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Abstract

The probability density function (p.d.f.) of the ratio of two correlated gamma variables is derived and used to fit aquatic micro-

bial-density data. The ratio p.d.f. is tackled by first taking the Fourier transform of a generalized Kibble–Gaver, unsymmetrical,

characteristic function (c.f.) to obtain the corresponding bivariate p.d.f. of two correlated gamma variables with different shape

and scale parameters. The ratio p.d.f. follows by weighted integration of the bivariate p.d.f. The derivation of the gamma bivariate

and ratio p.d.f.s relies on the use of weighted Laguerre–Charlier polynomials that lead to p.d.f.s amenable to computation. The

bivariate gamma p.d.f. and the ratio p.d.f. of correlated gamma variables are useful statistical tools in the analysis of skewed

water-resources data. Computational examples illustrate the calculation of bivariate p.d.f.s for positive and negative correlation

and the fitting of the ratio p.d.f. to correlated bacterial densities in stream water.

� 2004 Elsevier Ltd. All rights reserved.
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1. Gamma variables and probability density functions

(p.d.f.s)

Consider two gamma random variables X1 and X2,

each of three parameters, whose marginal p.d.f.s are

given by Eq. (1) (b1, b2, a1, a2, c, n1, n2 are parameters
in Eq. (1), and x0j ¼ xj � nj, j = 1, 2):

f ðxjÞ ¼
x0

caj�1

j e
�

xj
bj

CðcajÞbcaj
j

j ¼ 1; 2 ð1Þ

xj P nj, in which ca1 and ca2 are the marginal shapes of
the p.d.f.s of X1 and X2, respectively, with a1, a2 P 0; c
is a (collective) shape parameter of the bivariate distribu-

tion of X1 and X2, c > 0; b1, b2 > 0 are scale parameters,
0309-1708/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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and n1, n2 are location parameters. The role of the

parameter c is further elaborated upon in Section 2.
Gamma p.d.f.s have been widely used in water re-

sources analysis (see a recent example in [24]). They

are flexible and mathematically simple p.d.f.s that can

fit skewed data. One frequently used variant of the gam-

ma p.d.f. is the log-gamma p.d.f., in which the logarithm

of a random variable is assumed to follow a gamma

p.d.f. The log-gamma p.d.f., also called log-Pearson

p.d.f. (with two or three parameters), is widely used in
the United States to describe the distribution of peak an-

nual streamflow (see, e.g., [18]).

The study of bivariate gamma p.d.f.s involving two

correlated gamma variables has received much less

attention in the water resources literature. By and

large, bivariate (and multivariate) correlated water-re-

sources data are handled using normal or log-normal

p.d.f.s that are mathematically simple and computation-
ally straightforward (see, however, [27]). Certainly,

mailto:hugo@geog.ucsb.edu 
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non-negative, skewed, data may not be well fit by the

normal p.d.f. This situation calls for p.d.f.s of more gen-

eral applicability, the gamma p.d.f. being one plausible

alternative. This article pursues the case of correlated

gamma variables that occur in pairs, and whose physical

significance is expressed by their ratio, that is, by
Z = X1/X2. In this work, X1 and X2 may, in general, fea-

ture different shape and scale parameters, i.e., a1 may or
may not equal a2, and, likewise, b1 may or may not

equal b2. In this respect, this article�s results general-

ize—in nontrivial fashion—those of Xekalaki et al.

[32], who, using Kibble�s [15] symmetric bivariate gam-

ma p.d.f., assumed that a1 = a2 and b1 = b2 in the deriva-

tion of the distribution of the ratio Z. The derivation of
the p.d.f. of Z, g(z), requires the bivariate p.d.f. of X1

and X2, f(X1, X2), as it is shown below. A novel tech-

nique is used in this work to derive f(X1, X2) and g(z)

in terms of infinite series amenable to computation. Sev-

eral examples demonstrate the calculation of f(X1, X2)

for positive and negative correlation. The fitting of

g(z) is illustrated with microbial densities in stream

water. Other applications are surely possible.
2. Characteristic functions (c.f.s) and correlation

The c.f.s (/) of X1 and X2 are obtained by taking the

Fourier transforms of Eq. (1) to yield

/jðtjÞ ¼ einjtjð1� itjbjÞ�caj j ¼ 1; 2 ð2Þ

Assume that X1 and X2 are correlated variables, with
the density correlation q defined in terms of their means

l1, l2 and variances r2
1 and r2

2 as usual:

q �
l1;1

r1r2

¼ E½ðx1 � l1Þðx2 � l2Þ�
r1r2

ð3Þ

The particular form of the bivariate gamma p.d.f. of

correlated X1 and X2 is derived in Section 4.

Consider the following bivariate c.f. for the gamma

variables X1 and X2 described above:

/ðt1; t2Þ ¼ eiðn1t1þn2t2Þ½ð1� it1b1Þa1ð1� it2b2Þa2 þ bt1t2��c

ð4Þ
which produces the marginal c.f.s in Eq. (2). The param-

eter b in Eq. (4) is related to the density correlation q by

the expression:

q ¼ bc
r1r2

¼ b
b1b2

ffiffiffiffiffiffiffiffiffi
a1a2

p ð5Þ

Clearly, sgn q = sgn b, and jqj 6 1.
The proposed c.f. (4) is unsymmetrical, that is, it has

unequal shape and scale parameters. Furthermore, the

parameter b is related to the correlation between the

variables X1 and X2, while c captures the joint shape

of their bivariate distribution. The unsymmetrical
bivariate c.f. (4) is a generalization of the symmetrical

bivariate results by Kibble [15] and Gaver [10]. The for-

mer, in particular, assumed that a1 = a2 and b1 = b2.

Other statistical gamma models are the symmetrical,

one-parameter, bivariate chi-square by Krishnaiah

and Rao [19] and the symmetric multivariate gamma
model of Krishnamoorthy–Parthasarathy [20], based

on determinants. In the unsymmetrical realm, bivariate

gamma distributions, ratio distributions, and their mo-

ments have been derived by Sarmanov [29], David and

Fix [6], Gunst and Webster [12], and Prékova and

Szántai [27]. The cited unsymmetrical distributions are

both complicated in appearance and lacking in param-

eters. Accessibility of the broad family of unsymmetri-
cal bivariate gamma distributions implied by the c.f. (4)

relies on the introduction of Laguerre–Charlier polyno-

mials and separable form of the joint distribution (see

Sections 3 and 4). The basic paper of Meixner [25]

and the statistical papers of Lancaster [21,22] used

these polynomials and forms, but with fewer results

and no computational testing of equations. Interest-

ingly, the Krishnamoorthy–Parthasarathy [20] paper
had a brief account of an unsymmetrical extension that

does not appear to have been pursued. Becker and

Roux [1] suggested a nice bivariate extension of the

gamma distribution.

Other bivariate gamma and related distributions can

be found in [31,5,28,21,8,26,30,7,17].
3. Laguerre–Charlier (LC) polynomials

Recall the Charlier polynomial Cn(k, x) [2,3,9]:

Cnðk; xÞ ¼
Xn
k¼0

ð�1Þk
n

k

 !
k

k

 !
k!
xk

¼ ð�xÞ�nn!
Xn
k¼0

k

n� k

 !
xkð�1Þk

k!
ð6Þ

n = 0, 1, 2, . . . ; �1 6 x 61, x 5 0, in which:

k

k

� �
¼ kðk � 1Þ 
 
 
 ðk � k þ 1Þ

k!
ð7Þ

is Newton�s binomial coefficient. In terms of the conflu-

ent hypergeometric function 1F1(a, c; x), Eq. (6) may be

rewritten in the following form:

Cnðm; xÞ ¼
Cðm þ 1Þ

Cðm � nþ 1Þ ð�xÞ�n
1F 1ð�n; m � nþ 1; xÞ

n ¼ 0; 1; 2; . . . ð8Þ

Using generalized Laguerre polynomials La
j ðxÞ, the con-

version formula is

Cnðm; xÞ ¼ ð�xÞ�nn!Lðm�nÞ
n ðxÞ ð9Þ
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which is why the Cn(k, x) are sometimes called La-

guerre–Charlier (LC) polynomials. The extensive known

identities for 1F1(a, c; x) and La
j ðxÞ can therefore be

tapped to express properties of the Charlier polynomi-

als. Eqs. (6)–(9) constitute a set of useful formulas in

the derivation of a suite of gamma results that follow.
Fig. 2. An example of the bivariate gamma p.d.f. with b1 = b2 = 1,

a1 = a2 = 3, b = 1.5, c = 1.5, q = 0.87, n1 = n2 = 0.

Fig. 3. An example of the bivariate gamma p.d.f., b1 = 1.5, b2 = 2,

a1 = 2, a2 = 1.5, b = �2, c = 0.70, q = �0.385, n1 = n2 = 0.
4. Bivariate gamma probability density function

The bivariate p.d.f of X1 and X2 is obtained by taking

the Fourier transform of the proposed c.f. (4):

f ðx1; x2Þ ¼
1

ð2pÞ2
Z 1

�1

Z 1

�1
e�iðt1x1þt2x2Þ/ðt1; t2Þdt1 dt2

ð10Þ
Substitution of Eq. (4) in (10) and using the LC-polyno-

mials, yields, after integration, the bivariate, 8-parame-

ter, gamma p.d.f. (with x0j ¼ xj � nj, kj ¼ ajðnþ cÞ; k0
j ¼

kj � 1, j = 1, 2):

f ðx1; x2Þ

¼
X1
n¼0

ð�1Þn
�c

n

� �
b

b1b2

� �n
x0
1

b1

� 	k0
1 x0

2

b2

� 	k0
2

e
�

x0
1
b1
þ

x0
2
b2

� 	
Cðk1ÞCðk2Þb1b2

� Cn k0
1;
x01
b1

� �
Cn k0

2;
x02
b2

� �
ð11Þ

The bivariate gamma p.d.f. is a separable series of

weighted LC polynomials. A (very lengthy) proof that

the expression in Eq. (11) is a valid p.d.f. (i.e., non-neg-

ative and integrates to one) is available from the authors

upon request.
Figs. 1–3 show the plots of calculated gamma p.d.f.s

using Eq. (11). The values of the parameters used in Fig.

1 were b1 = b2 = 1, a1 = a2 = 3, b = 1.5, c = 1 (which im-

plies that q = 0.5), and n1 = n2 = 0. Notice in Fig. 1 the

symmetry of the calculated p.d.f., a consequence of the

choice a1c = a2c. Fig. 2 shows a second (unsymmetrical)

bivariate p.d.f., in which case b1 = b2 = 1, a1 = 1, a2 = 3,

b = 1.5, c = 1.5 (q = 0.87). The ratio of the marginal
Fig. 1. An example of the bivariate gamma p.d.f. with b1 = b2 = 1,

a1 = a2 = 3, b = 1.5, c = 1, q = 0.5, and n1 = n2 = 0.
shape parameters was a1c/a2c = 1/3. In Fig. 3 we show

an (unsymmetrical) p.d.f. whose parameters are

b1 = 1.5, b2 = 2, a1 = 2, a2 = 1.5, b = �2, c = 0.70. In

this last instance, the correlation is negative, q ¼
�2=ð3

ffiffiffi
3

p
Þ ¼ �0:385. The data shown in the graphs of

Figs. 1–3 were produced with a computer program writ-

ten in FORTRAN 90 interfaced with the International

Mathematical Subroutine Library (IMSL). The IMSL

returns values of special functions (gamma, binomial

coefficients, etc.) that appear in the equations.
5. Moments of the bivariate gamma p.d.f.

Let ln,m, n, m = 0, 1, 2, . . . , be the (central) moments
about the mean of X1 and X2 according to the p.d.f. (11)

Then

ln;m ¼ E½ðX 1 � l1Þ
nðX 2 � l2Þ

m� ð12Þ

In addition, let l0
n;m, n, m = 0, 1, 2, . . . , be the central

moments of X 0
j ¼ X j � nj, j = 1, 2. Note that

l0
j � EðX 0

jÞ ¼ lj � nj, with lj � EðX jÞ, j = 1, 2. To
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obtain ln,m it is advantageous to derive l0
n;m and use the

fact that ln;m ¼ l0
n;m. To this end, let the non-central mo-

ments l00
n;m of X 0

1 and X 0
2 be defined as follows:

l00
n;m ¼ E½X 0n

1 X
0m
2 � ð13Þ

The non-central moments in Eq. (13) are related to the

c.f. /0 of X
0
1 and X 0

2 by the following formula:

l00
n;m ¼ ð�iÞnþmo

nþm/0

otn1ot
m
2






t1¼t2¼0

ð14Þ

where, from Eq. (4):

/0ðt1; t2Þ ¼ bð1� it1b1Þa1ð1� it2b2Þa2 þ bt1t2c�c ð15Þ
Once the non-central moments l00

n;m are known, the

central moments ln;m ¼ l0
n;m follow straightforwardly.

For example, l1;1 ¼ l0
1;1 ¼ l00

1;1; � l0
1l

0
2. For the variance,

we have that r2
1 � l2;0 ¼ l00

2;0 � l02
1 , etc. The first, second,

and third moments were obtained by this method to

yield:

EðX jÞ ¼ ajbjc þ nj j ¼ 1; 2 ð16Þ

r2
j ¼ ajb

2
j c j ¼ 1; 2 ð17Þ

l1;1 ¼ bc ð18Þ

q �
l1;1

r1r2

¼ bc

b1b2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2c2

p ¼ b
b1b2

ffiffiffiffiffiffiffiffiffi
a1a2

p ð19Þ

l3;0 ¼ 2b31ca1 ð20Þ

l0;3 ¼ 2b32ca2 ð21Þ

l2;1 ¼ 2bca1b1 ¼ 2c
ffiffiffiffiffiffiffiffiffi
a31a2

q
b21b2q ð22Þ

l1;2 ¼ 2bca2b2 ¼ 2c
ffiffiffiffiffiffiffiffiffi
a1a32

q
b1b

2
2q ð23Þ

The correlation (19) and cross-skewness in Eqs. (22)

and (23) vanish when b = 0, as required for uncorrelated
variables. If desired, Eqs. (16)–(23) may be used to ob-

tain estimates of b1, b2, a1, a2, b, and c from the sample

moments. The lower bounds n1, n2 are zero in most

applications (although they need not be), usually a phys-

ical feasibility requirement. Such is the case of microbial

densities in stream water, illustrated in Section 7.
6. The ratio p.d.f. and its moments

The p.d.f g(z) of Z = X1/X2 is derived from the fol-

lowing relationship between g(z) and the bivariate den-

sity f(x1, x2) (see, e.g., [14], where, without loss of

generality the location parameters are set equal to zero,

n1 = n2 = 0):

gðzÞ ¼
Z 1

0

x2f ðx2z; x2Þdx2 ð24Þ
Substitution of the joint p.d.f. (11) into (24) followed by

termwise integration (using (6) twice) yields the p.d.f.

g(z), z P 0:

gðzÞ ¼
X1
n¼0

Xn
k¼0

Xn
j¼0

n!2ð�1Þnþkþj

j!k!

�c

n

� �
k1

n� k

� �
k2

n� j

� �

� b
ba1
1 b

a2
2

� �n b�ðca1þkÞ
1

bca2þj
2

 !

 Cðk1;2Þ 
 z

k1þk�n�1

z0k1;2Cðk1ÞCðk2Þ
ð25Þ

in which kj = aj(n + c), j = 1, 2; k1,2 = k1 + k2 + k +

j � 2n, k0
j ¼ kj � 1, j = 1, 2; and

z0 ¼ z
b1

þ 1

b2
ð26Þ

Note the dependence of kj on j and n and of k1,2 on j, k,

n, which lengthens the calculations of g(z). Xekalaki
et al. [32] used Kibble�s symmetric bivariate gamma

p.d.f. (with a1 = a2 and b1 = b2) in association with Eq.

(24) to derive the symmetric version of Eq. (25), which

is in this case reducible to closed form. Kotlarski [16]

studied the p.d.f of the ratio Z of two positive-valued,

correlated, random variables and its relationship with

the F and other known distributions. Hinkley [13] de-

rived the p.d.f. of Z for two correlated normal variables.
Consider next the (non-central) moments of the ratio

Z = X1/X2, defined as follows:

l0
Z;p ¼

Z 1

0

zpgðzÞdz ¼
Z 1

0

zp dz
Z 1

0

x2f ðx2z; x2Þdx2

ð27Þ
Letting Xnjk be the numerical coefficient in (25), we re-

write (25) in the form:

gðzÞ ¼
X
njk

Xnjkzk1þk�n�1 z
b1

þ 1

b2

� ��k1;2

ð28Þ

Using (28) in (27) produces (with k00
1 ¼ k1 þ k � nþ p):

l0
Z;p ¼

X
njk

Xnjkb
k1;2
2

b1
b2

� �k001

B½k00
1; k1;2 � k00

1� ð29Þ

in which B[u, v] is the Euler beta function. These are de-

fined either by a trigonometric integral ([11, Eq.

8.381.4], if Re(u + v) P 2) or an algebraic integral ([11,

Eq. 8.380.1], if Reu > 0, Rev > 0). Here, u P a1c > 0;

u + v = k1,2 P (a1 + a2)c, but v = k2 + j � n � p can be-

come negative for some u, n, p. This would be avoided if

p < a2c ð30Þ
In the example of Section 7, u + v P (a1 + a2)c > 3.7, so

all the terms in the series (29) are well defined. Note that

the dependences of the series (29) on p, b1, b2 are com-

plicated, although in terms of p and b1/b2 it is simply

(b1/b2)
p.

Full derivations of Eqs. (25) and (29) are available

from the authors upon request. The conditional mo-
ments of X1, X2 with p.d.f. (11) and of the ratio Z (given
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X2) have also been determined exactly and are available

from the authors.
35
7. An application to water-quality data

Water in Las Palmas Creek, Santa Barbara, CA, was

tested to study the ratio of fecal coliforms (FC) to fecal

streptococcus (FS) in it. FC and FS are enteric bacteria,

that is, they live in the intestinal tract of warm-blooded

animals, and are frequently used as indicators of fecal

contamination of water bodies [4]. A total of thirty eight

pairs of 100-milliliter water aliquots were collected in

1999 and 2000 [23]. In each pair of aliquots, one was
analyzed for FC and the other for FS. The FC and FS

values were well represented by univariate gamma distri-

butions, which are useful on their own right to make

assessments about their statistical and environmental

significance. From each pair of FC and FS values, the

corresponding ratio FC/FS was determined. This proce-

dure yielded a FC/FS sample of thirty eight experimen-

tal values. The FC/FS ratio is of interest because, under
suitable conditions, it may be used to discern the origin

of enteric bacteria [23]. For example, in the Las Palmas

Creek study, a FC/FS ratio in the interval [0, 0.4] was

deemed of equine origin, while a FC/FS P 3.0 was con-

sidered to be human in origin. The range 0.4 < FC/

FS < 4.0 was associated with mixed origin (i.e., humans,

horses, and wildlife in the area where water was tested).

Fig. 4 displays the calculated bivariate distribution
f(x1, x2), in which X1 � FC and X2 = FS. The bivariate

distribution was calculated with Eq. (12) using a com-

puter program written in FORTRAN 90 interfaced with

the IMSL. In the case of bacterial concentrations in
Fig. 4. The bivariate distribution of FC (�X1) and FS (�X2) in Las

Palmas Creek, Santa Barbara, CA, 1999–2000. The bivariate distri-

bution was calculated with Eq. (12). The parameters of the distribution

are: b̂1 ¼ b̂2 ¼ 1:0; â1 ¼ 2:471; â2 ¼ 8:245; b̂ ¼ 1:417; ĉ ¼ 0:35,

q̂ ¼ 0:40. The contour interval in this figure is 0.02.
water, FC, FS P 0. Estimates of the six distribution

parameters were obtained from the moments of X1

and X2, Eqs. (16)–(23), which yielded b̂1 ¼ b̂2 ¼ 1:0
(the raw data were normalized to render b̂1 ¼ b̂2 ¼
1:0); â1 ¼ 2:471; â2 ¼ 8:245; b̂ ¼ 1:417; ĉ ¼ 0:35,
q̂ ¼ 0:40. The bivariate distribution of FC and FS
turned out to be quite asymmetrical in this case (see

Fig. 4).

Fig. 5 shows the empirical (obs · 100) and calculated

(model · 100) frequencies of the ratio FC/FS in Las Pal-
mas Creek, Santa Barbara, CA (1999–2000). The empir-

ical frequency in each range was calculated by dividing

the number of observations within the range by the sam-

ple size (=38), and then scaling it by 100 for ease of
interpretation. The model frequency in each range was

calculated by integrating Eq. (26) within the range (a

FORTRAN 90 program was written to this effect and

special functions were evaluated with the IMSL), and

then scaling it by 100 for ease of interpretation. In

Fig. 5, the range labeled 0.1 equals the interval

[0.0, 0.1], that labeled 0.2 = ]0.1, 0.2], etc. The last range

is P2.0. Fig. 5 shows an overall excellent agreement be-
tween the empirical and calculated probabilities. The

observed and model-calculated probabilities P(Z 6 0.4)

were 71.1% and 66.1%, respectively, which provides

strong evidence of the predominance of equine fecal bac-

teria in Las Palmas Creek.

Table 1 contains the FC/FS data and shows the calcu-

lations associated with a chi-square goodness-of-fit test

run on the observed and model probabilities graphed
in Fig. 5. The chi-square statistic v219ð0:05Þ ¼ 30:14 is
0

5

10

15

20

25

30

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

Range

Pr
ob

ab
ili

ty
 in

 e
ac

h 
ra

ng
e 

x 
10

0 Obs x 100

Model x 100

Fig. 5. Empirical (obs · 100) and calculated (model · 100) frequencies
of the ratio FC/FS at Las Palmas Creek, Santa Barbara, CA (1999–

2000). The empirical frequency in each range was calculated by

dividing the number of observations within the range by the sample

size (=38), and then scaling it by 100 for ease of interpretation. The

model frequency in each range was calculated by integrating Eq. (26)

within the range, and then scaling it by 100. The range labeled 0.1

equals the interval [0.0, 0.1], that labeled 0.2 = ]0.1, 0.2], etc. The last

range is P2.0. FC = fecal coliform concentration; FS = fecal strepto-

coccus concentration.



Table 1

Empirical (FC/FS obs · 100) and calculated (FC/FS model · 100)
frequencies of FC/FS in Las Palmas Creek (1999–2000), plus results of

the chi-square goodness-of-fit test

Range FC/FS

obs · 100
FC/FS

model · 100
(n/100) · (obs-model)2/model

0.1 28.9 27.5 0.0289

0.2 21.1 17.5 0.274

0.3 13.2 12.4 0.0176

0.4 7.89 8.67 0.0263

0.5 7.89 6.15 0.188

0.6 0.00 4.50 1.710

0.7 5.26 3.40 0.388

0.8 0.00 2.65 1.01

0.9 5.26 2.11 1.787

1.0 0.00 1.71 0.650

1.1 2.63 1.41 0.401

1.2 0.00 1.17 0.445

1.3 0.00 0.983 0.374

1.4 0.00 0.832 0.316

1.5 0.00 0.708 0.269

1.6 5.26 0.607 13.55

1.7 0.00 0.524 0.199

1.8 0.00 0.454 0.173

1.9 0.00 0.395 0.150

2.0 2.63 6.33 0.821

Sum= 100.0 100.0 22.7

The range labeled 0.1 equals the interval [0.0, 0.1], that labeled

0.2 = ]0.1, 0.2], etc. The last range is P2.0. The empirical frequency in

each range was calculated by dividing the number of observed values in

the range by the sample size (n = 38) and then scaling it by 100. The

model frequency in each range was calculated by integrating Eq. (26)

within the range and then scaling it by 100. FC = fecal coliform con-

centration; FS = fecal streptococcus concentration.

[1]: the chi-squared statistic v219ð0:05Þ ¼ 30:14 is larger than the test

statistic 22.7. Thus, the null hypothesis of a gamma ratio distribution

was not rejected at a 5% significance level.
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larger than the test statistic 22.7. Thus, the null hypoth-

esis of a gamma ratio distribution was not rejected at

a 5% significance level. Notice that the test statistic

was calculated using the FC/FS obs. · 100 and FC/FS
model · 100 data shown in Table 1.
8. Summary

An bivariate, unsymmetrical, gamma p.d.f. and its

moments were developed in this work. The derivation

of the bivariate p.d.f. relied on an extension of Kibble�s
[15] symmetric characteristic function (c.f.) to the

unsymmetrical case, coupled with advanced integration

techniques applied to the Fourier transform of the c.f.

and realized by Laguerre–Charlier (LC) polynomials.

From the bivariate p.d.f., the distribution g(z) of the

ratio Z = X1/X2 of two correlated gamma variables

and its moments were obtained, also. The derived bivar-

iate gamma and ratio p.d.f.s were illustrated with
symmetrical and unsymmetrical examples. A sample of

bacterial densities in river water of fecal coliforms
(FC) and fecal streptococcus (FS) showed the numerical

and graphical fitting of the theoretical ratio p.d.f to such

bacteriological data.
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