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ABSTRACT OF THE DISSERTATION

Compact Modeling and Analysis for Electronic and Thermal Effects of Nanometer
Integrated and Packaged Systems

by

Hai Wang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2012

Dr. Sheldon X.-D. Tan, Chairperson

Design and verification of today’s nanometer very-large-scale integrated (VLSI)

system remain a very challenging problem. For instance, the sub-90-nm technology

has caused extremely large parasitic global interconnects and complicated models such

as clock networks, power delivery networks and thermal models for packaged systems,

which are difficult to be analyzed directly due to the limited computing resources.

In addition, the high performance VLSI systems such as multi-core and emerging 3D

stacked integrated systems, also lead to excessive high temperature on chip due to

the elevated power densities. As a result, temperature should be explicitly managed

both at design time through thermal-aware optimization and design techniques and

at runtime through on-chip dynamic thermal management (DTM). Hence, accurate

yet compact thermal models are required for thermal-aware design and optimization.

In this dissertation, we focus on those challenging issues and have proposed three

novel techniques to facilitate the verification of the electronic and thermal effects of

the nanometer integrated systems. Specifically, first, we have introduced a wideband

model order reduction algorithm (WBMOR) to provide a general solution for the

large system analysis problems. With the novel imaginary axis sampling technique

and adaptive sample point placement, WBMOR is able to generate a reduced system
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accurate within the specified frequency band. Second, we have proposed a com-

posable thermal modeling technique (ThermComp) for compact thermal modeling.

ThermComp builds compact thermal models for each basic module, and uses these

models to assemble different multi-core architecture thermal models, which improves

the thermal modeling and analysis efficiency at design time. Last but not least, a

runtime thermal estimation and prediction method (FRETEP) framework has been

proposed to enable fine-grained DTM. With a thermal sensor based error compen-

sation method utilizing only limited number of thermal sensors, FRETEP is able to

estimate and predict the full-chip thermal behavior accurately with even inaccurate

power estimation. Furthermore, a power-driven thermal sensor placement algorithm

has been developed for FRETEP to further enhance the thermal estimation accuracy.

vi



Contents

1 Introduction 1

1.1 Electronic and thermal analysis problems in VLSI system design . . . 1

1.2 Compact modeling methods in VLSI design . . . . . . . . . . . . . . 3

1.3 Thermal modeling and challenges . . . . . . . . . . . . . . . . . . . . 5

1.4 Thermal analysis at both design time and runtime . . . . . . . . . . . 7

1.5 Objectives of this dissertation . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Basics of Modeling and Analysis of Nanometer Integrated and Pack-

aged Systems 11

2.1 Compact modeling of the linear time-invariant system . . . . . . . . . 12

2.1.1 The standard state space model . . . . . . . . . . . . . . . . . 12

2.1.2 The descriptor state space model . . . . . . . . . . . . . . . . 13

2.1.3 The reduced model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Model order reduction method . . . . . . . . . . . . . . . . . . 15

2.2 Thermal modeling and analysis . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Thermal modeling from the first principles . . . . . . . . . . . 21

2.2.2 Boundary condition modeling . . . . . . . . . . . . . . . . . . 22

2.2.3 Equivalent circuit of the thermal model . . . . . . . . . . . . . 23

vii



2.3 Basics of runtime thermal estimation . . . . . . . . . . . . . . . . . . 25

2.3.1 Runtime power estimation . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Runtime thermal estimation . . . . . . . . . . . . . . . . . . . 26

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Wideband Model Order Reduction for Compact Modeling of Nanome-

ter Integrated and Packaged Systems 28

3.1 Review of the sampling based model order reduction method . . . . . 29

3.1.1 The standard TBR based reduction method . . . . . . . . . . 29

3.1.2 The sampling based reduction framework . . . . . . . . . . . . 31

3.2 New wideband sampling based reduction method . . . . . . . . . . . 33

3.2.1 Challenges of efficient sampling . . . . . . . . . . . . . . . . . 33

3.2.2 New complex-valued sampling based reduction method . . . . 35

3.2.3 Residual based error estimator and its relationship with imag-

inary axis sampling . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 Adaptive sample point placement . . . . . . . . . . . . . . . . 47

3.2.5 WBMOR algorithm flow and analysis . . . . . . . . . . . . . . 50

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Implementation and settings . . . . . . . . . . . . . . . . . . . 51

3.3.2 Comparison of complex-valued sampling scheme and real-valued

sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Adaptive process and comparison with the re-sampling scheme 55

3.3.4 Comparison with the ARMS method . . . . . . . . . . . . . . 57

3.3.5 CPU runtime and error comparison . . . . . . . . . . . . . . . 60

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4 Composable Thermal Modeling of Multi-Core Microprocessors 62

4.1 Thermal simulation and composable modeling problems . . . . . . . . 64

4.1.1 Simulation by compact thermal modeling of multi-core systems 64

4.1.2 Model complexity reduction problem . . . . . . . . . . . . . . 65

4.1.3 Adiabatic thermal condition for composibility . . . . . . . . . 67

4.2 New composable thermal modeling method . . . . . . . . . . . . . . . 68

4.2.1 Two-grid scheme for discretization . . . . . . . . . . . . . . . 68

4.2.2 Stability and property of the new discretization . . . . . . . . 74

4.2.3 Power dissipation modeling . . . . . . . . . . . . . . . . . . . 75

4.2.4 Thermal model reduction . . . . . . . . . . . . . . . . . . . . 77

4.2.5 Circuit realization and model generation . . . . . . . . . . . . 80

4.2.6 Internal node temperature retrieval technique . . . . . . . . . 83

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Comparison with finite difference simulation . . . . . . . . . . 85

4.3.2 Comparison with HotSpot program . . . . . . . . . . . . . . . 93

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Runtime Thermal Estimation and Prediction for Dynamic Thermal

Management of Microprocessors 98

5.1 Challenges for accurate thermal estimation and prediction . . . . . . 99

5.2 Full-chip runtime thermal estimation and prediction method . . . . . 101

5.2.1 Full-chip temperature estimation . . . . . . . . . . . . . . . . 101

5.2.2 Compact modeling for fast runtime simulation . . . . . . . . . 108

5.2.3 Full-chip runtime thermal prediction . . . . . . . . . . . . . . 112

5.3 Power-driven thermal sensor placement algorithm . . . . . . . . . . . 113

5.3.1 Two types of thermal sensor placement methods . . . . . . . . 114

ix



5.3.2 Correlation graph generation . . . . . . . . . . . . . . . . . . . 116

5.3.3 Correlation clustering algorithm . . . . . . . . . . . . . . . . . 119

5.3.4 Locate thermal sensors . . . . . . . . . . . . . . . . . . . . . . 121

5.3.5 Error correlation matrix generation . . . . . . . . . . . . . . . 122

5.4 Algorithm flow and practical considerations . . . . . . . . . . . . . . 122

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1 Full-chip thermal estimation results . . . . . . . . . . . . . . . 126

5.5.2 Full-chip thermal prediction results . . . . . . . . . . . . . . . 128

5.5.3 The effect of the power-driven thermal sensor placement algorithm131

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusion 136

x



List of Figures

2.1 A nine-grid equivalent thermal circuit. Each grid has a thermal node Ti

denoted as a solid circle (black or red dashed), a thermal capacitor and

a current source representing the power dissipation at the grid. There

is also a thermal resistor between each pair of the adjacent thermal

nodes. A thermal sensor, denoted as the red dashed circle (T5), is

placed at the center grid. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Real axis sampling with 20 sample points. . . . . . . . . . . . . . . . 34

3.2 An illustrative example for the WBMOR adaptive sampling scheme. . 49

3.3 Accuracy comparison of imaginary axis sampling and real axis sam-

pling methods on TL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Frequency response (top) and transient simulation (bottom) compar-

ison of imaginary axis sampling and real axis sampling methods on

rlc1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 The residual convergence process of WBMOR for four iterations. . . . 56

3.6 Comparison with re-sampling method on the transmission line example. 57

3.7 Comparison with re-sampling method on the PEEC example. . . . . . 57

3.8 Comparison with ARMS on the TL example . . . . . . . . . . . . . . 58

3.9 Comparison with ARMS on the PEEC example . . . . . . . . . . . . 59

xi



3.10 Demonstrate of the adding candidates feature of WBMOR . . . . . . 59

4.1 CPU core, cache, a quad-core architecture and a 16-core architecture. 66

4.2 The literal structure view of the multi-core system package. . . . . . . 67

4.3 A 2 × 2 × 2 meshed structure case. The nodes and the ports are

represented by light solid circles and dark solid circles, respectively. . 70

4.4 A 2 × 2 × 2 meshed structure case where the boundary faces (ports)

are merged. The original ports are shown as the hollow circles and the

new ports are represented by the dark solid circles. . . . . . . . . . . 74

4.5 A simple circuit realization example. . . . . . . . . . . . . . . . . . . 82

4.6 Power input waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Composed quad-core microprocessor temperature distribution with type

1 power input and center power dissipation model. . . . . . . . . . . . 86

4.8 Composed quad-core microprocessor temperature distribution with type

1 power input and uniform power dissipation model. . . . . . . . . . . 87

4.9 16-core microprocessor temperature distribution with type 1 power in-

put and center power dissipation model. . . . . . . . . . . . . . . . . 89

4.10 16-core microprocessor temperature distribution with type 1 power in-

put and uniform power dissipation model. . . . . . . . . . . . . . . . 90

4.11 Transient simulation accuracy comparison with the full model at some

power centers for the 16-core architecture, using power input source

type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 Transient simulation accuracy comparison with the full model at some

power centers for the 16-core architecture, using power input from

bzip2 benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii



4.13 HotSpot steady state results of the quad-core and 16-core micropro-

cessors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.14 The architecture of the 8-core alpha chip. . . . . . . . . . . . . . . . . 94

4.15 HotSpot steady state results of the 8-core microprocessor. . . . . . . . 95

4.16 Steady state results of the 8-core microprocessor with the composable

thermal model with the distributed power model. . . . . . . . . . . . 95

5.1 A simple example with three functional blocks (FB in short in the

figure) to show the D matrix construction. The functional blocks are

bounded by dashed lines. The thermal sensor nodes are represented by

red dashed circles and the other thermal nodes by black solid circles.

The power sources and capacitors are omitted here for simplicity. . . 107

5.2 Full-chip thermal prediction framework. . . . . . . . . . . . . . . . . . 112

5.3 Comparison of the traditional sensor based thermal estimation flow and

the proposed power calibration based thermal estimation flow. The

thermal sensors play completely different roles in the two approaches. 115

5.4 A correlation clustering example for a complete undirected weighted

graph with four vertices. On each edge eij, w−

ij is shown as red shaded

while w+ is in normal. The outputed clusters are surrounded by dashed

lines filled with yellow color. . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 FRETEP algorithm flow. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6 The new power-driven thermal sensor placement algorithm flow. . . . 124

xiii



5.7 The dual-core microprocessor architecture, with two cores and one

shared L2 cache. 10 thermal sensors (red solid circle) are placed on

chip, 2 on the L2 cache and 4 on each core. Two observing points

(light blue circle) OP1 and OP2 are set in order to show the transient

thermal estimation and prediction results. . . . . . . . . . . . . . . . 126

5.8 The actual power and the estimated power of L2 cache running bzip2

benchmark. The estimated power has significant mean value difference

compared to the actual power. . . . . . . . . . . . . . . . . . . . . . . 126

5.9 Transient thermal estimation results of bzip2 benchmark, where org

represents the new method with original model before MOR, red rep-

resents the new method with reduced model after MOR and Kalman

represents the Kalman filter based method [58]. . . . . . . . . . . . . 127

5.10 Full-chip thermal map comparison of bzip2 benchmark at 5s. . . . . . 128

5.11 Power estimator and thermal sensor data prediction of the bzip2 bench-

mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.12 Transient thermal prediction results of bzip2 benchmark where org

represents the new method with original model before MOR and red

represents the new method with reduced model after MOR. . . . . . 129

5.13 Accuracy of the predicted full-chip thermal map of bzip2 benchmark

at 15s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.14 Error snapshot plot with the bzip2 benchmark at 15s. For both cases,

6 thermal sensors are placed on chip. . . . . . . . . . . . . . . . . . . 132

xiv



List of Tables

3.1 Scalability comparison of runtime and relative errors for WBMOR and

the re-sampling method. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Scalability comparison of runtime and relative errors for WBMOR and

the ARMS method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 CPU time comparisons between the original models (xx org) and re-

duced thermal systems using composable models (xx red). . . . . . . 92

4.2 CPU time comparison between ThermComp and HotSpot. . . . . . . 92

5.1 Runtime and accuracy comparison of FRETEP on SPEC benchmarks. 130

5.2 Thermal sensor number effects on the estimation and prediction accu-

racies running bzip2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 The sensor placement information for uniform sensor placement and

the new sensor placement method. . . . . . . . . . . . . . . . . . . . 133

5.4 Accuracy comparison of the new thermal sensor placement algorithm

with the uniform and the k-means thermal sensor placement methods. 133

xv



Chapter 1

Introduction

In this chapter, the compact modeling and analysis of electronic and thermal sys-

tem for the VLSI systems are introduced. Model order reduction (MOR) technique,

thermal modeling problem and runtime thermal analysis are presented in sequence.

Dissertation objectives and organizations are also given.

1.1 Electronic and thermal analysis problems in

VLSI system design

The very-large-scale integration (VLSI) refers to integrating a large number of transis-

tors onto a single chip. At present time (the year of 2012), the number of transistors

has been increased to billions, on a chip with area around 1cm2. Due to the exces-

sively large number of devices on a small area, designing of the VLSI system is a

very complex process, involving both design engineers and design tools. Since it is

extremely hard for design engineers and design tools to manage the whole design pro-

cess, design hierarchy has been introduced to VLSI design, which divides the design

process into multiple levels. There are two types of design flow for the design hier-
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archy, the top-down design flow and the bottom-up design flow, both contains many

design levels. After the design of each level, the design must be verified and optimized

against the design specifications, which forms a verification and optimization loop.

Given a design layout, verification is generally a process of layout extraction, model-

ing and simulation. In this dissertation, several modeling and simulation problems in

both electronic and thermal perspectives are studied and solved.

For physical verification, such as timing, signal integrity and power grid analy-

sis, the topological layout to be verified is written into the electronic circuit form

by layout extraction tools. The circuit simulator, such as SPICE like device-level

simulator, is used to simulate the extracted circuit. After the simulation, the chip

performances, such as area and speed, are enhanced to fit the design specifications

and without violating design restrictions such as timing constraints. The simulation

and optimization processes form a design loop until all the design specifications are

satisfied.

Except for the electronic side, the thermal behavior of the VLSI system is becom-

ing more and more important due to the increasing power densities of the multi-core

microprocessors. In addition, thermal analysis of the VLSI system is performed at

both design time for thermal verification and optimization and runtime for dynamic

thermal management. At design time, thermal verification is similar to the physical

verification on the electronic side and is performed after the component placement

process. A thermal model of the VLSI system is generated according to different ma-

terials (thermal conductivities) of the components. A steady-state thermal analysis

is performed on the thermal model with the estimated power consumptions. Similar

to the electronic counterpart, for the thermal verification, hotspots and the average

temperature of the chip are captured in the simulation process and during the fol-

lowing optimization process, the number of hotspots is minimized and the average
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temperature is lowered.

Three important problems in VLSI modeling and analysis are introduced in the

following three sections. In Section 1.2, the general compact electronic and thermal

modeling technique by model order reduction is introduced first. Then, in Section 1.3,

the importance and challenges of thermal modeling are presented. Finally, in Sec-

tion 1.4, we introduce the thermal estimation techniques.

1.2 Compact modeling methods in VLSI design

The very-large scale (VLSI) circuit is complicated, with billions of transistors. De-

signing such complicated device is an extremely challenging process. In order to make

the design process possible, the IC design usually follow a top-down approach. Such

design approach starts from the system concept and finalizes in the detailed layout

and routing process. During the top-down design process, designers have to check

if all the design specifications are met, as a result, bottom-up verification is equally

important. The verification process starts from the behavior extraction. The design

to be verified is represented in a behavior model which has the similar behavior as

the design and, more importantly, can be simulated by a software. The example is

the verification after layout. The layout has to be extracted into circuits expressed

in netlist by extraction tools/softwares, and simulated by a simulator, for example,

SPICE, to check the performance of the design. However, some circuits directly ex-

tracted from the extraction tools can be extremely large. One important example is

the interconnects due to the high parasitic effects of the sub-90-nm design.

Model order reduction (MOR) is an efficient technique for reducing the complexity

of parasitic interconnect circuits. Existing approaches based on the Krylov subspace

are very efficient [24, 60, 49, 5]. These methods, which perform implicit moment-

3



matching by projecting the original system onto a Krylov subspace, preserve the

stability, passivity and structural information for RLC interconnect circuits.

The Krylov subspace methods, suffer one long-standing problem: the lack of global

error bound. Due to this problem, designers can’t predict the errors of the reduced

model over a given frequency range before the reduction. For computing wire delay,

coupled noise and voltage noise of interconnects in the digital circuits, such lack of

global errors is a less concern because matching a few moments is accurate enough.

However, for analog and RF circuits, reduced models of the extracted RLCK circuits

need to be accurate for a wide frequency range and in terms of the time domain

waveforms (versus delay values). The existing Krylov subspace methods can’t meet

such requirement, although some techniques like multi-point Krylov subspace can

partially mitigate this problem at high computational cost.

Truncated balanced realization based methods (TBR) [46, 36, 54, 71] have a global

error bound, but generally suffer from high computing costs, poor scalability, although

some works have been made to improve the computing efficiency [76, 66, 64]. The

high cost comes from computing the controllability and observability Gramians, upon

which the truncation and thus reduction of weak states is performed. This problem

has been partially mitigated by the Gramian approximation techniques (also called

the sampling based methods) [69, 55], where Gramians are approximated in the fre-

quency domain by computing system impulse responses at many frequency points

(samples).

There are still important problems exsit in MOR, two of the most important

problems are the error control over wide frequency range and the efficiency control

with massive number of ports. In this dissertation, the first problem is solved by

introducing an improved sampling based algorithm with adaptive sampling scheme

shown in Chapter 3.
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1.3 Thermal modeling and challenges

Continuous process scaling and rising device densities lead to rapid power density

increase and adverse thermal effects. This problem becomes more severe as the VLSI

technology scales to the nanometer ranges. Excessively high on-chip temperature can

cause many severe problems such as reduced reliability of chips and elevated cooling

cost of the packaging [28, 10]. Thermal management and related design problems

continue to be identified by the Semiconductor Industries Association Roadmap [3]

as one of the five key challenges during the next decade to achieve the projected

performance goals of the semiconductor industry. Thus, accurate and efficient thermal

modeling and analysis are vital for the thermal-aware VLSI design [53] to improve

performance, reliability, power reduction as well as online temperature regulation

techniques [10, 61].

Multi-core techniques mitigate the exponential growth of temperature resulting

from the exponential increase of power density [41, 33, 4, 43, 42]. Multi-core comput-

ing simply increases the total throughput via parallel computation with lower voltage

and frequency to meet the thermal constraints. But thermal effects and the resulting

reliability concerns, such as NBTI effect, are influenced by the placement of CPU

cores and shared caches, loading of programs, and cooling solutions at the package

level. So it is vital to accurately estimate the temperature during the floorplanning

and architecture design of the multi-core microprocessors.

Traditional thermal analysis solves the thermal diffusion (partial differential) equa-

tion directly using numerical approaches such as FEM (finite element), FDM (finite

difference) and CFD (computational fluid dynamics). These approaches are accu-

rate given detailed thermal structures. However, the resulting equation sizes can be

prohibitively large for design explorations, hence, thermal simulation starting from
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detailed thermal structures by solving thermal diffusion equations no longer meets

the demanding design tasks for efficient design space exploration. As thermal effects

become the first-class design constraints, efficient thermal analysis calls for more ef-

ficient solutions.

Many compact static and transient thermal modeling methods at different levels

(parts, package and board) have been proposed in the past. One popular approach

is based on simple thermal resistance and capacitance networks subject to different

thermal boundary conditions [37, 15, 6]. The traditional limitation of these methods

is to determine appropriate RC values of elements, especially for the complex geome-

tries and boundary conditions. The RC values are typically determined and opti-

mized against field numerical or analytic results [27, 52] and the measured data [57].

A transient simulation technique using alternating direction implicit (ADI) method

is proposed to enhance the simulation efficiency of the three dimensional thermal

RC circuit [67]. Another viable approach is by means of model order reduction of

the large linear dynamic thermal systems after the spatial discretization. Existing

approaches apply the multi-point Krylov subspace method [19] and the multivariate

moment matching method [20]. Recently, many other fast thermal modeling and sim-

ulation techniques have been proposed, such as the compact thermal models based

on the floorplan at architecture level [31, 61, 32], the black-box behavioral thermal

models [40, 39] and the spatially adaptive thermal modeling technique ISAC [72].

There are several unsolved problems in thermal modeling. One of them is the

model order reduction efficiency problem. If the original thermal model is extremely

large, none of existing MOR method is able to generate the reduced thermal model

due to the excessive memory required. Another problem is the flexibility and reusabil-

ity of thermal models. Because the thermal analysis and floorplan optimization form

a design verification and optimization loop, as introduced in Section 1.1, the opti-
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mization on the floorplan may require the re-built of the whole thermal model, which

is a waste of computing time and resources. In Chapter 4, a composable thermal

modeling technique is proposed which solved all the mentioned problems.

1.4 Thermal analysis at both design time and run-

time

The high power density caused by the increasing integration has led to excessive tem-

perature on chips. Although multi-core architectures partially relieve the thermal

density problem, local hot spots still exist due to different loads for different cores.

In order to ensure the proper working conditions of transistors and chip reliability,

many dynamic thermal management (DTM) methods have been proposed, includ-

ing dynamic voltage and frequency scaling (DVFS), task scheduling and computing

migration [22, 61]. Recently, more effective predictive dynamic thermal management

methods [74, 68, 73] have been introduced to predict the future thermal behavior

and perform thermal control far before the real thermal violation occurs. However,

most of the DTM methods nowadays rely only on the temperature information given

by a few physical thermal sensors. To watch for temperatures in the whole chip,

DTM methods have to rely on the thermal estimation based on simplified, less ac-

curate thermal models and performance counter based power estimation, which is

error-prone in practice. As a result, accurate and efficient runtime full-chip thermal

estimation and prediction under those realistic and non-ideal conditions (less accu-

rate thermal models and power estimations) are crucial for the success of practical

dynamic thermal management.

Recently, many thermal modeling and simulation methods were proposed for ar-
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chitecture level thermal estimation [32, 72]. These methods are usually performed

off-line to get the full-chip thermal behavior. Although relatively accurate, they are

usually too expensive for runtime thermal estimation and mainly used for the design

time thermal aware verification and optimization.

Several runtime thermal estimation techniques have been studied for DTM, in-

cluding the Kalman filter based methods [58, 75], the spectral based method [17], the

interpolation based method [45] and the fast simulation based method [44], etc. But

both the Kalman filter and fast simulation based methods are accurate only when the

mean value of the power is accurately estimated by the power estimator. Both the

spectral based and interpolation based methods lack the prediction capability. And

the spectral based method also requires regular placement of thermal sensors.

For the runtime thermal prediction side, some methods have been proposed to pre-

dict the future temperatures, such as autoregressive moving average (ARMA) based

method [21], the recursive least square based method [73] and the workload phase

based method [18]. Nevertheless, these methods can only predict the temperatures

at the thermal sensors and may fail to capture the potential hot spots on a chip.

The runtime thermal estimation and prediction under realistic conditions, where

the estimated power is inaccurate, is not well addressed in the past. In order to solve

this problem, an error-tolerant runtime thermal estimation and prediction algorithm

is presented in Chapter 5.

1.5 Objectives of this dissertation

This dissertation presents new advances in the modeling and analysis for electronic

and thermal effects of VLSI systems at both design stage and runtime.

The major contributions of this dissertation are summarized as follows:
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• For the general compact modeling of electronic and thermal systems, a model or-

der reduction with wideband accuracy has been proposed. This new MOR tech-

nique, called WBMOR, can be widely used in interconnect analysis for design

verification and thermal analysis at both design stage and runtime. Compared

to the traditional MOR methods, WBMOR achieves higher wide frequency

band accuracy and full automation thanks to the imaginary axis sampling and

automatic sample point selection.

• For thermal modeling, a composable thermal modeling technique , ThermComp,

has been introduced. The new composable modeling method can be used for

fast thermal design space exploration for thermal-aware multi-core micropro-

cessors design. The new approach can easily build accurate thermal systems

from compact composable models for fast architecture thermal analysis and op-

timization and is much faster than the existing HotSpot method with similar

accuracy.

• In order to assist the dynamic thermal management of microprocessors, an error-

tolerant runtime thermal analysis, FRETEP, has been proposed. FRETEP is

able to estimate and predict the full-chip thermal behavior accurately with

inaccurate power estimation. It has very low overhead introduced and com-

pares very favorably with the Kalman filter based approach on standard SPEC

benchmarks. In addition, a power-driven thermal sensor placement algorithm

has been proposed to further enhance the accuracy of FRETEP.
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1.6 Organization

The rest of this dissertation is organized as follows. Chapter 2 gives the backgrounds

and basics of the electronic and thermal analysis. Chapter 3 presents the new model

order reduction method, called WBMOR, for general compact modeling of the elec-

tronic and thermal system. A new thermal modeling technique, named ThermComp,

is shown in Chapter 4. A new runtime thermal estimation and prediction algorithm,

FRETEP, is presented in Chapter 5. Finally, Chapter 6 concludes the dissertation.
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Chapter 2

Basics of Modeling and Analysis of

Nanometer Integrated and

Packaged Systems

In this chapter, the backgrounds and basics of the VLSI modeling and analysis con-

sidering electronic and thermal effects are presented. In Section 2.1, the model order

reduction problem is shown mathmatically first, following with the review of the clas-

sical MOR methods. Next, the basics of thermal modeling is shown in Section 2.2

and the standard thermal simulation technology is presented in Section 2.3. Finally,

Section 2.4 summarizes this chapter.
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2.1 Compact modeling of the linear time-invariant

system

Compact linear system modeling is the basic of efficient electronic and thermal system

analysis. In this section, the state space model and its corresponding reduced model

are introduced. The basics of the model order reduction (MOR) techniques are also

given in this section.

2.1.1 The standard state space model

For a linear time-invariant (LTI) system, standard state space model is shown as the

following in time domain [5]

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).

(2.1)

After a Laplace transform, the standard state space model in the frequency/“s” do-

main is

sx(s) = Ax(s) + Bu(s)

y(s) = Cx(s).

(2.2)

For the dimensions of the state space components, we have x ∈ R
n, A ∈ R

n×n,

B ∈ R
n×p, C ∈ R

p×n and u(t) ∈ R
p. This means x, u are vectors while A, B, C are

matrices1.

From now on, the state space model in this dissertation will be in the frequency

domain by default unless mentioned specially.

1B and C can also be vectors when p = 1.
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The components in the state space model are categorized into two groups. The

first group is the variables, including the state variable x, output variable y and input

variable u. The second group is the mapping/scaling matrices, including A, B, and

C, which have fixed values.

2.1.2 The descriptor state space model

Although the standard state space model has been studied intensively, it does not suit

for the VLSI modeling where the Modified Nodal Analysis (MNA) is the standard.

MNA is a descriptor state space model which is slightly different from the standard

state space model.

The descriptor state space model has a form like

sEx(s) = Ax(s) + Bu(s)

y(s) = Cx(s).

(2.3)

The only difference between descriptor form and standard form is that the descriptor

form has an extra E ∈ R
n×n matrix. It is easy to see that if we multiply E−1 (assume

E is invertible) on each side of the first equation in (2.3), we can transform descriptor

form into the standard form.

Electronic circuits are usually modeled using MNA as

Gx(s) + sCx(s) = Bu(s),

y(s) = Lx(s),

(2.4)

which is in descriptor form2. Similar to the standard form, for dimension, there

are x ∈ R
n, G ∈ R

n×n, C ∈ R
n×n, B ∈ R

n×p, L ∈ R
p×n and u(t) ∈ R

p. Every

2It would be more obvious if we write the first equation as sCx(s) = −Gx(s) + Bu(s).
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component has its physical meaning. The state x(s) contains node voltages and/or

branch currents; u(s) contains voltage sources and/or current sources; y(s) includes

node voltage and/or branch current observations; G mainly has conductance infor-

mation (and voltage source and inductor position information); C contains capacitor

and inductor information; B and L connect the inputs and outputs to the states:

they specify where the inputs are injected into and where the outputs come from,

respectively.

2.1.3 The reduced model

The reduced model, of course, should be smaller in size than the original model.

It must be emphasized that the general idea of MOR is to generate a model with

smaller size but similar input and output behavior compared to the original model,

i.e., given the same inputs to both the original and the reduced systems, the outputs

should be similar. As shown in 2.1.1, the variables u and y represent the input

and output and can be observed. Thus, the size of u and y cannot be reduced. In

contrast, the internal variable x is invisible from outside. If it is reduced to a smaller

size, with the same input, the reduced model still has the chance to produce the

similar output as the original model. Thus, it is very clear that we can only reduce x.

If we have reduced x ∈ R
n to x̂ ∈ R

q where q < n, the corresponding reduced model

is represented as

Ĝx̂(s) + sĈx̂(s) = B̂u(s),

y(s) = L̂x̂(s).

(2.5)

It can be seen from (2.5) that G ∈ R
n×n, C ∈ R

n×n, B ∈ R
n×p and L ∈ R

p×n matrices

in (2.4) are also reduced to Ĝ ∈ R
q×q, Ĉ ∈ R

q×q, B̂ ∈ R
q×p and L̂ ∈ R

p×q respectively.
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Once we have generated the Ĝ, Ĉ, B̂ and L̂ matrices, the MOR procedure is done.

2.1.4 Model order reduction method

We have presented the form of the reduced model, a natural question is how can we

obtain this reduced model from the original model, that is, how to obtain Ĝ, Ĉ, B̂

and L̂. Please note that it is usually impossible to generate a reduced model with

exactly the same behavior as the original model. For example, usually there is no

guarantee that the frequency response of the reduced model is the same as the one

of the original model for s ∈ (−∞,∞). However, practically, people usually do not

need such perfect reduced system since people may only require certain information

of the original system to be retained, for example, only a frequency band.

According to the way of generating the reduced system, the MOR methods can be

divided into two categories: the projection based methods and non-projection based

methods. Due to the numerical advantages of projection, Modern MOR methods are

mostly projection based and only the projection based methods are discuss in this

dissertation. For the projection based method, there are two major MOR techniques,

one is the moment matching based method, the other one is the sampling based

method. In this section, the projection framework will be introduced first, following

with the two major projection based MOR techniques.

The projection framework

In this section, we will show how to obtain the reduced matrices Ĝ, Ĉ, B̂ and L̂

through projection methods. Because of the important role the projection method

plays in the modern MOR technology, it is explained in a very detailed way.
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Assume there is a matrix V ∈ R
n×q, where q < n, satisfies

x̃(s) ≡ V x̂(s) ≈ x(s). (2.6)

Here we introduced a new variable x̃(s) as an approximation of x. Note that although

the reduced state variable x̂(s) has a size of q, x̃(s) has a size of n, which is the same

as the original state variable x(s).

Assume the input u contains impulse signals with magnitude 1, that is u(s) =

[e1, e2, ..., ep] where ei is a vector with 1 at the i-th position and 0 elsewhere, the

approximation in (2.6) together with (2.4) will generate a residual R(s) as

R(s) ≡ GV x̂(s) + sCV x̂(s) − B. (2.7)

Generally, R(s) 6= 0. We left multiply R(s) with a matrix W T where W ∈ R
n×q and

force it to 0 like

W T R(s) = W T GV x̂(s) + sW T CV x̂(s) − W T B = 0. (2.8)

Now, we have successfully generated the reduced model if we rewrite (2.8) as

W T GV x̂(s) + sW T CV x̂(s) = W T B,

y(s) = LV x̂(s).

(2.9)

Obviously, Ĝ, Ĉ, B̂ and L̂ are obtained as the following

Ĝ = W T GV, Ĉ = W T CV, B̂ = W T B, L̂ = LV. (2.10)

16



Match the original system by projection

Consider the original system shown in (2.4) and the reduced system shown in (2.5)

where the original state x(s) and the reduced state x̂(s) are related by the approxi-

mation (2.6). We can write the approximation further as

x̃(s) = V (V T Q(s)V )−1V T Q(s)x(s) (2.11)

where Q(s) = G + sC for simplicity.

Let us denote P = V (V T Q(s)V )−1V T Q(s). It is clear that P is an oblique pro-

jector along QT V onto the range space of V . As the goal of model reduction, we

want x̃(s) approximates x(s) as good as possible, i.e., in the ideal case, we want

x̃(s) = x(s). There is an invariant property of the projection that if the subspace

spanned by a matrix F is inside the range space of a projector P , F remains invariant

after the projection by P , i.e., F = PF . According to the invariant property, if the

range space of V includes x(s) for some frequencies, there will be x̃(s) = x(s) for

these frequencies. What is more, the range space of V can also include the Taylor

series of x(s) at certain frequencies, such that the Taylor series of x̃(s) will be the

same as those of x(s) at these frequencies.

Different projection based MOR methods find different W and V through different

ways. For example, V can be formed such that its range space should contain only the

values of x(s) at certain frequencies or it can be also formed by allowing its higher

order Taylor terms at these frequencies. W can be formed to retain the passivity

property of the original system, force the stability of the reduced system or further

increase the approximation accuracy. In the following subsections, two most popular

projection based MOR methods are presented.
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The moment matching based method

As introduced previously, it is usually impossible to generate a reduced system with-

out accuracy lost. The moment matching based methods find a reduced system with

accuracy guaranteed around an expansion frequency point. The basic idea of moment

matching is to form the projection matrix V to span the same subspace as the one

spanned by the first q Taylor terms (called moments here) at a frequency point, where

q is chosen to balance the accuracy and the reduced model size. According to the

previously introduced projection framework, the approximation state x̃(s) will have

the same first q Taylor expansion terms as the original state x(s) because the first q

Taylor terms are included inside the projection matrix V ’s range space and the in-

variant property of the projector will retain these terms in the reduced approximation

state x̃(s).

We take the expansion point at the frequency s = 0 for example, which is known

as the DC expansion. The original state x(s) can be written in Taylor series as

x(s) = (sC + G)−1B

= (G(sG−1C + I))−1B

= (I − (−sG−1C))−1G−1B

=
∞

∑

i=0

(−G−1C)iG−1Bsi.

(2.12)

Denote A = −G−1C and K = G−1B, (2.12) can be rewritten as

x(s) =
∞

∑

i=0

AiKsi, (2.13)

18



and the moments are defined as

Mi = AiK. (2.14)

If we can find a V which spans the first q moments like

span V = span{M0,M1,M2, . . . ,Mq−1}, (2.15)

the first q moments in the reduced system and original system are matched through

projection, as shown in the projection part.

Directly generating the projection matrix V in (2.15) is expensive. Luckily, the

moments actually span a Krylov subspace

span V = span{M0,M1,M2, . . . ,Mq−1} = K{A,K}, (2.16)

where a Krylov subspace K{A,K} is defined as

K{A,K} = span{K,AK,A2K, . . . , Aq−1K}. (2.17)

Forming a Krylov subspace is computationally cheap and numerically stable. Espe-

cially, Anoldi algorithm can be used to generate the desired Krylov space V in an

efficient way.

The sampling based method

Different from the moment matching based method, which expands at one frequency

point and matches the expansion terms up to a given order, the sampling based

method matches the state frequency response (the zero-order moment, as in the mo-

ment matching based method) at different frequencies.
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The sampling based method first takes state frequency responses (samples) at

different frequencies, for example at the k-th frequency, sk, as

z(sk) = (skC + G)−1B. (2.18)

Then, the projection matrix V is generated to span the same subspace as spanned by

the samples, like

span V = span{z(s1), z(s2), . . . , z(zq)}, (2.19)

assume q samples are taken.

The sampling based method can be simply viewed as the multiple expansion point

version of the moment matching based method, with each point expanded only up to

the zero-th moment. It is computationally more expensive than the moment matching

based method (single expansion point version), since there is only one original system

solve (LU decomposition) required (at the only expansion point) in moment match-

ing, while there are many solves (one for each sample point) for the sampling based

method. However, the sampling based method has better global accuracy control,

according to the flexible distribution of the sample points.

Moreover, the sampling based method can be easily related to the truncated bal-

anced realization (TBR) method, a well known MOR algorithm developed in the

control community, to further reduce the model size. It is as simple as introducing

an SVD process in the projection matrix (V ) generation process.

More details of the sampling based MOR method and its relation with the TBR

method can be found in Chapter 3.
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2.2 Thermal modeling and analysis

Thermal analysis of the VLSI system is one of the focuses of this dissertation. In this

section, how the thermal system is equivalenced as an electronic system and described

as an LTI model are shown.

2.2.1 Thermal modeling from the first principles

At the circuit, package and board levels, the heat transfer phenomena is governed by

the following heat differential equation [13]:

ρCp

∂T (~r, t)

∂t
= ∇ · [κ(~r, T ) · ∇T (~r, t)] + g(~r, t), (2.20)

which is subject to the following general thermal boundary condition (Robin’s bound-

ary condition)

κ(~r, T )
∂T (~r, t)

∂ni

= hi(T (~r, t) − Tamb). (2.21)

In (2.20), T (K) is the temperature, ρ (Kg/m3) is the density of the material, Cp

(J/Kg·K) is the mass heat capacity, κ (W/m·K) is the thermal conductivity, and

g (W/m3) is the heat energy generation rate. In (2.21), ni is the outward direction

normal to the boundary condition i, hi (W/m2K) is the heat-transfer coefficient

(for the convective interface), and Tamb is the ambient temperature surrounding the

thermal systems. If hi = 0, the boundary condition is adiabatic (isolated) , otherwise,

it is convective. Note that the thermal conductivity κ differs for different materials

and also depends on the temperature.

For the finite difference based numerical analysis, a seven-point discretization

scheme can be applied for (2.20) in three dimensions. The thermal structure will be

decomposed into numerous rectangular parallelepipeds, which may be of non uniform
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sizes and shapes. The adjacent elements interact with each other via heat diffusion

and the elements interact with boundaries via specific boundary conditions. Each

element may have power sources, temperature, and equivalent thermal capacitance

and resistance to its adjacent elements. Assuming homogeneous material and tem-

perature independent κ, ∇ · [κ(~r, T ) · ∇T (~r, t)] becomes κ∇2T (~r, t). Equation (2.20)

becomes a linear partial differential equation

ρCp

∂T (~r, t)

∂t
= κ[

∂2T (~r, t)

∂x2
+

∂2T (~r, t)

∂y2
+

∂2T (~r, t)

∂z2
] + g(~r, t). (2.22)

After the space discretization, the temperature T (x, y, z, t) at the grid point

(i, j, k) is replaced by T (i∆x, j∆y, k∆z, t). We denote T (i∆x, j∆y, k∆z, t) by Ti,j,k

in this dissertation. According to the central difference discretization, we will have

the following discretized equation for grid (i, j, k)

ρCpM
∂T (x, y, z, t)

∂t
= −2(Gx + Gy + Gz)Ti,j,k + GxTi−1,j,k

+ GxTi+1,j,k + GxTi,j−1,k + GxTi,j+1,k

+ GxTi,j,k−1 + GxTi,j,k+1 + Mgi,j,k,t,

(2.23)

where ∆x, ∆y, ∆z are the discretization steps along the x, y, z axes, M = ∆x∆y∆z.

Gx = κ∆y∆z/∆x, Gy = κ∆x∆z/∆y and Gz = κ∆x∆y/∆z.

2.2.2 Boundary condition modeling

For the boundaries, which interact with the outside directly via convection or other

heat exchange mechanisms, a proper thermal condition (Robin’s boundary condition)

in terms of equivalent thermal resistance and independent source should be added at

the ports as shown below.
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For better illustration, let us consider only one dimension (x direction). From

(2.21), we carry out the discretization on the x direction as

κ
∂T

∂x
= hx(Tamb − T ),

κ
T0 − T1

∆x
= hx(Tamb − T0).

(2.24)

Here T0 represents the temperature of a node just at the boundary and T1 is the

temperature of the adjacent node inside the module.

(2.24) is interpreted as the temperature relation between two branches (T0, T1)

and (T1, Tamb). Since we already know the thermal conductance between T0 and T1

through discretization, which is denoted as Gx, (2.24) readily becomes a three-branch

KCL equation at T0

(T0 − T1)Gx =
hx∆xGx

κ
Tamb −

hx∆xGx

κ
T0. (2.25)

Then, an equivalent circuit is generated with a current source (with current hx∆xGx

κ
Tamb)

and a resistor (with conductance hx∆xGx

κ
) connected to the ground at T0.

2.2.3 Equivalent circuit of the thermal model

According to the previous discussions, if there are n discretized grids with specific

boundary conditions, the equivalent thermal circuit can be modeled using an ordinary

differential equation [13]

C
dT (t)

dt
+ GT (t) = BU(t), (2.26)

where T (t) ∈ R
n is the temperature vector containing the temperatures of the n

thermal nodes, C ∈ R
n×n is the thermal capacitance matrix, G ∈ R

n×n is the thermal

conductance matrix, B ∈ R
n×p is the position matrix of the input where Bi,j denotes
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Figure 2.1: A nine-grid equivalent thermal circuit. Each grid has a thermal node Ti

denoted as a solid circle (black or red dashed), a thermal capacitor and a current
source representing the power dissipation at the grid. There is also a thermal resistor
between each pair of the adjacent thermal nodes. A thermal sensor, denoted as the
red dashed circle (T5), is placed at the center grid.

the portion of the jth functional block power injects into the ith thermal node and

U(t) ∈ R
p contains the power dissipations of the p functional blocks. The right hand

side of (2.26) is also written as

J(t) = BU(t), (2.27)

where J(t) ∈ R
n represents the power dissipations of n grids. It is obvious that (2.26)

has the same structure as (2.4), both in MNA form. As a result, the thermal system

can be equivalenced into an electronic circuit as shown in the following.

A two dimensional nine-grid equivalent thermal circuit example is shown in Fig. 2.1.

It can be seen in the figure, each grid has a thermal node Ti, a thermal capacitor and a

current source representing the power dissipation at the grid. There is also a thermal

resistor between the adjacent thermal nodes. One thermal sensor, denoted as the red

dashed circle, is placed at the center grid in this example.

24



2.3 Basics of runtime thermal estimation

So far, we have already shown how to get the compact thermal/electronic model

in Section 2.1 and how to generate thermal model in Section 2.2. In this section,

we present the runtime thermal estimation techniques, using the generated thermal

model. In short, runtime thermal estimator feeds the estimated runtime power into

a thermal model (compact thermal model should be used to reduce overhead) as the

input and takes the output as the runtime temperature estimation. The input of the

thermal estimator, i.e., runtime power estimation, is introduced first in Section 2.3.1.

Next, in Section 2.3.2 we show how to perform thermal estimation numerically using

the power input and the thermal model.

2.3.1 Runtime power estimation

Runtime power of a microprocessor can be divided into two parts: the static power

(Psta) and the dynamic power (Pdyn). The static power depends on temperature and

can be relatively accurately estimated. The dynamic power, including capacitor power

and short circuit power, is caused by the signal switching between Vdd and Gnd at the

transistors and as a result is a function of utilization. Due to the complex behavior of

the microprocessor at runtime, accurately estimating the functional block (FB) level

dynamic power is very hard. There are several off-line FB level power estimators

available [29, 11]. They take the power event counts and multiply the counts by

their corresponding unit powers to get the power estimations for FBs. These power

estimators are considered to be accurate, for example, accurate to within 5% to 10%

[56]. However, they are too expensive for runtime usage because there are too many

power events to be monitored. Runtime power estimators [70, 56] have much smaller

overhead by monitoring only a few carefully chosen power events, and as a trade-off,
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has larger errors compared to the off-line power estimators. For example, in [70], one

power event is monitored for each FB and the total dynamic power is estimated as

Pdyn =

np
∑

i=1

Ei × Pi, (2.28)

where np is the number of FBs, Ei is the count of power event at the ith FB, Pi is the

unit power per power event for the ith FB, which is determined through linear regres-

sion using a number of benchmarks. In [56], the authors further reduced the number

of power events from np to around 10 by analyzing the power event correlations among

FBs and choosing only the most important ones.

2.3.2 Runtime thermal estimation

The heat differential equation of the chip can be spatially discretized using finite

difference method in the three dimensional space to generate an equivalent thermal

circuit, as shown previously in Section 2.2. If there are n discretized grids with spe-

cific boundary conditions, the equivalent thermal circuit modeled using an ordinary

differential equation is rewritten here for convenience as

C
dT (t)

dt
+ GT (t) = BU(t), (2.29)

where T (t) ∈ R
n is the temperature vector containing the temperatures of the n

thermal nodes, C ∈ R
n×n is the thermal capacitance matrix, G ∈ R

n×n is the thermal

conductance matrix, B ∈ R
n×np is the position matrix of the input where Bi,j denotes

the portion of the j-th functional block power injects into the i-th thermal node and

U(t) ∈ R
np contains the power dissipations of the np functional blocks. The right

26



hand side of (2.29) is also written as

J(t) = BU(t), (2.30)

where J(t) ∈ R
n represents the power dissipations of n grids.

In order to calculate the temperature T in time domain, Backward Euler (BE) is

used to discretize (2.29) as

(
C

h
+ G)T (t + h) =

C

h
T (t) + J(t + h), (2.31)

where h is the time step. Given the initial value T (0) and the input J(t) for all time

points, the subsequent temperature T (t) can be calculated iteratively using (2.31).

2.4 Summary

This chapter has provided the basics of modeling and analysis for electronic and

thermal effects of nanometer integrated and packaged systems. The model order

reduction method has been introduced focusing on the projection framework and two

projection based methods: the moment matching based method and the sampling

based method. The thermal model in the LTI form has been derived from the basic

heat differential equation and the corresponding boundary conditions. We have also

shown the basics of runtime power estimation and the numerical runtime thermal

estimation method. In the following chapters of this dissertation, the new model order

reduction, thermal modeling and thermal estimation methods will be presented.
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Chapter 3

Wideband Model Order Reduction

for Compact Modeling of

Nanometer Integrated and

Packaged Systems

The LTI system modeled as the ordinary differential equations is widely used in elec-

tronic and thermal simulation. The simulation efficiency can be significantly boosted

by using a reduced model, which has much smaller size than the original model but

with similar input and output behaviors, generated by model order reduction (MOR)

methods. The first problem to be solved in this dissertation is to develop a new

MOR method, which is able to generate reduced models with balanced size and ac-

curacy at an acceptable computational cost. The generated reduced model will be

used extensively at the analysis stage, as shown later in Chapter 4 and Chapter 5.

The basics of the MOR method can be found in Section 2.1. In this Chapter,

the sampling based MOR method, based on which the new MOR method is built, is
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reviewed first in Section 3.1. Next, the new MOR method, WBMOR, is presented in

Section 3.2. The experimental results are shown in Section 3.3. Finally, Section 3.4

concludes this chapter.

3.1 Review of the sampling based model order re-

duction method

In this section, the sampling based MOR method is reviewed. The standard TBR-

based method, which has a strong connection with the sampling based method, is

introduced first followed by the derivation of the sampling based method.

3.1.1 The standard TBR based reduction method

We first review the standard TBR method.

Consider a linear dynamic system in a standard state-space form, rewritten from

(2.1) as

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

(3.1)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
p×n and u(t) ∈ R

p. The controllable Gramian X

and the observable Gramian Y are the unique symmetric positive definite solutions

to the Lyapunov equations.

AX + XAT + BBT = 0,

AT Y + Y A + CT C = 0.

(3.2)
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Since the eigenvalues of the product XY are invariant under similarity transformation,

we can perform a similarity transformation (Ab = T−1AT,Bb = T−1B,Cb = CT ) to

diagonalize the product XY such that

T−1XY T = Σ = diag(σ1
2, σ2

2, . . . , σn
2), (3.3)

where the Hankel singular values of the system (σk) are arranged in a descending

order. If we partition the matrices as







W T
1

W T
2






XY

[

V1 V2

]

=







Σ1 0

0 Σ2






, (3.4)

where Σ1 = diag(σ1
2, σ2

2, . . . , σr
2) are the first r largest eigenvalues of Gramian prod-

uct XY and W1 and V1 are corresponding eigenvectors. A reduced model can be

obtained as follows

ẋ(t) = Arx(t) + Bru(t),

y(t) = Crx(t),

(3.5)

where Ar = W T
1 AV1, Br = W T

1 B, Cr = CV1. The error in the transfer function

of the order r approximation is bounded by 2
∑N

i=r+1 σk. In the TBR procedure,

the computational cost is dominated by solving Lyapunov equations O(n3), which

makes it too expensive to apply to integrated circuits problems and thus an efficient

Gramian approximation technique is highly appreciated.
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3.1.2 The sampling based reduction framework

To mitigate the high computational cost of standard TBR method, a fast TBR method

was proposed (called PMTBR) [55], where the Gramians are approximated using

Monte-Carlo sampling approach. Specifically, if we look at the controllability Gra-

mian, we need to solve the following Lyapunov equation:

AX + XAT + BBT = 0. (3.6)

Alternatively, the Gramian X can also be represented in frequency domain as

X =

∫ +∞

−∞

(jωI − A)−1BBT (jωI − A)−Hdω, (3.7)

where superscript H denotes Hermitian transpose. As a result, computing Gramian

X boils down to evaluating the definite integral in (3.7) [35]. This can be done using

numerical quadrature methods.

For an integral function f(x), numerical quadrature methods try to approximate

it as
∫ b

a

f(x)dx ≈
m

∑

k=1

wkf(xk), (3.8)

where wk, k = 1, 2, ...,m, are referred to as the quadrature point weights, while the

interpolation points xk, k = 1, 2, ...,m, are called quadrature points. The selections

of wk and xk depend on the quadrature methods such as Newton-Cotes, Gaussian

quadrature rules [35].

For the sampling-based reduction, our goal is not just computing the Gramian X,

but the dominant eigenspace to form the projection matrix. As a result, let sk be the
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kth sample point, if we define

zk = z(sk) = (skI − A)−1B, (3.9)

which is called kth snapshot of the system in (3.1) in the frequency domain. Then X

can be approximated as

X̂ =
m

∑

k=1

wkzkz
H
k = ZW 2ZH , (3.10)

where

Z = [z1, z2, . . . , zm], (3.11)

and W is a diagonal matrix with diagonal entries wkk =
√

wk. wk comes from a

specific quadrature method. If we perform the singular value decomposition (SVD)

on ZW and obtain

ZW = V ΣU, (3.12)

then V , which gives the dominant eigenspace of X, is used as the projection matrix.

The main advantage of the sampling-based TBR methods over the Krylov sub-

space methods is that they are globally more accurate since they sample in a wide

frequency range. However, how to efficiently perform the sampling (how many points

and which points should be chosen) to control the errors of the reduced models still

remains an open problem. Two methods were proposed recently to resolve this prob-

lem: a re-sampling scheme [59] and the ARMS method [65]. In [59], a statistical

re-sampling scheme is used. In each iteration, many reduced models are computed

by re-sampling from a common pool of candidate sample points in a given frequency

range, and the variations among all the reduced models are calculated at many fre-
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quency points called search points. The search point with the largest variation will

be taken as the sample point. The ARMS method uses residue-minimization tech-

nique to estimate the error (without building the reduced models) and add sample

points where the largest residue exists. However, these methods may not find the

best sample points or suffer from the large computational cost.

3.2 New wideband sampling based reduction method

In this section, we address the efficient sampling problem of the sampling-based re-

duction methods. In Section 3.2.1, we first present the problem and three challenges

of solving the problem. Then, we conquer the first one with the complex-valued

reduction and present some of its important properties. Next, in Section 3.2.2, we

conquer the second challenge and show how error is estimated in the proposed method

in Section 3.2.3. The third challenge is solved in Section 3.2.4 using an adaptive sam-

pling scheme. Finally, the whole algorithm flow and analysis are presented in Section

3.2.5.

3.2.1 Challenges of efficient sampling

Typically, in the frequency band where the frequency response of a system is smooth,

a sample point (its corresponding subspace) can cover1 a wide frequency range. While

in the spiky district, where many system poles exist, a sample point will only cover a

small interval. As a result, pure uniform or random Monte Carlo sampling schemes

may over sample at the smooth frequency bands and suffer accuracy loss at the

spiky bands. Let’s illustrate this via an example of a RLC circuit of size 640. 20

1cover here means the reduced model generated by the projection matrix matches the original
system in the specified frequency band.
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Figure 3.1: Real axis sampling with 20 sample points.

uniformly distributed sample points are used to generate a reduced model of size 20.

Obviously, as shown in Fig. 3.1, the accuracy for this reduction is not satisfactory –

the approximation is good for the smooth frequency bands, but it fails to match the

area from 1010Hz to 1012Hz which has a lot of peaks.

One way to mitigate this problem is by a static sampling scheme which simply

adds more sample points at the spiky frequency bands. Unfortunately, knowing the

frequency response of a large system as a priori is not feasible since it requires to

solve the large system over the wide frequency range of interest. Moreover, we will

not known how many samples will lead to an acceptable reduced model unless we

perform the reduction many times.

A better way to perform reduction efficiently is via adaptive sampling. In the

iterative adaptive sampling method, new sample points are added at the current

iteration based on the information of the last iteration. However, there are three

challenges we need to solve in this scheme. First, we desire the reduced system to have

zero errors at the sample points and thus guarantee the convergence as more samples

are added. This seems simple, but as will be shown later, existing real axis sampling
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does not have this property. Secondly, in order to guide the adaptive sampling at

the next iteration and to indicate the convergence of the algorithm, we need to know

the errors of the reduced system at the current iteration over the frequency range.

However, calculating the errors explicitly requires expensive solving of the original

model at many points, which should be avoided as much as possible. As a result, an

error estimator with a cheaper computational cost is preferred. Thirdly, assume we

have solved the first two problems, the sample points still need to be placed carefully.

For example, how can we accelerate the convergence of the iteration? How can we

prevent missing the potential sample points? The following subsections will provide

our solutions to all the three challenges.

3.2.2 New complex-valued sampling based reduction method

As shown in Fig 3.1, the reduced model may fail to match the original model exactly

even at the sample points, such as at the fifth sample points from right to left. In

this subsection, we show through sampling along the imaginary axis, we will obtain

the exact match at the sample points.

Existing reduction techniques based on Krylov subspace method are mainly ex-

panded at s = 0, while multi-point expansion methods and fast TBR methods are

expanded at multiple frequency points, but along the real axis. In other words,

sk = σk instead of sk = jωk is used in (4.19) 2. The reason is that if s = jω, the mo-

ments in Krylov subspace methods and snapshots in the sampling based approaches

will become complex, causing the reduced matrices Ĝ, Ĉ, B̂ and L̂ to be complex

matrices. This complex reduced system does not exist in the real world and is hard

to be realized into a reduced RLC circuit. We notice that expanding along the imag-

2We remark that in [55], the authors mentioned PMTBR can sample in the whole complex plane,
but no further detail was provided. Here we claim that the imaginary axis should be the only place
to sample.
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inary axis is not an issue for explicit moment matching method like AWE and CFH

methods [14] as complex Padé approximation can be carried out to compute the poles

and residues.

In this dissertation, we propose a new sampling scheme Complex-Valued Sampling

based Truncated Balanced Realization (CVSTBR) as a part of our WBMOR algo-

rithm. CVSTBR samples along the imaginary axis s = jω to preserve the physical

meaning of the Gramian approximation. In addition, the new CVSTBR method leads

to real reduced system. We show that the resulting reduced system matches exactly

with the original system at the sample points, which is not the case for sampling

along the real axis (except for s = 0).

The projection framework of sampling based model reduction

The projection framework has been introduced briefly in Section 2.1.3 for general

projection based MOR method. Here, it is demonstrated in details specially for the

sampling based model reduction method.

For an interconnect circuit modeled as a RLC dynamic system with n states and p

ports, the system equation (3.1) can be formulated in descriptor form in the Laplace

domain as

Gx(s) + sCx(s) = Bu(s),

y(s) = Lx(s),

(3.13)

where G ∈ R
n×n and C ∈ R

n×n contain elements information such as conductance,

capacitance and inductance. B and L matrices describe the positions of inputs and

outputs in the network respectively. And typically there is B = LT ∈ R
n×p which

means the inputs and outputs are identical. x(s) ∈ C
n is the state variable vector
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represents node voltages and branch currents, where s = σ+jω ∈ C. Then we rewrite

(3.9), (3.10), (3.11) and (3.12) here for convenience:

zk = z(sk) = (skC + G)−1B, (3.14)

X̂ =
m

∑

k=1

wkzkz
H
k = ZW 2ZH , (3.15)

Z = [z1, z2, . . . , zm], (3.16)

ZW = V ΣU. (3.17)

After the reduction, we will have a reduced model

Ĝxr(s) + sĈxr(s) = B̂u(s),

yr(s) = L̂xr(s),

(3.18)

where Ĝ = V T GV , Ĉ = V T CV , B̂ = V T B, L̂ = LV . V is computed from (3.17) and

V ∈ R
n×q. q ≪ n is the dimension of the reduced system. xr(s) ∈ C

q is the reduced

state vector in the reduced system.

Assume we have p impulse inputs u(s) = [e1, e2, ..., ep] applied to the system in

(3.13), where ei is a p× 1 vector whose i-th position is 1 and the rest is 0. Define the

impulse response matrix as

z(s) = (G + sC)−1B = [x1(s), x2(s), ..., xp(s)] ∈ C
n×p, (3.19)

where xi(s) is the state response according to ei. Correspondingly, we have

zr(s) = (Ĝ + sĈ)−1B̂ = [x1
r(s), x

2
r(s), ..., x

p
r(s)] ∈ C

q×p (3.20)
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in the reduced system. From now on, we will use z(s) and zr(s) instead of x(s) and

xr(s) for the identity u(s) case.

The approximate impulse response z̃(s) ∈ C
n×p, which is the approximation of the

original impulse response z(s), can be recovered from the reduced impulse response

zr(s) as

z̃(s) = V zr(s) ≈ z(s). (3.21)

It can be also written as

z̃(s) = V (V T Q(s)V )−1V T Q(s)z(s), (3.22)

where Q(s) = (G + sC) for simplicity [26] and we will use Q later for short.

Let’s denote P = V (V T QV )−1V T Q. Since P 2 = P , it is clear that the matrix P

is a projector along QT V onto V . The range space of P is the subspace spanned by

V and the orthogonal complement of its null space is spanned by QT V . Also notice

that P is a function of s. Then, combining (3.21) and (3.22), we have

z̃(s) = V zr(s) = Pz(s) ≈ z(s). (3.23)

We have shown the relationship between the impulse responses of the original

system and the reduced system in (3.23). It is obvious that the quality of the approx-

imation in (3.23) is determined by the projector P . Next, we show how to obtain a

good approximation by choosing the appropriate projector.

It is well known that if the subspace spanned by a matrix F is inside the range

space of a projector P , F remains invariant after the projection by P , i.e., F = PF .

In our case, in order to find a reduced system without accuracy lost, V , which spans

the range space of P , should include all the subspaces spanned by z(s). This results
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in z̃(s) = z(s) which looks like an excellent result. However, this “perfect” projector

usually leads to a “reduced system” with the same size of the original system. Notice

z(s) ∈ C
n×p is a function of s and for a fixed value s = si, z(si) spans a subspace

of dimension p. For all values of s, the infinite number of p dimensional subspaces

usually fill the whole n dimensional space. In order to include all these subspaces, V

needs to have the dimension n leading to a n × n “reduced” system which has the

same size as the original system and is unacceptable for model reduction.

Although it is usually impossible to generate a reduced system accurate for all

values of s as discussed above, it is possible to generate a reduced system accurate for

certain values of s. If we have generated V ∈ C
n×mp to include m subspaces spanned

by m values of s, then the resulting z̃(s) matches z(s) at all these values of s. Since

V ∈ C
n×mp, the reduced system has an order of mp. In order to form this special V

matrix, we have to sample the original system at the m values of s using (3.14) and

the V matrix has the following property:

span(V ) = span(z(s1), z(s2), . . . , z(sm)). (3.24)

We summarize the discussions above in the following theory:

Theorem 1. If sk is sampled , then z̃(sk) = z(sk) for k = 1, 2, ...,m, where m is the

number of sample points.

Proof. According to the definition of projection, P , which is a projector onto V , is the

identity operator on the space spanned by V , that is, ∀x ∈ V : Px = x. According

to (3.24), because z(sk) ∈ span(z(s1), z(s2), . . . , z(sm)) = span(V ),

z̃(sk) = Pz(sk) = z(sk), k = 1, 2, ...,m.
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Accuracy of the imaginary axis sampling

The previous subsection shows if we sample the original system at m values of s and

form the V matrix, the approximated impulse response matrix z̃(s) equals to the

original z(s) at these sampled points. In this section, we discuss the sample point

should be limited to the imaginary axis to capture the frequency response of the

original system.

Assume (3.13) is a stable causal linear system, the system poles are on the left

hand side of the complex plane. On the imaginary axis s = jω, the Laplace transform

converges and is equivalent to the fourier transform. The frequency response of the

system is

H(jω) = L(G + jωC)−1B, (3.25)

and the impulse response of the system is the inverse fourier transform of the frequency

response

h(t) =
1

2π

∫

∞

−∞

H(jω)ejωt dω. (3.26)

In order to have the same frequency behavior as the original system at a frequency

point ωk, the reduced system needs to have the same frequency response at both

−jωk and jωk. It is important because for the original system, H(jω) is conjugate

symmetric, i.e. H(−jω) = H∗(jω). As a result, for the time domain waveforms,

for example the impulse response (3.26), the contributions by the ω ∈ (−∞, 0) (i.e.,

1
2π

∫ 0

−∞
H(jω)ejωt dω) and ω ∈ (0,∞) (i.e., 1

2π

∫

∞

0
H(jω)ejωt dω) are conjugate to

each other such that their imaginary parts are eliminated leading to the real time

domain waveform. Failing to retain this symmetric property in the reduced system

is unacceptable. In addition, it is even impossible to generate a real system if the
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sampling is not performed symmetrically on the imaginary axis.

We introduce Vc to denote the V matrix in the imaginary sampling case. According

to (3.24), the Vc matrix of the imaginary sampling is generated as

span(Vc) = span(z(jω1), z(jω2), . . . , z(jωm), z(−jω1), z(−jω2), . . . , z(−jωm)),

(3.27)

for the frequency points ω1, ω2, . . . , ωm we would like to match exactly. The practical

way of generating the real valued Vc matrix is presented later.

We are ready to present the following result as the extension of Theorem 1.

Corollary 3.2.1. The reduced system has exact frequency response at the frequency

ωk if jωk and −jωk on the imaginary axis are sampled.

Proof. Consider the reduced frequency response Ĥ(jω). If jωk and −jωk are sampled,

according to Theorem 1, there are z̃(jωk) = z(jωk) and z̃(−jωk) = z(−jωk), then we

have

Ĥ(jωk) = Lz̃(jωk) = Lz(jωk) = H(jωk),

Ĥ(−jωk) = Lz̃(−jωk) = Lz(−jωk) = H(−jωk).

Accuracy of the real axis sampling

For real axis sampling, according to (3.24), the V matrix is

span(V ) = span(z(σ1), z(σ2), . . . , z(σm)). (3.28)

Similar to the imaginary axis sampling case, we have z̃(σk) = z(σk). However, there

is only H(σk) = Ĥ(σk). Generally for all frequencies except for ω = 0, there is
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no H(jω) = Ĥ(jω) guaranteed. In other words, the real axis sampling does not

guarantee to be accurate for any frequency except for the DC point.

Sampling along the imaginary axis

Previously, we have shown by sampling along the imaginary axis, the frequency re-

sponse of the reduced system matches that of the original system exactly. In this

section, we present how the imaginary sampling is performed in a practical way.

Specifically, by performing the sampling along the imaginary axis, Z, as defined

in (3.16), is a complex matrix. As explained previously, for every sampling at jωk, we

also need to sample −jωk. Actually, it is not necessary to perform the sampling at

both points. Due to the conjugate property, if we have sampled jωk, k = 1, 2, . . . ,m

and generated the corresponding Z, we only need to introduce Z∗ as the conjugate

of Z and form a new complex subspace Zc = [Z Z∗]. Also assume W is an identity

matrix without loss of generality, we have new versions of (3.15) and (3.17) as

X̂c = ZcZ
H
c (3.29)

and

Zc = VcScUc. (3.30)

As a result, there is

X̂c = VcScUcU
H
c ScV

H
c = VcS

2
c V

H
c , (3.31)

which is the eigendecomposition of the approximated Gramian X̂c. In contrast to the

complex X̂ in (3.15), X̂c here is a symmetric real matrix even though Zc is complex.

According to the properties of the eigendecomposition, Vc should be a real unitary

matrix as it is the eigenspace of a symmetric real matrix, i.e. V H
c = V T

c , which will
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ALGORITHM 1: CVSTBR algorithm

Input: Circuit: G, C, B, L; sample points: ωk, k = 1, 2, ..., m; the reduced order: q.
Output: Reduced system matrices: Ĝ, Ĉ, B̂, L̂.

1. Solve zk = (G + jωkC)−1B for k = 1, 2, ..., m.
2. Combine all the solved zk to form Z.
3. Construct the complex Gramian subspace Zc = [Z, Z∗].
4. Perform economic SVD on Zc and obtain the left singular matrix Vc and singular

value matrix S. Keep only q dominant columns of Vc.
5. Rotate Vc to the real axis through multiplying the kth column of Vc with

exp(−jφk), where φk is the phase of the kth column in the complex plane.
6. Build the reduced model Ĝ, Ĉ, B̂, L̂ using the projection matrix Vc and V T

c .

generate the real reduced systems even if we sample along the imaginary axis.

Note that we do not perform the eigendecomposition to compute Vc, instead,

we use SVD on Zc in order to save the computation time. However, Vc is still

not a real matrix in general. This is because the singular vectors of the SVD are

not unique in the complex plane, although the singular values are uniquely com-

puted [63]. For instance, for SVD of matrix A ∈ C
n×n, A = V SUT =

∑n

i=1 σiviu
T
i =

∑n

i=1 σi(vie
jφ)(uT

i e−jφ). In other words, singular vector vi and uj can rotate with the

same angle but in the opposite directions without changing the subspace. Specifically,

for the kth column vk in Vc, multiplying with exp(−jφk) will rotate it to the real axis.

The phase φk is the angle between vk and the real axis.

The new complex-valued sampling based reduction method, named CVSTBR, is

summarized in Algorithm 1.

3.2.3 Residual based error estimator and its relationship with

imaginary axis sampling

We have introduced the new imaginary axis sampling scheme CVSTBR which matches

the frequency response of the original system at the sampled frequencies. However,
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CVSTBR works in a static way with provided sample frequencies and an adaptive

sample point selecting scheme is demanded. In order to perform the adaptive sam-

pling, we need an error indicator to guide the adaptive sample point picking process.

Calculating the errors explicitly requires expensive solving of the original model at

many points, which should be avoided if possible. In this subsection, we present a

good error estimator based on the residual of the reduced system. Combined with

the imaginary sampling scheme, the residual error estimator is zero at the sampled

frequencies and is good for guiding the adaptive sampling process.

Remind in (3.23) we have the reduced state approximation z̃(s) = V zr(s) ≈ z.

Plugging it into the original system with identity input

Gz(s) + sCz(s) = B (3.32)

leads to the error matrix, which is called the residual matrix in this paper

R(s) = GV zr(s) + sCV zr(s) − B

= Gz̃(s) + sCz̃(s) − B,

(3.33)

where R(s) ∈ C
n×p. Notice that if z̃(s) = V zr(s) is very close to z(s), the residual

should be very small. As a result, the norm of R(s), ||R(s)|| can serve as a good error

indicator for the reduced model.

We remark that R(s) is not a dimensionless quantity for each element in it. Each

element in it actually represents either node voltage or branch current residual. And

each column of R(s) can be viewed as normalized error at all the nodes/branches of

the system (3.18) excited by the impulse response applied at one port. As a result,

the residual matrix R(s) can be used as the input-normalized error indicator.

From Theorem 1, we have the following corollary:
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Corollary 3.2.2. The reduced system has zero residual at the sample points in the

complex plane.

Proof. If sk is sampled, from Theorem 1, there is z̃(sk) = z(sk). By plugging it into

(3.33), we have

R(sk) = Gz̃(sk) + skCz̃(sk) − B

= Gz(sk) + skCz(sk) − B

= 0.

Furthermore, we would like to show how the residual is related to the imaginary

sampling. If the sampling is performed on the imaginary axis, the residual in (3.33)

becomes

R(jω) = GVczr(jω) + jωCVczr(jω) − B

= Gz̃(jω) + jωCz̃(jω) − B,

(3.34)

and there is a corollary similar to Corollary 3.2.2.

Corollary 3.2.3. The reduced system residual is zero at the sampled frequency points

if the sampling is performed on the imaginary axis.

Proof. If we have sampled the frequency ωk, there are z̃(jωk) = z(jωk) and z̃(−jωk) =
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z(−jωk). As a special case of sampling in the complex plane, we have

R(jωk) = Gz̃(jωk) + jωkCz̃(jωk) − B

= Gz(jωk) + jωkCz(jωk) − B

= 0,

R(−jωk) = Gz̃(−jωk) − jωkCz̃(−jωk) − B

= Gz(−jωk) − jωkCz(−jωk) − B

= 0.

Besides showing small values around the sampled frequencies, the residual should

also reveal the errors at the unsampled frequencies to guide the adaptive sampling

process. Now, we discuss why sampling using residual as the error estimator leads to

good results. Assume we have sampled m points {ω1, ω2, . . . , ωm} of the n dimensional

system, the resulting reduced model has the order 2mp. We have already shown at the

sampled frequency point, for example ωk, the approximate impulse response z̃(±jωk)

equals to the original impulse response z(±jωk) such that the reduced system has

exact frequency response as the original system. Consider a frequency far away from

the sampled frequencies, for example at ωl, the approximate impulse response z̃(±jωl)

lays inside the subspace span(Vc) = span(z(±jω1), z(±jω2), . . . , z(±jωm)) which is a

2mp dimensional subspace inside the n dimensional space. Since ωl is not sampled,

the original impulse response z(±jωl) generally dose not equal to z̃(±jωl) in this case.

It can be decomposed into two components, one equals to z̃(±jωl) inside span(Vc), the

other one equals to (z(±jωl)− z̃(±jωl)) inside the n−2mp dimensional left null space

of Vc. The component lays inside the left nullspace causes the error of the reduced
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system and is revealed through the residual as R(±jωl) = (G ± jωlC)(z(±jωl) −

z̃(±jωl)). If ||R(±jωl)|| is a local peak, it means ||z(±jωl) − z̃(±jωl)|| is relatively

large. In this case, we need to sample the frequency ωl to make the new subspace

span(Vc) include the component of z(±jωl) inside the left null space of the previous

Vc.

3.2.4 Adaptive sample point placement

Now we demonstrate how to place the sample points along the imaginary axis in an

adaptive way with the residual based error estimation.

Before presenting the new method, we show some theoretical results regarding to

the residual errors and the complex-valued sampling.

Theorem 2. Given sufficient sample points in imaginary axis, the residual function

defined in (3.34) will become monotone decreasing.

Proof. Based on the Corollary 3.2.1, it is known that at the sample points, the re-

sponses of the reduced model match exactly with those of the original model. Their

residuals are all zero. The sampling approach can be viewed as the multi-point com-

plex Krylov subspace method where only the zero-th moment is matched at every

frequency point. For any frequency point jωk, the reduced state response in (3.18)

can be written in the moment form as

zr(jωk + δ) = (I + δMk + δ2M2
k + ...)rk, (3.35)

where Mk = −(Ĝ + jωkĈ)−1Ĉ and rk = (Ĝ + jωkĈ)−1B̂, δ ∈ C is a small complex

value change from jωk.

If we sample sufficiently, δ, which can be viewed as the half distance between two
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adjacent points, will be small enough. As a result, the error between zr(jωk) and

zr(jωk + δ) can be approximated as δMkrk. So the error will go down monotonically

with δ when δ is small enough.

Now we look at the residual R(jωk+δ). Notice that we have R(jωk) = 0 according

to Corollary 3.2.3. If we ignore the second order terms, we have

R(jωk + δ) = (G + (jωk + δ)C)Vczr(jωk + δ) − B

= R(jωk) + δ(GVcMk + jωkCVcMk + CVc)rk

= δ(GVcMk + jωkCVcMk + CVc)rk.

As a result, the residual R(jωk +δ) will decrease monotonically with δ when δ is small

enough.

Theorem 2 states if a point is getting close enough to a sampled point, its residual

error becomes controllable. As a result, the proposed method can always achieve the

error bound by sufficient samplings. But practically, it is not necessary to sample

densely over all frequencies. Instead, we develop a new adaptive sampling algorithm

in which sample points are added dynamically to frequencies having more poles near

the imaginary axis and thus more likely to show large residuals.

The new algorithm as demonstrated in Fig. 3.2 has two iterative steps. At step

(a) in Fig. 3.2, WBMOR first builds a reduced model using the minimum sample

points picked in the previous iterations. Then it tests all the candidate points which

are initially evenly distributed in the frequency range (in log scale). Residuals are

computed at all the candidate points (they needs to be computed or evaluated only

once). At step (b), WBMOR drops all the satisfied candidate points whose residuals

are smaller than the threshold from the candidate set. And for each unsatisfied

point, two of its adjacent middle points are inserted to the candidate set. The step of

48



(a)

(b)

Frequency

residue threshold

residue

peak point

residue satisfied residue unsatisfied new candidate

Figure 3.2: An illustrative example for the WBMOR adaptive sampling scheme.

inserting more samples is optional if the initial candidate points are sufficiently dense.

At the same time, WBMOR takes the peak points, which are the unsatisfied candidate

points and are local maximums in residual values, as the sample points. The peak

points are dropped from the candidate set as they have guaranteed zero residuals

in the next iteration. The whole process continues until there are no unsatisfied

candidates left.

For most of the time, there are several peak points in one iteration. Thus the

number of sample points selected in one iteration is not limited to one. This greatly

enhances the convergence speed. Moreover, the peak points are usually not close to

each other, which means they are relatively independent. This enables us to sample

them all at the same time without causing over sampling problems.

The dynamic sample insertion in step (b) guarantees WBMOR can generate good

model even when the initial candidate points are sparsely or badly distributed. This is

important because sometimes there is too little information about the original model

to guide the placement of the initial candidate points. Although the dynamic sample

insertion in step (b) can be enabled to avoid missing the potential range with large

errors, we notice that if the initial candidates are placed dense enough (around 100

points per decade is enough in our experiments), WBMOR will still reach very good

results with cheap computational cost without dynamic sample insertion.

49



In order to achieve a more efficient reduction, after the complex SVD on Zc in

(3.30), we select the dominant singular values and corresponding singular vectors in

Vc based on a user set SVD threshold thsvd. thsvd is defined as the threshold for the

weight of the trivial singular values.

3.2.5 WBMOR algorithm flow and analysis

The whole WBMOR flow is shown in Algorithm 2.

The further truncation based on the singular values is performed after the itera-

tion. As a result, SVD is only needed in the last iteration, and we use QR factorization

instead of SVD in the loop to accelerate the algorithm. In addition, incremental QR

algorithms, which only orthonormalize the newly sampled columns, can also be used

to further save the CPU time.

Now we take a look at the computational cost of WBMOR. Most CPU time is

spent on the residual matrix computation (3.34), since it is required for each candidate

point in every iteration. GVc and CVc in (3.34) is calculated only once in an iteration

because they are the same for every candidate and only vary over iterations. Also,

zr(s) can be cheaply solved from the reduced system at each candidate. Thus, the

cost of (3.34) at one candidate point is mainly the multiplication cost of GVc · zr

and CVc · zr, which is O(npq) where n is the size of the original model, p is the

port number and q is the reduced model size at the current iteration. The cost for

each candidate increases as the reduced model size q increases during the iterations.

However, the number of candidate points will decrease as all the candidates smaller

than the threshold are dropped. Thus, the later iteration will cost less as the algorithm

proceeds. Moreover, WBMOR takes peak candidate points as sample points, whose

number is usually larger than one. This greatly improved the convergence speed and
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ALGORITHM 2: WBMOR algorithm

Input: Circuit: G, C, B, L; frequency range: ωmin, ωmax; the residue threshold: thres

and the SVD threshold: thsvd.
Output: Reduced system matrices: Ĝ, Ĉ, B̂, L̂.

1. Place initial candidate points at a reasonable density in the given frequency range
[ωmin, ωmax] evenly in log scale.

2. Obtain the initial reduced model by sampling at ωmin and ωmax using the CVSTBR

algorithm.
3. While max residue > thres, do
4. Calculate the residues at the candidate points using (3.34).
5. Scan all the candidate points. If residue norm < thres, drop this point; otherwise

(optional), add two middle points between the current point and two adjacent
points as new candidate points.

6. Add the candidates which are peak points with excessive residues as the sample
points. Use the CVSTBR algorithm to compute the new reduced model with all the
selected sample points.

7. Take the singular subspace Vc from the CVSTBR in the last iteration. Only keep its
dominant singular vectors according to thsvd.

8. Build the real reduced model Ĝ, Ĉ, B̂, L̂ using the projection matrix Vc and V T
c .

makes WBMOR usually stop in less than 10 iterations. In summary, although more

expensive than the static sampling based methods, WBMOR still has a relatively low

computational cost considering its high accuracy.

3.3 Experimental Results

3.3.1 Implementation and settings

The proposed method WBMOR together with the re-sampling method [59] and re-

cently proposed adaptive sampling based reduction method method, ARMS [65], as

well as other mentioned sampling methods have been implemented in Matlab 7.0. All

the experimental results are collected on a Linux workstation with Intel Quadcore

Xeon CPU with 2.99Ghz and 16GB memory. The WBMOR method has been inte-

grated into the UC Riverside Model Order Reduction Tool Suite (UiMOR) [62] which
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is available for download online [2].

For the proposed WBMOR method, the default setting is as follows: the residual

threshold is chosen to be 0.1 and the number of initial points per decade is 100 and

we only drop candidate points without adding new ones. The SVD threshold thsvd is

10−7.

For the re-sampling method, the number of points in the pool is 20, the number

of reduced models used in each iteration is 10, the size of the reduced model is 20.

We also used 20 search points, 1/3 of which will be replaced. One point in the pool

will be substituted in every iteration. We also implemented the speedup techniques

such as efficient construction of projectors and heuristic search [59].

For the ARMS method, however, many implementation details were not given

in [65]. In our implementation and comparison, it shares the same initial sampling

candidate set with WBMOR. We apply QR factorization to do the orthogonalization

to generate the residuals. One may argue that the incremental QR algorithm is more

efficient. However, incremental QR needs to store the large and dense orthogonalized

basis (the Q matrix in QR factorization) for every candidate point, and the resulting

algorithm will soon become memory-limited.

Since our comparison includes both statical sampling methods and adaptive meth-

ods with different stop criteria, for a fair comparison, we have to keep the same or

similar size of the final reduced order for all methods for accuracy comparison.

The benchmark circuits are published benchmarks such as the transmission line

(TL) model, the PEEC model from [12], which are available online for download.

Some additional RLC circuits are also used for further accuracy and scalability com-

parisons.

We first show that the results of the static complex-valued sampling based reduc-

tion method on the transmission line model example. Then, we show the results of
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Figure 3.3: Accuracy comparison of imaginary axis sampling and real axis sampling
methods on TL.

the adaptive WBMOR method on the TL, PEEC models. Finally, the runtime and

maximum error of each method are evaluated using more RLC circuits.

3.3.2 Comparison of complex-valued sampling scheme and

real-valued sampling scheme

First, we would like to show the accuracy of CVSTBR. Note that in order to generate

the same dimension of Zc, the real sampling method has to use twice the sample

points. In the example, the real sampling method uses 100 sample points that are

uniformly distributed in the given frequency range while the CVSTBR picks only

half of these points, that is 50 points. After SVD, both of the two methods keep

50 dominant columns of the left singular matrix Vc as the projection matrix, and

thus the size of the two final reduced models is 50. All the samples are generated

randomly so that the real-valued sampling method is similar to the proposed PMTBR

method [55]. Fig. 3.3 shows the results of the comparison. It is clear that the model

generated by the CVSTBR reaches a frequency response that cannot be distinguished

from the original one while the real sampling method has very large errors.
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Figure 3.4: Frequency response (top) and transient simulation (bottom) comparison
of imaginary axis sampling and real axis sampling methods on rlc1.

For the computational cost, since both schemes generate the same dimension of

the Zc matrix, they have the same SVD cost of Zc. However, the real axis sampling

scheme samples twice more than the CVSTBR to reach the same size of Zc, and thus,

it is more expensive. To make the computational cost similar, the real axis sampling

method will sample half of the points (both methods sample 50 points). Obviously,

it will become further inaccurate. As a result, we can clearly observe that given the

same computing cost, the complex-valued method CVSTBR is more accurate than

the real axis sampling method like PMTBR [55]. Actually, this is the case for all

other benchmarks we test for the reasonable number of samples.
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Detailed analysis shows that instead of 50 sample points, only 13 points are enough

to produce the 50 states reduced model in the ideal case (recall that every point

generates 4 states in the final reduced model without the SVD process). This ideal

case happens when we sample at only the critical points such that in the SVD process,

all the singular vectors are important and cannot be truncated. In the next section,

we show how we insert new samples around those critical regions more intelligently

in the WBMOR algorithm.

A better accuracy comparison is in the time domain for the reduced models. We

test on a RLC circuit rlc1, which has a 640 states and 1 port. It has many peaks

around 1011Hz and is very hard to approximate. 100 sample points are used for

CVSTBR while 200 points for the real axis sampling method. The frequency range

of interest is chosen to be [109, 1012], which covers the whole spiky area. The final

size for both reduced models is kept manually as 100. A periodic 1Amp pulse current

with 2 × 10−12s rise time and 4 × 10−12s hold time is used as the input signal at the

port. The output voltage is measured from the same port. The frequency response

and transient simulation results are shown in Fig. 3.4. It can be seen from the time

domain simulation, for the model generated by real-value sampling, there are obvious

discrepancy at some peak and valley values in the transient response wave.

3.3.3 Adaptive process and comparison with the re-sampling

scheme

We now compare the new adaptive WBMOR method with several methods based

on real axis sampling, including the recently proposed re-sampling method [59], the

simple logarithmic and Monte Carlo sampling methods. In order to reach a fair

comparison, we set all of the four methods with the same dimension of Zc and the

55



10
10

10
6

10
14

10
8

10
12

10
−10

10
0

10
2

10
−2

10
4

10
−4

10
−6

10
−8

Frequency

R
e

s
id

u
e

10
6

10
14

10
10

10
8

10
12

10
−10

10
0

10
−4

10
2

10
4

10
−2

10
−6

10
−8

Frequency

R
e

s
id

u
e

10
10

10
14

10
6

10
8

10
12

10
−10

10
0

10
−2

10
−4

10
−6

10
−8

Frequency

R
e

s
id

u
e

10
10

10
6

10
14

10
8

10
12

10
−10

10
−8

10
−6

10
−4

Frequency

R
e

s
id

u
e

(1) (2)

(3) (4)

Figure 3.5: The residual convergence process of WBMOR for four iterations.

same size of final reduced system after SVD.

The first example is the transmission line model used in 3.3.2. In this case,

WBMOR uses only 14 sample points and generates a reduced model of dimension

37. Fig. 3.5 shows the residual convergence process of our WBMOR during four

iterations. The maximum residual of the reduced system drops very fast from the

value as large as 104 to below 10−3 after four iterations. From Fig. 3.6, it is clear that

the new WBMOR method produces a reduced model as accurate as the the static

CVSTBR (Fig. 3.3) with much less sample points and more compact size. Even

with twice the number of samples and the same size of the final reduced model, none

of them captures the fine details of the original system frequency response. Among

these three real sampling methods, re-sampling method has the best results, which

however gradually become less accurate after the third large peak.

Fig. 3.7 shows the results of the widely used PEEC model. With 42 sampling

points, WBMOR shows good results in most of the frequency bands and only a little
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Figure 3.6: Comparison with re-sampling method on the transmission line example.
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Figure 3.7: Comparison with re-sampling method on the PEEC example.

off around 10Hz. This is because the frequency responses at these frequencies are

quite small (around -160dB) and are very hard to match due to the numerical errors.

3.3.4 Comparison with the ARMS method

The results compared with recently proposed adaptive sampling method ARMS is

shown in this subsection. Although the ARMS’s implementation is based on real
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Figure 3.8: Comparison with ARMS on the TL example

valued sampling, we modify it by using the proposed imaginary axis sampling. In this

way, we can see more clearly the performance of the two methods for their adaptive

schemes. Specifically, in order to perform complex-valued reduction, an additional

conjugate column should be put into the Gramian matrix Z in ARMS. In addition,

SVD is used in the last iteration in order to generate the real valued system.

The results on the TL model is shown in Fig 3.8. The order of the reduced

models is 37 except for the imaginary sampling based ARMS, which has a order

of 36. Obviously, the real sampling based ARMS method failed to find the critical

samples while the imaginary axis sampling based ARMS does a relatively better job

while it still lacks some accuracy at certain frequency bands.

Also, the comparison on the PEEC model is presented in Fig 3.9.

Until now, all the results of WBMOR are obtained by only dropping the candidates

during iterations. In other words, we do not add any new candidate points. This

generates good results as shown in the previous experiments. However, sometimes

setting the initial set of candidate points become a tricky problem. We may start

with a sparse candidate set and result in a poor approximation since the initial set
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Figure 3.9: Comparison with ARMS on the PEEC example
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Figure 3.10: Demonstrate of the adding candidates feature of WBMOR

may fail to cover some critical regions with large errors. This can be avoided by

inserting candidate points in a dynamic and adaptive way. Take the TL model again

for example. Now we start with only 10 candidates per decade instead of 100 used

previously. Fig. 3.10 shows the results. By detailed inspection, it is clear that most of

the important potential samples, which would have been missed, are correctly located

through the dynamic point insertion process. The resulting WBMOR successfully

reaches a good approximation even with the sparse initial candidate set.
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1 2 3 4 5 6 7 8 9 10 11 12
Ckt NodePortOrder WBMOR Re-sampling Monte Carlo Logarithmical

Time(s)Max errorTime(s)Max errorTime(s)Max errorTime(s)Max error

TL 256 2 37 0.9 0.3 1.4 21.6 0.09 8.5 0.09 17.7
PEEC 480 1 79 1.9 1.5 2.4 2000.1 0.71 33.1 0.70 32.9
rlc1 640 1 62 0.7 0.1 1.2 1.1 0.14 1.7 0.12 2.08
rlc2 1180 2 160 4.8 0.1 4.4 0.5 0.36 0.9 0.34 1.6
rlc3 2680 3 192 12.1 0.1 8.8 1.2 0.8 2.1 0.8 1.5
rlc4 10960 1 58 11.2 0.2 6.3 1.0 2.7 2.8 2.7 2.1

Table 3.1: Scalability comparison of runtime and relative errors for WBMOR and the
re-sampling method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ckt NodePort WBMOR ARMS real ARMS img

orderiterTime(s)Max errororderiterTime(s)Max errororderiterTime(s)Max error

TL 256 2 37 4 0.9 0.3 38 19 5.3 11.6 40 10 10.7 2.8
PEEC 480 1 79 10 1.9 1.5 79 79 46.7 81.0 80 40 56.9 1.7
rlc1 640 1 62 11 0.7 0.1 62 62 135 1.2 62 31 126 0.1
rlc2 1180 2 160 9 4.8 0.1 160 80 1099 0.5 160 40 2402 0.1
rlc3 2680 3 192 7 12.1 0.1 192 64 2918 0.4 192 32 3705 0.05
rlc4 10960 1 58 9 11.2 0.2 58 58 2737 1.2 58 29 3273 0.2

Table 3.2: Scalability comparison of runtime and relative errors for WBMOR and the
ARMS method.

3.3.5 CPU runtime and error comparison

Finally, we report the runtime and the maximum relative errors of the examples in

3.3.3 together with several additional RLC circuits in Table 3.1. The comparison

with ARMS method is presented in Table 3.2. The relative errors used in two tables

are computed as

error(jω) =
||H(jω) − Ĥ(jω)||

||H(jω)||

at all the simulation frequency points.

We observe that the proposed method is much more accurate than all the real axis

sampling based methods. The modified imaginary axis based ARMS has almost the

same accuracy as WBMOR. We notice that ARMS computing costs are much higher
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than the other two methods. The main computing costs are the QR operations.

We need to do this for every remaining candidate point in each iteration, which is

expensive for large candidate pool. One can argue that incremental QR will be better

off in this case. We actually implemented incremental QR in ARMS. But we need

to store all the previous Qi and Ri for each remaining candidate points. The sizes

of Qi and Ri grow during iterations and their numbers are large because of the large

number of initial candidate points (100 in our implementation). As a result, we soon

run out of memory for some testing cases.

3.4 Summary

In this chapter, we have presented a novel model order reduction method, WBMOR,

for wide frequency band model reduction. WBMOR explicitly computes the exact

residual errors to guide the sampling process in an adaptive way. It has been shown

that by sampling along the imaginary axis and performing a new complex-valued sam-

pling based reduction, the reduced model will match exactly with the original model

at the sample points. Theoretically, the proposed method can achieve the error bound

over a given frequency range with sufficient sampling. Practically, we have designed

an adaptive scheme to help designers choose the best order of the reduced model

for the given frequency range and error bound. We have compared several sampling

schemes such as Monte Carlo, logarithmic, and recently proposed re-sampling meth-

ods. Experimental results on a number of RLC circuits show that WBMOR is much

more efficient than all the other sampling methods including the recently proposed

re-sampling and ARMS schemes with the same reduction orders. Compared with the

real-valued sampling methods, the complex-valued sampling method is more accurate

for the same computational costs.
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Chapter 4

Composable Thermal Modeling of

Multi-Core Microprocessors

In this chapter, we address the emerging problem introduced above by proposing a

novel composable thermal modeling approach. We present the new approach in the

context of fast thermal analysis and design for multi-core microprocessors at the ar-

chitecture level. The new approach, called ThermComp, which stands for thermal

modeling with composable modules, builds the compact thermal models for the basic

modules (CPU core and cache) from detailed thermal models generated by the finite

difference method. Then, it applies the sampling-based reduction technique to reduce

the complexity of those models. To make the complexity reduction efficient for ther-

mal models with many ports, port reduction by means of adjacent port merging has

been introduced. Such port reduction naturally leads to a new two-grid discretization

scheme where a uniform global coarse grid is used for all the boundary grids and a

fine grid is used for the internal grids of each module. The coarse grid is also justified

by the smooth thermal gradients at the boundary.

The compact and composable model-based simulation provides a viable solution to
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this difficult problem. Composable is defined as the ability to build the basic module

models, which are then used to assemble different large systems. We also call the

assembling process as composition. In addition, the large system assembled from the

basic modules is called the composite model. This strategy is similar to the model-

based electronic circuit simulation method, such as SPICE, which no longer solves

the basic Poisson’s equations directly at the device level to obtain the voltage and

current information. Similar to the SPICE device models of the CMOS and BJT

transistors, we propose new composable thermal models, which can be re-used and

easily connected to build various thermal circuits and systems.

The composable modeling has three main advantages over traditional thermal

modeling: first, it enables the reuse of the compact components in the thermal mod-

eling process, especially for the multi/many-core systems: only few compact models

need to be built for very large system with multiple identical components; second, the

change in the design architecture only requires recomposing the compact components

instead of rebuilding the whole model; third, it makes compact modeling of extremely

large system possible because directly applying model order reduction on the large

system is impossible due to the memory and computational cost limitations.

Experimental results on a number of multi-core microprocessor architectures show

the new approach can easily build accurate composite thermal models from compact

models of different modules for the fast architecture thermal analysis and optimiza-

tion. The compact models lead to orders of magnitude speedup over the standard

finite difference method with marginal error.

The rest of this chapter is organized as follows: Section 4.1 introduces the thermal

modeling problem we are trying to solve. Section 4.2 presents the new composable

thermal modeling method. Section 4.3 shows the experimental results. Finally, the

summary is provided in Section 4.4.
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4.1 Thermal simulation and composable modeling

problems

In this section, we briefly present the problems of the composable thermal modeling

and simulation of the VLSI system. The compact modeling technique and its corre-

sponding model complexity reduction problem are shown in Section 4.1.1 and Section

4.1.2, respectively. The boundary condition handlings are introduced next, in Section

4.1.3.

4.1.1 Simulation by compact thermal modeling of multi-core

systems

The basics of thermal modeling and analysis techniques can be found in Section 2.2.

A traditional thermal analysis method directly solves the discretized thermal system

in (2.22). In order to capture the junction temperature of a multi-core chip, a fine

grid needs to be used, resulting in a very large thermal system. In this case, directly

solving the system can be very expensive or even prohibitive. A solution is to build a

reduced system using the model reduction techniques. However, building a reduced

model from a very large scale system is still expensive. Moreover, a slight change in

the multi-core architecture requires redoing the whole finite difference discretization

and rebuilding the reduced model from the very large discretized system. As a re-

sult, it will be unacceptable for the thermal design exploration for various multi-core

architectures as the spatial discretization, reduction and simulation have to be done

for every architecture during the optimization steps.

Instead of directly using (2.23) or its reduced model for thermal analysis, a more

efficient composable thermal-model based approach is more desirable. As shown in
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Fig. 4.1 (a), we first build two compact composable models for CPU core and cache

modules through the finite difference method and model reduction. Then, using the

two models, we can build the multi-core thermal system such as the quad-core system

shown in Fig. 4.1 (b), the 16-core system shown in Fig. 4.1 (c) or other multi-core

thermal systems. We assume the CPU cores are the same for simplicity, but our

approach can be easily extended to different CPU cores and other functional blocks.

Fig. 4.2 is the lateral structure view of a typical package for the multi-core system.

Typically the heat generated at the die is conducted from the bottom to the heat

spreader and then to the heat sink. In this paper, we do not directly consider those

package structures. Instead, we capture the effects of those package structures on the

die using proper thermal conditions. For brevity’s sake, we assume the other sides of

the die do not have heat exchange (adiabatic condition).

As discussed above, our goal is to build the compact composable thermal model

for each module (CPU core and cache) so we can quickly build the composite models

for different multi-core architectures instead of building the whole thermal systems

from scratch every time.

4.1.2 Model complexity reduction problem

We already have detailed thermal models for the modules in the finite difference

framework with certain boundary conditions. The modeling problem now is to build

the compact thermal model for each module.

Specifically, if we have n discretized elements (grids) with specific boundary con-

ditions, equation (2.23) becomes a linear ordinary differential equation

C
dT (t)

dt
+ GT (t) = Bg(t), (4.1)
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CPU core cache

(a) CPU core and cache modules.

cache

CPU core 3

CPU core 2

CPU core 1

CPU core 0

(b) A quad-core architecture.

cache2

cache4

cache3

cache1

CPU23

CPU22

CPU21

CPU20

CPU13 CPU12 CPU11 CPU10

CPU43 CPU42 CPU41 CPU40

CPU30

CPU31

CPU32

CPU33

(c) A 16-core architecture.

Figure 4.1: CPU core, cache, a quad-core architecture and a 16-core architecture.

where C ∈ R
n×n is the thermal capacitance matrix, G ∈ R

n×n is the thermal con-

ductance matrix. B ∈ R
n×p is the position matrix for a total of p ports including the

boundary ports and the power dissipation sources. g(t) ∈ R
p×1 represents the power

injections from the boundary ports and the power dissipation sources. The boundary

port sources modeling has been discussed in Section 2.2.2 and the power dissipation

sources modeling will be presented in Section 4.2.3.

To reduce the model complexity, model reduction techniques, which has been
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TIM

Heat Spreader

Heat Sink

PCB

Figure 4.2: The literal structure view of the multi-core system package.

studied intensively in Chapter 3, can be applied to (4.1). However, we will show that

existing reduction methods do not work well for the thermal models with many ports

in general, which will be addressed in Section 4.2.1.

4.1.3 Adiabatic thermal condition for composibility

The composable models need to be constructed such that the composite system con-

nected by these modules is the same as the system constructed directly from the

original structure. It can be proved that to make the thermal model composable, the

adiabatic thermal conditions (special Neumann’s boundary condition) [13]

κ(~r, T )
∂T (~r, t)

∂ni

= 0 (4.2)

should be added at the thermal modules.

Specifically, for the adiabatic condition, there are no thermal exchanges between

the boundary nodes and outside. When two modules are connected together, the

connected boundary nodes of the two modules will become one node in the new

system. Heat will flow via normal diffusion as there is no boundary between the two

modules. The interface with adiabatic thermal conditions is called the composable

67



interface in this paper.

4.2 New composable thermal modeling method

In this section, the new composable thermal modeling method is presented. A two-

grid discretization scheme is introduced in Section 4.2.1 to reduce the number of

ports of each module in order to enhance the model order reduction efficiency. The

stability and the property of the new discretization is shown in Section 4.2.2. Next,

in Section 4.2.3, three power dissipation models are presented and their handling by

the composable thermal modeling method is studied. Section 4.2.4 introduces the

thermal model order reduction technique which generates smaller model for faster

simulation speed. Finally, we show how to realize the reduced thermal model into

SPICE sub-circuit for easier composition in Section 4.2.5 and how to retrieve the

internal node temperature from the reduced thermal model in Section 4.2.6.

4.2.1 Two-grid scheme for discretization

To build compact thermal models from detailed models generated by the finite dif-

ference method (or other discretization schemes), one viable way is to partition the

original thermal structure into many building blocks and perform reduction on these

modules. In case of the multi-core processor example shown in Fig. 4.1 (b) and (c),

the natural building blocks are the CPU core module and the cache module.

However, such a simple strategy does not work well in practice. The main reason

is that many ports will be generated for such thermal modules since each grid in one

direction will generate one port as shown in Fig. 4.3. As a result, the number of ports

can be huge if the mesh is large. 1 Existing model order reduction techniques such

1The internal power dissipation sources also contribute to the number of ports. But as shown in
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as the Krylov subspace or the Gramian based methods do not work well when the

number of ports is large because the projection space and the computational time

are tightly determined by the port counts. Reducing the number of ports is vital for

building the compact thermal models.

The many ports problem mentioned above can be solved by assuming the adjacent

boundary nodes are isothermal. In this way, we can reduce the number of ports

by merging some adjacent ports into one port. Meanwhile, such port merging or

reduction needs to ensure the composability of the thermal modules for fast thermal

design exploration. So the port reduction needs to follow geometrical patterns such

that the resulting thermal modules can be easily assembled to build different thermal

systems.

To achieve the two goals: reducing the port number and ensuring composability,

the port merging should equivalently lead to a coarser global grid among all the

modules so they can be easily assembled based on this global grid. In the following,

we use a 2 × 2 × 2 meshed structure example (in finite difference scheme) shown in

Fig. 4.3 to illustrate the idea.2

For this meshed structure, there are 8 nodes (cubes) denoted by light solid cir-

cles and 24 ports by dark solid circles. Please note, for this special case, every node

is on the boundary and is the vertex of the cube. Thus, each of them has 3 ports

connected. We also indicate the connection between the nodes by an equivalent ther-

mal resistance. Each node also has an equivalent thermal capacitance connected to

the ground, which is not displayed for simplicity. If we apply the adiabatic condi-

tions to all the 6 interfaces, the G, C, T , g and B matrices are shown in (4.3)-(4.7)

Section 4.2.3, only one port is enough to represent all the power dissipation sources in a module.
2For simplicity, in this example, we ignore the internal power sources whose effects will be dis-

cussed later. Also, we do not show the thermal capacitors and only the ports on the three front
faces are shown.
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Figure 4.3: A 2×2×2 meshed structure case. The nodes and the ports are represented
by light solid circles and dark solid circles, respectively.
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(4.3)

C = ρCpI8×8 (4.4)

T (t) =

[

T1,1,1 T2,1,1 T1,2,1 T2,2,1 T1,1,2 T2,1,2 T1,2,2 T2,2,2

]T

(4.5)
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g(t) =[ g1,1,0 g2,1,0 g1,2,0 g2,2,0 g1,1,3 g2,1,3 g1,2,3 g2,2,3 g1,0,1 g2,0,1 g1,0,2 g2,0,2

g1,3,1 g2,3,1 g1,3,2 g2,3,2 g0,1,1 g0,2,1 g0,1,2 g0,2,2 g3,1,1 g3,2,1 g3,1,2 g3,2,2 ]T

(4.6)
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(4.7)

Ti,j,k is the temperature of the node at (i, j, k) in Fig. 4.3 where i, j and k are indexes

in the x, y, z directions, respectively. gi,j,k is the power injection into the boundary

port at (i, j, k). (i, j, k) can be the position of a node (with Ti,j,k) or a port (with

gi,j,k). Notice that I8×8 is an 8 × 8 unit matrix. So we have a symmetric positive

definite (s.p.d.) matrix G and a unit matrix C. Matrix G will still be s.p.d. when we

have power dissipation sources since the power dissipation sources will only change

the B matrix. The s.p.d. property can be preserved during the projection based

reduction, allowing the reduced models to be further optimized and realized. It will

be shown in Section 4.2.5.

In this simple case, we have more ports than nodes. As a result, existing model

reduction methods such as the Krylov subspace based method do not work. For

instance, even with only one moment matching, one will end up with a larger reduced
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model (24 × 24 matrices, which are also full matrices!) than the original one (8 × 8

sparse matrices). Although for the large real finite difference thermal model, the

port number is one order of magnitude smaller than the grid number, it still greatly

degenerates the model reduction efficiency.

In general, if the number of grids in the x, y and z directions are X, Y and Z, the

number of nodes in the detailed thermal model is XY Z, while the number of ports is

fport = 2(XY + XZ + Y Z), (4.8)

which indicates the number of ports grows quadratically with the grid count. It is

impossible to build very compact thermal models if the port number is not reduced.

To reduce the number of ports, one idea is to reduce the number of grids at the

boundaries using a large grid size assuming the boundary surface of the large grid is

isothermal. We can simply merge the adjacent boundary nodes into one node and then

build the new finite difference matrices. But this scheme requires the construction of

the new G and C matrices in (4.1). A better way is to just merge the adjacent ports

of the boundary nodes into one port assuming all the involved nodes are connected

to the same port. Using the example in Fig. 4.3, if we merge 4 adjacent ports into 1

port in each boundary face as show in Fig. 4.4, the port number will be reduced to
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6. The B and g(t) matrices after this boundary merge are shown as

Bm =
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, (4.9)

gm(t) = [gx,y,0, gx,y,3, gx,0,z, gx,3,z, g0,y,z, g3,y,z]
T , (4.10)

where the subscripts x, y and z represent the merged indexes in the x, y and z

directions, respectively. Such a port reduction also leads to a larger grid size at the

boundaries as shown in Fig. 4.4.

The boundary merging will introduce errors because some adjacent nodes with

different temperatures are merged together. The errors, however, are relatively small

when the power dissipation is uniformly distributed inside the module and will be

larger when the power dissipation distribution has a large gradient just next to the

boundary. As shown in our experiment, even in the latter case, the errors are still

within 2-3◦C and the large errors only appear at the boundaries. In order to further

improve the accuracy, a finer boundary grid can be used through merging less ports

into one port. This will result in a less compact reduced model as the model reduction

efficiency is the trade-off in this case.
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Figure 4.4: A 2 × 2 × 2 meshed structure case where the boundary faces (ports) are
merged. The original ports are shown as the hollow circles and the new ports are
represented by the dark solid circles.

4.2.2 Stability and property of the new discretization

In the new two-grid discretization, we only change the right-hand side matrix B

without altering the G and C matrices in (4.1), so the resulting thermal matrices will

still be symmetric positive definite. This is important for more accurate reduction

and passivity preservation during the reduction process.

For the finite difference method, if h is the space difference (assume it is the same

for all the three dimensions), the time step ∆t will be restricted by the following

equation (when the explicit time discretization method is used) [51]:

0 < ∆t <
1

2β(1/∆x2 + 1/∆y2 + 1/∆z2)
(4.11)

where β = κ
ρCp

. For the new method, since equivalently we increase the space differ-

ence at the boundary, it will give a larger upper bound for ∆t. As a result, if we stick

with the ∆t for the model without port merging, the simulation will be stable.
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4.2.3 Power dissipation modeling

Each module has its own power dissipation property, approximately characterized

as the power dissipation distribution within its 3D structure. In this paper, the

power dissipation is modeled in three ways. The first model assumes the power

inside a module is uniformly distributed. We call it the uniform model. The second

model assumes the power is concentrated in some power centers, and is called the

center model. The third model, called the distribution model, follows the measured or

given power distribution across the module. The first two models are simple but less

accurate as some simplifications are made. Specifically, the uniform model generally

gives optimistic junction temperature predictions while the center model generally

gives pessimistic ones. Although the distribution model is more accurate, it requires

the detailed power distribution, which may be unavailable. Please note that the

first two models are just two special cases of the third model: the uniform model

is the distribution model with a uniform distribution and the center model is the

distribution model with zeros everywhere except for the power centers.

In our composable thermal model, all of the three power dissipation models can

be easily handled with a simple formulation. Specifically, the power dissipation of a

module is represented at the right hand side of our thermal model as Bpw × gpw(t).

Bpw ∈ R
n×1 represents the power distribution in the module and is one column of the

B ∈ R
n×p matrix in (4.1) (the other columns in B are for the boundary condition

power sources). gpw(t) is the total power dissipation in the module and is an element

of g(t). Each element of Bpw corresponds to a finite difference node and its value

is the weight of the power dissipation of the finite difference node against the total

power dissipation of the module. For the uniform model, each element of Bpw is 1/n

and for the center model, all elements have the value 0 except for the power center
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nodes whose value is 1/nc where nc is the number of the power centers. The element

values of the distribution model are set according to the provided power distribution.

Given the power distribution function as f(x, y, z), the ith element of Bpw, denoted

as bi
pw, is calculated as

bi
pw =

∫ x+

i

x−

i

∫ y+

i

y−

i

∫ z+

i

z−i
f(x, y, z) dz dy dx

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(x, y, z) dz dy dx

, (4.12)

where x−

i , y−

i and z−i are the starting coordinates of the ith finite difference element

and x+
i , y+

i and z+
i are its ending coordinates.

We use a one dimensional module (x direction) as an example to illustrate the

proposed idea. Assume the module is positioned on x ∈ [0, 1] and discretized into

three nodes. For the uniform model, Bpw = [1/3, 1/3, 1/3]T and Bpw × gpw(t) =

[gpw(t)/3, gpw(t)/3, gpw(t)/3]T indicate the total power gpw(t) is equally divided into

three parts which are injected into three finite difference nodes separately. For the

center model with only one power center at x = 0.5, there will be no power injection

into the first and the third nodes while all the power flows into the second node.

As a result, the Bpw vector is [0, 1, 0]T . For the distribution model, assume we have

the simple power distribution f(x) = x, the Bpw vector should be [1/9, 1/3, 5/9]T

according to (4.12).

In summary, all the three power dissipation models can be handled by our thermal

model using the same formulation. Additionally, no matter which power dissipation

model is used, there will be only one power dissipation handling column Bpw inside

B in our thermal model. As a result, the model reduction efficiency will not be

degraded.
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4.2.4 Thermal model reduction

Reducing the complexity of linear dynamic systems by means of model order reduc-

tion has been introduced in Section 2.1 and studied intensively in Chapter 3. For

compact thermal modeling, the Krylov subspace based approaches have been applied

to reduce the large models [19, 20]. In this paper, we apply a more accurate sampling-

based reduction technique [69, 55], which is based on the globally accurate balanced

truncation realization reduction scheme.

For a dynamic thermal system described in (4.1), the goal is to find a subspace

represented by the projection matrix V ∈ R
n×k, resulting in the approximation

T ≈ V T̃ , (4.13)

where T̃ ∈ R
k×1 is the state in the reduced model and k ≪ n. This is not an equation

but an approximation because T̃ has a smaller dimension than T and the information

in some dimensions may have been lost. The resulting thermal equation becomes

C̃
dT̃ (t)

dt
+ G̃T̃ (t) = B̃g(t), (4.14)

where

G̃ = V T GV, C̃ = V T CV, B̃ = V T B, (4.15)

with G̃ ∈ R
k×k, C̃ ∈ R

k×k, B̃ ∈ R
k×p. The resulting reduced model should preserve

the port behaviors of the original system.

One way to obtain the projection matrix V is by means of the truncated bal-

anced realization (TBR) method. TBR first performs the coordinate changes such

that the controllability and observability (described by their corresponding Gramians

X and Y ) are the same for every state. In this way, the balanced weak states can
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be truncated by picking only the dominant eigenspace of XY as the projection ma-

trix V . However, the computational cost to obtain the Gramians is O(n3), which

makes it too expensive for integrated circuits problems and thus an efficient Gramian

approximation technique is highly appreciated.

Recently, some fast TBR methods have been proposed [69, 55] to mitigate the high

computational cost of the standard TBR method, where the Gramians are approxi-

mated using the Monte-Carlo sampling approach. Specifically, the Gramian, denoted

as X, 3 is explicitly written as the following integral in the frequency domain

X =

∫ +∞

−∞

(jωC + G)−1BBT (jωC + G)−Hdω, (4.16)

where the superscript H denotes the Hermitian transpose. The dominant eigenspace

of X is used as the projection matrix V [55] for model order reduction. As discussed

before, computing the exact values of X in (4.16) is extremely expensive for large

scale systems. A cheaper computation of the Gramian X is achieved by evaluating the

definite integral in (4.16) by summation approximation, using numerical quadrature

methods [35] as discussed below.

The integral of a function f(x) can be approximated as summation by numerical

quadrature methods as
∫ b

a

f(x)dx ≈
m

∑

k=1

wkf(xk), (4.17)

where wk, k = 1, 2, ...,m, are referred to as the quadrature point weights, while

the interpolation points xk, k = 1, 2, ...,m, are called the quadrature points. The

selections of wk and xk depend on the quadrature methods, such as Newton-Cotes,

Gaussian quadrature rules or even random-based Monte Carlo method [35].

3For thermal system, which can be interpreted as the equivalent RC circuit, both the controlla-
bility Gramian X and observability Gramian Y are identical.
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According to (4.17), the Grammian X in the integral form (4.16) can be also

approximated as X̂ in summation form like the following

X ≈ X̂ =
m

∑

k=1

wkzkz
H
k , (4.18)

where

zk = z(jωk) = (jωkC + G)−1B (4.19)

is called the kth snapshot of the system in the frequency domain (let ωk be the kth

sample point in frequency) and wk is the weight from a specific numerical quadrature

method.

For conveniences, X̂ in (4.18) can be equivalently written in matrix form as

X̂ = ZW 2ZH , (4.20)

where

Z = [z1, z2, . . . , zm], (4.21)

and W is a diagonal matrix with diagonal entries wkk =
√

wk.

As the last step, the dominant eigenspace of X needs to be computed to serve as

the projection matrix V . Because from (4.20), there is

X̂ = (ZW )(ZW )H , (4.22)

the eigenspace of X̂ is the same as the left singular space of ZW . In order to save

computational cost, instead of explicitly performing eigenvalue decomposition on X̂,
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singular value decomposition (SVD) on ZW is usually performed as

ZW = V SU. (4.23)

Then V , which gives the dominant eigenspace of X̂, is used as the projection matrix.

4.2.5 Circuit realization and model generation

We have obtained the reduced matrices of the composable models. The next step is

to generate the composite system using these models. One method is directly com-

posing the module matrices into the whole system matrices. However, the reduced

composable model has complex structures and many new node connections will be

introduced by composing the two or more modules. As a result, directly composing

the matrices requires reformulating the structure of the composable model matrices,

which is very complicated and error-prone. Instead, we need to package the compos-

able model as a black box and use it for easy composition of the whole system. In

this paper, we realize the reduced composable model matrices into a SPICE netlist

and package it as a sub-circuit. SPICE will automatically build the composite system

matrices from the hierarchical netlist.

Since the congruence transformation is used in (4.15), the reduced matrices G̃ and

C̃ are symmetric and G̃ is positive definite. As a result, the reduced model can be

further diagonalized by a generalized eigen-decomposition of a definite matrix pencil

C̃ − λG̃ [7]. With the eigenvector matrix P ∈ R
k×k of C̃ − λG̃, we can perform the

coordinate change of (4.14) as

T̃ = PT̂ , (4.24)
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and generate

Ĉ
dT̂ (t)

dt
+ ĜT̂ (t) = B̂g(t), (4.25)

where

Ĝ = P T G̃P, Ĉ = P T C̃P, B̂ = P T B̃. (4.26)

Ĝ and Ĉ are two diagonal matrices here. The diagonalized system in (4.25) can be

realized into RC circuits with controlled sources, and then simulated using SPICE-

type simulators [19].

Next, all the reduced composable models are realized into the SPICE compatible

format using SPICE .subckt command. Specifically, the i-th diagonal element in the

diagonal matrix Ĝ, Ĝii, is realized into a resistor from the i-th node to the ground with

the value 1/Ĝii; the i-th diagonal element in the diagonal matrix Ĉ, Ĉii, is realized

into a capacitor from the i-th node to the ground with the value Ĉii. Realization of

the B̂ matrix is more complicated. The element in the i-th row and j-th column in

the dense matrix B̂, B̂ij, is realized into two components: one component is a current

controlled current source (CCCS) in parallel with the i-th resistor and capacitor with

the j-th independent current source (power source) as the control current and B̂ij as

the current gain. The other component is a voltage controlled voltage source (VCVS)

in series with the j-th independent current with the i-th node voltage as the control

voltage and B̂ij as the voltage gain.

We give a simple example to illustrate the circuit realization. Assume there is a

small 2 × 2 diagonalized system with system matrices Ĉ, Ĝ and B̂ as the following

Ĉ =







Ĉ11 0

0 Ĉ22






, Ĝ =







Ĝ11 0

0 Ĝ22






, B̂ =







B̂11 B̂12

B̂21 B̂22






. (4.27)
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1/Ĝ22 Ĉ22

B̂12T̂1

B̂22T̂2

g2

T̂2

Figure 4.5: A simple circuit realization example.

The realized circuit is shown in Fig. 4.5. The two thermal nodes are shown on the left

side with temperatures T̂1 and T̂2 respectively. The two independent current sources

(power sources) are shown on the right side with values g1 and g2.

After the realization process, we can easily build different multi-core architectures

(their thermal circuits) on top of these basic thermal building-block modules in SPICE

netlists. All the boundary conditions in terms of equivalent resistances and sources

will be added once the architectures are generated.

Although we are realizing matrices into the SPICE netlist, which needs to be re-

constructed into matrices in the simulation stage, the overhead is very small since the

matrices are reduced and have small sizes. In addition, circuit realizing will only be

performed for the small number of basic modules, and will only be performed once

at the composable model library building stage.
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4.2.6 Internal node temperature retrieval technique

Model reduction presented in Section 4.2.4 and the diagonalizing technique introduced

in Section 4.2.5 will destroy the internal state structures and only keep the port

behaviors (This is indeed what model reduction tries to achieve). Specifically, the

final diagonalized reduced model (4.25) has the state T̂ with k dimensions while in

the original finite difference model (4.1), the state T has n dimensions. From the

reduced model, we can only observe the port temperatures but the temperatures of

the original finite difference nodes cannot be observed directly.

Fortunately, the original internal node information can be approximately recovered

from the reduced model. Remembering (4.13) and (4.24), we have

T̄ = V T̃ = V P T̂ , (4.28)

where

T̄ ≈ T ∈ R
n×1 (4.29)

is the original state approximation. As a result, the original state T can be easily

recovered as T̄ from the reduced state T̂ through formulation (4.28).

4.3 Experimental results

The proposed method, ThermComp, has been implemented in MATLAB. First, we

build the finite difference models and generate their reduced composable models for a

single CPU module and a single cache module using the two-grid discretization based

finite difference method and the sampling based model reduction technique. Then,

we compose multi-core systems using the reduced composable CPU core and cache
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Figure 4.6: Power input waveform.

modules. The original finite difference models of the corresponding multi-core systems

are built directly (without port merge process, composition and model reduction) for

the comparison purpose. Finally, thermal transient simulation is performed using

HSPICE on a Linux server with Intel quad-core CPU and 16GB memory to obtain

the temperature distribution for both the original and the reduced composite thermal

systems.

To build the composable models for CPU core and cache modules, we set up

the size of the discretization grid as 32 × 16 × 3 for CPU core module (8mm ×

4mm × 0.75mm) and 64 × 32 × 3 for cache module (16mm × 8mm × 0.75mm), in

order to keep both CPU core and cache modules sharing the same discretization step

value ∆x = ∆y = ∆z = 0.25mm. This is because the length and width of cache

module are twice of the CPU core while the height is the same. Here, we choose

the thermal conductivity κ = 149W/(m◦C), material density ρ = 2300Kg/m3 and
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specific heat cp = 700J/(Kg◦C). The lateral and top surfaces are supposed to be

adiabatic (hi = 0W/m2K) and the heat exchanges with the ambient through the

bottom surface (hi = 10000W/m2K), which is convective to model the heat spreader

effects.

Two types of power dissipation waveforms are shown in Fig. 4.6. The one in (a)

is the type 1 total power input in one module, used for steady state analysis. All the

basic modules (CPU and cache) share this same total input. As discussed in Sec-

tion 4.2.3, this total power may concentrate in some power centers, distribute across

the module uniformly or following a distribution according to the power dissipation

model used. In this experiment, we use both uniform model and center model for the

power dissipation modeling. For the center model, four power centers are put into a

module at its middle layer. We emphasis that ThermComp is able to handle all of

the three power dissipation models (uniform, center and distribution power models).

The waveforms in (b) is the type 2 total power inputs for different modules, used

for transient analysis. As shown in the figure, different modules have different power

input waveforms.

We have composed a quad-core CPU as shown in Fig. 4.1 (b) using the CPU core

module and the cache module shown in Fig. 4.1 (a).

4.3.1 Comparison with finite difference simulation

We first apply power source type 1 for the steady state analysis and use the center

power dissipation model. There are four power centers in each module and all of them

are very close to the boundaries in order to validate the port merge process. Fig. 4.7

(a) and (b) show the temperature distribution at the middle layer and the convective

surface layer (the bottom surface) of the die, respectively. All of the internal nodes
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(a) Temperature distribution at the middle
layer.
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(b) Temperature distribution at the convec-
tive surface.
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(c) Temperature error at the middle layer.
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(d) Temperature error at the convective sur-
face.

Figure 4.7: Composed quad-core microprocessor temperature distribution with type
1 power input and center power dissipation model.
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(b) Temperature distribution at the convec-
tive surface.
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Figure 4.8: Composed quad-core microprocessor temperature distribution with type
1 power input and uniform power dissipation model.
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can be observed thanks to the internal node retrieval technique used. As we can see,

the highest temperatures are on the left hand side and the hot spots appear at the

power centers. This is expected as the CPU cores are on the left hand side.

The error plots of ThermComp are shown in Fig. 4.7 (c) and (d). We can see

although the power centers generated large gradients at the boundaries, the largest

temperature error is 2.5◦C. The errors are almost 0◦C elsewhere other than at the

boundaries. This indicates the high accuracy of our composite model.

Next, we change the power dissipation model to the uniform one, i.e., the power

dissipation is uniformly distributed within the module. Fig. 4.8 (a) and (b) show

the temperature distributions at the middle layer and the convective surface. It is

observed that the temperature decreases from the CPU modules to the cache module

smoothly and the convective surface has a temperature higher than the middle layer.

This is because of the uniform power dissipation in the modules.

The errors of ThermComp with the uniform power distribution are shown in

Fig. 4.8 (c) and (d). Since there are relatively small temperature differences on

the boundaries, the errors of the port merge process are very small, within 0.5◦C

as shown in the figures. A non-smooth transition in the error between two modules

(CPU core and cache) can be seem in the figure. This phenomenon is due to the

boundary merging. As discussed in Section 4.2.1, several thermal nodes are merged

together and the information of the temperature variations among these boundary

thermal nodes are lost. As a trade-off between the simulation accuracy and reduction

efficiency, this effect can be minimized by merging less boundary nodes.

We have also composed the 16-core architecture, which is shown in Fig. 4.1 (c),

using the CPU core and cache in Fig. 4.1 (a). Fig. 4.9 shows the temperatures at the

middle layer and convective surface given input type 1 with the center power model.

The temperature distributions with the uniform power model are shown in Fig. 4.10.
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(a) Temperature distribution at the middle
layer.
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(b) Temperature distribution at the convec-
tive surface.

Figure 4.9: 16-core microprocessor temperature distribution with type 1 power input
and center power dissipation model.

The highest temperatures are on the right hand side as we have more CPU modules

there. The middle has the lowest temperatures as many cache modules are located

close to the center. Similar to the quad-core case, the uniform power distribution

model gives a relatively smoother temperature distribution.

Next, we analyze the dynamic thermal behavior of the 16-core architecture using

the power input type 2 shown in Fig. 4.6 (b) with the center power model. Fig. 4.11

compares the accuracy between the original finite difference method and the compos-

ite model at several randomly picked power centers. The two transient results are

almost the same and the large errors at the fast switch points are actually due to

the small errors in the time axis. Since the waveforms at some time points switch

very fast (like the ideal step), a tiny timing error will lead to a large temperature

difference. But those differences do not represent any meaningful errors in practice.

Another dynamic thermal behavior analysis of the 16-core architecture is per-

formed using a power trace obtained from power estimator Wattch [11] by running
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(b) Temperature distribution at the convec-
tive surface.

Figure 4.10: 16-core microprocessor temperature distribution with type 1 power input
and uniform power dissipation model.

the SPEC [30] bzip2 benchmark. The bzip2 benchmark power trace, which has more

complex transient behavior, is applied to each module using the center power model.

Fig. 4.12 shows the transient results from the original finite difference model and the

composite model. Similar to results from the previous experiment, the composite

model generated accurate transient waveforms.

The CPU time results for different configurations of modules are shown in Table

4.1. In the table, xx org means the original models directly built from finite differ-

ence method and xx red means the reduced systems built from composable models

(ThermComp). It can be seen that with the reduced composite thermal models, we

can achieve about two orders of magnitude speedup for the transient simulation of

the multi-core systems. In addition, the reduced composite thermal models lead to

much smaller memory footprint than the original models.
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(a) Transient simulation results for both full model (xx org) and
reduced composite model (xx red).
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Figure 4.11: Transient simulation accuracy comparison with the full model at some
power centers for the 16-core architecture, using power input source type 2.
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1 2 3 4 5 6 7 8
Circuit #Node #Elem Run time (s) Memory Speedup

Trans Total (mb) Trans Total

CPU core org 3475 12340 4.7 10.9 32.6
CPU core red 225 448 0.03 0.05 0.7 157 218

Cache org 13093 48232 31.9 100 30
Cache red 2145 4288 0.2 3.2 6.2 160 31

2 CPU cores org 6949 24678 9.3 33.4 68
2 CPU cores red 449 894 0.05 0.1 1.3 186 334
4 CPU cores org 13897 49352 42.3 85.8 28
4 CPU cores red 897 1784 0.1 0.35 2.6 423 245

Quad-core chip org 26989 97582 167 520 93
Quad-core chip red 3041 6070 0.48 6.9 8.5 348 75

16-core chip org 107953 390312 392 24146 224
16-core chip red 12161 24264 15.5 114 28 25 212

Table 4.1: CPU time comparisons between the original models (xx org) and reduced
thermal systems using composable models (xx red).

1 2 3 4 5
Circuit ThermComp HotSpot

node # total time (s) node # total time (s)
Quad-core chip 26989 6.9 16384 86

16-core chip 107953 114 65536 586

Table 4.2: CPU time comparison between ThermComp and HotSpot.
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Figure 4.12: Transient simulation accuracy comparison with the full model at some
power centers for the 16-core architecture, using power input from bzip2 benchmark.

4.3.2 Comparison with HotSpot program

To further illustrate the advantages of the proposed method, we compared the new

modeling technique with existing thermal modeling program HotSpot [32]. To per-

form accuracy comparison between the two programs, we have configured HotSpot

to have the same settings as ThermComp. HotSpot’s heat sink and heat spreader are

set to be very thin (10−7m in thickness) in order to neglect their effects. HotSpot [32]

steady state results of the quad-core and 16-core architectures using the power in-

put in Fig. 4.6 (a) are shown in Fig. 4.13. Being a uniform power distribution based

method, HotSpot gives very similar results compared to ThermComp models with uni-

form power distribution. The maximum difference between ThermComp and HotSpot

is within 1◦C.

In addition, in order to further verify our method using more realistic CPU archi-
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Figure 4.13: HotSpot steady state results of the quad-core and 16-core microproces-
sors.
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Figure 4.14: The architecture of the 8-core alpha chip.
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Figure 4.15: HotSpot steady state results of the 8-core microprocessor.
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(a) Temperature distribution at the middle
layer.
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(b) Temperature distribution of the 16-core
microprocessor.

Figure 4.16: Steady state results of the 8-core microprocessor with the composable
thermal model with the distributed power model.
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tecture with general distributed power model case, we have built an 8-core CPU model

with the core structure similar to the alpha ev6 architecture as shown in Fig. 4.14.

The power trace of the 8-core CPU is obtained by running Wattch [11] power es-

timator with SPEC benchmarks [30]. For the composite model, in order to verify

the distributed power model, we treat each core as a module, and extract the power

distribution by running different SPEC benchmarks and let the power distribution

follow the average power ratio among all the functional blocks. The temperature

distribution is obtained by running bizp2 benchmark on the bottom left dual-core

structure (core11, core12, and cache1), mcf benchmark on the bottom right dual-core

structure (core21, core22, and cache2), swim benchmark on the top left dual-core

structure (core31, core32, and cache3), and mgrid benchmark on the top right dual-

core structure (core41, core42, and cache4). The steady state results of the HotSpot

results on the same 8-core structure is shown in Fig. 4.15. The steady state results

from the composite model with the distributed power model are shown in Fig. 4.16.

Comparing Fig. 4.15 and Fig. 4.16, except for the errors on the boundaries of the

modules, the other parts of the temperature distribution from the composable model

matches the HotSpot results very well.

The CPU time comparison with HotSpot using the power trace from Fig. 4.6 (a)

is shown in Table 4.2. In the steady state case, we have configured the heat sink and

heat spreader to a smaller value in order to neglect their effects, however, doing this

will cause the transient simulation hard to converge and result in a very large transient

simulation time. In order to make a fair comparison, in the transient simulation case,

we have relaxed the thickness of both the heat sink and heat spreader to the default

values. Since HotSpot grid mode restricts the grid dimensions to be powers of two,

we make HotSpot node number to be smaller than ThermComp node number in the

case where we cannot make them the same. ThermComp is faster than HotSpot even
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with larger node number (higher resolution) as shown in the table.

4.4 Summary

In this chapter, we have proposed a new compact thermal modeling technique for ar-

chitecture level thermal design space exploration for multi-core microprocessors. The

new approach, called ThermComp, builds the models from the first principles by the

finite difference method for each basic module and reduces the model complexity by

the sampling based model order reduction technique. To improve the reduction effi-

ciency, we try to merge the boundary nodes of modules, which lead to different space

discretizations for the whole thermal system. ThermComp preserves the accuracy of

fine-grained models while trying to achieve the accuracy of course-grained models.

The resulting reduced models are then realized into equivalent RC circuits for easy

assembling and simulation by circuit level SPICE simulators. Experimental results

on a number of multi-core microprocessor architectures show that the new approach

can easily build accurate thermal circuits from the composable thermal models. The

reduced composite models lead to orders of magnitude speedup over the standard

finite difference models and are much faster than the HotSpot method with similar

accuracy.
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Chapter 5

Runtime Thermal Estimation and

Prediction for Dynamic Thermal

Management of Microprocessors

In this chapter, the full-chip error-tolerant runtime thermal estimation and predic-

tion method FRETEP is presented. FRETEP accurately estimates and predicts the

temperature of microprocessors with low overhead at runtime. The estimated and

predicted temperature information is able to help the dynamic thermal management

(DTM) of the chip. The challenges of runtime thermal estimation and prediction are

shown first in Section 5.1. Then, the thermal estimation and prediction method is

presented in Section 5.2. Next, in order to further improve the estimation accuracy,

a power-driven thermal sensor placement algorithm is demonstrated in Section 5.3.

The algorithm flow is summarized in Section 5.4. Finally, experimental results are

given in Section 5.5 and Section 5.6 concludes this chapter.
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5.1 Challenges for accurate thermal estimation and

prediction

The basics of the thermal simulation can be found in Section 2.3. Unfortunately,

the traditional thermal simulation cannot be directly applied to the runtime thermal

estimation and prediction of microprocessors. In this section, we summarize the

challenges of current thermal estimation and prediction and provide solutions in the

following sections.

For convenience, the thermal system equation (2.29) here

C
dT (t)

dt
+ GT (t) = BU(t), (5.1)

where its right hand side is also written as

J(t) = BU(t). (5.2)

Our goal is to accurately compute all the thermal node temperatures T (t) and

even predict their values in the near future with small overhead. However, there

are several practical problems preventing us from getting accurate temperatures in

reality.

The first problem comes from the inaccurate power estimations and inaccurate

thermal model. From (5.1), T (t) can be solved numerically given the power inputs of

all nodes provided by the runtime power estimator and the initial state T (0). Recently,

many accurate runtime functional block level power estimation methods have been

proposed, for example [34, 56]. Most of these methods are based on the performance

counters and are relatively accurate and computationally efficient. However, the
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estimated powers still contain estimation errors, especially the mean value difference,

compared to the real power dissipations of the functional blocks. So the power errors

will lead to inaccurate temperature estimation and prediction. Furthermore, the

inaccurate thermal model is the second source of errors. Calibration can be performed

to improve the accuracy, but the thermal conductivity of materials are functions

of temperature, which will introduce unavoidable temperature errors if only linear

thermal models are used (as the case for most existing works). In this dissertation,

we solve this problem first in Section 5.2.1 by assuming sufficient number of thermal

sensors.

The second problem comes from the limited number of thermal sensors on a prac-

tical chip. We further propose a correlation based method to address this problem as

shown in Section 5.2.1.

The third problem is the computational cost issue if we want to perform the full-

chip thermal estimation at runtime. In other words, it is impractical to directly work

on (5.1) as the matrix size can be extremely large. Compact modeling technique

can be used to reduce the system size, but it cannot be directly applied to the new

estimation algorithm because of the newly introduced error compensation. We show

in Section 5.2.2 how to optimize the compact modeling method and integrate it into

the new thermal estimation method with error compensation.

Finally, a full-chip thermal prediction usually requires high computational cost

because of the large thermal node number. We show in Section 5.2.3 we can still

predict the full-chip temperature with small overhead with the newly designed full-

chip thermal prediction framework.
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5.2 Full-chip runtime thermal estimation and pre-

diction method

In this section, we present the new full-chip runtime thermal estimation and prediction

method FRETEP.

5.2.1 Full-chip temperature estimation

Generally, a runtime thermal estimator cannot generate accurate results, as briefly

introduced in Section 2.3. One type of error is the power estimation error. Usually

based on performance counters, the power estimator results may contain errors with

non-zero mean and variance. Its statistics may also change at runtime because of the

change of the running applications or threads. It has been shown in [44] that most

part of the power is concentrated around DC and runtime power average is usually

used as the input for thermal estimation. As a result, the mean value of the power

estimation error is more important than the variance. The other type of thermal

estimation error comes from the thermal model. There are differences in the thermal

resistance and capacitance values compared to the real thermal system mainly because

of the thermal effect on the thermal resistors and capacitors. We will consider both

types of errors and show how accurate full-chip temperature is estimated.

Assume the inaccurate power estimation provided by the power estimator is J and

the system matrices G and C are not accurate, the resulting temperature estimation

is T . In order to calculate T numerically, we need to discretize (5.1) in time domain.

Backward Euler (BE) is used here for illustration. By choosing an appropriate time
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step h, BE discretizes (5.1) in time domain as

(
C

h
+ G)T (t + h) =

C

h
T (t) + J(t + h) (5.3)

Through inverting (C
h

+ G) to the right hand side, (5.3) is also written as

T (t + h) = (
C

h
+ G)−1(

C

h
T (t) + J(t + h)) (5.4)

Given the initial value T (0) and the input J(t) for all time points, the subsequent

temperature T (t) can be calculated iteratively using (5.4).

However, the temperature T (t) calculated from (5.4) is inaccurate due to the in-

accurate input J and the inaccurate model G, C. Assume the actual system matrices

are Ḡ = G + δG and C̄ = C + δC, and the actual power input is J̄ = J + δJ . The

real system response T̄ can be calculated from

(
C̄

h
+ Ḡ)T̄ (t + h) =

C̄

h
T̄ (t) + J̄(t + h) (5.5)

Error compensation with sufficient thermal sensors

We would like to compensate the power estimation and model errors to generate an

accurate temperature estimation.

In the ideal case, assume there are thermal sensors everywhere on the chip, that

is, we have the accurate temperature information T̄ (t) already. 1 We define the

1Note that this ideal case does not exist in reality, where there are only limited number of
thermal sensors available. It is introduced here only for the purpose of better presentation and
easier understanding of the realistic case shown later.
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temperature estimation error δT , power estimation error δJ and model error δM as

δT (t) := T̄ (t) − T (t) (5.6)

δJ(t) := J̄(t) − J(t) (5.7)

δM(t) := −(
δC

h
+ δG)T̄ (t) +

δC

h
T̄ (t − h) (5.8)

Then subtract (5.3) from (5.5) and neglect the second order term, we have

(
C

h
+ G)δT (t + h) =

C

h
δT (t) + δJ(t + h) + δM(t + h) (5.9)

Because of the low-pass filter property of thermal system [61], the temperature es-

timation error over two successive time steps does not change too much, that is

δT (t + h) ≈ δT (t). Therefore, (5.9) becomes

(
C

h
+ G)δT (t) ≈ C

h
δT (t) + δJ(t + h) + δM(t + h) (5.10)

We define the error compensation term, determined at time t + h, as

ǫ := δJ(t + h) + δM(t + h) (5.11)

and from (5.10), the error compensation term ǫ can be approximately solved as

ǫ ≈ GδT (t) (5.12)

We do not express ǫ as a variable of t since it will not be calculated repeatedly at

every time point.

After we obtain the error compensation term, the inputs of all the future time
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points are updated as

J(t + ih) = J(t + ih) + ǫ (5.13)

where i = 1, 2, . . ..

Note the error compensation term ǫ is accurate as long as the power estimation

error statistics and the temperature do not change too much. In this case, one

compensation is enough for the whole estimation time. If these conditions are not

satisfied, we can perform the error compensation process (5.12) and (5.13) periodically

or at the time when the temperature errors at the thermal sensors exceed a threshold.

Error compensation with limited number of thermal sensors

We have shown we are able to fully compensate the power estimation error and model

error to generate accurate thermal estimation in the ideal case with sufficient number

of thermal sensors. However, we cannot put thermal sensors all over the chip in reality.

The number of sensors is always limited and as a result, it is impossible to obtain

all the elements of δT (t) in (5.12). In this subsection, we show how to exploit the

power estimator and limited thermal sensor information and approximately recover

the full-chip temperature.

Assume there are ns thermal sensors placed on chip. For convenience, we first

perform matrix permutation on (5.1) to group the thermal nodes with thermal sensors

together as







C11 C12

C21 C22













dTs(t)
dt

dTu(t)
dt






+







G11 G12

G21 G22













Ts(t)

Tu(t)






=







B1

B2






u(t) (5.14)
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and






Js(t)

Ju(t)






=







B1

B2






u(t) (5.15)

where Ts(t) ∈ R
ns represents the temperatures at the nodes where thermal sensors are

placed and Tu(t) ∈ R
n−ns represents the temperatures at the nodes without thermal

sensors.

Accordingly, (5.12) becomes







G11 G12

G21 G22













δTs(t)

δTu(t)






=







ǫs

ǫu






(5.16)

We know the value of δTs since thermal sensors are placed at these nodes. However,

δTu is unknown due to the absence of thermal sensors. Since there are 2n − ns

unknowns in (5.16) with n equations, (5.16) is unsolvable (in the normal sense) unless

the number of unknowns is reduced. Fortunately, we are able to reduce the number

of unknowns by taking advantage of correlation among different functional blocks in

a chip.

Our idea is based on the observation that many functional blocks in a chip are

highly correlated in their power consumptions. For instance, when a integer register

file is busy, most likely the integer ALU and nearby cache memory will also be busy.

As a result, if we properly place the thermal sensors so that more correlated functional

blocks are clustered around those thermal sensors, we should be able to have a good

guess of the compensation errors around the thermal sensors. Specifically, based on

the placement of the ns thermal sensors, the chip is divided into ns blocks by com-

bining the correlated functional blocks around each thermal sensor. We call this kind

of block as sensor block. The compensation errors of different nodes inside one func-
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tional block are correlated and the correlation can be characterized. They are usually

assumed to be the same or follow a given distribution from characterization. There

are also compensation error correlations among different functional blocks inside the

same sensor block, mainly because the power consumptions of these functional blocks

rely strongly on a small number of common performance parameters. As a result, we

introduce a correlation matrix D ∈ R
(n−ns)×ns and represent ǫu in terms of ǫs as

ǫu = Dǫs (5.17)

where each column of D shows the correlation of the compensation errors within a

specific sensor block.

The details of constructing the correlation matrix D will be shown in Section 5.3,

since it is also related to the thermal sensor placement. At this stage, for simplicity

considerations, the correlation inside the functional block is temporally established by

assuming the compensation errors are identical for all nodes. The relationship among

different functional blocks inside the same sensor block is established by keeping the

input ratios among different functional blocks invariant before and after the error

compensation. We remark that more accurate correlation can be found through

statistic characterization on realistic chips, as will be shown later in Section 5.3. In

addition, the correlation matrix D will introduce errors if some functional blocks are

not fully correlated. In this case, the errors can be minimized by placing thermal

sensors properly or increasing the sensor number as shown in the experiments.

We would like to walk through a simple example to illustrate this idea. As shown

in Fig. 5.1, there are only three functional blocks on chip. Two thermal sensors (red

dashed circle) are placed, one inside FB1 and the other one inside FB2. According

to the two thermal sensors, the chip is divided into two sensor blocks: sensor block
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Figure 5.1: A simple example with three functional blocks (FB in short in the figure)
to show the D matrix construction. The functional blocks are bounded by dashed
lines. The thermal sensor nodes are represented by red dashed circles and the other
thermal nodes by black solid circles. The power sources and capacitors are omitted
here for simplicity.

1 contains FB1 and sensor block 2 includes FB2 and FB3. In this example, given ǫs

and ǫu corresponding to Ts and Tu shown in Fig. 5.1 as

ǫT
s = [ǫs1 ǫs2] (5.18)

ǫT
u = [ǫu1 ǫu2 ǫu3 ǫu4 ǫu5 ǫu6 ǫu7] (5.19)

the D matrix can be formulated as

DT =







1 1 0 0 0 0 0

0 0 1 1
Jfb3

Jfb2

Jfb3

Jfb2

Jfb3

Jfb2






(5.20)

where Jfb2 and Jfb3 are the power inputs of the nodes inside FB2 and FB3 respectively.

Within each functional block, the compensation errors of different nodes are the same.

Take FB1 for example, there is D11 = D21 = 1. In order to keep the input ratios

invariant among different functional blocks inside the same sensor block, the input

errors of different functional blocks are set so that they are proportional to their power
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values. Take sensor block 2 (FB1 and FB2) for example, the input error ratio between

FB2 and FB3 is Jfb3/Jfb2 as shown in the second column of D. Note although Jfb2

and Jfb3 may change at runtime, their ratio Jfb3/Jfb2 remains constant since FB2

and FB3 are correlated. We stress again that the construction of D matrix is not

unique and more sophisticated characterization methods can be applied to get more

accurate D.

After the introduction of the correlation matrix D, the number of unknowns has

been reduced to n. Combined with (5.17), (5.16) is rearranged as







G12 −Ins×ns

G22 −D













δTu(t)

ǫs






=







−G11δTs(t)

−G21δTs(t)






(5.21)

where Ins×ns
is an identity matrix with dimension ns. After ǫs is solved from (5.21)

and ǫu is obtained from (5.17), the error compensation is performed with the permuted

form of (5.13).

5.2.2 Compact modeling for fast runtime simulation

Runtime thermal estimation and prediction improve thermal management perfor-

mance. However, at the same time, they introduce overhead and degrade the system

performance. The overhead can be significant especially when the full-chip thermal

model is used. Model order reduction (MOR) technique, which reduces the size of

large dynamic system models, can be used to reduce the runtime overhead. MOR is

introduced and studied intensively in this dissertation, in Section 2.1 and Chapter 3,

respectively. However, its integration with the new thermal estimation method is

not straightforward. For the completeness of section, we will first review MOR very

briefly (interested readers are referred to Section 2.1, Chapter 3 and [5] for a compre-
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hensive MOR introduction) and then show in detail how to optimize and integrate

MOR into our thermal estimation method.

Assume we need to reduce the original n order model into a smaller k (usually

k ≪ n) order model. The projection based MOR method finds a projection matrix

V ∈ R
n×k which satisfies the following approximation

T (t) ≈ V T̃ (t) (5.22)

where T̃ ∈ R
k is the reduced state. In this case, the reduced model is

C̃
dT̃ (t)

dt
+ G̃T̃ (t) = B̃u(t) (5.23)

where C̃ = V T CV , G̃ = V T GV and B̃ = V T B.

In order to integrate MOR into the new thermal estimation method with error

compensation, the most important thing is to obtain the reduced error compensation

term ǫ̃ in the reduced model through a similar formulation of (5.21) and (5.17).

First, in order to preserve the structure of (5.14), the structure preserving re-

duction [25] is used instead of the traditional reduction method. After we get the

projection matrix V of (5.14) using a traditional reduction method, the structure

preserving reduction method divides V into two blocks according to (5.14) as

V =







V1

V2






(5.24)

109



and modify V into the structure preserving projection matrix Vsp

Vsp =







orth(V1) 0

0 orth(V2)






(5.25)

where orth means V1 and V2 are orthonomalized to enhance the numerical perfor-

mance. In this case, the reduced model has the formulation







C̃11 C̃12

C̃21 C̃22













dT̃s(t)
dt

dT̃u(t)
dt






+







G̃11 G̃12

G̃21 G̃22













T̃s(t)

T̃u(t)






=







B̃1u(t)

B̃2u(t)






(5.26)

where, take the G and B matrices for example, G̃11 = V T
1 G11V1, G̃12 = V T

1 G12V2,

G̃21 = V T
2 G21V1, G̃22 = V T

2 G22V2, B̃1 = V T
1 B1, B̃2 = V T

2 B2.

In the reduced model, (5.16) becomes







G̃11 G̃12

G̃21 G̃22













δT̃s(t)

δT̃u(t)






=







ǫ̃s

ǫ̃u






(5.27)

where ǫ̃s = V T
1 ǫs, ǫ̃u = V T

2 ǫu.

There is ǫu = Dǫs in the original model, we also need to find a similar relationship

between ǫ̃u and ǫ̃s to reduce the number of unkowns in (5.27). Since there is an

approximation

ǫs ≈ V1ǫ̃s = V1V
T
1 ǫs (5.28)

then we have the relationship of ǫ̃u and ǫ̃s as

ǫ̃u = V T
2 Dǫs ≈ V T

2 DV1ǫ̃s (5.29)
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Generally, this is not a good approximation, because ǫs = B1δu + δM1 and the

projection matrix V1 may not contain the subspace spanned by B1. In order to

achieve a good approximation, V1 in (5.25) is updated by appending B1 as

V1 = [V1, B1] (5.30)

and the accurate relationship of ǫ̃u and ǫ̃s is

ǫ̃u ≈ V T
2 DV1ǫ̃s = D̃ǫ̃s (5.31)

where

D̃ = V T
2 DV1 (5.32)

Combining (5.27) and (5.31), ǫ̃s is solved from the reduced version of (5.21) as







G̃12 −Ik×k

G̃22 −D̃













δT̃u(t)

ǫ̃s






=







−G̃11δT̃s(t)

−G̃21δT̃s(t)






(5.33)

and ǫ̃u is obtained using (5.31).

The reduced model simulation is performed by iteratively using

T̃ (t + h) = (
C̃

h
+ G̃)−1(

C̃

h
T̃ (t) + J̃(t + h)) (5.34)

with the error compensation

J̃(t + ih) = J̃(t + ih) + ǫ̃ (5.35)

where i = 1, 2, . . .. The full-chip temperature T is recovered using (5.22).
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Figure 5.2: Full-chip thermal prediction framework.

5.2.3 Full-chip runtime thermal prediction

Predicting full-chip thermal behaviors at runtime is important for the emerging pre-

dictive dynamic thermal management [74, 68, 73]. However, directly performing

prediction on the estimated full-chip thermal data is very expensive due to the large

number of thermal nodes, since each thermal node contains a thermal time series

to be predicted. We have designed a full-chip thermal prediction framework shown

in Fig. 5.2 by taking advantage of the small number of functional blocks, the small

number of thermal sensors and the high efficiency of the newly introduced full-chip

thermal estimation method. In the prediction framework, the power estimations and

thermal sensor readings are first predicted using time series prediction models [9].

Then, the future full-chip temperature is calculated using the efficient thermal esti-

mation model with the predicted power and thermal sensor information. Because the

number of functional blocks (number of power estimation time series) and the number

of thermal sensors (number of thermal sensor temperature reading time series) are

both small (usually in dozens) compared to the number of full-chip temperature nodes

(usually in thousands) and the new thermal estimation method is very efficient, the

new full-chip thermal prediction framework is able to predict the full-chip thermal

behaviors with small overhead.

Among many widely used time series prediction methods [9], we choose the autore-
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gressive moving average (ARMA) model in this paper because of its long prediction

range. An ARMA model consists of two parts, the autoregressive (AR) part and the

moving average (MA) part. With p orders of AR part and q orders of MA part, an

ARMA(p,q) model is represented as

y(t) + Σp
i=1(aiy(t − i)) = e(t) + Σq

i=1(cie(t − i)) (5.36)

where y(t) is the series’ value at time t (in our case, the power or thermal sensor

temperature at t), e(t) is the white noise term, ai are the AR parameters and ci are

the MA parameters. Given a time frame of training data, an ARMA(p,q) model can

be generated and used to predict the future data. The details of the ARMA model

and other time series prediction methods can be found in [9].

5.3 Power-driven thermal sensor placement algo-

rithm

As shown previously in Section 5.2, the construction of the correlation matrix D is

highly related to the thermal sensor placement. It is obvious that thermal sensor

placement has impact on the estimation accuracy as long as thermal sensor is used in

the thermal estimation process. Specifically for FRETEP, note that (5.17) may not

work well if the thermal sensor placement is not considered. If ǫu and ǫs are strongly

correlated, then (5.17) will hold for all the time over a wide variety of applications

provided that the error correlation matrix D is correctly formed. However, if ǫu and

ǫs are weakly correlated, or even independent, there will be no D exist which can

make (5.17) valid. Our objective in this section is to find the optimal thermal sensor

placement which will maximize the correlation between ǫu and ǫs and at the same
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time minimize the number of thermal sensors.

In this section, the power-driven thermal sensor placement algorithm is proposed

to assist the thermal estimation and prediction method FRETEP. First, two types

of thermal sensor placement methods are introduced in Section 5.3.1. Then, the new

power-driven thermal sensor placement algorithm is presented from Section 5.3.2 to

Section 5.3.5.

5.3.1 Two types of thermal sensor placement methods

Thermal sensor placement problem for microprocessors has been studied in the past

few years and several methods have been proposed [38, 50, 47, 58]. In [38], the

maximum temperature difference from the hot spot to a certain spatial point on chip

is shown analytically. The authors demonstrated how this error bound will determine

the maximum hot spot temperature error from a thermal sensor and how it will

guide the thermal sensor placement. In [50], a systematic thermal sensor placement

method was proposed: an interpolation method was introduced to recover the full-

chip thermal map, and the k-means clustering algorithm was applied to determine the

sensor locations according to the hot spot distribution. The main goal of this work

is to cover as many hot spots as possible with the limited thermal sensor resources.

However it has limited accuracy for the thermal map recovery since the interpolation

accuracy is directly related to the thermal sensor density. Another thermal sensor

placement work is the spatial thermal spectral-driven method [47]. It employs the

fact that the fast temperature change in space leads to high spatial temperature

frequency. By placing more thermal sensors at the places with high frequencies, the

full-chip temperature can be recovered with higher accuracy. However, in order to get

accurate results, a lot of thermal sensors must be placed according to the Nyquist-
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(a) The traditional sensor based thermal estimation flow and the
corresponding thermal sensor placement.

(b) The proposed power calibration based thermal estimation flow
and the corresponding thermal sensor placement.

Figure 5.3: Comparison of the traditional sensor based thermal estimation flow and
the proposed power calibration based thermal estimation flow. The thermal sensors
play completely different roles in the two approaches.

Shannon sampling theorem. This requires very dense sensor placement at the fast

temperature changing areas (high spatial frequency areas). An optimization technique

based thermal sensor placement method was introduced in [58]. According to this

work, a point of interest (usually hot spot) can be monitored if a thermal sensor is

placed within the observing area of this point. The number of thermal sensors is

minimized with the constraint that all the hot spots are covered.

Although quite different in details, all the existing thermal sensor placement meth-

ods exploit only the chip thermal information and properties. As shown in Fig. 5.3

(a), full-chip thermal estimation is achieved by a full-chip temperature recovery tech-

nique with the thermal sensor readings as input. Power information, which is the

source of the temperature, remains un-explored for thermal sensor placement. Power
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information is particularly relevant because power consumptions of many functional

blocks are correlated and this can lead to less number of required sensors or better

accuracy given the same number of sensors. In this paper, we propose a new thermal

sensor placement method by looking into the information from the power consump-

tion side. As shown in Fig. 5.3 (b), the proposed thermal sensor placement method

is based on a different thermal estimation flow with two additional components: a

performance counter based runtime power estimator and a thermal estimator with

power calibration. The new thermal sensor placement method serves to boost the

power calibration efficiency to achieve accurate thermal estimation.

The new thermal sensor placement algorithm mainly includes two steps: first,

experiments will be performed on a variety of benchmarks to collect the sample data

from measurement and runtime power estimation to form a correlation graph. Then,

a correlation clustering algorithm is applied on the correlation graph. The functional

blocks are automatically clustered into sensor blocks without pre-specifying the sensor

block count (number of thermal sensors). One thermal sensor is placed for each sensor

block and the correlation matrix D is determined.

5.3.2 Correlation graph generation

Please note that instead of finding the error relation for each thermal node as (5.17),

it is only necessary to find the correlation among functional blocks since the powers

of the nodes inside each functional block are extremely correlated and are usually

considered to be the same or follow a static distribution. As a result, we only need

to find the relation of the total power error

δUu = DpδUs (5.37)
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where δUs and δUu represent the total power error of the functional blocks with

thermal sensors and the total power error of the functional blocks without thermal

sensors, respectively. The fine-grained power error relation (5.17) can then be easily

calculated.

As the first step, the correlation graph is generated for all the functional blocks,

using the collected sample data, both from measurement and power estimator simu-

lation.

Assume there are b benchmarks with steady power configurations. First, we run

the benchmarks using the power estimator and record the power results

Û = [Û1, Û2, . . . , Û b] (5.38)

where, for example, the ith sample

Û i = [ûi
1, û

i
2, . . . , û

i
p]

T (5.39)

since there are np functional blocks. Next, the benchmarks are run on the test chip

until the temperatures reach steady state. The steady state temperature is measured

as T . The real power of the chip is reversely calculated as

U = [U1, U2, . . . , U b] (5.40)

using the measured temperatures. Note that all these steps should be performed

off-line, such that the error can be better controlled and no overhead is introduced at

runtime. Please see [48, 16] for details of the reverse power calculation. The errors of
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corrδu =















E[(δu1−µ1)(δu1−µ1)]

σ2
δu1

E[(δu1−µ1)(δu2−µ2)]
σδu1

σδu2

· · · E[(δu1−µ1)(δup−µp)]

σδu1
σδup

E[(δu2−µ2)(δu1−µ1)]
σδu2

σδu1

E[(δu2−µ2)(δu2−µ2)]

σ2
δu2

· · · E[(δu2−µ2)(δup−µp)]

σδu2
σδup

...
...

. . .
...

E[(δup−µp)(δu1−µ1)]

σδupσδu1

E[(δup−µp)(δu2−µ2)]

σδupσδu2

· · · E[(δup−µp)(δup−µp)]

σ2
δup















(5.42)

the functional block powers are obtained as

δU = U − Û (5.41)

The next step is to form a correlation matrix, such that functional blocks with

high power error correlations can be identified and put into one sensor block. Using

the data samples δU , the correlation matrix is calculated as (5.42) shown on top of

the next page, where µi is the expected value of δui.

By definition, correlation matrix is a symmetric matrix containing the correlation

values of each random variable pair. The correlation value is a number between −1

and 1 which reveals the dependence of a random variable pair, where 1 and −1 indicate

the two random variables are fully dependent and 0 means totally independence. In

our case, we can take the absolute value of the correlation regardless of the sign.

The correlation graph is easily generated by observing the correlation matrix.

Assume the correlation matrix of a chip with four functional blocks is

corrδu =



















1 0.9 0.4 0.8

0.9 1 0.3 0.8

0.4 0.3 1 0.7

0.8 0.8 0.7 1



















(5.43)
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Figure 5.4: A correlation clustering example for a complete undirected weighted graph
with four vertices. On each edge eij, w−

ij is shown as red shaded while w+ is in normal.
The outputed clusters are surrounded by dashed lines filled with yellow color.

The corresponding correlation graph is generated as shown in Fig. 5.4.

5.3.3 Correlation clustering algorithm

The highly correlated functional blocks need to be clustered into the same sensor

block in order to enhance the relation in (5.17). There are many clustering algorithms

which can be used to cluster the functional blocks into sensor blocks according to the

correlation graph, such as k-means method used in [50] (although the objective is quit

different). However, most of these clustering algorithms require the number of clusters

(in our case, the number of sensors) to be known as a priori, which typically is not

the case or estimation needs to be performed. As a result, it is better to determine

the number of sensors in the clustering algorithm. In this paper, we introduce the

correlation clustering algorithm [8] which can automatically determine the number of

thermal sensors and their locations based on the generated correlation graph.

In our case, the input of the correlation clustering algorithm is the correlation

graph generated previously, which can be expressed as a complete undirected weighted
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graph G = (V,E) (see Fig. 5.4 for example) . There are np vertices, where each vertex

in the graph represents a functional block. Let vi denote the ith vertex, eij denote

the edge (vi, vj) and the correlation on the edge is cij. There are two weights on each

edge eij, denoted as w+
ij and w−

ij , where w+
ij is the cost of cutting the edge and w−

ij

is the cost of keeping the edge. We use the additive weights which are calculated as

w+
ij = cij and w−

ij = 1 − cij. The output of the correlation clustering algorithm is

a new graph G ′ with edges xij ∈ {0, 1}, where xij = 0 means vertices vi and vj are

assigned into the same cluster while xij = 1 means eij is cut and vi and vj are assigned

into different clusters. Please note that for the clustering problem, the values of xij

should satisfy the triangle inequality: xij + xjk ≥ xik.

The basic idea of the correlation clustering algorithm is to find the optimal clus-

ters (and the number of clusters) such that the uncorrelations inside each cluster is

minimized and at the same time, the correlations among clusters are minimized. We

can measure the uncorrelations inside clusters as

Winside =
∑

i,j:i<j

(1 − xij)w
−

ij (5.44)

and the correlations among clusters as

Wamong =
∑

i,j:i<j

xijw
+
ij (5.45)

Please note 1 − xij is 1 if vi and vj are in the same cluster while 0 means they are

separated. The total cost can be written as Winside + Wamong and the formulation of
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the optimization problem is

minimize
∑

i,j:i<j

(1 − xij)w
−

ij + xijw
+
ij

subject to xij ∈ {0, 1}

xij + xjk ≥ xik

(5.46)

As an example, consider the graph shown in Fig. 5.4. The weights w−

ij and w+
ij are

shown on each edge. The clusters determined by the correlation clustering algorithm

are shown surrounded by dashed lines filled with yellow color. Obviously, v1, v2 and

v4 are highly correlated to each other and are assigned into the same cluster. For v3,

although it is relatively correlated to v4, it is uncorrelated to v1 and v2. As a result,

it is assigned into another cluster. These two clusters minimize the cost function in

(5.46) and 2 is automatically determined as the number of clusters.

5.3.4 Locate thermal sensors

We have clustered functional blocks into sensor blocks, then one thermal sensor has

to be placed for each sensor block. We call the functional block with a thermal

sensor located as the sensor functional block. Although several functional blocks

are clustered into the same sensor block by power error correlations, their physical

locations may be distributed all over the chip. We decide the sensor functional block

as the one closest to the centroid of the sensor block. The thermal sensor is then

put on the center of this functional sensor block. Please note that thermal sensors

cannot always be put at the specified location because of the design considerations

and limitations [58]. In this case, thermal sensor can be fine tuned within the sensor

functional block. If the design constraint is not satisfied, the functional block which

121



is the second closest to the sensor block centroid can be used as the sensor functional

block instead.

5.3.5 Error correlation matrix generation

In this subsection, we will present how to generate the error correlation matrix D.

As introduced in 5.3.2, we have to form Dp first, then generate D. We use the

linear regression method to find the relations among the functional blocks within

each sensor block. Assume the ith functional block is associated with the jth sensor

functional block (which means they are clustered into the same sensor block and the

jth functional block has a thermal sensor placed), the relation

δuj = ajδui (5.47)

is found using the sample data information [δu1
i , δu

2
i , . . . , δu

b
i ] and [δu1

j , δu
2
j , . . . , δu

b
j].

With (5.47) for each functional block without thermal sensors, i.e. j = 1, 2, . . . , n−ns,

Dp in (5.37) is populated with aj and the correlation matrix D in (5.17) is derived

subsequently.

5.4 Algorithm flow and practical considerations

The algorithm flow of FRETEP is shown in Fig. 5.5.

The new power-driven thermal sensor placement flow is summarized in Fig. 5.6.

The practical implementation of FRETEP contains off-line part and on-line part.

The off-line part includes the modeling and calibration of the full thermal model (5.1),

thermal sensor placement, structure preserving reduction, and pre-factorization of

( C̃
h

+ G̃) in the reduced model simulation (5.34). The on-line part contains tem-
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FRETEP: Full-chip Runtime Error-Tolerant Thermal Estimation and

Prediction method

� Preparation

1. Build and calibrate thermal model (5.1).

2. Place thermal sensors using the power-driven thermal sensor placement algo-
rithm and do the matrix permutation.

3. Perform structure preserving reduction on (5.1) and get V1 and V2.

4. Update V1 by appending B1 as V1 = [V1, B1], form the projection matrix Vsp as
(5.25) to generate the reduced system (5.26) and D̃.

� Thermal estimation

1. Perform Preparation 1-5.

2. while 1:

3. Calculate T̃ one time step forward using (5.34).

4. if temperature senor error > tolerance:

5. Calculate ǫu and ǫs using (5.33) and (5.31).

6. Update input using (5.35).

7. end if

8. Recover full-chip temperature T using (5.22).

9. end while

� Thermal prediction

1. Perform Preparation 1-5.

2. Build time series prediction models using the past power estimator and thermal
sensor information.

3. Perform Thermal estimation 2-9 with predicted power estimator and thermal
sensor information from the time series prediction models.

Figure 5.5: FRETEP algorithm flow.
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Power-driven thermal sensor placement flow

1. Collect power error samples using runtime power estimations and thermal map
measurements.

2. Build the correlation graph.

3. Cluster functional blocks into sensor blocks by applying correlation clustering
algorithm on the correlation graph. The number of clusters is determined au-
tomatically.

4. Determine the sensor functional block for each sensor block.

5. Place one thermal sensor at the center of each sensor functional block.

6. Permute thermal model matrices G, C, B and generate the error correlation
matrix D according to the thermal sensor placement.

Figure 5.6: The new power-driven thermal sensor placement algorithm flow.

perature calculation using the pre-factorized ( C̃
h

+ G̃) and error compensation. The

thermal prediction contains extra on-line parts: form the ARMA model and predict

temperature using the ARMA model.

5.5 Experimental results

The proposed method FRETEP with the power-driven thermal sensor placement

algorithm are implemented in Matlab. All the results are collected on a Linux server

with 3.0Ghz Intel Quadcore Xeon CPU and 16GB memory. In order to validate

the new thermal estimation and prediction method, we build a dual-core processor

with a shared L2 cache which is shown in Fig. 5.7 (a). The size of the processor is

10mm×10mm×0.7mm. The core architecture shown in Fig. 5.7 (b) is similar to the

Alpha ev6 processor. The power information is obtained using the power estimator

Wattch [11] by running the standard SPEC benchmarks [30]. One core of the dual-
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core processor is assumed to be active and the other one is assumed to be idle, they

can be switched when the temperature on one core is too high. The original order of

the thermal model is 3200 and the reduced model, which is used in FRETEP, has the

order of 106. The simulation time step h is chosen to be 0.1s to balance the speed

and accuracy. The thermal estimator performs the error compensation periodically

every 5 samples, that is, every 0.5 seconds.

In order to validate FRETEP, there are 10 thermal sensors placed on chip in

total, 4 for each core and 2 for the L2 cache as shown in Fig. 5.7. We also set

two observing points (OP1 and OP2) which are far away from any thermal sensors

in order to demonstrate the transient estimation and prediction results. The power

estimations given by the power estimator is modeled with up to 20% mean value error.

For example, the actual power and the estimated power of L2 cache of the dual-core

processor by running bzip2 benchmark is shown in Fig. 5.8. The system model error

is set to be 10%. Besides FRETEP, Kalman filter based method [58] using the same

reduced model as FRETEP is also implemented for comparison. For the sake of

consistency, we use bzip2 benchmark to show all the transient plots and thermal map

plots. All the other benchmarks show similar results and are summarized in Table 5.1.

For the validation of the power-driven thermal sensor placement algorithm, a

runtime power estimator has been built by using two most important performance

counts for each functional block power, where the parameter of each performance

count is obtained through a linear regressor with samples from several benchmarks

similar to [70, 56]. For the correlation clustering, we use the opensource software for

[23] available at [1].
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L2 Cache

OP1 OP2

Core 1 Core 2

(a) The dual-core microproces-
sor architecture.

FPQ
ITB

IntQ

IntExec

IntReg

Bpred

IntMap

LdStQ

DTB

FPMap

FPMul

FPReg

FPAdd

DCacheICache

(b) The architecture for each
core composed of functional
blocks.

Figure 5.7: The dual-core microprocessor architecture, with two cores and one shared
L2 cache. 10 thermal sensors (red solid circle) are placed on chip, 2 on the L2 cache
and 4 on each core. Two observing points (light blue circle) OP1 and OP2 are set in
order to show the transient thermal estimation and prediction results.
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Figure 5.8: The actual power and the estimated power of L2 cache running bzip2
benchmark. The estimated power has significant mean value difference compared to
the actual power.

5.5.1 Full-chip thermal estimation results

First, we give the full-chip thermal estimation results of FRETEP using the first half

of the runtime power estimator information (0∼10s). The new thermal estimator
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(a) Transient thermal estimation results
for OP1.
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(b) Transient thermal estimation results
for OP2.

Figure 5.9: Transient thermal estimation results of bzip2 benchmark, where org rep-
resents the new method with original model before MOR, red represents the new
method with reduced model after MOR and Kalman represents the Kalman filter
based method [58].

should give relatively accurate results even though the power estimation is not ac-

curate as shown in Fig. 5.8. The transient estimation results for the two observing

points, OP1 and OP2, are presented in Fig. 5.9. The error of the new thermal estima-

tion method is within 1◦C and there is no observable difference between the reduced

model results and the original model results which means model order reduction is

accurate enough. The Kalman filter based method has the error up to 5◦C mainly

because of the power estimation mean value error and the thermal model error.

In order to see the accuracy of the full-chip thermal estimation, we take a full-chip

thermal map snapshot at 5s. The results are shown in Fig. 5.10. It is clear that the

new thermal estimation method has a thermal map very similar to the actual one

while Kalman filter based method generates a thermal map with significant errors.
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(a) Actual thermal map.
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(b) Estimated thermal map
by the new thermal estima-
tion method.
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(c) Estimated thermal map
by the Kalman filter based
method.

Figure 5.10: Full-chip thermal map comparison of bzip2 benchmark at 5s.

5.5.2 Full-chip thermal prediction results

Next, we demonstrate the prediction ability of FRETEP. The power estimator and

thermal sensor readings are predicted by an ARMA(5, 0) model. The ARMA model

is trained using 5 seconds of the past data and the prediction is performed 1 second

into the future. Fig. 5.11 shows the prediction values of the power estimations for the

L2 cache and the thermal readings from the thermal sensor on FPReg of core 1.

The accuracy of the predicted transient thermal result is shown in Fig. 5.12. Al-

though the prediction errors are larger than the ones because of the errors introduced

by ARMA prediction, the average error is still very small.

The comparison of the predicted thermal map snapshot at 15s and the actual

thermal map is shown in Fig. 5.13. FRETEP successfully predicted the full-chip

temperature.

The runtime and accuracy comparison of FRETEP on a variety of SPEC bench-

marks are shown in Table 5.1. In the table, avg err is the absolute error averaged on

both space and time with the unit ◦C, KF means the Kalman filter based method,

X org and X kf denote the speedup against the original model and the Kalman filter
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(b) Prediction of the readings from the
thermal sensor on FPReg of core 1.

Figure 5.11: Power estimator and thermal sensor data prediction of the bzip2 bench-
mark.
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(a) Transient thermal prediction results
for OP1.
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(b) Transient thermal prediction results
for OP2.

Figure 5.12: Transient thermal prediction results of bzip2 benchmark where org rep-
resents the new method with original model before MOR and red represents the new
method with reduced model after MOR.
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(a) Actual thermal map.
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(b) Predicted thermal map by the new
thermal prediction method.

Figure 5.13: Accuracy of the predicted full-chip thermal map of bzip2 benchmark at
15s.

BenchmarkKF based estimation FRETEP estimation FRETEP prediction
avg err sim time avg errorg timered timeX orgX kfavg errarma timesim time

bzip2 3.8 0.018 0.48 0.04 0.0011 37 18 0.52 0.026 0.0011
gzip 3.9 0.006 0.36 0.14 0.0017 80 3 0.92 0.008 0.0016
mcf 3.4 0.016 0.43 0.05 0.0012 46 14 1.51 0.019 0.0011

mgrid 3.9 0.031 0.46 0.04 0.0013 34 31 0.73 0.032 0.0008
swim 4.1 0.021 0.41 0.05 0.0011 45 19 1.08 0.027 0.0013
galgel 4.5 0.008 0.37 0.11 0.0014 72 6 0.72 0.012 0.0012

Table 5.1: Runtime and accuracy comparison of FRETEP on SPEC benchmarks.

method with the reduced model, respectively. To be fair, all the simulation times are

measured as the time spent to estimate/predict 1 second thermal behavior, with the

unit s. arma time includes the ARMA model building time and time series prediction

time. For all the benchmarks, FRETEP has better accuracy than the Kalman based

method with the estimation error within 0.5◦C and prediction error within 1.5◦C. It

also introduces very low overhead, only around 0.002 seconds for 1 second estimation

and 0.03 seconds for each second of prediction. It is faster than the Kalman filter

based method using the same reduced model up to 20X.
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sensor # avg est err avg pred err
6 0.98 0.97
8 0.58 0.61
10 0.48 0.52
14 0.42 0.44
18 0.35 0.43

Table 5.2: Thermal sensor number effects on the estimation and prediction accuracies
running bzip2.

In order to study the impacts of different numbers of thermal sensor on the es-

timation and prediction performances, we change the sensor number from 6 to 18

and collect the average absolute errors (in ◦C) in Table 5.2. Not surprisingly, the

results show increasing the number of thermal sensors reduces both the estimation

and prediction errors with extra die area overhead for sensor placement.

5.5.3 The effect of the power-driven thermal sensor place-

ment algorithm

We first compare the new thermal sensor placement algorithm with the simple uniform

placement method. Because in the new thermal sensor placement algorithm, the

number of thermal sensors is determined automatically, we force the other placement

methods to have the same number of thermal sensors for a fair comparison. In order to

validate the new placement algorithm, the uniform thermal sensor placement has the

same thermal estimation flow (shown in Fig. 5.3 (b)) as the new placement method.

The correlation clustering algorithm inside the new thermal sensor placement method

gives 6 clusters, which means there are totally 6 sensor blocks (thus 6 thermal sensors).

The sensor placement information is summarized in Table 5.3, where SB idx is for

sensor block index and Functional blocks is for list of functional blocks in each sensor

block and Sensor FB is the functional block on which the sensor is located. Since the
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(a) Error plot of the uniform thermal sensor
placement.
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(b) Error plot of the new thermal sensor
placement.
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(c) Error plot of the k-means sensor place-
ment with interpolation thermal map recov-
ering.

Figure 5.14: Error snapshot plot with the bzip2 benchmark at 15s. For both cases, 6
thermal sensors are placed on chip.
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Method SB idx Functional blocks Sensor FB

Uniform 1 L2 Cache L2 Cache
2 FPReg, FPQ, FPMap, IntMap FPAdd

FPMul, FPAdd, Bpred, Icache
3 DCache, DTB, ITB, IntExec

LdStQ, IntQ, IntReg, IntExec
New 1 L2 Cache L2 Cache

2 ICache, DCache, DTB, ITB, FPReg
FPReg, FPQ, LdStQ, IntQ, IntReg

3 Bpred, FPMul, FPAdd, FPAdd
FPMap, IntMap, IntExec

Table 5.3: The sensor placement information for uniform sensor placement and the
new sensor placement method.

Bench 6 sensors 10 sensors 14 sensors
Uniform New k-means Uniform New k-means Uniform New k-means
avgmax avgmaxavgmax avgmax avgmax avgmax avgmax avgmax avgmax

bzip2 0.080.830.060.19 2.0 7.2 0.070.850.050.20 1.4 7.7 0.060.330.050.12 1.3 7.7
gzip 0.150.420.120.37 1.9 8.0 0.110.370.080.25 1.5 8.1 0.090.340.090.26 1.2 7.0
mcf 0.070.650.060.41 1.0 4.7 0.080.520.040.260.91 4.7 0.090.470.020.10 0.8 3.9

mgrid 0.040.660.040.22 2.3 10.4 0.040.480.030.16 1.7 10.4 0.030.310.020.12 1.5 7.6
swim 0.22 2.7 0.17 1.2 1.3 8.1 0.16 1.8 0.150.86 1.3 8.2 0.150.930.15 1.1 1.3 6.5
galgel 0.08 1.3 0.060.28 1.0 5.2 0.070.930.040.180.94 5.6 0.050.660.030.150.93 6.2

Table 5.4: Accuracy comparison of the new thermal sensor placement algorithm with
the uniform and the k-means thermal sensor placement methods.

sensor placement is the same for the two cores, only information of one core is shown

(so only 3 sensor blocks are shown).

The error snapshot plots with the bzip2 benchmark at 15s for the uniform and

the new method are shown in Fig. 5.14 (a) and (b). Thanks to the runtime power

estimator and the power calibrator, both the uniform and the new placement method

generate quite good thermal map estimations with only 6 thermal sensors. However,

the uniform thermal sensor placement does not consider the power error correlation

at the sensor placement stage, such that the functional blocks inside each sensor

block are not fully correlated. As a result, it can be seen in Fig. 5.14 (a), the error

can be relatively large at some positions. Since the new thermal sensor placement
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algorithm automatically groups the functional blocks with respective to power error

correlations, the power calibrator works more efficiently in this case and generates

the power map with much less error as shown in Fig. 5.14.

The new method is then compared against the existing k-means based thermal

sensor placement method with interpolation thermal map recovery [50] on the same

benchmark. The new thermal sensor placement method takes advantage of the run-

time power estimator which is additional information compared to the k-means place-

ment method. As a result, although quite efficient indeed, the k-means method still

has larger error compared to the new method because it is extremely hard (perhaps

impossible) to accurately recover the full-chip temperature with only temperature

information from 6 thermal sensors.

More accuracy comparison results on the other benchmarks are summarized in

Table 5.4. We have also increased the number of thermal sensors by multiplying the

correlation matrix (5.42) with a constant term (although this trick is not a part of

the new algorithm), where the case of 10 thermal sensors is achieved by multiply-

ing 0.65 and the case of 14 thermal sensors is reached by multiplying 0.6. We can

see more thermal sensors actually improve the accuracy, but the number of sensors

automatically determined by the new algorithm is already fairly enough.

5.6 Summary

In this chapter, we have presented a new method FRETEP which accurately esti-

mates and predicts the full-chip temperature at runtime under more practical con-

ditions where we have inaccurate thermal models, less accurate power inputs and

limited number of on-chip physical thermal sensors. FRETEP employs a number of

new techniques to address the practical conditions problem. The proposed techniques
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enable FRETEP to estimate the temperature everywhere on the chip and detect the

hot spots so that on-line thermal regulator can act properly to reduce the thermal gra-

dients across the chip. In addition, a power-driven thermal sensor placement method

has been proposed to further enhance the accuracy of FRETEP. Experimental results

show FRETEP accurately estimates and predicts the full-chip thermal behavior with

very low overhead introduced and compares very favorably with the Kalman filter

based approach on standard SPEC benchmarks.
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Chapter 6

Conclusion

This chapter concludes the dissertation by summarizing the research contributions for

electronic and thermal modeling and analysis of nanometer integrated and packaged

systems. The contributions of this dissertation covers three steps in the electronic

and thermal analysis flow: general model order reduction, thermal modeling and

thermal simulation. WBMOR has increased the wideband accuracy in general VLSI

electronic and thermal compact modeling. ThermComp has enhanced the flexibility

and reusability in thermal modeling. Finally, fast and accurate thermal estimation

and prediction are achieved by the proposed algorithm FRETEP.

In Chapter 3, we have proposed a novel model order reduction method, WBMOR,

for wide frequency band modeling of interconnect circuits. WBMOR explicitly com-

putes the exact residual errors to guide the sampling process in an adaptive way. We

showed that by sampling along the imaginary axis and performing a new complex-

valued sampling based reduction, the reduced model will match exactly with the

original model at the sample points. Theoretically, the proposed method can achieve

the error bound over a given frequency range with sufficient sampling. Practically, we

designed an adaptive scheme to help designers choose the best order of the reduced
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model for the given frequency range and error bound. We compared several sampling

schemes such as Monte Carlo, logarithmic, and recently proposed re-sampling meth-

ods. Experimental results on a number of RLC circuits show that WBMOR is much

more efficient than all the other sampling methods including the recently proposed

re-sampling and ARMS schemes with the same reduction orders. Compared with the

real-valued sampling methods, the complex-valued sampling method is more accurate

for the same computational costs.

Chapter 4 presented a new compact thermal modeling technique for architecture

level thermal design space exploration for multi-core microprocessors. The new ap-

proach, called ThermComp, builds the models from the first principles by the finite

difference method for each basic module and reduces the model complexity by the

sampling based model order reduction technique. We have applied a new two-grid

discretization scheme, where a uniform global coarse grid is used for all the boundary

grids and a fine grid is used for the internal grids for each module. This discretiza-

tion scheme makes the thermal modules easily composable for building large thermal

systems. The coarse global grid allows significant reduction of the number of the

boundary ports and enables the efficient reduction of thermal modules possible. Ex-

perimental results on a number of multi-core microprocessor architectures show that

the new approach can easily build accurate thermal circuits from the composable

thermal models. The reduced composite models lead to orders of magnitude speedup

over the standard finite difference models and are much faster than the HotSpot

method with similar accuracy.

In chapter 5, we have presented a new method FRETEP which accurately esti-

mates and predicts the full-chip temperature at runtime under more practical con-

ditions where we have inaccurate thermal models, less accurate power inputs and

limited number of on-chip physical thermal sensors. FRETEP employs a number of
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new techniques to address the practical conditions problem. The proposed techniques

enable FRETEP to estimate the temperature everywhere in the chip and detect the

hot spots so that on-line thermal regulator can act properly to reduce the thermal

gradients across the chip. Experimental results show FRETEP accurately estimates

and predicts the full-chip thermal behavior with very low overhead introduced and

compares very favorably with the Kalman filter based approach on standard SPEC

benchmarks.
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