UC Irvine
ICS Technical Reports

Title
Completeness, robustness, and safety in real-time software requirements specification

Permalink
https://escholarship.org/uc/item/6gn0s68w

Authors

Jaffe, Matthew S.
Leveson, Nancy G.

Publication Date
1989-02-15

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/6qn0s68w
https://escholarship.org
http://www.cdlib.org/

‘Completeness, Robustness, and Safety in
Real-Time Software Requirements Specification

Matthew S. Jaffe
Nancy G. Leveson

Technical Report 89-01

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Completeness, Robustness, and Safety in
Real-Time Software Requirements Specification

Matthew S. Jaffe Nancy G. Leveson
Hughes Aircraft Company Info. & Computer Science Dept.
Ground Systems Group University of California, Irvine

Fullerton, California Irvine, California

February 15, 1989

Abstract

This paper presents an approach to providing a rigorous basis for ascertaining
whether or not a given set of software requirements is internally complete, i.e., closed
with respect to questions and inferences that can be made on the basis of information
included in the specification. Emphasis is placed on aspects of software requirements
specifications that previously have not been adequately handled, including timing
abstractions, safety, and robustness.

1 Introduction

Completeness of requirements specifications is of major significance in modern software
engineering. Software requirements errors have been found to account for a majority of
production software failures [BMU75, End75] and have been implicated in a large number
of accidents [Lev86]. Many (if not most) of the failures associated with requirements turn
out to involve incompleteness.

In defining the nature of the software to be designed and produced, the requirements
must be sufficient to distinguish the behavior of the desired software from that of any
other, undesired program that might be designed. If a requirements document contains
insufficient information to allow designers to distinguish between observably distinct be-
havioral patterns, the requirements document is incomplete. If the differences between two

*This work has been partially supported by NSF Grant CCR-8718001, NSF VPW Grant RII-8800505,
NSF CER Grant DCR-8521398, and NASA Grant NAG-1-668.

programs that satisfy the same set of requirements are not significant for a given applica-
tion, the incompleteness may not matter, but languages or specification procedures that
do not permit the expression of subtle distinctions or do not include requirements to cover
all possible circumstances will be inadequate for some applications. Incompleteness in the
software requirements specification can have a major impact on testing, formal verification,
reuse, robustness, and safety of software.

One application for which completeness is particularly critical is process control, i.e.,
systems that control arbitrarily large or energetic physical phenomena. Such systems are
usually real-time and often embedded within some larger system such as a ship, aircraft,
missile, spacecraft, manufacturing or processing plant, or transportation system where
computers are used to assist in the formulation and implementation of decisions made ei-
ther by the computer and/or humans for the purpose of controlling the larger system. In
such process control systems, minor behavioral distinctions often have significant real world
consequences. The completeness issues discussed in this paper are most relevant for these
types of systems. Current requirements specification techniques are not sufficiently power-
ful to differentiate among observably distinct behaviors that are potentially important in
many such process-control systems, nor do they force elucidation of, and specification of
responses to, “unexpected events.”

Despite its importance, there is no consensus as to precisely what constitutes complete-
ness in requirements specifications nor how to go about achieving it. Many discussions
essentially assert that “a requirements specification is complete if some relevant aspect has
not been left out ...”[Rom85]. Ramamoorthy and So [RS78] state that the most difficult
part of the requirements statement is the definition of all relevant performance parameters,
but then they continue to conclude that “there is essentially no notion of completeness as
far as performance requirements are concerned.” Parnas and Clements [PC86] provide
perhaps the best practical definition of completeness to date, but their discussion, focusing
on the beginning of the requirements engineering cycle and on output characteristics, nec-
essarily omits much of the genuine black-box behavior that is induced by consideration of
black-box input phenomena. Loading factor, for instance, identified by Ramamoorthy and
So (op. cit.) as “one of the most important performance requirements,” is not discussed.
More rigorous criteria need to be developed to help ascertain whether or not a given set of
requirements is, in fact, complete. '

When attempting to define completeness, it is important to distinguish between com-
pleteness and sufficiency. A set of requirements may be sufficient without being complete.
Absolute completeness in requirements specification may be unnecessary and uneconomi-
cal for some applications. It is necessary, however, to determine the limits of specification
before deciding what can be left out. As will be seen, a complete specification of a real-time
system may be quite large and require a great deal of time and effort to produce. For many
applications, this effort is not justified by the consequences of having some incompleteness
in the specification. In others, the consequences of any incompleteness may justify the

extra effort.

The goal of the work described in this paper is to provide a theoretical foundation for
the concept of completeness in real-time software requirements specification and to pro-
vide a rigorous basis for ascertaining whether or not a given set of software requirements is
internally complete, where internally complete is defined as minimally closed with respect
to a key set of questions and inferences that are based on information already specified.
Although current real-time requirements specification techniques collectively contain many
of the features described in this paper, none contain them all and some features are not
contained in any of them. The goal here is not to propose yet another language for specifica-
tion of requirements, but instead to describe formally what has been scattered throughout
the literature, to delineate what features real-time specification languages should have, and
to suggest completeness analysis techniques that are applicable to specifications written in

such languages.

2 SCOPE

There are limits to what currently can be dealt with analytically. For one thing, com-
pleteness is relative to point of view. What is required by one observer may be a matter
of indifference to another. For example, a development engineering team may want the
specification to include requirements for instrumentation (such as data recording and check-
pointing). To the engineering team, a specification without such requirements would be
incomplete, while to the customer or end user, the omission of such requirements is not
significant and would not necessarily be considered an incompleteness. ,
Completeness is also relative to the life cycle phase, even beyond the conventional
notion of refinement in “level” of detail. For example, a requirements specification must
often be prepared before a host processor can be selected, and yet after the processor is
selected, there may be more requirements on the software (such as responses to the full
set of processor hardware signals observable to the software) induced or derived from the
characteristics of the selected hardware. If, for example, the chosen processor includes a
power-out-of-tolerance interrupt that guarantees the existence of at least 30 milliseconds
further processing time before power down, some response to that interrupt should be
specified. Such a response is still a black-box, behavioral requirement: the trigger, i.e.,
power out of tolerance, and the response are both visible from outside the box. After
processing hardware characteristics are known, software requirements must be specified for
the full set of hardware signals observable to the software. Before a processor is selected,
however, the lack of such requirements could not be said to constitute an incompleteness
in the software requirements specification. Thus completeness criteria can be seen to vary
as a function of the stage of the development cycle. Requirements engineering is a complex
activity with different stages, different possible paths among those stages, and different

completeness criteria needs at each distinct stage.

With these considerations in mind, this paper considers what might be called “internal”
completeness. In any application at any given point in time, there is a set of “kernel”
requirements that derive from the current knowledge of the needs and environment of the
application itself. They are analytically independent of one another in that the need for
the existence of any one of them could not be derived from the existence of the others.
For example, an autopilot program may.or may not control the throttle along with the
aerodynamic surfaces. Without knowledge of the intent of the application, there can be
no means of ascertaining whether a particular requirements specification is complete with
respect to the kernel requirements. This problem of external completeness must be attacked
from a system engineering viewpoint, e.g., using modeling and analysis of the application
[LS87, LH83] with respect to various desired properties. This paper deals strictly with
internal completeness.

Internal completeness has two aspects. First, there are a great many additional details
of behavioral description that must be specified in.addition to an initial or kernel set of
intended and/or required functionality. Many of these details cannot be obtained merely
by the addition of standard “performance” requirements to the kernel functions. Kernel
requirements are often viewed as being allocated to programs as part of an earlier, systems
- engineering design activity while the remaining information needed to completely charac-
terize the software behavioral description must be :derived from the kernel requirements
in a later stage of the development cycle. The additional information is still black-box
behavior; the place to document it is in the requirements document. Note that the re-
quirements specification, then, may itself appear in different guises in successive stages of
the development life cycle.

In addition to derived information, there may also be genuine functionality that has
been inadvertently omitted and that can be uncovered by rigorous examination and analysis
of the specified behavior. For example, a specification whose original, principle functional-
ity includes a requirement to generate an alert condition to tell an air traffic controller that
an aircraft is too low is probably incomplete unless it also includes another requirement
to inform the controller that an. aircraft previously noted to be too low is now back at
a safe altitude. Safety and robustness considerations may be exploited to develop such
application-independent closure criteria.

A practical complication involves the inclusion:of design information in the require-
ments specification. ‘Often requirements and design become intertwined. In order to limit
the size of the problem, the focus in this paper will be solely on the software behavior,
i.e., the “what” and not the “how.” The product of the requirements phase may be a
stand-alone document containing only a black-box behavioral description of the software,
as recommended by Parnas and Clements [PC86], or it may be a document that inter-
sperses the requirements with design information, as Swartout and Balzer [SB82] assert is
often unavoidable. However, even a specification that includes design information needs to

include a complete set of black-box behavioral requirements as well, and these behavioral
requirements are the subject of this paper.

Notational simplicity and sparsity are stressed in this paper: No new notation or mod-
els are introduced: The first-order predicate calculus and a simple state machine model
are used. These are adequate to express and analyze the types of black box requirements
needed for real-time software. Note again that the goal is not to provide another language
for specification of requirements (and certainly the predicate calculus is too awkward to be
a specification language of choice); the formal notation is for the purpose of providing max-
imum rigor while requiring a small number of primitives in the discussion of completeness
of requirements in general. The next section introduces the basic notation and definitions.

3 Definitions and Notation

A black-box statement of behavior permits statements and observations to be made only
in terms of outputs and the externally observable conditions or events that stimulate or
trigger those outputs. Conceptually, the behavioral requirements may be viewed as a set
of assertions of the form: trigger & output where the trigger specifies the conditions
under which an output or set of outputs is to be produced. Note that the implication is
bi-directional (¢): Not only must the output exist under certain specified circumstances,
(i.e., trigger = output), it also must not exist unless it is supposed to (i.e., output =
trigger). This second direction of the implication has significant impact on the derivation
of completeness criteria: Because the existence of the output allows the existence of the
trigger conditions to be inferred, a complete trigger specification must include the full
set of conditions that may be inferred from the existence of the specified output. Such
conditions represent assumptions about the environment in which the program or system
is to execute.

For black-box requirements, the requirements must involve only observable phenomena
external to the program whose behavior is being specified. Parnas and Clements [PC86]
point out the advantages of allowing any external, observable phenomena to be used to
express trigger conditions, even phenomena not “observable” at the black box boundary
by the program itself. This is useful in the early life cycle phases, but at some point
the external observables must get translated into input/output terms: More completeness
criteria can be applied after this translation. The implication for this paper is that some
of the requirements completeness criteria presented will be applicable to specifications in
terms of general observable phenomena, but many will apply only after the specific inputs
have been determined. :

Completeness requires that both the characteristics of the outputs and the assumptions
about their triggering events be specified. Formally, requirement assertions are statements

of the form
iE,,...,E, > Pg & 310 s Po,

where Pg is a predicate describing the set of stimuli or triggering events F; for an output
or set of outputs O, and Pp is a predicate describing the required characteristics of O.
Note that the existential quantification for the output must be unique (3!): In response
to a single occurrence of the given stimulus or trigger, the program must produce only a
single output set O satisfying the predicate.

At the black-box boundary, only time and value are observable to the software. There-
fore, the two predicates, Pg and Pp, must be defined only in terms of constants and the
time and value — t(E) and v(FE), respectively — of existentially quantified, observable
events or conditions. Events are limited to program inputs, prior program outputs, pro-
gram startup (a unique observable event for each execution of a given black-box program),
and hardware-dependent events such as power-out-of-tolerance interrupts. In addition,
conditions may also be expressed in terms of the value of hardware-dependent attributes
accessible by the software such as time-of-day clocks, sense switches, etc.

For reasons to be discussed shortly, every existentially quantified event (other than a
constant, such as 12:00 noon, for example) must be fully bounded in time — ¢; < ¢(E) < t,
— except for one: The latest or proximate trigger- E,; is bounded only from below and
defines a lower bound (not necessarily the greatest lower bound) for the time of the output
O. The proximate frigger, then, is the event (including the passage of a specific instant in
time) that will actually cause the output O to be produced.

Other events in the trigger clause represent the necessary state history or conditions
that must hold upon the observation of E,; for O to be required. For example,

3! Su,I1;IZ"‘313 £l t(Su) < t(Ig) < t(Ia) < t(]1) &y

where S, represents program startup, establishes I; as the proximate trigger when there
has been a previous I and no intervening 3.
In general, a given output O may be triggered by any one of several such trigger clauses;

thus a trigger may be composed of a disjunction of several trigger clauses. A term or set

of terms that appears in every disjunctive phrase of the trigger clause for a given output
represents a prerequisite for the output O in the sense that the output cannot be triggered
(i.e., required) unless the prerequisite conditions are true.

Using these definitions, section 4 .presents criteria for the complete specification of
trigger events.: Section 5 discusses the problems involved in completely specifying outputs.

4 Trigger Event Completeness

Robustness and safety are intimately connected to completeness in the specification of
trigger conditions. Trigger conditions specify assumptions about the conditions in the en-

6

vironment within which the software is to execute. A robust system will detect and respond
appropriately to violations of these assumptions. Therefore, the robustness of the resulting
software system depends upon the completeness of the specification of the environmental
assumptions, i.e., there must be no observable events that leave the program’s behavior
indeterminate.

Documenting all environmental assumptions and checking them at run-time often seems
expensive and unnecessary. Many assumptions, for example, are made on the basis of the
physical characteristics of input devices and cannot be falsified even under unreasonable
physical conditions and failures. For example, an input line connected to a 1200 baud
modem cannot fail in such a fashion as to cause the data rate to exceed 1200 baud. The
interrupt signal may stick high (i.e., on), but for most modern hardware that will stop data
transfer, not accelerate it. However, if the environment in which the program executes ever
changes, the assumption may no longer remain valid; e.g., the 1200 baud modem may be
upgraded to 9600 baud. Similarly, if the software is ever reused, the environment for the
new program may differ from that of the earlier one. A striking example of this type of
problem involved the reuse of air traffic control software in Great Britain that was originally
written and designed for air traffic control centers in the U.S. It was not discovered until
after the software was installed that the American designers had not taken zero longitude
into account which caused the computer to fold its map of Britain in two at the Greenwich
meridian [Lam88]. A

Besides documentation of assumptions, it may be important for real-time systems to
check assumptions at run-time when the improper performance of the software may cause
serious consequences. Examples abound of serious accidents resulting from incomplete
requirements and non-robust software [Lev86, Neu85]. For example, an accident occurred
when a mechanical malfunction in a fly-by-wire flight control system set up an accelerated
environment for which the flight control computer was not programmed; the aircraft went
out of control and crashed [FM84]. In another incident, an aircraft was damaged when
the computer raised the landing gear in response to a test pilot’s command while the
aircraft was standing on the runway [Neu85]. System safety engineers have concluded
that inadequate requirements specification and design foresight are the greatest cause of
software safety problems [Lev86].

The formal mechanism for ensuring complete specification of assumptions is logical com-
pleteness. The specification of the trigger conditions is logically complete if the logical ‘OR’
of all trigger conditions in the set of requirements is a tautology. For example, if there is a
requirement on a trigger that the value of an input be greater than 5 (i.e., 3I > v(I) > 5),
then a tautologically complete specification would also include a requirement with a trigger
condition where the input is less than or equal to 5, (i.e., 3 » v(I) < 5). That is, if there
is a trigger condition for a requirement assertion to handle data within a range, there needs
to be some other requirement assertion to handle data that is out-of-range. There would
also need to be a requirement that specified what to do if no input occurred at all.

. Formally, if {C;} is the set of trigger clauses for the specification and V;C; = 7, the
specification may be said to be logically complete to the point of 7. If T is a tautology, the
specification is tautologically complete; in other words, any possible condition expressible
in terms of the inputs and outputs that appear in the set of trigger conditions {C;} makes
at least one of the C; true and hence there is a requirement to deal with that condition. If
there is a trigger of the form dF s Pg, logical completeness will require dealing with the
case where ~(3E » Pg), which is equivalent to ~3E\ 3E 5 —~Pg.

Tautological completeness is obviously not in itself enough for a practical requirements
specification, since a set of as few as two requirements could be tautologically complete.
The degree to which tautological completeness forces the inclusion of additional require-
ments and thus influences completeness and robustness is dependent on the extent of the
restrictions or assumptions (such as “legal range”) specified within the trigger conditions.
The more information in the trigger conditions (i.e., the more assumptions about the en-
vironment of the software that are specified), the more that tautological completeness will
ensure that the requirements include responses to the set of “undesired events,” i.e., cir-
cumstances where the assumptions are violated. The problem then reduces to determining
what constitutes a complete specification of assumptions.

: Many assumptions and conditions are, of course, application-dependent. There are,
however, some types of assumptions that are essential and should always be specified for
inputs to safety-critical real-time systems. In the context of real-time systems, the times
of ‘the inputs and outputs are as important as the values. Therefore, both value and time
are required in the characterization of the environmental assumptions (triggers) and, as
will be seen in the next section, the outputs.

- Generally assumptions about value and time can be specified in separable phrases
although inseparable assumptions are occasionally used. An example of an inseparable
assumption is a requirement to check the currency of an input containing a time stamp
placed on it by an external system: v(I) = ¢(I) £ c. In contrast, a separable, individual
timing assumption for I would be of the type

t(Sy) < 11 :59am < ¢(I) < 12 : 01lpm,

if the input were only to be valid if it came at noon. Practical real-time specification
languages must allow for the general case and permit the specification of assumptions in
which time, value, and history are inseparable.

The rest of this section discusses various types of assumptions that should be included
in trigger event specifications. Some of the assumptions relate to what can and should
be specified for the proximate triggers. There are also criteria relating to the states in
which an event occurs: The required response to a given event may depend not only on the
characteristics of the event itself, but on the history of past events and the temporal rela-
tionship between them. The completeness criteria discussed below include essential value
assumptions, essential timing assumptions, assumptions to deal with “unexpected states”

8

(which are needed for logical completeness), assumptions about startup and shutdown
states (which are also needed for logical completeness), and responsiveness assumptions.

Essential Value Assumptions

The mere existence of an input does not in itself require a value assumption. Consider, for
example, a hard-wired hardware interrupt that has no value; it may nevertheless trigger an
output. For each input I, a value assumption is essential only if v(I) (or some subset of the
bits of v(I)) is used in defining the value or time of some output O. If v(I) does not appear
in any output predicate Po, no assumptions concerning v(I) need to be specified. In other
words, the ezistence of I helps trigger O, but v([) is not referred to further in the definition
of v(0) or t(0). When v(I) is used in the definition of FPop, appropriate assumptions on
the acceptable characteristics of v(I) must be specified, e.g., range of acceptable values,
set of acceptable values, parity of acceptable values, etc.

As noted earlier, even where an assumption is not essential, it should be specified when-
ever possible, i.e., whenever it is known: The receipt of an input with an “unexpected”
value is a sign that something in the environment is not behaving as the designer antic-
ipated. Checking simple value assumptions on inputs is comparatively inexpensive, and
since failure of such assumptions is one indication of various, reasonably common hardware
malfunctions or of misunderstanding about software requirements, it is difficult to envision
an application where the specification should not require robustness. in this regard, i.e.,
incoming values should have their values checked and there should be a specified response
in the event of an out-of-range condition. If legal values are specified, tautological com-
pleteness will ensure that specifications contain the necessary information to provide this
form of robustness.

Even when real-time response is not required, it is important that violations of as-
sumptions be logged for off-line analysis. A hole in the ozone layer at the South Pole
was not detected for six years because the depletion of the ozone was so severe that a
computer analyzing the data had been suppressing it, having been programmed to assume
that deviations so extreme must be errors [NYT86].

Essential Timing Assumptions

For trigger conditions, while the specification of the value of an event is usual but optional,
a timing specification is always required: The mere existence of an observable event (with
no timing specification) in and of itself cannot be a complete trigger — with the exception
of program startup. One way to demonstrate this is to examine the formal definition.
The specification that an output O is triggered by the existence of an input I — i.e.,
3I & 3!0 — implies that it must also be the case that the non-existence of the output
implies that the input does not exist — i.e., 730 => —3I. However, this is not necessarily

true. The simplest example of the implication not being valid is that before the program
starts running (which is a primitive, observable event), the input I may exist but the
program will obviously not produce the output O. This is not an unrealistic case: Serious
accidents have occurred precisely because designers did not consider the problem of how
to handle information about the state of the world that arrived while the system was in
a manual mode and the computer was temporarily off-line. As an example, an accident
occurred in a batch chemical reactor when a computer was taken off-line to modify the
software [Kle88]. At the time the computer was shut-down, it was counting the revolutions
on a metering pump that was feeding the reactor. When the computer came back on-line,
the software continued counting where it had left off with the result that the reactor was
overcharged.

As a result, all triggers must include at least one event, i.e., program startup Sy, and for
all events other than startup, at least one timing assumption is essential, i.e., that the event
occurs after startup. Many other timing assumptions may be essential, including bounds,
capacity and load, maximum time between events, and graceful degradation, depending on
the utilization of the event in the specification. Each of these, and the circumstances under
which they are essential, is discussed below. It is interesting to note that many specification
languages for embedded systems require the specification of a value condition, while at most
merely allowing the specification of a timing condition, whereas they should actually do
the opposite.

Specifying Bounds on Timing. A valid trigger specification must include either: (1)
an observable signal (appearing as 3E terms in the notation for triggers); or (2) a spec-
ification involving the non-existence of events, i.e., a duration of time without a specific
signal.

To be specified completely, a trigger of the first type must include at least a lower bound
on time and will, in general, include further timing constraints. In fact, specifying a trigger
event whose only lower bound on time is program startup gives rise to the need to specify
extra requirements, often called capacity or load requirements; these extra requirements
are discussed below. Table 1 summarizes the various possibilities for timing constraints on
observable signals. In this table, = stands for any timing expression.

Note that even a requirement such as ¢(I) = 11 : 00am is incomplete. The value of
t(I) is the value of some reference clock observed “simultaneously” with the occurrence
of I. Conceptually, the clock is a counter that is ticking at the rate of one tick per unit
of temporal precision. There is a problem with this definition of ¢(7) in that I will not,
in general, occur simultaneously with a tick. In fact, the simultaneity of observed events
is not physically well-defined. In general, I will occur between two ticks of any clock, no
matter how frequent the ticks. To say that it must-occur ezactly at 11:00am is meaningless
unless the specification also specifies what clock is to be used, and, even then, the time
cannot be known more precisely than the granularity of the clock. Concrete discussion

10

of specific clocks should be avoided in a software requirements specification; all that it
is really necessary to know is the required precision of the clock. Translating the clock’s
precision into an attribute of the input results in a requirement with bounding inequalities
rather than an equality, e.g. 10 : 59am < #(I) < 11 : Olam (commonly written as
t(I) = 11 : 00 am + 1min) which specifies an accuracy of plus or minus a minute on the
timing.

For triggers of the second type, i.e., those that involve the non-existence of an observable
signal during an interval, both ends of the interval must be either bound by or calculable
from observable events. Informally, there must be an upper bound on the time the program
“waits” before producing the output O. There must also be a specific time to start timing
the lack of inputs or an infinite number of intervals (and thus outputs) would specified.
For example, a requirement of the type “if there is no input I for 10 seconds, then produce
output O” is not bound at the lower end of the interval and therefore is incomplete. Should
the non-existence interval start at time ¢, at t+¢, t+2¢, etc.? The observable event need not
occur at either end of the interval, the ends need only be calculable from that event, e.g.,
there is no input for 5 seconds preceding or following event E. An example of a completely
bounded interval is the requirement that an output O be generated if ten seconds elapses
without the receipt of a specified input message, i.e.,

NSy, 131, 3 Sy < t(Ih) < t(Iy) < t(f1)+10sec & ...

where t(I;) provides the lower, observable bound of the interval and the duration of 10
seconds effectively sets the upper bound. The complete rules for timing bounds on non-
existence events are shown in Table 2. Again, in this table z stands for any timing expres-
sion.

Capacity, Load and Maximum Time Between Events. In an interrupt driven sys-
tem, the count of unmasked input interrupts received over a given period of time partitions
the system state space into at least two states: normal and overloaded. The required re-
sponse to an input must differ in the two states; there must therefore be separate output
assertions to deal with them. The term “capacity” seems to be used to refer to the count
of inputs of a single type, while load — to be discussed shortly — is the count of a set of
diverse input events.

The treatment of capacity depends upon whether interrupts are allowed to be disabled
or not. Assuming for the moment that interrupts are not locked out on a given port, there
is always some arrival rate for an interrupt signaling an input that will overload the physical
machine. Either it will run out of CPU resources as it spends execution cycles responding
to the interrupt or it will run out of memory as it stores the data for future processing.
Thus, both the hardware selection and the software design require that an assumption be
made about the maximum number of inputs N signaled by a given interrupt that must

11

Table 1: Timing Constraints for Observable Trigger Events

=1

Not by itself a valid trigger except for the event S,,.

dEst(E)==

Not a valid trigger condition since the simultaneity (equality) of
two observation times is not physically well-defined.

JEst(E)<z

The validity of this phrase is dependent on the relationship be-
tween z and #(S,).

z < t(S,) | Not a valid trigger condition: a program
cannot differentiate between 3E » ¢(E) < « < t(S,) and
3dE s> z < t(E) < t(S.).

z = t(S,) | The validity of this phrase depends on the charac-
teristics of the underlying hardware.

z > t(S,) | Depending again on the underlying hardware, this
form might represent a valid trigger condition, but safety con-
siderations dictate careful examination. Even when the hard-
ware supports the necessary observability of an event E prior to
time ¢(S,), such a condition should usually lead to two separate
requirements, JE s t(E) < t(S,) and 3IE s t(S,) < t(E) < z,
since, in the former case, the time ¢(E) is not well defined and
hence could be used either not at all or only with cumbersome
formalism in the output predicate for the requirement.

dE s t(E) > =

The validity of this phrase is dependent on the relationship be-
tween ¢ and ¢(S,):

z <t(Sy)| Not.a valid trigger condition since the pro-
gram cannot distinguish between 3E s t(E) < z < ¢(S,) and
JE s z < H(E) < t(Sy).

z > t(Sy) | A valid trigger phrase.

dJEsz<t(E)y<y

In general (as per above), this phrase is a legal trigger condition

iff z > ¢(S,).

12

Table 2: Timing Constraints for Simple Non-Existence Event Triggers

-3F

Never a valid trigger condition by itself.

-3Est(E)<z

The validity of this phrase depends on the charac-
teristics of the underlying hardware and the rela-
tionship between z and ¢(S,): ’

t(Su) > | Not a valid trigger phrase, as the pro-
gram cannot differentiate between the case where

[-3E > ¢(E) < <] A [3E > 2 < t(E) < t(S.)]
and the case 3E » {(E) < z.

t(Sy) = z | The validity of this phrase depends on
the characteristics of the underlying hardware.

t(Su) < | This phrase usually should be part of
a fully bounded trigger: —3E 5 t(S,) < t(E) < z.
When the requirement is to pertain to the absence
of E even prior to program startup, the validity is
dependent on the characteristics of the underlying
hardware.

-3E s t(E) >z

Never a valid trigger condition.

—3E 3 #(S,) <z <t(E)<y

The normal trigger condition for “non-event”
events. Note that y is a lower bound on ¢(O) for
the output O triggered by this condition.

13

be accommodated within a duration of time d. This is the requirement called “capacity”.
Multiple capacity assumptions are meaningful, although not necessarily required in any
given case. For example, the capacities could be 4 per second but not more than 7 in any
two seconds nor more than 13 in four seconds, etc. One capacity assumption is necessary
for completeness; multiple assumptions may derive from application-specific considerations.
There can also be multiple capacities assumed for a given input based on additional data
characteristics, such as: not more than 4 inputs per second when v(I) > 8 but not more
than 3 per second when v(I) > 20. Finally, note that a capacity assumption with N =1
is the same as an assumption on the minimum time between successive inputs — another
common “performance constraint.”

Even if a particular statistical distribution of arrivals over time is assumed and specified,
a capacity limit assumption is still required: Assuming the arrival distribution to be Poisson
or Erlang does not preclude the possibility, no matter how improbable, of an “overflow” of
any given capacity. If capacity is exceeded, there must be some specification of the ways
that the system can acceptably fail soft or fail safe. This is discussed below with respect
to specifying graceful degradation.

Where interrupts can be masked or disabled, the situation is more complex. If disabling
the interrupt could result in a “lost” event (depending on the hardware, the duration of the
lockout, and the characteristics of the device at the other end of the channel), the need for
a capacity assumption will then depend on the usage of the input in the specification. An
input I appearing as the only 37 event in a trigger clearly requires a capacity assumption
since a “lost” I (caused by interrupt lockout) is a violation of the requirement. If I is not
by itself a disjunctive trigger but a conjunctive part of one, its capacity may be dominated
by some other event. Conjunctive domination of I by another event E occurs when, for
example, a disjunctive trigger clause can be written as: 31 E,I 5 t(E)<t(I)<t(E)+d. In
this case, an interrupt for I could potentially be disabled until the event E is detected,
then enabled and left enabled until I occurs or a period of time d elapses (whichever
occurs first) and then disabled again. Thus the interrupt could not be overly disruptive
of the computation, in that it could occur at most once in the specified interval. Note
that a trigger clause such as 3!}, I » |t(f1)—t(1I2)| < d, which appears to contain two
undominated events, is actually an abbreviation for a trigger of two disjunctive clauses,
each of which has exactly one undominated event:

NI, I, 5 [t(Su) < t(I) <t(I) <t(Il)+d] V [t(Su) < 1(Ip) <t(I) <t(L)+d

An interrupt-signaled event that is at any time undominated in the requirements specifica-
tion requires a capacity assumption. The capacity of a totally dominated event is inferable
from its dominators’ capacities.

Formally, capacity is not some separate, special type of requirement (i.e., “perfor-
mance”). Instead it is specifiable as a conjunctive phrase in all disjunctive clauses in the

14

triggers for all outputs that are capacity-dependent:
21s [[{114n-41) < df | < Mi@)] Ao

where Mj(d) is the capacity limit for I during some period of time d.
Whereas capacity involves a single type of input, load is defined in terms of multiple
inputs:

(B | U0~ < @} | < De(@)| Avreoe (4)

=1 E) [Ek,

where the k; > 1 are weights that allow some inputs to be specified as more “expensive”
than others and Dp(d) is the design load limit for a period of time of duration d. Capac-
ities are assumptions on homogeneous sets of events whereas load is an assumption on a
heterogeneous set.

Load is more general than capacity, in that a load condition such as that above will
suffice to implicitly define Mg,(d), even if no explicit definition is given. In that case, for
any undefined Mg, (d), the maximum number of E; possible within a duration of time d will
be Dr(d) (or min{Dr,(d)} if there are multiple load assumptions, Dr,), since all the other
event terms could conceivably be zero unless there are minimum arrival rate assumptions
mg;(d) specified as well. If there are minimum arrival rate assumptions specified, the
maximum capacity for any undefined Mg, would be min{Dr,}—) mg,.

]

The smallest period d for which a minimum arrival rate assumpfc;iéon is explicitly assumed
and specified is the maximum possible time between successive events. If there must be at
least n events of a given type E within the interval of duration d preceding each event of
that type — where n/d is the assumed minimum arrival rate — then no more than time
d can elapse between any two occurrences of events of type F or the minimum arrival rate
assumption would be false. For embedded systems, robustness dictates the specification of
a minimum arrival rate assumption for most, if not all, possible inputs: Indefinite, total
inactivity on the part of any real-world system is unlikely. Robust system design should
provide a capability for the program to query the environment with regard to inactivity
over a given communication path.

In general, inputs to embedded systems should have both minimum and maximum
capacity assumptions and will often be part of one or more load assumptions as well. A
bank in Australia reportedly lost a great deal of money by the lack of a requirement to
deal with “excessive” load [Pur87]. When the central computer was unable to cope with
the load, the ATMs dispensed funds whether there were funds in the account to cover the
withdrawal or not. The inability to handle the true load, although irksome, would not by
itself have caused as much economic damage as that which resulted from the lack of an
explicit, black-box overload response requirement.

15

Although inputs from human operators or other, slow, external systems may be nor-
mally incapable of overloading a program, various malfunctions could cause excessive, spu-
rious inputs to be generated. Robust system design should consider that case and specify
a capacity limit for such inputs as a means of detecting possible external malfunctions.

Note that more complicated expressions than the ones discussed here could be specified
and still provide the necessary restrictions on Mg, (d) and mg;(d) and yet not have names
as standard “performance” requirements. For example, in the specification of capacity,
Dp(d) (i.e., the design load or capacity limit for a period of time of duration d) may not
be a constant but instead may be equal to some function f(E;) for some set of E;. Such
expressions and others bearing no obvious relationship to standard performance require-
ments may well be valid and required for a given application. Such a possibility is one of
the reasons that well defined notions of completeness for performance requirements have
proven to be so elusive. The distinction between performance requirements, functional re-
quirements, and other, non-standard but none-the-less black-box behavioral requirements
is largely a matter of convenience in the interpretation of syntactic forms rather than any
intrinsic feature or semantic characteristic of the requirements themselves.

Absorbtivity There may need to be a distinction drawn between input capacity and
output capacity. If thé input environment can generate up to M;(d) inputs of type I during
a period of duration d, but the output environment can only “absorb” a lower number of
outputs, the program will need to handle three cases:

1. The recent input and output rates are both within limits, thus the “normal” response
can be generated.

2. The input rate is within limits but the output rate would be exceeded if a normally
timed output were produced, in which:case some sort of delayed response will be
required.

3. The input rate is excessive, in which case some abnormal response is necessary (see

below).

In the case where input and output capacities differ, there must be multiple periods
for which discrete capacity assumptions are specified. For the largest interval for which
both input and output capacities are assumed and specified, the absorbtion rate of the out-
put environment must equal or exceed the input arrival rate or the program might never
catch up; but over shorter durations, the program can buffer or shield the output envi-
ronment from excessive inputs. Input rate assumptions may be determined to be essential
based solely on specification usage criteria, as discussed earlier; output capacity restric-
tions always stem from application-dependent considerations of the output environment’s
absorbtivity.

16

Graceful Degradation. The requirements needed for logical completeness to deal
with overload will generally fall into one of five classes:

1. Requirements to generate warning messages.

2. Requirements to generate outputs to reduce the load — i.e., messages to external
systems to “slow down”.

3. Requirements to lock out interrupt signals for the overloaded channels.

4. Requirements to produce outputs (up to some higher load limit) that have reduced
accuracy and/or response time requirements and/or some other characteristic that
will allow the CPU to continue to cope with the higher load.

5. Requirements to reduce the functionality provided by the system (i.e., to cease pro-
viding certain outputs), or, in extreme cases, to shutdown, perhaps only temporarily.

The first three cases are handled in an obvious way. The fourth case, commeonly called
performance degradation is, as described, somewhat abrupt (i.e., not graceful). Graceful
degradation may be specified by including the load in the timing or accuracy factors for the
output, i.e., if the actual or observed load (during the interval of duration d immediately
preceding the proximate trigger I;) is defined as

AL(d) = Z k,'-

{E,» | t(Le)—d < t(E;) < t(Ipt)} ' ;

then
s 30 > [v(O) —2 :ta-AL(d)]

A [[t(I)+c1-AL(d)] < 40) < [t(I) + e+ c3-AL(d)]]

where 0 < ¢; and ¢3 > ¢;. Note that ¢z must not be zero or the response time is not being
specified as gracefully degrading: If ¢; is equal to zero, the upper limit is increasing, but
not the lower limit, or delay. Two inputs oecurring quite close to one another in time
could then legally trigger outputs having widely different response times, potentially even
appearing in inverse order from the order in which their respective triggers arrived; see
Figure 1.

For safety-critical systems, abrupt degradation and/or random (although bounded)
degradation often needs to be avoided. Certainly for operator feedback, “predictability is
preferable to variability, at least within limits,” even if the cost of the predictability is a
slight increase in average response time [FD82].

17

Figure 1: Graceful Degradation

*
T
Time Graceful Degradation
Load
©a * — Possible response times
for separate outputs
under the same load
.
Time Non-graceful Degradation
............................ *
Load

18

Function shedding, the fifth case listed above, is specified by the use of different load
prerequisites for different outputs — the outputs with the lower load prerequisites being
“shed” first. When the load is exceeded, then the program changes state, the “normal-
mode-only” outputs cease being required, and possibly new outputs become required such
as error messages, interface resets, etc. Once a state with a degraded performance has been
entered, there needs to be a specification of the conditions required to return to a normal
processing mode.

Informally, what is needed is a hysteresis delay. After detecting a capacity or load
violation, the system must not attempt to return to the normal state too quickly or the
exact same set of circumstances that caused it to leave may still exist. For example, let the
event that caused the state to change be the receipt of the nth input of I within a period
d, where the capacity is specified as limited to n—1. Then if the system attempts to return
to normal within a period of z << d, the very next occurrence of an I might cause the state
to change again to the overload state. The system could thus ping-pong back and forth in
an unacceptable fashion.

If the trigger for returning to normal is a discrete input event I » P,,, it is straightfor-
ward to expand it to become

31 5 P \ [aEm > t(Ben) <t(I) = t(I)—t(Eun) > ha (B)

where hy is the hysteresis delay and E., is an event that caused the system to exit the
normal state. In other words, the most recent exit from normal was prior to time A4
ago. E., should be a trigger in its own right, not just a definition: The system should
take some observable action upon E.,, such as alerting a human operator, disabling or
requesting resets of busy interfaces, recording critical parameters for subsequent analysis,
etc.

Discrete events such as operator actions or reset messages from external (temporarily
overloaded) interfaces are not the only way a system can return to normal processing.
It may be desired to attempt to change state purely on the basis of time elapsed since
last state change. System robustness considerations suggest the specification of a complex
series of checks on the temporal history of mode exit /resumption activities to avoid constant
ping-ponging at a cyclic rate hy. Choice of responses and checking logic is an application-
dependent activity, as is choice of the value hy, but many real-time system requirements
specifications will be incomplete without inclusion of such behaviors.

State Completeness Assumptions

As noted earlier, a trigger of the form 37 » P will, in a logically complete specification,
require treatment of the case —(31 » Pr), which is logically equivalent to =3I/ 31 > = P;.
For obvious reasons, the two alternatives generally lead to two very different requirements:

19

the 3I » —P; case pertains to unexpected states while the =37 case has implications for
startup and shutdown.

Unexpected States. Informally, when a given state variable is part of an input trigger
for an input I, a logically complete set of requirements must contain a specified response
for the receipt of I in conjunction with all possible values for that state variable including,
where appropriate, the common case of the undefined state. For example, suppose ON is
an abbreviation for the fact that the last input received indicated that an interface device
was ‘on’ and OF'F indicates that the last input received indicated the device was ‘of f.” If
IAON is a trigger for some output, the specification needs to address the case for IAOF F
as well. Furthermore, “ON is not equivalent to OF F, since the “state” of the device may
be indeterminate if no input has been received. Therefore, there needs to be a requirement
to deal with the case when =(ON V OFF). Tautological completeness will ensure that
such requirements are included.

Many software problems arise from incomplete specification of state assumptions. For
example, Melliar-Smith [Neu85] reports a problem :detected during an operational simu-
lation of the shuttle software that occurred when the astronauts attempted to abort the
mission during a particular orbit, changed their minds and cancelled the abort attempt,
and then decided to abort the mission after all on the next orbit. The program got into
an infinite loop which appears to have occurred because the designers of the simulation
program had not anticipated that anyone would ever want to abort twice on the same
flight. Another example involves an aircraft weapons management system that attempts
to keep the load even and the plane flying level by dispersing weapons and empty fuel
tanks in a balanced fashion [Neu85]. One of the early problems was that even though the
plane was flipped over, the computer would still drop a bomb or a fuel tank which then
dented the wing and rolled off.

In some cases, there really is no requirement to respond to a given input except in a
subset of the states defined by the state variables to which it is sensitive; but, often, an
input arriving in an “unexpected” state is a possible indication of a “disconnect” between
the system and its environment that should not be ignored. For example, a target detection
report from a radar that has been commanded to the ‘of f’ state is probably an indication
that either the radar did not shut off or that its detection logic may be malfunctioning.
If, in fact, the input is of no significance, it is still important, as discussed earlier, for
documentation and communication purposes that the requirements synthesist explicitly
record the fact that all the cases have been considered and that the input may truly be
ignored: An explicit “do nothing” requirement is a practical approach in that case.

Startup and Shutdown. If there is a requirement 31... & ..., then the requirement
—3I...& ... is needed for logical completeness. However, this is not an acceptable re-
quirement, for the reasons presented earlier: The trigger condition must state bounds on

20

the interval during which no input I is received. To achieve logical completeness, pro-
gram behavior must be specified for three bounded intervals: the interval prior to program
startup, the interval of normal program execution, and the interval after program shutdown
(specified by Sy). The disjunction of the separate triggers for these bounds:

~3Is t(I) < 4(S.)
~3Ts #(S,) < t(I) < t(S4)
~3Is t(I) > H(Sy)

is logically equivalent to the necessary —3 I case. In addition to considering the absence
of input in these intervals, there may need to be a specification of responses to input that
arrives before startup and after shutdown.

For the first interval, i.e., before the program starts up, completeness considerations
require assertions with the triggers:

-3 5 ¢(I) < 4(S.)
31 s (1) < t(S,)

If the hardware cannot retain or indicate the receipt of an input prior to the event S,, the
program cannot differentiate between the two cases and both conditions should lead to a
“do-nothing” response. If the (abstract) machine can in fact “observe” the existence of
an input I prior to the event S,, the program has two startup states with respect to the
given input (i.e., the input was present or not) and distinct behavior can be required as
appropriate:

31 5 (1) < #(S,) & - -
~3I 5 4(I) < £(Sy) & - -

Note that in the case of events occurring before program startup, ¢(E) is undefined (al-
though bounded from above) and careful consideration must be given to the use of v(E) in
the requirements, as it is hardware dependent which v(F) is retained in the (unobservable)
case that there were multiple events E prior to program startup: Some hardware may
retain the first such event, some the most recent, etc.

After program startup, there should be some finite bound on the time the program
waits without receiving a given input before it tries various alternative strategies such as
alerting an operator or shifting to an open-loop control mechanism that does not utilize
the absent input. Note that this is very similar to the previously discussed maximum-time-
between events condition but applies to the time after startup in the absence of even the
first input of a given type. This type of quiescence after startup yields one of the necessary
—d1I intervals noted above, i.e.,

=37 5 4(Sy) < t(I) < t(Sy)+do & JO 5 ---

21

There may (and in general, will) be a series of intervals dy, dj, etc. during which the
program is required to attempt various means of dealing with the lack of input from the
environment. Eventually, however, there must be some period after which, in the absence
of input, the conclusion must be that there is some malfunction and that all future lack of
that input is of no further significance.

Finally, logical completeness requires an assertion that states that after program shut-
down, Sy, no outputs are required, i.e.,

=37 5 t(S;) < t(I)= =30
and an assertion that considers what to do with inputs that arrive after shutdown, i.e.,

31 5 4(Sy):< t(I) = ~30

Responsiveness and Spontaneity

Responsiveness deals with the classification of outputs as to their effect on the environment.
In particular, does a given output O cause the environment to change, and, if so, is that
change detectable at the program’s black-box boundary by means of some input I7 If the
environment does not respond to an output within some expected period of time, there
is presumably some abnormality somewhere and the program should be required to act
accordingly — perhaps by trying a different output, by alerting a human operator, or, at the
least, logging the abnormality for future, off-line analysis. Bahn [Bah88] reports an accident
involving a steel plant furnace that was returned to production after being shutdown for
repairs. A power supply burned out in a digital thermometer during power up so that the
thermometer continually registered zero degrees. : The controller, knowing it was a cold
start, ordered 100% power to the gas:tubes. The:furnace should have reached operating
temperature within one hour, but the computer failed to detect that the thermometer
inputs were not increasing as they should have. After four hours, the furnace had burned
itself out, and major repairs were required.

Every output O to which a detectable response I is expected within a period of time d
induces at least two requirements: The “normal” response requirement, i.e.,

A0,I5t0)+6t <t(l)<t(O)+d& ...,

and the requirement (which is needed for logical completeness), to deal with a failure of
the environment to produce the expected response. The failure could involve either the
response having an erroneous or unreasonable value or the expected response might be
missing entirely, i.e.,

31 0-3I 5 H(0)+6t < t(I) < t(O)+d &

22

where 8t represents a latency period, i.e., the time between the receipt of an input and its
processing. This is discussed more fully below, but note the need to specify a 6t > 0 here.
If the environment responds too quickly, one suspects coincidence rather than appropriate
stimulus-response behavior. A value-based handshake protocol can be used to eliminate
the need for the 6t factor, i.e., some field of the input I identifies it as uniquely a response
to some specific output O. Note that some inputs I are spontaneous, i.e., they may be
triggered by environmental factors not necessarily caused by some prior output O. But an
input I that is supposed to be non-spontaneous, i.e., one that is only supposed to arrive
in response to some prior system output, induces yet another requirement to respend to a
presumably erroneous (i.e., spontaneous) input I:

=30 s t(I)—d < t(O) < t(I) &

5 Output Specification Completeness

The previous section examined completeness with respect to triggers. There are also com-
pleteness criteria that can be applied to the right side of the requirements assertions, i.e.,
the specification of the outputs. Certainly, the criteria for complete specification of out-
puts will differ from those for triggers. In particular, the notion of logical completeness for
outputs is quite different (and less powerful in its consequences) for output predicates than
for triggers. While it is necessary to consider all possible environmental conditions and
specify responses (or non-responses) to them, it is doubtful that a software system would
need to generate all possible types of outputs. Identifying the subset of outputs that is
required is not a software engineering problem, however; it is a system engineering issue.
If a particular software behavior is not specified in the system requirements specification,
it is not reasonable or appropriate to include it in the software requirements specification.
Therefore, there is no way to guarantee complete detection of missing output requirements
by looking only at the software requirements specification.

It is possible, however, to apply logical completeness to that part of the output pred-
icate that deals with the conditional selection of attributes. It is also possible to derive
application-independent rules and criteria to “close” the output specification with respect
to various criteria important in the controlled system and thus suggest some outputs that
may have been inadvertently overlooked that are logically related to the outputs already
specified.

Completeness of Output Predicates

The terms used in the expression of the predicate Pp must be one of the following:

o Constants,

23

e Existentially quantified variables in the triggering events for O, or

e Existentially quantified variables in conditional selectors

The point is that in specifying the characteristics of the output O, references to the time
and/or value of other events £ are mathematically undefined unless the other events ac-
tually exist.

Selector clauses are the formal representations.of conditional logic for output value
definition and need to be tautologically complete. In general, if

if A
”(O)={ Z ;fB

then AV B must be a tautology.. Similarly, ¢(O) can be defined using conditional logic,
although there seem to be few practical cases where it is necessary. Note the difference
between triggers and selectors: Triggers determine if an output is to be required at all
while selectors specify its contingent characteristics.

The complete specification of the behavior of an output O requires delineating both
its time ¢(O) and its value v(0O).. Again note that the time is required. There are three
possible types of value specifications:

1. The requirement for v(O) involves interpretation of v(0) as a real number, in which
case upper and lower bounds are required.

2. The bit pattern for v(0O) is specified exactly, in which case, equalities such as v(0) =
‘Enter another file name’ are appropriate.

3. The bit pattern of O is not a requirement, but some observable attribute of the
bit pattern (e.g., parity) is, in which case the requirement would be specified as
v(0) € {z|---}.

Note that case (1), above, interpretation as a real number, can be expressed in terms
of case (2) for formal sunphﬁcatlon Using the notation that v!(0) will stand for bit
positions i through j inclusive, it-is obvious that if I < v(0) <wu, 3i,7 s I/ = u! and the
requirement could be expressed as v? {(0).= ul. If case (2):is considered speaﬁcatlon via a
fully deterministic bit pattern and case (3) is considered specification via non-bit-specific
attributes, then interpretation as a real number might be considered a case of partially
deterministic bit specification (i.e., some bit positions:determined, some not) which is
reducible to the catenation of a fully deterministic field with a non-bit-specific field.

Ambiguity of reference in requirements specification is:a common result of incomplete-
ness in selector clauses. As an example, consider a requirement to output the sum of the
last three inputs received:

v(O)={ Yo(L) if NIy 15,155 Py

—1 otherwise

24

where P; 1= t(Su) < t(Il) < t(Ig) < t(]3) A -3 > t(Ia) < t(I4) A V(I,), with V(L)
including value and range restrictions for the I;. Without the uniqueness of the existential
quantification, the term Xv(I;) would not be well defined. Contrast this with a requirement
where the output is to be zero if there have been at least three inputs received:

_ 0 if 3]1, 12,13 3 t(L) < t(O)
v(0) = { —1 otherwise

In this case, the unique existential quantification would not be required.

Timing. There are several special issues with respect to specification of the timing of
outputs: latency, data age, and the problems involved in specifying complex sets of outputs.
Note that there is obviously no limit to the complexity of timing specifications for outputs.
Issues such as minimum and maximum time between outputs are as potentially vital as
the same concepts pertaining to inputs. The difference is that for inputs, such specification
is an internal completeness issue; it is possible to determine whether the specification is
required by looking only at the software requirements. For outputs, a determination of
whether such a specification is required is dependent upon external completeness issues,
i.e., particular characteristics of the controlled system.

Latency. One potential timing incompleteness involves the specification of latency,
a problem discussed in a slightly different context by Kopetz and Damm[KD87]. Since a
computer is not arbitrarily fast, there is an interval of time during which the receipt of
new information cannot change an output O even though it arrives prior to the actual
output of O. The duration of this interval, called §¢ by Kopetz and Damm[KD87], is a
factor influenced by both the hardware and the software. An executive or operating system
that permits interrupts for data arrival may be able to exhibit a shorter §¢ than one that
polls periodically, but underlying hardware constraints prevent it from being eliminated
completely. Thus the latency interval can be made quite small, but it can never be reduced
to zero. The choice of operating system, interrupt logic, scheduling priority and/or system
design parameters may be influenced by the value of §t. Also, behavioral analysis of the
requirements (see, e.g., Jahanian and Mok[JM86]) may not be correct unless the value
of this behavioral parameter is known and specified for a given program. Therefore, the
requirements must include the allowable ét factor in order to be complete.

As an example, consider an output O that is to signal, within a response time ry, the
fact that no input of type I has been received within the previous period of time of duration
d. This could be specified as

3! Su,Il, =3I, > t(Su) < t(Il) < t(Iz) < t(Il)-l-d
& 30 s t(I)+d+6t < t(0) < t(L)+d+6t+r. \ v(0)---

25

The use of an interval of time without some event E to trigger an output always requires
the specification of a ét factor between the end of the interval and the occurrence of the
output or the specification is incomplete. Where the upper bound on the interval is a simple
event, i.e., the proximate trigger is not the non-existence interval but the terminating event
itself, then latency is not an issue. However, where the intent is to signal the non-existence
of an input after some other event, then a latency specification is required. This is true for
both trigger and output predicates.

In some cases, the need for latency specification may appear to be application depen-
dent. Consider a trigger of the form:

H!Su,ll, "13]2 3 t(Su) < t(Il)—-C < t(Ig) < t(I1)+C e,

If the semantic intent is to be that there is no input I, prior to the output, the latency
factor is missing. If the intent is to be that there was an I; with no I, within the interval
around it, the latency factor is unnecessary. Since intent is not analytically tractable, and
since software may be re-used in environments where the current intentions differ from
those at the time of the requirements specification, safety considerations dictate that the
latency factor always be included when the non-existence interval’s upper bound is not a
simple observable event.

There may need to be additional requirement assertions to handle the case where an
event is observed within the latency period. For example, if an action is taken based on
the assumption that some input never arrived and if it is subsequently discovered that the
input actually did arrive but too late to affect the output, it may then be necessary to take
corrective action.

Data Age. Another important aspect of the specification of timing involves data
obsolescence. In practical terms, there are few, if any, input values that are valid forever.
Even if nothing else happens and the entire program is idle, the mere passage of time renders
much data of dubious validity eventually. Although the program is idle, the real world
in which the computer is embedded is unlikely to be. Data obsolescence considerations
require that existential quantification of input (or output) events in selector clauses must
be properly bounded in time.

¢ 3T s¢S,) <t(0)—Dy < t(I) < t(0)
y otherwise

.30 .../\v(O):{

where Dy is the age limit or data validity factor for the input I. Note that ¢(S,) by itself is
rarely a proper lower bound. The input is only valid for the output O if it occurred within
the preceding period of time of duration Dy. As an example of the possible implementation
implications of such a requirement, MARS [KM85], :a distributed fault tolerant system for

26

real time applications, includes a validity time for every message in the system after which
the information in the message is discarded.

Frola and Miller[FM84] report on an accident related to and perhaps caused by lack
of specification of a data age factor where a computer issued a ‘close weapons bay door’
command on a B-1A aircraft at a time when a mechanical inhibit had been put in place on
the door. The ‘close’ command was generated when someone in the cockpit punched the
‘close switch’ on the control panel during a test. Several hours later, when the maintenance
was completed and the inhibit removed, the door unexpectedly closed. The situation had
never been considered in the requirements definition phase; it was fixed by putting a time
limit on all commands.

Specification of Complex Output Sets. Sometimes a given trigger is to require the
production of multiple outputs, not just a single output. The outputs must have observably
distinct characteristics in either time or value (or both). There is no limit to the complexity
of such output set behavior and the details are always application-specific. A particular
benefit of analyzing complex behavior in terms of the predicate calculus, however, is that
it highlights the omission of information essential to the discrimination among observably
distinct behavioral patterns. Such alternatives often have significant safety implications.
Even so well an understood phenomenon as periodicity, for example, has several pitfalls
that can be clearly revealed in this fashion. Phase-lock (i.e., the maintenance of a constant
temporal relationship between two periodic signals), although only one of several potential
problems that arises in specifying periodics, is perhaps the most obvious example.

Three free variables are required to be defined for even the simplest periodics: Let
p = the required periodicity (expressed as a duration of time between successive outputs),
a = the required timing accuracy, and ro = a reference time (to denote the start of the
periodic output). Note that the reference time may be a more complex expression than just
the time, ¢(E), of some event. A program that starts a periodic output 10 seconds after
receipt of some input is exhibiting different behavior than one that commences within
1 second of the receipt of that input, and this level of detail needs to be included in a
complete specification. In this case, ro would need to be replaced by two variables: the
event E and some initial delayed-response time d.

There are at least two distinct alternative expressions for periodic behavior. A phase-
locked periodic requires expressing the time of an output as a multiple of the required
periodic interval after the reference time, ro:

Vn > 1, 310, » [ro+np—a] <t(0,)<[ro+np+ad]

Alternatively, relating the required time for each output to the required interval from the
preceding output (i.e., defining ¢(Og) = ro), results in a specification of a free periodic of

the form:
Vn > 1, 310, » [t(On-1)+p—a] < (0,) < [t(On-1)+p+ad]

27

These requirements both capture ‘periodic’ behavior, but they are quite different: Fig-
ure 2 illustrates the difference. Notice the “drift” of the second specification in comparisen
with the first; the phase-locked periodic in the figure results in 9 outputs in the same inter-
val in which the free periodic (using relative time) has 10 outputs. In the first alternative,
the maximum time that can elapse between successive outputs of O is p + 2a, whereas in
the second alternative it is only p + a. Even if the first requirement is rewritten with an
a’ = a/2, which reduces the maximum time between successive outputs of O to p + a, the
same as for the second alternative, the phase lock. difference remains. Let Mop(d) be the
maximum possible number of occurrences of O in a period of time of duration d. For the
first alternative, |Mo(d) —d/ p‘ < 1, no matter how large d gets: For the second alternative,

|Mo(d)-d/ pl is potentially unbounded as d grows arbitrarily large, regardless of the value
of a.

As stated in the introduction, the requirements specification document needs to contain
enough information-to allow designers to distinguish between observably distinct behav-
ioral patterns. Languages or specification procedures that do not permit the expression
of subtle distinctions will be inadequate for some applications. None of the existing, ma-
jor requirements languages or techniques has syntax: for periodics, for example, that can
discriminate between the two cases described above. The existing abstractions omit po-
tentially important details of observable behavior and therefore are inadequate to express
completely the requirements for some systems. In fact, none of these languages include the
ability to specify all the attributes of value and time described in this paper and considered
by the authors to be essential. Some of these attributes are not specifiable in any of the
languages.

Criteria for Detecting Missing Output Assertions

As stated earlier, logical completeness is not as powerful a concept when applied to outputs
as it is for triggers; it is applicable only to that part of the output predicate that deals with
the conditional selection of attributes. There are, however, some application-independent
criteria in the form of rules and heuristics using state information that can be used to
evaluate output event specifications and detect some missing types of functionality. Safety
and robustness. criteria, for example, may be exploited to: develop these type of application-
independent closure criteria. Several examples of such criteria are described below. There
are additional useful criteria that can be developed other than those discussed below,
but the criteria presented below are important for many real-time applications and are
illustrative of the types of criteria that can be used.

Completeness Based on Output Values. Specification of possible values of outputs
is important in completeness analysis as it was for triggers. There is a great likelihood that

28

Figure 2: Earliest possible outputs for the two periodics, one phase-locked, the other not.
Both have p = 2 and a = 0.2 Note that after time 18, alternative 2 has produced one more
output than has alternative 1; in general, after time 18n, that would be n more.

time 0 2 4 6 8 10 12 14 16 18

1l I H H I N I B A I
1 1 i K] t I t b H bl

[O L A O A O

Alternative 1

relative timing

Alternative 2 H H H H h TR h

phasclocked I

LEGEND

Range of

Actual time possible times

29

a specification is incomplete if there is some legal value for the output that never appears
on the right side of an equality for v(O). For example, if v(0) € {‘on’, ‘of f’} and the
set of requirements specifies when to generate v(O) = ‘on’ but imposes no requirement
to generate v(0) = ‘of f’, the specification is almost certainly incomplete. Forcing the
requirements to include explicitly the set of discrete values or range of values possible for
a given output will highlight such incompleteness.

Reachability and Recurrent Behavior. A common incompleteness in a specification
is failure to specify how the system can change states once it has “reached” a given state.
Suppose, for example, that.there is a state (a history of input and output events) abbrevi-
ated MODEn, and that -MODEn is a prerequisite to the generation of some output X.
Let the existence of an output X be abbreviated ST AT Ez. In that case, when MODEn
prevents the generation of the output X, STAT Ez is not “reachable” from system state
MODEn: Generally, there are some circumstances where that unreachability is appropri-
ate and correct, but it is often indicative of an incompleteness.

Although ST AT Ez may not be reachable from MODZEy, it may still be reachable from
MODE =z which is reachable from MODEn. Thus, one can distinguish between direct and
indirect reachability. The nature of the reachability graph for the states involved in the
trigger for a given requirement is central to one form of completeness. If every prerequisite
state for a given output O is completely unreachable from every inhibiting state, then that
output can never occur again if the system once reaches any state where it (the output)
cannot be produced. Whether or not this is an incompleteness is dependent on the applica-
tion. On the one hand, most embedded systems operate in an environment presumed to be
cyclic (and hence, not irreversible) in nature; but on the other hand, most systems include
special shutdown behavior and some may have other, application-dependent, non-recurring
patterns as well. Startup and shutdown are two common examples. It is a straightforward
(although non-trivial) task to determine whether or not a given output is reachable from
a given state; where it is not, there is a potential incompleteness and the requirements
synthesist must call into play knowledge from the application domain to resolve the issue.

Even where a given output’s behavior is to be repeatable, there is the question of the
nature of the prerequisites for repetition. An output to turn a piece of equipment ‘on’ may
perhaps be inappropriate unless the last output turned the equipment ‘of f’. By including
a check of the last output condition in the prerequisites for the next output condition,
a specification that is to be logically complete would then be forced to deal both with
the start-up problem (there has been no prior output) and the possible error condition
that, for example, something seems to be trying repeatedly to turn a piece of equipment
‘of f’ even though it is already ‘of f’. The point here is that repeatable outputs may have
preconditions on their repetition that should be included in their trigger clauses.

30

Reversibility. The ‘on’/‘of f’ behavior discussed above is significant not only from the
standpoint of repeatability but also as an example of the interesting output characteristic
of “reversibility”. Outputs should be reviewed and classified as to their reversibility. In
addition to obvious reversibility, as in the ‘on’/‘of f’ case, many outputs are reversible by
dissimilar outputs. For example, an alert condition to an operator — e.g., a minimum-
safe-altitude-warning to an air traffic controller — should be reversible when the condition
is no longer true. But there may need to be several different classes of reversing outputs,
depending, for example, on whether the controller has acknowledged the receipt of the orig-
inal alert, is in the process of reviewing the alert, or has taken positive action to ameliorate
the alert condition. The human/machine interface, in particular, is full of complex classes
of reversible phenomena [Jaf88]. Such “indirectly” reversible outputs require a complex
set of preconditions, all of which should be specified in order to provide robustness in the
form of explicit response to the detection of events that would “normally” trigger reversing
outputs but which occur under “unexpected” circumstances.

Path Robustness and Safety. For safety-critical embedded systems, there are addi-
tional concerns. To move from one state to a directly reachable state requires an event;
to move to an indirectly reachable state requires a series of events. Consider an output
O such that v(0) € {‘on’,‘of f’}. Suppose that there is a state that generates v(O)="‘on’
but does not generate v(O)="‘of f’. Even if a state that sets v(O)="‘off’ can be reached
from the state that set v(O)="‘on’, there is still the question of the robustness of the be-
havioral path. Suppose that every possible path from a state that sets v(O)="‘on’ to any
state that sets v(O)="‘off’ includes the event 3I. Then if the system’s ability to receive
I is ever lost, there are circumstances under which it will not be able to set v(0Q)="‘of f’,
depending on the state from which the system set v(O)="‘on’. Thus, the loss of the ability
to receive I may be said to be a soft failure mode for the event that sets v(O)="‘of f’,
in that a failure that precludes receipt of I could inhibit setting v(O)=‘of f’. If there is
no state from which both v(0O)=‘off’ and v(O)="‘on’ can be generated, and the event
31 is in every path from a state that. sets v(O)=‘on’ to one that sets v(O)="‘of f’, the
loss of the ability to receive I may be said to be a hard failure mode in that its loss
will inhibit the event that sets v(O)=‘of f’. The more failure modes a set of requirements
contains, whether soft or hard, the less robust will be the system that is correctly built to
that specification.

Note that robustness will not, in general, be the only attribute of the total system
situation that needs to be considered when specifying the requirements. It may not even
be desirable at alll Consider the following safety criterion: an unsafe state, i.e., one
from which an a prior: “dangerous” output such as a command to launch a weapon can
be produced, should have at least one, and possibly several, hard failure modes for the
production of the output command: No input received from proper authority, no weapons
launch! On the other hand, a fail-safe system should have no soft failure modes, much less

31

hard ones, on paths between dangerous states and safe states. Leveson and Stolzy [LS87]
describe analysis procedures to provide this type of safety information.

6 Conclusions

This paper has described internal completeness criteria for triggers and output events in
real-time black-box requirements specification. Emphasis has been placed on aspects of
software requirements specifications that previously have not been adequately handled,
including timing abstractions, safety, and robustness.

There are other types of completeness criteria that can be added to those described here:
However, the rules included in this paper are certainly minimal. The theoretical foundation
presented can be used as a basis for deriving and analyzing such extensions. One of the
obvious omissions from this paper is consideration of the human-machine interface (HMI).
At the individual requirement level, software requirements for the HMI are no different from
any other requirements and may be expressed or analyzed via the observable formalism
developed in this paper. There are additional closure criteria for a set of HMI requirements,
however, and these are set forth in [Jaf88].

One of the conclusions of the work presented in this paper is that a complete require-
ments specification is large, tedious, and unwieldy. Fortunately, it may not be tequired.
For example, it. may be feasible to perform hazard analyses to determine what actions of
the software are critical[Lev86, LH83, LS87] and to use these analyses to guide and limit
the requirements specification. For example, outputs that are determined to be hazardous
with respect to particular timing issues may require more careful and complete specifica-
tion than those that can be shown to be non-hazardous. We are currently extending the
analysis techniques to include system requirements and models in order to provide this type
of information. We are also adding consistency analysis including consistency with safety
criteria and studying how these completeness and consistency criteria may be applied to
current formal specification languages. Our long-term goal is to design an environment for
software requirements specification and analysis in safety-critical, real-time systems that
includes languages and tools to assist the requirements analyst.

References

[Bah88] Bahn. “Reliance on Computers”. FORUM ON RISKS TO THE PUBLIC IN
COMPUTER SYSTEMS, ACM Committee on Computers and Public Policy,
Peter G. Neumann, moderator; Volume 6 : Issue 40, 9 Mar 1988.

32

[BMU75] B.W. Boehm, R.L. McClean, and D.B. Urfig. “Some Experiences with Auto-

[End75]

[FD82]

[FM84]

[Jaf88]

[TMS6]

[K1e88]

[KD87]

[KM85]
[Lam88]
[Lev86]

[LHS3]

[LS87]

[Neu85]

mated Aids to the Design of Large-Scale Reliable Software”. IFEE Transactions
on Software Engineering, SE-1(2), February 1975.

A.B. Endres. An Analysis of Errors and Their Causes in Software Systems.
IEEFE Transactions on Software Enginerring, SE-1(2), February 1975.

J.D. Foley and A. Van Dam. Fundamentals of Interactive Computer Graph-
ics. The System Programming Series. Addison-Wesley, Reading, Massachusetts,
1982.

F.R. Frola and C.O. Miller. System Safety in Aircraft Management. Technical
report, Logistics Mangement Institute, Washington, D.C., Jan, 1984.

M.S. Jaffe. Completeness, Robustness, and Safety in Real-Time Software Re-
quirements Specifications. PhD thesis, University of California, Irvine, 1988.

F. Jahanian and A.K. Mok. “Safety Analysis of Timing Properties in Real-Time
Systems”. IEEE Transactions on Software Engineering, SE-12(9):890-904, Sep,
1986.

T. Kletz. “Wise After the Event”. Control and Instrumentation, 20(10), Oct
1988.

H. Kopetz and A. Damm. MARS: Concepts and Design of the Second Prototype.
Technical Report 4/87, Technical University of Vienna, Jan 1987.

H. Kopetz and W. Merker. “The Architecture of MARS”. FTCS-15, 1985.
J. Lamb. “the everyday risks of playing safe”. New Scientist, 8 Sept 1988.

N.G. Leveson. “Software Safety: What, Why, and How”. ACM Computing
Surveys, 18(2):125-164, June, 1986.

N.G. Leveson and P.R. Harvey. “Analyzing Software Safety”. IEEE Transac-
tions on Software Engineering, SE-9(5):569-579, Sep, 1983.

N.G. Leveson and J.L Stolzy. “Safety Analysis Using Petri Nets”. IEEE Trans-
actions on Software Enfineering, SE-13(3), Mar 1987.

P.G. Neumann. “Some Computer-Related Disasters and Other Egregious Hor-
rors”. ACM Software Engineering Notes, 11(5), Oct 1986.

[NYT86] New York Times, Science Times Section, July 29, 1986, p. CL.

33

[PCS6]

[Pur87]

[Rom85]

[RST8]

[SB82]

D.L. Parnas and P.C. Clements. “A Rational Design Process: How and Why to
Fake It”. IEEE Transactions on Software Engineering, SE-12(2), Feb, 1986.

D. Purdue. “Australian ATMs ...”. FORUM ON RISKS TO THE PUBLIC IN
COMPUTER SYSTEMS, ACM Committee on Computers and Public Policy,
Peter G. Neumann, moderator; Volume 5 : Issue 3, 18 June 1987.

G.C. Roman. “A Taxonomy of Current Issues in Requirements Engineering”.
IEEE Computer, 18(4):14-23, Apr, 1985.

C.V. Ramamoorthy and H.H. So. “Software Requirements and Specifications:
Status and Perspectives”. In C.V. Ramamoorthy and R. Yeh, editors, Tutorial:
Software Methodology. IEEE, New York, New York, Nov, 1978.

W. Swartout and R. Balzer. “On the Inevitable Intertwining of Specification
and Implementation”. Communications of the ACM, 25(7):438-440, July 1982.

34

