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ABSTRACT OF THE DISSERTATION

Residential Demand Response: Generation, Storage, and Load Management

By

Nadia Ahmed

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2017

Professor Marco Levorato, Chair

An Energy Management System (EMS) control framework driven by resident be-

havior patterns is developed. Using hidden Markov modeling techniques, the EMS

detects consumer behavior from real-time aggregate consumption and a pre-built dic-

tionary of reference models. These models capture variations in consumer habits as

a function of daily living activity sequence. Following a training period, the system

identifies the best fit model which is used to estimate the current state of the res-

ident. When a request to activate a time-shiftable appliance is made, the control

agent compares grid signals, user convenience constraints, and the current consumer

state estimate to predict the likelihood that the future aggregate load exceeds a con-

sumption threshold during the operating cycle of the requested device. Based on

the outcome, the control agent initiates or defers the activation request. Using three

consumer reference models, a case study assessing EMS performance with respect

to model detection, state estimation, and control as a function of consumer comfort

and grid-informed consumption constraints is presented. A tradeoff analysis between

comfort, consumption threshold, and appliance activation delay is demonstrated.

The EMS system is then extended to include the residential distributed energy man-

agement system (DER). In this cyber-physical system, the consumer home generates

xii



and stores energy for utilization by the load to decrease peaks in demand on the power

grid. Using historical irradiance datasets a solar irradiance model based on weather

forecast data is built to predict the potential future harvested energy of the system

in addition to the load profile. The harvested energy and the load are used to assess

the amount of energy that may be stored in the energy storage unit of a household.

Based on the cost associated with the power rate and the degradation of the battery

during the charge discharge cycle, a control policy based on a Markov decision process

framework is assessed. A case study for Boulder, CO is presented. Results using the

rain flow counting method illustrate a significant reduction in material damage to the

battery bank.
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Chapter 1

Introduction

The traditional grid maintains a delicate balance between supply and demand. The

generation and distribution of electricity from the current power system supplies the

absorbing active and reactive load demand. To ensure a reliable “smart” grid, the

supply-demand balance must be adaptable to renewables, electric storage, electric

transportation, and traditional demand (1).

While most controls are inherent to the electronic circuitry at the generation and dis-

tribution stage (i.e. frequency control generators and power converters), fluctuations

in load demands must be offset with intermittent generation to avoid grid overload

and potential sags. While energy storage solutions such as super capacitors and

vanadium redox batteries have been proposed to counteract load noise (2), expense

in terms of physical and infrastructural cost render energy storage solutions infeasible

compared to traditional generation (3).

Integration of renewables to the traditional grid increases variability and decreases

controllability of load balances, as renewables are susceptible to transient availability

based on environmental factors. Despite this, the Senate Bill 1078 established the
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Figure 1.1: Typical Demand Response Schemes.
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Renewables Portfolio Standard program requiring 20% renewable energy by 2017 (4).

Furthermore, California’s RPS program seeks to increase energy acquisition from

renewables to 33% by 2020 (5). The push for successful renewable integration com-

plicates traditional power system performance by introducing noise to the line. As is,

the power grid is susceptible to control error due to noise on the order of +/- 100MW.

By integrating 20% more distributed renewable energy sources control errors increase

several times the existing error. 33% integration, as encouraged by California’s RPS,

would result in over +/-3000MW of control errors to the existing grid(6). With the

shift to 33% renewables, existing grid infrastructure would set off protective devices,

thereby interrupting power flow to residents and resulting in blackouts. Demand Re-

sponse [DR], however, is an immediate, cost-effective, and significant improvement to

grid balancing and smoothing of transients. “...DR can directly reduce CO2 emissions

by 1 percent...[which is equivalent to]...19.5 million metric tons (7).”

1.0.1 Current Demand Response Programs

Instead of increasing supply, demand response programs seek to decrease peaks in

consumer load by promoting energy efficiency and conservation through monetary

incentives. These programs require involuntary or voluntary participation of con-

sumers. Involuntary programs via Automated Demand Response (AutoDR) systems

give direct control to the utility enabling it to clip peaks in load during periods of

high demand. In the industrial and commercial context alone, fast Automated De-

mand Response systems could double load shedding potential between .42 and 2.07

GW, successfully counteracting variability in grid balance caused by intermittent re-

newables (8). However, 22% of US total energy consumption is from the residential

sector (9) representing the greatest “untapped” potential for demand response pro-

grams (10).
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Current residential AutoDR systems are promoted for discretionary loads associated

with heating and cooling in exchange for rebates. In contrast to industrial and com-

mercial sectors, the popularity of such systems are low as residential consumers are

unlikely to give up autonomy of their homes to the utility. Voluntary programs us-

ing Advanced Metering Infrastructure (AMI) rely on consumer compliance to grid

alerts and pricing strategies to shift loads to off-peak hours thereby flattening de-

mand. Time of use (TOU) pricing sets electric prices according to time of day while

dynamic pricing relies on real-time power system conditions based on metering data.

When provided with AMI dynamic pricing programs, though representing only 17%

of demand response potential, residents have the impact to provide 45% peak re-

duction (10). The goal of these demand side programs is to use financial incentives

provided by the utility to influence consumption patterns indirectly thereby achieving

a manageable load profile.

Demand response programs would benefit significantly from residential sector pen-

etration. This sector alone consumes 22% of US total energy (9) and is growing

rapidly. From 1980-2009, residential electricity consumption increased by 57.2% due

to housing and population growth alone (11). For programs representing 17% of de-

mand response potential, residential participation has the impact to provide a 45%

reduction in peak loads (10).

1.0.2 Energy Management Systems

However, only 10% of residents enroll in demand response programs and even fewer

are compliant (12). These programs require involuntary or voluntary participation

of consumers in exchange for utility-provided monetary incentives. Involuntary au-

tomated demand response (AutoDR) gives direct control to the utility enabling it to

4



clip peaks in demand for discretionary loads associated with heating and cooling in

exchange for rebates. However, the acceptance of such systems are low as residential

consumers are unlikely to give up autonomy of their homes to the utility. In contrast,

voluntary programs using Advanced Metering Infrastructure (AMI) rely on consumer

compliance to grid alerts and pricing strategies to manually shift loads to off-peak

hours preserving resident autonomy at the expense of convenience. For example, to

make informed appliance scheduling decisions, the user must examine their energy

bill, understand their aggregate power consumption, maintain an active knowledge

of contributing appliances, and be aware of outside grid conditions. Utility pricing

strategies such as time of use (TOU) pricing, dynamic pricing (DP), and critical peak

pricing (CPP), further complicates user load shifting decision-making.

Energy Management Systems (EMS) offer a partial solution to obstacles in current

residential demand response programs. These systems utilize the convenience of auto-

mated demand response without compromising residential autonomy. Such systems,

validated through simulated case studies, assume pricing as a driving factor for resi-

dential consumption behavior and measure consumer satisfaction indirectly through

utility function parameters (13; 14; 15; 16). In other words, EMS methods are con-

structed from various cost-benefit analyses to shift loads to times corresponding to

minimal cost. If successfully integrated to the residential sector, price driven energy

management would shift many consumer loads to off-peak times. Thus, instead of

flattening the residential sector consumption peak, scheduling could potentially result

in a shift in the original peak with respect to time. In this scenario, load peaks would

remain unchanged and utility pricing schemes would be adjusted to take into account

popular demand.

The effectiveness of price-driven energy management frameworks would benefit by

including consumer behavior as a variable in the optimization of “shiftable” appli-

5



ance scheduling. Pricing as a reward for energy curtailment has shown to wear off

with time in other behavioral domains. Furthermore, the sustainability of monetary

incentives is unclear for the long term, which could potentially result in a rebound in

demand behavior exceeding pre-program levels should these incentives no longer be

provided (12). It becomes necessary to examine the source of demand–the individual

consumer. Residential consumer behavior must be examined to predict habitual con-

sumption patterns, improve existing EMS scheduling algorithms, and provide user

feedback with respect to consumption as a function of behavior.

Inclusion of the consumer as part of EMS framework presents challenges due to the

nonlinearity and complexity of human behavior. To address this we take a specific

human behavior modeling approach to build a system that directly includes the res-

ident in the system feedback loop to drive the scheduling of appliances. Similar to

proposed EMS, the improved EMS shift loads, but does so dynamically–providing the

individual consumer with a unique real-time load control mechanism as a function of

behavior. In contrast to offline data driven activity pattern discovery, this method

requires prebuilt models facilitating dynamic recognition of daily activity sequences

sufficient for the appliance scheduling control.

In this paper we make the following contributions to existing energy management

system frameworks:

• Given a household appliance inventory, we build a dictionary of reference models

for a single residence as a means of detecting structured general behavioral

activity from real-time AMI aggregate consumption observations.

• We dynamically detect resident behavior sequences and patterns from AMI ag-

gregate consumption during a training period whereby the best fit reference

model is identified. Following training, the EMS can estimate the current be-

6



havioral states as a function of the current consumption.

• For an appliance activation request, we implement appliance scheduling using

an activity informed “on-off” control mechanism. The EMS interfaces with

AMI to receive real-time DR consumption constraints, predicts the likelihood

of exceeding these constraints based on the current user state, best fit model,

requested appliance, user convenience, and current electric load.

• We perform a case study instantiating the improved EMS to schedule a con-

tinuous cycle deferrable appliance load and assess the performance in terms of

appliance activation delay and user comfort.

1.1 Distributed Resources and Storage

We would also like to approach the study by including work towards a more unified

model by including distributed energy resources such as photovoltaic cells that the

residence may install in their home to comply to government renewable programs. In

this two-pronged study, while the first study explores the relationship of individual

human behavior, the second study examines the interaction of the resulting load curve

with the irradiance as well as with battery storage. Battery storage is becoming a

more available option a manufacturer’s are outputting a wider variety of battery’s for

use in the home. Most notable is the Tesla Powerwall which is a lithium ion battery

directly interfacing with solar cells. In this problem we consider the entire residential

system in terms of the load, irradiance, and battery components to derive the best

control algorithm to minimize battery degradation and decrease overall grid cost. We

are particularly attentive to expressing the irradiance available to the household based

on predicted weather forecasts as a means of inferring the future irradiance states in

order to better plan the charging and discharging of the battery or to take power from

7



the grid. While (17) offered a similar model that included the irradiance, they did not

take into account the weather forecast or the cloud cover in the calculations. Instead,

they directly calculated the ground level irradiance conditions by using atmospheric

relations, geographic location, solar tilt angle, earth’s tilt angle, and various physical

parameters using publicly available datasets. While they studied the irradiance, they

did not include the battery as a part of the home generation, storage, and distribution

center. In related work, (18) explored the battery in communications applications for

energy harvesting. In this work the examined the degradation that the battery faced

depending on a variety of factors and sought to control the state of charge of the

battery. (19) introduced a more holistic approach to solar-powered embedded systems

that took into account the state of charge of a battery as well as the weather in a

simplified model. We would like to extend the research presented in (19) by including

a more complex model based on data gathered from weather news outlets in terms of

forecast for a specific region in the United States, as well as data provided by NREL,

a laboratory that studies variations in irradiance in the same region. We would like

to therefore, based on cloud cover, irradiance, and load data build a Markov based

model which we implement control to:

• Control battery degradation over time

• Minimize the electric cost to the resident

By combining both approaches, consumer-centric demand response with demand re-

sponse in terms of residential generation and storage as well, we may derive a unified

approach to residential microgrids and offer users greater control over their energy

usage as well as decisions concerning energy generation.

8



Chapter 2

Methods

2.1 Discrete Time Markov Chains

In this section we introduce the basic properties and characteristics of Markov chain

to provide a foundation to extensions with respect to this fairly simple mathematical

model. By understanding the concepts of a Markov chain, one can fully appreciate the

optimization framework used in the residential demand response system proposed in

this study. After identifying key concepts in Markov chains, mathematical extensions

such as hidden Markov models and Markov decision processes will be presented as

methods for the EMS agent to learn from sensory data. We choose to use a Markov

construction of system parameters as they are used extensively in applications central

to human behavior as well as the fact that Markov property allows for a simple

recursive or iterative means for solving nonlinear problems. To begin our study we

delve into Markov chains. At a base level, a Markov chain can be described as a

stochastic process where present is all the information about the past that is relevant

for predicting the future (20).
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2.1.1 A Markov Chain as a Filtration

A Markov chain is what is known as a natural filtration. Let (Fn, n ∈ Z) represent a

sequence of σ fields on the path space Ω with Fn ⊆ Fn+1 for all n ≥ 0. A filtration

represents an increasing stream of information, more specifically Fn form an increasing

family of algebras. In the case of Fn this is the information provided by the first n

variables. A stochastic discrete-time process X = (Xn, n ∈ Z), is adapted to the

filtration generated by X, Fn if:

σ(Xn) ⊆ Fn ∀n ≥ 0 (2.1)

In other words, given a random variable X(n), Fn represents all information known

about X up until the time n. In discrete time, X can be expressed as the infor-

mation X(0), . . . , X(n). For Fn+1, we notice that X corresponds to the information

X(0), . . . , X(n), X(n+1). Fn is indeed a subset of Fn+1 as we recognize that the first

t terms in X(n+ 1) are also members of X(n). The discrete path space Ω represents

the set of all possible outcomes of a probability experiment. For X the generalized

path space can be described as x[1:T ] = (x1, x2, . . . , xT ), xn ∈ S. We summarize the

general probabilistic quantities in Table 2.1.

n discrete time
S state space of X(n)
Ω path space X(0), X(1), . . . , X(T )
Fn information/filtration until n

Table 2.1: Markov chain parameters
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2.1.2 The Markov Property

Let Ω represent the path space of the discrete time stochastic process X. P (•) is a

distribution on Ω describing the dynamics of X. P (•) has the Markov property if for

all x ∈ S and n = 1, . . . , T − 1

P (Xn+1 = xn+1|Fn) (2.2)

P (Xn+1 = xn+1|X1 = x1, . . . , Xn = xn) (2.3)

= P (Xn+1 = xn+1|Xn = xn) (2.4)

Presenting an alternative notation, the probability of a x to y transition in one step

starting at time n for a stochastic process X given the distribution P (•) may be

expressed as:

pn,xy = P (Xn+1 = y|Xn = x) (2.5)

= P (x→ y) (2.6)

Examining the probability of an additional step into the future, or the transition from

x→ y → z starting from time n for a stochastic process X with distribution P (•) is:

P (Xn+2 = z ∩Xn+1 = y|Xn = x) (2.7)

Which we can rewrite using Baye’s Rule to:

P (Xn+2 = z|Xn+1 = y ∩Xn = x)P (Xn+1 = y|Xn = x) (2.8)
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and simplify to

= P (Xn+2 = z|Xn+ 1 = y)P (Xn+1 = y|Xn = x) (2.9)

= pn+1,yz · pn,xy (2.10)

using the Markov property which applies to the entire future path of X irrespective of

the number of steps from n into the future. We take advantage of the Markov property

when calculating the path probabilities starting with the initial state probability

which is expressed as:

π0(xj) = P (X(0)=xj) (2.11)

We can then write the path probabilities in terms of the initial probability for the

general case as:

P (X(0)=x(0), . . . , X(T )=x(T )) = π0(x(0))

(T−1)∏
n=0

Px(n),x(n+1) (2.12)

The Markov chain is said to be homogeneous in time or stationary if the transition

probabilities of X expressed by the distribution P (•) is independent of n. In the

above example, this would reduce the expression

P (Xn+2=z|Xn+ 1=y)P (Xn+1=y|Xn=x) = pn+1,yz · pn,xy, to

= pyz · pxy. (2.13)

2.1.3 The Forward Equation

We can thereby repackage the information learned thus far with respect to Markov

chains by deriving an expression describing how the probabilities of transitions evolve
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over time in the form of what is known as the forward equation more popularly known

as the Chapman-Kolmogorov equation (21). This expression provides a great deal

of insight with respect to the visible simple Markov chain where X(t) is observable

for all discrete time up to n. We later extend the forward equation for the hidden

Markov chain. Let pyx represent the transition probabilities of a discrete state space

Markov chain. We write

un(y) = P (Xn = y) (2.14)

The forward equation (aka Chapman-Kolmogorov) is a formula for un+1 in terms of

un

un+1(x) = P (Xn+1 = x) (2.15)

=
∑
y∈S

P (Xn+1 = x ∩Xn = y) (2.16)

=
∑
y∈S

P (Xn+1 = x|Xn = y) · P (Xn = y) (2.17)

=
∑
y∈S

P (Xn = y) · P (Xn+1 = x|Xn = y) (2.18)

=
∑
y∈S

un(y)pyx (2.19)

Forward Equations in Matrix Form

Suppose that the state space is finite and S = {x1, . . . , xm}. We rewrite state j to

imply the state xj. In other words, we express, un,j = P (Xn = xj) as un,j = P (Xn =

j). We can collect the probabilities into 1×m row vector un = (un,1, . . . , un,m).

The transition matrix P is the m×m matrix of transition probabilities (i, j), where

the entry of P is pij = P (i → j) = P (Xn+1 = j|Xn = i) and for each row k,
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m∑
n=1

pkn = 1. We may express the forward equations in matrix form recursively. For

example,

un+2 = un+1P = (un ·P) ·P = unP2,

for a distribution that is (stationary) homogeneous with respect to time. We thereby

generalize the Chapman-Kolmogorov forward equations using the following matrix

notation:

un+1,j =
n∑
i=1

un,iPij (2.20)

un+1 = unP (2.21)

By expressing the forward equations in this manner allows us to study the evolution

of the Markov chain probability using eigenvalues and eigenvectors.

2.2 Hidden Markov Models

The basic principles of Markov chains discussed thus far are in the context of a fully

observable or visible sequence of states whose path probability can be calculated

readily. However, there may be variables that influence the evolution of the chain

but are not directly observable. These hidden variables may be observed indirectly

by observing the chain for a period of time long enough to identify them to be able to

change future state predictions (20). Taking this even further, the Markov chain itself

may not be observable. In other words, how can we reason about a series of states

in a Markov chain if we cannot observe the states themselves but rather only some

probabilistic function of those states? The hidden Markov model (HMM) presents a
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Figure 2.1: Description of the hidden Markov model (HMM) adapted from (23).

case where observations are a probabilistic function of Markov chain state–a doubly

embedded stochastic process (22). In other words we can only observe the hidden

discrete states of the Markov chain through another set of stochastic processes that

produce a sequence of observations driven from the chain of interest. HMMs are

particularly interesting because they can deal with nonlinear system evolution and

measurements. Furthermore, the HMM can only be in one state at a time thereby

limiting the representational capacity of the modeled system.

2.2.1 HMM description

We describe the HMM in terms the following terms:
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• n represents discrete time with N being the final time trial.

• N is the number of states in the state space of the hidden Markov process.

• Z(n) is the random variable describing the hidden Markov process such that

Z(n) = {Z1, . . . , ZN} is drawn from the state alphabet.

• M is the number of possible observations per state.

• X(n) is the random variable describing observations or emissions of the state

variable Z(n). Xn = {x1, . . . , xM} Observations at time n do not depend on

the previous states or observations given the states. Therefore, observations

emitted by the hidden Markov chain are independent of past observations. The

output independence assumption is as follows:

P (X(n)=xk|X(1)=x1, . . ., X(N)=xn, Z(1)=z1, . . . , Z(n) = zj) = P (X(n)=xk|Z(n)=xj)

(2.22)

• Pij = P (Z(n+ 1) = zj|Z(n) = zi), for 1 ≤ i, j ≤ N is the transition matrix for

the hidden Markov chain which is unobservable.

• Bjk = P (X(n) = xk|Z(n) = zj), for 1 ≤ i ≤ N , 1 ≤ k ≤ M is the probability

of the hidden state zj generating the observation xk. As implied Bjk is a matrix

of dimension N ×M .

• πi = P (Z(1) = zi), where 1 ≤ i ≤ N describes the initial distribution of the

hidden Markov chain.
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2.2.2 HMM Forward Probabilities

We would like to take the forward equations for the fully observable Markov chain

and adapt it for the HMM case. To do this we are given the observation sequence:

X(1) = x1, X(2) = x2, . . . , X(N) = xN or shortening the notation

X1 = x1, X2 = x2, . . . , XN = xN

From this observation sequence we would like to calculate:

αi(N) = P (X1 = x1, X2 = x2, . . . , Xn = xn, . . . , XN = xN , ZN = zi) (2.23)

for a model with parameters λ = (πi, Pij, Bjk) as introduced. We follow the same

method for the calculation of the forward variables as in the visible Markov chain

case. We simply calculate the path probabilities starting at the initial distribution

and continuing to the next time step until we establish a general relationship. At the

initial time step which we will establish as n = 1 (though some sources may label the

first step as n = 0) we find:

αi(1) = P (Z1 = zi, X1 = xj) = P (X1 = xj|Z1 = zi) · Π(zi)

or in matrix form:

α = ΠᵀB
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For the next time step we find the forward path probabilities as follows:

αk(2) = P (Z2 = zk, X2 = xl, X1 = xj)

=
N∑
q=1

P (Z2 = zk, X2 = xl, Z1 = zq, X1 = xj)

=
N∑
q=1

P (X2 = xl|Z2 = zk, Z1 = zq, X1 = xj)P (Z2 = zk, Z1 = zq, X1 = xj)

=
N∑
q=1

P (X2 = xl|Z2 = zk)P (Z2 = zk|Z1 = zq, X1 = xj)P (Z1 = zq, X1 = xj)

=
N∑
q=1

P (X2 = xl|Z2 = zk)P (Z2 = zk|Z1 = zq, X1 = xj)αq(1)

=
N∑
q=1

αq(1)P (X2 = xl|Z2 = zk)P (Z2 = zk|Z1 = zq)

We may generalize this equation to:

αk(n+ 1) =
N∑
q=1

αq(n)P (Xn+1 = xl|Zn+1 = zk)P (Zn+1 = zk|Zn = zq) (2.24)

or in matrix form:

αn+1 = αn ·P · (BXn+1=xI) (2.25)

where I represents the identity matrix.

2.2.3 Model Detection

From the forward probability we can calculate the likelihood of a variety of HMMs

with differing parameters λ = (πi, Pij, Bjk) for a specific observation sequence using
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the maximum likelihood estimate. Since the number will be small for each time step

evaluated, this value can be scaled by the maximum forward probability calculated.

In other words the HMM construction allows the agent to detect and classify obser-

vations to a particular reference model λi defined by (Π
(i)
Z , P (Z

(i)
n+1|Z

(i)
n ), P (Xn|Z(i)

n ))

for 1≤i≤max(Sλi) from a dictionary of models within a training period T . Following

the training period T , the identified model λi is used to calculate the maximum likely

hidden state Zn which allows the system to predict the likelihood of future obser-

vations Xn for a rolling time horizon. The resulting observation predictions inform

real-time decisions with respect to the type of control we seek to optimize. In order

to calculate the best fit reference model, λi for an observation sequence we utilize

the forward algorithm for HMMs to calculate the posteriori probability during the

training period T .

2.2.4 Model Detection

Given the observation sequence: X1=xj, . . ., XT=xz, we may calculate:

αk(s)=P (X1=xj, . . ., XT=xz, Zk=s)

for a specific model λi defined by (Π
(i)
Z , P (Z

(i)
t+1|Z

(i)
t ), P (Xt|Z(i)

t )) or in matrix format:

(Πλi ,Pλi ,Bλi). For the first time step we calculate the probability of the joint distri-

bution of the first hidden state and observation using the initial distribution of the

hidden chain. α
(i)
1 (s)=P (X1=xj, Z

(i)
1 =s) = Π

(i)
Z1

(s)P (X1=xj|Z(i)
1 =s), or

α
(i)
1 =Π>λi ·Pλi . (2.26)
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We may generalize the remaining forward calculations for 1≤t≤T − 1 as

α
(i)
t+1=α

(i)
t · (diag(BXt+1=x)λi) ·Pλi . (2.27)

To classify the sequence according to a particular model we evaluate

∑
r∈S

Zλi

α
(i)
T (r), (2.28)

where T is the training period. The model λi that results in the maximal value is then

identified as the approximate reference class for the real-time observations sensed by

the system.

2.2.5 State Estimation based on Model

Once a reference class for a sequence of training observations X1=xj, . . ., XT=xz, is

determined (λi=λ), the state estimate may be calculated by propagating the forward

a posteriori probability value for the new real-time consumption observations using

the statistics, (Πλ,Pλ,Bλ), of the reference class. Since we have identified the best

fit model according to the visible observations, we drop the λi in our notation in this

section to increase readability. We can scale the forward joint probability value to

obtain a distribution of states. In other words, given the sequence XT+1=xa. . ., Xt=xb

we are interested in calculating

P (Zt=s|XT+1=xa, . . . , Xt=xb)=
αt(s)∑

r∈SZ
αt(r)

. (2.29)

The state Zt=s that results in the greatest probability given the observation sequence

is defined as the maximum likelihood estimate.
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2.2.6 Stochastic Control: Taboo States

We can thereby partition the state space of Zt into two sets, the “taboo” set, HZ

corresponding to Xt = Ct + Et + Ft ≥ z − dt, and its complement Hc
Z . We then

rearrange the states of P (Zt+1|Zt) to the following format:

P (Zt+1|Zt) =

 TZ(1,1) TZ(1,2)

TZ(2,1) TZ(2,2)

 (2.30)

where TZ(1,1) represents the sub-matrix of states which transition from Hc
Z→Hc

Z ,

TZ(1,2) represents the sub-matrix of states which transition from HZ→Hc
Z , TZ(2,1)

represents the sub-matrix of states which transition from Hc
Z→H, and TZ(2,2) rep-

resents the sub-matrix of states which transition from HZ→HZ (24).

The total probability of transitioning from Hc
Z to the set HZ within a finite time

horizon, N, defined by the operational cycle of dt, can be calculated using the sub-

matrices of the rearranged transition matrix as

PTZ(1,2)(N) =
∑
s∈SH

N∑
n=1

TZ(1,1)n−1 ∗TZ(1,2). (2.31)

This probability provides the system agent a means of predicting the observation

sequences for a finite time horizon, N, as well as a probability measure as with respect

to a constraint.

21



2.3 Markov Decision Process

A Markov decision process (MDP) is essentially a Markov chain whose state at any

given time is used to determine an action. Associated with this state-action is a

particular income viewed either a cost or reward for executing a particular action

upon a state. The action influences the transition of the system state to the next

state of the Markov chain. We describe the sequence of actions taken upon states

as a policy. More specifically a policy is deemed optimal if it optimizes the expected

cumulative value (total income accrued) either through the minimization of cost or the

maximization of reward. The process can be evaluated through different techniques

such as constrained linear optimization, policy iteration, or value iteration algorithms.

The focus of this work utilizes the value iteration algorithm specifically.

As introduced in (25) we consider a system with a finite discrete state space s ∈

{s1, s2, . . . , sS}, where S represents the number of states. At a specific time instant

n ∈ N+ we may observe the current system state si and select an action ak from a

finite set of states a ∈ {a1, a2, . . . , aA} where A represents the finite number of actions.

Upon selecting an action An = ak on the current state Sn = si the system receives

an reward R(Sn = si, An = ak) which we would like to maximize. Alternatively, the

reward may be expressed as a cost C(Sn = si, An = ak) over which we would like

to minimize.The system then moves to the next state Sn+1 = sj with probability

P (Sn+1=sj|Sn=si, An=ak).

A discount factor γ, 0 ≤ γ ≤ 1 determines the value of unit income n time steps in

the future as γn.

The goal with this framework is to select a policy π, or a sequence of state-actions

< S1, A1 >,< S2, A2 >, . . . to maximize the cumulative reward accrued or minimize

the cumulative cost.

22



The quality of a policy is gauged by the value function which associates to each

state the expected cumulative discounted reward from starting in a considered state

and following a given policy. An optimal policy maximizes the associated value for

each state. If the model is known and state and action spaces are small enough,

the optimal policy can be computed using dynamic programming or value iteration.

In value iteration we compute directly the optimal value function using nonlinear

Bellman optimality equations and an iterative scheme which takes advantage of the

Markov property discussed thus far.

2.3.1 Stochastic Control: An Optimal Policy

To calculate an optimal policy for the system given the current observed state of the

Markov process we may use policy iteration, linear programming, or value iteration

techniques. In policy iteration we evaluate an initial policy and compute its associated

value using the linear Bellman evaluation. We associate to each state the action which

maximizes expected cumulative reward obtained from starting in a particular state,

applying an action and following the initial policy. We evaluate and improve the

policy, recalculate the policy, and stop iteration until convergence is reached in a finite

amount of steps. In value iteration we compute directly the optimal value function

using nonlinear Bellman optimality equation and an iterative scheme based on the fact

that the value function is the unique fixed point of the associated Bellman operator.

An optimal policy is greedy with respect to value function. Linear programming

sets up the system as a constrained convex optimization problem which can be solved

using a system of linear equations. In value iteration, the technique used in this study,

we compute directly the optimal value function using nonlinear Bellman optimality

equation and an iterative scheme based on the fact that the value function is the

unique fixed point of the associated Bellman operator (26). An optimal policy is
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greedy with respect to value function.

To summarize, given the states S, the model P (Sn+ 1 = s′|Sn=s, An=a), the ac-

tions A(Sn), the reward/cost R(Sn=s), R(Sn=s, An=a), R(Sn=s, An=, Sn+ 1=s′)

may be be defined on the state, the state-action selected, or the transition. The

policy π(Sn) → An=a can be described as the sequence of state action pairs in the

form < s, a >,< s, a >, . . . while an optimal policy π∗ is defined based on the opti-

mal reward/cost maximization/minimization < s, a, r >,< s′, a′, r′ >, . . . across all

possible state-action pairs for the current state. The Bellman equations are:

V (s) = max
a

(R(s, a) + γ
∑
s′

P (s′|s, a)V (s′)) (2.32)

Q(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) max
a
Q(s′, a′) (2.33)

We typically use the Q-state form of the Bellman equation for reinforcement learning

espectially when the reward or transition functions are not known in advance. Figure

2.2 illustrates the value function iteration technique for a state space containing three

values Sn = {s1, s2, s3} represented by the triangles. The tree starts its way from the

bottom at the calculation of V0 for each state. In the example each state may choose

from two actions An = {a1, a2}. The Q-states are represented by the circles for each

possible action. To calculate the Q-state the Bellman equation of the second form is

used. The value at the next iteration or time step is determined by taking the action

and assigning the value of the winning Q-state to the V1.
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Figure 2.2: Decision tree of the Markov process. The value is determined by op-
timizing over the sum of the expected reward/cost for each Q-state or state-action
pair. Typically the maximum reward or conversely minimum cost state-action value
is selected at each time step.
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Chapter 3

Consumer Centric Demand-Side

Management

3.1 Energy Management System (EMS)

The EMS is an intelligent automated control agent that dynamically learns consumer

behavior, analyzes and predicts future behavior, and schedules and controls appliances

with respect to behavior and grid signals. Central to the system is the resident energy

consumer. Their habits and activities of daily life are what drive their consumption

profile. It therefore becomes imperative for the intelligent agent to learn typical user

behavior based on patterns in load profiles. The system does so by comparing sensed

electricity consumption to pre-built general consumer models and prior information

with respect to the inventory of appliances in the home. Following a training period

and successful dynamic model detection, the agent continues to receive consumption

information allowing the system to estimate current and future resident states based

on the model. However, decoding consumer activity alone is not the objective of

26



the EMS. The goal of the EMS is to perform appliance scheduling based on current

consumer activity, appliance energy requests, grid signals, and user convenience pa-

rameters. The system thus serves to interface between complex systems in order to

make decisions with respect to the activation of cyclic “shiftable” loads to improve

residential consumer demand response.

3.1.1 Consumer Activity:

Human behaviors exhibit hierarchical structure according to goals and recursive im-

plementation of sub-goals (27). In the home, activities of daily life drive energy

consumption dictating which appliance will be initiated at any given time. Realiz-

ing the significance in encoding hierarchy, we propose a modeling framework that

captures dependencies between finite human activity units and appliances. In other

words, we can simplify residential behavior into sequences of activity states that can-

not be directly measured. For example, activity states such as hygiene, cook, clean,

or rest each have unique effects on consumer load profile as well as which appliances

may be activated. Different sequences of activities characterize user schedules and

provide a basis for building a dictionary of typical consumer models used by the EMS

to detect daily user behavior and make scheduling decisions.

3.1.2 Appliances:

Each consumer activity influences appliance usage. For example, if a user is cleaning,

they are likely to use appliances such as a vacuum, a washing machine, or a steamer.

Given the inventory of household devices, we capture these dependencies by grouping

short operating appliances according to their most likely activity. Doing this allows

us to compress the state space of these “on-off” appliances by activity. Larger appli-
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ances that have longer operating periods are classified as either “shiftable” or “non-

shiftable” activity independent or dependent long-term devices. These devices may

operate over multiple behavior activities and cannot be compressed in state space. In

fact, the EMS seeks to control and schedule “shiftable” larger appliances due to their

heavy influence on load profile. We then build a table of all possible combinations

of compressed activity-short-term-appliance grouping as well as the uncompressed

larger appliance states, allowing us to characterize activity influenced consumption

load profiles.

3.1.3 Grid Signaling:

Consumption constraints are taken as an input to the control agent directly from the

AMI. These constraints may be consumption restrictions (kWh) placed in the form of

an alert or as a function of TOU or dynamic pricing (DP) schemes. The EMS takes

into account the constraint when making scheduling decisions.

3.1.4 Consumer Convenience:

The resident may also set a convenience constraint with respect to the activation

delay of “shiftable” appliances should the grid constraint be strictly met. Depending

on the current activity of the user, deferring loads to a later time based on grid con-

ditions alone may be undesirable. Thus, consumer constraints allow the user to have

a degree of freedom with respect to appliance scheduling without having to override

the energy management system.

To understand how consumer activity, appliances, grid signaling, and consumer con-

venience interact in the EMS, one may consider the case where a resident makes an

energy request for the activation of a heavy “shiftable” appliance. At the instant
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Figure 3.1: Consumer-centric Energy Management System

of the request, the EMS retrieves the present aggregate consumption as well as grid

signals from the AMI. Given that the best fit behavioral sequence has already been

detected, the EMS can predict future consumption states based on activity-dependent

load inferences and compare these states to grid signals. The EMS calculates the like-

lihood that the additional requested load results in residential consumption in excess

of the grid signal constraint for the duration of the requested appliance operational

cycle. If the likelihood of the exceeding the grid signal is within an additional param-

eter defined by the user, the appliance is scheduled to run. If not, the load is deferred

as the system waits for the next available time trial and AMI power consumption

observation.
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Table 3.1: Model Random Variables and Parameters

Random Variable State Description Parameters

A daily activity P (At+1|At)
V l short-term appliance P

(
V l
t+1|V l

t

)
C

∑
l∈S

V l|A

V l
t P (Ct+1|Ct, At=ai)

E shiftable appliance P (Et+1|Et, At)
F non-shiftable appliance P (Ft+1|Ft)
Z Zt = [At, Ct, Et, Ft]

> P (Zt+1|Zt)
X aggregate consumption Xt=Ct+Et+Ft

3.2 Stochastic Model

We can build a hierarchical model for the consumer as a vector-valued homogeneous

Markov chain that includes activity and individual home appliance random vari-

ables corresponding to activity-appliance combinations discussed in Section 3.1. The

Markov chain, by definition, is discrete in time and assumed to be discrete in state-

space. Components of the vector valued chain are also assumed to behave Markovian.

Each individual random variable used to construct the model is presented and sum-

marized in Table 3.1.

3.2.1 Consumer Activity

We define a categorical random variable A of consumer activities as a homogeneous

Markov chain, discrete in time and discrete in space A={At=ai, t, i∈N+} where t is

time, and ai is an activity label from a finite set of outcomes in the state space SA.

These activity labels or states include activities of daily living such as dressing, dining,

etc. Since A is a temporal process representing a sequence of daily living activities,

we structure A as a “left-right” non-ergodic (Bakis) chain where the state index
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increases or stays the same as time increases. A is described by the transition matrix

P (At+1|At) which has the characteristics of being a max(SA) × max(SA) diagonal

band sparse matrix with an absorbing terminal state amax(S). The sequences of A are

based on permutations of activities without repetition. These sequences terminate

on particular activities (i.e. sleep or leave) to differentiate between times of day. For

example, in the morning a consumer may wake up to perform hygiene tasks, dress,

and leave for work, where leave represents the end of the morning sequence. Possible

repeated activities such as hygiene or dress are enumerated and may have different

permanence times described by self-looping probabilities in the Markov transition

matrix of A which are adapted from (28; 29), and (30).

3.2.2 Taxonomy of Appliances

In accordance with the work presented in (31), we describe a taxonomy of the types

of appliances present in the home.

• Activity-dependent short-term appliances

• Activity-dependent long-term “shiftable” appliances

• Activity-independent long-term “non-shiftable” appliances

We construct individual appliance Markov chains for each type based on the quan-

tized Watt value of individual operating modes respectively. In other words, for a

specific appliance, we identify discrete states based steady-state power consumption

levels from sub-metered appliance curves and manufacturer specifications. Opera-

tional start and end times for each appliance are built in the Markov chain transition

matrix. State transitions are estimated based on the frequency of transitions from

one power level to another relative to the total number of transitions from the power

31



level under consideration as demonstrated in (32).

Dependent Short-term Appliances:

We define a random variable V l, where 1 ≤ l ≤ L represents each short-term ac-

tivity dependent device, with L total short-term appliances present in the home.

V l = {V l
t = vj, j, k, l∈N+}, described by the transition matrix P

(
V l
t+1|V l

t

)
and state

space SV l . vj, the state of V l
t at any given time trial, is equal to the consumption value

for the state of appliance l. We may partially build the vector-valued Markov chain

for short-term appliances that depend on activity A as [At=ai, V
1
t =v1i , . . ., V

L
t =vLi ]>,

where t∈N+ and ai∈SA, v1i∈SV 1 , and vLi ∈SV L . Short-term activity dependent devices

are activated during specific behavioral activities. For example for the activity cook,

the appliances stove, oven, toaster, coffee maker, blender would constitute short-term

activity dependent appliances. While for the activity workout, dependent appliances

would include the treadmill, elliptical machine, or stationary bicycle. However, for a

large inventory of short-term devices, the vector-valued Markov chain grows quickly

in complexity. In this context, as the number of appliances increase, the number of

individual device states corresponding to consumption level increase directly affect-

ing transition matrix dimensions as well as the number of mathematical operations

used to calculate the forward probabilities described in Section 3.3. Complexity also

becomes an issue when individual devices are assumed to operate with activation

dependencies, as is the case with an entertainment system. In this example, turn-

ing on the television may also turn on the sound system, recording device, and the

game console, requiring additional activation sub-chains to be encoded in the system

model. For these appliance clusters, the state space can quickly become intractable.

To alleviate complexity we note that the sum of the V l
t for a time slice and affiliated
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Figure 3.2: Appliance Markov chains.
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activity results in a short-term appliance aggregate consumption. This allows us to

compress the state space by defining the partially defined vector-valued Markov chain

in terms of the random variable C, where we assume:

Ct=
∑

l∈S
V l|A

V l
t , (3.1)

where SV l|A is the set of appliances involved in the activity. We can solve to get the

elements of the transition matrix of C for a particular A=ai by

P (Ct+1, At+1=ai|Ct, At=ai)=P (Ct+1|Ct, At=ai)

=P

( ∑
l∈S

V l|A

V l
t+1, At=ai|

∑
l∈S

V l|A

V l
t , At=ai

)
(3.2)

=
∑ ∏

l∈S
V l|A

P (V l
t+1|V l

t ) (3.3)

for a given activity A = ai. Since we compress the state space by taking into account

clusters of activity-dependent appliances defined by aggregate power consumption,

appliance activation dependencies for a specific activity have no net effect, allowing

us to achieve the same system model as when the devices are assumed to activate

independently. When At+1=aj 6= At=ai we use the stationary distribution

lim
n→∞

1

n

n∑
m=1

P (Cm, |C0, A0=aj) (3.4)

as the initial distribution of moving into the new activity and appliance dependencies.

The state space SC , is defined by states cj, where j ={1, . . .,
L∏
i=l

maxSV i}
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Dependent Long-term “Shiftable” Appliances:

We are interested in scheduling these appliances with our control agent. “Shiftable”

otherwise known as deferrable loads are characterized by long operational cycles, high

load profiles, and function without interruption once activated. These appliances are

dependent on activity A. Examples of “shiftable” activity-dependent loads are the

washing machine and the dishwasher which are likely initiated when the user is in the

activity state “clean.” In our model we define these loads as E={Et=em, k,m ∈ N+},

described by the transition matrix P (Et+1|Et, At) and state space SE. The transi-

tion matrix is characterized by the operation time spent in each power state. Once

initiated for an activity sequence, a memory variable is toggled between 1 and 0 to

keep track of a finished appliance cycle. These appliances are not included in the

vector-valued chain, but the “shiftable” appliances that the user may not seek to

control, are included. For generality, we will include a “shiftable” appliance for both

the controlled and uncontrolled case.

Independent Long-term “Non-shiftable” Appliances

“Non-shiftable” or non-deferrable loads are loads which operate irrespective of the

activity and are essential for the proper function of the home. For example a refrig-

erator must always be on to ensure the safety and quality of food for the inhabitant.

These loads are not controlled by the energy management system as they must op-

erate at all times. F = {Ft = vt, k, n ∈ N+}, is described by the transition matrix

P (Ft+1|Ft) and state space SF .
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3.2.3 The Complete Model

We now proceed to define the model in its entirety, based upon the definitions of ran-

dom variablesA, C, E, and F . The vector-valued Markov chain Zt=[At=ai, Ct=ci, Et=ei, Ft=fi]
>,

where t∈N+ represents the hidden state and the observation Xt=Ct+Et+Ft is the ag-

gregate residential consumption. To fully characterize the HMM transition matrix

P (Zt+1|Zt) = P (At+1, Ct+1, Et+1, Ft+1|At, Ct, Et, Ft) we use the chain rule.

For At+1=At, P (Zt+1|Zt)=

P (At+1|At)P (Ct+1|Ct,At)P (Et+1|Et,At)P (Ft+1|Ft). (3.5)

For At+1 6=At, P (Zt+1|Zt)=

P (At+1|At)ΠC(i, At+1)ΠE(j, At+1)P (Ft+1|Ft), (3.6)

for 1≤i≤max(SC) and 1≤j≤max(SE). ΠC and ΠE are the initial distribution of

the aggregate consumption of the short-term activity dependent appliances and the

initial distribution of the single activity dependent “shiftable” long-term appliance.

The element-wise initial distribution of the HMM is

ΠZ1=ΠA1,C1,E1,F1

=ΠA(A1=a)ΠC(i, A1)ΠE(j, A1)ΠF (k). (3.7)

for 1≤a≤max(SA), 1≤i≤max(SC), 1≤j≤max(SE), 1≤k≤max(SF ). The emission

matrix is defined as:

P (Xt|Zt) = P (Xt|At, Ct, Et, Ft). (3.8)
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Figure 3.3: Activity appliance dependencies, including short-term,“shiftable,” and
“nonshiftable” loads which sum to the total consumption per time slice.

The emission matrix is built by identifying which combinations of Ct, Et, and Ft

result in the observation Xt=Ct+Et+Ft. This matrix has dimensions of max(SZ) ×

max(SX).

3.3 Model and State Detection

The proposed energy management control agent operates by detecting and classifying

the resident into a particular reference model λi defined by (Π
(i)
Z , P (Z

(i)
t+1|Z

(i)
t ), P (Xt|Z(i)

t ))

for 1≤i≤max(Sλi) from a dictionary of models based on the time of day, within a

training period T . The set of possible models are derived from unique sequences
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of activities A corresponding to possible consumer schedules and employment de-

mographics. Different sequences result in different activity transition probabilities,

P (A
(i)
t+1|A

(i)
t ), which are propagated to the calculations of Π

(i)
Z , P (Z

(i)
t+1|Z

(i)
t ), and P (Xt|Z(i)

t )

used to define a specific λi as outlined in Section 3.2. Following the training period

T , the identified model λi is used to calculate the maximum likely current joint state

of total home appliances and activity Zt which allows the system to predict the like-

lihood of future consumption observations for a rolling time horizon. The resulting

load profile predictions inform real-time decisions with respect to the scheduling of

“shiftable” loads in light of consumption limits defined by demand response and user

comfort discussed in Section 3.4. In order to calculate the best fit reference model, λi

for a consumer we utilize the forward algorithm for HMMs to calculate the posteri-

ori probability based on a sequence of consumption observations during the training

period T .

3.3.1 Consumer Model Detection

Given the observation sequence: X1=xj, . . ., XT=xz, we may calculate:

αk(s)=P (X1=xj, . . ., XT=xz, Zk=s)

for a specific model λi defined by

(Π
(i)
Z , P (Z

(i)
t+1|Z

(i)
t ), P (Xt|Z(i)

t ))

or in matrix format: (Πλi ,Pλi ,Bλi). For the first time step we calculate the prob-

ability of the joint distribution of the first hidden state and consumption observa-

tion using the initial distribution of the hidden chain. α
(i)
1 (s)=P (X1=xj, Z

(i)
1 =s) =
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Π
(i)
Z1

(s)P (X1=xj|Z(i)
1 =s), or

α
(i)
1 =Π>λi ·Pλi . (3.9)

We may generalize the remaining forward calculations for 1≤t≤T − 1 as

α
(i)
t+1=α

(i)
t · (diag(BXt+1=x)λi) ·Pλi . (3.10)

To classify the user we evaluate

∑
r∈S

Zλi

α
(i)
T (r), (3.11)

where T is the training period. The model λi that results in the maximal value is then

identified as the approximate user reference class based on the sequence of real-time

observations sensed by the system.

3.3.2 State Estimation based on Model

Once a reference class for a sequence of training observations X1=xj, . . ., XT=xz, is

determined (λi=λ), the state estimate may be calculated by propagating the forward

a posteriori probability value for the new real-time consumption observations using

the statistics, (Πλ,Pλ,Bλ), of the reference class. Since we have identified the best fit

model according to the resident’s consumption, we drop the λi in our notation in this

section to increase readability. We can scale the forward joint probability value to

obtain a distribution of states. In other words, given the sequence XT+1=xa. . ., Xt=xb
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we are interested in calculating

P (Zt=s|XT+1=xa, . . . , Xt=xb)=
αt(s)∑

r∈SZ
αt(r)

. (3.12)

The state Zt=s that results in the greatest probability given the observation sequence

is defined as the maximum likelihood estimate.

3.4 Control

An “on/off” appliance control algorithm is developed based on consumer classification

and the current hidden state estimate to determine the soonest available time slice to

schedule “shiftable” must-run loads under consumption and user-defined constraints.

3.4.1 Grid Signals

We represent a consumption constraint z, a maximum Watt value, which may be a

function of utility pricing programs or grid alerts. To schedule a deferrable load we

must compare the sensed current user consumption, Xt, with the constraint as well

as the energy use profile of the deferrable load itself. In this scheme, the “shiftable”

load profile is deterministic as it follows a defined operational cycle, dt, for 1 ≤ t ≤ N

upon activation. We are interested in calculating:

P (Xt ≥ z − dt),

which corresponds to the joint state Zt=(At, Ct, Et, Ft) for the combinations of Ct, Et, Ft

that produce a total wattage in excess of the consumption constraint z − dt. We can

thereby partition the state space of Zt into two sets, the “taboo” set, HZ correspond-
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ing to Xt = Ct + Et + Ft ≥ z − dt, and its complement Hc
Z . We then rearrange the

states of P (Zt+1|Zt) to the following format:

P (Zt+1|Zt) =

 TZ(1,1) TZ(1,2)

TZ(2,1) TZ(2,2)

 (3.13)

where TZ(1,1) represents the sub-matrix of states which transition from Hc
Z→Hc

Z ,

TZ(1,2) represents the sub-matrix of states which transition from HZ→Hc
Z , TZ(2,1)

represents the sub-matrix of states which transition from Hc
Z→H, and TZ(2,2) rep-

resents the sub-matrix of states which transition from HZ→HZ (24).

The total probability of transitioning from Hc
Z to the set HZ within a finite time

horizon, N, defined by the operational cycle of dt, can be calculated using the sub-

matrices of the rearranged transition matrix as

PTZ(1,2)(N) =
∑
s∈SH

N∑
n=1

TZ(1,1)n−1 ∗TZ(1,2). (3.14)

This probability provides the energy management system a means of predicting the

user consumption profile for a finite time horizon, N, as well as a probability measure

as with respect to the consumption constraint.

3.4.2 User Convenience

We can further implement an additional degree of freedom over the control of schedul-

ing by taking into account user convenience defined by q which is a constraint placed

on the probability of transitioning from Hc
Z to the set HZ within the operational cycle

of the appliance we seek to control. In other words, the consumer convenience con-

straint allows the user to loosen the grid defined consumption constraint by allowing
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the resident consumption to hit states above threshold z − dt within a probability of

q. In other words,

PTZ(1,2)(N) =
∑
s∈SH

N∑
n=1

TZ(1,1)n−1 ∗TZ(1,2) ≤ q (3.15)

Thus, the user has the ability to tune the tradeoff between convenience and consump-

tion threshold rules, affecting the resulting delay in activating the appliance.

3.4.3 Control Algorithm

We outline the control algorithm based on activity sequence detection from a library

of typical user reference models, state estimation based on the detected model and

current consumption, and the evaluation of energy requests constrained by grid signals

and user convenience.

• A sequence of real-time resident consumption observations are input to the EMS

via the “smart” meter. For a training period of T , we use the forward algorithm

to calculate the a posteriori probability for a set of typical reference models

λi. Following the training period, the model resulting in max(
∑

r∈S
Zλi

αT (r)), is

determined to be the closest approximate reference model.

• Based on the selected user model, we calculate the

max(P (Zt=s|XT+1=xa, . . . , Xt=xb))= max
αt(s)∑

r∈SZ
αt(r)

to find the maximum likely state of the hidden Markov chain, Zk forXk following

the training period.

• The consumer energy request Rk = r where r ∈ {0, 1} is dependent on the
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activity P (Rk|Ak). Rk = 1, represents the request being made, while Rk = 0 is

no request. For each sequence of consumption observations, the request, once

made cannot be repeated for the next time trial or appliance. In other words,

once Rk = 1, the request cannot be made again.

• Based upon Rk and the state estimate of Zk at the time of the request k, we

determine if the state Zk ∈ HZ . If it is in the “taboo” set we wait to update

the state estimate for the next time trial until the state is no longer “taboo.”

Once Zk∈Hc
Z , we find the total probability of hitting the set HZ given that we

started in a “safe” set.

• Activation of the appliance occurs when the total probability, PTZ(1,2)(N)≤q of

hitting the set HZ given that we started in Hc
Z .

3.5 Numerical Results

We present the results of an EMS case study for an evening time of day sequence of

activities comprised of one hundred fifty discrete time trials with each time trial repre-

senting a five minute interval. The individual activity A and the household inventory

of short-term appliances V l is presented in Table 3.2. With the appliance inventory,

the reference models, λ1∼(ΠZ(1) , P (Z
(1)
t+1|Z

(1)
t ), P (Xt|Z(1)

t )), λ2∼(ΠZ(2) , P (Z
(2)
t+1|Z

(2)
t ), P (Xt|Z(2)

t )),

and λ3∼(ΠZ(3) , P (Z
(3)
t+1|Z

(3)
t ), P (Xt|Z(3)

t )) used for model detection and state estima-

tion are:

Evening Model 1/PM1 (λ1): This model is derived from the activity sequence

A(1)= hygiene, dress, cook, dine, clean, rest, and sleep.

Evening Model 2/PM2 (λ2): This model is derived from the activity sequence

A(2)= hygiene, dress, leave, hygiene, dress, and sleep. We differentiate repeated
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Figure 3.4: Control Algorithm Flow chart.
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hygienestart dress cook dine clean rest sleep

hygienestart dress leave hygiene dress sleep

hygienestart dress workout cook dine clean hygiene dress rest sleep

Figure 3.5: Evening reference models: sequences of activities, PM1, PM2, and PM3.

activities as separate states with different self-looping state probabilities and char-

acteristics. For example hygiene following the state leave may be longer in duration

than hygiene upon arrival.

Evening Model 3/PM3 (λ3): This model is derived from the activity sequence

A(3)= hygiene, dress, workout, cook, dine, clean, hygiene, dress, rest, and sleep.

To benchmark performance, reference model λ1 is used to generate 100 sample func-

tions, or aggregate consumption sequences over 1≤k≤150 time trials. We keep track

of the hidden joint state Zt=At, Ct, Et, Ft, as well as the visible consumption emitted

by the chain, Xt=Ct+Et+Ft. For each sequence, we use a random function to gen-

erate a request Rt as a function of activity P (Rt|At). For this study we set the grid

alert consumption constraint to z = 5kW and examine the effects of the consumer

parameter by analyzing system performance for 0≤q≤1.

3.5.1 Model Detection Performance

Using reference models λ1, λ2, and λ3 to seed and generate three sets of 100 sample

functions, we test the performance of the forward algorithm in detecting the best fit

model. As described in section 3.3, we evaluate the αk(s) statistics along all states

with respect to the model parameters of λ1,λ2, and λ3 for a single sample function. We

then calculate the sum,
∑
s∈SλZ

αk(s), along all states for each model and for each time

trial in the sample function. We compare the value amongst all models considered.
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Table 3.2: Activities and dependent short-term appliances with associated wattage.

Activity Dependent Devices Range (W)

leave alarm, lights 0− 1000

hygiene electric water heater, hairdryer, lights 0− 5000

dine toaster, microwave, lights 0− 3700

rest tv, lights 0− 650

workout treadmill, tv, lights 0− 2650

dress iron, lights 0− 1600

clean electric water heater, vacuum, lights 0− 4000

sleep alarm, lights 0− 1000

cook toaster, stove, coffeemaker, microwave, lights 0− 7500

Table 3.3: Long-term appliances, taxonomy, and associated wattage.

Appliance “Shiftable” Range (W)

electric vehicle supply (EVSE) yes 0− 12000

heating and air conditioning (HVAC) yes 0− 40000

dishwasher yes 0− 1500

refrigerator no 0− 400
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Table 3.4: Model Detection: Time to 90% Confidence Levels

Evening Model Interpolated Time Trial Minutes
λ1 (PM1) 7.3332 36.6660
λ2 (PM2) 1 5
λ3 (PM3) 9.6660 48.3300

The model that results in the maximum value of
∑
s∈SλZ

αk(s) is the “best fit model”

for that particular time trial. We repeat this process for all 100 samples generated by

an individual seed model to validate the accuracy of the model detection algorithm.

To produce figure 3.6 for each time trial in a single sample function we calculate the

detection frequency of each model and repeat the process for the set of 100 sample

functions seeded by the model parameters under consideration.

We are interested in studying the rate of convergence of correct model detection for

each seed model which differ relative to one another based on the sequence and du-

ration of behavioral activities. For example, evening model 2, or λ2, is detected with

a confidence exceeding 90% by the first time trial. This is due to the fact that the

user leaves, which is an activity unique to λ2 relative to λ1 or λ3. Furthermore, this

particular model has a load characteristic influenced by the electric vehicle supply

equipment (EVSE) fast-charging operation mode, followed by a period of little con-

sumption during the activity leave. As shown in table ??, λ1 is detected with over

90% confidence by the 8th discrete time trial corresponding to 40 minutes. λ3 is

detected with over 90% confidence by the 10th discrete time trial corresponding to

50 minutes into the activity sequence. The rate of convergence between λ1 and λ3

may be due to structural similarities between models as well as activity sequences

that have comparable consumption profiles. Thus, to achieve model detection within

90% confidence requires longer training periods depending on the model similarity.
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Figure 3.6: Probability of detecting correct model for respective self-seeded sample
functions.

3.5.2 Activity Influence on Consumption

To demonstrate the influence of human behavioral activity on load profile we exam-

ine the total consumption for the inventory of short-term and long-term appliances

presented in tables 3.2 and 3.3 for individual human activities. For sake of clarity

we present the expected consumption of two behavioral activities which can easily

be extended to many. Figure 3.7 shows the expected consumption for the activities

cook and rest for a time horizon of 5 trials corresponding to 25 minutes following

the detection of the current wattage observation at time trial t = 0. The expected

value for each activity is calculated by taking advantage of the hierarchical structure

of each individual activity in terms of the activity dependent short-term devices and

the activity dependent and independent long-term devices. We then examine the

individual activity Markov chains which are homogeneous and discrete in state space

allowing us to take advantage of the Chapman-Kolmogorov equations expressed as

matrix multiplications describing the distribution of moving from the state at t = 0 to

other states. Knowing the distribution allows us to calculate the expected consump-
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Figure 3.7: Expected consumption over a time horizon of 5 trials for activities ‘cook’
and ‘rest.’

tion value by weighting the distribution with the discrete wattage value of each state,

thereby obtaining the mean consumption at each time trial in the horizon considered.

Note at time trial t = 0, the activities cook and rest both produce a total consump-

tion observation of 41.4 kW. However, after time t = 0, cook and rest result in very

different expected consumption observations. This is because cook, while producing

a wattage observation of 41.4 kW, contributes to larger consumption observations

due to additional appliance dependencies that rest does not include as illustrated in

table 3.2. Since the expected consumption is a function of the matrix multiplication

form of the Chapman-Kolmogorov equations, with time the distribution decreases

and reaches the stationary distribution for each individual activity.

3.5.3 Activity-Informed Control

We study the resulting scheduling control of the EMS for a sample function seeded by

λ1 as outlined in the procedure. Figure 3.8 presents a single sample function selected

from the set of 100 simulations seeded by the model parameters of λ1, also known as
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Figure 3.8: Dishwasher scheduling comparison of visible Markov chain with detected
model and estimated state.

PM1. We select this particular sample to demonstrate the robustness of our control

framework with respect to aggregate consumption and appliance scheduling despite

inaccuracies in activity detection. In figure 3.8, we illustrate a case where the user

prioritizes consumption constraints over appliance activation resulting in activation

delay. The consumption constraint, labeled as “watt threshold,” is representative of

a pricing threshold via tiered pricing programs set by the utility. For example, the

watt threshold may indicate a pricing shift from baseline to medium or peak con-

sumption allowance. The cost savings would then be directly proportional to the

reduction of time spent above the pricing defined consumption threshold. The first

subplot of figure 3.8 shows the evening behavior of the user without the proposed

energy management system (EMS). At the t = 58 time trial following behavior model

detection outlined in section 3.3, the user requests dishwasher activation. Since there

is no EMS in place the dishwasher is activated upon request resulting in a load profile

exceeding the consumption threshold from t = 57.83 to t = 59.14. This threshold

is indicative of a specific tiered pricing program.Since tiered utility pricing programs
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vary with respect to location and region, we generalize our simulations to a consump-

tion threshold which can be adapted to pricing depending on the utility provider. In

the case of dynamic or time of use pricing, the consumption threshold represented

as a constant would be replaced by a function specific to market demand or utility

pricing respectively. In the second subplot of figure 3.8, the identical activity influ-

enced load profile featured in the first subplot is considered under the control of the

EMS wherein we demonstrate control over the single appliance dishwasher. The user

similarly requests activation of the dishwasher at t = 58 time trial. In this subplot,

the consumption threshold is exceeded from t = 57.83 to t = 58.18. However, we

notice that the time spent above threshold is less than in the case without the EMS.

In other words, irrespective of the scheduling request to activate the dishwasher, at

time trial t = 58, the system was headed in an aggregate consumption condition in

excess of the the consumption threshold set at 45kW. Following the request at t = 58,

the EMS takes into account the probability of exceeding the consumption threshold

level for the next 5 time trials and waits until the probability is low. In the fully

visible Markov chain in the first subplot of figure 3.8, the household consumption,

including the tagged changes in behavior at time trial t = 57 and time trial t = 60

are provided. In the hidden Markov chain, both of these human behavior activity

transitions are not detected. In figure 3.9 we observe the likelihood of a particular

human behavioral activity at each given point in time. At t = 57, there is a 0.7288

probability of the activity being cook following t = 56 where cook was detected with

a high probability of 0.9948. At t = 57 , there is a .2532 probability of the current

activity being dine and an even smaller probability of 0.018 of the current activity

being clean. Therefore, at t = 57 the maximum likelihood estimate of human behav-

ioral activity is determined to be clean which remains unchanged from the detected

behavioral activity of the previous time trial. Furthermore, at time trial t = 60,

the maximum likelihood estimate determines cook to once again be the current ac-
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Figure 3.9: Single sample function activity probability.

tivity with a probability of 0.7356 in contrast to the 0.2017 probability of rest and

the 0.06097 probability of dine. Once again the results reflect that the framework

makes reasonable estimates on the current activity based on aggregate consumption

characteristics using the maximum likelihood despite some inaccuracies in detecting

changes between states that may display similar load profiles. However, in later time

trials beyond t = 66 we see the activity rest increasing in probability which illustrates

that though the HMM framework may not detect behavioral activity at a high reso-

lution, after some time and updated observations, the correct behavioral activity will

be detected with some delay which influences the scheduling EMS control system.

The goal of the study is to utilize human behavior schedules to infer demand for a

rolling time horizon in order to schedule appliances under consumption constraints

defined by utility pricing and consumer preferences. In the case where consumption

thresholds are prioritized over consumer comfort with respect to appliance activation

delay, the control mechanism schedules the dishwasher to run at time trial t = 68,

50 minutes following dishwasher appliance activation request. Figure 3.8 shows the

scheduling and the resulting aggregate power consumption following dishwasher acti-

vation at a time of low load demand.
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3.5.4 Comfort Consumption Tradeoff

We present the results of a simulation study that takes into account the consumer

comfort level in terms of the activation delay with respect to appliance requested

as well as the consumption threshold constraint. This study differs from previous

work in that the activity informs the future consumption values for a time horizon

that is dependent on the operational cycle of the appliance being controlled. In this

study we continue to study the control of the dishwasher in terms of the delay in

appliance activation given consumer comfort and the expected time in units of time

trials, where each time trial represents 5 minutes, of the aggregate consumption ex-

ceeding the consumption threshold of 45kW. From figure 3.10 we examine the delay

in appliance activation as a function of the consumer comfort parameter we have gen-

eralized as “probability threshold.” In these results, taken over 100 sample functions

for 1001 probability thresholds ranging from 0 − 1 in uniform increments we com-

pare and contrast the performance results of the fully visible Markov chain with the

hidden Markov chain detected by the EMS framework. We see that the relationship

occurs in discrete steps which is the result of the discrete construction of the chain

and an effect of its Bakis characteristics. However, we see that the hidden Markov

chain performs relatively well with respect to the fully visible chain but degrades for

probability “comfort” values between 0.363 to 0.576 indicating premature activation

of the appliance. To examine how the premature activation of the appliance affects

the consumption threshold constraint we plot the mean time above the consumption

threshold of 45 kW with respect to the probability threshold and again examine the

results obtained for probability “comfort” values within this range. In figure 3.11 we

notice within the window of “comfort” probability thresholds from 0.363 to 0.576, the

EMS early activation, unsurprisingly results in larger times above 45kW consump-

tion threshold. This is due to the fact that the HMM framework has less information
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Figure 3.10: Appliance activation delay as a function of q.
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Figure 3.11: Average time above Xt≥45kW.

that the fully visible chain resulting in some degree of error that may be inherent to

the simulation. In real systems, increased sample data with respect to consumption

and behavioral activity on a daily basis offers some alleviation. The tradeoff between

the average discrete time spent above consumption threshold as a function of delay

is presented in 3.12. We see that the time spent above the 45kW is inversely pro-

portional to the average activation delay calculated across the “comfort” probability

constrained sample functions. In other words, the “comfort” probability allows a de-

gree of freedom for the consumer in terms of choosing device activation irrespective

of the consumption threshold set by the EMS.
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Chapter 4

Distributed Residential Generation

and Storage

4.1 Distributed Energy Resource Management

The residential energy management system while scheduling appliances, must take

into account distributed energy resources that the home owner may seek to use as an

alternative source of energy or to supplement the energy provided by the utility. The

agent must therefore sense current environmental parameters to determine whether

the energy stored in the battery should be used to supply the power drawn by the load

during high energy pricing, or whether to charge the battery during high incoming

energy from residential microgeneration sources. The components of the distributed

energy resource management subsystem of the home energy management system are

introduced in Figure 4.1.
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Figure 4.1: EMS overview for energy resource management and storage.

57



4.2 System Overview

4.2.1 The Harvestor

The energy harvesting device represents the available microgeneration resource. This

power source may be in the form of a small wind farm, fuel cells, small-scale hydro-

electric systems, heat pumps, or more commonly rooftop photovoltaic cells. Energy

harvesting devices require control especially in cases where the energy generated is in

excess of system capabilities either in terms of power storage or supplying the load

profile at any given time. Furthermore, the charging rate of the storage device is

directly proportional to the amount of energy harvested.

4.2.2 The Storage Device

Central to the control system is the home energy storage device. This home energy

storage device is comprised of a battery bank that may be made of lead acid, lithium

ion, or vanadium redox batteries in series and parallel. The lifetime of the battery

depends on thermal effects and battery degradation with respect to time. For most

battery banks remaining energy capacity, lifetime, and efficiency are directly related

to the operating temperature, the depth of discharge, the charging rate, and the

number of charge/discharge cycles. To maximize the lifetime of the battery, it be-

comes necessary to monitor and control the temperature and charging rate as both

effect the material properties of the electrodes which develop cracks over time. To

make distributed energy resources more popular in the residential sector, the amount

of money saved from switching to renewables must offset the initial installation and

maintenance costs of the system as a whole.
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4.2.3 Load Profile

The consumer interacts with the system through aspects of their daily life and ha-

bitual energy usage. As we saw in the previous chapter, a resident load profile is

informed by daily activities. On average, the daily activities of the neighborhood

contribute to a local load profile which may be designated as low or high demand at

any given time. It becomes necessary for the system to anticipate changes in load

profile with the course of the day, available harvestable energy, and future demand.

While in this section the load takes a more generalized role, the work established thus

far allows the system to be analyzed at a smaller scale though not the topic of this

section directly.

4.2.4 Grid

The utility, or grid, determines the pricing available to the resident at a particular

time of day (TOU) or due to specific market demands (in the case of dynamic pricing).

Depending on the amount of available stored power, charge rate control, or future

harvestable power, the home energy management system may choose to draw power

from the power grid. The cost of utility supplied power is a function of time with

power rates low during off-peak hours and high during peak hours.

4.3 Harvesting Power: irradiance as a function of

cloud cover

In this section we seek to build a stochastic weather model to find the global irradi-

ance for a specific time of day and a particular cloud cover percentage. We download
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Figure 4.2: Daytime global irradiance as a function of time for Golden, Colorado for
September 1, 2, 3 2016. The time axis has been renumbered to align the days with
respect to the irradiance. Daylight for September 1st, 2nd, and 3rd begin at 5:32am,
5:33am, and 5:34am respectively.

datasets from the National Renewable Energy Solar Radiation Research Laboratory

baseline measurement system in Golden, Colorado. We choose this specific location

due to the variability in cloud cover and weather patterns in contrast to locations

with stable and consistent weather patterns. This allows us to take into account a

wider range of possible cloud cover states and their effects on the global irradiance.

We seek to analyze the data for a specific month of the year over ten years in an

unsupervised manner. In previous work, cloud cover data is used to directly calculate

the global irradiance incident on a solar panel based on astronomical and atmospher-

ical constants dependent on the location, time of day, season, and earth’s tilt angle

(17). To simplify and generalize the model, we ignore these parameters and analyze

the dataset directly at the ground level.

The month chosen for our study is the month of September, a time of year where the

amount of daylight hours are relatively equal to the amount of evening hours in the

northern hemisphere. The dataset is then divided into daylight hours for each day

of the month. Daylight hours result in positive harvestable irradiance measurements,

while evening hours result in negative un-harvestable irradiance from below the panel.
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To further simplify data analysis we note that the variation in irradiance is negligible

in adjacent days. Taking this into account we group the individual days of the month

of September into groups of three days which show similar seasonal behavior. Since

we would like to compare this model with readily available information we take into

account the common meteorological forecasts given for cloud cover. In most weather

news outlets the cloudiness of the day is assessed as “clear”, “sparse clouds”, “partly

cloudy”, “cloudy,” and “overcast.” By taking this into account, we bin the cloud

cover data into four sets corresponding to cloud cover between 0 − 25%, 26 − 50%,

51 − 75%, and 76 − 100% each corresponding cloud cover associated with “sparse

clouds,” “partly cloudy,” “cloudy,” and “overcast.” This way we can examine ten

datasets each of three adjacent days in the month of September for a particular cloud

cover state over the course of ten years. Keep in mind that this breaks up the time

series data of global irradiance into varying segments associated with a particular

cloud cover. Given that we are interested in transitions between irradiance states,

single datapoints in a sequence associated with a cloud cover state are not considered

as they do not transition to another state in a time sequence. In Figure 4.3 we plot

the global irradiance as a function of cloud cover for the first set of days in September

at the noon hour where the irradiance is expected to be the highest. The color of each

datapoint represents a set of cloud cover and irradiance measurements for a particular

year. Since we are doing an unsupervised learning analysis, we do not include the

Figure legend.

While the actual global horizontal irradiance itself follows a Gaussian relationship

with some noise as shown in Figure 4.2, to capture the variability of cloud cover

we break up the irradiance into hourly time segments and model the system us-

ing an inhomogeneous in time discrete Markov model for the global irradiance as a

function of cloud cover. The model constructed is inhomogeneous in time to alleviate

astronomical and atmospherical considerations in the calculation of irradiance. With-
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Figure 4.3: Noontime global irradiance as a function of cloud cover for Golden, Col-
orado from 2005-2015. The color of each datapoint corresponds to a particular unla-
beled year. Unsupervised learning techniques are used in the analysis of this data.

out a Markov model, irradiance would have to be deterministically calculated using

environmental information that may not be readily available without specific instru-

mentation. In this model, the current state of the irradiance is dependent only on the

previous state. Since the model is inhomogeneous in time we calculate the Markov

transition matrix for each hour using the hourly datasets of three day groupings as

aforementioned. To reduce the number of states in the global irradiance data, we bin

the global irradiance for all hours and sets of three day groupings to a finite number

of states across all the datasets for each hour and cloud cover. The data must be

binned across all irradiance data for all times of day to ensure that the transition ma-

trices between each hourly time slice contain the same number of states and therefore

matrix dimensions are constant. Reducing the number of states does not affect the

model negatively since the purpose of the weather model is to infer the photovoltaic

cell output which depends on the physical properties of the semiconductor material

beyond a specific threshold voltage.
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The Markov transition matrix g can be estimated element-wise ĝij using the global

horizontal irradiance data with a finite state space Sg for a given cloud cover CT for

the hour T by calculating the frequency f of transitions from a starting state i to a

particular state j over the total number of transitions from state i to states in the

state space.

ĝij|C,T =
fij
Sg∑
k=0

fik

(4.1)

P (Gt+1=gj|Gt=gi, CT , T ) = gij|CT ,H =



ĝ00 ĝ01 · · · ĝ0max(Sg)

ĝ10 ĝ11 · · · ĝ1max(Sg)

...
...

. . .
...

ĝmax(Sg)0 ĝmax(Sg)1 · · · ĝmax(Sg)max(Sg)


(4.2)

4.4 Photovoltaic power generation

Since we take into account the local weather forecasts and model irradiance as a

random function dependent upon local cloud cover and time of day as a Markov

chain, we may calculate the approximate current and power generated for a single

photovoltaic panel based on the irradiance and manufacturer specifications. Since

the photovoltaic cell is comprised of a p-type and n-type semiconductor junction, the

photovoltaic panel is characterized by its current-voltage or IV relationship illustrated
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Figure 4.4: Photovoltaic IV characteristics (33).

in Figure 4.4 . In other words,

iout ≈ isc(.001 ∗ gt)− io[exp(
qv

nkTk
)− 1] (4.3)

p = iout ∗ vmppt (4.4)

where isc, vmppt, and io are current and voltage parameters available in the photo-

voltaic panel specifications and q, v, n, k, and Tk are physical constants.

The power p output by the photovoltaic panel is assumed to operate at the maximum

power point voltage. To ensure maximum power transfer from the solar panel to

the energy storage device, we assume maximum power point tracking electronics are

employed to maintain a constant voltage vmppt. Since the electronics interface with

the photovoltaics and home energy storage some loss in power is expected. Available

maximum power point tracking devices are reported to have an efficiency between
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94-97%. We can therefore assume that the power input to the battery at any given

time can be calculated as

pin ≈ ηmppt(isc(.001 ∗ gt)− io[exp(
qvmppt
nkTk

)− 1]) · vmppt (4.5)

The input power, however is calculated over a given hour. To get the rate of power

charge into the battery, we divide by sixty to calculate an input power rate, or energy

quanta over a minute since the irradiance for a given cloud cover is subject to changes

at a higher resolution than over the hour. We express the value of the harvested

quanta as the random variable H:

Ht = hi = pin/∆T (4.6)

H = {Ht=hi, i, t ∈ N+} (4.7)

where Ht = hi represents the harvested input energy quanta at discrete time t for a

state space SH. pin represents the calculated input power from the energy generating

device, and ∆T is the period of time we use to scale quanta as a rate. Since pin is

driven by the incident global horizontal irradiance G characterized by the transition

matrix P (Gt+1|Gt, CT , T ). We can translate G to H as the scaled transition matrix

P (Ht+1|Ht, CT , T ) allowing us to relate solar irradiance in units of harvested energy

quanta available to the energy storage battery.
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Figure 4.5: Consumption load profile for an individual household taken from the UCI
Machine Learning Repository.

4.5 Consumption Load Profile

The consumption load profile, shown in Figure 4.5, for a given household is esti-

mated by analyzing individual household load profile data available through the UCI

Machine Learning Repository (34).

As in Section 4.3, the a sequence of power values are discretized in state space compa-

rable to the state space of the energy harvesting block. We can directly calculate the

energy quanta required by the load L by scaling the power to output energy quanta

as pload/∆T . Since L is dependent on resident power usage susceptible to random

variations throughout the day, we express L as a Markov model and calculate the

transition matrix by counting the transitions of a starting state to an individual state

averaged over all transitions initiated from the starting state. To simplify our unified

stochastic model of the residence we assume that the load profile is homogeneous in

time. Therefore,

l̂ij =
fij
Sl∑
k=0

fik

(4.8)
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P (Lt+1=j|Lt=i)=lij=



l̂00 l̂01 · · · l̂0max(Sl)

l̂10 l̂11 · · · l̂1max(Sl)

...
...

. . .
...

l̂max(Sl)0 l̂max(Sl)1 · · · l̂max(Sl)max(Sl)


(4.9)

for a discrete time increment t. Alternatively, we can express the Markov chain L as

L = {Lt = li, t, i ∈ N+} for li in a discrete state space SL.

4.6 Energy Storage Unit

The resident distributed energy resource requires a means of storage in order to take

full advantage of the energy harvested during the daytime. In order to do so, we

incorporate a home battery bank in the resident energy system model. In practice,

the battery bank consists of several batteries in order to increase storage capacity

based on energy availability, battery type, and environmental conditions. Several

battery types exist on the market such as lead acid, lithium ion, and redox flow for

residential battery banks. Differences between the battery types are dependent on

the cost, capacity, power ratings, depth of discharge, round trip efficiency, battery

lifetime, and manufacturing (35). Depth of discharge (DoD) in particular directly

affects the battery lifetime and is dependent on the capacity of the battery. In other

words, the chemical composition of the storage unit requires the presence of charge.

If the maximum capacity of the battery is being used, the lifetime of the device will

decrease over time. Manufacturer suggested DoDs below the maximum capacity are

provided for optimal device performance. Round trip efficiency, on the other hand,

is the amount of electricity that can be provided by the battery given the input elec-
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tricity from the connected power generator such as the photovoltaic panel. In other

words, it is the amount of usable energy you can extract given the amount of energy

stored. Typically, the efficiency is less than one hundred percent, or maximum energy

harvested, indicating some losses are incurred from the input power. This loss needs

to be factored in when designing a battery bank necessary to sustain a consumption

profile off-grid given the amount of power generation from the photovoltaic energy

source. The lifetime of the battery, as aforementioned, is dependent on the battery

capacity and the depth of discharge. The amount of charge extracted or inserted to

the battery by the load or photovoltaic panel affects the charge and discharge rate

or cycling of the battery. Most battery manufacturers provide warranties covering a

certain number of cycles per year given that the battery is operated at optimal condi-

tions and recommended depth of discharge. This is due to the charge capacity of the

battery which decreases with usage. Since most photovoltaic panels have lifetimes

of twenty-five to thirty years, at least one battery bank replacement is expected. To

maximize the lifetime of the battery it becomes necessary to control the DoD. The

physical properties of the battery also control the extent of charging and discharging

as the state of charge varies between low and maximal charge levels (18). The charge

discharge rate of the battery varies as a function of the state of charge. A battery

charged at half capacity has a higher charge discharge rate than a battery at zero

charge. When the battery is fully discharged which is not recommended, the battery

charge rate is slow. When the battery is fully charged, or at maximum capacity, the

battery is saturated and can no longer accept incoming charge. While not considered

in this study, temperature may also be detrimental to energy storage performance.

Temperatures below 30 deg F increase the maximum power point voltage that the

battery requires for low loss power transmission. Temperatures that exceed 90 deg F

result in charge reduction due to battery overheating thereby requiring residents to set

up battery banks in temperature controlled environments resulting in infrastructural
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and cost overhead (35).

We simplify modeling the battery bank by assuming that the voltage across all bat-

teries is constant and that the batteries are all of the same type in terms of man-

ufacturing. We also assume that the battery banks are in a controlled temperature

environment allowing the storage device to operate in ideal conditions exclusive of

the ambient temperature outside the home. Furthermore, we model the battery bank

as a single battery with a specific amount of discrete quanta level for continuity with

respect to the rest of the unified model in terms of Markov chain characteristics.

Each quanta corresponds to a specific charge in the battery and can be described at

any time as the superposition of the current battery charge, the proportion of charge

drawn from the battery due to the residential load profile, and the input power quanta

supplied from the energy harvesting device. Explicitly,

Qt+1 = Qt(1− α) +Ht (4.10)

where Qt+1 represents the energy quanta at the next time trial given that the current

value of the energy quanta charge state minus the proportion α of energy quanta

drawn from the load and the energy harvest input Ht in unit quanta.

4.7 Grid Supply

To take into account modern home energy systems, the residential load profile may

draw energy from the battery, the grid, or a combination of both. In other words,

the system may choose to take a certain proportion of energy from the energy storage

device and the remaining portion from the grid. The adjusted load seen by the

grid energy metering device is the difference between the actual load profile and the
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proportion of energy drawn from the energy storage device. In other words,

Lgridt = Lt − αQt (4.11)

where Lgridt represents the load from the perspective of the load at discrete time t,

Lt represents the actual resident load, and α represents the proportion of energy Qt

taken from the battery.

While we do not take into account in detail the power electronics associated with

inverting the battery power from DC to AC to support the load, we remark that the

model can be adapted by approximating the inverter as an efficiency term. Indeed in

the case study presented we scale the battery supplied power with an efficiency term.

4.8 Control

The equation 4.10, while descriptive of the system when connected to the battery,

requires that the battery have an adequate amount of existing charge or input energy

harvested H in order to meet the proportion of charge required by the load demand

L at any given time. In off-grid conditions, loads that exceed both Q and H may

place the residence in danger of power outage. Therefore, the approach to control

in this work enables the energy management system to optimize the proportion of

energy drawn from the storage unit while still connected to the grid. In other words,

the energy management system has the flexibility to draw power from the battery

when adequate supply, load, and irradiance conditions allow for off-grid status while

still maintaining connection to the grid should the system require it. By maintaining

connection to the existing grid power drawn from the battery may be scheduled based

on grid conditions and demand response programs to minimize time of use pricing
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and peaks in community demand.

The system must also take into account the energy storage device. The battery itself

has physical limitations with respect to its lifetime and the amount of stresses it

can incur upon usage over time. Both of these concerns are addressed in a control

mechanism whereby the residential energy system can control the amount of energy

drawn from the grid and the energy storage device to supply the load as well as the

rate of charge from the energy harvester to the storage unit.

4.8.1 Load to Battery and Grid Connection

In Figure 4.1, the energy management system may choose to draw a specific amount

of power from the battery and the grid in a manner similar to a valve. In other words,

the amount of energy taken from the grid and the battery can be tailored to take more

power from the grid during off-peak hours to take advantage of pricing and allow the

battery to charge. Alternatively, a greater proportion of energy may be drawn from

the energy storage unit during ideal battery operating conditions or at times when

peak demand causes electricity pricing to fall out of the budget of the resident.

As aforementioned, homes would require interfacing power electronics such as invert-

ers to convert direct current to alternating current, correct for power factor, and

feed from the energy harvester to the grid at any given time. Since we model the

contributing elements of the home energy system as Markov chains to be used in a

Markov decision process for control optimization, the system is subject to the curse of

dimensionality–or a large number of states. Having a large number of states is unde-

sirable as it requires more processor power which may not be realistic for a simple at

home system to be used in a similar capacity to that of a thermostat. We therefore,

simplify the process by introducing control in terms of the proportion of energy drawn
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from the energy storage unit to the load α = {αn, n ∈ N+}, where 0 ≤ αn ≤ 1. For

example, α = {0, 1/4, 1/2, 3/4, 1}, representing the capacity of energy taken from the

current charge of the battery. In other words, the increments of α behave similar to

a discrete cumulative distribution function over a probability distribution depending

on the characterization of the quanta Q. In the example presented as well as the

case study that follows, the battery quanta are assumed to be equal and uniformly

distributed from the minimum capacity to the maximum capacity of the battery.

Therefore, the battery charge quanta that can be supplied to the load at any given

time is Qsuppt = Qt(1 − αn), where we assume that the battery is drawn at the end

of the interval. αn = 0 represents the condition that no current battery energy is

drawn from the battery to supply the load and αn = 1 represents the condition that

all current battery energy is drawn.

It is important to note that the maximum quanta of energy is described by the

maximum capacity of the battery bank can supply based on its power and charge

rating. The case where α = 1 would result in full discharge of the current battery

charge in the next time slice. Full discharge conditions fall outside manufacturer

suggested settings. To tailor the system to meet manufacturer settings it is worth

noting that the model minimum battery quanta Qmin can be set to a value greater

than the zero charge level of the battery. Similarly, Qmax, or the maximum amount

of battery charge can be tailored to less that one hundred percent capacity to fall

under warranty settings.

4.8.2 Battery to Harvesting Unit Connection

A second means of control is presented at the battery to the energy harvesting stage

of the system which includes the photovoltaic panels and the maximum power point
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tracking electronics as described in Section 4.4. A switch fn connects the the residen-

tial load to the grid or to the battery. The switch fn =∈ {0, 1} where fn = 0 is the

condition with which the battery is disconnected from the harvesting unit and fn = 1

is the condition with which the battery is connected to the harvesting unit. This

second level of control is chosen with respect to the battery charge and discharge.

Charge/discharge of the battery has a direct effect on the energy capacity, lifetime,

and efficiency of the battery. With increased battery use, the battery itself undergoes

degradation. The reason for the degradation is a change in volume with respect to

the cell electrodes that comprise the battery. Over time and usage the volume change

causes microscopic fissures in battery electrode material which results in an increase

in battery cell internal resistance, reduction in electrode contact, and overall battery

capacity fading (36). The degradation of batteries is so common that the electric au-

tomotive industry associates the end of battery lifetime as a state where the current

maximum capacity of the battery is eighty percent of the original capacity at time

of purchase (36). The equation describing the state of charge changes with respect

to the configuration of the switches connecting the system components at any given

time. In other words, if the battery to energy harvesting stage switch is off, the bat-

tery is disconnected from the energy harvester. Such a condition may be ideal under

conditions of battery saturation or to control the depth of charging in the battery at

a given time.

4.8.3 Overall System Dynamics

Following the introduction of two degrees of control, αn and fn, over the allocation

of energy from the grid, battery and the photovoltaic panel of the residence, we

may reformulate the system dynamics in terms of the deterministic battery quanta

relationship introduced in Equation 4.10 as well as the operational constraints of the
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physical battery itself as suggested in 4.8.2. We express the overall system as the

following:

Qt+1 = min(max(Qt(1− αn) + fn ·Ht, Qmin), Qmax) (4.12)

H = {Ht=hi, i, t ∈ N+}, where hi ∈ SH (4.13)

L = {Lt=lj, j, t ∈ N+}, where lj ∈ SL (4.14)

fn ∈ {0, 1} (4.15)

0 ≤ αn ≤ 1, (4.16)

where Qmin and Qmax ensure that the charging and discharging of energy quanta

remain within the operating parameters of the battery.

4.9 Control Optimization

We optimize the control of proportion αn and switch fn by formulating the system

as a Markov decision process described by system equations 4.12 and by constructing

a cost function for use in the value function iteration described in Chapter 2. We

construct a cost function as a tradeoff relationship between the cost of using the power

grid and the cost of using battery. The cost of using the power grid can be described

by the time of use (TOU) power rate as well as the residential load profile Lt at time
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t. The cost of using the power grid given the electric power rate eTOU(t)

Cg = eTOU(t) · Lgridt (4.17)

Cg = eTOU(t) · (Lt − αnQt), where 0 ≤ αn ≤ 1 (4.18)

(4.19)

while the cost of taking power from the battery as defined in (18) can be approximated

as:

Cb =
Qt

Qmax

− η, where 0 < η ≤ 1 (4.20)

where Qmax describes the maximum amount of charge quanta the battery is capable of

storing and η is a charging efficiency parameter. For most batteries, η is .5, indicating

that the battery charges most efficiently when Qt = 0.5 · Qmax. This is as expected

because for Qt close to Qmax results in slower charge efficiency as the battery has

already reached a state of saturation. Conversely, for values of Qt close to zero, the

battery has little to no charge stored, the energy it takes to overcome the charging

inertia of an empty battery is high so the state of charge efficiency is low. To construct

a tradeoff between the physical costs of battery usage Cb and grid usage Cg requires

that both values are normalized in a manner that can be superimposed into one

defining cost function for use in the dynamic programming value iteration method for

Markov decision processes. We observe that the value of Cb remains within a [0, 1]

whereas the value of Cg depends on the current TOU grid pricing. This observation,

if unattended would result in a poor evaluation of the ideal Markov policy output of

the value iteration function as the units and cost scales are mismatched. To alleviate

this situation, we normalize Cg by the maximum Lmax that the resident is capable of

when all appliances in the home are drawing power. We rewrite the cost of the grid
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as:

Cg =
eTOU(t) · (Lt − αnQt)

eTOU(t) · Lmax
=
Lt − αnQt

Lmax
(4.21)

We can now formulate the overall system cost function using the tradeoff factor λ

associated with the action parameters αn and fn as:

∑
C = λ · Cg + (1− λ) · Cb (4.22)

and thereby apply the value function iteration for Markov decision processes to arrive

at an optimal policy or sequence of αn, fn actions.

4.10 Value Function Iteration

In this section we introduce the construction of the value function iteration parameters

using the Markov system quantities thus defined as well as the introduction of hourly

weather forecast in terms of cloud cover for the consumer residence location. Recall

from Chapter 2, we define the value function for a Markov decision process using the

Bellman equations. In other words, given:

system state space : S (4.23)

model : P (s′|s, a) (4.24)

actions : A(s) (4.25)

state-action state space : SxA (4.26)

cost : C(s, a) (4.27)

discount factor : 0 ≤ γ ≤ 1 (4.28)
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we may derive an optimal policy Π(s)→ a or a sequence of state-actions for the system

for a time horizon of interest. The Bellman equations describing the generalized

process are:

V (s) = min
a

(C(s, a) + γ
∑
s′

P (s′|s, a)V (s′)) (4.29)

Q(s, a) = C(s, a) + γ
∑
s′

P (s′|s, a) min
a
Q(s′, a′) (4.30)

Recall from Chapter 2 the second Bellman equation is written in terms of what is

known as a Q-state or state-action pair for a given time. Note that in the value func-

tion method the system recursively calculates the updated value using the previous

value. In the Q-state packaging of the Bellman value iteration, the cost for all state

action pairs for a given time step are calculated. The Q-state, state-action pair, that

results in the minimum cost is thereby used in the iteration for the next state calcu-

lation. In terms of the established system parameters we may rewrite the residential

energy Markov decision process as:

state : s=(Ht=hi, Qt=qj, Lt=lk) (4.31)

state space : SH × SQ × SL (4.32)

model : P (Ht+1, Qt+1, Lt+1|Ht, Qt, Lt, αn, fn) (4.33)

actions : (αn, fn) (4.34)

state-action : s, a = (Ht=hi, Qt=qj, Lt=lk), (fn, αn) (4.35)

state-action space : SH × SQ × SL × Sαn × Sfn (4.36)

cost : C(s, a)=λ · Cg((Ht, Qt, Lt), (αn, fn)) (4.37)

+ (1− λ) · Cb((Ht, Qt), (αn, fn)) (4.38)

discount factor : 0 ≤ γ ≤ 1 (4.39)
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we may derive an optimal policy Π(s)→ a or a sequence of state-actions for the system

for a time horizon of interest. The Bellman equations describing the generalized

process are:

V (h, q, l) = min
αn,fn

(λCg((h, q, l), (αn, fn))

+(1− λ)Cb((h, q, l), (αn, fn)))+γ
∑
h′,q′,l′

P (h′, q′, l′|h, q, l, (fn, αn))V (h′, q′, l′))

(4.40)

Q(h, q, l, (αn, fn)) = C(h, q, l, (αn, fn))+

γ
∑
h′,q′,l′

P (h′, q′, l′|h′, q′, l′, (αn, fn)) min
αn,fn

Q(h′, q′, l′, (α′n, f
′
n)) (4.41)

4.11 Controlling Battery Degradation

During each battery charge and discharge cycle microscopic structural damage occurs

within the material. This damage occurs over time as the battery is used. Similar

fatigue effects are well studied in materials science for use in construction of bridges

and marine structures which are subject to variations in loading as well as temper-

ature. For narrow-band Gaussian processes, the cycles are well defined however for

more general stress information cycle counting methods are useful. In time domain,

fatigue analysis uses the information provided by local maxima and local minima in

stress data. This allows the stress ranges to be identified and grouped using cycle

counting methods. Various cycle counting methods exist for this purpose such as peak

counting, range counting, level-crossing counting, and rain flow counting. ASTM E
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1049-85 establishes the rain flow counting method as a standard suitable for fatigue

damage (37).

4.11.1 Rain flow counting method

The procedure for using the rain flow method manually is to observe the time series

stress signal with the time axis drawn vertically downward. Then lines connecting

peaks and valleys form a set of “pagoda roofs” as outlined by Matsuishi and Endo (38).

The rules of the rain flow counting method are as follows:

• Begin at the first point in time at the inside of every peak and valley.

• Rain flow, if initiated from a peak drops down until it reaches an opposite peak

which is more positive (or more negative in the case of a valley) than from the

peak where the flow started.

• Rain flow stops when it meets flow from a roof above it.

• Rain flow must terminate at the end of a time series.

• The horizontal length of each flow between paths is counted as a half cycle with

the length or amplitude as the stress range for the path.

More formally, the cyclic stress can be found by

σampl =
σmax − σmin

2
(4.42)

where σmax and σmin correspond to a peak or valley and ampl corresponds to a par-

ticular path of interest. Following the calculation of stress ranges for each individual

path defining a half cycle (from a peak to a valley or vice versa), the paths can be
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Figure 4.6: Rain flow counting method estimates number of cycles for each stress
range by measuring the amplitude of stress for a given path. The paths in this
example are AB, BC, CD, DG, EF , GH, and HI.

grouped according to the range of σ and the number of cycles ng for a each group

g which is simply the sum of the half cycles associated with each group of similar

cycle. The damage for any particular group g of paths of equal stress range σ can

be assessed by examining the material’s characteristic Wöhler/S-N curve of cyclic

stress. This curve is a bi-logarithmic graph which represents how well a material can

withstand stress cycles. In other words it is characterized by

log(σampl) = log(σfail)−m log(N), (4.43)

where σfail is the stress at static failure (also known as maximum yield strength) and

N is the number of cycles. The maximum number of cycles can be calculated by

manipulating Equation 4.43, to:

Nmax = (
σfail
σampl

)
1
m (4.44)
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where m represents the slope of the σampl vs N curve, or Wöhler curve. Typically,

the S-N, or Wöhler curve of cyclic stress against the number of cycles to failure for a

specific material. Most often, thee materials are available for construction materials

such as steel, iron, and aluminum. Battery material Wöhler curves are difficult to

find and must be estimated based on other fatigue parameters. In this work we

use the methods introduced in (39) to approximate the S-N parameters for fatigue

life calculation for the battery given the battery charge/discharge history. In the

case of the lithium ion battery we recognize that the mechanical electrode damage

must be evaluated in terms of the stress based on the depth of discharge and state

of charge. The fatigue life calculation is necessary in the benchmarking of control

and its effectiveness in extending the battery life while minimizing the cost of taking

power from the grid directly as well as minimizing overall battery damage.

4.11.2 Cumulative Material Damage

The Palmgren-Miner(40) cumulative fatigue damage D is calculated as

D =
k∑
i=1

ni(σampl i)

Nmax i

(4.45)

D =
k∑
i=1

(
σampl i
σfail

)
1
mni(σampl i) (4.46)

D

Cycle
= (

σampl
σfail

)
1
m (4.47)

D

Cycle
∝ CapTloss(%)

Cycle
(4.48)

CapTloss(%)

Cycle
=
CapCALloss (%)

Cycle
+
CapCY Closs (%)

Cycle
(4.49)

CapTloss(%)

Cycle
≈ CapCY Closs (%)

Cycle
(4.50)

= A1(
σampl
σfail

)
1
m (4.51)
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where A1 is the capacity loss percentage factor. Using the values fitted in the study

presented in (39) we use the following values for each constant:

A1 [%/cycle] 0.04519

m 0.4926

σfail [MPa] 8

Therefore to calculate the accumulated damage we may write:

D = A1(
σampl
σfail

)
1
m · Cycle (4.52)

4.12 Case Study

In this section we provide a case study demonstrating the optimization control of

a residence in Golden, CO from September 1-3, 2016. Golden, CO was chosen as

a location due to its variety and complexity of weather patterns and cloud cover.

The month of September was chosen due to the daytime hours which roughly equal

the amount of dark hours during the day. The models were built using historical

weather and irradiance datasets available through the National Renewable Energy

Laboratory from 2005-2015 after discretization and preprocessing the data. The load

profile was also built using historical datasets provided by the University of California,

Irvine Machine Learning Repository. Forecast information was web-scraped using the

Beautiful Soup python package on weather channel information for up to nine hours

beyond the present time.

The grid costs were based on the hourly rate advertised by the local utility which

varied depending on the time of use and peak demand hours. However, in the end

the cost was normalized thereby dependent proportionally on the difference of the
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Figure 4.7: Generalized value function iteration tree over the course of the hourly
forecast. Note that actions are only selected every fifteen minutes based on the
forecast. The procedure is repeated as each hour of current cloud cover is read and
the new forecasted data is assessed. For each triangle, or state that the state-action
leads to, a subchain is initiated with respect to the irradiance, load profile, and the
battery quanta state though not depicted.

current load and the drawn battery power with respect to the grid at a given time.

Battery costs were determined using the operational physical equations presented in

4.11. The battery parameters used for this study are those for the lithium ion battery.

The value function was run over the forecast data starting four hours from the present

time. Following the evaluation of the cumulative sum of the costs, the action associ-

ated with the minimum cost at the present time for the present cloud cover informa-

tion was chosen. Actions were chosen every 15 minutes taking advantage of forecast

data. The actions, once again are defined as the proportion of energy quanta drawn

from the energy storage unit to support the load and the energy harvesting switch

to the rechargeable battery. The simulation then ran for the present hour. Upon the

start of the next hour, the value function again was evaluated starting four hours into

the future using the forecasted data until the sunset and the system was no longer

receiving radiant power to the energy harvesting device.
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Simulations for the system Markov Decision Process were performed for 0 ≤ λ ≤ 1 in

increments of λ = .05. For one hundred sample functions of load and irradiance given

cloud cover and hour, the battery charge and discharge profiles based on varying cost

function was assessed in terms of aging. Simulation results show the predicted irradi-

ance based on the cloud cover from the forecasted data as well as the inhomogenous

in time Markov model built using historical data. The irradiance due to the binning

algorithm to reduce states result in quantized outcomes that are apparent in the ar-

tifacts present in the irradiance profile H which show a similarity to the September

3rd Figure 4.2. September 3rd is analyzed and presented due to its variability with

respect to cloud cover. The load profile model has been isolated to daylight hours

associated with the averaged dataset and is labeled as L. Recall that the total cost

in general was expressed as C(s, a) = λCg(s, a) + (1 − λ)Cb(s) where the cost was a

function of both the current system state generalized as s and the action generalized

as a. Recall Cg an Cb represented the grid and battery costs respectively. Results

support improved system dynamics with energy management system implementation.

We observe in Figure 4.8 that the charge discharge profile of Q is very much depen-

dent on the cost parameter λ. In other words, when λ = 0, the system minimizes

battery damage maintaining the ideal operating point of fifty percent of the total

charge capacity. The system minimizes battery aging cost exclusively. Conversely

when λ = 1, the system minimizes grid cost exclusively and draws from the battery

quanta, or energy storage unit thereby resulting in greater deviations from the ideal

operating point and more depth of discharge. In the case where λ = 0.5 both the

grid cost and the battery aging cost are weighted equally. From varying the value of

λ, it is clear that when optimization favors the battery completely the fluctuations

in charge discharge cycles are flatter (λ = 0). When λ is tuned with some favoring

towards the grid, when 0.5 < λ ≤ 1, the fluctuations from the ideal operating point

increase as the battery is charged and discharged more readily as illustrated in Figure
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Figure 4.8: Simulation results for Q battery quanta charging profiles for cost param-
eter λ = 0, λ = .5, and λ = 1 for a sample function of H harvest quanta and L load
quanta for September 3, 2016.

4.9.

Figure 4.10 presents the battery degradation or damage calculated after the charge

discharge profiles of Q for each lambda value 0 ≤ λ ≤ 1 of one hundred sample func-

tions of irradiance H and load L data are generated. The turning points as outlined in

the rainflow method of the charge profiles are then calculated. Upon rainflow analysis

of the turning points using the physical parameters from (39)we observe that λ as

defined in the optimization cost function is directly proportional to the battery aging
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Figure 4.9: Battery quanta Q charge profiles for one sample function of H harvest
quanta and L load quanta for September 3, 2016. λ values range from 0 ≤ λ ≤ 1.
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Figure 4.10: Battery aging degradation as a function of the cost parameter λ for one
hundred sample functions of H irradiance quanta and L load quanta.
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Figure 4.11: The averaged battery aging degradation over one hundred samples as a
function of the cost parameter λ.
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degradation. Averaged results over one hundred samples are presented in Figure 4.11.

In other words as the cost parameter λ increases the weighting of the battery cost

decreases resulting in greater battery degradation.
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Chapter 5

Conclusion

In this paper we proposed an energy control framework driven by consumer behavior

as an alternative to price driven systems. The EMS detected behavior according to

pre-built reference models differing in activity sequence. Following model detection,

the intelligent control agent assessed user appliance requests based the state estimate,

a grid-informed consumption constraint, and a consumer convenience parameter. Re-

sults support that inclusion of human behavior as a driver for demand affects accurate

consumption prediction which is necessary for EMS appliance scheduling. Consumer

convenience constraints based on the current state estimate and the consumption

constraint provided a means for the resident to control appliance activation delay. A

case study demonstrated the effectiveness of the system as a whole. An additional

control framework for residential distributed energy resources is also proposed. In this

framework, the EMS agent schedules the charge and discharge of the energy storage

unit in a residential microgeneration system consisting of an energy harvesting unit in

the form of rooftop photovoltaic panels, a lithium ion battery bank, and the original

consumer behavior driven load profile introduced in the first half of this work. Using

historical datasets to build irradiance models which are inhomogeneous in time as a
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function of cloud cover we are able to characterize the amount of energy harvested

based on readily available weather forecast data without the use of expensive instru-

mentation. The forecast data, and the construction of the cyber-physical system as a

Markov decision process, allows the control agent to assess the best possible action or

long-term policy to reduce the overall cumulative cost to the residential consumer in

terms of electric power rates as well as battery lifetime. Results support the control

framework as an accurate means of controlling the material damage the battery may

incur during its usage. The rain flow counting method for materials show a marked

improvement in performance with respect to slow charge/discharge rates and overall

cumulative battery damage.
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Chapter 6

Future Work

Future work in this project can take many interesting directions. In the paper pre-

sented, we considered the control and appliance scheduling for the dishwasher. In

reality, different heavy consumption long-term appliances may be considered in other

case studies. For example, the HVAC, which we have included in our case study as

a long-term activity dependent appliance, represents a major load that has been the

target of discretionary utility programs within current demand response. In the study

presented, we did not seek to control this particular appliance due to dependencies

with respect to the external temperature and weather, but we did include it as an

influential contribution to the aggregate load. Additionally, our residence case simu-

lation study presented the EVSE as a load that is used simply to charge the car with

a dependency on consumer occupancy via the detection of the activity leave. We did

not consider using the car battery as a distributed energy resource (DER) in addition

to the battery bank. We built upon the resident case study with the inclusion of en-

ergy resources such as energy storage systems and photovoltaic cells whose lifetimes

depended on charge/discharge stress as well as cloud cover respectively. However, we

did not take into account a control optimization system that connected the battery to
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the grid via power electronic inverters to feed the harvested and stored energy back

to the grid. Similarly, we did not take into account the case where the residence may

take power both from the the grid and the battery. A natural extension of this work

would be to control the ratio of power taken from the battery and/or the grid at any

given time to reduce the overall cost of battery operation and utility power rates.

In addition to further appliance case studies, alternative EMS frameworks may also

be considered using different mathematical models for activity detection and appli-

ance scheduling. Unfortunately, frameworks based on Markov models suffer from the

curse of dimensionality. In other words, the amount of states with respect to indi-

vidual users, behaviors, and appliance states quickly becomes intractable impacting

the optimization process used to implement system control. Recall, in Section 3.4.1,

we calculate the probability of exceeding a power grid defined threshold over a finite

horizon corresponding to the cycle duration of a long-term appliance. The complexity

of this process in terms of the number of operations required for calculation grows

with the number of states where each time slot requires O(S × S) operations (41).

Calculations are especially difficult when scaling the framework to a neighborhood

or residential group level. Large state spaces correspond to lengthy estimation, slow

convergence and high complexity of optimization. To scale up our model we must

reduce the model or use alternative techniques. Alternatives such as graph signal

processing approaches as presented in (42) may alleviate complexity issues. We leave

a thorough evaluation of alternative techniques in the scenario described in this pa-

per for future work. Finally incorporation of complementary work in non-intrusive

load monitoring may inform better generalized appliance models. For example, (43)

generalized appliance models from sub-metered appliance datasets of different makes

and models of devices using supervised learning techniques followed by sampling to

obtain averaged appliance instances depending on the appliance type. The general

models were then used to disaggregate load curves from publicly available consump-
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tion datasets. While the goal of this project is to study human activity as a driver of

consumption rather than load disaggregation, building a tagged dataset of consump-

tion and behavior would provide a means of evaluating load disaggregation methods

with an additional degree of freedom.
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