
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Fast and Flexible: Human program induction in abstract reasoning tasks

Permalink
https://escholarship.org/uc/item/6qr876zk

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
Johnson, Aysja
Vong, Wai Keen
Lake, Brenden
et al.

Publication Date
2021

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qr876zk
https://escholarship.org/uc/item/6qr876zk#author
https://escholarship.org
http://www.cdlib.org/

Fast and flexible: Human program induction in abstract reasoning tasks
Aysja Johnson1 (aysja.johnson@nyu.edu), Wai Keen Vong2 (waikeen.vong@nyu.edu),

Brenden M. Lake1,2 (brenden@nyu.edu), & Todd M. Gureckis1 (todd.gureckis@nyu.edu)
1Department of Psychology, New York University; 2Center for Data Science, New York University

Abstract
The Abstraction and Reasoning Corpus (ARC) is a collection
program induction tasks that was recently proposed by Chollet
(2019) as a measure of machine intelligence. Here, we report
a preliminary set of results from a behavioral study of humans
solving a subset of tasks from ARC (40 out of 1000). We
found that humans were able to infer the underlying program
and generate the correct test output for a novel test input exam-
ple, with an average of 84% of tasks solved per participant, and
with 65% of tasks being solved by more than 80% of partici-
pants. Additionally, we find interesting patterns of behavioral
consistency and variability across the action sequences to gen-
erate their responses, the natural language descriptions used to
describe the rule for each task, and the errors people make. Our
findings suggest that people can quickly and reliably determine
the relevant features and properties of a task to compose a cor-
rect solution, despite limited experience in this domain. This
dataset offers useful insights for designing AI systems that can
solve abstract reasoning tasks such as ARC with the fluidity of
human intelligence.
Keywords: concept learning, abstract reasoning, composition-
ality, program induction

Introduction
Despite recent advances in AI, contemporary systems still
lack the ingenuity and flexibility of human intelligence.
One factor limiting progress in the field of AI is the fo-
cus on narrow benchmark challenge problems (e.g., Ima-
geNet (Deng et al., 2009), Arcade Learning Environment
(Bellemare, Naddaf, Veness, & Bowling, 2013)). Although
astounding progress has been made on such challenge prob-
lems, they often don’t require the type of flexible, creative,
and abstract reasoning that is the hallmark of human cogni-
tion (Hernandez-Orallo, Martinez-Plumed, Schmid, Siebers,
& Dowe, 2016). As impressive as performance on ImageNet
is, correctly identifying objects in photographs is unlikely to
be the central assessment in a meaningful test of human intel-
ligence.

To address this and other concerns, Chollet (2019) pro-
posed a novel type of machine learning challenge problem
named the Abstraction and Reasoning Corpus (or ARC).
ARC emphasizes a set of perceptually simple, yet conceptu-
ally challenging, program induction tasks. Each task involves
2-6 input grids that undergo some kind of transformation to a
corresponding output grid. The agent is tasked with using this
small sample of input-output relationships to infer the under-
lying program or procedure that modifies the input to create
the output. Performance is tested by presenting the agent with
a novel test input grid, and tasking it to generate the expected
output grid from scratch (see Figure 1).

Several aspects of ARC distinguish it from standard ma-
chine learning benchmarks. First, each of the 1000 tasks in
the corpus is unique and rely on many different aspects of
conceptual knowledge, including: objects, relations, geom-
etry, number, symmetry, and quantification. Second, agents

 ARC Task 1caeab9d ARC Task 39a8645d ARC Task 7c008303

(correct answer) (correct answer) (correct answer)

? ??

Figure 1: Three example ARC tasks. Each column contains a
set of “training examples” and a “test example” for an ARC prob-
lem. The training examples contains a number of input patterns that
point (→) to the corresponding output. Here there are always three
input→output pairs but there can be fewer or more. The rules for
transforming the input examples to the output examples are unique
for each ARC task. The left task (which we refer to later as the
box alignment task) requires aligning the red and yellow objects
to the blue object along the vertical axis. The middle task requires
counting each object and returning the most common object. The
right task requires mapping the four colors in the 2x2 quadrant onto
each quadrant of the green object. Understanding of the pattern is
assessed with the text example. Here a single test input is provided
and the agent has to create the expected output. The correct answer
is displayed here for each problem but the agent does not have access
to this.

need to manually generate their own response, including
specifying the size of the output grid (grids range in size
from 1x1 to 30x30), and the colors for each cell (there are
10 possible colors), making the task substantially more open-
ended than traditional machine learning challenge problems.
Finally, successful solutions to many ARC problems rely on
a type of abductive reasoning (Peirce, 1935), requiring the
agent to come up with plausible hypotheses that often lever-
age compositional rules and relationships between identified
objects and parts. As a result, ARC presents a compelling
task environment for studying aspects of higher-level cogni-
tion and intelligence.

The winner from a recent Kaggle challenge for ARC1, us-
ing a program synthesis approach, was only able to solve
21% of the tasks from the test set, providing a sense of the

1The solution is hosted on their GitHub repository:
https://github.com/top-quarks/ARC-solution

2471

difficulty for generalization to new tasks with such a limited
number of examples. The Kaggle algorithm was built using a
domain-specific language (DSL) including functions such as
‘Move’, ‘getSize’, and ‘count’, all specified by hand. While
we focus on this algorithm as a baseline for program synthe-
sis approaches and for solutions to ARC more generally, we
do not consider the Kaggle algorithm to be representative of a
cognitively plausible approach nor do we believe it represents
the upper bound of accuracy for approaches of this type.

Chollet (2019) reported that each ARC task was solvable
among a subset of three individual (humans) tested, however
this provides us with little information for which tasks are
easier or harder for people on average, nor what kinds of
strategies people would use to generate their solutions. In
this paper, we report the first behavioral dataset collected on
human performance in ARC examining human performance
on a subset of 40 tasks from the ARC training set, with mul-
tiple participants per task. Our goals were two-fold. First,
we were interested in a more precise assessment of how well
people would perform on this benchmark given its reputation
as a challenging task for existing AI systems. Second, we
were interested in examining the different aspects of human
cognition that underlie the human ability to solve ARC tasks
in this challenging few-shot learning setting.

To foreshadow, our results show that humans perform well
on ARC—each task we studied was solvable by at least one
participant and the average accuracy across all of the tasks
was 83.8%. In addition, we examined a wide variety of other
behaviors generated by people in solving these tasks, ranging
from the sequence of actions participants performed to gen-
erate the correct output, to natural language descriptions pro-
vided about the concepts underlying each task, to the kinds of
errors people made. These behavioral phenomena provided
us with additional windows to understanding the kinds of in-
ductive biases that contribute to people’s success on ARC.

Program Induction, Abduction, and Probabilistic
Language of Thought
Before describing our experiment, in this section, we consider
the ARC challenge in the context of prior work on program
induction in cognitive science.

Within cognitive science, much of the work that is most
reminiscent of ARC has been in the development of prob-
abilistic language-of-thought (pLOT) models (Piantadosi,
2011; Goodman, Tenenbaum, & Gerstenberg, 2015; Pianta-
dosi & Jacobs, 2016). These models assume that hypothe-
ses can be represented as programs specified in a represen-
tation language such as first-order logic or lambda calculus.
The goal of these kinds of models is to infer the underlying
program using Bayesian inference, trading off between the
complexity of the program and how well it captures the data.
They have been used for modeling a variety of concept learn-
ing tasks, ranging from Boolean concepts (Goodman, Tenen-
baum, Feldman, & Griffiths, 2008) to complex probabilis-
tic programs (Piantadosi, Tenenbaum, & Goodman, 2016;
Bramley, Rothe, Tenenbaum, Xu, & Gureckis, 2018).

Figure 2: ARC User Interface. On each task, participants were
presented with a limited number of example input-output pairs on
the left, and their goal was to generate the correct output for a new
test input presented on the right. Here we demonstrate the tutorial
task presented to participants, where the rule is to extend the red line
horizontally, the cyan line vertically, and to color the intersection
yellow. The user interface contained a number of different tools for
participants to flexibly generate solutions to ARC tasks.

In many experiments within this framework, the set of
primitives and the underlying grammar is itself used to gen-
erate the concepts studied in experiments. Therefore the set
of concepts studied are limited by programs that are easily
expressed with a specific grammar. In contrast, the tasks in
ARC were hand-designed without reference to a pre-specified
grammar. Thus, the types of concepts in ARC are more ab-
ductive in nature, rather than inductive, requiring people to
flexibly generate new rules or concepts on the fly, by deter-
mining the relevant features and variables to solving a given
task. This style of abstract reasoning is one that is less well
understood in cognitive science from a computational stand-
point (Mitchell, 2021), although it is similar to other open-
ended puzzles such as Bongard problems where the set of
potential rules is also unconstrained (Hofstadter et al., 1979).

Another aspect of ARC, as mentioned above, is that agents
are required to generate the correct response from scratch.
Few prior studies have looked at people’s ability to gener-
ate outputs from novel inputs based on a limited set of train-
ing examples (exceptions include Hofstadter and Mitchell
(1988)’s work on CopyCat and recent work on program in-
duction, Lake, Linzen, & Baroni, 2019; Rule, Schulz, Pianta-
dosi, & Tenenbaum, 2018). This generative aspect of ARC
adds another layer of complexity to the problem, but may
provide greater insight into people’s mental representations
compared to simpler forced-choice judgments.

Experiment
Methods
Participants. We recruited 95 participants (57.7% male,
39.9% female, 2.4% other) from Amazon Mechanical Turk
using the psiTurk platform (Gureckis et al., 2016). Partici-
pants varied in age from 21–70 years (M = 39.3, SD = 10.3).
They were compensated $7.50 plus a potential one dollar
bonus if they succeeded at a randomly selected task with an
adequately descriptive written solution (see below).

Design. Forty tasks were randomly selected from a re-

2472

stricted portion of the training set of the Abstraction and
Reasoning Corpus (Chollet, 2019), capturing a variety of the
kinds of abstract reasoning required to solve these tasks. We
restricted ourselves to sampling from tasks which only had a
single test item, and where the output grid was no larger than
15x15. Due to time constraints, each participant was ran-
domly assigned to complete 10 out of the 40 selected tasks,
resulting in 23.5 participants solving each task on average.

Procedure. Participants were first provided with instruc-
tions about the experiment and the user interface, followed
by a tutorial task as shown in Figure 2. To continue, partic-
ipants had to generate the correct test output for the tutorial
task. They were then required to answer three comprehen-
sion questions correctly (e.g., “how many attempts per task
will you get?”) in order to advance to the experiment.

The main experiment consisted of 10 ARC tasks, randomly
selected from the set of 40 tasks described above. For each
task, participants were presented with between 2 to 6 input-
output pairs for training (the exact number depended on the
specific task), and a single test input. The goal was to gener-
ate the correct test output for each task from scratch, starting
from a blank 3x3 grid, using a variety of tools with the built-in
editor.

The overall procedure was designed to reflect the original
procedure described in Chollet (2019) as closely as possible,
in order to allow for human-machine comparisons on ARC.
Participants could edit single grid cells one at a time based
on the currently selected color, or edit multiple cells using a
selection tool. They could also apply a flood fill operation
which colored all neighboring cells of the same color to a dif-
ferent color. Additionally, participants could resize the height
and width of the output grid to the desired size, as well as
copy the test input to the test output grid.

Participants were allowed three attempts to generate the
correct test output, and they were given binary feedback about
whether their response was correct or incorrect after each sub-
mission attempt. Upon a correct submission or three incorrect
submissions, participants moved directly onto the next task.

Additionally, participants were asked to write a description
of the solution for transforming input grids to output grids
for each task. They were asked to do this once before they
received any feedback after their first submission (i.e., after
they submitted their response but before they knew whether
they were right or wrong). If their first attempt was correct
they only submitted one written solution. If it was incorrect,
they were asked to submit another written description after
they submitted a subsequent correct attempt or their third in-
correct attempt. Although the tasks were not timed, partici-
pants completed the entire experiment in 41 minutes on aver-
age (range 17.8 - 72.4).

Results
Since ARC is new and quite open-ended, our analyses were
primarily exploratory in nature. Our approach was to ana-
lyze the rich dataset we collected in a bottom-up fashion,

Tasks

0.4

0.6

0.8

1.0

Av
er

ag
e

ac
cu

ra
cy

0 1 2 3 4 5 6 7 8 9 10
Number of tasks correctly solved

0

10

20

30

Nu
m

be
r o

f p
ar

tic
ip

an
ts

Figure 3: Performance on ARC by task and participant. The
left figure shows the average accuracy across all 40 tasks, sorted by
accuracy. The figure on the right shows how many tasks each partic-
ipant solved correctly. Although there is considerable variability at
both the task and participant level, performance was generally quite
high.

i.e., by using what we saw in the data to guide the analy-
ses we conducted. Although we had some prior expecta-
tions about the relationship between language and ARC prob-
lem difficulty, many of our results were observational. The
following sections focus on four main areas: performance,
action sequences, natural language descriptions, and errors.
Visualizations of all participant responses are available at
https://arc-visualizations.github.io.2

We first analyzed overall performance, using accuracy de-
fined as producing the correct test output for a task within
three attempts. Overall, our results show that people per-
formed well on the tasks we studied (M = 83.8% per task,
SD = 16.7%). Figure 3 shows the distribution of accuracy
across tasks, indicating considerable individual-level varia-
tion in difficulty. While most tasks were easily solvable by
the majority of participants (65% of tasks have 80% or higher
accuracy), only 38.1% of participants were able to generate
the correct output in three attempts for the most challenging
task. Qualitatively, tasks that relied on logic, rotations, or
flips tended to be the more difficult, while tasks that involved
simple color manipulations (such as color inversions or filling
objects with colors) were easier. We also observed consider-
able variation in accuracy across participants as shown in Fig-
ure 3 (M = 8.38 of 10 tasks per subject, SD = 2.7), however
the modal frequency for tasks solved was 10 out of 10.

The average time to complete each task was 3 minutes and
6 seconds (SD = 2 minutes and 37 seconds), and the average
time between first seeing the task and taking the first action
was 36 seconds (SD = 1 minute and 7 seconds), suggesting
that people were inferring rules in a short time frame. The
average description length (across incorrect and correct sub-
missions) provided by participants at the end of each task was
20 words (SD = 5 words). Participants took 1.59 attempts on
average (SD = 0.46).

Although the Kaggle algorithms are not intended as candi-
dates for human cognition, we nevertheless find it informative
to note the differences between these algorithms and human
performance in order to further elucidate the gap between ma-

2The website also contains state space graphs, participant errors,
and language descriptions.

2473

1
2

3

4

8

5

6 7

1 (Starting State) 2 3 4 (Test Input)

5 6 7 8 (Test Output)

Figure 4: State space graph for the box alignment task. Each
node represents an output state and each edge represents an action
connecting two states. The colors of the various nodes depict the
starting state (blue), the correct output state (green), incorrect sub-
missions (red), and highly visited states (yellow). Larger nodes and
thicker edges represent more frequent visits. Additionally, certain
bottleneck states shown below the graph highlight that the sub-goals
participants used to generate their responses were strongly object-
based for this task, by either generating the correct output from
scratch one object at a time, or copying the input first and moving
the yellow and red objects to their correct location.

chine learning systems and human intelligence. The Kaggle
algorithm achieved 57.5% accuracy on the 40 tasks we chose
from the ARC training set (relative to 83.8% for humans).
The Spearman rank correlation between human accuracy and
the Kaggle algorithm accuracy was 0.35 (p < 0.05), although
this was driven heavily by the algorithm failing to capture the
hardest problems in the set while sometimes capturing the
easiest ones.

In order to quantify which factors were linked to solving
a given task, we fit a logistic mixed-effects model predict-
ing success on each subject and task pairing using average
description length per task as a fixed effect, with random in-
tercepts for participants and tasks. We find a significant, neg-
ative effect of average description length on task accuracy (b
= -0.17, 95% CI: [-0.315,-0.020], p = 0.03). This is in line

Tasks sorted by increasing output size
0

50

100

150

200

Ed
it

di
st

an
ce

 a
ve

ra
ge

Output size
1-9
10-49
50-99
100-149

Figure 5: Variability in action sequences across tasks. This figure
shows the variability in edit distances for all combinations of action
sequences within a task, across all 40 tasks. The tasks are sorted
according to the their true output grid size (length*width). Edit dis-
tance tended to be higher for tasks requiring more actions to solve,
so we should expect to see overall variance increase with output size.
However, within different output grid sizes there is still a range of
variability, suggesting that divergence in action sequences is driven
by more than output size.

with recent work (e.g. Lupyan, 2012; Lupyan & Zettersten,
2020) suggesting that longer description lengths are predic-
tive of problem difficulty as longer descriptions suggests that
the rule involves more complex transformations. Further-
more, we find a negative correlation (r(38) = -0.50, p < 0.05)
between average description length and average accuracy per
task.
Action Sequences As participants were required to gener-
ate their solutions to ARC tasks, we were able to collect a rich
behavioral dataset of the sequences of actions participants
performed to generate their responses. Figure 4 displays a
state space graph constructed from the action sequences of
all of the participants for the box alignment task (referenced
in Fig 1) depicting the set of visited output states and transi-
tions to other states based on their actions while generating
responses. We found that the majority of participants’ first
actions are to either manually resize the output grid to the
width and height of the intended solution (Figure 4, node
3), or to copy the test input grid (Figure 4, node 4). For
this particular task, we can see that although there is sub-
stantial variability in the action sequences participants pursue
within this task, participants converged on a few particular
paths that pass through some common intermediate bottle-
neck states corresponding to drawing or moving objects. We
qualitatively found that the bottleneck states are typically rep-
resentative of task-relevant objects across other tasks too. Al-
though further research is needed, we think this object-centric
action planning reveals an important difference between hu-
man and machine solutions to ARC to date which will be fur-
ther explored in the errors section.

We also examined the similarity of action sequences be-
tween participants across tasks, to determine the variability
of how participants generated solutions to a particular task.
To do so, we quantified the distance between two action se-
quences as the Levenshtein edit distance. Every state which

2474

category top unigrams
color blue (396), color (353), red (244), colors (158)
size size (58), 2x2 (33), 3x3 (33), 4x4 (21)
location right (122), left (98), bottom (82), where (80)
relation same (200), match (36), part (22), between (22)
object squares (388), square (221), blocks (124)
geometric line (136), lines (77), corner (52), diagonal (51)
number one (139), number (114), 3 (59), two (54)
abstract tetris (5), paint (4), vessel (2), flower (2)
transform make (105), fill (87), extend (51), copy (49)

Table 1: Top unigrams for each category. Based on the natural
language descriptions, we manually grouped words into 9 distinct
content classes. The table above shows the top unigrams from each
class along with their frequencies in parentheses.

was visited by at least one participant was assigned a unique
number; these numbers were then assembled into a sequence
based on the intermediate states for each participant. We then
computed the pairwise edit distance for every combination
of participants within each task and computed the average.
Overall, the average edit distance across all tasks (filtered by
correct attempts) was 74 edits (SD = 53). Figure 5 shows
the overall pattern of action sequence similarity across tasks
which demonstrates considerable variability in how much
participants actions overlapped per task.

Natural Language Descriptions In addition to the action
sequences, we also analyzed the written natural language de-
scriptions from the end of each task. The descriptions we col-
lected were free form, although participants were encouraged
to provide descriptions with enough detail so that they would
be useful to future participants to reconstruct the correct test
outputs.

We filtered the dataset to only include the final natural lan-
guage descriptions participants provided, and to only include
participants who correctly solved the task, as well as remov-
ing stop words.3 We then categorized all of the words from
the remaining set of descriptions into 9 distinct classes that
captured the different kinds of concepts people used to de-
scribe the tasks (see Table 1 for a complete list of the cate-
gories, as well as the most frequent words used in each cate-
gory). Figure 6 shows the proportion of each class across all
correct descriptions. Color words were used the most over-
all as they are relevant in describing almost every task, with
object and geometric words second most. Although abstract
words are used the least, they provide some of the most inter-
esting abstractions that people relied on to solve ARC tasks.
For instance, in the box alignment task from Fig 1 a couple
of participants referred to the pixel to the left of the boxes
as a “tail”, a creative mapping of an existing concept to this
particular domain. In Figure 6, we show the proportion of

3Participants who didn’t solve a task generally used non-
informative descriptions like “I have no idea”, which was not mean-
ingful for our analyses.

0.0 0.2 0.4
Proportion of unique words per category

transform
abstract
number

geometric
object

relation
location

size
color

0.0 0.2 0.4 0.6
Proportion of total words per category

Figure 6: Proportion of unique and total words per category. The
left figure shows the normalized proportion of unique words belong-
ing to each category across all descriptions for each task. Geomet-
ric and transform words form the largest categories here, implying
that people utilize a wider range of these concepts. The right figure
shows the normalized proportion of total word counts for each cat-
egory across all descriptions for all tasks. Here, we find that color
words are utilized the most, indicating that people rely on these con-
cepts more overall. Both figures exemplify the variability in concept
use across tasks, both in the wide range of word use across tasks
(overlaid data points) and the high variance (bars indicate standard
deviation).

unique words and total words used per category, demonstrat-
ing that category use was varied across tasks. Additionally,
the large number of content words found across participants
suggests that humans can deploy their existing rich concep-
tual knowledge and apply it to a new domain such as ARC
with relatively little training, suggesting that language may
act as a scaffold for task transfer.

We were also interested in examining how consistent par-
ticipant descriptions within a task were to one another. In
order to measure consistency across descriptions, we use a
recently developed measure by Lupyan and Zettersten (2020)
known as naming divergence, which is calculated by (# of
unique words / # of total words). Naming divergence scores
lie between 0 and 1, where a lower naming divergence im-
plies that the set of words used is consistent across partici-
pants, whereas a higher naming divergence implies that dif-
ferent participants describe the task differently. We computed
naming divergence within tasks and compare this to a shuf-
fled distribution. We generated this by sampling the average
naming divergence of shuffled descriptions across tasks (i.e.,
the average naming divergence of 40 “tasks”, with randomly
sampled descriptions) 1000 times. The shuffled distribution
has M = 0.68 and SD = 0.003, and the true average nam-
ing divergence of 0.41 (across tasks) was lower than any of
these permutations (p < 0.001). This indicates that there was
greater consistency in the language used to describe the same
task.

Errors Because ARC required participants to generate
their responses, the errors people make are informative about
the kinds of representations people used to solve these tasks.
One of the main aspects we were interested in was whether or
not human errors were relevantly close to the correct answer
in one or more dimensions. Although it was difficult to for-
mulate measures to quantify this, it was qualitatively apparent
that participants do in fact get most of the relevant features of
problems right. For instance, Figure 7 shows how the errors
participants made for the box alignment task were overall cor-

2475

Human Errors

Kaggle Algorithm Errors

Correct Test Output

Figure 7: Human and Kaggle algorithm errors for the box align-
ment task. Here we display the set of most frequent human errors
and the full set of Kaggle errors. For the Kaggle competition, each
submission was allowed up to three guesses for each test input. Here,
two separate submissions are displayed – each grid is a separate run
of the algorithm, i.e., a new search over programs. The human errors
obey object priors to a greater extent than the Kaggle errors do.

rect in inferring the right shapes, colors, and one dimension of
alignment (along the y-axis). In contrast, although the colors
are right for the Kaggle solutions, many of the shapes vio-
late object-like priors from the input grid (e.g., the shapes are
egregiously elongated, and one of the shapes appears to wrap
around the grid). More examples of participant errors are
available at https://arc-visualizations.github.io.

Discussion
We examined human performance on a subset of the Ab-
straction and Reasoning Corpus, a recently released machine
learning benchmark that combines multiple challenging ele-
ments for existing systems such as flexible hypothesis gen-
eration, few-shot learning, compositionality and program in-
duction. While the current best competitive machine learning
systems perform poorly at the task, our results show that hu-
mans are very competent in the ARC domain. Given just a
few input-output examples of a novel concept, the majority
of participants were able to infer and apply the correct under-
lying transformation to create a corresponding test output in
three or fewer attempts. Moreover, participants did not need
expansive training within ARC, but were able to do so from
the basis of a very limited amount of experience. The tasks in
ARC vary widely in the types of prior knowledge they draw
from (e.g. color, relations, objects, transformations, etc.), and
yet participants easily recognized and applied the right kinds
of knowledge in each task. Additionally, our dataset also con-
tained the action sequences, natural language descriptions,
and the errors made on each task. Analyses into each of these
aspects revealed that there was considerable overlap in how
people approached these tasks, and provided additional con-

text and insight into the inductive biases and strategies used
in solving ARC tasks.

Although language-of-thought (LOT) models seem well-
matched to certain aspects of ARC, our findings may sug-
gest that people’s abilities are beyond current LOT models in
some important ways. Standard LOT models use a hypoth-
esis space with a fixed set of primitives defined in advance.
Recent work has improved the ways in which these models
can generate hypotheses, for example by grounding hypoth-
esis generation based on observations (Bramley et al., 2018),
or allowing for the LOT to be modified during the learning
process (Rule et al., 2018; Ellis et al., 2020). However, a cog-
nitive model of ARC may require a hypothesis space that is
vast and semantically richer. Our analysis revealed a large
set of geometric and transform words that participants chose
from, as well as varied concepts like “square”, “wing”, and
“tetris”, suggesting people can draw upon extensive back-
ground knowledge in addition to simpler primitives (Murphy
& Medin, 1985). If so, this poses a challenge for existing
LOT-based approaches, as it is not clear how the semantics
of a large body of existing conceptual knowledge could be
easily integrated into a LOT, nor how one could adapt that
knowledge to specific tasks such as ARC.

One alternative account that is more parsimonious with our
data—especially our findings regarding the relationship be-
tween description length and difficulty—is that hypothesis
generation uses natural language as a scaffold for generat-
ing candidate hypotheses, either instead of, or in addition to
a symbolic language of thought (Carruthers, 2002; Andreas,
Klein, & Levine, 2017; Lupyan & Zettersten, 2020). This ac-
count is especially interesting in relation to abstract reasoning
tasks like ARC. In standard LOT models, more complex and
abstract concepts can be expressed through the composition
of multiple primitives. However, generating complex, com-
positional hypotheses become increasingly less likely under
the prior since the resulting programs are longer. However,
natural language might facilitate this process by compressing
compositional programs into a single function name or word
for efficient communication (e.g., while you might explain a
novel shape in many words by the number of sides, convex-
ity, etc., one only needs to say “triangle” to convey an already
established concept) (Regier, Kemp, & Kay, 2015). While
non-linguistic primitives in a LOT model could be used to
construct some of these concepts, it is unlikely to capture all
of them. Thus, utilizing natural language to guide hypothe-
sis generation in ARC, or as a means to augment LOT-based
approaches, is a promising way to capture more flexible and
human-like representational schemes.

Another difficulty for existing LOT-based models is
through the lens of object perception. Standard LOT theo-
ries parse out the stimuli into symbolic representations that
can be easily manipulated. Yet, the notion of what constitutes
an object in ARC is flexible due to factors such as occlusion
or whether to treat a set of grid cells as a single object or two,
matching some of the challenges involved with real-world ob-

2476

ject perception. For instance, in the rightmost task in (Figure
1) it is not clear without context how one ought to parse out
the objects – are the green lines in the input examples all part
of one figure? Should the four colored pixels be considered
a single unit or separately? It may be difficult to construct
an object representation in advance that captures all of the
possibilities. Humans, however, can navigate this ambiguity
well and can flexibly parse the objects from ARC’s input and
output grids based on the task at hand.

Overall, this work is a first step at translating ARC (a ma-
chine learning challenge) into a compelling benchmark for
program induction in humans as well. Future experimental
work on ARC should investigate a wider range of tasks to val-
idate the preliminary results reported here. In addition, once
the basic variables are better understood other experimental
designs could be overlaid on the task to manipulate aspects
of human performance. One interesting observation from the
behavioral data was that participants often take up to a minute
between starting a new task and performing their first action
to generate the output grid, suggesting that a lot of time might
be spent thinking about and formulating hypotheses. An-
other extension of this work would be to develop a computa-
tional account for solving ARC tasks that incorporates some
of the insights gleaned here about how humans solve these
tasks. Our results further suggest that in addition to the set
of core knowledge priors (e.g., objects, relations, and count-
ing) described by Chollet (2019), part of the speed and flexi-
bility may also come from incorporating existing conceptual
knowledge into the program induction process. Finally, al-
though ARC was designed to push the boundaries of machine
intelligence, many of the critiques are also relevant to cogni-
tive science: rich and challenging benchmarks are needed to
fully understand and test the limits of compositional general-
ization and abstract reasoning capability in both humans and
machines.

Acknowledgements
Thanks to Francois Chollet for creating ARC, and for his
comments on this work. Additional thanks to Laura Ruis and
Yanli Zhou for helpful feedback on the draft. Aysja Johnson
and Todd M. Gureckis were supported by the John S. Mc-
Donnell Foundation Scholar Award.

References
Andreas, J., Klein, D., & Levine, S. (2017). Learning with latent

language. arXiv preprint arXiv:1711.00482.
Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013).

The arcade learning environment: An evaluation platform for
general agents. Journal of Artificial Intelligence Research, 47,
253–279.

Bramley, N., Rothe, A., Tenenbaum, J., Xu, F., & Gureckis, T.
(2018). Grounding compositional hypothesis generation in spe-
cific instances. In Proceedings of the 40th annual conference of
the cognitive science society.

Carruthers, P. (2002). The cognitive functions of language. Behav-
ioral and Brain Sciences.

Chollet, F. (2019). On the measure of intelligence. arXiv preprint
arXiv:1911.01547.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L.
(2009). Imagenet: A large-scale hierarchical image database. In

2009 ieee conference on computer vision and pattern recognition
(pp. 248–255).

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L., Morales,
L., . . . Tenenbaum, J. B. (2020). Dreamcoder: Growing gener-
alizable, interpretable knowledge with wake-sleep bayesian pro-
gram learning. arXiv preprint arXiv:2006.08381.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths, T. L.
(2008). A rational analysis of rule-based concept learning. Cog-
nitive science, 32(1), 108–154.

Goodman, N. D., Tenenbaum, J. B., & Gerstenberg, T. (2015). Con-
cepts in a probabilistic language of thought. In E. Margolis &
S. Laurence (Eds.), The conceptual mind: New directions in the
study of concepts (pp. 623–653). Cambridge, MA: MIT Press.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant,
D., Coenen, A., . . . Chan, P. (2016). psiturk: An open-source
framework for conducting replicable behavioral experiments on-
line. Behavior research methods, 48(3), 829–842.

Hernandez-Orallo, J., Martinez-Plumed, F., Schmid, U., Siebers,
M., & Dowe, D. L. (2016). Computer models solving intelligence
test problems: Progress and implications. Artificial Intelligence,
230, 74-107.

Hofstadter, D. R., & Mitchell, M. (1988). Conceptual slippage and
analogy-making: A report on the copy-cat project. In Proceedings
of the tenth annual conference of the cognitive science society.

Hofstadter, D. R., et al. (1979). Gödel, escher, bach: an eternal
golden braid (Vol. 13). Basic books New York.

Lake, B. M., Linzen, T., & Baroni, M. (2019). Human few-shot
learning of compositional instructions. Proceedings of the 41st
Annual Conference of the Cognitive Science Society.

Lupyan, G. (2012). Linguistically modulated perception and cog-
nition: the label-feedback hypothesis. Frontiers in Psychology, 3,
54.

Lupyan, G., & Zettersten, M. (2020). Does vocabulary help structure
the mind?

Mitchell, M. (2021). Abstraction and analogy-making in artificial
intelligence. arXiv preprint arXiv:2102.10717.

Murphy, G. L., & Medin, D. L. (1985). The role of theories in
conceptual coherence. Psychological review, 92(3), 289.

Peirce, C. S. (1935). Collected papers. scientific metaphysics (ed.
by c. hartshorne and p. weiss.), vol. vi.

Piantadosi, S. T. (2011). Learning and the language of thought
(Unpublished doctoral dissertation). Massachusetts Institute of
Technology.

Piantadosi, S. T., & Jacobs, R. A. (2016). Four problems solved
by the probabilistic language of thought. Current Directions in
Psychological Science, 25(1), 54–59.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The
logical primitives of thought: Empirical foundations for compo-
sitional cognitive models. Psychological review, 123(4), 392.

Regier, T., Kemp, C., & Kay, P. (2015). Word meanings across lan-
guages support efficient communication. The handbook of lan-
guage emergence, 237–263.

Rule, J., Schulz, E., Piantadosi, S. T., & Tenenbaum, J. B. (2018).
Learning list concepts through program induction. BioRxiv,
321505.

2477

