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A new proof of geometric convergence for the adaptive 
generalized weighted analog sampling (GWAS) method

Rong Kong and
Hyundai Capital America, 3161 Michelson Drive, Suite 1900, Irvine, CA 92612, USA

Jerome Spanier*

Beckman Laser Institute and Medical Clinic, 1002 Health Science Road E., University of 
California, Irvine, California 92612, USA

Abstract

Generalized Weighted Analog Sampling is a variance-reducing method for solving radiative 

transport problems that makes use of a biased (though asymptotically unbiased) estimator. The 

introduction of bias provides a mechanism for combining the best features of unbiased estimators 

while avoiding their limitations. In this paper we present a new proof that adaptive GWAS 

estimation based on combining the variance-reducing power of importance sampling with the 

sampling simplicity of correlated sampling yields geometrically convergent estimates of radiative 

transport solutions. The new proof establishes a stronger and more general theory of geometric 

convergence for GWAS.

Keywords
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1 Introduction and background

Our previous research (see [5, 6, 8–10]) on adaptive Monte Carlo algorithms for radiative 

transport problems resulted in the development of several geometrically convergent Monte 

Carlo algorithms for global transport solutions Φ. By geometric convergence, we mean

where Es = sth stage error; e.g.,
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and  is an approximation obtained in the sth stage to Φ(P), the solution of the radiative 

transport equation (RTE). The geometric convergence means that the rate of convergence of 

the approximate solution to the solution Φ(P) is exponentially greater than the central 

limit theorem-constrained rate of non-adaptive methods. However, taking into account both 
variance and time, our true goal for adaptive methods is to exponentially increase the 

computational efficiency

when compared with non-adaptive Monte Carlo, where Var is the estimator variance and T is 

the total computer processing time.

We have demonstrated geometric convergence using both correlated sampling and 

importance sampling as the stage-to-stage variance reduction mechanisms. Our algorithms, 

as well as others developed at Los Alamos [1–3], also achieve geometric convergence but 

each faces implementation challenges and limitations. For example, for Sequential 

Correlated Sampling (SCS), the evaluation of the residual (i.e., the RTE equation error) and 

its use in generating a distributed source for each new adaptive stage creates unavoidable 

new sources of approximation errors. However, SCS is fast and very robust because each 

adaptive stage produces a correction to the estimate of the solution obtained from all of the 

previous stages. For Adaptive Importance Sampling (AIS), there is both a cost and loss of 

precision involved in sampling from the complex importance-modified expressions that 

result from altering the kernel K at each adaptive stage. On the plus side, AIS is very 

powerful and seems to produce the most rapid error reduction per adaptive stage of those 

adaptive methods we know.

In [14] we introduced a new adaptive Monte Carlo method – Generalized Weighted Analog 

Sampling (GWAS) – for the solution of RTEs. The idea behind GWAS is to combine the 

power of importance sampling with strategies that loosen the restrictions associated with 

sampling from importance-modified transport kernels. In this way, we hope to combine 

rapid error reduction with fast algorithm execution in order to exponentially increase the 

computational efficiency. The price we pay for the flexibility of GWAS is that it biased. The 

fact that GWAS is biased (though asymptotically unbiased) greatly complicates the proof 

that it produces geometrically convergent estimates of RTE solutions.

If we adopt the mean integrated square error (MISE) to measure the overall quality of a 

global estimator of an unknown function (as is done frequently for biased estimators in the 

literature [15]), then

(1.1)

In (1.1),  denotes an estimator of Φ(x).
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The first term of the right-hand side of (1.1) is the integral of the squared bias, while the 

second term is the integrated variance. Thus, for biased estimators it is necessary to control 

both the bias and the variance to exhibit geometric convergence. The proof that we outlined 

in [14] for GWAS and provided fully in an internal report [16] does that, but it was based on 

overly restrictive assumptions and rested on a conjecture that is likely to be true but had not 

yet been proved. In addition, because the report [16] is not readily available, we were 

motivated to provide a proof free of restrictive assumptions and unproven conjectures. Such 

a proof is provided in this paper and establishes a stronger and more comprehensive theory 

of geometric convergence for GWAS estimators. In essence, our convergence theorem states 

that, with probability one, the mean square error of GWAS estimation can be made as small 

as we like if we generate sufficiently many, W0, random walks for each adaptive stage. We 

illustrate this refined theory with new numerical results that indicate that W0 can be chosen 

of moderate size.

In the next section we establish some notation and conventions we will use throughout the 

paper. Then, in Section 3, we construct the basic estimating random variables and in Section 

4 we introduce the GWAS adaptive strategy. In Section 5 we establish results needed to 

obtain geometric convergence, which is studied in Sections 8 and 9, while Section 6 

provides estimates of the bias and Section 7 estimates second moments of key estimators. 

Our numerical results are found in Section 10 which also guides the reader through the steps 

of the adaptive simulation. Detailed proofs are placed in the Appendices to avoid distractions 

from the primary flow of ideas.

2 Mathematical preliminaries

The methods we will describe here can be applied quite generally to RTE problems 

involving full spatial, angular, energy and time dependence. However, to simplify both the 

notation and the exposition, we specialize here to time-independent, single-speed radiation 

transport for which an accepted model is the integral equation (2.1)

(2.1)

whose solution Φ is the radiance (or vector flux). The outer integral in (2.1) is a line integral 

along L, which is a ray beginning at r along the direction −Ω and terminating at an interface 

or boundary of the (spatial) region. Analytically, L {r − ρΩ : 0 ≤ ρ ≤ R}, where ρ = R 
indicates the nearest interface or boundary along the direction −Ω. In (2.1) the spatial vector 

r ranges over the interior of a closed, bounded subregion V of R3 and the directional vector 

Ω ranges over the unit sphere S2. Thus the phase space Γ = V × S2 is a 5-dimensional space 

in general. The solution, Φ(r, Ω), describes the radiation intensity at any point (r, Ω) in the 

phase space Γ due to a radiation source Q inside or on the boundary of V.

The source term in (2.1) is
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where the function Q(r, Ω) is the physical source density function. For example, for a fiber 

optic source, it is essentially the characteristic function that describes the locations and 

angular apertures of the fibers that produce the sources of radiation. The function T is an 

exponential density function

that can account for variation in the total attenuation coefficient along each track arising in 

the simulation. The kernel K is

(2.2)

In (2.2) the functions μs(r) and μt(r) are respectively the scattering and the total attenuation 

coefficients and p(r; Ω, Ω′) is the single scattering phase function at r; it is the probability 

density function for transforming the unit direction vector Ω′ to Ω at collisions at r that result 

in scattering. A unique solution Φ (r, Ω) of (2.1) is assured for all r ∈ V, Ω ∈ S2 when the 

flux of radiation Φinc (r, Ω) incident on ∂V from outside of V is specified; that is, for unit 

directions Ω for which Ω · n∂V < 0, where n∂V is the unit outward normal vector on ∂V; full 

details may be found in [4].

To simplify our notation, we set P = (r, Ω) and we rewrite (2.1) as

(2.3)

where the phase space Γ is 5-dimensional in general and the integration with respect to Q 
takes into account all unit directions Ω′ while the spatial component r′ of Q consists only of 

those spatial locations that are scattered into the direction that points to r and are transported 

to r, the spatial component of P, along Ω′.

The basic assumption we make about equation (2.3) is the following. There is a constant 0 < 

κ < 1 such that

(2.4)

The astute reader might have expected the assumption (2.4) to be
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(2.5)

rather than (2.4), since it is clear from Equation (2.3) that the kernel K (P, Q) represents 

scattering AT Q FROM Q to P rather than in the opposite direction. Nevertheless, the 

condition we adopt is (2.4) because our Monte Carlo simulation follows backward 
trajectories, which makes use of the adjoint kernel K*(P, Q) = K (Q, P) rather than K (P, Q).

A second condition we will need is that there are two positive numbers MS and δS such that

(2.6)

The boundedness of S(P) is reasonable to assume, but in case S (P) is not bounded away 

from zero but only nonnegative, we can represent the source as

where S1(P) = S(P) + Δ > 0 and S2(P) = Δ is a small positive constant. Then Φ(P) = Φ1(P) − 

Φ2(P) where Φi(P) is the RTE solution with source Si(P) with the same kernel as the original 
RTE. Using the linearity of the RTE, this implies that Φ(P) ≥ Δ > 0. Essentially, the solution 

Φ(P) can always be treated as a difference of the solutions of two equations with identical 

kernels K(P, Q)) but with two different but positive sources S1(P) and S2(P).

Based on conditions (2.4) and (2.6), the solution of equation (2.3) satisfies

(2.7)

where MΦ and δΦ are positive constants. The inequality (2.7) is a consequence of the 

assumptions (2.4) and (2.6). First, Φ(P) is bounded away from zero since each term of the 

convergent Neumann series for Φ(P)

is nonnegative, and the first term is S(P). On the other hand, from

the proof of which can be found, e.g., in [7] and [13], we see that Φ (P) is also bounded.

The analytic model that derives from the source S (P) and kernel K (P, Q) of the RTE is 

completed by specifying the function S*(P) that characterizes the weighted integral
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(2.8)

of the solution of (2.3) to be estimated.

The description of the probabilistic model that provides the foundation for our Monte Carlo 

simulations follows the treatment in [13]. We introduce the space  of all random walk 

biographies b by

where  denotes the biographies terminating with the k-th collision point and B∞ is the set 

of biographies that never terminate. In all of our work, conditions are imposed (such as (2.4) 

or (2.5); see, for example, the discussion in [13, Chapter 3]) that guarantee that the set 

has measure 0 so that it can be safely ignored in our probabilistic computational model. This 

means that any biography will either terminate or exit the region of interest after a finite 

number of collisions with probability one. Therefore, the subsets  form a non-overlapping 

decomposition of  in the sense of probability. To define a measure on  we will exhibit 

the measure of each .

In general, a probability measure on the space  is constructed using a pair of nonnegative 

functions (p1(P), p(P, Q)) (called a random walk process, see [13]) that satisfy

(2.9)

These random walk functions determine random variables on the phase space Γ:

where  is a binomial variable and where the symbol ~f(P) means that the random 

variable is sampled making use of the probability density function f(P). The random variable 

ξ1 generates an initial collision point P1(direction and location), the random variable ηP 

terminates the random walk at P1 with probability p(P1) ≡ 1 − ∫Γ p(P1, Q) dQ, and with 

probability ∫Γ p(P1, Q) dQ generates a next collision point P2 from the pdf p(P1, Q)/∫Γ p(P1, 

Q) dQ. This process continues until the biography b = (P1, P2, …) has been terminated or 

has escaped from the physical region V of interest. The space  defines the sample space 

for our probability model.
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This process of generating biographies  by sampling p1 (P) for initial collisions and 

using p (P, Q) to sample for all remaining collisions induces a probability measure  on , 

the restriction of which to  is

(2.10)

It is not difficult to show that equation (2.10) does define a probability measure; we omit the 

proof (but see [13, Lemma 3.1] for a similar proof). The probabilistic counterpart of (2.8) is 

a random variable  that associates with each biography  a number 

(sometimes called a tally), ξ(b), that is used to estimate (2.8). If ξ is an unbiased estimator 

of I with respect to a measure  on , then

However, as we stated earlier, the GWAS estimator is biased:

which significantly complicates our analysis of it.

An important special case of this general formulation is the analog random walk process 
which mimics the physics described by the transport equation (2.3).

Example 2.1

To obtain the analog random walk process, choose

and therefore, because of (2.6), 0 < p(P) = 1 − ∫Γ K(P, Q) dQ < 1, where p(P) is the 

probability of termination at P.

The analog random walk process induces the analog probability measure on , the 

restriction of which to  is

The general random walk process (p1(P), p (P, Q)) offers a wide variety of possibilities for 

Monte Carlo simulations and, corresponding to each, a probability measure on . Here our 

interest focuses mainly on the analog process and measure, and those that stem from the 
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sequence of approximate solutions  of (2.3) that are generated by our GWAS adaptive 

algorithm.

The random walk process  that incorporates an approximate solution 

is defined by

(2.11)

This random walk process  induces a measure  on  by defining its 

restriction to :

It is again easy to verify that  is a probability measure.

If we now specialize p1(P1) in (2.10) by setting p1(P1) = δ(P−P1) and also set 

 in (2.11), we obtain measures  and  defined by

(2.12)

and

(2.13)

These special probability measures are used for estimating the solution at P1, Φ(P1), for any 

P1 ∈ Γ.

3 Construction of GWAS estimators

We turn next to a discussion of estimating random variables ξ : B → R where R designates 

the real numbers. It is helpful to examine the non-adaptive GWAS estimator first.

To estimate the expected value
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where , by analogy with the case of definite integrals [11], we 

define the non-adaptive GWAS estimator

(3.1)

and  and  are assumed to be absolutely continuous with respect to , which is 

otherwise arbitrary. We observe that the choices  in (3.1) reduces ξGWAS 

to

which is an unbiased importance sampling estimator with importance measure . It is 

useful to think of (3.1) as a biased importance sampling estimator with the flexibility to 

combine easy-to-implement sampling measures (choices of ) with good approximations 

of the importance “weighting” measure (choices of ).

We can now introduce the basic components of the GWAS family of estimators. We first 

define

(3.2)

and

(3.3)

(3.4)

where
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Based on (2.12), (2.13) and (3.2) and assuming that the measure  is absolutely 

continuous with respect to  (i.e., sets  of  measure 0 also have  measure 

0), the Radon–Nikodym derivative  exists and

(3.5)

We make use of h(P) and ω(P) defined by (3.2) and (3.4), respectively, to define, for an 

integer W > 0, the GWAS estimator

(3.6)

where ωi(P) and hi(P) are the i-th sample values of ω(P) and h(P), respectively. The random 

variable τW(P) will be used to estimate the RTE solution at a specific point P. If we choose 

, then , h(P) ≡ 1 and, if , where ℳA = analog 

measure on ℬ, then

reduces to unbiased importance sampling with importance measure . This means that the 

zero variance estimators developed in [9] are special cases of (3.6). It is also apparent that if 

, (3.6) reduces to crude Monte Carlo based on the estimator ωi:

Now we only need to make a slight modification of the estimator τW(P) in order to construct 

the random variable to estimate the weighted integral (2.8). Assume

and define

(3.7)

Then for an integer W > 0, define
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(3.8)

where ζi and gi are the i-th sample values of ζ and g, respectively. The random variable (3.8) 

will be used to estimate weighted integrals of the RTE solution. Notice that, as in (3.5), we 

also have

(3.9)

If we choose , then g ≡ 1 and (3.8) becomes

(3.10)

which is also what we used in [9] to estimate integrals like (2.8).

In our analysis of estimator variance, the bound

(3.11)

plays an important role. This inequality imposes restrictions on the function p(P, Q) in the 

construction of the random variable τW. Evidently, the choice p(P, Q) = K(P, Q) would 

satisfy (3.11) owing to condition (2.4). In addition there are restrictions that are imposed on 

the functions p(P) and p1(P); namely, there exists a positive constant δP such that

(3.12)

Bounding p(P) and p1(P) away from 0 is a needed assumption because both functions 

usually appear as factors in the denominators, as in (3.2), (3.4) and (3.7).

With the basic GWAS estimators just developed, we are ready to discuss the adaptive 

strategy we will use to obtain geometric convergence.

4 Adaptive strategy

It is well known that importance sampling does not necessarily reduce the variance with 

probability one. A poor choice of importance function can actually increase the variance. 

This means that we must expect to impose constraints on the initial approximation  of 
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the solution of the RTE (2.3) in the adaptive algorithm for GWAS, since GWAS includes 

importance sampling as a special case. For geometric convergence to obtain, it is also 

necessary to establish that all approximations  beyond the initial approximation satisfy 

such constraints.

We therefore begin with an initial approximation  of the solution of the RTE (2.3) that 

we assume is bounded and bounded away from 0: i.e., assume that there exist a pair of 

positive numbers  and  such that

(4.1)

This constraint follows in the same way as (2.7) when . Without loss of 

generality, we may assume that

(4.2)

where MΦ and δΦ appear in (2.7).

Based on this initial guess, we construct estimators using either (3.5) or (3.8) and the 

corresponding random walk process (2.11) for the first stage, which will produce a new 

estimated solution  for equation (2.3). We then construct estimators and the 

corresponding random walk process for the next stage based on . By induction, we 

assume that we have obtained the approximate solutions ,  for the 

first s stages. We then construct an estimator  of the solution for the next stage based 

on h(P) and ω(P) defined by (3.2) and (3.4), respectively, which, in turn, are based on 

. In order to be specific about which stage we are talking about, we use the 

notations hs(P) and ωs(P). In the following, we will see that ωs(P) is actually independent of 

s, but we will continue to use the superscript s to indicate that it is used in the s-th stage. We 

define

where

(4.3)
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so that hs(P) depends on the (s − 1)-st approximate solution . Also we define

where

We can define  for the s-th stage in a way similar to the definition of τW(P) in (3.6). 

For an integer W > 0, define

(4.4)

where  and  are the i-th sample values of ωs(P) and hs(P), respectively. Our main 

focus from this point on is to analyze the random variable  and to establish geometric 

convergence with respect to s for a fixed number W (that depends on the specific problem 

being solved) of biographies in each stage.

As we stated above, once the initial guess  is chosen and satisfies the constraints we 

need, all of the solutions  obtained from the succeeding stages must satisfy the 

same requirements so that the same adaptive process can be carried out through as many 

stages as needed to achieve a preset estimated accuracy. To address this need, we will obtain 

a series of estimates of the random variables  that are independent of the stage index s.

First we define two functions, χs(P) and Ds(P), that are of interest in terms of error 

estimation. Let

(4.5)

(4.6)

and
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(4.7)

Equation (4.6) shows that χs(P) is the residual for the s-th stage; that is, it is the equation 

error when  replaces the exact solution Φ(P) in (2.3). It follows that Ds(P) can be 

treated a relative residual.

We also define a random variable

(4.8)

and its special case

(4.9)

when we set

These random variables play an important role in the proof of geometric convergence.

In the following sections (until Section 8), we will omit the superscript of the function 

to avoid notational complications.

Having defined the key random variables needed for the adaptive algorithm, we are able to 

address the convergence behavior for the GWAS estimators.

5 Theory of geometric convergence for GWAS

5.1 Preliminary results

Our immediate purpose in this section is to state a number of technical lemmas (proofs are 

in Appendix A) that will be used in our final proofs of convergence. In so doing, we will 

also identify the restrictions that seem to be required in order to carry out the proofs. These 

restrictions will involve, among others, some assumptions (mostly quite benign) on the 

source and kernel of the transport equation and others that assure that the approximate 

solution obtained from each stage of the adaptive algorithm is sufficiently accurate.

We first construct equations satisfied by the mean and variance of the random variables h(P) 

and g defined in (3.2) and (3.7), respectively.
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Lemma 5.1—Assume that h(P) and g are defined by (3.2) and (3.7), respectively. Then the 

mean of h(P), E[h(P)], satisfies

(5.1)

and the mean E[g] can be expressed using E[h(P)] by

(5.2)

The variance of h(P), V[h(P)], satisfies

(5.3)

and the variance of g, V[g], can be expressed using E[h(P)] and V[h(P)] by

(5.4)

The proof is given in Appendix A.

The definition (3.6) of the random variable τW(P) suggests that the function hw (P) and, 

therefore h(P), should be bounded away from zero in some sense. The next lemma 

establishes that h(P) is bounded away from zero probabilistically.

Lemma 5.2—Assume that equation (2.3) satisfies conditions (2.4) and (4.1), and functions 

p(P, Q) and p1(P) satisfy (2.9). Assume that  is an approximate solution of equation 

(2.3) and let positive constants ε1, ε2 and α exist such that

and

(5.5)

Then we have
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(5.6)

and

where

(5.7)

The proof is given in Appendix A.

We continue our analysis of lower bounds for h(P). Lemma 5.2 discusses lower bounds for 

the expectation of h(P). In this Corollary the lower bound is established for the sample mean 

 for sufficiently large W.

Corollary 5.3—Assume that the conditions of Lemmas 5.1 and 5.2 are satisfied. Then for 

any ε3 > 0, there exists an integer Wh such that when W ≥ Wh,

where δh is defined by (5.7) and hw(P) is the w-th sample of h(P).

The proof is in Appendix A.

The following two lemmas concern Xs defined in (4.8). As indicated before, we omit the 

superscript s to avoid notational confusion. The next lemma will be used in the estimation of 

the bias, but not in the final theorem about the geometric convergence.

Lemma 5.4—Assume that equation (2.3) satisfies conditions (2.4) and (2.6). Assume that 

 is an approximate solution of equation (2.3), and there exist constants 0 < β, ε1 < 1 

such that (D(P) is defined in (4.7))

(5.8)

Then we have
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where

A very important special case is obtained if we set

(5.9)

In this case, we obtain

where

and

Remark 5.5—From (5.8), we can see that, if κ ≥ 1, we would not be able to find a β (0 < β 
< 1) to make (5.8) happen.

The proof of Lemma 5.4 is given in Appendix A.

The next lemma deals with the second moments of the random variables X(P) and X.

Lemma 5.6—Assume that equation (2.3) satisfies conditions (2.4) and (2.6), and functions 

p(P, Q) and p1(P) satisfy conditions (3.11) and (3.12). Assume that  is an 

approximate solution of equation (2.3), and there exist constants 0 < γ, ε1 < 1 such that

(5.10)

Then we have
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(5.11)

where

A very important special case is obtained when we assume (5.9). In this case we have

(5.12)

where

The proof is given in Appendix A.

6 Estimation of the bias

In this section, we discuss how the bias changes when we use estimators τW and τW(P) to 

estimate the solution Φ(P) and the integral I (defined by (2.8)), respectively. We define the 

bias by

where I is defined by (2.8).

The following theorem is a combination of Corollary 5.3 and Lemma 5.4. This theorem will 

not be used in our final theorem about geometric convergence, but it shows how the bias is 

controlled by the errors of the approximation.

Theorem 6.1

Assume that equation (2.3) satisfies conditions (2.4) and (2.6), Assume that  is an 

approximate solution of equation (2.3). Then for ε > 0, there exists a constant 0 < β < 1 such 

that
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Also, there exist constants δh, c1, c2,  and  such that

(6.1)

where δh is defined by (5.7) and c1, c2,  and  are independent of .

The proof is given in Appendix B.

A special case results from the choice  which is made for adaptive importance 

sampling methods; please refer to [9]. Then

and consequently,

This shows once again that the adaptive importance sampling methods are produced as a 

special case of the GWAS method for which the bias is zero as a result of using the special 

sampling functions that are used to generate biographies in AIS [9].

7 Estimation of the second moments

In this section, we will derive an estimate of the second moments, which makes use of a 

combination of Corollary 5.3 and Lemma 5.6.

Theorem 7.1

Assume that equation (2.3) satisfies conditions (2.4) and (2.6), and functions p(P, Q) and 

p1(P) satisfy conditions (3.11) and (3.12). Assume that  is an approximate solution of 

equation (2.3) and there exist positive constants ε1, ε2 and γ such that

(7.1)

and
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(7.2)

(7.3)

Then there exist constants c1, c2,  and , that are independent of , such that

(7.4)

and

(7.5)

where

The proof is given in Appendix C.

8 Geometric convergence

Now we turn to our theory of geometric convergence. Recall in Section 4, starting from an 

initial guess , we generate a series of approximate solutions of equation (2.3):

Our main theorem states that this series converges in a probabilistic sense.

Theorem 8.1

Assume that equation (2.3) satisfies conditions (2.4) and (2.6), and functions p(P, Q) and 

p1(P) satisfy conditions (3.11) and (3.12). We choose an initial approximation  of 

equation (2.3) that satisfies

(8.1)
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and

(8.2)

for a constant 1 > γ > 0. We construct a series of approximate solutions 

following the algorithm described in Section 4. Then for 

any ε > 0 and 0 < λ < 1, there must be a W0 > 0 such that when W ≥ W0,

The proof is given in Appendix D.

9 Flux expansion

The discussion in Section 8 concerns using the random variable τW(P) to estimate Φ(P) for 

any P. Our development is general, and the method can be used to produce an approximate 

solution at any particular point P ∈ Γ. However, as we observed earlier, examination of the 

formulas in Section 8 shows that in order to carry out the procedure prescribed there, we 

require a series of approximations  to the solution Φ(Q) that can be evaluated at every 
point Q ∈ Γ. We next provide an algorithm for accomplishing this, making use of the GWAS 

algorithm. The method depends on expanding the RTE solution in a set of basis functions 

and using Monte Carlo methods to estimate a finite number of the expansion coefficients 

adaptively. We have used this idea previously in deriving adaptive methods based on 

correlated sampling and importance sampling [8, 9].

Assume that  is a complete orthonormal system of basis functions for the space 

 of RTE solutions in the sense that such Φ(P) can be expanded as a convergent series

(9.1)

in the space , where we assume  to be bounded by a constant Mf :

In our work we have used the Legendre polynomials in each independent variable (more 

generally the spherical harmonics) to provide this basis set. We denote the norm in this space 

by ‖ · ‖; in practice, we have chosen this norm to be the strongest possible norm:
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The convergence of the infinite series in (9.1) implies that for any δ, there exists an N = N(δ, 

Φ) such that

(9.2)

Under this assumption, our task is to estimate the ai for i = 0,…, N. Most importantly, we 

only have to deal with those functions expressed as a finite linear combination of the basis 

functions, which are then continuous functions – in fact, polynomials.

Specifically, we will find approximate solutions in the form

which amounts to estimating each of the coefficients ai,

for i = 0, 1, 2,…, N. The estimator τW defined by (3.8) in Section 3 will be used for this 

purpose with the function fi(P) playing the role of S* (P).

The procedure we use is very similar to the one described earlier using the random variable 

τW(P), but for clarity and completeness, we write down the algorithm.

First, find an initial approximation  of the solution, which can be obtained using any 

method. We usually process two short stages of our SCS algorithm to obtain an approximate 

solution, , that satisfies (8.1) and (8.2). Then, using the estimator , we can obtain 

approximate values for the first N + 1 coefficients, , and these define the 

approximate solution for the first adaptive stage

Note that the construction of  is based on the approximate solution (the initial 

approximation).

Suppose that we have obtained the approximate solutions up to the (s − 1)-st stage, 

, each having the form
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Based on , we can again construct estimators  for the first N + 1 coefficients ai to 

obtain an approximate solution for the s-th stage

(9.3)

We now prove that the series  so constructed converges geometrically. The theorem 

below differs from Theorem 8.1 owing to the extra term rN defined by (9.2).

Theorem 9.1

Assume that equation (2.3) satisfies conditions (2.4) and (2.6), and functions p(P, Q) and 

p1(P) satisfy conditions (3.11) and (3.12). Furthermore, we assume that an initial 

approximation  of equation (2.3) that satisfies

(9.4)

and

(9.5)

for a constant 1 > γ > 0. Then for any ε > 0 and 0 < λ < 1, there must be a W0 > 0 such that 

when W ≥ W0,

where rN is defined by (9.2).

The proof is given in Appendix E.

10 Numerical experimentation

In this section, we will apply GWAS to a model transport problem – the bidirectional 

transport problem
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(10.1)

where

In [9], we have examined the behavior of AIS on several cases of this problem (for different 

scattering rates). Here we also consider the same cases and compare the results with the ones 

obtained in [9].

First, as we did in [9], we convert (10.1) to integral form

(10.2)

where

Or, using the scattering kernel functions, we can write (10.2) in the form

(10.3)

where

We will solve equation (10.3) by expanding the solution in Legendre polynomials, but we 

will keep the notation general to describe the process. Assuming that we have obtained the 

solution ( , ) for i = 0, 1, 2,…, m − 1, we want to expand φm x) (the process is the 

same for ψm (x)) using the orthonormal basis functions :
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Then by orthonormality, we have

(10.4)

The algorithm developed in previous sections will be used to estimate the integrals defined 

by (10.4) for i = 0,…, I. To simplify matters, we describe how to estimate the integrals

(10.5)

(10.6)

where  is any nonnegative function (not identically zero), and the subscript is used to 

distinguish (10.5) from (10.6). We use the estimator τW defined by (3.10) to estimate the 

integrals Ij, j = 1, 2.

Our simulation (to estimate I) is carried out through the following steps.

10.1 Construct estimator

The first step is to choose a pair of nonnegative functions (p1(P), p(P, Q)) satisfying (2.9), 

(3.11) and (3.12). In our case, we have ( , , p11(x, y), p12(x, y), p21(x, y), p22(x, 

y)) satisfying

(10.7)

and condition (3.11) will then be

(10.8)

where at least one κip < 1.

Kong and Spanier Page 25

Monte Carlo Methods Appl. Author manuscript; available in PMC 2017 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In practice it is easy to choose ( , , p11(x, y), p12(x, y), p21(x, y), p22(x, y)) even 

though equations (10.7) and (10.8) look complicated. According to equation (4.3), we need 

to construct a function pair ( , ) which, in our case, will be ( , , 

, , , ), where

and then define

Now we can formally write down the estimator  of the integral I defined by (10.5). Allwe 

do is to follow equations (3.2), (3.4), (3.7) and (3.8). First, for each random walk labeled by 

w, we define  (note, j0 = 1 because we are estimating φm(x), not ψm(x))

and then 
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where

The estimator  is then defined by

(10.9)

10.2 Simulation

To clarify the generation of the photon biographies and their tallies, we follow one random 

walk through estimator . We first sample the starting point x0 (note, j0 = 1 as indicated 

before)

We then generate a pseudorandom number r (uniformly distributed over (0, 1)) and check 

which of the following inequalities is true (see (10.7)):

(10.10)

Let us consider each of these possibilities.

Case 1—If , then the random walk is terminated (absorbed) with the contribution

to  and the contribution

to . We record these contributions and then go on to the next random walk.
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Case 2—If , then the random walk is scattered and 

the next collision point x1 is sampled from

Case 3—If , then the random walk is scattered (in a different 

direction) and the next collision point x1 is sampled from

We combine Cases 2 and 3 of (10.10) into one. That is, the next collision point x1 is sampled 

from

Suppose the random walk is scattered and we go one step further. We sample a random 

number r (uniformly distributed over (0, 1)) and check which of the following inequalities is 

true:

(10.11)

Again, we consider them one by one.

Case 1—If , then the random walk is terminated (absorbed) with the contribution

to  and the contribution

to . We record these contributions and then go on to the next random walk.
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Case 2—If , then the random walk is scattered and 

the next collision point x2 is sampled from

Case 3—If , then the random walk is scattered (in a different 

direction) and the next collision point x2 is sampled from

We again combine Cases 2 and 3 of (10.11) into one. That is, the next collision point x2 is 

sampled from

This process can be continued until the random walk is terminated (absorbed). As we finish 

all the random walks, simply using (10.9), we obtain the desired estimate .

We will test this algorithm using input data typical of tissue problems:

(10.12)

We solve the problem by expanding the solution in terms of eleven Legendre components, 

and the mean square error is estimated and shown in Figure 1, which also indicates how the 

base ten log of the relative (mean square) errors change with stage numbers. The different 

curves correspond to different numbers of random walks used together with the running time 

(seconds) for each stage. According to our theorems, geometric convergence can be reached 

if the number of random walks W is larger than a threshold number W0. We proved the 

existence of this threshold number, but we did not provide a way to obtain it. From Figure 1, 

we can see that, for our problem (10.2) with data (10.12), we can choose the number W0 ∼ 
8240. When W ≥ W0, we see clear geometric convergence.

Table 1 provides a comparison of GWAS and AIS. We note that GWAS has a much higher 

computational efficiency than AIS because of its speed of execution. Note, too, that even 

though the variance of GWAS is more than 100 times as large as that of AIS, the efficiency 

of GWAS is more than 5,000 times that of AIS.
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Now we examine a second problem with input data that is more like radiation “shielding” 

problems:

(10.13)

This time we used sixteen Legendre components for expansion of the solution. The results 

are shown in Figure 2, whose graphs show how the base ten log of the relative (mean square) 

errors change with respect to stage numbers. Likewise, the legends show the number of 

random walks together with the running time used for each stage. It also shows clear 

geometric convergence when the number of random walks W ≥ W0 =∼ 3100.

Again GWAS is more efficient than AIS in spite of the greater error reduction per adaptive 

stage with AIS (see Table 2). The computational efficiency of GWAS is approximately 400 

times that of AIS for this example.

11 Summary and future work

In this paper we have developed a general class of estimators for solving radiative transport 

problems. The GWAS estimators have two degrees of freedom, one to use in generating the 

Monte Carlo biographies, the other to reweight the biography tallies. Under very general 

conditions, we have proved that the adaptive application of the GWAS estimators produces 

geometric convergence of the estimates it generates. Numerical results confirm these rates of 

convergence. They also show that a relatively modest number W0 of biographies per 

adaptive stage is sufficient to trigger the geometric convergence and that the rate of 

convergence increases as W0 is increased. Of course, the family of transport problems to 

which our theory applies is enormous, and the examples that we presented are very limited. 

Nevertheless, we believe that there is a role to be played by GWAS estimation because of the 

fact that it includes unbiased importance sampling as a special case, yet it offers 

opportunities to sidestep the computational issues that degrade the performance of “perfect” 

importance sampling. Interesting (and no doubt difficult!) optimization questions remain to 

be explored.
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A Preliminary estimates

The following formula from probability theory can be found in [12] and is used in many of 

our proofs.
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Lemma A.1

For any random variables X and Y,

As well, the following set-theoretic result arises in estimating probabilities:

Proposition A.2

Assume that A and B are two subsets of a probability space and, for two small positive 

numbers ε1 and ε2, satisfy

Then

Proof of Lemma 5.1

We will use the following formulas, for any random variables X and Y:

(A.1)

For E[h(P)], by first conditioning on ηP and then on ξ1, we have

where we have used

As for E[g], taking averages of the both sides of equation (3.7) and conditioning on ξ0, we 

obtain
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which is (5.2).

To calculate the variance of h(P), by conditioning on ηP, we obtain

The first term of the right-hand side is equal to zero because, under the condition ηP = 1, h 
(P) is deterministic, while the last term is equal to (Eh[h(P)])2 owing to (A.1). Again, 

applying (A.1) on the second term by conditioning (h(P)|ηP = 0) on ξP we obtain

where it can be easily verified that . According to (A.1), the third 

term and the fifth term cancel out. We then have

or

which is (5.3). To calculate V[g], we have
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which is (5.4). The proof of Lemma 5.1 is completed.     □

Proof of Lemma 5.2

From (2.11) and (5.1), we obtain

We then have

Using the first inequality of (5.5) and also applying Proposition A.2, we obtain

which means

as both sides of the inequality are deterministic. Estimate (5.6) is proved.

Now, we derive an upper bound of Vh[h(P)]. Formula (5.3) can be written as

or
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(A.2)

Since p(P, Q) satisfies (3.11), as an equation of , (A.2) 

can be estimated as follows,

or

Taking the maximum value of both sides, we obtain

(A.3)

In (A.3), notice that
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where κ is defined by (2.4). Therefore, from (A.3), we have

Now using the second inequality of (5.5) and Proposition A.2, we have

or

which means

because both sides of the inequality are deterministic and ε1 + ε2 < 1.     □

The proof of Lemma 5.2 is completed.

Proof of Corollary 5.3

According to Chebyshev’s inequality, for any W and ε3 > 0, we have

which means
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Using (5.6), we have

Now we just choose

to complete the proof of Corollary 5.3.

Proof of Lemma 5.4

From the definition (3.7) of ζ and equation (3.9) about , we obtain

Noticing (4.5) and (4.7) about the definition of D(P) (keep in mind that we ignore the 

superscript in this section), we can simply the factors after the minus sign in the integral by

(A.4)

Therefore,
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which can be estimated by

Obviously, if |D(P)| < 1, then

(A.5)

and, therefore,

(A.6)

On the other hand, using (2.4),
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(A.7)

Applying (A.7) to (A.6), we obtain

Using condition (5.8) and Proposition A.2, we obtain

The proof of Lemma 5.4 is completed.     □

Proof of Theorem 5.6

Noticing the definition (3.7) of ζ and the equation (3.9) satisfied by , we obtain

Using (2.11), we obtain
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Noticing the notations D(P) (ignore the superscript) defined in (4.7) or doing exactly what 

we have done in Lemma 5.4, equation (A.4), we obtain

Using (A.5) in the proof of Lemma 5.4, we obtain

(A.8)

Since, for any a and b, (a + b)2 ≤ 2(a2 + b2), we obtain
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(A.9)

Noticing the definition of κp, (3.11), and using (A.9), from (A.8) we obtain

Using (5.10) together with Proposition A.2, we obtain (5.11).     □

The proof is completed.

B Estimation of the bias

Proof of Theorem 6.1

Recalling the definition of τW(P), (4.4), we obtain

(B.1)
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Note that hw(P) and ωw(P) are the w-th samples of random variables h(P)  and 

ω(P), respectively.

Now, from Corollary 5.3, for ε > 0, there must be a positive number δh (defined by (5.7)) 

such that

(B.2)

Therefore, from (B.1),

or

(B.3)

According to (4.9), the definition of X(P) (ignore the superscript as indicated before), R (B.

3) is actually

where the subscript w indicates that Xw(P) is the w-th sample of X(P). Now, appealing to 

Lemma 5.4, we obtain the second inequality of (6.1).

As for the random variable Z, we can prove it similarly. Notice

Then using (B.2), we obtain the first inequality of (6.1).

This completes the proof of Theorem 6.1.
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C Estimation of second moments

Proof of Theorem 7.1

We first estimate V(P). Note that this is not the variance of the random variable τW because, 

in general,

i.e., τW(P) is not unbiased. However, the estimation of V(P) will help us prove the geometric 

convergence of the solution through the random variable τW(P).

We have

(C.1)

Now, from Corollary 5.3, for ε1 > 0, there must be a positive number δh and an integer Wh > 

0 such that when W ≥ Wh,

Therefore, from (C.1),

or

(C.2)

Because of the independence of the random walks for different i and j, the second sum in the 

braces of (C.2) vanishes. We then have
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or

(C.3)

According to condition (7.3), we can apply Lemma 5.6, specifically inequality (5.12):

(C.4)

Now combining (C.3) and (C.4), and using Proposition A.2, we obtain

(C.5)

which is the second inequality of (7.4) (after redefining the constants  and ).

As for V we note

Similarly, we can obtain the first inequality of (7.4).

In order to derive (7.5), we notice that

(C.6)

and
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(C.7)

Combining (C.5), (C.6) and (C.7), we obtain

Now using (7.2) and Proposition A.2, we obtain

where

Noticing the second inequality of (7.1), since V(P) is deterministic, we obtain

which is the first inequality of (7.5). The second inequality can be obtained similarly.

This completes the proof.

D General geometric convergence

Proof of Theorem 8.1

We will prove by induction that, for any m ≥ 1,

(D.1)

We have added two additional inequalities to the list (first two inequalities of (D.1)). The 

reason for doing so is that, to prove the third inequality, we need the first two inequalities.
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For m = 1, the first two inequalities are trivial, as conditions (8.1) and (8.2) imply them. To 

prove the third one, we appeal to Theorem 7.1, the second inequality of (7.4),

(D.2)

where we have taken  and .

We need to estimate  and  by 

. We have

(D.3)

and

(D.4)

From (D.2), (D.3) and (D.4), we obtain

Applying the first inequality (D.1) and Proposition A.2, we obtain

(D.5)

where . Next, according to Chebyshev’s inequality,
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or after we replace  by ,

(D.6)

Combining (D.5) with (D.6) and noticing Proposition A.2, we obtain

Thus (D.1) is proved for m = 1 once we pick a W4 such that when W ≥ W4,

(D.7)

We now prove (D.1) for the general case. Again, according to Chebyshev’s inequality,

or after replacing  by ,

(D.8)

or

(D.9)

According to Theorem 7.1,
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(D.10)

where C2 does not depend on any specific stages. Substituting (D.10) into (D.9) produces

or by (2.6),

Noticing (4.2), we can find a W2 such that

We then have

(D.11)

In order to prove the second inequality of (D.1), we notice

(D.12)

Combining (D.11) with (D.12) and applying Proposition A.2 (about the lower bound),

(D.13)

Combining (D.8) with (D.13) and applying Proposition A.2, we obtain
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Applying (D.10), we obtain

(D.14)

We can then pick a W3 such that

(D.15)

Combining (D.14) with (D.15), when W ≥ W3,

(D.16)

which is the second inequality of (D.1).

The third inequality of (D.1) can be easily proved. All we have to do is to go over the steps 

from (D.2) through (D.7) with the superscript 1 replaced by m and 0 replaced by m − 1. That 

is, we can pick the same W4 as determined by (D.7) such that when W ≥ W4,

(D.17)

Thus, when W ≥ W0 = max{W1, W2, W3, W4}, (D.11), (D.16) and (D.17) all hold.

The proof of Theorem 8.1 is completed.     □
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E Geometric convergence for expansion in basis functions

Proof of Theorem 9.1

Using the expressions of the true solution Φ(P) by (9.1) and the m-th stage approximation 

 by (9.3), we have

(E.1)

Therefore, estimating  becomes estimating .

The proof is similar to Theorem 8.1. We will prove by induction that, for any m ≥ 1,

(E.2)

We have added two additional inequalities to the list (first two inequalities of (E.2)). The 

reason for doing so is that, to prove the third inequality, we need the first two inequalities.

For m = 1, the first two inequalities are trivial, as conditions (9.4) and (9.5) imply them. To 

prove the third one, we appeal to Theorem 7.1, the first inequality of (7.4),

(E.3)

where we have taken  and .

We need to estimate maxP∈Γ |D0(P)|2 and  by 

. We have
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(E.4)

and

(E.5)

From (E.3), (E.4) and (E.5), we obtain

(E.6)

Applying the first inequality (E.2) and Proposition A.2, we obtain

(E.7)

where . Next, according to Chebyshev’s inequality,

or after we replace  by ,

(E.8)

Combining (E.1) with (E.7) and (E.8) and noticing Proposition A.2, we obtain
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Thus (E.2) is proved for m = 1 once we pick a W4 such that when W ≥ W4,

(E.9)

We now prove (E.2) for the general case. Again, according to Chebyshev’s inequality,

or after replacing  by ,

which leads to

(E.10)

or using Proposition A.2,

(E.11)

According to Theorem 7.1,

(E.12)

where C2 does not depend on any specific stages. Substituting (E.12) into (E.11) produces
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or by (2.6),

Noticing (4.2), we can find a W2 such that

We then have

(E.13)

In order to prove the second inequality of (E.2), we notice

(E.14)

Combining (E.13) with (E.14) and applying Proposition A.2 (about the lower bound),

(E.15)

Combining (E.10) with (E.15) and applying Proposition A.2, we obtain

Applying (E.12), we obtain
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(E.16)

We can pick a sufficiently large N to make rN sufficiently small and then pick a W3 such that

(E.17)

Combining (E.16) with (E.17), when W ≥ W3,

(E.18)

which is the second inequality of (E.2).

The third inequality of (E.2) can be easily proved. All we have to do is to go over the steps 

from (E.6) through (E.9) with the superscript 1 replaced by m and 0 replaced by m − 1. That 

is, we can pick the same W4 as determined by (E.9) such that when W ≥ W4,

(E.19)

Thus, when W ≥ W0 = max{W1, W2, W3, W4}, (E.13), (E.18) and (E.19) all hold.

The proof of Theorem 9.1 is completed.     □
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Figure 1. 
GWAS for Bidirectional Transport Problem (tissue).
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Figure 2. 
GWAS for Bidirectional Transport Problem (shielding).
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