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Systems/Circuits

The Augmentation of Retinogeniculate Communication
during Thalamic Burst Mode

X Henry Alitto,1,2 X Daniel L. Rathbun,1,5,6 Jessica J. Vandeleest,3,4 Prescott C. Alexander,1,2 and XW. Martin Usrey1,2

1Center for Neuroscience, Departments of 2Neurobiology, Physiology, and Behavior, 3Population Health and Reproduction, 4California National Primate
Research Center, University of California, Davis, California 95616, 5Institute for Ophthalmology and Center for Integrative Neuroscience, University of
Tuebingen, D-72076 Tuebingen, Germany, and 6Department of Ophthalmology, Henry Ford Health System, Detroit, Michigan 48202

Retinal signals are transmitted to cortex via neurons in the lateral geniculate nucleus (LGN), where they are processed in burst or tonic
response mode. Burst mode occurs when LGN neurons are sufficiently hyperpolarized for T-type Ca 2� channels to deinactivate, allowing
them to open in response to depolarization, which can trigger a high-frequency sequence of Na �-based spikes (i.e., burst). In contrast,
T-type channels are inactivated during tonic mode and do not contribute to spiking. Although burst mode is commonly associated with
sleep and the disruption of retinogeniculate communication, bursts can also be triggered by visual stimulation, thereby transforming the
retinal signals relayed to the cortex. To determine how burst mode affects retinogeniculate communication, we made recordings from
monosynaptically connected retinal ganglion cells and LGN neurons in male/female cats during visual stimulation. Our results reveal a
robust augmentation of retinal signals within the LGN during burst mode. Specifically, retinal spikes were more effective and often
triggered multiple LGN spikes during periods likely to have increased T-type Ca 2� channel activity. Consistent with the biophysical
properties of T-type Ca 2� channels, analysis revealed that effect magnitude was correlated with the duration of the preceding thalamic
interspike interval and occurred even in the absence of classically defined bursts. Importantly, the augmentation of geniculate responses
to retinal input was not associated with a degradation of visual signals. Together, these results indicate a graded nature of response mode
and suggest that, under certain conditions, bursts facilitate the transmission of visual information to the cortex by amplifying retinal
signals.
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Introduction
The lateral geniculate nucleus (LGN) of the dorsal thalamus is the
primary source of visual signals sent to primary visual cortex,
receiving monosynaptic input from retinal ganglion cells (RGCs)

and projecting directly to cortical target neurons. Despite being
labeled a relay nucleus, the LGN serves to transform retinal sig-
nals in several significant and dynamic ways (Dan et al., 1996;
Usrey et al., 1998, Martinez et al., 2014; Fisher et al., 2017; Alitto
et al., 2019), including changes in the temporal domain that ac-
company tonic and burst activity modes (for review, see Sherman
and Guillery, 2009; Usrey and Alitto, 2015). During tonic mode,
LGN neurons respond to excitatory input with regularly spaced
action potentials, the rate of which is proportional to the strength
of the stimulus (Llinás and Jahnsen, 1982; Huguenard and Mc-
Cormick, 1992). By contrast, LGN spike trains during burst
mode are irregular and include tight clusters of spikes known as
“bursts,” and the firing rate becomes uncoupled from stimulus
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Significance Statement

The thalamus is the gateway for retinal information traveling to the cortex. The lateral geniculate nucleus, like all thalamic nuclei,
has two classically defined categories of spikes—tonic and burst—that differ in their underlying cellular mechanisms. Here we
compare retinogeniculate communication during burst and tonic response modes. Our results show that retinogeniculate com-
munication is enhanced during burst mode and visually evoked thalamic bursts, thereby augmenting retinal signals transmitted
to cortex. Further, our results demonstrate that the influence of burst mode on retinogeniculate communication is graded and can
be measured even in the absence of classically defined thalamic bursts.
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strength. Although geniculate bursts are generally associated with
periods of low arousal and sleep, when LGN neurons are thought
to be dissociated from the periphery, they can also occur during
sensory processing and have been shown to be particularly effec-
tive in evoking cortical responses (Reinagel et al, 1999; Swadlow
and Gusev, 2001; Weyand et al., 2001; Lesica and Stanley, 2004;
Alitto et al., 2005, 2011; Bezdudnaya et al., 2006; Bereshpolova et
al., 2011). Determining how burst mode affects retinogeniculate
communication is therefore important for understanding the
transmission of visual information to the cortex.

Across thalamic nuclei the transition from tonic to burst
mode depends on a common mechanism, the deinactivation of
T-type Ca 2� channels (or T-channels) that occurs when neurons
are sufficiently hyperpolarized for a sufficient duration of time
(Llinás and Jahnsen, 1982; Huguenard and McCormick, 1992;
Wei et al., 2011). When this occurs, depolarizing stimuli can
activate T-channels to generate a Ca 2� potential (T-potential),
which can then trigger a short train of high frequency, Na�-based
action potentials. It is important to note that the magnitude of the
T-potential and subsequently the number of spikes it triggers
depend on the percentage of T-channels in the deinactivated ver-
sus the inactivated state, which, in turn, depends on the depth
and duration of the preceding hyperpolarization (Deschênes et
al., 1984; Destexhe and Sejnowski, 2002; Hong et al., 2014).

Here, we explore the influence of thalamic response mode on
retinogeniculate communication by performing simultaneous
extracellular recordings of monosynaptically connected pairs of
RGCs and LGN neurons in the anesthetized cat. Although the
occurrence of T-potentials is best determined with intracellular
recording methods, past work has shown that bursts can be iden-
tified by applying a previously established set of statistical criteria
to extracellular records of LGN spike trains (Lu et al., 1992; see
Materials and Methods). Using these criteria, we calculated reti-
nal efficacy (the percentage of RGC spikes that triggered LGN cell
spikes) and retinal contribution (the percentage of LGN spikes
evoked by a simultaneously recorded RGCs) during tonic and
burst response modes. Our results reveal a fundamental change
in retinogeniculate communication during burst mode and sug-
gest an augmentation of visual signals by T-potentials. We found
that individual retinal spikes arriving during epochs supportive
of T-channel activity were more effective in evoking LGN re-
sponses and often triggered multiple spikes. We also found an
increased variability in the temporal relationship between retinal
spikes and evoked LGN spikes during thalamic bursts; however,
this variability was not associated with a degradation of visual
signals within the LGN. Consistent with the biophysical proper-
ties of T-channels, the modulation of retinogeniculate commu-
nication was proportional to the duration of the preceding
interspike interval (ISI) of the LGN neuron and was evident even
in the absence of classically defined thalamic bursts. These results
reveal how retinal signals are transformed by the transition be-
tween tonic and burst modes and, importantly, suggest that the
influence of thalamic response mode on retinogeniculate com-
munication is a continuous process.

Materials and Methods
Animal preparation. Sixteen adult cats of either sex were used for this
study. All experimental procedures were conducted with the consent of
the Animal Care and Use Committee at the University of California,
Davis and followed National Institutes of Health guidelines. Some of the
data analyzed in this study contributed to previous unrelated studies on
the retinogeniculate pathway (Usrey et al., 1998, 1999; Rathbun et al.,
2010, 2016).

Surgical procedures were performed while animals were anesthetized.
Surgical anesthesia was induced with ketamine (10 mg/kg, i.m.) and
maintained with thiopental sodium (20 mg/kg, i.v., supplemented as
needed). A tracheotomy was performed, and animals were placed in a
stereotaxic apparatus where they were mechanically ventilated. EEG,
EKG, CO2, and temperature were monitored throughout the experi-
ment. A scalp incision was made, and wound edges were infused with
lidocaine. A craniotomy was made over the LGN, the dura was removed,
and the craniotomy was filled with agarose to protect the underlying
brain. Eyes were adhered to metal posts, fitted with contact lenses, and
focused on a tangent screen located 172 cm in front of the animal. Phen-
ylephrine (10%) was administered to retract the nictitating membranes
and flurbiprofen sodium drops were administered (1.5 mg/h) to prevent
miosis. The positions of area centralis and the optic disk were mapped by
back-projecting the retinal vasculature of each eye onto a tangent screen.
After the completion of surgical procedures, maintenance anesthesia
(thiopental sodium, 2–3 mg/kg/h, i.v.) was administered for the remain-
ing duration of the experiment. Supplemental thiopental was given, and
the rate of infusion was increased if physiological monitoring indicated a
decrease in the level of anesthesia. Once a steady plane of maintenance
anesthesia was established, animals were paralyzed with vecuronium
bromide (0.2 mg/kg/h, i.v.). Animals were killed with Euthasol (100 mg/
kg; Virbac Animal Health) at the conclusion of each experiment.

Electrophysiological recording and visual stimuli. Simultaneous extra-
cellular recordings were made from LGN cells in layers A and A1 and
RGCs. For thalamic recordings, the LGN was first located using single,
parylene-coated tungsten electrodes (AM Systems). After the preferred
retinotopic position was located in the LGN, a seven-channel multielec-
trode array (Thomas Recording) was positioned into the LGN. RGCs
were recorded from using a tungsten-coated microelectrode inserted
into the eye through an intraocular guide tube and maneuvered via a
custom-made manipulator. Neural responses were amplified, filtered,
and recorded to a computer equipped with a Power 1401 data acquisition
interface and the Spike 2 software package (Cambridge Electronic De-
sign). Spike isolation was based upon waveform analysis (parameters
established independently for each cell) and the presence of a refractory
period, as indicated in the autocorrelogram (Usrey et al., 2000, 2003;
Kiley and Usrey, 2017).

Visual stimuli were generated using a VSG2/5 visual stimulus genera-
tor (Cambridge Research Systems) and presented on a gamma-calibrated
Sony monitor running at 140 Hz. The mean luminance of the monitor
was 38 cd/m 2. Visual responses of LGN neurons and RGCs were mapped
and characterized using drifting sine-wave gratings and white-noise
stimuli. The white-noise stimulus consisted of a 16 � 16 grid of black and
white squares. Each square was temporally modulated according accord-
ing to a 2 15-1 length m-sequence (Sutter, 1987; Reid and Shapley, 1992;
Reid et al., 1997). Individual squares in the stimulus were updated with
each monitor frame for 2 15-1 frames (�4 min). Approximately 4 –16
squares of the stimulus overlapped receptive field center of each neuron.
Drifting sine-wave grating stimuli (4 Hz, 100% contrast) were presented
at the preferred spatial frequency for the recorded cells.

Identification of LGN bursts and tonic spikes. We used two well estab-
lished criteria to identify bursts in the spike trains of LGN neurons (Lu et
al., 1992; Swadlow and Gusev, 2001; Weyand et al., 2001; Lesica and
Stanley, 2004; Alitto et al., 2005, 2011; Denning and Reinagel, 2005;
Bezdudnaya et al., 2006; Bereshpolova et al., 2011). These criteria were as
follows: (1) an ISI of �100 ms that preceded the first spike in a sequence;
and (2) one or more subsequent spikes that followed with ISIs of �4 ms
(Fig. 1A). Past studies applying these criteria to intracellular recordings
show that events defined as bursts co-occur with T-channel plateau po-
tentials (Lu et al., 1992). For this study, the first spike in the burst is
referred to as the cardinal spike, and each additional spike is referred to
by its ordinal position (e.g., secondary, tertiary).

Simulation of T-type Ca�2 channels. Given the critical role that T-type
Ca �2 channels play in the generation of thalamic bursts and that the
biophysical properties of these channels have been extensively character-
ized, we simulated the interaction of T-type Ca �2 channels and synaptic
EPSPs. We used a leaky integrate-and-fire model neuron and a series of
previously published equations that quantify the voltage and time depen-
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dence of both the deinactivation and inactivation of T-Channels (Hu-
guenard and McCormick, 1992). There is at least one other variation of
this series of equations (Wang et al., 1991); however, the two versions
produce equivalent results within the scope of the current study. The
membrane potential (Vm ) of the model neuron was simulated as follows:

�Vm � �ELeak � Vm	 � gLeak � �EEx � Vm	 � gEx � �ECa � Vm	 � gT.

Here, ELeak, EEx, and ECa are the reversal potentials for the leak current,
excitatory input, and T-channels, respectively. gLeak, gEx, and gT are the
conductance values for the leak current, the excitatory inputs, and the
T-channels. Synaptic inhibition was not necessary to produce thalamic
bursts, so they were not included in this simulation. Excitatory input was
simulated using the retinal spike trains recorded in vivo. When the Vm

exceeded 
35 mV, an action potential was recorded and Vm was reset to

60 mV. Maximum gEx was selected to generate biologically reasonable
firing rates and retinal spike-efficacy curves (Usrey et al., 1998) with a

60 mV resting membrane potential. gT was controlled by the following
voltage- and time-dependent equations:

gT � GT � Tm
2 � Th.

Here, GT is the maximum T-channel conductance, Tm is the activation
gate, and Th is the inactivation gates for the T-channels.

The activation states of Tm and Th were de-
termined by the following equations:

�m �
1

exp�Vm � 132

�16.7 � � exp�Vm � 16.8

18.2 �
� 0.162,

vm � �80mV�h � exp�Vm � 467

66.6 �
vm � �80mV�h � exp�Vm � 22

�10.5 � � 28.

Here �m and �h are the time constants for the
activation and inactivation gates, respectively.

m� �
1

1 � exp(�[Vm � 56/6.2])
,

h� �
1

1 � exp([Vm � 80/4])
.

Here, m� and h� are the steady-state activation
levels for the activation and inactivation gates,
respectively. While this model is a simplified
representation of a thalamic neuron that lacks
important details of the underlying biological
processes such as the dendritic T-channel
distribution (Destexhe et al., 1998), the
phosphorylation-dependent potentiation of
T-channels (Leresche et al., 2004), and the in-
terplay between T-channels and other active
currents (Huguenard and McCormick, 1992),
it clearly illustrates the voltage and time depen-
dence of T-channels that will form the basis for
the interpretation of the current dataset. For
more details on simulating T-channels, see
Huguenard and McCormick (1992), Smith et
al. (2000), and Destexhe and Sejnowski (2001).

Cross-correlation analysis. Cross-correlograms
between retinal and geniculate spike trains
were made to assess connectivity between pairs
of cells (Fig. 2). Cross-correlograms were cal-
culated by generating histograms of LGN
spikes relative to each retinal spike and retinal
spikes relative to each LGN spike (Fig. 2 A, B).

Peaks indicative of monosynaptic connectivity were narrow (�1.5 ms,
full-width at half-height), short latency (�5 ms), and exceeded 5� the
SD of the baseline (Cleland et al., 1971; Usrey et al., 1998). For quantita-
tive analysis, bins contributing to the peak were identified using a bin size
of 0.5 ms. The peak bin was first identified, and all neighboring bins �3
SDs above the baseline mean were considered part of the peak, where the
baseline consisted of bins ranging from 30 to 50 ms on either side of the
peak bin.

Retinal spike contribution and efficacy. Cross-correlation analysis was
used to assess connectivity between cell pairs as well as strength of con-
nection. The monosynaptic peak in a cross-correlogram (Fig. 2C) was
used to calculate two measures of correlation strength: efficacy and con-
tribution (Cleland et al., 1971; Usrey et al., 1998). Efficacy is the number
of spikes in the monosynaptic peak divided by the total number of retinal
spikes; contribution is the number of spikes in the peak divided by the
total number of LGN spikes. To the extent that peaks were caused by
monosynaptic connections, efficacy and contribution have very simple
interpretations. Efficacy represents the fraction of the retinal spikes that
evoked geniculate spikes, and contribution represents the fraction of the
geniculate spikes that were caused by a spike from the RGC. Given that
LGN neurons receive convergent input from two to six RGCs (Cleland,

Figure 1. Comparison of burst frequency in the retina and LGN. A, Bursts (blue tick marks) were identified by applying the
following criteria to extracellular recordings: (1) the first spike was preceded by an ISI �100 ms (horizontal arrow) and (2)
subsequent spikes followed with ISIs of �4 ms. B, C, Scatterplot showing the percentage of RGC and LGN cell spikes that were
identified as part of a burst, during white noise (B) and drifting grating (C) stimulation. D, Scatterplot showing the percentage of
simulated LGN spikes that were identified as part of a burst when a leaky integrate-and-fire mode either included or did not include
T-channels. E, Line graph showing the influence of membrane potential on the percentage of LGN spikes that were identified as
part of a burst when the simulation included T-channels (left y-axis, black line) and the increase in simulated LGN spike count due
to the addition of T-channels to the model (right y-axis, red line). Error bars indicate SE.
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1986; Hamos et al., 1987; Reid and Usrey,
2004), it is worth noting that this measure of
retinal contribution quantifies the influence of
the simultaneously recorded RGC on the spik-
ing behavior of the LGN neuron and not the
combined influence of all the RGCs that pro-
vide convergent input to the LGN neuron.
Contribution and efficacy were estimated sep-
arately for tonic and burst spikes via separate
cross-correlograms (Fig. 2 A, B). Differences in
the amplitudes of tonic and burst correlo-
grams, as quantified by contribution and effi-
cacy, are presented in the Results section.

When applicable we calculated the expected
retinal spike efficacy for each recorded cell pair
as follows (Alitto et al., 2019). First, we calcu-
lated the average spike efficacy across a range of
ISIs, estimated independently for responses
driven by drifting gratings and white-noise
stimuli. We then modeled the expected spike
efficacy by assigning each retinal spike the effi-
cacy value calculated for the corresponding ISI.
Thus, the spike efficacy became the value ex-
pected if retinogeniculate transmission did not
systematically depend upon a given indepen-
dent variable.

Interactions of EPSPs and T-potentials. The
tight temporal relationship between retinal
spikes and evoked LGN action potentials (Fig.
2) depends, to a large extent, on the amplitude
and fast rise times of retinogeniculate EPSPs.
Even when two or more retinal EPSPs interact
through temporal summation, the tight tem-
poral relationship is maintained because of the
fast rise time of the triggering EPSP. A similar
tight temporal relationship is expected if
the retinal EPSP occurs during an ongoing
T-potential. However, there may be a signifi-
cant increase in the latency between retinal
spikes and subsequent geniculate spikes if a
subthreshold retinogeniculate EPSP initiates a
suprathreshold T-potential. Here, the in-
creased latency follows the comparatively slow
activation of T-channels in response to depo-
larization (Huguenard and McCormick, 1992).
We therefore also examined retinogeniculate
interactions over a time window of 10 ms (T-
potential delay window), which past work in-
dicates captures the variable delay between EPSP and resulting
T-potential (Wang et al., 2007). Specifically, we used a 10 ms window
immediately preceding LGN spike onset, excluding the monosynaptic
window to avoid redundant counting of spikes, to determine the delayed
contribution. Using this value, we calculated the total retinal contribu-
tion for cardinal LGN spikes, which is the sum of the contribution value
calculated from the short-latency monosynaptic window and the
T-potential delay window. Because of the relatively long duration of the
T-potential delay window, contribution values calculated from drifting
grating data were corrected with a shuffle subtraction to remove
stimulus-dependent correlations (Usrey et al., 1998; Wang et al., 2007)
before calculating total contribution. It was not possible to perform the
same correction on m-sequence data; therefore, m-sequence data were
excluded from this analysis.

Additionally, T-potentials may allow single retinal spikes to evoke
multiple LGN spikes, leading to an amplification of the retinal signal
within the LGN. This would cause a decrease in the measured retinal
contribution because the time delay from the triggering retinal spike
increases with each subsequent LGN spike. Consequently, only the first
spike would fall into the monosynaptic window and thus be counted as
triggered by the retina. To determine the extent to which this occurred,

we calculated retinal augmentation, which is here defined as the average
retinal contribution to secondary burst spikes minus the conditional
contribution given that the previous spike (i.e., cardinal burst spike) was
directly evoked by the recorded RGC. Effectively, this quantifies the rel-
ative change in contribution following an evoked spike. Considering this
influence, we calculated total retinal contribution for secondary LGN
spikes as the sum of standard retinal contribution, delayed retinal con-
tribution (based on the T-potential delay window of the partnered car-
dinal spike), and retinal augmentation.

Spatiotemporal receptive field maps. Spatiotemporal receptive fields
(STRFs) were calculated from LGN spike trains evoked during the pre-
sentation of a binary white-noise stimulus, as described above. To deter-
mine whether LGN burst spikes were driven by visual stimulation, LGN
STRFs were calculated using either the full spike trains (all spikes) or
spike count-matched subsets of data (e.g., only cardinal burst spikes).
Spike count matching was performed on a cell-by-cell basis by determin-
ing which subset had the least number of spikes and then randomly
subsampling the other subsets to have the same total. This was done so
that the signal-to-noise ratios (SNR) were comparable within a given cell.
The signal was estimated as the amplitude of the 2D Gaussian fit (Matlab
function fmincon) to the frame of the STRF containing the peak pixel.
The Gaussian receptive field estimate is described by the following equa-

Figure 2. Cross-correlation analysis to identify monosynaptic connections between RGCs and LGN neurons. A, Raster plot
showing the timing of RGC action potentials relative to the tonic action potentials of a simultaneously recorded LGN (time � 0,
indicated with arrow). B, A similar plot for LGN burst action potentials. C, A clear, narrow, short-latency peak can be seen in both of
the example cross-correlograms (red, tonic spikes; blue, burst spikes), indicating a monosynaptic connection between the two
neurons. Note: cross-correlation analysis can be performed using either the presynaptic spikes or postsynaptic spikes as the
reference events. Here, we use the postsynaptic spikes for the reference to illustrate differences in retinal activity preceding burst
and tonic spikes (see Materials and Methods).
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tion: Gij � K � exp[ 
 (xi 
 x0) 2/2 � � 2] � exp[ 
 ( yi 
 y0) 2/2 � �2],
where K is the amplitude, x0 and y0 are the coordinates of the center of the
receptive field, and � is the SD. Noise was estimated as the mean value for
three frames centered at t � �100 ms.

Experimental design and statistical analysis. To quantify the relation-
ship between retinogeniculate communication and thalamic response
mode, we used generalized linear mixed effect (GLME) models (Matlab
function fitglme; Raudenbush and Bryk, 2002) using a Laplace fit
method. This is done to take full advantage of the number of data points
collected (e.g., hundreds of thousands of retinal and thalamic spikes)
while accounting for differences between cells. The general form of a
GLME is as follows:

y � f� x � 	 � z � 
	 � �.

Here y is the outcome being modeled, x is matrix of fixed-effects vari-
ables, 	 is a vector of fixed-effects coefficients, z is a matrix of random-
effects variables, 
 is a vector of random-effects coefficients, � is the
residual error, and f is the identity link function. 	0 is the y-intercept,
while 	variable name is the coefficient of a specific variable (e.g., 	ISI). When
analyzing the percentage of high-frequency spikes, these values were
modeled using the identify function and as arising from a normal distri-
bution. In this case, the 	-coefficients represent the linear slope between
the predicted outcome and the fixed-effect variable. When analyzing the
percentage of spikes per burst, these values were modeled using a log link
function and as arising from a Poisson process. When analyzing retinal
contribution and retinal spike efficacy, these values were modeled using
a logit link function and as arising from a Bernoulli process (0 and 1 s).
For example, retinal spikes were assigned values of 1 and 0 based on
whether they triggered an LGN action potential (1) or did not (0), as
described above. In this case, the 	-coefficients represent the influence of
the fixed-effect variable on the log of the odds ratio of the predicted
outcome. For each GLME model, cell identity was set as a random effect
to account for differences between cells. For illustrative purposes, data
were binned and normalized (see Fig. 7). Normalization was performed
such that the average value (efficacy or contribution) was set to 1.0. It is
important to note that these transformations were done to represent
effects graphically that are difficult to directly represent based on Ber-
noulli variables; however, the GLMEs models were fit to the raw values
that were neither binned nor normalized.

When simpler statistical analyses were sufficient to compare two dis-
tributions, we first tested the normality of the distributions using Lil-
liefors modification of the Kolmogorov–Smirnov test. If it was
determined that both distributions were not significantly different from
normal distributions, then a t test was used to compare the means of the
two samples, otherwise a Wilcoxon rank sum test or a sign test was used.
X and Y cells were classified based on the latency of the monosynaptic
peak (Usrey et al., 1999). Using this measure, of the 29 cell pairs exam-
ined in this study, 7 were X cell pairs and 22 were Y cell pairs. Results did
not differ for these cell groups; thus, the 29 cell pairs were treated as a
single group for the statistical analyses presented. It should be noted that
small differences between X and Y cells may have gone undetected be-
cause of the small sample sizes inherent to studying monosynaptic con-
nections in vivo.

Results
To quantify retinogeniculate communication during tonic and
burst activity modes in the LGN, we made simultaneous record-
ings of synaptically connected RGCs and LGN neurons in the
anesthetized cat. Retinal and geniculate neurons were excited
with white-noise stimuli (n � 29 cell pairs) and/or drifting sinu-
soidal gratings (n � 15 cell pairs; see Materials and Methods). As
will be expounded upon in the Discussion section, these stimuli
were chosen because of how their spatiotemporal profiles are
predicted to differentially interact with geniculate response
mode. Geniculate bursts were identified using established criteria
for extracellularly recorded spikes (Lu et al., 1992). Specifically, a
burst was defined as a sequence of spikes that met the following

two criteria (Fig. 1A): (1) the first spike in the sequence followed
an ISI of �100 ms, and (2) one or more subsequent spikes fol-
lowed with ISIs of �4 ms. Across 29 monosynaptically connected
pairs of RGCs and LGN neurons, we recorded 1,394,029 retinal
spikes and 530,428 LGN spikes, including 54,482 geniculate
bursts (�2 spikes). As expected, burst frequency was significantly
greater for LGN neurons than for RGCs (Fig. 1B,C; during
white-noise stimulation: RGC � 1.5  0.3%; LGN � 16.1% 
2.8%, p � 10
5; during drifting grating stimulation: RGC �
0.24  0.6%, LGN � 26.2  4.7%, p � 10
5).

Simulating thalamic bursts involving T-potentials
Given that the biophysical properties of T-channels are well char-
acterized, simulations can be used to illustrate how T-channels
and retinal spikes are predicted to interact and transform retino-
geniculate communication (see Materials and Methods). In par-
ticular, leaky integrate-and-fire neuronal models generate bursts
with the simple addition of T-channels based on published equa-
tions (Fig. 1D; percentage bursts with T-channels, 11.5  0.3%;
percentage bursts without T-channels, 0.1  0.05%; p � 10
5,
see Materials and Methods; Huguenard and McCormick, 1992).
Similarly, the addition of T-channels increased the number of
geniculate spikes evoked from the same excitatory input (Fig. 1E,
blue line and axis). Interestingly, the increase in geniculate spike
count remained elevated at higher resting membrane potentials
where the percentage of burst spikes was greatly reduced (Fig. 1E,
black line and axis). This suggests that the influence of
T-channels on geniculate activity can be measured even in the
absence of classically defined bursts.

We hypothesized that visually evoked T-potentials augment
the transmission of visual signals through the LGN because of the
summation of retinal EPSPs with T-potentials. Specifically,
T-potentials are predicted to increase the ability of retinal spikes
to trigger geniculate spikes as well as cause single retinal spikes to
trigger multiple LGN spikes. Further, given the voltage and time
dependence of the deinactivation of T-channels, the influence of
T-potentials on retinogeniculate communication should be dy-
namically regulated by the depth and duration of the preceding
membrane hyperpolarization (Fig. 3).

Although membrane hyperpolarization cannot be directly
measured from extracellular recordings, it is likely that its influ-
ence on T-channel activity is correlated with the length of the
preceding ISI of the LGN cell—the longer the ISI, the greater the
probability of T-channel deinactivation. To test this idea, we
compared the probability that LGN cells generate high-frequency
spikes (ISIs � 4 ms) as a function of the preceding ISI of the LGN
cells. Results show that the percentage of high-frequency spikes
from LGN cells increased dramatically as the preceding ISI in-
creased beyond 50 ms (Fig. 4A,B; white noise: 	ISI � 0.59  0.05,
p � 10
5, dist. � distribution; drifting grating: 	ISI � 0.59 
0.15, p � 0.0005, dist. � distribution). This effect was not seen for
RGCs. In addition, the number of spikes per burst was also di-
rectly dependent upon the preceding ISI (Fig. 4C,D; white noise:
	ISI � 0.65  0.1, p � 10
5, dist. � Poisson; drifting grating: 	ISI �
0.29  0.14, p � 0.053, dist. � normal). These findings are consis-
tent with results showing that the number of spikes generated in
a burst is directly proportional to the size of the underlying
T-potential (Mease et al., 2017).

Visually evoked geniculate bursts
The deinactivation of T-channels that is fundamental to thalamic
bursts can occur via multiple mechanisms. During sleep and
deep anesthesia, when thalamic neurons typically fire in burst
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mode, the deinactivating hyperpola-
rization is not associated with visual sti-
mulation but rather involves intrinsic
corticothalamic oscillations. Under these
conditions, intrinsically generated bursts
decouple the retina from the LGN and
therefore do not convey visual informa-
tion to the cortex. However, as we and
others have shown previously, the hyper-
polarization needed to deinactivate
T-channels can also result from visual
stimulation (Alitto et al., 2005; Denning
and Reinagel, 2005; Ortuño et al., 2014).
Under these conditions, bursts do not de-
grade visual signals, but instead relay ret-
inal/visual information to the cortex.
Given these very different mechanisms for
burst production and the implications
each mechanism would have on the inter-
pretation of our data, we examined the
spike trains of the cells in this study to
determine whether or not the bursts con-
veyed visual information. To do so, we
calculated space–time receptive fields
from LGN responses to the white-noise
stimulus using only burst spikes and com-
pared these response maps to those com-
puted using a spike count-matched subset
of tonic spikes. As shown in Figure 5, A
and B, burst and tonic maps had similar
signal-to-noise ratios, indicating that the burst spikes were
evoked by visual stimulation (tonic spikes, 9.5  1.5; burst spikes,
10.6  1.3; p � 0.54). Similarly, burst spikes recorded during
visual stimulation with drifting gratings were tightly phase locked
to the stimulus (Fig. 5C,D; tonic spikes circular variance, 0.12 
0.02; burst spikes, 0.03  0.01; p � 0.001).

Augmentation of retinal signals during visually evoked
geniculate bursts
To test the hypothesis that visually evoked geniculate bursts are
associated with an amplification of the retinal signal within
the LGN, we measured retinal spike efficacy as a function of time
since the most recent LGN spike. Using the assumption that the
probability of T-channel deinactivation increases as the LGN ISI
increases in duration (see above), we calculated retinal spike ef-
ficacy as a function of the “ongoing” LGN ISI (Fig. 6A). For
example, if a retinal spike occurred 10 ms after the most recent
LGN spike, the ongoing LGN ISI is 10 ms, regardless of the timing
of either the previous retinal spike or the next thalamic spike. If
T-channels deinactivate during relatively long LGN ISIs, then
retinal spikes that occurred during such ongoing LGN ISIs are
predicted to trigger T-potentials and thus have an enhanced abil-
ity to evoke a geniculate response.

Unsurprisingly, retinal spike efficacy was greatest during the
shortest ongoing LGN ISIs and decreased as this value ap-
proached 30 ms (Fig. 6B,C). This is to be expected given that
most LGN spikes are triggered by retinal EPSPs, and it takes �30
ms for the LGN membrane potential to return to baseline after
these depolarizations occur (Usrey et al., 1998; Carandini et al.,
2007). However, consistent with the deinactivation of T-channels
during longer LGN ISIs, there was an increase in retinal spike
efficacy during ongoing LGN ISIs of �50 ms that was maintained
for the longest recorded values (� 300 ms; Fig. 6B,C; white noise:

	ISI � 2.11  0.12, p � 10
5, dist. � binomial; drifting grating:
	ISI � 9.41  0.15, p � 10
5, dist. � binomial). Consistent with
past reports, retinal ISI also had a strong influence on retinal
spike efficacy, reflecting the temporal summation of multiple
retinal EPSPs in the thalamus (Usrey et al., 1998, Alitto et al.,
2019; Carandini et al., 2007). To account for this effect, we calcu-
lated retinal ISI–spike efficacy for the following three categories
of ongoing LGN ISIs: short (�30 ms), medium (�30 ms and
�100 ms), and long (�100 ms). From this, it is evident that the
two factors, retinal ISI and ongoing LGN ISI, interact to influence
retinal spike efficacy (Fig. 6D,E).

While efficacy calculated from the monosynaptic peak is
clearly influenced by an increased probability of T-potentials, this
measure may not capture the ability of retinal EPSPs to trigger
T-potentials because of the relatively slow activation kinetics of
T-potentials. EPSCs can be modeled as an � function with a time
constant of 0.5 ms (Koch, 1999), meaning that postsynaptic
channels are fully open within �1 ms. By comparison, the acti-
vation kinetics of T-channels are slower and more variable. At a
typical membrane potential range of 
50 to 
70 mV, the acti-
vation time constant is 6 –14 ms (Huguenard and McCormick,
1992). When a retinogeniculate EPSP occurs during an ongoing
T-potential, the slow activation kinetics does not alter the time
between retinal spikes and triggered LGN spikes. However, when
a subthreshold EPSP triggers a suprathreshold T-potential, there
is an additional variable delay between retinal EPSP and LGN
spike. Given that during longer ongoing LGN ISIs is precisely
when an RGC spike may trigger a T-potential, we also measured
“delayed efficacy” using an estimate of the temporal relationship
between retinal EPSPs and T-potentials that was previously mea-
sured under similar experimental conditions (Wang et al., 2007;
see Materials and Methods). Consistent with the increased ability
of retinal EPSPs to trigger T-potentials during long ongoing LGN

Figure 3. Leaky integrate-and-fire simulation of geniculate bursts. Simulation of T-potentials using a standard integrate-and-
fire neural model. Using previously published equations (see Materials and Methods), we simulated the influence of increasing the
amplitude (progressively stronger by row) and duration (progressively longer by column) of a hyperpolarization on T-channel
activation in response to depolarization. Black lines, Model with T-channels; gray lines, model without T-channels.
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ISIs, we found a clear dependence between delayed efficacy and
ongoing LGN ISIs (Fig. 6F,G; white noise: 	ISI � 0.91  0.03, p �
10
5, dist. � binomial; drifting grating: 	ISI � 5.96  0.05, p �
10
5, dist. � binomial).

Because T-potentials can last for tens of milliseconds
(Destexhe and Sejnowski, 2001), we next quantified the time
course of retinal spike efficacy modulation following relatively

prolonged LGN ISIs (Fig. 7A). For this
analysis, we plotted retinal spike efficacy
as a function of time following the initia-
tion of a geniculate burst. For each burst,
time 0 was set 4 ms after the cardinal spike,
thus excluding the increase in retinal spike
efficacy caused by the definition of a tha-
lamic burst (i.e., at least two spikes within
4 ms). Given the influence of the RGC ISI
on retinal spike efficacy, we also calculated
the “expected efficacy” as if retinal efficacy
was not influenced by the preceding
geniculate ISI, but was instead determined
only by the retinal ISI (see Materials and
Methods).

Across our dataset, there was a dra-
matic increase in retinal spike efficacy that
lasted for �10 ms from the onset of a
burst compared with the expected efficacy
values (Fig. 7B,C; white noise: burst mea-
sured, 	0 � 0.55 � 0.34; burst expected,
	0 � 
1.90  0.36, p � 10
5, dist. �
binomial; drifting gratings: burst measured,
	0 � 2.1 0.40; burst expected, 	0 �

3.20  0.43, p � 10
5, dist. � bino-
mial). Importantly, a similar modulation
was seen for individual tonic spikes that
were preceded by an ISI of �100 ms (Fig.
7B,C; white noise: long ISI tonic, 	0 �

3.20  
0.11, p � 0.0005, dist. � bino-
mial; drifting gratings: long ISI tonic,
	0 � 0.34  � 0.43, p � 10
5, dist. �
binomial). Although, the increase in effi-
cacy was greater following burst spikes
compared with tonic spikes (white noise,
p � 0.073; drifting gratings, p � 0.005), it
is clear that the modulation of retinal effi-
cacy is present even in the absence of clas-
sically defined bursts. As shown in Figure
7, D and E, the modulation of retinal spike
efficacy is strongly dependent upon the
preceding ISI of LGN cells (white noise:
high-frequency spikes, 	ISI � 3.1  0.5,
p � 10
5; low-frequency spikes, 	ISI

3.4  1.8, p � 0.047; drifting gratings:
high-frequency spikes, 	ISI � 5.3  0.3,
p � 10
5; low-frequency spikes, 	ISI

4.0  0.2, p � 10
5). Further, the modu-
lation of retinal efficacy begins to occur
following geniculate ISIs shorter than
would constitute a classically defined tha-
lamic burst (Lu et al., 1992).

Retinal contribution to geniculate
burst spikes
Results presented above show that retinal

spike efficacy is modulated by the preceding ISIs of LGN cells in a
manner consistent with the involvement of T-channels and the
amplification of visual signals within the LGN. To gain a compre-
hensive understanding of how response mode modulates retino-
geniculate communication, we also quantified the influence of
geniculate bursts on retinal contribution—the percentage of
LGN spikes evoked from the recorded RGC. In general, genicu-

Figure 4. The influence of the preceding ISI on high-frequency spiking in the retina and LGN. A, B, Line plots showing the
influence of the preceding ISI on the percentage of high-frequency spikes (red line, RGC; blue line, LGN) during white-noise (A) and
drifting grating (B) stimulation. High-frequency spikes are defined as two or more consecutive spikes with ISIs of �4 ms. C, D, Line
plots showing the influence of a preceding LGN ISI on the number of spikes per burst. Shaded regions indicate SE.

Figure 5. Geniculate bursts are evoked by visual stimulation. A, STRF maps from a representative LGN neuron calculated using
specific subsets of spike count-matched geniculate spikes: all spikes (left), burst spikes (middle), and tonic spikes (right). B, Bar
graph showing sample mean SNRs for tonic and burst STRFs. C, Polar plot illustrating the phase locking of LGN tonic (red line) and
burst (blue line) spikes during visual stimulation with drifting gratings. D, Bar graph showing circular variance for tonic and burst
spikes during visual stimulation with drifting gratings. Low circular variance values indicate that the spikes were phase locked to
the visual stimulus, while a value of 1 indicates that the spikes occurred equally across all phases. Error bars indicate SE.
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late bursts are expected to decrease retinal
contribution by generating LGN spikes
independent of retinal influence, there-
fore degrading the visual signal within the
LGN. As described above, this is particu-
larly true during geniculate bursts evoked
by intrinsic corticothalamic oscillations.
However, during visually driven genicu-
late bursts, such as the bursts examined in
the current study (Fig. 5), one may detect
a decrease in retinal contribution, as mea-
sured via correlation analysis, even when
there is no corresponding degradation of
visual processing and LGN activity re-
mains reliant on retinal influences. Thus,
in addition to quantifying the influence of
response mode on retinal contribution,
we also sought to gain deeper insight into
its functional consequences on visual pro-
cessing in the LGN.

Consistent with the ability of T-
channels to modulate retinal contribu-
tion, there was a significant inverse
relationship between preceding LGN ISI
and retinal contribution during visual
stimulation (Fig. 8A,B; white noise:
	ISI � 
1.0  0.1, p � 10
5, dist. � bi-
nomial; drifting grating: 	ISI � 
8.6 
0.06, p � 10 
5, dist. � binomial). This
correlation was present even in the ab-
sence of high-frequency geniculate spikes
(ISIs � 4 ms; white noise: 	ISI � 
0.37 
0.09, p � 0.0001, dist. � binomial; drift-
ing grating: 	ISI � 
4.4  1.2, p � 0.0001,
dist. � binomial) and was evident for pre-
ceding ISIs of �100 ms during visual
stimulation with drifting gratings (drift-
ing grating: 	ISI � 
2.2  0.41, p � 10
5,
dist. � binomial; white noise: 	ISI �

1.1  0.65, p � 0.09, dist. � binomial),
again reinforcing the conclusion that
T-channel activity can influence genicu-
late activity even in the absence of classi-
cally defined bursts. For both white noise
and grating stimulation, the decrease in
retinal contribution lasted for several mil-
liseconds following a prolonged LGN ISI
(Fig. 8C,D; white noise � 6.1 ms; drifting
gratings � 5.2 ms).

We next wanted to determine whether
the measured decrease in retinal contribu-
tion (Fig. 8A,B) was associated with the
relatively slow activation kinetics of
T-channels. If this is the case, then one
would expect an increased probability of
RGC spiking during the T-potential delay window for burst
spikes not preceded by an RGC spike at the monosynaptic la-
tency. Further, delayed retinal contribution measured in this
manner should be dependent upon the preceding LGN ISI. We
therefore looked at delay period activity in the following two
separate categories of LGN spikes: (1) cardinal burst spikes and
tonics spikes that were not triggered by the recorded RGC (no
retinal spike in the monosynaptic window, Fig. 9A); and (2) cardinal

burst spikes and tonic spikes that were triggered by the recorded
RGC (retinal spike in the monosynaptic window; Fig. 9B).

Consistent with T-potential-dependent delayed retinal contribu-
tion, activity during the delay window preceding an LGN spike was
clearly dependent upon the preceding LGN ISI (Fig. 9C,D). When an
LGN spike was not triggered by the recorded RGC, there was a direct
relationship between the delay window and the preceding LGN ISI
(Fig. 9C; high-frequency spikes: 	ISI � 
2.68  0.53, p � 10
5,

Figure 6. Retinal spike efficacy is influenced by ongoing LGN ISI. A, Ongoing LGN ISI is defined as the time since the most recent
LGN spike at the occurrence of an RGC spike. This is in contrast to a retinal ISI, the interval between two consecutive RGC spikes, and
an LGN ISI, the interval between two consecutive LGN spikes. B, C, Line plots showing the influence of an ongoing LGN ISI on retinal
spike efficacy, during white-noise (B) and drifting grating (C) stimulation. The shaded areas around the line indicate SE. The gray
boxes indicate the range of ISI values used for the GLME model (see Materials and Methods). D, E, Line plots showing the influence
of retinal ISI on retinal spike efficacy (red, ongoing LGN ISI � 30 ms; light blue line, ongoing LGN ISI � 30 ms and � 100 ms; dark
blue line, ongoing LGN ISI � 100 ms). F, G, Line plots showing the influence of an ongoing LGN ISI on delayed retinal spike efficacy.
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dist. � binomial; low-frequency spikes: 	ISI � 
3.92  0.35, p �
10
5, dist. � binomial). This is consistent with T-potentials that are
triggered by RGC spikes and, in turn, trigger LGN spikes. By com-
parison, there was an inverse relationship between LGN ISI and
delay window activity when an LGN spike was preceded by an RGC
spike at the monosynaptic latency (Fig. 9D; high-frequency spikes:
	ISI � 
1.54  0.32, p � 10
5, dist. � binomial; low-frequency
spikes: 	ISI � 
0.38  0.15, p � 0.078, dist. � binomial). Although
the relationship between delay activity and LGN ISI is reversed, this
is also consistent with the influence of T-potentials. When there is a
low probability of a T-potential (e.g., short LGN ISI), the ability of an
RGC spike to trigger LGN activity is highly dependent upon tempo-
ral summation. As the preceding LGN ISI increases, there is less need
for temporal summation, presumably as a result of an increase in the
probability of T-potentials that boost the efficacy of the retinal signal.

Considering delay window activity, the total retinal contribu-
tion can be calculated as a standard contribution, computed from
the monosynaptic peak (Fig. 8), plus delayed contribution calcu-
lated from the delayed T-potential window. Consistent with the
hypothesis that the decrease in retinal contribution is largely due
to the relatively slow activation kinetics of T-channels, the addi-
tion of delayed retinal contribution removed the influence of
preceding LGN ISI on retinal contribution (Fig. 9E,F). Indeed,

normalized total retinal contribution re-
mained close to 1.0 regardless of the pre-
ceding LGN ISI.

An additional mechanism that may
contribute to the decrease in retinal con-
tribution to burst spikes is the possibility
that T-potentials allow single retinal
spikes to evoke multiple LGN spikes, lead-
ing to an amplification of the retinal signal
within the LGN. This would cause a de-
crease in the measured retinal contribu-
tion because the time delay from the
triggering retinal spike increases with each
subsequent LGN spike. Consequently,
only the first spike would fall into the
monosynaptic window and thus be
counted as triggered by the retina. To de-
termine the extent to which this occurred,
we calculated retinal augmentation,
which is defined here as the average retinal
contribution minus the retinal contribu-
tion given that the previous spike was di-
rectly evoked by the recorded RGC.
Effectively, this quantifies the relative
change in contribution following an
evoked spike. Positive values of retinal
augmentation would be consistent with
single retinal spikes triggering multiple
LGN action potentials. Further, for retinal
augmentation to be consistent with the
involvement of T-potentials, then it
should (1) increase with the preceding
LGN ISI and (2) only be present during
epochs containing relatively short subse-
quent LGN ISIs (e.g., high-frequency
LGN spikes).

Retinal augmentation was significantly
greater than zero during LGN bursts
(white noise: retinal augmentation �
0.23  0.1, p � 0.0027; drifting gratings:

retinal augmentation � 0.77  0.13, p � 0.0001). Further, this
effect was dependent upon the preceding LGN ISI, as measured
by the difference in the influence of LGN ISI when the retinal
contribution of the cardinal spike is considered (Fig. 10A,B;
white noise: cardinal contributed, 	ISI � 
2.8  0.3; cardinal not
contributed, 	ISI � 
1.7  0.4, p � 0.017, dist. � binomial;
drifting grating: cardinal contributed, 	ISI � 
24.0  0.8; cardi-
nal not contributed, 	ISI � 
3.6  0.2, p � 10
5, dist. � bino-
mial). By comparison, in the absence of high-frequency LGN
spikes, there was no evidence of signal augmentation, regardless
of the preceding ISI (Fig. 10C,D, red lines; white noise: retinal
augmentation � 0.05  0.06, p � 0.18; drifting gratings: retinal
augmentation � 
0.11  0.12, p � 0.3). Finally, the total reti-
nal contribution for secondary retinal burst spikes was calculated
by adding standard contribution, augmented contribution, and
delay-window contribution (Fig. 10E,F). Consistent with the
measured decrease in retinal contribution being a result of the
presence of T-potentials, total retinal contribution for secondary
high-frequency spikes was largely independent of preceding LGN
ISI and was close to 1.0 (Fig. 10F).

The above analyses recast the decrease in retinal contribution
to burst spikes as a change in the temporal dynamics of retino-

Figure 7. Retinal spike efficacy is influenced by a preceding LGN ISI. A, To quantify the influence of an preceding LGN ISI on
retinal spike efficacy, and time � 0 was set to 4.0 ms after the cardinal spike in a burst or the referenced tonic spike (black arrow).
B, C, Line plot showing that retinal spike efficacy is enhanced following both burst spikes (blue line) and tonic spikes with a
preceding ISI of �100 ms (red line). The expected values given the preceding retinal ISIs are plotted as a baseline comparison
(black line). Shaded areas indicate SE. D, E, Line plots showing the influence of preceding ISI on retinal spike efficacy for 4 –10 ms
following time 0, as indicated in A.
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geniculate communication due to the in-
ferred presence of T-potentials. However,
given that these events occur outside of
the typical window for monosynaptic
communication and their influence is
therefore more speculative, we asked
whether there was a decrease in the visual
signal conveyed by nontriggered versus
triggered LGN spikes (as defined by the
monosynaptic window). If our specula-
tion concerning retinal augmentation and
delayed T-channel dynamics is correct,
then nontriggered burst and tonic spikes
should both convey visual information.
To determine whether LGN spikes that
lacked a detectable triggering retinal spike
encoded visual information, we calculated
spike count-matched response maps for
four categories of LGN spikes: contrib-
uted and noncontributed spikes during
both tonic and burst response modes (Fig.
11). While there was an overall decrease in
signal-to-noise ratios for noncontributed
spikes compared with contributed spikes
(all contributed SNR, 5.14  0.54; all
noncontributed SNR, 3.5  0.41; p �
0.02), the decrease was present for both
tonic spikes and burst spikes (noncontrib-
uted burst SNR, 4.2  0.6; noncontrib-
uted tonic SNR, 2.8  0.5; p � 0.1). Thus,
burst spikes occurring outside of the short-latency monosynaptic
window for retinogeniculate communication convey visual in-
formation to cortex.

Discussion
The goal of this study was to determine the influence of thalamic
burst mode on retinogeniculate communication. By simultane-
ously recording the spiking activity of monosynaptically con-
nected pairs of RGCs and LGN neurons, we show that retinal
signals to the cortex are amplified by visually evoked bursts in the
LGN. This amplification is the result of (1) an increase in the
probability that a retinal spike will trigger a geniculate response
and (2) an increase in the number of geniculate spikes that a
single retinal spike can trigger. Further analysis demonstrates that
the modulation of retinogeniculate communication increases as
the preceding LGN ISI increases, and the amplification of retinal
activity occurs even in the absence of traditionally defined tha-
lamic bursts. These results are consistent with the known prop-
erties of T-type Ca 2� channels that underlie thalamic bursts
(Llinás and Jahnsen, 1982; Destexhe, and Sejnowski, 2001;
Babadi, 2005; Sherman and Guillery, 2009; Elijah et al., 2015;
Zeldenrust et al., 2018). We propose that T-potentials amplify the
transmission of visual signals to primary visual cortex, most likely
during periods of low arousal. Given that this modulation can
occur in the absence of thalamic bursts, T-potentials may also
modulate retinogeniculate communication during behavioral
conditions not typically associated with thalamic bursts.

Retinogeniculate communication during visually driven LGN
bursts can be explained by the known properties of T-type
Ca 2� channels
Thalamic bursts are generated by the deinactivation and subse-
quent activation of T-type Ca 2� channels (for review, see

Destexhe and Sejnowski, 2001). This occurs when a strong hyper-
polarization (deinactivation) is followed by rapid depolarization
(activation). The depolarization can be active, as occurs with syn-
aptic excitation, or passive, as occurs during the withdrawal of
synaptic inhibition, or a combination of both (Andersen and
Eccles, 1962; Llinás and Jahnsen, 1982; Hirsch et al., 1983; De-
schênes et al., 1984; Destexhe, and Sejnowski, 2001; Wang et al.,
2007). Importantly, the resulting Ca 2�-mediated depolariza-
tions (T-potentials) are dependent upon the depth and duration
of the preceding hyperpolarization (Fig. 3). Because of this, we
hypothesized that T-channel activity could be estimated from the
preceding LGN ISI. Consistent with this hypothesis, we found an
increase in the probability and duration of high-frequency spik-
ing (ISIs � 4 ms; the second criterion of a burst) as the preceding
LGN ISI increased in duration (Fig. 4). Likewise, there was a
strong relationship between the preceding LGN ISI and the am-
plification of retinogeniculate transmission (Figs. 6, 7, 10).

During tonic response mode, it is generally assumed that each
geniculate spike is triggered by a retinal action potential (Kaplan
and Shapley, 1984; Sincich et al., 2007). As is common for mono-
synaptic interactions, and is particularly true at retinogeniculate
synapses, cross-correlation indicates a precise monosynaptic
window in which the triggering spike is found before the post-
synaptic response (Fig. 2). Although previous work has shown
that the latency and duration of the monosynaptic window is
invariant to changes in the visual stimulus (Fisher et al., 2017;
Alitto et al., 2019), T-potentials can alter this relationship in two
important ways. First, the relatively slow activation kinetics of
T-channels may introduce an initial, voltage-dependent delay in
retinogeniculate communication. This would occur when a reti-
nal EPSP triggers a suprathreshold T-potential. Under similar
experimental conditions, this added variable delay between the
retinal spike and the subsequent LGN response was reported to

Figure 8. The influence of a preceding LGN ISI on retinal contribution. A, B, Line plot showing the influence of a preceding LGN
ISI on retinal spike contribution (red line, low-frequency spikes, subsequent ISI of �4 ms; blue line, high-frequency spikes,
subsequent ISI of 4 ms). Shaded area indicates SE. C, D, Line plots showing the temporal duration of the influence shown in A and
B. Time � 0 is set as the occurrence of the initial spike following the referenced ISI (e.g., time of the cardinal spike in a burst).
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extend out to �10 ms. (Wang et al., 2007). Thus, a significant
percentage of LGN burst spikes that occur outside of the mono-
synaptic delay can be still attributed to retinal activity. Second,
T-potentials can cause single retinal EPSPs to trigger multiple
LGN action potentials. In this case, there is a retinal EPSP in the
monosynaptic window of the cardinal burst spike; however, for
each subsequent LGN spike, the triggering retinal spike occurs
outside of this window (Fig. 10). Importantly, burst spikes that
are associated with retinal activity in either of these scenarios
convey visual information (Fig. 11).

Stimulus-dependent amplification of visual signals
The biophysical properties of T-channels also explain stimulus-
dependent differences in retinogeniculate communication dur-
ing LGN bursts. In particular, the inferred influence of
T-channels was greater with drifting grating stimulation com-
pared with white-noise stimulation. This difference likely reflects
the different spatiotemporal properties of drifting gratings and
white-noise. Namely, the periodic nature of drifting gratings en-
sures that LGN neurons alternate between periods of strong ex-
citation and strong inhibition, a pattern well suited for T-channel

activity (Lu et al., 1992; Smith et al., 2000).
By contrast, white-noise stimuli lack these
correlations, leading to fewer and weaker
T-potentials. Consistent with these differ-
ences, the amplification of visual signals
was weaker and required longer genicu-
late ISIs during white-noise stimulation
compared with drifting grating stimulation.

These stimulus-dependent effects may
also align our results with those from a
previous study in macaque monkeys (Sin-
cich et al., 2007). In this study, results in-
dicate that retinal activity, as assessed
using geniculate S-potentials, drives nearly all
geniculate burst spikes. Importantly, they
did not find an increase in the latency or
variability of communication during tha-
lamic bursts. Similar to the white-noise
stimulus used in the current study, the
pink-noise stimulus used in the earlier
study lacked the low temporal frequencies
that strongly deinactivate T-channels,
likely resulting in a greater percentage of
subthreshold T-potentials that were more
dependent upon retinal excitation to
drive geniculate spikes. Although this
study did not examine the influence of
geniculate bursts on retinal spike efficacy,
if our suggestion is correct, then similar
increases in retinal spike efficacy should
be present in their dataset. This would also
indicate a shared mechanism across spe-
cies to augment retinal signaling during
geniculate bursts.

Thalamic burst mode and
behavioral state
Visually evoked geniculate bursts are
more likely to occur with inattentiveness
or light anesthesia when the geniculate
membrane potential is thought to be
more hyperpolarized than in the alert

state. Under these conditions, the type of visual signal that is most
likely to trigger a T-potential is a strongly suppressive stimulus
followed by a strongly excitatory stimulus (Alitto et al., 2005;
Wang et al., 2007). Resulting bursts effectively amplify the
geniculocortical transmission of retinal signals resulting from the
onset of the preferred stimulus of a neuron (Guido et al., 1992;
Sherman and Guillery, 2002). In contrast, sleep and deep anes-
thesia engage intrinsic corticothalamic oscillations that dominate
geniculate activity and drive synchronous bursting activity that
serves to decouple the thalamus and cortex from sensory activity
(Steriade and Contreras, 1995; Timofeev et al., 1996; Elton et al.,
1997; Steriade, 2003). Thus, depending on the state of the corti-
cothalamic circuitry, bursts may serve very different purposes:
they can amplify the communication of visual signals to cortex
during inattentiveness or light anesthesia or decouple the thala-
mus and cortex during sleep and deep anesthesia.

Although bursts occur across all behavioral states, they occur
most frequently during periods associated with diminished visual
processing (Livingstone and Hubel, 1981; Bezdudnaya et al.,
2006; Niell and Stryker, 2010). With this in mind, the amplifica-

Figure 9. Cardinal burst spikes can be triggered by delayed retinal contribution. A, B, To quantify delayed retinal contribution,
LGN spikes were divided into two categories: triggered by the recorded RGC (A) or not triggered by the recorded RGC (B). The
window of delayed retinal contribution (gray box) was 0.5–10 ms before the monosynaptic peak. C, D, Delayed retinal contribution
plotted as a function of a preceding LGN ISI. E, F, Total retinal contribution for cardinal burst spikes, plotted as a function of a
preceding LGN ISI, is defined as classically defined retinal contribution (dashed lines) plus delayed retinal contribution.
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tion of retinal signals during geniculate
bursts should not be taken as evidence
that visual processing is enhanced during
periods of low arousal relative to periods
of more highly engaged sensory process-
ing. Rather, T-potentials enhance the abil-
ity of retinal spikes to trigger LGN activity
during periods of otherwise diminished
visual processing. During comparable be-
havioral states, a retinal EPSP that occurs
during a T-potential is more likely to trig-
ger LGN spikes than the same retinal spike
in isolation. Given the relative suppres-
sion of tonic LGN activity during periods
associated with geniculate bursts, the
burst-related retinal amplification func-
tions as a contingency mechanism for the
successful transmission of sensory signals
to the cortex that would otherwise be lost.

Burst and tonic response modes are of-
ten described as binary states, which is an
accurate description for the extreme ends
of behavioral arousal: tonic mode during
active sensory processing and burst mode
during sleep and anesthesia. This hard
distinction, however, fails to capture tha-
lamic processing during the transition be-
tween the two response modes (Deleuze et
al., 2012; Hong et al., 2014). In between
the extremes of focused sensory process-
ing and slow-wave sleep, the graded dein-
activation of the T-channels of a cell may
play a previously underappreciated role in
visual processing (Mease et al., 2017). Un-
der certain conditions, the transition be-
tween tonic and burst response modes
may approach a step function (Bezdud-
naya et al., 2006); however, more studies
are required to understand the full dy-
namic range of state-dependent sensory
processing. Finally, although bursts de-
fined by classical criteria are less frequent
in alert animals (Weyand et al., 2001; Ruiz
et al., 2006; Weyand, 2007; Alitto et al.,
2011), this does not exclude the influence
of T-potentials on visual responses in the
LGN. T-potentials that do not trigger clas-
sically defined thalamic bursts may make
a significant contribution to sensory pro-
cessing in the engaged state. Indeed, there
are several mechanisms by which T-
channels may be more active during alert
sensory processing than was previously
appreciated. This includes the phosp-
horylation-dependent potentiation of
T-potentials by sustained depolarization,
noise-sensitive T-channel dynamics, and
T-channel window currents that result in
the incomplete inactivation of T-channels
near 
60 mV (Leresche et al., 2004;
Wolfart et al., 2005; Bessaïh et al., 2008;
Dreyfus et al., 2010; Wijesinghe et al.,
2013).

Figure 10. Augmentation of retinal transmission during high-frequency LGN activity. A, B, The influence of a preceding
LGN ISI on retinal contribution when the data are separated into two categories: cardinal spike was contributed by the
recorded RGC (red line), and cardinal spike was not contributed by the recorded RGC (green). Shaded area indicates SE. C,
D, Line plots showing retinal augmentation calculated from the data shown in A and B. E, F, Line plot showing standard
retinal contribution (blue line), standard retinal contribution plus augmented contribution (orange line), and total retinal
contribution augmentation (black line).

Figure 11. Burst spikes lacking a triggering RGC spike are nonetheless visually evoked. A–E, STRFs calculated from different
subsets of spike count-matched LGN spikes: all spikes (A), tonic and burst spikes evoked by the recorded RGC (B, C), and tonic and
burst spikes that were not evoked by the recorded RGC (D, E). F, G, Bar graphs showing signal-to-noise ratios for LGN spikes that
were either evoked (F ) or not evoked (G) by the recorded RGC (red, tonic spikes; blue, burst spikes). Error bars indicate SE.
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