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The features that control discrimination of an isodipole texture 
pair

Kier Groulxa, Charles Chubba,1, Jonathan D. Victorb, Mary M. Conteb

aDepartment of Cognitive Sciences, University of California at Irvine

bWeill Cornell Medical College

Abstract

Visual features such as edges and corners are carried by high-order statistics. Previous analysis of 

discrimination of “isodipole” textures, which isolate specific high-order statistics, demonstrates 

visual sensitivity to these statistics but stops short of analyzing the underlying computations. Here 

we use a new “texture centroid” paradigm to probe these co mputations. We focus on two 

canonical isodipole textures, the “even” and “odd” textures: any 2×2 block of even (odd) texture 

contains an even (odd) number of black (and white) checks. Each stimulus comprised a spatially 

random array of black-and-white texture-disks (background = mean gray) that varied in their 

fourth-order statistics. In the Even (Odd) condition, disks varied along the continuum between 

random “coinflip” texture and pure (highly structured) even (odd) target texture. The task was to 

mouse-click the centroid of the disk array, weighting each disk location by the target structure 

level of the disk-texture (ranging from 0 for coinflip to 1 for even or odd). For each of block-sizes 

S = 2×2, 2×3, 2×4 and 3×3, a linear model was used to estimate the weight exerted on the 

subject’s responses by the differently patterned blocks of size S. Only the results with 2×4 and 3×3 

blocks were consistent with the data. In the Even condition, homogeneous blocks exerted the most 

weight; in the odd condition, block-pattern symmetry was important. These findings show that 

visual mechanisms sensitive to four-point correlations do not compute “evenness” or “oddness” 

per se, but rather are activated selectively by features whose frequency varies across isodipole 

textures.

Keywords

isodipole texture; centroid method; preattentive vision

1 Introduction

Extraction of basic visual features depends not only on differences in luminance at two 

points (spatial contrast), but also on sensitivity to patterns of luminance at three or more 
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points, also known as “higher-order correlations” [Julesz, 1981, Morrone et al., 1982, 

Oppenheim and Lim, 1981]. Paradigms that utilize isodipole textures constitute a principled 

approach for probing this sensitivity, since isodipole textures isolate higher-order 

correlations: by definition, they are matched in terms of their two-point correlations but 

differ in terms of three- or four-point correlations. The goal of the present study is to 

determine the nature of the computations that underlie visual performance on tasks involving 

these textures. We focus on the “even” and “odd” family of isodipole textures [Julesz et al., 

1978], as these are a well-studied class of isodipole textures whose structure is defined by a 

four-point correlation among 2 × 2 blocks of checks, and whose salient visual features 

include edges and corners. An example of the even (odd) texture is shown in the rightmost 

(leftmost) panel of Fig. 1.

Despite extensive study [Victor and Conte, 1989, 1991, Victor et al., 2005, Victor and Conte, 

2012, Victor et al., 2015], the neural computations that underlie visual performance driven 

by the even vs. odd distinction are as yet unknown. One possibility is that neural circuits 

extract the four-point correlation that defines these textures. This requires a multiplication of 

luminance values at four points. However, while primary and secondary visual cortices 

appear to be the locus of the relevant computations [Victor, 1986, Purpura et al., 1994, Yu et 

al., 2015], four-point multiplication does not readily map to known properties of cortical 

neurons. A possible resolution of this discrepancy is that visual performance does not rest on 

extraction of a four-point correlation per se. Other computations could serve as well, 

provided that they extracted statistical features implied by this correlation – for example, 

features that extend over larger regions of space, local symmetries, or the entropy of the 

probability distribution induced on local pattern types [Barbosa et al., 2013, Maddess and 

Nagai, 2001, Nagai et al., 2009, Taylor et al., 2008].

To probe the underlying computations at a functional level, we use an extension of the 

“centroid paradigm” [Drew et al., 2010, Sun et al., 2016], a technique recently developed to 

investigate the filters that subjects can achieve for extracting the spatial distribution of 

various sorts of image statistics. As we show, applying the centroid paradigm to stimuli 

consisting of patches of even and odd isodipole textures enables a characterization of the 

filter that the subject uses for selective attention. This characterization will indicate whether 

the visual system indeed computes the fourth-order correlation that defines the even vs. odd 

gamut, or rather, that the sensitivity to this distinction is best described in another way.

In a typical application of the centroid paradigm, stimuli consist of briefly flashed, spatially 

random scatterings of different sorts of items (e.g., dots of different colors or Gabor patches 

of different spatial frequencies and/or orientations). The subject is then tested in different 

“attention conditions,” always with the same sorts of displays. In a given attention condition, 

the subject is instructed to mouse-click the centroid of the items in each display, giving 

weight to different types of items in accordance with a specified target filter. For example, in 

an experiment using dots of different colors, in one attention condition, the subject might be 

instructed to mouse-click the centroid of the red dots, ignoring (i.e., giving weight 0 to) dots 

of other colors; in another attention condition, the subject might be instructed to mouse-click 

the centroid of the blue dots, ignoring dots of other colors. The data from a given attention 

condition can be analyzed (using linear regression) to derive the function that gives the 
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relative weight exerted on the subject’s centroid estimates by all of the different types of 

items in the stimulus displays-what might be called the “filter” achieved by the subject in 

that condition. Since stimuli are identical in composition across different attention 

conditions, any differences in the observed filters across attention conditions must be due to 

differences in the attentional state of the subject.

In the present extension of the centroid paradigm, which we call the “texture centroid 

paradigm”, the stimuli consist of disks that are filled with visual texture of the types shown 

in Fig. 2. Each disk in a given display contains a texture whose distribution lies along the 

gamut from a target distribution T and distractor distribution D. The task is to mouse-click 

the centroid of the display, weighing the location of each texture-disk in proportion to its 

signal strength, which is given by the distance of its distribution along the continuum from D 

to T. In order to perform well in a given condition of the texture centroid task, the subject 

must recruit the neurons in his or her visual system to produce a “filter” whose activation by 

different texture disks matches their signal strengths as closely as possible. The aim of the 

current study is to analyze the filters deployed by subjects in the context of the texture 

centroid task to differentiate (1) even texture (serving as T) from texture with a = 0 (serving 

as D) and (2) odd texture (serving as T) from texture with a = 0 (serving as D).

The disks used in our displays vary in a texture parameter called α [Victor et al., 2005, 

Victor and Conte, 2012]. The “even” and “odd” textures are the opposite ends of a gamut 

parameterized by α, where α =1 corresponds to “even” and α = −1 corresponds to “odd”. A 

2 × 2 block of abutting checks is said to have even (odd) parity if it contains an even (odd) 

number of black (or white) checks. For any texture disk d in any of the stimuli used in either 

of these two task conditions, we define

α(d) = 2(p(d) − 0.5), (1)

where p(d) is the proportion of abutting 2 × 2 blocks of checks in d with even parity. Note 

that the extreme values of α(d), −1 and 1, correspond to probabilities p(d) of 0 and 1, 

respectively, and α(d) = 0 corresponds to p(d) = 0.5, the value for a random checkerboard.

In one task condition (the “Even” condition), the target weight of a texture disk d (i.e., the 

weight the subject strives to give d’s location in the centroid computation) is equal to α(d), 
and in the other condition (the “Odd” condition), d’s target weight is −α(d). Thus, in each 

task condition, the only image features that are explicitly relevant to performance are the 16 

different possible patterns of 2 × 2 blocks of checks that can occur. In the Even condition, 

the ideal filter would give equal weight to all 2 × 2 block patterns with an even number of 

black checks and weight 0 to all 2 × 2 patterns with an odd number of black checks, and in 

the Odd condition, the ideal filter would give equal weight to all 2 × 2 patterns with an odd 

number of black checks and weight 0 to all 2 × 2 patterns with an even number of black 

checks.
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As we shall see, in each condition, the filters achieved by our subjects deviate systematically 

from the ideal filter. These deviations provide important insights into the features in these 

textures to which human vision is actually sensitive.

2 Methods

Five subjects (two male) participated in this study at the University of California, Irvine. 

Subject S1 was the first author. The other subjects were inexperienced both in the centroid 

task and also in experiments using isodipole textures. The subjects participated under a UCI-

approved IRB protocol with written consent.

Each stimulus consisted of a bounding box subtending 14 × 14 degrees of visual angle 

populated with 14 disks each of which subtended 1.06 degrees of visual angle. Each texture 

disk had an 11-check diameter and comprised 97 checks, each colored either black or white. 

That disks of this size are sufficiently large to analyze human sensitivity to variations in α is 

suggested by the results of Maddess and Nagai [2001] who showed that discrimination of 

isodipole textures is invariant down to targets of about 64 pixels. In addition, it should be 

noted that Victor and Conte [1989] found that the threshold for discriminating non-zero α 
from texture with α = 0 is invariant with respect to check size for check-widths from 4 to 16 

minutes, a range which includes the 5.8 minute checks used here.

The x and y coordinates Cx(d) and Cy(d) of the disks d presented on a given trial were drawn 

from a circular, bivariate Gaussian distribution, but were subject to additional constraints 

that had the effect of making the distribution of disk-centers closer to uniform than to 

Gaussian. These additional constraints were:

1. For Mx and My are the mean x and y coordinates of the centers of all disks in the 

display,

1
14 ∑

all disks d
Cx(d) − Mx

2 + Cy(d) − My
2 ≈ 2.67 deg . (2)

In practice, this statistic varied from around 2.64 to 2.70 deg. across different 

stimuli.

2. All disks were separated from each other by at least 3 check-widths.

In the Even condition, two (randomly selected) disks d in each display had α(d) = a for 

a = 0, 1
6 , ⋯, 1, and the subject strove (with trial-by-trial feedback) to mouse-click the centroid 

of the disks, giving weight to the location of each disk d proportional to α(d) (Eq. 1). In the 

Odd condition, two disks d in each display had α(d) = s for s = 0, − 1
6 , ⋯, − 1, and the 

subject strove to mouse-click the centroid of the disks, giving weight to the location of each 

disk d proportional to −α(d).

The level of α in a given disk was carefully controlled. Of the 97 checks contained in a 

given disk, 76 checks were the “lower-right anchors” of 2 × 2 blocks contained within the 
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disk: i.e., for each of these checks h, the checks directly (a) above, (b) to the left and (c) 

diagonally above and to the left of h were also in the disk. For any given check h in this 

lower-right anchoring set, the parity of the 2 × 2 block anchored by h was determined ahead 

of time. Specifically, a vector of length 76 was filled with neven = round 76 × α − 1
2  instances 

of the value 1 and 76 − neven instances of −1. This vector was then randomly scrambled, and 

the values were assigned to the 76 lower-right anchors h by a function ParityController(h). 

The 21 checks not in the lower-right anchoring set were randomly and independently 

assigned the values equal to −1 or 1 with equal probability. Then the values of the lower-

right anchoring checks h were assigned as follows:

value of check h = A × B × C × ParityController(h) (3)

where A, B and C are the previously determined values of the checks directly above, left of 

and above-left of h.

A sample of texture disks used in the Even task condition is shown in the top row of Fig. 3, 

and a sample of texture disks used in the Odd condition is shown in the bottom row.

Fig. 2 shows a trial in the Even condition. (Not shown is the “bounding box”, a thin, black 

line that circumscribed the square region of the monitor screen in which the stimulus was 

displayed. The bounding box remained visible throughout the trial.) Subjects were given no 

special instructions about where to maintain fixation or where to deploy their attention, and 

no effort was made to monitor their eye movements during the experiment. The subject first 

viewed a blank (mean gray) field circumscribed by the bounding box for 1 sec. The stimulus 

was then presented for 300 ms. Then there appeared a blank field with a cursor in the 

middle; the subject used the mouse to move the cursor to click on the location that he or she 

judged to be the target centroid location, i.e., the center of gravity of the locations of the 

disks d weighted by |α(d)|. A feedback display (see Fig. 2 panel 4) was then presented which 

included (1) all the disks present in the stimulus presentation, (2) the subject’s response 

location shown in blue, and (3) the location of the target centroid shown by a green bullseye. 

The subject could view the feedback for as long as desired. Pressing “Enter” on the 

keyboard initiated the next trial. Each subject performed 15 blocks of 100 trials.

In each of the Even and Odd tasks, the target location (indicated in the feedback display) had 

x and y coordinates

targetx = 1
7 ∑

all disks d
α(d) Cx(d) and targety = 1

7 ∑
all disks d

α(d) Cy(d) (4)

where α(d) is the α level of disk d, and Cx(d) and Cy(d) are the x and y coordinates of the 

center of disk d. The constant 1
7  arises due the fact that there are two disks with each of the 7 
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levels of α = 0, 1
6 , ⋯, 1; thus the total α-weight of all of the disks in any display is 

2 × 0 + 1
6 + ⋯ + 1 = 7.

3 Results

Throughout this section, we will present only those figures that are critical to understanding 

the main trends in the data; fine-grained details will be relegated to the supplementary 

material. We will refer to a figure in the supplementary materials as a “SupMatFig.”

All model fits reported below are derived using all 15 blocks of data provided by each 

subject. The results are not appreciably different if the first 5 blocks are discarded from the 

analysis for each subject.

3.1 The general modeling framework

We imagine that the visual system applies a battery of spatially parallel, roughly shift-

invariant transformations to the visual input. We can think of the output from any one of 

these transformations as a “neural image” [Robson, 1980] whose pattern of activation 

reflects the distribution across visual space of some particular image statistic. We think of 

these neural images as the raw material available to the subject for use in tasks such as the 

Even and Odd tasks. We don’t know what statistics are sensed by these up-front 

transformations, nor do we know how the subject is able to combine them. We assume, 

however, that when faced with either of the Even or Odd tasks, the subject uses top-down 

signals to synthesize a single task-specific, neural filter from these transformations. We think 

of this filter itself as a spatially local, roughly shift-invariant image transformation; that is, 

the filter assigns to each location (x, y) in space a real number that is a function of the visual 

input in some local neighborhood of (x, y). We call this neighborhood the “window” of the 

filter. Our aim is to discover the key properties of the filters used by our subjects in the Even 

and Odd tasks.

Basic questions addressed in our analysis are:

1. What is the window of the task-specific filter used by the subject in each of the 

Even and Odd tasks?

2. What is the relative sensitivity of each of these task-specific filters to the various 

different patterns that can appear within its window?

3.2 The α influence functions.

The first step in our analysis is to infer the amount of influence that a disk d with a given 

level α(d) has on the centroid. This influence function, W(α), can be determined by linear 

regression of the response locations, against the locations of the individual disks on each 

trial. Specifically, for this analysis, we assume that on each trial, the x and y coordinates of 

the subject’s response are given by
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Rx = 1
2 ∑

disks d
W(α(d))Cx(d) + βx + Nx and Ry = 1

2 ∑
disks d

W(α(d))Cy(d) + βy + Ny, (5)

where each sum ranges over all fourteen disks d in the stimulus, Cx(d) and Cy(d) are (as 

above) the x and y coordinates of the center of disk d, and

1. the function W : 0, 1
6 , ⋯, 1 ℝ is normalized to sum to 1 (implying that the sum 

of W(α(d)) over all disks d in any stimulus is equal to 2),

2. βx and βy are horizontal and vertical response biases fixed across trials, and

3. Nx and Ny are independent, normally distributed random variables with mean 0 

and standard deviation σ.

Our interest is restricted to the function W, which gives the relative influence exerted on the 

subject’s responses by disks d with different levels of α; accordingly, we will not report the 

other model parameters, βx, βy and σ.

The solid lines with error bars (95% Bayesian credible intervals) in Fig. 4 plot the influence 

exerted by disks d with different levels of α(d) on the responses of our subjects in the Even 

and Odd tasks. These influence functions are all normalized to sum to 1. The dashed lines 

plotted with triangles show the weighting function that was used to give feedback. Note that 

if the subject is accurately performing the centroid task, then the influence function W(α) 

will match the weighting function used for feedback, and be proportional to α.

The strong deviations of the influence functions from proportionality suggest that, despite 

the feedback, subjects were not able to respond in a manner that weighted the disks in 

proportion to α. In each task, every subject gave more weight to disks d with |α(d)| = 1 than 

to disks with α(d) = 0. In three or four cases, however, this difference is quite small. In these 

cases, subjects gave nearly equal weight to all disks d regardless of α(d) suggesting that they 

were able to attain very little traction in the task.

Note that in every case in which the a-influence function shows a large increase, the function 

tends to accelerate with |α(d) |. That is, the α-influence function tends to be flat for values of 

α(d) near 0 and steepens in the Even task for values of α(d) near 1 and in the Odd task for 

values near −1. This observation implies immediately that the filters deployed by our 

subjects are not sensitive to α per se. If this were the case, then the α-influence functions 

achieved by our subjects would have to vary linearly with α.

3.3 Using block-filters for modeling

In all of the modeling we undertake below we assume that in a given task, on each trial the 

subject applies a fixed filter to the stimulus display and responds by mouse-clicking the 

centroid of the filter output (plus noise and a constant spatial bias). In particular, we will 

assume that the filter used by the subject is aligned to blocks of checks of a specific size and 

shape and responds differentially to different stimulus patterns falling within such blocks. 
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By focusing on “block-filters” of this sort, we can gain insight into the nature of the window 

used in the filters deployed by our subjects.

Specifically, we assume the response location (Rx, Ry) on a given trial is given by

Rx = 1
T ∑

blocks b
F τb xb + βx + Nx and Ry = 1

T ∑
blocks b

F τb yb + βy + Ny, (6)

where

1. the term “block” refers to a rectangular subpattern of the stimulus that contains 

only black or white checks (no gray checks). An m × n block comprises m rows 

by n columns of checks. To limit the number of free parameters required to 

model our results, we assume that the task-specific filters used by our subjects 

are invariant with respect to pattern rotation, reflection and contrast reversal. For 

example, the activation produced in a filter by a given n × m block b is identical 

to the activation produced by the m × n block produced by rotating b by 90°.

Accordingly, in all of the models fit below, we choose specific integers m and n, 

and each of the sums in Eq. 6 is over all blocks b in the stimulus that are either n 
× m or m × n. In the case in which m ≠ n, we refer to the block-filter as an “[m × 

n ∪ n × m] block-filter.”

2. τb is the “type” of block b: this is the equivalence class of block patterns that can 

be generated from b by some combination of rotation, reflection and/or contrast 

reversal. Thus, for example, there are four types of 2 × 2 blocks. These are 

shown in the upper panel of Fig. 5.

3. for any block-type τ, F(τ) is the activation produced in the filter by blocks of 

type τ.

4. xb and yb are the center x- and y-locations of block b. Thus, for example, each of 

the disks in the right panel of Fig. 5 falls in the center of a particular 2 × 2 block.

5. βχ and βy are horizontal and vertical response biases independent of the 

stimulus. They are thus nuisance parameters of no real interest, but because they 

differ significantly from 0 for nearly all subjects, we include them to avoid 

distorting estimates of the parameters of interest. We shall not report their values.

6. Nx and Ny are normal random variables with mean 0 and some standard 

deviation σ, and

7. T gives the total activation produced in the filter by the current stimulus:

T = ∑
blocks b

F τb . (7)

Groulx et al. Page 8

Vision Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The reader will note that the model of Eq. 6 is underconstrained in the sense that the 

function F is defined only up to an arbitrary multiplicative constant. We deal with this by 

imposing the constraint that

∑
all block‐types τ

F(τ)2 = 1. (8)

3.4 Is it possible that our subjects’ task-specific filters are 2 × 2 block-filters?

The first possibility that we consider is that the subject processes 2 × 2 regions of the image, 

but uses a filter whose output is not the veridical value of alpha. That is, we ask whether it is 

possible to account for the subject’s responses in terms of a 2 × 2 block-filter. There are four 

types of 2 × 2 blocks. These four types are shown in the top panel in Fig. 5. Note that types 

1, 2 and 3 all have even parity and type 4 has odd parity.

The left lower panel in Fig. 5 shows how a single 2 × 2 block produces an output value. One 

can think of the output produced by a particular 2 × 2 block b of type τb as a region of 

activation of total weight F(τb) centered at the location in the middle of b. In the lower left 

panel of Fig. 5, the blue line shows the window encompassing a single 2 × 2 block of 

checks. Because this particular 2 × 2 block is of type 4, the filter assigns the value F(4) to 

the central location of the 2 × 2 block captured by the window. The right panel shows all of 

the values assigned within the patch by the filter. Each location receiving a value is the 

center of a 2 × 2 block of checks, and the value assigned depends on the type of the block. 

The model’s prediction of the subject’s response is given by Eq. 6 where the sums are over 

all 2 × 2 blocks b.

3.4.1 The estimated 2 × 2 block-filters—SupMatFig. 1 shows the 2 × 2 block-filters 

F(τ) estimated for all five subjects in each of the Even and Odd tasks under the assumption 

that responses are produced by Eq. 6.

For all cases except those in which the observed α-influence function is flat, our results 

decisively reject the possibility that our subjects are using 2 × 2 block-filters. We can see this 

by using the 2 × 2 block-filters shown in SuppMatFig. 1 to predict the weights exerted on 

the responses of our subjects by disks d with different levels of α(d). These predicted 

weights are plotted by the gray circles in SupMatFig. 2.

Here we focus on the single example of the α-influence function observed for subject S5 in 

the Even task. The steep acceleration of this particular α-influence function make this the 

most stringent modeling challenge we face for any subject in either the Even or Odd task.

The α-influence function predicted under the assumption that S5 is using a 2 × 2 block-filter 

in the Even task (with the block-filter given by the bottom left panel of SupMatFig. 1) is 

shown by the gray disks in the upper left panel of Fig. 6. (The white-filled squares replot the 

estimated α-influence function from the bottom left panel of Fig. 4.) As is clear, the 

observed α-influence function deviates strongly from the function predicted from the 2 × 2 

block-filter model.
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In fact, the mode of failure of the 2 × 2 model seen in the upper left panel of Fig. 6 is 

generic: any 2 × 2 block filter model will produce a linear influence function. This is a 

consequence of the fact that the probability of occurrence of any given 2 × 2 block pattern 

varies linearly with α (in some cases increasing, in some cases decreasing), so any linear 

function of these probabilities (given by the block-filter activations) will necessarily be 

linear as well. The model of Eq. 6 thus implies that the weights assigned different disks d 
must vary linearly with α(d) regardless of the activations F(τ) produced by different 2 × 2 

pattern-types τ.

Subject S4 showed very little differential sensitivity to disks varying in α in either the Even 

or the Odd task. This is also true of subject S2 in the Odd task. Unsurprisingly (as revealed 

by SupMatFig. 2), in these cases the linear α-influence functions predicted assuming 2 × 2 

block-filters match the observed α-influence functions very well. However, in all other 

cases, the the predicted α-influence functions deviate strongly from the accelerated form of 

the observed α-influence functions.

3.5 Block-filters larger than 2×2 can achieve accelerated α-influence functions.

The heightened sensitivity of the filters achieved by our subjects to disks d with |α(d)| = 1 

suggests that these filters are selectively activated by features that emerge with high 

probability predominantly in texture patches when |α| nears 1. For example, large 

homogeneous white (or black) patches are relatively common in pure even texture but rare in 

texture patches d with α(d) ≤ 5
6 .

Beyond the 2 × 2 size, the probability of occurrence of blocks typically depends in a 

nonlinear fashion on α. Fig. 7 illustrates this effect for 3 × 3, 4 × 3 and 4 × 4 blocks 

comprising either all black or all white checks. The top panel shows the average number of 

occurrences in texture disks from the Even task of solid, 3 × 3 blocks (squares), 4 × 3 (or 3 × 

4) blocks (triangles) and 4 × 4 blocks (circles). In the bottom panel, each of the curves from 

the top panel is rescaled to have sum equal to 1; this reveals the increasing acceleration of 

the curve for 4 × 4 blocks vs. 4 × 3 vs. 3 × 3 blocks.

However, sensitivity to solid blocks is unlikely to account for our findings. As shown in Fig. 

7, very few solid, 4 × 4 blocks occur in any of the texture disks used in the Even task. In 

particular, even disks d with the maximum value of α(d) = 1 contain on average only0.62 

solid, 4 × 4 blocks. In fact, the rate of occurrence of solid, 4 × 4 blocks is sufficiently low 

that on 5% of all trials, all fourteen disks in the stimulus will be entirely devoid of solid, 4 × 

4 blocks. Thus, performance in the Even task would be very poor if one were to rely 

exclusively on solid, 4 × 4 blocks to guide one’s responses. By contrast, a filter selective in 

varying degrees for all solid n × m blocks (n > 2, m > 2) could well provide enough 

information to enable effective performance in the Even task.

The second thing to note about Fig. 7 is that all of the lower-panel curves for solid 3 × 3, 4 × 

3 and 4 × 4 blocks assign values close to 0 to disks d with α(d) = 0. This implies that if the 

filters achieved by our subjects were purely selective for large, solid blocks of checks (i.e., if 

they consisted of linear combinations of the curves plotted in the top panel of Fig. 7), then 
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they would necessarily assign values close to 0 to disks d with α(d) = 0. By contrast, as 

shown by Fig. 4, the influence functions achieved by our subjects all give weight 

substantially greater than 0 to disks d with α(d) = 0. We conclude that the filters achieved by 

our subjects are not purely selective for large, solid blocks of checks; these filters must also 

be selective for features that occur with moderately high probability in disks d with α(d) = 0.

3.6 What size block-filter is required to explain the current data?

In this section, we will consider in succession the possibility that our data can be explained 

by [2 × 3 ∪ 3 × 2], [2 × 4 ∪ 4 × 2], and 3 × 3 block-filters. In each case, we will start by 

fitting the model of Eq. 6 to estimate the block-filter F(τ) used by each subject. We will then 

use the estimated block-filter to predict the subject’s α-influence function.

When we plot the block-filter F(τ) estimated for a given subject for a given block size, it will 

be useful to indicate the evenness of all of the different block-types τ. For a given n × m 
block b, we can define α(b) by using b in place of d in Eq. 1, where p(b) gives the 

proportion of 2 × 2 subblocks of b that have even parity. As is easy to check, all blocks b of 

a given block-type τ the same value of α(b); we will write α(τ) for this value.

3.6.1 Can the data be explained in terms of [2 × 3 ∪ 3 × 2] block-filters?—As 

noted above, the results plotted in Fig. 4 are inconsistent with the idea that our subjects are 

using 2 × 2 block-filters. Can these results be modeled in terms of [2 × 3 ∪ 3 × 2] block-

filters? In testing this possibility, we assume specifically that responses are produced in 

accordance with Eq. 6 with each sum ranging over all blocks b in the stimulus that are either 

2 × 3 or 3 × 2.

There are 14 different types of 2 × 3 (or 3 × 2) blocks. These are shown in SupMatFig. 3. 

The estimated [2 × 3 ∪ 3 × 2] block-filters F(τ) are shown in SupMatFig. 4 for all subjects in 

both the Even and Odd tasks. To show how the different block-types vary in evenness, the 

light gray open circles in SupMatFig. 4 plot 0.4α(τ).

As shown by the upper right panel of Fig. 6, the α-influence function observed for subject 

S5 in the Even task deviates strongly from the α-influence function predicted assuming the 

subject is using a [2 × 3 ∪ 3 × 2] block-filter. More generally, as shown by SupMatFig. 5, in 

all cases in which the curve from Fig. 4 is accelerated, the curve predicted using the 

estimated [2 × 3 ∪ 3 × 2] block-filter, while accelerating, fails to match the data in steepness.

3.6.2 Can the data be explained in terms of [2 × 4 ∪ 4 × 2] block-filters?—Here 

we assume that responses are derived from Eq. 6 with each sum ranging over all blocks b in 

the stimulus that are either 2 × 4 or 4 × 2. The 44 different types τ of 2 × 4 (or 4 × 2) blocks 

are shown in SupMatFig. 6 sorted into an order in which α(τ) is non-increasing.

The estimated block-filter activations are shown in SupMatFig. 7 for all subjects in both the 

Even and Odd tasks. The light gray open circles in SupMatFig. 7 plot 0.4α(τ) for all block-

types τ. The darkness of a marker reflects the proportion of all 2 × 4 and 4 × 2 blocks 

occurring in all stimuli that are of the corresponding type. Thus, block-types with low 

indices (indicating greater evenness) in SupMatFig. 6 are more common in the Even task 
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than block-types with high indices, and vice versa for the Odd task. Markers whose error 

bars (99% Bayesian credible intervals) that do not contain 0 have thickened bars.

SupMatFig. 8 replots the curves from Fig. 4 (white markers) along with the weights that 

disks with different levels of a would be predicted to exert if these weights were determined 

by only the 2 × 4 and 4 × 2 blocks in the disks, where each block is assumed to contribute 

the weight shown in SupMatFig. 7. In most cases, the predicted curve matches the curve 

from Fig. 4 fairly well. The one deviation is for subject S5 in the Even task (also plotted in 

the lower left panel of Fig. 6); in this case, the predicted curve overshoots the observed 

influence exerted by disks with α = 5
6  and undershoots the influence exerted by disks with α 

= 1.

3.6.3 Can the data be explained in terms of 3 × 3 block filters?—SupMatFig. 9 

displays all 51 types of 3×3 block patterns sorted into an order in which α(τ) is non-

increasing.

The relative weights F(τ) exerted by the 51 block types τ are shown in SupMatFig. 10 for all 

subjects in both the Even and Odd tasks. Points on the horizontal axis correspond to the 51 

types of 3×3 blocks shown in SupMatFig. 9. Plotted values reflect the weights exerted by 

different block-types on the responses of all five subjects (rows 1 – 5) in the Even and Odd 

tasks (left and right columns). The light gray open circles show 0.4α(τ) for all 51 block 

types τ.

The darkness of a plotted point reflects the relative number of times patterns of that type 

appeared in the stimuli. As one might expect, the error bars (99% Bayesian credible 

intervals) tend to be smaller for more common 3 × 3 block-types. Bars are thickened for 

block-types τ for which the error bars on F(τ) do not include 0.

The α-influence functions plotted in Fig. 4 are consistent with the idea that our subjects are 

using 3 × 3 block-filters. This is shown by the dashed lines with gray disks in SupMatFig. 

11. The dashed-line curve in a given panel gives the predicted influence exerted by disks 

varying in α-level on our subject’s responses if the subject were using the 3 × 3 block-filter 

F(τ) in the corresponding panel of SupMatFig. 10. In particular, as shown in the lower right 

panel of Fig. 6, the observed α-influence function for subject S5 in the Even task is well-

described by the α-influence function predicted assuming a 3 × 3 block-filter.

3.7 What features of the Even and Odd textures activate subject filters most strongly?

The observed α-influence functions (Fig. 4) reject the possibility that our subjects are using 

either 2 × 2 or [2 × 3 ∪ 3 × 2] block-filters. However, the a-influence functions predicted 

assuming subjects are using either [2 × 4 ∪ 4 × 2] or 3 × 3 block-filters match the observed 

α-influence functions fairly well.

This suggests that we may be able to gain insight into the features that operate most strongly 

to activate the filters used by our subjects in both tasks by focusing on the particular [2 × 4 ∪ 
4 × 2] and 3 × 3 block-types that predominate in controlling performance in the Even and 

Odd tasks because they occur most frequently in the stimuli.
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3.7.1 Features controlling performance in the Even task.—In the stimuli used in 

the Even task, the most commonly occurring [2 × 4 ∪ 4 × 2] and 3 × 3 block types are the 

ones whose 2 × 2 subblocks all have even parity. There are 12 such [2 × 4 ∪ 4 × 2] block-

types and 6 such 3 × 3 block-types. The [2 × 4 ∪ 4 × 2] and 3 × 3 block-filters estimated for 

all five subjects in the Even task across these block types are plotted in the upper and lower 

left panels of Fig. 8 respectively. In each panel, the large circles plot the mean block-filter.

The 3 × 3 and [2 × 4 ∪ 4 × 2] block-filters for the Even task conform to a simple rule. The 

solid blocks (i.e., blocks of type 1) produce the highest activation; blocks comprising two 

subregions (3 × 3 blocks of type 2, and [2 × 4 ∪ 4 × 2] blocks of types 2, 3 and 4) exert the 

next highest activation; and all block-types comprising more than 2 subregions tend to 

produce lower and roughly equal levels of activation.

3.7.2 Features controlling performance in the Odd task.—In the stimuli used in 

the Odd task, the most commonly occurring [2 × 4 ∪ 4 × 2] and 3 × 3 block types are the 

ones whose 2 × 2 subblocks all have odd parity. There are 4 such [2 × 4 ∪ 4 × 2] block-types 

and 6 such 3 × 3 block-types. The [2 × 4 ∪ 4 × 2] and 3 × 3 block-filters estimated for all 

five subjects in the Odd task across these block types are plotted in the upper and lower right 

panels of Fig. 8 respectively.

The [2 × 4 ∪ 4 × 2] block-filters for the Odd task are easy to characterize. [2 × 4 ∪ 4 × 2] 

blocks of type 41 produce the highest activation; [2 × 4 ∪ 4 × 2] blocks of types 42, 43, and 

44 produce lower and roughly equal activation.

The 3 × 3 block-filters for the Odd task are more complicated. For all subjects, 3 × 3 block-

type 48 produces activation that is clearly greater than either of block-types 47 and 49. There 

is more variability across subjects in the activation produced by block-types 46, 50 and 51.

The 3 × 3 block-types that produce the highest activation have greater symmetry than the 

other three. The three 3 × 3 block-types that produce the highest average activation are 46, 

48 and 51. Block-types 46 and 51 are symmetric with respect to reflection across the 

vertical, horizontal and both diagonal axes; block-type 48 is symmetric with respect to 

vertical and horizontal reflection. By contrast, each of the 3 × 3 block-types 47, 49 and 50 is 

symmetric with respect to reflection around a single axis. In the cases of block-types 47 and 

50, this is the horizontal axis; in the case of 49, this is the top-left-to-bottom-right diagonal 

axis.

4 Discussion

The motivation for this work is to understand the computations underlying the extraction of 

high-order statistics, since, as is well-known, these statistics are critical for conveying visual 

features, such as corners and edges [Morrone et al., 1982, Oppenheim and Lim, 1981]. We 

focus on the four-point correlation among points in a 2 × 2 neighborhood. This correlation is 

visually salient when isolated in synthetic visual textures [Julesz et al., 1978] and has come 

to be known as “even-ness”, or α [Victor and Conte, 1991, 2012, Victor et al., 2005]. For 

black-and-white textures, α is defined as the average value of the product of the signed 

contrasts in four checks in a 2 × 2 neighborhood. Textures defined by α are readily 
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distinguished from random textures [Victor et al., 2015], and it is known that neurons in V1 

and especially V2 can respond to this distinction as well [Yu et al., 2015]. But four-point 

multiplication is not a computation generally thought to be carried out by visual neurons. 

This discordance suggests that visual neurons do not compute α per se, but instead are 

sensitive to aspects of visual structure that α implies. Such alternatives had been previously 

proposed [Victor and Conte, 1989, 1991] but not tested experimentally. Here we carry out 

such a test. Results show that α is in fact not directly computed, and begin to characterize 

the computations that indirectly determine it.

Our strategy was motivated by the statistical fluctuations of image statistics that inevitably 

occur in small patches of texture. In an adaptation of the “centroid paradigm” [Drew et al., 

2010, Sun et al., 2016], we asked subjects to determine the centroid of α (or −α) in an array 

of 14 small texture disks and (to exaggerate these fluctuations) constructed the disks so that 

the precise values of |α| within each disk varied from 0 to 1. As in Drew et al. [2010] and 

Sun et al. [2016], we modeled the subjects’ responses in terms of how the values of a in each 

disk influenced their decision. This showed that even after extensive feedback based on the 

veridical value of |α|, subjects chose the centroid based on an “influence function” that was 

an accelerating function of |α|, rather than proportional to it. We note that in a centroid 

paradigm based on item gray-scale or item contrast, subjects perform in a veridical fashion 

[Drew et al., 2010, Sun et al., 2016]; this indicates that their failure to do so here is due to 

the visual computations applied to the stimulus disks, not the task itself. This observation 

ruled out the possibility that subjects directly computed α. It also ruled out the possibility 

that subjects were carrying out some other nonlinear computation within 2 × 2 

neighborhoods and using the summed value of this computation rather than α — as this 

would also have led to a linear α-influence function. Rather, an accelerating influence 

function could only be explained by computations in which the contrasts in neighborhoods 

larger than 2 × 2 interacted in a nonlinear way. Nonlinearities that took into account 2 × 3 

regions could provide for a quadratic acceleration (since they contain two 2 × 2 regions), but 

the observed acceleration required still larger regions — a minimum of 2 × 4 or 3 × 3. These 

findings are consistent with the findings of Victor and Conte [1989], who used a VEP 

analysis to infer that correlations within a 2 × n region (n ≈ 4) were combined in a nonlinear 

fashion. In this connection, it should be noted [Tkacik et al., 2010] that human observers are 

sensitive only to those higher-order correlations that vary informatively in natural scenes, 

and these correlations correspond to the the particular 4-check subsets of 3 × 3 blocks that 

have been identified as being highly salient by Victor and Conte [1991]. Taylor et al. [2008] 

looked at psychophysical sensitivity to a wide variety of local statistical structures, and 

concluded that human performance could be accounted for mechanisms that processed 

“samplers” containing up to 10 pixels, arranged in parallel strips. Interestingly, their strategy 

showed that this is an upper limit of what is needed to account for performance; the present 

work shows that for the high-order correlation defined by α, “samplers” of 2 × 4 or 3 × 3 

pixels is a lower limit. In an interesting reanalysis of the data of Taylor et al. [2008], Nagai 

et al. [2009] were able to account for the observed human sensitivity to the texture 

differences in terms of recursive, nonlinear processing accomplished by oscillator networks 

that included as few as four oscillators.
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The work of Barbosa et al. [2013] sheds an interesting light on the relationship between 

features that can be computed within a 2 × 2 block and features that are computed from 

larger blocks. They present an account of texture discrimination in which the third 

Minkowski functional [Michielsen and Raedt, 2001] plays a key role. This functional 

describes the frequency of “holes” in a texture (in which the black checks are interpreted as 

material, and the white checks as empty spaces). At first glance, the topological nature of 

this feature suggests that, in order to calculate this quantity, the visual system might need to 

examine large blocks of texture. However, as they have shown, this functional can actually 

be calculated from 2 × 2 blocks. But, as we have shown here, an account of performance in 

the centroid task requires that larger blocks are taken into account.

The present analysis gives a second level of insight via the block-filters, as they indicate 

which kinds of 2 × 4 or 3 × 3 blocks are the primary contributors to the local computation. 

As seen in Fig. 8 (and also in SupMatFigs. 7 and 10), these configurations tend to have 

homogeneous regions and high spatial symmetry — though we stress that neither 

homogeneity alone nor symmetry alone accounts for the influential block types.

We should note, however, one shortcoming of the centroid method. It has often been 

observed that subjects are more sensitive to differences in α than to differences in −α. In 

particular, in tasks requiring subjects to judge the location of a target in a background of 

binary texture with α = 0, if the target is defined by α, then the threshold is roughly 25% 

lower than it is if the target is defined by −α [Victor et al., 2015]. Although the centroid 

method used here reveals the relative influence of texture features in controlling our 

subjects’ responses in the Even and Odd tasks, this approach does not bring out overall 

sensitivity differences to variations in α vs. −α shown clearly in other studies.

Finally, we mention that the texture centroid paradigm introduced here provides a general 

strategy for analyzing how visual image statistics are processed. By determining the weights 

that subjects actually use to represent the characteristics of texture patches, it can be adapted 

to explore the computations used to process other kinds of features that drive human 

discrimination, such as other varieties of isodipole texture, colored textures, or natural 

textures [Portilla and Simoncelli, 2000]. As in the present application, we anticipate that the 

centroid paradigm will provide two levels of information: first, the influence function, which 

captures the overall relationship between the amount of a feature and its impact on the 

centroid; and second, the “block filters,” which characterize the local analysis that computes 

this feature.
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Refer to Web version on PubMed Central for supplementary material.
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6: APPENDIX

6.1 Concerning the Bayesian model-fitting procedure.

Here we describe the details of the Bayesian method used to estimate the joint posterior 

density characterizing the parameters of each of the two models used in the paper. It will be 

convenient to

1. The model of Eq. 5 has parameters σ and V = W(0), W 1
6 , ⋯, W(1), βx, βy .

2. The model of Eq. 6 has parameters σ and V = (F(τ1), F(τ2), ⋯, F(τN), βx, βy), 

where N is the number of block-types, and τk is the kth block-type.

6.1.1 The likelihood functions for the two models.

As indicated above, we write V for the vector of parameters other than σ for the model in 

question. We also write ϕ(μ, σ) for the normal pdf with mean μ and standard deviation σ: 

i.e.,

ϕ(μ, σ) = 1
2πσ

e

−μ

2σ2
. (9)

Then the likelihood function (in practice we compute the log of this function) is

Λ(V , σ) = ∏
all trials t

ϕ Rt, x − Rt, x(V), σ ϕ Rt, y − Rt, y(V), σ (10)

where, for u = x, y, Rt,u gives the u-coordinate of the subject’s response on trial t, and 

Rt, u(V) is the expectation of this value given the parameter values in V. I.e., in the case of the 

model of Eq. 5,

Rt, u(V) = 1
2 ∑

all disks d
on trial t

W(α(d))Cu(d) + βu (11)

where (as in Eq. 5) α(d) is the α-level of disk d and Cu(d) is the u-coordinate of the center of 

disk d; and in the the case of the model of Eq. 6,

Rt, u(V) = 1
T t

∑
all blocks b

on trial t

F τb ub + βu with T t = ∑
all blocks b

on trial t

F τb (12)

where (as in Eq. 6) τb is the type of block b and ub is the u-coordinate of the center of block 

b.
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6.1.2 Markov chain Monte Carlo simulation.

The estimation method uses Markov chain Monte Carlo (McMC) simulation. For simplicity, 

we use uniform prior distributions on all parameters. In any McMC process, one starts with 

some arbitrary guess at the parameter vector Q (which will ultimately be thrown away) and 

sets 1S = Q. (Note: (1) We use pre-subscripts to indicate parameter vector sample number in 

the McMC process; (2) In the current applications of this method, Q comprises guesses at σ 
as well as the parameters in V for whichever model is being fit.) Then one iterates the 

following steps some large number Niter of times:

1. Pick a candidate parameter vector C in the neighborhood of the last sample n−1S 
added to the list. Then

2. for

R =
Λ(C) f prior(C)

Λ(n − 1S) f prior(n − 1S) = Λ(C)
Λ(n − 1S) (13)

(where the righthand equality follows from the fact that we use uniform priors on 

all parameters)

• if R ≥ 1, set nS = C;

• otherwise set

nS =
C with probability R

n − 1S with probability1 − R . (14)

The classical result [Hastings, 1970] is that (provided the procedure for selecting candidates 

C satisfies certain conditions) in the limit as Niter → ∞ to this algorithm yields a sample 

from the posterior density. In practice, one typically throws away the first several thousand 

samples from the list which are usually not representative of the samples accumulated after 

the MCMC process has stabilized.

6.1.3 Priors.

The bounds of the uniform priors matter very little provided they are wide enough to include 

the posterior density. In the current simulations, the prior density of each parameter other 

than σ was taken to be uniform between −10 and 10; the prior on σ was uniform between 0 

and 100.

6.1.4 Adaptive candidate selection.

The sampling window used to select the candidate parameter vector C on each iteration of 

the McMC process dramatically influences the efficiency with which one can estimate the 

posterior joint density of the parameters. We use an adaptive procedure to adjust the 

sampling window after every 1000 iterations of the process.
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On any given iteration, we generate the candidate C from the last sample (n−1S) by first 

setting

C = n − 1S + X (15)

where X is a vector of jointly independent Gaussian random variables whose kth entry 

(corresponding to the kth model parameter) has standard deviation γk. (It is the γk’s that are 

adjusted after each block of 1000 iterations.) In the case of the model of Eq. 5, C includes 

values W(0), W 1
6 , ⋯, W(1); we generate the candidate vector C from C by dividing the 

values W a  values by their sum (to impose the constraint that the values W(a) must sum to 

1). In the case of the model of Eq. 6 (writing N for the number of different block-types, and 

τk the kth block-type), C includes values F τ1 , F τ2, ⋯, F τN ; we generate the candidate 

vector C from C by dividing the values F τk  by the square root of the sum of their squared 

values (to impose the constraint of Eq. 8).

After a given block of 1000 iterations, we compute the standard deviation ρk of the kth 

model parameter across the previous 1000 iterations. If all of the ρk’s are 0 (suggesting that 

no candidate C was ever accepted over the course of the previous 1000 iterations and hence 

that we have been drawing candidates sufficiently far from n−1S that their likelihoods have 

all been much smaller than that of n−1S), then we decrease all σk’s by 10%. Otherwise, we 

adjust the γk’s by setting γk = Aρk where A is a scalar that was initialized to 0.1 and is itself 

adjusted after each 1000 trials according to the following rule: If the median value (across 

the previous 1000 trials) of the likelihood ratio R (Eq. 13) is less than 0.5, A is decreased by 

10%; otherwise A is increased by 10%. By adjusting A in this way, we insure that the 

median likelihood ratio R of Eq. 13 will be near 0.5 which guarantees that the process moves 

efficiently to scribble in the joint posterior density.

6.1.5 Starting values, burn-in, and number of iterations.

In fitting the model of Eq. 5, W(a) was initialized to 1
7  for a = 0,1, ⋯, 6; βx and βy were 

initialized to 0; and σ was initialized to 15. In fitting the model of Eq. 6, for all block-types 

τ, F(τ) was initialized to 1
N  for N equal to the number of different block-types, βx and βy 

were initialized to 0, and σ was initialized to 15. 120,000 iterations of the McMC process 

were performed, the first 20,000 of these were used to allow the McMC process to “burn in,” 

and the last 100,000 were taken as a representative sample of the posterior joint density 

characterizing the parameters. In each case, the last 100,000 samples were plotted and 

inspected by eye to insure stability of parameter estimates. Stability of the obtained 

estimates was confirmed to hold across several other starting locations.
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Figure 1: 
Isodipole textures [Julesz et al., 1978]. Different vertical bands of texture vary in the 

parameter a (Eq. 1). The leftmost panel (with α = −1) contains “odd” texture in which every 

2 × 2 subblock contains an odd number of white (and black) checks. The rightmost panel 

contains the “even” texture in which every 2 × 2 subblock has an even number of white and 

black checks. More generally, the proportion of 2 × 2 subblocks with an even number of 

white and black checks in texture with a given level of α is α + 1
2 .
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Figure 2: 
The sequence of display images which occur during a trial of the centroid task. After a 

subject indicates that he or she is ready, the top left panel displays a mean gray field on the 

screen for one second. Afterwards, the top right stimulus panel displays a number of objects 

on the screen. The stimulus then disappears and a crosshair guided by the subject’s mouse 

movements appears, allowing him or her to indicate the estimated centroid. Finally, the 

bottom right panel contains all objects from the original display, the subject’s response, and 

a feedback bullseye centered on the correct response.
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Figure 3: Stimulus texture disks.
The top (bottom) row gives a sample of the seven types of texture disks occurring in a given 

stimulus in the Even (Odd) condition. Each stimulus contains 14 texture disks, drawn either 

from the top row or the bottom row, with each type of texture in that row used twice.
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Figure 4: The α-influence functions.
Solid lines give the weight exerted by disks d with different values of α(d) on all subjects’ 

centroid responses in the Even (left panels) and Odd (right panels) tasks. Error bars show 

95% Bayesian credible intervals. The triangles show the target weights used to give 

feedback. Error bars give 95% Bayesian credible intervals.
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Figure 5: 2 × 2 block-filter.
The upper panel shows the four types of 2 × 2 blocks. Note that types 1,2 and 3 have even 

parity, and type 4 has odd parity. The left lower panel shows the window (blue line) used to 

assign the value F(4) to the central location of the 2 × 2 block captured by the window. The 

right panel shows all of the values assigned within the patch by the blocO-filter. Each 

location receiving; a value is the center of a 2 × 2 block of checks, and the value assigned 

depends on the type of the block.
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Figure 6: Predicted α-influence functions derived from fits of different block-filter models for 
subject S5 in the Even task.
White-filled squares with error bars (95% Bayesian credible intervals) replot the α-influence 

function from the bottom left panel of Fig. 4. Gray-filled circles with dashed lines plot 

predicted weights W(α) exerted by disks with different levels of α under the assumption that 

in the Even task S5 is using a 2 × 2 block-filter (upper left panel), a [2 × 3 ∪ 3 × 2] block-

filter (upper right panel), a [2 × 4 ∪ 4 × 2]) block-filter (lower left panel), and a 3 × 3 block-

filter (lower right panel).
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Figure 7: Rate of occurrence of larger, homogeneous blocks in Even-task texture disks.

For disks d with average levels of α = 0, 1
6 , ⋯, 1, the top panel gives the average number of 

occurrences of homogeneous blocks (either all black or all white) comprising 3 × 3 checks 

(circles), 4 × 3 (or 3 × 4) checks triangles) or 4 × 3 checks (squares).

Groulx et al. Page 26

Vision Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: Sensitivity of [2 × 4 ∪ 4 × 2] and 3 × 3 block-filters to the most influential block types.
Each curve in the upper left (right) panel gives the [2 × 4 ∪ 4 × 2] block-filter observed for a 

single subject in the Even (Odd) task across the 12 (4) block-types whose three 2 × 2 

subblocks all have even (odd) parity. Each curve in the lower left (right) panel gives the [2 × 

4 ∪ 4 × 2] block-filter observed for a single subject in the Even (Odd) task across the 6 

block-types whose four 2 × 2 subblocks all have even (odd) parity.
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