN and then unloaded. The initial state of the material is 100% multiple variant
martensite (i.e. £ = & = 0.5). The truss-beam is then heated to 65 C to facilitate the
recovery of the residual strain incurred during the mechanical loading stage. The response
curve at the tip is shown in Figure 5.3.

Remark 5.1.

1. The algorithm is seen to accurately reproduce the global response of the system that
would be expected for these two load cycles.

2. The ability of the algorithm to robustly handle these problems stems from the complete
state determination algorithm employed. It is noted that the spatially inhomogeneous
nature of these examples makes them much more challenging than the corresponding
loading applied to a single truss bar. In the single truss bar case, the interaction
with the boundary value problem is non-existent and one is simply integrating the
constitutive relations. In the spatially inhomogeneous case, the algorithm is also
dealing with a wide variety of trial strain increments which may be far from the
actual solution.

3. For simulation #1 we see that there exists a global evolution in the response. This
evolution is a result of the fractions changing differing amounts in various bars. These
oscillations reach a limit cycle in a few load cycles and repeatability of the response
is then seen. [

5.2. NiTi Beam Under Cyclic Loading.
We now consider a ten element discretization of a NiTi cantilever beam of length L =

20 (m) having a rectangular cross section of 2x1 (m?). The cross section is divided into four

layers, each of which is evaluated using a 5-pt Gauss-Lobatto quadrature rule. Standard
1-pt Gaussian quadrature was used along the axis of each element. The beam is fixed
against translations and rotations on the one end (X; = 0) and loaded via displacement
control in the X5 (vertical) direction at the other end (X; = L).

'
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°
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_ ‘ -4 ,
L T 8 100 ) 5 10

Time (Gs%c) Tip Disp?acement (rﬁ)
FIGURE 5.4. Simulation # 3: Loading and response curves
for both linear and finite kinematics.
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Simulation #3

The temperature of the beam is held constant at 7' = 41.75 C, which is above the
austenite start temperature and below the austenite finish temperature. The initial state
is assumed to be 50% multiple variant martensite (i.e. £ = & = 0.25) and the loading
and response curves are shown in Figure 5.4.

Remark 5.2.

1. The algorithm accurately determines the onset and completion of negative and positive
martensitic phase transformations for each quadrature point through the depth of the
beam resulting in a behavior which is qualitatively correct.

2. The model predicts the termination of an austenite transformation when the net
reaction is zero. This produces the kinked response curves.

3. Although the strain levels within the beam are moderate the rotations are large and
their effects are pronounced as can be seen from the different response curves for the
linear and finite kinematics. [
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Time (sec) Tip Displacement (m)

FIGURE 5.5. Simulation #4: Loading and response curves
for both linear and finite kinematics.

Simulation #4

Here the temperature of the beam is held constant at T = 55 C, which is above
the austenite finish temperature. The initial state is assumed to be 100% austenite (i.e.
&4 = ¢&; =0) and the loading and response curve are shown in the Figure 5.5.

Remark 5.3.

1. As before one can see that the algorithm correctly reproduces the expected response
curve.

2. From the experimental data shown in AURICCHIO ET.AL. [1995] the model is seen to
qualitatively captures the essential behavior of the pseudoelastic effect.
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3. Since the beam has multiple quadrature points through the depth it provides a rigorous
examination of the algorithm, due to the existence of highly complex through thickness
stress states. [

§6. Closure

This paper has addressed constitutive modeling of one-dimensional shape memory
alloys from the perspective of the phase space map. The constitutive model developed
with its associated evolution equations were cast within a finite element setting for a
truss bar and beam element. The model, although limited to one-dimensional behavior,
encompasses nearly all devices and components currently in use. Further, we can remark
that:

1. The macroscopic behavior of the model accurately captures the essential features of
the actual response of shape memory alloys such as Nickel-Titanium.

2. Complex loading and unloading paths are taken into account via a robust algorithm
which determines the active state and associated evolutionary equations for nested
elastic and inelastic zones in stress-temperature space.

3. While not shown explicitly in the example section, the simulations can be run with
time steps so large as to actually jump over transformation zones in the phase space.
This type of robustness permits the rapid computation of highly complex beam and
truss systems. This is a feature of the phase space model that makes it very attractive
in the 1-D setting.

4. Tt is noted, however, that the extension of phase space models to multi-dimensions
possesses several hurdles that are difficult to overcome. Thus, in multi-dimensions,
multi-well models appear to be the only viable modeling avenue. Robust integration
methods for such models will be of great interest.

5. The pathologies noted are due to the fact that we have considered the affects of
compressive and tensile stresses simultaneously. Previous models were restricted to
only tensile states and thus these pathologies did not arise. The consideration of the
complete stress range brings these issues to the surface.
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