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Dynamic Routing for Ride-Sharing 

EXECUTIVE SUMMARY  

Traffic congestion is considered to be a major source of greenhouse gas emissions and has 
become one of the causes for significant economic costs, wasted time and public health risks 
(Levy et al. 2010; Pi et al. 2021; Schrank et al. 2019). In order to reduce the negative impact of 
traffic congestion, people have striven to find different methods to tackle this problem. Ride-
sharing, defined as a joint-trip of more than two participants that share a vehicle and requires 
coordination with respect to itineraries, has the potential to help mitigate congestion (Furuhata 
et al.2013). Although this idea dates back to the 1940s, it is only until recent development of 
internet, global-positioning-systems (GPS) and wireless communications that ride-sharing can 
fully realize its potential.  

A good ride-sharing system should provide quick response to passenger requests while 
optimizing the routes which is not an easy task especially in the situation when passengers 
request dynamically. One way to mitigate the effect of uncertainty is to allow passengers to 
walk while waiting for the drivers. At the same time, we would like to fully utilize the incentives 
of ride-sharing provided by the government agencies: the increasing use of High Occupancy 
Vehicle (HOV) lanes. Therefore, in this report, we study and formulate the dynamic pickup and 
delivery problem with HOV lanes and meeting points with application to ride-sharing. 

In our ride-sharing context, the drivers are travelling toward their own destinations and can 
make detours to pick up or drop off additional passengers where the passengers have flexible 
pickup and drop-off locations. We propose a two-stage heuristic algorithm which consists of an 
insertion heuristic to solve the pickup and delivery problem (PDP) and a second stage algorithm 
that can solve the meeting points problem optimally in polynomial time.  

Our experimental results show that both the HOV lanes and meeting points can increase the 
efficiency of a dynamic ride-sharing system. A good combination of HOV lanes and meeting 
points can provide passengers with lower commuting cost and faster commuting experience. 
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1 Introduction  

Traffic congestion, as prevalent as it may seem in everyday life, has become an increasingly 
important issue impeding the social development in modern societies (Pi et al. 2021). It is one 
of the causes for significant economic costs, wasted time and public health risks. According to 
the 2021 Urban Mobility Report by Schrank et al. (2021), the total cost of congestion in 2019 
was $190 billion in the U.S. and the total amount of delayed time was 8.7 billion hours with an 
extra usage of 3.5 billion gallons of fuel. As a comparison, these measures were $101 billion, 4.3 
billion and 1.7 billion in 2020 when the government ordered stay-at-home restrictions due to 
the pandemic. These two sets of data can best show how the decrease in number of vehicles on 
the road can alleviate the traffic congestion problem and how less traffic congestion can result 
in significant reduction (around 50%) in social costs, and improvements in social efficiency and 
emissions. Moreover, the Harvard Center for Risk Analysis (HCRA) at the School of Public Health 
conducted a research study in 83 urban areas to evaluate the public health impacts of traffic 
congestion (Levy et al. 2010). The results indicated that traffic congestion led to 4,000 
premature deaths with a public health cost of around $31 billion in 2000. If no effective 
methods are taken by 2030, it is projected that there will be 1,900 premature deaths and $17 
billion in social costs annually.  

Ride-sharing has the potential to help mitigate congestion, since 40% of traffic congestion (FHA 
and FTA 2013) is due to road bottleneck (inadequate physical capacity) and the average vehicle 
occupancy rate was 1.18 for work commute trips (McGuckin and Fucci 2017). “Ride-sharing is a 
joint-trip of more than two participants that share a vehicle and requires coordination with 
respect to itineraries” (Furuhata et al.2013). By taking advantage of the vacant seats in most 
passenger vehicles, ride-sharing could increase the efficiency of the transportation system, 
reduce traffic congestion, decrease fuel usage and mitigate pollution. A good ride-sharing 
system should provide automated matching which means that the system should help drivers 
and riders find suitable matches (Agatz et al. 2012). Recent technologies such as global-
positioning-systems (GPS), wireless communication via satellite, cellular and paging networks, 
which enable 2-way communication with mobile fleets, and real-time information services 
make it possible to dynamically estimate travel times and route vehicles. In the past few years, 
there have been a plethora of apps such as UberPool and LyftPool that have developed 
technologies to help match drivers with passengers in real time. The matching between the 
drivers and passengers in ride-sharing can be viewed as a pickup and delivery problem (PDP). 
However, most of the developed techniques and models for PDPs assume known static data as 
their input, for instance, the customer demands, travel costs, and travel times are all known in 
advance. On the contrary, in the real world, operations in any transportation network contain a 
fairly high level of uncertainties including variable arrival of new service requests, request 
locations, cancellation of existing requests, unknown demand sizes, etc. One way to mitigate 
the effect of uncertainty is to allow passengers to walk while waiting for the drivers. The idea of 
applying this to ride-sharing services is not new. In fact, Uber announced Uber Express Pool in 
early 2018 (Stock 2018). However, how they determine the pickup and drop-off locations (i.e., 
the meeting points) is not well understood in the academic community. Thus, in this report, we 
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study and formulate the dynamic pickup and delivery problem with meeting points with 
application to ride-sharing. 

At the same time, we would like to fully utilize the incentivization of ride-sharing provided by 
the government agencies: the increasing use of High Occupancy Vehicle (HOV) lanes and a 
policy of reduced toll rates for high occupancy vehicles on many roads and bridges. For 
example, in Southern California a portion of the freeways waive the toll rate to vehicles which 
have two or more people. If a vehicle has the required number of people, then HOV lanes can 
be used to save travel time especially during peak hours. That is, there may be an incentive to 
take the detour to pick up additional passengers to qualify to ride on the HOV lanes or 
discounted toll rates. Therefore, ride-sharing could provide a cost reduction and time savings 
under congestion.  

In this research, we will consider a dynamic PDP with meeting points considering HOV lanes 
with the objective of minimizing the total travel time. The rest of the report is organized as 
follows: Section 2 presents a literature of the PDP, dynamic PDP and related work. Section 3 
mathematically formulates the model followed by our solution algorithms in Section 4. Then we 
run experiments in Section 5 and conclude in Section 6. 

2 Literature Review 

The dynamic ride-sharing problem we study in this project is similar to the dynamic dial-a-ride 
problem (DARP) which is also known as a subset of the general dynamic pickup and delivery 
problem (PDP) when transporting goods instead of passengers. According to Berbeglia et al. 
(2010), the dynamic PDPs are divided into dynamic vehicle routing problems with pickup and 
delivery (Dynamic VRPPD), dynamic stacker crane problems (Dynamic SCPs) and dynamic dial-a-
ride problems (Dynamic DARPs). They argue that dynamic DARPs are different from dynamic 
VRPPD because DARPs generally have more constraints such as tigher time windows and 
maximum ride times. 

We take the categorization methods by Ho et al. (2018) and Pillac et al. (2013); that is, the 
general PDP topic is categorized into static and dynamic problems, deterministic and stochastic 
problems or a mix-match. Most DARPs study the static and deterministic version where 
decisions are made before the operation starts and the information is known with certainty at 
the time of the decision. As a result, papers in this category either focus on algorithmic 
improvement or consider different problem features inspired by real life applications (e.g., 
Braekers et al. 2014; Posada et al. 2017; Zhang et al. 2015). 

The papers that took the algorithmic improvement approach can be further categorized into 
two categories, those focusing on developing exact methods and the other on heuristics. Lu and 
Dessouky (2004) formulated the problem as a 0-1 integer-programming problem, and a branch- 
and-cut algorithm is used to optimally solve the problem. Cordeau (2006) and Ropke et al. 
(2007) provided an alternative formulation and applied a branch-and-cut algorithm to optimally 
solve the problem which is outperformed by a new branch-and-cut-and-price algorithm in their 
later paper (Ropke and Cordeau 2009). More recently, Aziez et al. (2020) introduced two new 
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formulations of the problem and managed to obtain optimality for 41 instances from existing 
benchmark problem sets that contain up to 100 nodes. 

Even though researchers have improved the exact algorithms over the years to solve the PDP 
problem with more nodes, the size of the problem that can be solved optimally is rather small 
compared to actual size problems. Therefore, another solution approach is to develop 
heuristics and metaheuristics to effectively solve large instances. Construction insertion 
heuristics is one such approach. A parallel regret insertion heuristic was proposed by Diana and 
Dessouky (2004). Wong and Bell (2006) proposed a heuristic including parallel insertions, re-
insertions and exchanges. Marković et al. (2015) introduced an insertion-based heuristic that 
accounts for operational requirements such as different passenger needs and different 
specifications of the objective function. Chassaing et al. (2016) proposed an evolutionary local 
search-based heuristic that incorporated a new greedy randomized heuristic for calculating the 
initial solution and a dynamic probability management mechanism to improve convergence in 
the local search. 

Metaheuristics are also widely implemented in solving the PDP problem with large instances. 
Tabu search has been one of the most commonly used metaheuristics (Cordeau and Laporte 
2005). The Tabu search heuristic developed by Cordeau and Laporte (2003) proposed a 
neighborhood evaluation procedure to minimize route duration and ride times. This early work 
in Tabu search has since inspired many recent researchers to extend their work to satisfy more 
complex and real-life constraints (Ho et al. 2018). Additionally, many other metaheuristics have 
been applied to the PDP. Sombuntham and Kachitvichayanukul (2010) used the particle swarm 
optimization algorithm for the PDP with multiple depots. Parragh et al. (2010) proposed a 
competitive variable neighborhood search-based heuristic for the static multi-vehicle DARP. 
Catay (2009) applied the ant colony optimization algorithm and Zidi et al. (2012) applied 
simulated annealing to solve the DARP with multiple objectives. 

Among the papers that consider different problem features from real life applications, Braekers 
et al. (2014) studied the PDP with heterogeneous passengers, service operators that have a 
heterogeneous fleet and multiple depots. Zhang et al. (2015) addressed a patient 
transportation problem derived from real life. The difference of this problem from other PDPs is 
that transporting patients using ambulances imposes extra medical constraints such as the 
need to disinfect the ambulance at the end of each trip. Posada et al. (2017) investigated the 
problem concerning door-to-door transportation systems for the elderly and/or disabled. This 
system differs from normal PDPs in that these people with special needs require a more flexible 
system and the pickup and delivery trips among them are usually integrated with public transit 
systems that has fixed routes. In the dynamic and stochastic version of the PDPs, uncertainties 
exist at the time of the operation and in the passengers’ information. Therefore, despite the 
fact that there is a growing number of papers studying this version, the research is not as much 
as the static and deterministic version. 

We next review the literature in dynamic PDPs. 
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2.1 Dynamic PDPs 

According to Berbeglia et al. (2010), Psaraftis (1988) represented one of the early studies on 
dynamic PDP. He considered a single vehicle problem with the objective to minimize a weighted 
function of total service time and passenger dissatisfaction. The solution approach was based 
on first establish an algorithm for the static case and then adapt it to the dynamic case where 
the author used re-optimization every time a new request arrives. This method of addressing 
the dynamism in the problems is popular among the literature. These papers all consider new 
requests as a trigger to the re-optimization of the current solution which is often constructed 
statically at the beginning of the operation. The difference lies in the methods they use to 
search for better solutions as new requests come in. Attanasio et al. (2004) developed a parallel 
algorithm which first constructed a static solution based on known requests and then used an 
insertion algorithm and tabu search to reoptimize the current solution whenever there is a new 
request. Coslovich et al. (2006) proposed an algorithm that maintains a solution repository. The 
algorithm then chooses from the repository to insert new requests. Häll and Peterson (2013) 
assessed the power of ruin and recreate methods in the re-optimization phase of a dynamic 
PDP. They found that ruin methods based on removal of sequences of requests can obtain 
better solution quality. Additional to the efforts in developing a better route search algorithm, 
other research focus on tuning the re-optimization frequency during the planning horizon to 
find better solutions (Agatz et al. 2011; Kleiner et al. 2011; Zou 2017). In this approach, one 
separates the time horizon into small time segments and re-optimizes at the end of each 
segment. To find the best solution, researchers tune the length of each time segment and 
adjust the wait time a driver can spend after picking up passengers. Instead of working on 
different route searching algorithms and re-optimization frequencies, Sayarshad and Chow 
(2015) incorporate pricing decisions in determining how a new request is accommodated. 

Note that all the above papers studying the dynamic PDP in a deterministic environment where 
information of requests and the system are known at the time of the decision. However, the 
reality often contains extra complexities such as traffic jam, vehicle breakdowns, request 
cancellations and passenger no-shows. This new stream of dynamic and stochastic PDPs has 
attracted more researchers despite their complexities. Xiang et al. (2008) studied this problem 
and proposed a fast heuristic to re-optimize the route. This heuristic consists of a local search 
strategy and a secondary objective function to drive the search out of local optima. Schilde et 
al. (2011) studied a dynamic and stochastic PDP where outbound trips can possibly trigger 
inbound trips. They proposed four different metaheuristics and their results indicated that 
using the stochastic information on return transports leads to an average improvement of 
around 15%. Núñez et al. (2014) used a multi-objective model predictive control method to 
predict the future scenarios to obtain optimal control in a stochastic environment. Most 
recently, Ulmer et al. (2020) considered a restaurant meal delivery problem with random ready 
times. They proposed a route-based Markov decision process (MDP) to model the problem and 
an anticipatory customer assignment policy to address the stochasticity. 
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2.2 Ride-Sharing with Walking 

In the previous sections of the literature review, each passenger (customer) is picked up and 
dropped off at their exact locations. In this report, we study the case where passengers are pro- 
vided with the option of walking to a pickup or drop-off location. 

In public transport, we are used to the idea of walking since a public transit system usually has a 
fixed transportation route and utilizes the benefits of massive transit (Mohring 1972; Fielbaum 
et al. 2020). It is a well-studied topic in public transport (Hurdle 1973; Chang and Schonfeld 
1991; Tirachini 2014; Lyu et al. 2019; Pei et al. 2019) and can provide some intuition in that 
there are many good solution approaches to jointly optimize the costs of service providers and 
passengers. In the context of private transportation services, we encounter walking scenarios as 
well: (1) when passengers request a ride in a limited access area such as universities, and (2) 
when passengers try to find more taxis at a larger intersection. A study by Nie (2017) showed 
that taxi services that require walking achieves higher efficiency than those that do not under 
high-demand conditions. Furthermore, in the context of ride-sharing, according to Stiglic et al. 
(2015), the idea of applying walking in ride-sharing can improve the matching rate and mileage 
savings. A recent study by Papoutsis et al. (2021) also indicated that ride-sharing with exact 
locations is an obstacle to mass carpooling utilization. Yan et al. (2020) used Uber commercial 
data to show that by allowing passengers to walk, advantages such as increased capacity 
utilization and mitigated price variability can be observed under optimized dynamic pricing 
algorithms and dynamic waiting matching strategy. Therefore, there exists a need to 
incorporate walking into ride-sharing systems. Compared to ride-sharing with exact locations, 
there is not much literature investigating how to integrate walking in a ride-sharing system. Li 
et al. (2015) proposed a novel dynamic programming method to search for the optimal route 
with multiple meeting points in an on-demand ride-sharing system. Li et al. (2018) formulated 
the problem as a mixed integer linear program (MILP) and proposed a Tabu-based meta-
heuristic algorithm. Specifically, their results show that introducing meeting points to ride-
sharing system saves the total travel time by 2.7%-3.8% for a small-scale ride-sharing system. 
Zhao et al. (2018) used a space-time network representation on ride-sharing problems with 
flexible pickup and drop-off locations and proposed a Lagrangian relaxation inspired solution 
approach. Smet (2021) studied the same problem, but they also consider the problem of how 
to decide which users act as drivers in a ride-sharing system.  

3 Problem Description 

In this section, we formally present the models. As previously mentioned, we focus on the PDP 
with meeting points with specific application to ride-sharing. In our ride-sharing context, the 
drivers are travelling toward their own destinations and can make detours to pick up or drop off 
additional passengers where the passengers have flexible pickup and drop-off locations. We 
also consider the utilization of high occupancy (HOV) lanes to maximize the savings in time 
brought by ride-sharing. 

Although we are interested in solving the dynamic version of the problem, we first present a 
mathematical model of the static version to formalize our problem description. Furthermore, 
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the decomposition of the static formulation is incorporated in our dynamic solution approach 
which is presented in Section 4. 

Given a set of passengers ℙ = {1, … , 𝑛} and a set of drivers 𝕍 = {1, … , 𝑚}, each passenger 𝑝 ∈
ℙ (driver 𝑣 ∈ 𝕍) has an origin 𝑂𝑝(𝑂𝑣), a destination 𝐷𝑝(𝐷𝑣). Each driver has a maximum in-

vehicle time 𝐻𝑣 while each passenger has a maximum walking distance 𝐿𝑝 to the deviated 

origin and destination and a maximum wait time 𝐼𝑝 before the vehicle arrives. The passengers 

share the same walking speed of 𝑊. We need to output the deviated origin (𝑂𝑝
d) of a 

passenger's request and the deviated destination (𝐷𝑝
d) while satisfying all the constraints 

provided by the passengers' information. The objective is to minimize the total travel time. 

3.1 Model 

We first create a network 𝐺(ℕ, 𝔸) with 𝑛 passengers and 𝑚 drivers. The node set ℕ =
{1, … ,2𝑛 + 2𝑚} = 𝕆𝑝 ∪ 𝔻𝑝 ∪ 𝕆𝑣 ∪ 𝔻𝑣  where 𝕆𝑝 = {1, … , 𝑛}, 𝔻𝑝 = {𝑛 + 1, … ,2𝑛}, 𝕆𝑣 =

{2𝑛 + 1, … ,2𝑛 + 𝑚} and 𝔻𝑣 = {2𝑛 + 𝑚 + 1, … ,2𝑛 + 2𝑚}. The arc set 𝔸 = {𝐴𝑖,𝑗|𝑖, 𝑗 ∈ 𝑁}. 

Note that the incorporation of HOV lanes may generate multiple arcs between two nodes. For 
simplicity, since HOV lanes are always chosen when possible (due to less travel time), instead of 
representing them with multiple arcs, we will introduce a constraint to indicate whether the 
travel time associated with HOV lanes are valid. The deviated locations will not be included in 
the network graph, no arcs connected to them, but they are among the decision variables. Let 
𝑐𝑖,𝑗 denote the travel time between node 𝑖 and 𝑗, 𝑑𝑖,𝑗 denote the distance between node 𝑖 and 

𝑗, 𝛽𝑖,𝑗 denote the time discount factor between node 𝑖 and 𝑗 when HOV lane is chosen, and 𝐻 

denotes the number of people required to go on a HOV lane. (𝑟𝑖
𝑥, 𝑟𝑖

𝑦
) denotes the coordinates 

of node 𝑖 ∈ ℕ where (𝑙𝑖
𝑥, 𝑙𝑖

𝑦
) denotes the coordinates of the deviated locations of node 𝑖 ∈

𝕆𝑝 ∪ 𝔻𝑝. Both sets of coordinates are in ℝ2 space. 𝐿𝑖, 𝑖 ∈ 𝕆𝑝 ∪ 𝔻𝑝 denote the maximum 

walking distance of each passenger to the deviated locations, 𝐸 denotes the average driving 
speed and 𝑈 denotes the capacity for each vehicle (i.e., the maximum number of passengers in 
a vehicle). We also denote 𝑔𝑖,𝑣 as the load indicator to show whether a passenger is picked up 
or delivered: 

𝑔𝑖,𝑣 = {

1, if 𝑖 ∈ 𝕆𝑝

−1, if 𝑖 ∈ 𝔻𝑝

0, otherwise.

 

The formulation of this PDP is below. The three sets of decision variables are: 

𝑦𝑖,𝑗,𝑣 = {
1, if vehicle 𝑣 travels from node 𝑖 to node 𝑗
0, otherwise

 

𝑏𝑖,𝑗,𝑣 = {
1, if node 𝑖 is visited before node 𝑗 on vehicle 𝑣
0, otherwise

 

𝑎𝑖,𝑗,𝑣 = {
1, if HOV lane is valid for vehicle 𝑣 from node 𝑖 to node 𝑗
0, otherwise

 

(𝑙𝑖
𝑥, 𝑙𝑖

𝑦
)   ∀𝑖 ∈ 𝕆𝑝 ∪ 𝔻𝑝 
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The mathematical formulation is then: 

min ∑ ∑ ∑(1 − 𝛼𝑖,𝑗,𝑣𝛽𝑖,𝑗)𝑐𝑖,𝑗𝑦𝑖,𝑗,𝑣

𝑗∈𝑁𝑖∈𝑁𝑣∈𝑉

+ 𝑀 ∑ (1 − ∑ ∑ 𝑦𝑖,𝑗,𝑣

𝑖∈𝑁𝑣∈𝑉

)

𝑗∈𝑂𝑝

  

s. t. ∑ ∑ 𝑦𝑖,𝑗,𝑣

𝑗∈𝑁𝑣∈𝑉

≤ 1 ∀𝑖 ∈ ℕ\𝔻𝑣 (1) 

∑ ∑ 𝑦𝑖,𝑗,𝑣

𝑖∈𝑁𝑣∈𝑉

≤ 1 ∀𝑗 ∈ ℕ\𝕆𝑣  (2) 

∑ 𝑦𝑖,𝑗,𝑣

𝑗∈𝑁

= ∑ 𝑦𝑗,𝑖,𝑣

𝑗∈𝑁

 ∀𝑖 ∈ 𝕆𝑝 ∪ 𝔻𝑝, 𝑣 ∈  𝕍 (3) 

∑ 𝑦𝑖,𝑗,𝑖−2𝑛

𝑗∈𝑁

= ∑ 𝑦𝑗,𝑖+𝑚,𝑖−2𝑛

𝑗∈𝑁

 ∀𝑖 ∈ 𝕆𝑣 (4) 

𝑏𝑘,𝑖,𝑣 ≤ 𝑏𝑘,𝑗,𝑣 + (1 − 𝑦𝑖,𝑗,𝑣) ∀𝑖 ∈ ℕ\𝔻𝑣, 𝑗 ∈ ℕ\𝕆𝑣, 𝑘 ∈ ℕ\{𝑖} and 𝑣 ∈  𝕍 (5) 

𝑏𝑘,𝑗,𝑣 ≤ 𝑏𝑘,𝑖,𝑣 + (1 − 𝑦𝑖,𝑗,𝑣) ∀𝑖 ∈ ℕ\𝔻𝑣, 𝑗 ∈ ℕ\𝕆𝑣, 𝑘 ∈ ℕ\{𝑖} and 𝑣 ∈  𝕍 (6) 

𝑦𝑖,𝑗,𝑣 ≤ 𝑏𝑖,𝑗,𝑣 ∀𝐴𝑖,𝑗 ∈ 𝐴, 𝑣 ∈  𝕍 (7) 

𝑏𝑖,𝑖,𝑣 = 𝑏𝑖,𝑘,𝑣 = 0 ∀𝑖 ∈ ℕ, 𝑘 ∈ 𝕆𝑣 and 𝑣 ∈  𝕍 (8) 

𝑏𝑗,𝑖,𝑣 = 0 ∀𝑣 ∈ 𝕍, 𝑖 ∈ 𝕆𝑝 and 𝑗 = 𝑖 + 𝑛, 𝑖 ∈ 𝕆𝑣  and 𝑗 = 𝑖 + 𝑚 (9) 

𝑏𝑖,𝑗,𝑣 = 1 ∀𝑣 ∈  𝕍, 𝑖 ∈ 𝕆𝑣  and 𝑗 = 𝑖 + 𝑚 (10) 

∑ 𝑏𝑖,𝑗,𝑣

𝑣∈𝑉

= 1 𝑖 ∈ 𝕆𝑝 and 𝑗 = 𝑖 + 𝑛 (11) 

𝑏𝑖,𝑘,𝑣 = 𝑏𝑖+𝑛,𝑘,𝑣 ∀𝑣 ∈  𝕍, 𝑖 ∈ 𝕆𝑝, 𝑘 ∈ 𝔻𝑣  (12) 

𝑔𝑖,𝑣 + ∑ 𝑏𝑖,𝑗,𝑣𝑔𝑖,𝑣

𝑖∈𝑁

≤ 𝑈 ∀𝑗 ∈ ℕ, 𝑣 ∈  𝕍 (13) 

(𝑙𝑖
𝑥 − 𝑟𝑖

𝑥)2 + (𝑙𝑖
𝑦

− 𝑟𝑖
𝑦

)
2

≤ 𝐿𝑖
2 ∀𝑖 ∈ 𝕆𝑝 ∪ 𝔻𝑝 (14) 

(𝑙𝑖
𝑥 − 𝑙𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑙𝑗
𝑦

)
2

= 𝑑𝑖,𝑗
2  ∀𝑖, 𝑗 ∈ 𝕆𝑝 ∪ 𝔻𝑝 (15) 

(𝑟𝑖
𝑥 − 𝑙𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑙𝑗
𝑦

)
2

= 𝑑𝑖,𝑗
2  ∀𝑖 ∈ 𝕆𝑣, 𝑗 ∈ 𝕆𝑝 (16) 

(𝑙𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑙𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

= 𝑑𝑖,𝑗
2  ∀𝑖 ∈ 𝔻𝑝, 𝑗 ∈ 𝔻𝑣  (17) 

𝑐𝑖,𝑗𝐸 = 𝑑𝑖,𝑗 ∀𝐴𝑖,𝑗 ∈ 𝔸 (18) 
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∑ 𝑏𝑘,𝑖,𝑣𝑔𝑘,𝑣

𝑘∈𝑁

≥ 𝐻 − 𝑀(1 − 𝛼𝑖,𝑗,𝑣) ∀𝑖, 𝑗 ∈ ℕ, 𝑣 ∈  𝕍 (19) 

∑ ∑(1 − 𝛼𝑖,𝑗,𝑣𝛽𝑖,𝑗)𝑐𝑖,𝑗𝑦𝑖,𝑗,𝑣

𝑗∈𝑁𝑖∈𝑁

≤ 𝐻𝑣 ∀𝑣 ∈  𝕍 (20) 

𝛼𝑖,𝑗,𝑣 = 0 𝑜𝑟 1  (21) 

𝑦𝑖,𝑗,𝑣 = 0 𝑜𝑟 1  (22) 

𝑏𝑖,𝑗,𝑣 = 0 𝑜𝑟 1  (23) 

The objective is to minimize the total travel cost (first term) plus the minimization of unserved 
passengers (second term) where 𝑀 is a weighting factor. 𝑀 is set to a large number when it is 
desired to serve as many requests as possible and for that solution to minimize the travel cost. 

Constraint sets (1) and (2) are network flow constraints imposing that one passenger is served 
by one driver or no driver. Constraint set (3) ensures that the origin and destination of a 
passenger be assigned to the same driver. Constraint set (4) ensures that the origin and 
destination of a driver is assigned to the same driver. Constraint sets (5) and (6) ensure that if 
node 𝑖 is immediately before node 𝑗 (𝑦𝑖,𝑗,𝑣 = 1), then we have 𝑏𝑘,𝑖,𝑣 = 𝑏𝑘,𝑗,𝑣 for all 𝑘 ∈

ℕ\{𝑖}, 𝑣 ∈ 𝕍. Similarly, constraint set (7) enforces that if 𝑦𝑖,𝑗,𝑣 = 1, 𝑏𝑖,𝑗,𝑣 = 1 and if 𝑏𝑖,𝑗,𝑣 = 0, 

𝑦𝑖,𝑗,𝑣 = 0. Constraint sets (8) - (12) are prior constraints that enforce the deviated origins to be 

ahead of the deviated destinations. They also enforce the drivers' origins are ahead of their 
corresponding destinations. Constraint set (13) is the capacity constraint. Constraint set (14) 
ensures that the deviated locations are within the passengers' walking ranges. Constraint sets 
(15) - (17) describe how the actual distance costs between nodes are calculated; that is, even 
though we determine the pickup and delivery sequence based on node sets 𝕆𝑝 and 𝔻𝑝, we 

calculate the distances using the deviated locations. Constraint set (18) describes the 
relationship between distance and time to travel from node 𝑖 to node 𝑗. Note if HOV lane is 
eligible to be taken from node 𝑖 to node 𝑗 then a discount is applied in the objective function. 
Constraint set (19) ensures the time discount factor for an arc is activated only when the HOV 
eligibility threshold is reached. Constraint set (20) ensures that for all the vehicles, the time a 
vehicle spends in the operation does not exceed its maximum in-vehicle time 𝐻𝑣. Since 
constraint set (20) may result in certain passengers not being served by any vehicle, we add an 
extra term in the objective function to avoid the infeasibility of the formulation. Therefore, 
these set of constraints ensure that the objective function is based on the deviated locations 
that minimizes the total time costs while maximizing the number of passengers served in the 
system. 

As we can see from the above formulation, the PDP and the location selection problem are 
simultaneously solved. The location selection problem itself is a non-linear problem which 
causes extra complexity on the NP-hard PDP. In order to solve these two problems, we propose 
to separately solve them. We delete constraint sets (11) - (15) from the above formulation and 
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simply let 𝑐𝑖,𝑗 = √(𝑟𝑖
𝑥 − 𝑟𝑗

𝑥)
2

+ (𝑟𝑖
𝑦

− 𝑟𝑗
𝑦

)
2

/𝐸 for all𝑖, 𝑗 ∈ ℕ. As a result, we have a model 

dedicated to solving the multi-vehicle PDP. The output of this model is a list of vehicle routes 
with each passenger assigned to a vehicle. Then for each vehicle route ℤ = {𝑍1, … , 𝑍2𝑞+2}, it 

contains one driver and 𝑞 passengers. Let the first node in the route be 𝑍1 ∈ 𝕆𝑣 = {2𝑛 +
1, … ,2𝑛 + 𝑚}, the last node be 𝑍2𝑞+2 ∈ 𝔻𝑣 = {2𝑛 + 𝑚 + 1, … ,2𝑛 + 2𝑚} and the nodes in 

between 𝑍𝑖 ∈ 𝕆𝑝 ∪ 𝔻𝑝 = {1, … ,2𝑛} be the pickup and delivery locations of the 𝑞 passengers. 

We then establish the following quadratic model: 

min ∑ 𝑑𝑍𝑖,𝑍𝑖+1

2𝑞+1

𝑖=1

 

 

s. t.  (𝑟𝑍𝑖

𝑥 − 𝑙𝑍𝑖

𝑥 )
2

+ (𝑟𝑍𝑖

𝑦
− 𝑙𝑍𝑖

𝑦
)

2
≤ 𝐿𝑍𝑖

2        ∀𝑖 = 2, … ,2𝑞 + 1 

(𝑟𝑍1

𝑥 − 𝑙𝑍2

𝑥 )
2

+ (𝑟𝑍1

𝑦
− 𝑙𝑍2

𝑦
)

2
≤ 𝑑𝑍1,𝑍2

2   

(𝑟𝑍2𝑞+2

𝑥 − 𝑙𝑍2𝑞+1

𝑥 )
2

+ (𝑟𝑍2𝑞+2

𝑦
− 𝑙𝑍2𝑞+1

𝑦
)

2

≤ 𝑑𝑍2𝑞+1,𝑍2𝑞+2

2  
 

(𝑙𝑍𝑖+1

𝑥 − 𝑙𝑍𝑖

𝑥 )
2

+ (𝑙𝑍𝑖+1
𝑦

− 𝑙𝑍𝑖

𝑦
)

2
≤ 𝑑𝑍𝑖,𝑍𝑖+1

2        ∀𝑖 = 2, … ,2𝑞 

𝑑𝑍𝑖,𝑍𝑖+1
≥ 0       ∀𝑖 = 1,2𝑞 + 2 

4 Dynamic Solution Algorithm 

In this section, we describe our solution approach for solving the dynamic version of the above 
static problem. In the dynamic version, instead of requests being known at the beginning of the 
day, the requests arrive dynamically throughout the day as well as the driver’s departure time. 
Figure 1 describes how each new passenger request is dealt with from a high-level point of 
view. Once a request is received by the ride-sharing system, it first generates a feasible set of 
vehicles based on the personal preferences of the request. That is, starting at the vehicle’s 
current location, if it fails to reach any point within the maximum walking circle of the request 
location, then this vehicle is not feasible for this new request. This procedure provides a basic 
filter for assigning requests to vehicles. If the feasible set turns out to be empty, the system 
rejects the request. Otherwise, for each vehicle in the feasible set, the system calls on our 
routing algorithm to calculate a route and meeting points for this new request. That is, it inserts 
the request in the current route of the vehicle and determines the meeting points with minimal 
increase in travel time for that vehicle. During this procedure, if an insertion to a certain vehicle 
will cause any violation of the driver’s maximum detour time 𝑇𝑣 or the maximum waiting time 
𝐼𝑝 of an existing request on that vehicle, then this vehicle is removed from the feasible vehicle 

set. After this procedure, if the set is empty, the request is rejected. Otherwise, the request is 
accepted with the route and meeting points that has the minimal increase in travel time among 
all the feasible vehicles. Next, we introduce our algorithms in greater detail. We first present 
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our routing algorithm and then the incorporated location selection algorithm that is used to 
generate the meeting points given a route. 

 

Figure 1. The Overall Solution Framework 

4.1 The Routing Algorithm 

In this section, we introduce how we match the passengers with the drivers and route them. 
We use an insertion algorithm to determine the ordering of passengers in the route. We use an 
insertion procedure because it is shown to be fast and effective in solving dynamic routing 
problems (Berbeglia et al. 2010; Pillac et al. 2013; Ho et al. 2018). 

In order to introduce our algorithm in detail, we first introduce some extra notation. We denote 

𝕍𝑝,𝑡
F  as the feasible set of drivers for passenger 𝑝 at time 𝑡. We also denote ℙ𝑣,𝑡 as the set of 

passengers assigned to driver 𝑣 at time 𝑡, ℝ𝑣,𝑡 as the current route of driver 𝑣 at time 𝑡 which 

contains a sequence of deviated locations 𝑂𝑝
d and 𝐷𝑝

d for 𝑝 ∈ ℙ𝑣,𝑡. Then, we describe how a 

new request from passenger 𝑝 is routed in Algorithm 1.  

First, a feasible set 𝕍𝑝,𝑡
F  is first created by checking all vehicles to see if they can reach any point 

on ⨀𝑂𝑝 (a circle with a radius of 𝐿𝑝 centered at 𝑂𝑝) within maximum waiting time 𝐼𝑝. 

Immediately after a passenger 𝑝 submits a request at time 𝑡 (see Algorithm 1), passenger 𝑝 will 

go through each vehicle 𝑣 ∈ 𝕍𝑝,𝑡
F  to see if it can be inserted. For each vehicle𝑣, the algorithm 

tries to insert passenger 𝑝 by first checking the capacity constraint. After that, temporary routes 
are generated with meeting points calculated as well (the next section describes Algorithm 2 to 
compute the meeting points). Then, for each temporary route, it checks the maximum in-
vehicle time constraint for the driver and the maximum wait time constraint for the passengers 
in ℙ𝑣,𝑡 and passenger 𝑝 as well. Lastly, if a temporary route survives all feasibility checks, it is 
then added to the potential route set Φ. If Φ turns out to be empty, then vehicle 𝑣 will not be 

added to 𝕍𝑝,𝑡+1
F . Otherwise, not only 𝑣 is added to 𝕍𝑝,𝑡+1

F , but also the corresponding ℝ𝑣,𝑡+1 

and ℙ𝑣,𝑡+1 are updated. Once all the vehicles in 𝕍𝑝,𝑡
F  are checked, we compare the vehicles in 
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𝕍𝑝,𝑡+1
F  and find the 𝑣 whose corresponding route ℝ𝑣,𝑡+1 has the minimal increase in travel time 

and assign 𝑝 to that 𝑣. 

 

4.2 The Location Selecting Algorithm 

The location selection algorithm determines the meeting points (deviated points) given a route 
ordering for a vehicle. 

In order to solve the location selection problem, we first acknowledge that the problem is 
equivalent to this following problem: given two fixed points, 𝑂and𝐷, given 2𝑛 circles 
{⨀ 1 , … , ⨀ 2𝑛} each with its center and radius, and the sequence of connecting the circles, 
how to determine the 2𝑛 points, each within its corresponding circle (including the boundary), 
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such that the total distance connecting 𝑂 to the circles in the given sequence and then to 𝐷 is 
the shortest? 

Let's first take a look at the one circle case. As shown in Figure 2, we want to find a point 𝑃 
within ⨀ 𝐴 (including the boundary) such that the length of |𝑂𝑃| + |𝑃𝐷| is the shortest. It is 
trivial to see that when 𝑙𝑂𝐷 intersects with ⨀ 𝐴, point 𝑃 is any point on the line segment of 𝑙𝑂𝐷 
that is within ⨀ 𝐴 (this includes the scenario where 𝑙𝑂𝐷 is tangent to ⨀ 𝐴). Since there may be 
multiple points, we could generally provide a single point solution for these two scenarios: 
point 𝑃 is the projection of point 𝐴 onto 𝑙𝑂𝐷. If 𝑙𝑂𝐷 does not intersect with ⨀ 𝐴, then point 𝑃 is 
a point such that 𝑙𝐴𝑃 is the bisector of ∠𝑂𝑃𝐷. 

 

Figure 2. The One Circle Case 

In fact, the latter description generalizes all the scenarios and the following propositions 
describes how to determine point 𝑃. 

Proposition 1. Given two fixed points 𝑂 and 𝐷, and ⨀ 𝐴, the optimal point 𝑃 within ⨀ 𝐴 that 
minimizes |𝑂𝑃| + |𝑃𝐷| is the point on 𝐴 such that 𝑙𝐴𝑃 is the bisector of ∠𝑂𝑃𝐷. 

Proof. When 𝑙𝑂𝐷 intersects with ⨀ 𝐴, 𝑃 is on 𝑙𝑂𝐷 because the distance among three points is 
the shortest when they are on the same line. When projecting 𝐴 onto 𝑙𝑂𝐷, we have 𝑙𝐴𝑃 ⊥ 𝑙𝑂𝐷 
and ∠𝑂𝑃𝐷 = 𝜋. Therefore, 𝑃 is indeed the point on 𝐴 where 𝑙𝐴𝑃 is the bisector of ∠𝑂𝑃𝐷. 

When 𝑙𝑂𝐷 does not intersect with ⨀ 𝐴, we know that the distance of any point on an ellipse to 
the ellipse's two foci is a constant. As shown in Figure 3, suppose 𝑂 and 𝐷 are the foci of an 
ellipse and suppose that 𝑃 is on that ellipse, then we have |𝑂𝑃| + |𝑃𝐷| = 2𝑎 where 𝑎 is a 
constant. We can see that 2𝑎 is minimized when 𝑃 is on 𝑙𝑂𝐷 and that 2𝑎 = |𝑂𝐷|. However, 
when 2𝑎 is minimized, 𝑃 is not on ⨀ 𝐴. Therefore, we increase 2𝑎 until 𝑃 is on ⨀ 𝐴. As a result, 
we have an ellipse that is tangent to ⨀ 𝐴 and has 𝑂 and 𝐷 as its foci. 

Since for an ellipse, the path for a light beam starting at one focus will always travel through a 
point 𝑃 on the ellipse boundary and then reach the other focus, by Fermat's Law, this path is 
the shortest path from 𝑂 to 𝑃 and then to𝐷. We also know that ∠1 = ∠2. Therefore, 𝑙𝐴𝑃 is the 
bisector of ∠𝑂𝑃𝐷. ∎ 
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Figure 3. Ellipse Tangent to Circle A 

We now have arrived at the geometrical property of point 𝑃. Additionally, based on this 
property, an algebraic solution approach can be found according to Eberly (2008) (referred as 
the Eberly Algorithm for the rest of the report). The problem of finding 𝑃 is reduced to solving a 
unary quadratic equation whose solution is well known and is in closed-form. Therefore, in the 
one circle case, the optimal meeting point 𝑃 can be found within 𝑂(1) time complexity. 

Next, we show how this one circle case can be extended to the case of multiple circles in our 
solution approach. We first introduce how it is applied to the two-circle case and then the 2𝑞-
circle case where 𝑞 is the number of passengers. As shown in Figure 4, we have a pair of circles 
𝐴 and 𝐵 which are the origin and destination of a single passenger. As usual, we have the origin 
and destination of the driver as well, denoted as points 𝑂 and 𝐷. According to Proposition 1, we 
find the initial point of 𝑃𝐴, denoted as 𝑃𝐴

0, given points 𝑂, 𝐵 and ⨀ 𝐴. Similarly, we find 𝑃𝐵
0, 

given points 𝐴, 𝐷 and ⨀ 𝐵, the total distance is denoted as 𝑑0. Next, we search in the 
neighbourhood of 𝑃𝐴

0. Given a fixed range and spacing, we pick 𝐾 points in the neighbourhood 
of 𝑃𝐴

0. For each neighborhood point denoted as (𝑃𝐴
0)𝑘, we find the corresponding optimal point 

(𝑃𝐵
0)𝑘 (given fixed point (𝑃𝐴

0)𝑘, point 𝐷 and ⨀ 𝐵). After that, we calculate the total distance 𝑑𝑘
0 

associated with (𝑃𝐴
0)𝑘 and select the neighbor and its corresponding 𝑃𝐵 who have the shortest 

total distance to be 𝑃𝐴
1 and 𝑃𝐵

1. The corresponding total distance is denoted as 𝑑1. We also 
denote 𝜖1 = 𝑑1 − 𝑑0. Similarly, we search the 𝐾 neighbourhood points of 𝑃𝐵

1 and obtain 𝑃𝐴
2, 𝑃𝐵

2 
and 𝑑2. We iterate for a finite number of iterations 𝐹 or until the error is smaller than a given 
precision 𝜖. Then we have found the optimal pair of points 𝑃𝐴

∗ and 𝑃𝐵
∗. 
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Figure 4. The Two-Circle Case 

We next describe how the above procedures can be applied to the 2𝑞-circle case (𝑞 
passengers). Using the same set of notation as in Section 3, Algorithm 2 describes our solution 
approach. 

Given a vehicle route ℤ of 𝑞 passengers, 𝑍1 and 𝑍2𝑞+2 are the origin and destination of the 

driver which are fixed points. Additionally, we have ⨀ 𝑍2 , … , ⨀ 𝑍2𝑞+1 representing the circles 

centered at points 𝑍2, … , 𝑍2𝑞+1. The idea of Algorithm 2 is to find a pair of 𝑃𝐴
∗ and 𝑃𝐵

∗ at a time 

where 𝐴 = 𝑍𝑖 and 𝐵 = 𝑍2𝑞+3−𝑖 for 𝑖 = 2, … , 𝑞 + 1. When determining a pair of 𝑃𝑍𝑖

∗  and 

𝑃𝑍2𝑞+3−𝑖

∗ , we use exactly the same procedures as the two-circle case we introduced in above. 

The only difference is that we have an extra step of propagating the (𝑃𝑍𝑖+1

𝑓−1
)

𝑘
, … , (𝑃𝑍2𝑞+2−𝑖

𝑓−1
)

𝑘
 

during the neighbourhood search in each iteration. The way to do that is to apply Proposition 1 

and obtain the optimal points. For example, given ⨀ 𝑍𝑖+1 and fixed points (𝑃𝑍𝑖

𝑓−1
)

𝑘
 and 𝑃𝑍𝑖+2

𝑓−1
, 

we determine (𝑃𝑍𝑖+1

𝑓−1
)

𝑘
. This procedure terminates after 𝐹 iterations or if the total distance 

error 𝜖𝑓 is smaller than a given error parameter 𝜖. 

Since the one circle case can be solved in 𝑂(1) time, the time complexity of Algorithm 2 is at 
most 𝑂(𝐾𝐹𝑛2) where 𝐾 is a given parameter describing the number of neighbourhood 
searches, 𝐹 is the number of iterations which is associated with given parameter 𝜖 and 𝑛 is the 
total number of passengers in the system. Therefore, we have deviced an algorithm for solving 
the quadratically constrained quadratic program shown at the end of Section 3. We next show 
in Proposition 2 that this algorithm is optimal when parameter 𝜖 → 0. 
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Proposition 2. When the given error parameter 𝝐 → 𝟎, the solution of Algorithm 2 goes to 
optimal. 

Proof. We prove by induction. Previously, we have shown that when there is only one circle in 
the sequence, there exists a closed-form optimal solution. Therefore, when the number of 
circles 𝑘 = 1, the statement holds. 

When there is only one passenger on vehicle route ℤ, that is 𝑘 = 2 and 𝑞 = 1 as shown in 
Figure 4. For every neighborhood of 𝑃𝐴, the corresponding optimal 𝑃𝐵 is calculated and vice 
versa. Therefore, if one of the points 𝑃𝐴

∗ and 𝑃𝐵
∗ is found during the neighbourhood search, the 

other one is found immediately. The quadratic model at the end of Section 3.1 is convex due to 
the fact that both the objective and the constraints are convex. Therefore, an optimal solution 
exists. By carefully selecting the neighborhood search parameters (spacing, search range and 
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etc.), we can find the global optima. We use 𝑃𝐴
∗ as an example. First, we observe that it is within 

a bounded region. As shown in Figure 5, 𝑃𝐴
∗ is within the range of 𝑃𝐴

𝑙  and 𝑃𝐴
𝑟 on the circle 

boundary. 𝑃𝐴
𝑙  and 𝑃𝐴

𝑟 are determined by picking extreme points 𝑃𝐵
1 and 𝑃𝐵

2 on ⨀ 𝐵. Since our 
initial point 𝑃𝐴

0 is obtained by fixed points 𝑂, 𝐵 and ⨀ 𝐴, it will be within the solution region as 

well. Then, an original search range radius of ±
𝜋

4
 from 𝑃𝐴

0 would be enough to cover the 

solution region. Additionally, we observe that, there is no local optima because moving away 
from 𝑃𝐴

∗ will result in non-decreasing total distances (the route of 𝑂 − 𝑃𝐴 − 𝑃𝐵 − 𝐷). To better 
illustrate this, see Figure 6. The figure on the left is an example of a two-circle case with green 
crosses being the origin and destination of a driver and the blue dots being the origin and 
destination of a passenger. The 10 red dots are equally spaced 𝑃𝐴 on the circumference of ⨀ 𝐴 
and they are numbered 1 to 10 from left to right. The plot on the right shows how the total 
minimum distance of the route changes when we fix 𝑃𝐴 and obtain the corresponding optimal 
𝑃𝐵. We can see that it is indeed a convex plot. This guarantees that as long as we are 
approaching 𝑃𝐴

∗, we will obtain the optimal objective value. As we calculate the total distance 
for each neighborhood point, we can pick the two consecutive points that have a decrease and 
then an increase in the total distance, and set it to be the search bounds for the next iteration. 
As a result, if we set 𝜖 → 0, we will obtain the optimal points 𝑃𝐴

∗ and 𝑃𝐵
∗. Therefore, when the 

number of circles𝑘 = 2, the statement holds. 

 

Figure 5. The Solution Region  
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Figure 6. Distance Information of the Studied Region 

Assume that the statement holds when 𝑘 = 2𝑞 − 1, then we have that Algorithm 2 goes to 
optimal when 𝜖 → 0. Therefore, when 𝑘 = 2𝑞 and 𝜖 → 0, the 2𝑞 circles can be divided into 
2𝑞 − 1 circles and 1 circle. By assumption, we can find the optimal meeting points for the first 

2𝑞 − 1 circles for each fixed meeting point of the last circle. And by fixing the (2𝑞 − 1)th circle, 
we can find the optimal meeting point of the last circle. Therefore, the problem when 𝑘 = 2𝑞 
has been reduced in the same fashion as when 𝑘 = 2 which we have already shown to be true. 
As a result, the statement holds when 𝑘 = 2𝑞 and the proof is complete.  

5 Experiments 

In this section, we present our experimental analysis. The main purpose of these experiments is 
to see how HOV lanes and meeting points contribute to the efficiency of a dynamic ride-sharing 
system. In general, there will be four different types of settings: 1) the control group which has 
no HOV lanes and every passenger request is served at the exact location instead of meeting 
points; 2) the HOV experimental group which has HOV lanes but no meeting points; 3) the 
meeting points experimental group which has no HOV lanes but meeting points, and 4) the 
experimental group with both the HOV lanes and the meeting points. 

All experiments are run on a 20 by 20 grid where OD pairs are randomly generated. For each 
driver, the normal driving speed on average (without HOV lane) is 36 miles per hour and the 
vehicle capacity is set to 4 (including the driver). The maximum detour time is set to be 1.5 
times the driver’s direct travel time. For each passenger request, it comes with a randomly 
generated maximum walking time within 0 to 20 minutes (for the control setting, this will be 0 
for all requests) and they have the same walking speed of 3 miles per hour. The requests 
submission follows a Poisson process with a mean of 850 requests an hour. We performed 20 
replications, each has 300 passengers and 100 drivers. 

As for the performance measures, there are four major measures: 1) the average time spent in 
the ride-sharing system for each driver; 2) the average extra time needed for each served 
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request; 3) the average in-vehicle time (IVT) ratio for each request, and 4) the percentage of 
requests served in the ride-sharing system. The first measure monitors the cost to the drivers. 
The second and the third measures monitor the cost to the passengers. In detail, the second 
measure is calculated by summing the extra time needed for all served requests (excluding the 
direct travel time for the driver) and then divide the summation by the number of served 
requests. The third measure is obtained by averaging the in-vehicle time ratio among the 
served requests. The IVT ratio is the ratio between the actual in-vehicle time and the direct 
travel time (without HOV lanes) of the passenger. The last measure is to check and compare the 
efficiency of the ride-sharing system under different settings. 

There are also four other measures that help with understanding the results: 1) the average 
direct distance of the drivers; 2) the average miles each vehicle travels; 3) the percentage of 
vehicles with passengers, and 4) the average requests served per loaded vehicle. 

We first present the results for the HOV experimental group. In this group, we change normal 
lanes to HOV lanes with the requirement of 2+ or 3+ persons in a vehicle. The driving speed on 
HOV lanes is around 50 miles per hour if the requirement is 2+ persons in a vehicle or around 
70 miles per hour if the requirement is 3+. Table 1 shows the results under different HOV lane 
requirements. The first column is the control group while the “HOV2” means all roads contain 
HOV lanes that requires 2+ persons in a vehicle. Similarly, “HOV3” means all roads contain HOV 
lanes that requires 3+ persons in a vehicle. As we can see, HOV lanes indeed reduce the average 
IVT ratio since they provide a boost in driving speed. They also help increase the percentage of 
requests served in the system since the time saved in using HOV lanes can be utilized to serve 
more requests and serving more requests increases the possibility of using the HOV lanes. 
Another observation is that HOV2 outperforms HOV3 in the percentage of requests served. This 
is due to HOV3 has higher requirements for entering the HOV lanes thus forcing the drivers to 
pick up more passengers along the way to be eligible for the speed boost, resulting in an 
increase in average request served per vehicle but a decrease in the percentage of loaded 
vehicles. 

Table 1. Performance Measures for HOV Experimental Group 
 

Original HOV2 HOV3 

Avg Time per Vehicle (min) 22.35 21.66 20.80 

Avg Extra Time per Request (min) 4.03 2.70 2.31 

Avg IVT Ratio 1.16 0.91 0.85 

% Requests Served 40.50% 51.98% 48.43% 

Avg Direct Distance per Vehicle (mile) 10.48 10.48 10.48 

Avg Distance Travelled per Vehicle (mile) 13.41 15.82 14.93 

Avg # of Requests Served 2.34 2.52 2.84 

% of Loaded Vehicles 52.05% 61.95% 51.30% 

Next, we present the results for the meeting points experimental group. In this group, we 
change the maximum walking time from 0 to 10 to 20 minutes. Table 2 shows the results. As we 
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increase the maximum walking time, more requests are served in the system. This is due to the 
fact that the larger walking time allows closer meeting points among locations so more 
passengers can be served within the same amount of travel distance. Since no HOV lanes are 
involved in this experimental group, there will not be any speed boost to help save time. But if 
we take a closer look, we can find that around a 4.2% increase in time spent per vehicle and 
4.3% increase in average IVT ratio bring around 10.7% increase in usage of the ride-sharing 
system. The percentage of requests served in the 20-min-walk case is the same as that of the 
HOV3 in Table 1 with fewer miles travelled per vehicle and fewer empty vehicles. The reduction 
in miles travelled while maintaining the same level of system usage indicates its ability in 
reducing detours. 

Table 2. Performance Measures for Meeting Points Experimental Group 
 

Original 10-min-
walk 

20-min-
walk 

Avg Time per Vehicle (min) 22.35 23.28 24.28 

Avg Extra Time per Request (min) 4.03 4.33 4.71 

Avg IVT Ratio 1.16 1.21 1.28 

% Requests Served 40.50% 44.83% 48.32% 

Avg Direct Distance per Vehicle (mile) 10.48 10.48 10.48 

Avg Distance Travelled per Vehicle (mile) 13.41 13.97 14.57 

Avg # of Requests Served 2.34 2.59 2.77 

% of Loaded Vehicles 52.05% 52.05% 52.40% 

Lastly, we want to see how the combination of HOV lanes and meeting points together con- 
tribute to the efficiency of the ride-sharing system. As shown in Table 3 and Table 4, we find that 
increase in maximum walking time always results in higher system usage for ride-sharing while 
HOV lanes always results in time efficiency which significantly increases the passengers’ in-
vehicle experience and reduce the passengers’ cost (due to sharing the ride). 

Table 3. Average IVT Ratio with HOV Lanes and Meeting Points 

Avg IVT 
Ratio 

Original HOV2 HOV3 

Original 1.16 0.91 0.85 

10-min-walk 1.21 0.94 0.86 

20-min-walk 1.28 0.97 0.88 



 20 

Table 4. Percentage Requests Served with HOV Lanes and Meeting Points 

% Requests 
Served 

Original HOV2 HOV3 

Original 40.50% 51.98% 48.43% 

10-min-walk 44.83% 56.52% 52.88% 

20-min-walk 48.32% 59.57% 56.37% 

6 Conclusion 

In this project, we explored the use of HOV lanes and meeting points in a ride-sharing system 
where drivers have their own origin and destination. In order to adapt to the dynamic 
environment, we proposed a two-stage heuristic algorithm which consists of an insertion 
heuristic to solve the PDP problem and a second stage algorithm that can solve the meeting 
points problem optimally in polynomial time. Our experimental results show that the HOV lanes 
and meeting points can increase the efficiency of the dynamic ride-sharing system. When we 
choose a maximum walking time of 10 minutes and a common HOV requirements of 2+ persons 
in the vehicle, the system could serve 39% more requests while reducing the average in-vehicle 
time ratio by 19%. There- fore, we can say that a good combination of HOV lanes and meeting 
points can provide passengers with lower commuting cost and faster commuting experience.  
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Data Summary  

Products of Research  

The main research products will be peer-reviewed journal articles, book chapters and/or 
conference proceedings targeted towards the transportation science research community, plus 
supplemental materials such as tables, numerical data used for graphs, etc. No personal data 
will be used in the project, so there is no threat of identity theft. 

Data Format and Content  

All research products will be available online in digital form. Manuscripts will appear in a 
common document-viewing format, such as PDF, and supplemental materials such as tables 
and numerical data will be in a tabular format, such as Microsoft Excel spreadsheet, tab-
delimited text, etc. 

Data Access and Sharing  

All participants in the project will publish the results of their work. Papers will be published in 
peer-reviewed scientific journals, books published in English, conference proceedings, or as 
peer-reviewed data reports. The primary data source is generated using simulation and is 
described in detail in the report. Since it is randomly generated using a computer, the hardware 
specifications of the computer and the codes are stored in the database 
(https://doi.org/10.7910/DVN/P6ROMD). 

Reuse and Redistribution  

USC's policy is to encourage, wherever appropriate, research data to be shared with the general 
public through internet access. This public access will be regulated by the university in order to 
protect privacy and confidentiality concerns, as well to respect any proprietary or intellectual 
property rights. Administrators will consult with the university's legal office to address any 
concerns on a case-by-case basis, if necessary. Terms of use will include requirements of 
attribution along with disclaimers of liability in connection with any use or distribution of the 
research data, which may be conditioned under some circumstances. 

The following citation should be used when referencing the dataset: 

Hu, Shichun, 2021, "NCST Report - Dynamic Ride-Sharing with HOV Lanes and Meeting 
Points", https://doi.org/10.7910/DVN/P6ROMD, Harvard Dataverse, V1  

https://doi.org/10.7910/DVN/P6ROMD
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Appendix: List of Notations 

ℙ The passengers set that index from 1 to 𝑛 

ℙ𝑣,𝑡 The set of passengers assigned to driver 𝑣 at time 𝑡 

𝕍 The drivers set that index from 1 to 𝑚 

𝕍𝑝,𝑡
F  The feasible set of drivers for passenger 𝑝 at time 𝑡 

ℝ𝑣,𝑡 The current route of driver 𝑣 at time 𝑡 

𝑂𝑝(𝑂𝑣) The origin of passenger 𝑝 (driver 𝑣) 

𝐷𝑝(𝐷𝑣) The destination of passenger 𝑝 (driver 𝑣) 

𝑂𝑝
d The deviated origin of passenger 𝑝 

𝐷𝑝
d The deviated destination of passenger 𝑝 

𝐿𝑝 The maximum walking distance of passenger 𝑝 

𝐼𝑝 The maximum wait time of passenger 𝑝 before the vehicle arrives 

𝑊 The constant walking speed for all passengers 

𝐻𝑣 The maximum in-vehicle time of driver 𝑣 

𝑇𝑣 The maximum detour time for driver 𝑣 

𝐸 The average driving speed for all drivers 

𝑈 The constant capacity for all drivers’ vehicles 

𝐺(ℕ, 𝔸) The graph 𝐺 with node set ℕ and arc set 𝔸 

𝕆𝑝(𝕆𝑣) The node set of origins of all passengers (drivers) 

𝔻𝑝(𝔻𝑣) The node set of destinations of all passengers (drivers) 

𝑐𝑖,𝑗 The travel time between node 𝑖 and 𝑗 

𝑑𝑖,𝑗 The Euclidean distance between node 𝑖 and 𝑗 

𝛽𝑖,𝑗 The time discount factor between node 𝑖 and 𝑗 
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𝐻 The number of people required to go on a HOV lane 

(𝑟𝑖
𝑥, 𝑟𝑖

𝑦
) The coordinates of node 𝑖 

(𝑙𝑖
𝑥, 𝑙𝑖

𝑦
) The coordinates of the deviated location of node 𝑖 

𝑔𝑖,𝑣 The load indicator for driver 𝑣 at node 𝑖 

𝑦𝑖,𝑗,𝑣 The binary indicator of whether driver 𝑣 travels from node 𝑖 to node 𝑗 

𝑏𝑖,𝑗,𝑣 The binary indicator of whether driver 𝑣 visits node 𝑖 before node 𝑗 

𝛼𝑖,𝑗,𝑣 The binary indicator of whether driver 𝑣 can use HOV lane when travelling 
from node 𝑖 to node 𝑗 
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