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Weddell seals (Leptonychotes weddellii) are important predators in
the Southern Ocean and are among the best-studied pinnipeds
on Earth, yet much still needs to be learned about their year-
round movements and foraging behaviour. Using biologgers,
we tagged 62 post-moult Weddell seals in McMurdo Sound
and vicinity between 2010 and 2012. Generalized additive
mixed models were used to (i) explain and predict the
probability of seal presence and foraging behaviour from eight
environmental variables, and (ii) examine foraging behaviour
in relation to dive metrics. Foraging probability was highest in
winter and lowest in summer, and foraging occurred mostly in
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the water column or just above the bottom; across all seasons, seals preferentially exploited the

shallow banks and deeper troughs of the Ross Sea, the latter providing a pathway for Circumpolar
Deep Water to flow onto the shelf. In addition, the probability of Weddell seal occurrence and
foraging increased with increasing bathymetric slope and where water depth was typically less
than 600 m. Although the probability of occurrence was higher closer to the shelf break, foraging
was higher in areas closer to shore and over banks. This study highlights the importance of
overwinter foraging for recouping body mass lost during the previous summer.
.org/journal/rsos
R.Soc.Open

Sci.10:220500
1. Introduction
Predators respond to prey availability, which can change according to complex interactions between prey
life history and environmental features, and this response can also be somewhat affected by physiological
preferences of the predator for certain prey as well as migratory routes. Within this context, optimal
foraging theory predicts that organisms maximize fitness by behaving in ways that increase foraging
efficiency (energy gained versus energy expended) [1]. Therefore, predators should adjust their
movements to correspond with areas of maximum prey availability. For example, foraging organisms
are likely to spend more time in areas where prey are abundant and easily caught, as exhibited by
noticeable changes in horizontal movement such as increased turn angles and decreased travel speeds.
In the absence of actual measures of the preyscape, these behavioural changes are referred to as area-
restricted searches (ARSs), a proxy for areas of aggregated prey; thus, resulting in increased search
activity in a given area [2]. Quantifying the movement and preferred habitat characteristics of marine
mammals is challenging because they occupy three-dimensional space (with time being a fourth
dimension), in which they cannot be easily observed by humans.

Decades of at-sea observation and surveys have shown that upper trophic level marine predators
often target areas where oceanographic features such as current boundaries, frontal systems,
seamounts and continental shelf breaks alter the horizontal as well as vertical water column structure
features (i.e. thermoclines, haloclines and pycnoclines) that are known to positively affect prey
availability [3–6]). These oceanographic features tend to aggregate prey, thus facilitating predator
foraging efficiency [7–9]. For many marine predators, persistent regions of predictably high prey
availability are essential for reproduction and survival [10]. Where prey aggregations are ephemeral,
dependent on time scale, predators must be able to associate prey with certain environmental cues.

The Southern Ocean is home to six species of pinnipeds: Antarctic fur seals (Arctocephalus gazella),
crabeater seals (Lobodon carcinophagus), Weddell seals (Leptonychotes weddellii), Ross seals (Ommatophoca
rossii), leopard seals (Hydrurga leptonyx) and southern elephant seals (Mirounga leonina) [11]. For the
so-called ‘ice seals’ (crabeater, Weddell, Ross and leopard seals), sea ice provides a platform on which
to rest, breed and pup. However, a changing climate is affecting sea-ice extent and persistence in the
high-latitude Southern Ocean [12–15]. In the Bellingshausen and Scotia seas, earlier retreat and later
sea-ice advance has resulted in a sea-ice season that is two-three months shorter (compared to 1979–
1980). By contrast, the Ross Sea sector of the Southern Ocean overall has been exhibiting later ice-edge
retreat in spring and earlier ice-edge advance in autumn, resulting in a longer sea-ice season,
particularly in offshore areas [13,16,17]. Near the coast, however, there are latent heat polynyas, which
expand and contract throughout the winter-spring periods in response to katabatic winds blowing off
the adjacent continent and Ross Ice Shelf [13,16,18]. Surface waters associated with these polynyas
often have higher biological production due to early exposure to sunlight in the spring [19], thus
resulting in favourable foraging conditions for marine mammals and seabirds throughout the ice
season [20,21]. Clearly, ice seals have been coping with a changing environment [22–24], and their
foraging behaviour is likely to provide clues to the behavioural plasticity that allow them to succeed
in the face of seasonal and longer term climatological shifts. The very well-studied Weddell seal can
offer us insights into this adaptability.

1.1. Weddell seal life history
Weddell seals reside year-round in Antarctic waters and, with recorded dives greater than 600 m, they are
the second deepest diving phocid after the southern elephant seal [25]. Basic information on marine
aspects of their existence has been accumulated over the past few decades (e.g. [26–35]). Weddell seals
are thought to feed primarily on Antarctic silverfish (Pleuragramma antarcticum), with other prey
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species including Antarctic toothfish (Disssostichus mawsoni), icefish (Neopagetopsis ionah), Trematomus

species, cephalopods and invertebrates [36–39]. The fact that seals prey on toothfish, which is also a
silverfish predator, results in a complex interaction termed ‘intraguild predation’ [40].

Weddell seals form colonies at established locations on the coastal fast ice (ice held in place by
grounded icebergs, capes and islands) where they give birth and raise pups during October–
November (austral spring); remaining on the fast ice, they then breed and moult during January–
February (austral summer). The four months that Weddell seals spend on the fast ice are energetically
costly, with females losing approximately 38% of their body mass during lactation alone [41,42] and
males also losing body mass while defending access to females [43]. During this period, Weddell seals
are depleting prey within foraging range of their haul-outs (summarized in [40] and further detailed
in the discussion). Although Weddell seals are considered capital breeders, that is, relying largely on
fat reserves accumulated prior to pupping/breeding, both males and females forage sporadically
during the reproductive season [39,42,43]. In other words, it appears that Weddell seals adjust their
behaviour to balance physiological demands with the local availability of prey resources. However,
the period of overwinter foraging (February–September, when they are no longer aggregated at
haul-out sites) is critical for Weddell seals to recoup body mass and condition.

Due to their accessibility and relatively docile nature, Weddell seal physiology and demography have
been studied extensively since the 1960s [25,37,44–46], with research extending as far back as the early
1900s [47]. Within that effort, several Weddell seal populations have been studied around Antarctica
(Atka: [48]; Weddell Sea: [38,49,50]; Dumont D’Urville: [51]; Prydz Bay: [52–54]). Recently, the Ross
Sea, as well as the circum-Antarctic population, has been quantified [55,56] with the most intensely
studied population of Weddell seals being located in McMurdo Sound. For the latter, research has
focused on behaviour, physiology and ecology primarily during the austral spring and summer.
Within that effort, foraging studies have focused on broad-scale movement and dive behaviour
[30,57–59], including fine-scale, three-dimensional tracking using acoustics devices or accelerometers
[60–64]. That effort has occurred contemporary with studies of population dynamics [33,44,45,65,66],
physiology [31,41,67–71] and prey capture [72–74]. By contrast, little has been learned about Weddell
seal habitat use or foraging behaviour when away from breeding-moulting periods, that is, during the
eight months when they remain within the Ross Sea pack-ice. Previous to present work, Testa [34]
showed that some Weddell seals from the western Ross Sea (WRS) travel north during the fall and
into the winter. Since then, a study by Harcourt et al. [75] is the only one to have examined winter
foraging behaviour and which found general behavioural similarities between Weddell seal
populations at three locations (Prydz Bay, Terre Adélie and the Ross Sea) that the authors attributed
to available habitat.

1.2. Ross Sea oceanography
The Ross Sea contains the broadest continental shelf in the Southern Ocean, consisting of numerous
banks and troughs running north to south, three latent heat polynyas, two sensible heat polynyas and
extensive ice shelves [76]. The Ross Sea is entirely ice-free during most austral summers, depending
on whether the ice breaks out of the extreme southern portion of McMurdo Sound, and, except for
polynyas, is 100% ice-covered during austral winter. The polynyas, especially the Ross Sea and
McMurdo Sound polynyas, are areas of high sea-ice production beginning in early autumn (late
February and March) and contribute to the northward advancement of the pack-ice, including along
the Victoria Land coast and northward into the adjacent Southern Ocean [77,78]. Sea-ice extent
continues to increase until July–September, depending on the year, extending out to the Southern
Boundary of the Antarctic Circumpolar Current, and then retreating southward until mid-February
[79]. The fast ice in McMurdo Sound remains in place into January, briefly disappearing during
late-January into March [80].

The Ross Sea polynya, driven by katabatic winds, is bordered by the winter pack-ice to the north [78].
With the arrival of sunlight in spring, phytoplankton begin to grow rapidly in the nutrient-rich open
waters of the polynya, the latter made possible by the transport of warm, nutrient-rich Circumpolar
Deep Water (CDW) onto the Ross Sea continental shelf through the deep troughs. Once on the shelf,
this water mass now known as modified CDW (or mCDW) creates relatively warm subsurface waters
in both spring and winter [81]. Where mCDW upwells along the shelf break, sensible heat polynyas
can also appear. The nutrients supplied by mCDW promote primary productivity in the Ross Sea
which leads to the production of phytoplankton that supports many marine species, including
silverfish, an important prey item for Weddell seals [82–84]. By December or January, the maximum
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phytoplankton growth rate is reached within the polynya and, at this point, the Ross Sea is the most

productive region in the Southern Ocean [78,85,86].

1.3. Outline of this study
Clearly, a tremendous amount of information exists about Weddell seals and their habitat. However,
much more can be learned by linking seal movement and foraging behaviour with their habitat. Our
study examines seasonal habitat preferences and foraging behaviour of Weddell seals in the WRS
using biologgers and remotely sensed data. Specifically, our goals were to model both Weddell seal
seasonal habitat and foraging behaviour in relation to environmental variables as well as to model
seasonal foraging behaviour in relation to various dive parameters. Using a three-year dataset
spanning from the end of January to the end of November, our models provide the first year-round
seasonal description of Weddell seal habitat preference and foraging behaviour. Additionally, this
study provides insight into how an upper-level predator may respond behaviourally to changing
population size as well to an altered ocean due to climate change [24,40,87]. The Weddell seal is
known as an ‘indicator species’ as specified by the Commission for the Conservation of Antarctic
Marine Living Resources [88,89], particularly in regard to managing the Ross Sea Region Marine
Protected Area. Given that this study increases our understanding of Weddell seal habitat preference
and foraging behaviour, this iconic seal is even more invaluable as an indicator species for better
managing this critical Marine Protected Area in the Ross Sea.
20500
2. Methods
2.1. Animal capture and handling
Between January and February 2010–2012, we deployed 62 Satellite Relay Data Loggers (SRDL),
developed by the Sea Mammal Research Unit (SMRU Ltd, Scotland), on 11 male and 51 female
Weddell seals. Fieldwork was conducted from McMurdo Station, Antarctica, with tag deployments
occurring around Ross Island (n = 21) and along the adjacent Victoria Land coast north to the
Drygalski Ice Tongue (n = 41) (figure 1).

Weddell seals were chemically immobilized with an intramuscular injection of a tiletamine HCL/
zolazepam HCL mixture (0.5 mg kg−1). Twelve minutes post-injection, animals were captured using a
hoop net. Subsequent intravenous injections containing a combination of ketamine hydrochloride and
diazepam were administered intravenously, when necessary, to maintain immobilization. Tags were
glued to the head of each seal with five-minute epoxy (Devcon® or Loctite® brand).

2.2. Environmental data
Parameters considered in this analysis include sea-ice concentration, distance to 10% ice concentration
(i.e. boundary of a given polynya or access to open water pockets), bathymetric depth, bathymetric
slope, distance to the continental shelf break, or 1000 m isobath, distance to the coast, mCDW at 150
m and mixed layer depth (MLD). The methods for how these parameters were obtained are described
in the following paragraphs.

To assess the importance of ice concentration, we used daily Advanced Microwave Scanning
Radiometer (AMSR-E or AMSR2) sea-ice concentration data with a 6.25 km resolution from the
University of Bremen (http://www.iup.uni-bremen.de/seaice/amsr/, accessed January 2010–January
2014). Because daily sea-ice concentration values were stored in byte format (0 to 200), we used the
raster calculator tool in ArcGIS 10.1 (Environmental Systems Research Institute) to convert ice
concentration data to per cent ice cover. We also calculated distance to 10% ice concentration contours
using the ‘Spatial Analyst’ extension in ArcGIS to assess proximity to open water.

Bathymetric depth was obtained from ETOPO-1, a one arc-minute global relief model of the Earth’s
surface [90] (http://www.ngdc.noaa.gov/mgg/global/, accessed April 2013). From bathymetric depth,
we determined bathymetric slope using the ‘Slope’ tool in ArcGIS Pro which uses a three by three cell
moving window to calculate the degree change in depth from one cell to the next. The 1000 m
bathymetric contour was used to denote the continental shelf break [91] and the ‘Spatial Analyst’
extension in ArcGIS 10.1 was employed to create a distance surface representing distance to the shelf
break. Note: depths of 1000 m also occur in the inner shelf, owing to isostatic depression of the
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Figure 1. Weddell seal tracklines in the WRS during 2010 (blue), 2011 (red) and 2012 (black). Animals were tagged around Ross
Island (n = 21) and along the Victoria Land coast (n = 41) with deployment locations denoted by stars. The dotted line represents
the shelf break, or 1000 m bathymetric contour.
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continent due to its icecap, but these were ignored. In addition, a high-resolution coastline, Global Self-
consistent Hierarchical High-resolution Shorelines [92], was used to create distance to the coastline.

A regional coupled circulation sea-ice numerical model for the Ross Sea by Dinniman et al. [93]
provided daily estimates from 2010 through 2012 of water temperature, salinity and the location of
mCDW. The model had 5 km horizontal resolution and included 24 vertical layers, with a thickness
that varied with water column depth but was focused towards the top and bottom surfaces (e.g. for
a typical Ross Sea continental shelf depth of 500 m, the maximum mid-water column layer
thickness was 40.47 m, while the top and bottom layers were 4.97 m and 6.32 m thick, respectively)
[93]. The model output (depth, pressure, salinity and temperature) was interpolated to a 1 m
vertical resolution. We used the seawater toolbox (http://www.cmar.csiro.au/datacentre/ext_docs/
seawater.htm, accessed March 2010) to calculate seawater density [94,95]. Density was used to
calculate MLD, the depth where a 0.01 kg m−3 density difference from surface values was first
detected [96]. Finally, we obtained the simulated distribution of mCDW at 150 m, the average dive
depth for all tagged seals.
2.3. Tracking and diving data
Position estimates of tracking data obtained from ARGOS were filtered using a basic speed filter to
remove unrealistic locations (i.e. locations resulting in a maximum horizontal speed greater than 15
km h−1 were removed). Weddell seal positions were interpolated at 2 h intervals using a forward-
looking particle filtering model [97], which accounts for the errors associated with each ARGOS

http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm
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location class. Finally, tracklines were truncated based on the first and last transmitted dive times. One

tag was eliminated from all dive analyses due to partial tag failure that resulted in animal location
data without associated dive data.

Using the Marine Geospatial Modelling Environment (Version 07.2.1), we created 50 correlated
random walks (CRWs) for each animal by making random draws from the distribution of angles
and step lengths between subsequent points along each track [98]. Each CRW had the same
number of steps as the corresponding seal track to facilitate comparisons. Similar to the methods in
Hazen et al. [99], we randomly selected three of the 50 CRW to represent the possible behaviour of
each animal, unbiased by environmental drivers. For this analysis, points along an animal’s track
were categorized as ‘present’ (where an animal was tracked) while those along each CRW were
categorized as ‘absent’ (available habitat where an animal could have been based on movement
parameters).

To determine probable foraging areas along each track, we identified ARSs by calculating first passage
time (FPT), a measure of search effort. FPT is defined as the time required for an animal to cross a circle of a
given radius [2] andwas calculated for each track after removing all haul-out periods and data gaps longer
than a week. We used a modification of the Fauchald & Tveraa [2] method in which the circle radius
associated with the peak log variance was determined separately for each animal to account for
individual variability [100]. After examining the average log variance in FPT for every 1 km increase in
radii ranging from 1 to 50 km, we determined that Weddell seals on average operate on a 3 km scale.
Using this scale, we calculated FPT for every location along the track for each animal.

Using R statistical software version 3.0.2 [101], the extract function within the ‘raster’ package (v.
3.4.13) [102] was used to sample values for each presence and absence location for the eight
environmental covariates. Because ice concentration, distance from the 10% ice concentration contour
and MLD data were available daily, these values were extracted for each unique date along the tracks.
Locations with null values for any of the eight environmental variables were eliminated from the dataset.

Dive locations were determined by linking dive time with time along the trackline and linearly
interpolated to the nearest minute. Due to ARGOS bandwidth limitations, tag transmissions of
vertical dive profiles were limited to the four inflection points that provided the best fit for each
dive. Once downloaded, dive data were filtered to eliminate erroneous data; dives were excluded
from further analysis if: maximum dive depth was less than 5 m or greater than 1.5 times the
known Ross Sea maximum bathymetry, dive duration was less than 10 s or greater than 5400 s,
there were duplicate time stamps throughout the dive, vertical dive rate was greater than 4 m s−1,
and time stamps decreased with increasing dive depth. Using the ‘Interp1’ function in MATLAB
[103], each dive was interpolated at one-second intervals between inflection points. Finally, we
calculated the following metrics for each dive: maximum dive depth (m), dive duration (min),
bottom duration (time spent at depths greater than or equal to 80% of the max dive depth, min),
descent rate (ms−1) (between the beginning of the dive to the first inflection point) and per cent
depth within the water column (maximum dive depth relative to bathymetric depth with 0% =
surface and 100% = seafloor).

Each track and dive location was categorized into one of the four seasons, delineated using the
equinox and solstice dates (e.g. June 21–September 22 denotes winter). Note that the number of days
and individuals in each season is a function of tag deployment duration (i.e. summer and spring
consisted of fewer days since this analysis included data from deployments spanning from after the
moult until returning to the colony before breeding and pupping commenced).

We calculated population means (average of individual means) and s.d. for the eight environmental
variables and five dive parameters per season. In addition, we used the ‘coin’ package (version 1.4.2)
[104] in R 3.0.2 to run Wilcoxon signed-rank tests, a non-parametric version of the t-test, to compare:
(i) mean values of each environmental variable for seal presence and absence, (ii) paired mean values
of each environmental variable for each season using the 25 individuals with data across all seasons
and (iii) paired mean values of each dive variable per season using the 30 individuals with data
spanning all seasons. Finally, the ‘ggplot2’ package in R was used to create violin plots (a combination
of a boxplot and a kernel density plot) to further examine differences between Weddell seal presence
and absence for each environmental variable.

To determine the appropriate spatial extent for model predictions, we used the kernelUD function
within the ‘adehabitatMA’ package (v.0.3.14) [105] to produce seasonal utilization distribution (UD)
kernels of the tracking data. A 6.5 km grid size and a 20 km smoothing parameter (or bandwidth)
was used to produce each kernel. We then calculated the 50%, 75%, 95% and 100% UD. The 100%
data contour encompassed all locations where an animal spent time.
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2.4. Habitat suitability and foraging models

To assess collinearity between environmental variables, we used the ‘corplot’ package (v.0.84) [106] to
calculate the Pearson’s correlation coefficient [107,108]. For correlations greater than 0.70, only one of
the two correlated variables was included in the model. Spatial autocorrelation was also examined for
each seasonal dataset using the Moran.I function within the ‘ape’ package [109] in R. This function
computes the Moran’s I autocorrelation index described by Gittleman & Kot [110] and showed no
evidence of spatial autocorrection in any of the seasonal datasets used to model habitat suitability and
foraging behaviour.

Due to their ability to handle non-parametric data and model nonlinear relationships typical of
complex environments, generalized additive mixed models (GAMMs) were used to fit and predict the
probability of Weddell seal presence and foraging behaviour. We used the ‘mgcv’ package (v.1.8.33)
[111,112] to run each GAMM, which, unless otherwise specified, included a cubic regression spline,
with shrinkage and five knots for all environmental variables. By shrinking the degrees of freedom to
zero for each variable judged to be unimportant to the model, the shrinkage term provides an
effective way of removing variables [113]. Animal ID was included as a random effect in all models to
account for individual animal behaviour. Each initial GAMM was fit using all uncorrelated
environmental variables for each season. Variables that were not significant at the p = 0.05 level were
removed from the model using a backwards elimination approach until only significant variables
remained in the final model for each season. To examine model fit, we produced diagnostic plots
using the ‘mgcViz’ package [114] in R (see electronic supplementary material, figure S1).
500
2.4.1. Habitat suitability models

Data for habitat models were subset to include: (i) the unique cells per day (i.e. if an animal stayed in the
same cell the entire day—it was included only once), and (ii) the absence points from CRWs that were not
in the same cell as presences on the same day. Because the number of absence points from CRWs was
greater than the number of presences, absence points were down-weighted so that the sum of their
total was equal to the total number of presences (table 1). A training dataset consisting of 75% of the
presence and absence data, chosen at random for each season, was used to fit a GAMM with a
logistic link to determine the probability of Weddell seal occurrence relative to environmental
variables [112,115]. In these models, the effects of the predictor variables are additive [116] and follow
the form:

Pij ¼
exp[b0 þ Sifi(xi)]

1þ exp[b0 þ Sifi(xi)]
, ð2:1Þ

where Pi is the probability of presence for each seal j, β0 is the intercept to be estimated by the model and
x is the value of the ith explanatory variable whose function fi is to be estimated.

For each of the four final models (one per season), we used a ‘receiver operating characteristic’ (ROC)
curve to assess the diagnostic accuracy of the model [117,118]. ROC analysis measures how well a
receiver is able to detect a signal in the presence of noise. In this case, a Weddell seal is either present
or absent in a particular habitat unit and the ROC curve predicts a threshold at which the seal is
present [119]. The optimal threshold represents the value at which errors of omission versus errors of
commission are optimized. The ‘area under the curve’ (AUC) measures the discrimination ability of
the model to correctly classify a Weddell seal as present or absent [120]. AUC values range from 0 to
1 with 0 indicating no discrimination, 0.5 no better than random chance and 1 indicating perfect
discrimination ability [119]. Models with AUC values greater than or equal to 0.70 are considered
‘useful’ and those with AUC values greater than 0.9 are considered ‘very good’ because sensitivity is
high relative to the false positive rate [121,122]. The ‘pROC’ (v.1.16.2) and ‘cutpointr’ packages
(v.1.0.32) [123,124] were used to conduct the ROC and AUC analysis of the models. The performance
of each GAMM was assessed using the AUC value created from the training dataset and an
evaluation dataset which consisted of the remaining 25% of the presence/absence data not used in the
training dataset.

Using the ‘predict’ function in the ‘raster’ package [102], we created predictions for each day spanning
the duration of tracking data (29 January 2010–06 November 2012). Daily predicted probability of
occurrence grids were averaged within each season to create a single probability surface. Each grid
was then clipped to the extent of each respective season and rescaled from 0 to 1 to facilitate
comparison. To convert daily predicted probability of occurrence to habitat suitability, we used the
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model-specific threshold value determined by maximizing the area under the ROC curve [125]. Raster

cells above the threshold value were classified as 1, and all others as 0. Daily habitat suitability grids
were then summed and 0 values were reclassified as NA. Finally, each seasonal habitat suitability grid
was clipped to the extent of each respective season and rescaled from 0 to 1, thus reflecting the
importance of each cell based on the number of days within each season classified as habitat.

2.4.2. Horizontal foraging models

To examine foraging behaviour, we used the same location data as in the habitat models except haul-out
periods and CRW data were removed. Data for foraging models were subset to include only unique cells
per day, with the FPT value being summed across repeat cells (i.e. if an animal stayed in the same cell the
entire day—it was included only once but the FPT value for each point within the repeated cells was
summed). The response variable, FPT, was log-transformed and a GAMM for each season was fit to
equation (2.2) using an identity link:

log(FPT)ij ¼ b0 þ Sifi(xi) (2) ð2:2Þ

where FPTi is the predicted FPT of an individual Weddell seal j, β0 is the intercept to be estimated by the
model and x is the value of the ith explanatory variable whose function fi is to be estimated.

Daily predictions of foraging were generated using the same methods as for habitat suitability. Daily
predicted foraging grids were averaged within each season, clipped to the extent of each respective
season and then rescaled from 0 to 1. To create an overall grid depicting the probability of foraging
relative to probability of presence, we multiplied the predictive foraging surface and the probability of
presence surface together for each season (i.e. highest values represent areas where animals are likely
to be present and foraging). Finally, to depict areas where the most foraging was occurring when
predicted seal presence was highest, we extracted cells with values greater than or equal to the
median value of each seasonal grid. These areas were then mapped relative to the troughs and banks
that characterize the underwater environment of the Ross Sea.

To understand how foraging behaviour changed throughout the year, we fit an additional GAMM
using log FPT as the response variable and day of the year (DOY) as the explanatory variable. The
GAMM included a cyclic cubic spine to allow for continuity at the endpoints, and the number of
knots was unconstrained.

2.4.3. Vertical foraging models

To understand the links between horizontal searching and dive behaviour, we used GAMMs to model
the relationship between FPT and dive parameters (DDUR, BOTDUR, MXDEP, DRATE and PWC) for
each season. Each dive was assigned an FPT value based on the encompassing 3 km FPT search
radius. Only dives within this search radius were used in this analysis.
3. Results
Telemetry data showed that Weddell seals tagged near Ross Island and along the southern Victoria Land
coast, in general, dispersed and travelled throughout the entire WRS but remained entirely in waters
overlying the continental shelf (figure 1). There was a significant difference between Weddell seal
presence and absence for distance to the shelf break and bathymetric slope for most seasons (table 1).
Ice concentration in summer and fall also significantly differed between Weddell seal presence and
absence locations, with Weddell seals occurring in areas with higher ice concentrations (table 1).
Finally, in areas where Weddell seals were present, mean distance to the coast was significantly higher
in fall and MLD significantly deeper in winter than locations where seals were not recorded (table 1).

When comparing mean values where Weddell seals were present for every two-way combination of
seasons, nearly all environmental variables during summer were significantly different from those of the
other three seasons—fall, winter and spring (table 2). Ice concentration, distance to 10% ice concentration,
bathymetric depth and MLD were all significantly greater while bathymetric slope was significantly
lower during fall, winter and spring than during summer (table 2). Finally, Weddell seals were
significantly closer to the shelf break during fall than during summer and in waters with significantly
shallower MLDs during spring than during winter (table 2). Median values show that Weddell seals
were closer to the shelf break from fall to spring than during summer (figure 2). Across all seasons,
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Figure 2. Violin plots showing the median and distribution of eight environmental variables by season: ice concentration (%),
distance to10% ice concentration (km), bathymetric depth (m), bathymetric slope (degree), distance to the continental shelf, or
1000 m isobath (km), modified circumpolar deep water at 150 m (mCDW, index) and MLD (m). Each panel includes data for
both Weddell seal ( presence, light blue) and CRW (absence, dark blue) locations. Black horizontal lines show median values
for each variable and the distribution of the data is indicated by the shape, representing kernel density plots.
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median values for mCDW and distance to the coast were higher where Weddell seals occurred than to
locations where seals could have been but were not observed (figure 2).

While bottom and dive duration were similar in summer and fall, durations increased in winter and
spring (table 3). A similar trend was seen in maximum dive depth, in which Weddell seals dived deeper
as the seasons progressed from summer through the following spring. In fact, maximum dive depth in
spring was nearly twice that of summer despite diving to similar locations within the water column
(PWC). In other words, seals occupied deeper waters in spring than in summer but were consistent in
their preference of per cent water column depth. Comparing the same individuals across seasons, the
majority of the five dive parameters were significantly different (table 4). Interestingly, values for all



Table 3. Number of dives, number of individuals and mean ± s.d. of five Weddell seal dive metrics: dive duration (min), bottom
duration (min), descent rate (ms−1), maximum dive depth (m) and per cent water column depth (%). Data were analysed
separately for each season and mean values represent population means obtained by averaging individual means. Note that
because tags were deployed late-January and typically ceased working by mid-November, data for summer and spring were
slightly truncated.

summer fall winter spring

no. of dives 91 261 101 009 21 947 3013

no. of individuals 59 57 48 30

dive duration 8.6 ± 2.2 8.2 ± 2.0 10.0 ± 2.7 12.3 ± 3.9

bottom duration 3.8 ± 1.1 3.7 ± 1.2 4.4 ± 1.5 5.9 ± 2.1

descent rate 1.2 ± 0.2 1.2 ± 0.2 1.1 ± 0.2 1.2 ± 0.2

maximum dive depth 114.5 ± 36.7 128.0 ± 37.6 140.1 ± 51.7 223.5 ± 99.4

per cent water column depth 39.3 ± 11.6 28.4 ± 10.9 28.7 ± 11.8 39.3 ± 19.9

royalsocietypublishing.org/journal/rsos
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dive parameters in summer were significantly different from those of winter; dive duration, bottom
duration and maximum depth increased while descent rate and the per cent water column decreased.
00
3.1. Habitat models
Distance to the shelf break and distance to the coast were highly correlated across seasons (−0.65 to
−0.79). Therefore, only distance to the shelf was retained in seasonal habitat and foraging models.
During fall and winter, all environmental variables were significant and explained 27% and 17% of
the deviation in Weddell seal occurrence, respectively (table 5). During summer and spring, a single
non-significant variable was dropped from each of the two models (MLD in summer and distance to
10% ice concentration in spring). The final model for summer and spring explained 25% and 14% of
the deviation in Weddell seal occurrence, respectively. The AUC value for each of the final seasonal
models ranged between 0.74 and 0.81, indicating that models performed better than chance and could
distinguish presences from absences in at least 74% of the cases after accounting for model variables
(table 5). AUC values generated from the training and evaluation datasets were similar, indicating
limited overfitting to the data and increased transferability of the models to novel datasets.

During summer, the probability of Weddell seal presence increased with increasing ice concentration
(figure 3). However, the opposite pattern was found during winter and spring. From summer through
fall, when not associated with breeding or pupping, Weddell seals preferred to be closer to the shelf
break (figure 3). In spring, seals preferred higher bathymetric slope than in other seasons (figure 3). In
summer Weddell seals preferred to be within 20 km or beyond 170 km of 10% ice concentration
contour while in fall they preferred to be within 500 km. During winter, seals preferred to be either
within 550 km or beyond 1,500 km from access to open water. Weddell seals preferred shallower
waters during the summer (less than 400 m) and fall (less than 600 m) but this preference changed to
waters ranging from approximately 200 to 600 m in winter and spring (figure 3). Generally, the
probability of Weddell seal presence was highest when the mCDW index was less than 30 and during
summer and winter, for values between approximately 15 and 30 (figure 3). In fall, winter and spring,
Weddell seals preferred intermediate MLD values; approximately 100–250 m in fall, greater than
250 m in winter and approximately 250–400 m in spring (figure 3).

The north/south extent of the entire Weddell seal range, or 100% UD, was similar in summer, fall and
winter and slightly reduced in spring (figure 4a–d). However, in fall, winter and spring, the 50%, 75% and
95% UDs were located more centrally and farther offshore than in summer (figure 4a–d). Across seasons,
the predicted probability of Weddell seal occurrence was highest at the farthest extent of the range and
lowest in McMurdo Sound and south of the Dyrgalski Ice Tongue along the Victoria Land coast
(figure 4e–h). While it may appear counterintuitive that high-use areas (i.e. 50% UD) occur where
predicted probability of Weddell seal presence is low, one must consider the fundamental differences
between UDs and habitat preference. UDs are used to examine the relative frequency of occurrence
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Table 5. Model covariates, the number of presence (P) and CRW absence (A) points (training data), number of individuals (no.
of Ind), deviance explained (Dev Exp—training data), R2 adjusted (training data), AUC values (training and evaluation data) and
threshold value used in the final habitat models (H) to predict probability of occurrence and habitat from environmental
parameters by season. Abbreviations for model variables are as follows: ice concentration (ICECON, %), distance to 10% ice
concentration (DICE10, km), distance to the coast (DCOAST, km), distance to the continental shelf, or 1000 m isobath (DSHELF,
km), bathymetric depth (BATH, m), bathymetric slope (SLOPE, degree), modified circumpolar deep water at 150 m (mCDW,
index) and MLD (m).

model significant variables P/A
no. of
Ind

Dev
Exp

R2
Adj

AUC (train/
eval) threshold

H_SUMMER ICECON, DICE10, DSHELF,

BATH, SLOPE, mCDW

2884/6462 48 0.25 0.29 0.81/0.81 0.49

H_FALL ICECON, DICE10, DSHELF,

BATH, SLOPE, mCDW,

MLD

8535/21 866 58 0.27 0.31 0.81/0.81 0.57

H_WINTER ICECON, DICE10, DSHELF,

BATH, SLOPE, mCDW,

MLD

4193/11 973 48 0.17 0.20 0.76/0.76 0.52

H_SPRING ICECON, DSHELF, BATH,

SLOPE, mCDW, MLD

1298/3671 30 0.14 0.16 0.74/0.75 0.47
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and do not take into account environmental features while habitat preference is determined by
statistically comparing habitat use and availability and is contingent on both samples.

The ROC threshold value for each habitat preference model was 0.49, 0.57, 0.52 and 0.47 for summer,
fall, winter and spring, respectively (table 5). Preferred habitat across all seasons was located in the
central WRS towards the continental shelf break (figure 4i–l). From fall through spring, non-preferred
habitat was located in McMurdo Sound and north along the Victoria Land coast to Drygalski Ice
Tongue (figure 4i–l). During the summer, these same areas were predicted as habitat for only one day
(light green areas in figure 4i).
3.2. Horizontal foraging models
At the 3 km scale, all environmental variables were significant predictors of FPT during each of the four
seasons (table 6). An increase in FPT was associated with increasing ice concentration above 40% in
summer, indicating increased foraging behaviour (figure 5). However, FPT was highest for both low
and high ice concentrations in fall, while in winter and spring, foraging was associated with high ice
concentrations (80% and higher). Weddell seal foraging probability was highest closer to the 10% ice
concentration contour in summer and spring but, in fall and winter, the probability of foraging was
highest when seals were greater than 500 km from the 10% ice concentration contour (figure 5).
Across all seasons, FPT was highest in water depths less than 600 m and when the mCDW index was
less than 25. In the summer, FPT increased with MLD greater than 25 m in summer, between 100 and
300 m in fall and winter, and 100 and 200 m in spring (figure 5). Across seasons, foraging was
highest farther from the shelf break, along the coast, and in areas of moderate bathymetric slope
(figure 5).

In all four seasons, foraging models predicted the highest FPT in the coastal vicinity of Ross Island
and dispersed throughout the central WRS, particularly over Crary Bank which will be discussed in
more detail later (figure 4m–p). In addition, models predicted high FPT values from Ross Island (77°
S), north along the Victoria Land coast up to the Drygalski Ice Tongue (75°S, figure 4m–p). Seasonal
predictions of Weddell seal occurrence (figure 4e–h) were combined with seasonal predictions of FPT
(figure 4m–p) to identify areas most likely to be selected as foraging habitat (figure 4q–t). The highest
predicted FPT within preferred Weddell seal habitat occurred around Ross Island (though difficult to
see in the figure) and extended from the central WRS to the farthest extent of Weddell seal travel in
each season (figure 4q–t). Note that the colour coding for winter foraging is biased towards the very
few cells with high FPT predictions near Ross Island. For comparison, figure 6 shows areas where
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predicted values are greater than or equal to the median predicted FPT for each season. High FPT values
are predicted over Crary Bank across all seasons, and over Mawson, Ross and Pennell banks during
summer, fall and winter (figure 6).

FPT varied markedly throughout the year with the lowest values being found in summer followed by
a slight peak in fall, a continued increase until reaching an overall peak in winter and a gradual decline in
spring (figure 7). DOY explained 35% of the variation in FPT.
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3.3. Vertical foraging models
Because maximum dive depth and per cent water column depth as well as dive and bottom durations
were highly correlated (r > 0.70), both maximum dive depth and bottom duration were excluded from
the models. GAMM results showed that dive duration, descent rate and per cent water column depth
were significant in predicting FPT during summer, fall and winter, explaining 5–22% of the deviation
in FPT (table 6). During summer and fall, FPT was highest when dive duration was less than 6 min or
between approximately 20–30 min and during slow descent rates (less than 0.8 ms−1) (figure 8).



Table 6. Model covariates, the number of data points (n), number of individuals (no. of Ind), deviance explained (training data),
R2 adjusted used in the final horizontal (HORZ) and vertical (VERT) foraging (F) models to predict foraging behaviour (FPT) from
environmental and dive parameters by season. Abbreviations for model variables are as follows: ice concentration (ICECON, %),
distance to10% ice concentration (DICE10, km), distance to the coast (DCOAST, km), distance to the continental shelf break, or
1000 m isobath (DSHELF, km), bathymetric depth (BATH, m), bathymetric slope (SLOPE, degree), modified circumpolar deep
water at 150 m (mCDW, index) and MLD (m).

model significant variables n no. of Ind Dev Exp R2 Adj

F_HORZ_SUMMER ICECON, DICE10, DSHELF, BATH, SLOPE, MLD,

mCDW

3169 52 0.28 0.28

F_HORZ_FALL ICECON, DICE10, DSHELF, BATH, SLOPE, MLD,

mCDW

10 531 58 0.11 0.11

F_HORZ_WINTER ICECON, DICE10, DSHELF, BATH, SLOPE, MLD,

mCDW

4457 46 0.18 0.17

F_HORZ_SPRING ICECON, DICE10, DSHELF, BATH, SLOPE, MLD,

mCDW

1361 27 0.25 0.24

F_VERT_SUMMER DDUR, DRATE, PWC 67 405 52 0.22 0.21

F_VERT_FALL DDUR, DRATE, PWC 75 782 50 0.19 0.16

F_VERT_WINTER DDUR, DRATE, PWC 17 928 42 0.05 0.05

F_VERT_SPRING DRATE, PWC 2390 22 0.11 0.11
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During winter, FPT was greatest when dive duration was less than 6 min and when descent rates were
less than 0.5 ms−1 (figure 7). Weddell seals generally exhibited increased FPT with increasing PWC from
summer to winter, with peaks in FPT observed around 15% and greater than 60%. However, during
spring, FPT was highest when seals were conducting dives either near the surface or near the bottom
and when descent rates were low.
4. Discussion
Upon departure from the colony during late summer, a small proportion of Weddell seals tagged in our
study remained near Ross Island year-round while the majority of animals spread widely to more
northern habitat located within the remaining sea ice. Both Testa et al. [126] and Hindell et al. [60]
experimentally showed that, owing to a limited foraging range and central-place foraging, Weddell
seals deplete the prey around colonies during the breeding season [40,126,127]. The dispersal of seals
hundreds of kilometres to the north and east of Ross Island would likely reduce intraspecific
competition. The same phenomenon is exhibited around penguin colonies [128,129]. In late summer,
Weddell seals preferred to occupy and forage in areas with higher slope, a pattern that indicates that
animals are foraging coastally but near deep water, particularly between Cape Washington and
Coulman Island as well as along the edges of banks. During this time, seals also preferred areas
farther from land since the land-fast ice is no longer sturdy enough to reliably support them [130,131].
Overall, we found that the density of Weddell seals was highest adjacent to steep undersea
topography in summer, which agreed with the findings of other studies [60,131]. Hindell et al. [60]
hypothesized that fish were more concentrated in these areas due to enhanced upwelling associated
with the topography. In that regard, LaRue et al. [131] hypothesized that with greater depth, there is
greater water volume nearby, providing more prey and a wider array of foraging habitat. While these
studies only considered short foraging trips during the breeding season, our study found similar
results over a broader temporal scale—summer through the following spring.

During summer and winter, seals also foraged within the top 20% of the water column (pelagic). This
agrees with several previous studies indicating that Weddell seals exploit both pelagic and bentho-
pelagic prey such as Antarctic silverfish and toothfish [36,37,50,60,63,132]. Increased foraging was
associated with slower descent rates and both shorter and longer dive durations. A more recent study
showed that Weddell seals in the WRS spent less time near the bottom than those in Prydz Bay and
Terre Adélie, but this was likely due to intrinsic factors such as age, sex and body-size [75].
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Figure 5. Probability of Weddell seal foraging in the WRS predicted by a GAMM for each season. Plots show the relationship
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During fall, seals continued to forage extensively near the coast, north of the Drygalski Ice Tongue,
between Cape Washington and Coulman Island, but they also foraged heavily over the banks, farther
from the coast—a pattern that is consistent with foraging in areas with heterogeneous habitat. As ice
formation and sea cover progressed through fall and winter, Weddell seals preferentially occupied
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areas with open water access. However, foraging behaviour was higher in dense pack-ice, farther away
from open-water pockets. These findings suggest that the under-ice and ice-edge environments play an
important role in foraging, with prey resources located farther from areas that provide open-water access.
Foraging within the dense pack-ice also provides refuge from predatory killer whales [127] that are
known to frequent the Ross Sea [133].

During winter, Weddell seals continued to forage both coastally and over banks. However, unlike
during fall, the coastal area between Cape Washington and Coulman Island was no longer frequented
by foraging Weddell seals, a pattern possibly related to both intra- and interspecific competition. At
the same time, Weddell seals are arriving in the vicinity to pup/breed [55,131]; emperor penguins are
also returning to the largest colony occurring along the same section of coast and, therefore, also
depleting prey resources in the area [134,135]. This is consistent with the findings of LaRue et al. [55]
who showed that, while both species sought fast ice, the number of Weddell seals was inversely
proportional to the number of emperor penguins in an area and vice versa. Instead, Weddell seal
foraging areas in winter were located south of the Drygalski Ice Tongue, farther south than during
previous seasons, where no penguin colonies are located [129]. While consistent with Harcourt et al.
[75], our results showed that Weddell seals in the WRS had a much larger UD during winter, possibly
due to a larger sample size or changes in environmental conditions between 2010–2012 and 2014–2019.

Sea ice in the WRS is at its greatest extent [79] in late winter, and its magnitude is positively correlated
with higher Weddell seal recruitment to breeding colonies the following spring [136]. Weddell seals
preferentially occupied areas with low to intermediate ice concentrations and foraging was highest
where ice concentration was at or near 100%. Increased foraging in the dense pack-ice could be driven
by the abundance of ice algae that use the under-ice environment, thus attracting cryopelagic predators
such as Pagothenia borchgrevinki, a known prey item of Weddell seals in the WRS [73,137]. Weddell seal
foraging in the dense pack-ice could also be driven by the presence of Antarctic toothfish, another
important prey item, found above the bottom in dense ice cover [138]. Furthermore, krill abundance,
especially crystal krill (Euphausia crystallorophias), is also positively correlated with ice cover [139], and
krill is the primary prey item of Antarctic silverfish, an essential dietary item ofWeddell seals [36,73,74,140].

During spring, before returning to breeding colonies, Weddell seals continued to forage coastally and
preferred areas on top of or peripheral to banks or land for both habitat and foraging grounds. Unlike
other seasons, distance to open-water pockets did not predict preferred habitat. La Rue et al. [131]
found a ‘Goldie locks’ relationship in which the fast ice needed to be wide enough perhaps to protect
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from killer whales but not too wide, which may present a challenge with breath-holding capacity in

reaching open water. However, seals preferentially foraged both near and far from open-water
pockets. Weddell seal preference to forage near open water is likely related to the rapid opening of
latent heat polynyas in the spring [79]. During the four-month period when Weddell seals are on the
fast-ice pupping, breeding and moulting, they forage to a limited degree with potential prey items
being associated with the sea ice (e.g. [127]). When seals leave the breeding colonies in summer, the
marginal ice zone around the Ross Sea Polynya is highly productive, and this productivity has likely
transferred up enough trophic levels to support a large predator, such as the Weddell seal [21].

Across all seasons,models showed that adultWeddell seals preferentially exploited the banks in theWRS
and foraging behaviour was highest when seals were diving near or at the bottom (bentho-pelagic). Weddell
seals in the WRS foraged extensively over Crary Bank across all seasons while Ross, Pennell and Mawson
banks appeared to provide important foraging habitats from summer through winter. Seals foraged less
extensively in troughs where the mCDW index was highest. However, the predominance of foraging in
shallower waters with low to moderate mCDW index values indicates that Weddell seals may be targeting
prey species on, or proximate to, banks while using ice-covered areas over troughs for resting or transiting.

The locations where mCDW intrudes onto the shelf are determined primarily by bathymetry [83]. This
coupledwith subsequent spreading of mCDWon the shelf and themelting of sea-ice influences patterns in
the spring phytoplankton bloom in the Ross Sea [81,141,142]. The production and transport of organic
material on the shelf affects prey available to benthic consumers [143]. Benthic communities are richest
on the shoulders of banks, where currents bringing food particles to filter feeders are strongest [143].
Benthic productivity plays a large role in structuring both the water column and benthic portions of the
ecosystem, with benthic organisms, principally invertebrates (and the fish that feed on them),
depending on the influx of sinking organic debris [76,143]. Barry et al. [143] found that the mean
percentage cover of animals (summed over all megafauna taxa) and megafauna density on the banks
and crests to be six and four times greater than in the deeper areas between basins and troughs [143].

Foraging over the Ross Sea banks combined with diving in proximity to the bottom suggests that prey
resources are more available over the banks. Crary Bank not only provides important foraging habitat for
Weddell seals across seasons, but also offers foraging habitat for emperor penguins from the large Cape
Washington colony, another silverfish predator [144]. Studies indicate that silverfish is a primary prey
item of Weddell seals during summer [36,74]. However, it is not known whether summer diet indicates
year-round foraging habits. Given the highly dynamic nature of the Ross Sea ecosystem throughout the
year, it is likely that Weddell seals adapt to changes in the local abundance of prey species by altering
their diet. When seal numbers in McMurdo Sound were restricted during a period of multi-year fast ice
(free-board of ice cracks too high for seals to haul-out [24]), without seal predation, the benthic fish
fauna changed from its usual composition [145]. Additional evidence of seal dietary adaptability is
apparent in the Weddell Sea, indicating that while Antarctic silverfish is also the primary summer diet
for those animals [38], in spring, silverfish was no longer present in their diet; instead prey items
consisted of many other notothenioid fish including Trematomus species [38,50].
5. Conclusion
This study presents the first quantitative analysis of post-moult Weddell seal habitat preference and
foraging behaviour across all four seasons in the WRS. We successfully modelled and predicted
habitat preference and foraging behaviour using environmental variables, and modelled vertical
foraging behaviour using dive parameters. Weddell seal foraging intensity in the summer is relatively
low compared to the rest of the year, a pattern perhaps attributed to reproduction and moulting, and
recovery therefrom, or possibly reduction of prey near haul-out aggregations (Storer-Ashmole’s Halo)
[146]. Weddell seals are considered capital breeders and rely primarily on stored body reserves during
this time, with females losing nearly 40% of their body mass during lactation alone [41]. In defending
access to females, males also do not forage and lose mass. Once pups are weaned, Weddell seals are
no longer tied to the breeding colonies and can travel farther in order to recoup lost mass, making the
fall, winter and spring the most important seasons for Weddell seal foraging. These results are
supported by Shero et al. [71], who found that the overwinter foraging period was necessary for
female Weddell seals to regain mass and body condition, despite limited foraging during the breeding
and moulting periods.

The Ross Sea is the most productive region in the Southern Ocean and reaches farther south than any
other marine system on Earth [147]. Nevertheless, significant annual variation in polynya size, sea-ice
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extent and productivity is exhibited [78]. Due to its vast shelf, complex submarine topography and

productive polynyas, the Ross Sea is considered a biodiversity hotspot [148–150]. Included in that
biota is the Weddell seal, more abundant in the Ross than anywhere else [55]. Herein, models showed
the importance of the diverse habitats found in the WRS in predicting seasonal Weddell seal habitat
and foraging behaviour.

Knowing how Weddell seals respond to predictable seasonal changes in their environment can
provide insights into how their habitat or foraging behaviour will change with forecasted natural and
anthropogenic climate variation. Although the Ross Sea ecosystem remains relatively intact, changes
in hydrographic properties, such as salinity, and sea-ice extent have been documented in response to
changing environmental and atmospheric conditions [147]. While there is considerable uncertainty
about how climate change will impact the Weddell seal population in the WRS, evidence suggests
that the region is cooling and sea ice is expanding, in contrast with other places in Antarctica [76].
However, since the spring of 2016, these strong regional trends have weakened due to the occurrence
of anomalously low sea ice and warmer conditions, begging the question as to whether Antarctica is
finally feeling the full impact of climate change [151,152]. As a result, Weddell seals in the WRS may
have been impacted less in previous decades but are now more recently experiencing extreme change.
Nonetheless, the WRS Weddell seal population has been increasing in recent years since its earlier
exploitation [40,153]. The continuation of this trend could lead to increased inter- and intraspecific
competition and thus result in altered foraging patterns that are still being realized. Our results
highlight the WRS Weddell seals as an effective ‘indicator’ of ecosystem change, as merited by
CCAMLR, the agency overseeing Ross Sea management [88,89].

Ethics. Weddell seal handling and sample collection were conducted under the National Fisheries Service permit
number 87-1851-04, the Antarctic Conservation Act (ACA), and approved by the Animal Care and Use Committee
(IACUC) at the University of California, Santa Cruz and University of Alaska, Anchorage.
Data accessibility. All metadata on the individual animals, their body morphometrics, tracking and diving data have been
archived and available at the U.S. Antarctic Program Data Center at the following URL: https://www.usap-dc.org/
view/project/p0000661. In addition tracking data were published as part of a larger Antarctic tracking data set and are
reported at https://doi.org/10.1038/s41597-020-0406-x [154].
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