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Abstract

Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information 

about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields 

insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific 

nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and 

pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid 

chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) 

coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-

hydroxylbut-1-yl]-2′-deoxyguanosine (O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-

hydroxylbut-1-yl]-thymidine (O2-PHBdT and O4-PHBdT). Cultured mammalian cells were 

exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-

pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample 

enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, 

that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We 

also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-

PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for 

the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new 

knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
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INTRODUCTION

The human genome is susceptible to damage by endogenous metabolites and exogenous 

chemicals.1,2 The resulting DNA damage leads to perturbations of genomic stability, which 

may give rise to mutagenesis and other adverse biological consequences.3 Tobacco-specific 

nitrosamines may contribute to human cancer, and they are associated with the elevated lung 

cancer rate in the cohorts of active tobacco users in several epidemiological studies.4–6 4-

(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a major tobacco-specific 

nitrosamine, and its reduced metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 

(NNAL) have been found to induce cancer in rodents in pioneering studies by Hecht and co-

workers.7–9 Carcinogenesis from exposure to NNK and NNAL arises after they give rise to 

adducts on the nucleobases and backbone of DNA, which in turn results in compromised 

DNA replication and leads to mutations in DNA.10,11

Some earlier studies by Hecht and others demonstrated that a subset of cytochrome P450 

enzymes participate in activation of NNK and NNAL,11–14 which as a result gives rise to 

reactive intermediates that can pyridyloxobutylate and pyridylhydroxybutylate DNA, 

respectively (Scheme 1). A number of studies showed the presence of DNA lesions in 

mammalian genome due to pyridyloxobutylation and pyridylhydroxybutylation. These 

lesions include O2 -POBdT,15–17 O4 -POBdT,18 O6 -POBdG,15,17,19 O2-PHBdT,15 O6-

PHBdG,15,17 O2-POBdC,17 7-POBG,15,17 7-PHBG,15 N6-POBdA,20 N6-PHBdA,20 N1-

POBdI,20 and N1-PHBdI20 on nucleobases and B1p(POB)-B2
21–23 and B1p(PHB)B2

21–23 on 

phosphate backbone. Most lesions mentioned above exhibited cytotoxic and mutagenic 

properties, which, if not properly repaired, may impede the transmission of genetic 

information by disrupting DNA replication and transcription machineries. Du et al.24 

demonstrated recently that O2-POBdT and O4-POBdT could moderately block DNA 

replication, which elicited T → A transversion and T → C transition, respectively, whereas 

G → A transition constituted the major form of mutation induced by O6-POBdG. The 

activated form of NNK and NNAL may also serve as a potent methylating agent. The 

resulting level of O6-methylguanine (O6-mG) following NNK exposure was found to be 

correlated with tumorgenicity.19,25 Ma et al.26 also demonstrated recently that B1pmeB2 can 

be induced in vivo upon exposure to NNK and NNAL.

Mammalian cells contain a complex arsenal of DNA repair proteins to remove deleterious 

DNA lesions.1,2,27 In this vein, various classes of mammalian DNA repair proteins are 

capable of removing pyridyloxobutylated and pyridylhydroxybutylated DNA-modifications. 

O6-alkylguanine-DNA alkyltransferase (AGT) was found capable of removing directly the 
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POB remnant from O6-POBdG.17,19,28 There are also studies revealing that O2-POBdT 

contributes to the elevated occurrence of AT → TA mutation in cells deficient in nucleotide 

excision repair (NER); therefore, NER is likely an important pathway for the repair of this 

lesion.28

Although the implications of tobacco-specific nitrosamines in carcinogenesis have been well 

documented,14,29,30 there are still gaps to be filled in establishing reliable quantification 

methods to meet the increasing demands for assessing the risk of tobacco consumption. In 

this respect, methods including 32P-postlabeling assay, excision assay, and immunoblot 

analysis have been used for measuring the levels and assessing the repair of targeted DNA 

lesions in vitro and in vivo.31,32 Due to its high sensitivity and its capacity in providing 

structural information,18,33–41 mass spectrometry has become a tool of choice in DNA 

adduct analysis. In this vein, solid-phase extraction followed by LC-MS/MS analysis was 

previously used for quantifying several pyridyloxobutyl and pyridylhydroxybutyl DNA 

lesions.17,21,23,26,28

Herein, we report the application of a highly sensitive nanoflow liquid chromatography-

nanoelectrospray ionization tandem mass spectrometry (nLC-nESI-MS/MS) coupled with 

the stable isotope-dilution technique for the simultaneous quantifications of O4-PHBdT, O2-

PHBdT, and O6-PHBdG. This is the first reported measurement of O4-PHBdT in 

mammalian cells (Scheme 1). By employing this method, we further explored how the three 

lesions are repaired in cultured mammalian cells.

EXPERIMENTAL SECTION

Materials.

Unless further specified, all chemicals were obtained from Sigma-Aldrich (St. Louis, MO), 

and enzymes were obtained from New England Biolabs (Ipswich, WA). NNALOAc was 

obtained by the reduction of NNKOAc (Toronto Research Chemicals Inc., North York, 

Ontario) using NaBH4. The reaction was carried out under a condition where NNKOAc (10 

mg) was mixed with 5 equiv of NaBH4 in methanol at room temperature for 30 min, and the 

product NNALOAc was then isolated from the reaction mixture using HPLC. Erythro-9-(2-

hydroxy-3-nonyl)adenine (EHNA) hydrochloride was obtained from Tocris Bioscience 

(Ellisville, MO). Repair-competent and ERCC1-deficient AA8 Chinese hamster ovary (CHO 

and ERCC1, CHO-7−27)42 cells were provided by M. M. Seidman (National Institute of 

Aging, Bethesda, MD). Human skin fibroblasts with repair proficiency (GM00637) and 

deficiency in xeroderma pigmentosum (XPA, GM04429) were kind gifts from G. P. Pfeifer 

(Van Andel Research Institute, Grand Rapids, MI).

Preparation of Standards.

O2-PHBdT, O6-PHBdG, O4-PHBdT, and the respective stable isotope-labeled derivatives 

were obtained by reduction with NaBH4 of previously synthesized O2-POBdT, O6-POBdG, 

and O4-POBdT.18 Unlabeled and stable isotope-labeled O4-PHBdT have not been previously 

synthesized and were made specifically for this study. The reaction was carried out by 

mixing O4-POBdT (100 μg) with 5 equiv of NaBH4 in 100 μL methanol at room 
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temperature for 10 min. The solution was diluted with 9 volumes of water, and the mixture 

was subjected to extraction with an equal volume of ethyl acetate for three times. The 

aqueous layer was collected, and the overall yield was 80%. Exact mass measurements 

(Thermo Q-Exactive Plus) yielded m/z 392.1820 and 396.2076 for the [M + H]+ ions of the 

O4-PHBdT and [pyridine-d4]-O4-PHBdT, respectively, which are in agreement with their 

respective calculated m/z values of 392.1822 and 396.2073 (Table S1, Figure S1). O2-

PHBdT and O6-PHBdG were prepared following similar procedures and characterized 

similarly (Table S1, Figures S2−S3).

Treatment of Calf Thymus DNA with NNALOAc and Porcine Liver Esterase.

Calf thymus DNA (25 μg) was treated with 10 or 50 μg NNALOAc and porcine liver 

esterase (0.4 U) in 0.1 M phosphate buffer (1 mL, pH 7.0) at 37 °C overnight. The resulting 

mixture was first extracted with an equal-volume mixture of CHCl3/isoamyl alcohol (24:1, 

v/v), followed by ethyl acetate extraction. The DNA was precipitated from the aqueous 

phase by adding cold ethanol, washed sequentially with 70% ethanol and then with 100% 

ethanol, allowed to air-dry at room temperature, redissolved in doubly distilled water, and 

kept at−20 °C until enzymatic digestion and subsequent LC-MS/MS analysis.

Cell Culture and Treatment with NNALOAc.

All cells were cultured at 37 °C in a 5% CO2 atmosphere with media containing 10% fetal 

bovine serum and 100 IU/mL penicillin: Human skin fibroblasts were grown in Dulbecco’s 

modified Eagle’s medium (Gibco), and CHO cells were grown in Alpha Minimum Essential 

Medium (Gibco) without ribonucleosides or 2′-deoxyribonucleosides. Cells were seeded 

(approximately 1−1.5 × 106) in 75 cm2 flasks and cultured for 24 h. The cells were 

unexposed or exposed with 5, 10, or 25 μM of NNALOAc. The GM00637 human skin 

fibroblast cells were treated with 10 μM NNALOAc alone or concurrently with 20 μM O6-

benzylguanine, an AGT inhibitor. After a 24 h treatment, the medium was removed from the 

flask, and the cells were washed twice with phosphate-buffered saline (1 × PBS) to remove 

any remaining NNALOAc. During repair studies, cells were maintained at 37 °C in their 

respective fresh media, detached using trypsin-EDTA at different time intervals and 

centrifuged into a cell pellet.

DNA Extraction and Enzymatic Digestion.

Standard procedures for DNA extraction, enzymatic digestion, and HPLC enrichment were 

utilized for the targeted pyridylhydroxybutylated nucleosides and are detailed previously.
18,36,38 A representative chromatogram for off-line HPLC enrichment is shown in Figure S4, 

and the detailed procedures are provided in the Supporting Information.

nLC-nESI-MS/MS Analysis.

Online nLC-nESI-MS/MS measurements were conducted on a TSQ-Vantage triple 

quadrupole mass spectrometer (Thermo Fisher Scientific, CA) equipped with a 

nanoelectrospray ionization source and coupled with an EASY nLC II system (Thermo 

Fisher Scientific, CA). HPLC separation was conducted by employing a trapping column 

(150 μm × 40 mm) and an analytical column (75 μm × 200 mm), both packed in-house with 
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Magic C18 AQ (200 Å, 5 μm, Michrom BioResource, Auburn, CA). Mobile phases A and B 

were 0.1% formic acid in doubly distilled H2O and acetonitrile, respectively. Initially, the 

sample was loaded, at a flow rate of 3 μL/min for 5 min, onto the trapping column with 

mobile phase A. The modified nucleosides were eluted through a 40 min linear gradient of 

0−50% mobile phase B with a flow rate of 300 nL/min. The TSQ-Vantage mass 

spectrometer was operated in the selected-reaction monitoring (SRM) mode. We monitored 

the transitions corresponding to the neutral loss of a deoxyribose (116 Da) from the [M + H]
+ ions of the three modified nucleosides (i.e., m/z 392 → 276, 392 → 276, and 417 → 301 

for O2-PHBdT, O4-PHBdT, and O6-PHBdG, respectively) and their stable isotope-labeled 

counterparts (i.e., m/z 396 → 280, 396 → 280, and 421 → 305, Figure 1). The voltage for 

electrospray was set at 2.0 kV, and the ion transfer tube was heated to 275 °C. The widths 

for precursor ion and product ion isolation were 3 and 0.7 Da, respectively, with a dwell time 

for 1.25 s. The collision gas was 1.2 mTorr argon, and the collision energy was 15 V. The 

limit of quantitation (LOQ) here is defined as the amount of analyte needed to yield a signal 

that is the sum of the mean signal and 10 times the standard deviation of signal from three 

blank runs in the selected-ion chromatograms (SICs) plotted for the transitions used for 

analyte quantification.

METHOD DEVELOPMENT

The intra- and interday precision and accuracy of the O2-PHBdT, O4-PHBdT, and O6-

PHBdG measurements were gathered from three different concentrations of each analyte. 

The samples used for calibration curve generation or precision and accuracy test were 

comprised of 5 μg calf thymus DNA mixed with standard solutions of the three lesion-

containing oligodeoxyribonucleotides (ODNs, 5′-ATGGCGXGCTAT-3′, where ‘X’ 

represents O2-PHBdT, O4-PHBdT, or O6-PHBdG) and their corresponding stable isotope-

labeled mononucleosides. The samples from cellular DNA were prepared following 

previously described procedures 18,36,38 and were subjected to LC-MS/MS measurements. 

Calibration curves were obtained from triplicate analyses, and the molar ratios of the 

unlabeled ODNs to their stable isotope-labeled counterparts were 0.10, 0.50, 1.00, 2.00, 

5.00, 10.0, and 20.0 for O2-PHBdT and O6-PHBdG, and O4-PHBdT, with the amount of the 

labeled nucleosides being 5 fmol each. Calibration curves were constructed using SIC peak 

area ratios for the unlabeled/labeled standards versus the molar ratios of unlabeled/labeled 

standards and fitting a straight line (Figure S5). The moles of DNA lesions in the nucleoside 

mixtures were calculated from the peak area ratios found in the SICs for the analytes and 

compared to their corresponding stable isotope-labeled counterparts. The final levels of 

DNA lesions were displayed as number of lesions per 108 nucleosides and were calculated 

by dividing the number of moles of modified by moles of total nucleosides in the digestion 

mixture.

RESULTS

In this study, we aimed to set up a robust method for the quantification of O-

pyridylhydroxybutylated dT and dG lesions in enzymatically digested cellular DNA using 

nLC-nESI-MS/MS coupled with the stable-isotope-dilution, and we set out to employ the 

method for examining the occurrence and repair of these lesions in mammalian cells.
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Syntheses of Unlabeled and Stable Isotope-Labeled Standards.

We prepared the unlabeled and stable isotope-labeled standards for O2-PHBdT, O4-PHBdT, 

and O6-PHBdG (see Experimental Section). O4-PHBdT is a novel pyridylhydroxylbutylated 

DNA lesion that we synthesized through reduction of the previously synthesized O4-POBdT.
18

Quantification of O2-PHBdT, O4-PHBdT, and O6-PHBdG Lesion Using nLC-nESI-MS/MS.

We next employed the nLC-nESI-MS/MS method for accurate quantifications of O2-

PHBdT, O4-PHBdT, and O6-PHBdG. The LOQs of these three analytes were determined to 

be 24.0, 19.0, and 8.5 amol, which correspond to 7.4, 5.9, and 2.6 modifications per 1010 

nucleosides, respectively, when 10 μg DNA is used for analysis. The procedures for sample 

preparation are described in detail in the Experimental Section, where the cellular samples 

were subjected to DNA extraction using a high-salt method, RNA removal, and enzymatic 

digestion with a cocktail of four enzymes, including both 3′ and 5′ exonucleases to release 

DNA lesions as mononucleosides. The stable isotope-labeled O2-PHBdT, O4-PHBdT, and 

O6-PHBdG were added prior to DNA digestion, which corrects for the potential analyte loss 

during the extraction and HPLC enrichment steps. We then evaluated the intra- and interday 

precision and accuracy by triplicate measurements of calf thymus DNA (10 μg) mixed with 

various concentrations of lesion-bearing ODNs. Our results demonstrate that the precision 

(relative standard deviation: 3.8−14.9%) and accuracy (recovery: 84.9−97.1%) for the 

method were reasonably good (Table 1).

The detection of DNA modifications of low abundance is challenging, where the sensitivity 

for analyte measurement is sometimes compromised by much larger amounts of canonical 

nucleosides released from DNA and buffer salts included in the enzymatic digestion 

reaction. To address this issue, we conducted offline LC enrichment before LC-MS/MS 

analysis. The LC-MS/MS conditions were optimized prior to sample analysis. Better 

sensitivity could be obtained in the positive-ion mode, which was used along with 0.1% 

formic acid (v/v) in the mobile phase to improve protonation of the analytes.

Dose-Dependent Formation of O2-PHBdT, O4-PHBdT, and O6-PHBdG in Mammalian Cells.

After successfully developing a robust method for nLC-nESI-MS/MS analysis, we next 

employed the method to quantify the levels of O2-PHBdT, O4-PHBdT, and O6-PHBdG in 

genomic DNA. The DNA samples were isolated from Chinese hamster ovary cells or human 

skin fibroblasts exposed with varied concentrations of NNALOAc. NNALOAc was used as a 

cell membrane-permeable precursor to the reactive intermediate in the presence of cellular 

esterase (Scheme 1). All three modified nucleosides formed in a dose-dependent manner 

with increasing concentration of NNALOAc (Figure 2). When the concentration of 

NNALOAc was increased from 5 to 25 μM, the amount of O4-PHBdT in the XPA-proficient 

GM00637 cells and XPA-deficient GM04429 cells increased from 5.8 to 33.0 and from 9.5 

to 53.1 lesions per 108 nucleosides, respectively (Figure 2B). Similar elevated levels of O4-

PHBdT were observed in Chinese hamster ovary cells, where in ERCC1-deficient 

CHO-7−27 cells and in repair-proficient CHO-AA8 cells, the respective frequencies of O4-

PHBdT were 16.4−71.5 and 12.0−47.4 lesions per 108 nucleosides (Figure 2E). Our 
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quantification data also showed that the levels of O2-PHBdT and O6-PHBdG were 

significantly higher than that of O4-PHBdT in mammalian cells.

The pronounced difference in occurrence between O2-PHBdT and its regioisomeric O4-

PHBdT might arise from the differences in their rate of formation or repair. To explore the 

former possibility, we exposed calf thymus DNA to NNALOAc together with porcine liver 

esterase and quantified the frequencies of the three lesions using the aforementioned 

workflow (Figure 3). Our in vitro results validated the preferential formation O2-PHBdT 

over O4-PHBdT, while O6-PHBdG formed at higher levels than either of the other two 

lesions. The levels of O2-PHBdT, O4-PHBdT and O6-PHBdG—relative to one another—

were in line with what were previously reported for the corresponding POB adducts in calf 

thymus DNA treated with NNKOAc and esterase.18,22,39

Removal of O2-PHBdT, O4-PHBdT, and O6-PHBdG in Mammalian Cells.

Our quantification results reveal that the two lines of NER-deficient cells (i.e., XPA-

deficient GM04429 and ERCC1-deficient CHO-7−27) exhibited significantly higher levels 

of O2-PHBdT and O4-PHBdT compared to their repair-competent counterparts (GM00637 

and CHO-AA8). These results substantiate the notion that NER is involved in removal of 

these two lesions from cellular DNA. To further assess the involvement of NER in repairing 

these lesions, we also measured the frequencies of the three pyridylhydroxybutyl lesions in 

the cells at 0, 12, and 24 h after treatment with 10 μM NNALOAc (Figure 4). No 

pronounced cell death was observed at the end of NNALOAc exposure. Our results showed 

that the rates of decrease of this specific lesion were comparable in human skin fibroblasts 

cells and Chinese hamster ovary cells. In addition, the levels of O2-PHBdT in NER-

proficient and NER-deficient cells were significantly different at all three time points 

following NNALOAc exposure, substantiating that O2-PHBdT is a good substrate for NER 

(Figure 4A,D). To a lesser degree, O4-PHBdT is also affected by NER, as supported by the 

quantification data obtained for this lesion in NER-deficient cells and their repair-proficient 

counterparts (Figure 4B,E). O6-PHBdG was found not to be an NER substrate, as the levels 

of this lesion in NER-deficient cells are not significantly different from that in NER-

proficient cells measured at all time points (Figure 4C,F). We also observed that the CHO 

cells and human skin fibroblasts cells exhibited different repair efficiencies for O6-PHBdG, 

suggesting that AGT may be involved in repairing this specific lesion, since there is no AGT 

expression in CHO cells.17,19,28,43 In this vein, it is of note that the time-dependent decrease 

in the levels of the three lesions is attributed, in part, to the increase in cell numbers over 

time.

We also asked whether AGT participated in the removal of the three lesions. Toward this 

end, we exposed GM00637 cells with 10 μM NNALOAc alone, or in conjunction with 20 

μM O6-benzylguanine, and measured the levels of the three lesions at 24 h after exposure. 

Along this line, it was observed previously that treatment of cultured mammalian cells with 

20 μM O6-benzylguanine could result in the ubiquitination and proteasomal degradation of 

AGT protein, where the protein is almost undetectable at 18 h following the treatment.44 It 

turned out that the levels of O2-PHBdT in the control and AGT-depleted cells were almost 

the same (Figure 5A). We detected a small difference in the levels of O4-PHBdT in 

Guo et al. Page 7

Chem Res Toxicol. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GM00637 cells with or without O6-benzylguanine treatment (Figure 5B), indicating that 

AGT may also be involved in the removal of O4-PHBdT.27,45 The difference in O6-PHBdG 

levels was the largest among the three lesions (Figure 5C), suggesting that AGT readily 

repairs this lesion.

DISCUSSION

LC-MS/MS in combination with the stable isotope-dilution method enables specific, 

accurate, and highly sensitive measurement of DNA lesions in complex biological matrices.
18,33–41 It is advantageous over conventional DNA adduct measurement methods (e.g., 

immunoblot assay, 32P-postlabeling)46–48 by offering structural information to enable 

identification and by facilitating reliable absolute quantification when spiked with known 

amounts of stable isotope-labeled standards.40,49,50 In this study, stable isotope-labeled 

standards were added prior to enzymatic digestion, which helps correct for the loss of 

analytes during chloroform extraction and offline enrichment; thereby providing more 

accurate quantification for the three lesions. Additionally, offline HPLC was employed to 

eliminate the more abundant canonical nucleosides in digestion mixtures and remove buffer 

salts used during the enzymatic digestion. Our offline HPLC enrichment method provides 

higher sensitivity in subsequent LC-MS/MS analysis compared to previously reported solid-

phase extraction methods for targeted nucleoside enrichment; this lower sensitivity may have 

been due to incomplete removal of unmodified nucleosides and buffer salts during solid-

phase extraction.51,52 The calibration curve established in this study employed calf thymus 

DNA spiked with lesion-bearing ODNs, which allowed us to correct for potential incomplete 

release of modified nucleosides from DNA during the digestion step.

Mammalian cells contain an arsenal of DNA repair proteins that can be dispatched in 

response to numerous types of damage, thus protecting genomic stability. Here we used four 

lines of mammalian cells that are proficient or deficient in key NER proteins, and we 

investigated the role of NER in the removal of O2-PHBdT, O4-PHBdT, and O6-PHBdG from 

genomic DNA. Dose-dependent formation was observed for O2-PHBdT, O4-PHBdT, and 

O6-PHBdG in the four cell lines, where O2-PHBdT and O6-PHBdG displayed higher 

frequencies of formation than O4-PHBdT. In the repair study, we carefully compared the 

levels of these lesions in NER-proficient and NER-deficient cells. Our results revealed that 

O2-PHBdT and, to a lesser extent, O4-PHBdT may serve as substrates for NER, whereas O6-

PHBdG cannot be repaired by NER. The different capacity of Chinese hamster ovary cells 

and human fibroblasts cells in repairing O6-PHBdG suggests that AGT is responsible for the 

removal of this specific modification.17,19,28,43 Thus, we interrogated how the accumulation 

of the three lesions in human cells is affected by co-exposure with an AGT inhibitor, O6-

benzylguanine. The results confirmed our hypothesis that AGT assumes an important role in 

the reversal of O6-PHBdG and, to a lesser degree, O4-PHBdT, which is in line with the 

notion that AGT recognizes major-groove lesions.27,45

It is worth comparing the results obtained for the pyridylhydroxybutylated lesions with those 

obtained previously for the pyridyloxobutylated lesions.18 In this context, our previous study 

on O2-POBdT, O4-POBdT, and O6-POBdG revealed that the formation of the three POB 

lesions is dose-dependent, and O2-POBdT is most efficiently repaired by NER, O4-POBdT 

Guo et al. Page 8

Chem Res Toxicol. Author manuscript; available in PMC 2020 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can be repaired at a lesser degree, whereas O6-POBdG is not a substrate for NER.18 The 

involvement of AGT in repairing O6-PHBdG is in keeping with our previous observation of 

lower levels of O6-POBdG in human skin fibroblasts than CHO cells.18

In summary, here we reported an LC-MS/MS method for the simultaneous measurement of 

three pyridylhydroxybutyl lesions, that is, O2-PHBdT, O4-PHBdT, and O6-PHBdG, where 

O4-PHBdT was, for the first time, found to be induced in mammalian cells upon exposure to 

pyridylhydroxybutylating agents. The method exhibited high sensitivity in quantification of 

targeted DNA lesions and its capacity to snapshot the levels of lesions in a repair study at 

different time intervals. The method may serve as a tool for investigating the involvement of 

DNA pyridylhydroxybutylation as a biomarker related to tobacco-induced cancer. In this 

regard, it will be important to examine, in the future, the occurrence and repair of these 

lesions in human lung cells and the lung tissues of smokers.
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Figure 1. 
Representative SICs for the m/z 392 → 276 (A, top panel), 396 → 280 (A, bottom panel), 

417 → 301 (B, top panel), and 421 → 305 (B, bottom panel) transitions for the [M + H]+ 

ions of the unlabeled and stable isotope (i.e., pyridine-d4)-labeled O2- and O4-PHBdT (A) 

and O6-PHBdG (B), respectively, in the enriched modified nucleoside mixture of genomic 

DNA extracted from the GM04429 cells treated with 10 μM NNALOAc for 24 h.
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Figure 2. 
Frequencies of O2-PHBdT (A, D), O4-PHBdT (B, E), and O6-PHBdG (C, F) in DNA 

samples isolated from human skin fibroblast cells (A−C) that are repair proficient 

(GM00637) or deficient in XPA (GM04429) and Chinese hamster ovary cells (D−F) that are 

repair competent (CHO-AA8) or deficient in ERCC1 (CHO-7−27). The cells were exposed 

to the indicated concentrations of NNALOAc for 24 h. The data represent the mean and 

standard deviation of results obtained from three independent experiments. *, 0.01 ⩽ p < 

0.05; **, 0.001 ⩽ p < 0.01; ***, p < 0.001. The p values were calculated by using unpaired 

two-tailed student’s t-test.
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Figure 3. 
Frequencies of O4-PHBdT, O2-PHBdT, and O6-PHBdG in calf thymus DNA treated with 

(A) 10 μg (37.4 μM) and (B) 50 μg (187 μM) NNALOAc in the presence of porcine liver 

esterase.
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Figure 4. 
LC-MS/MS for monitoring the repair of O2-PHBdT (A, D), O4-PHBdT (B, E), and O6-

PHBdG (C, F) in human skin fibroblast (A−C) and Chinese hamster ovary (D−F) cells. After 

a 24 h exposure to 10 μM NNALOAc, the media was exchanged, and the cells were 

harvested immediately or 12 or 24 h later. The data represent the mean and standard 

deviation of results obtained from three independent experiments. *, 0.01 ⩽ p < 0.05; **, 

0.001 ⩽ p < 0.01; ***, p < 0.001. The p values were calculated by using unpaired two-tailed 

Student’s t-test.
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Figure 5. 
Repair of O2-PHBdT (A), O4-PHBdT (B), and O6-PHBdG (C) in GM00637 human skin 

fibroblast cells following a 24 h exposure to 10 μM NNALOAc alone or concurrently with 

20 μM O6-benzylguanine (to deplete AGT). The data represent the mean and standard 

deviation of results obtained from three independent experiments. *, 0.01 ⩽ p < 0.05; **, p < 

0.01. The p values were calculated by using unpaired two-tailed Student’s t-test.
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Scheme 1. 
Activation of NNALOAc by Cellular Esterases, and Metabolic Activation of NNK and 

NNAL by Cytochrome P450 Enzymes, Followed by the Conjugation of the Resulting 

Common Reactive Intermediate with DNA to Yield O2-PHBdT, O4-PHBdT, and O6-

PHBdGa
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Table 1.

Intraday and Interday Evaluation on Precision and Accuracy, as Represented by Relative Standard Deviation 

(RSD) and Recovery, Respectively, for the Measurements of O2-PHBdT, O4-PHBdT, and O6-PHBdG

Intraday interday

ODN amount (fmol) expected lesion frequency in 10 μg DNA (/108 

nucleosides) RSD (%) recovery (%) RSD (%) recovery (%)

O2-PHBdT

  5.0  15.4  8.1 91.2 14.9 84.9

 15  46.2  5.6 89.3  9.1 90.0

 50 154.0  7.4 90.5 11.6 87.1

O4-PHBdT

  5.0  15.4  9.2 93.4 11.0 90.4

 15  46.2  7.7 88.2 13.9 89.5

 50 154.0 10.1 92.5 10.7 87.8

O6-PHBdG

  5.0  15.4  7.8 95.2  9.5 89.6

 15  46.2  6.1 94.6 14.3 97.1

 50 154.0  3.8 90.7 11.5 91.0

Chem Res Toxicol. Author manuscript; available in PMC 2020 April 15.


	Abstract
	Graphical Abstract
	INTRODUCTION
	EXPERIMENTAL SECTION
	Materials.
	Preparation of Standards.
	Treatment of Calf Thymus DNA with NNALOAc and Porcine Liver Esterase.
	Cell Culture and Treatment with NNALOAc.
	DNA Extraction and Enzymatic Digestion.
	nLC-nESI-MS/MS Analysis.

	METHOD DEVELOPMENT
	RESULTS
	Syntheses of Unlabeled and Stable Isotope-Labeled Standards.
	Quantification of O2-PHBdT, O4-PHBdT, and O6-PHBdG Lesion Using nLC-nESI-MS/MS.
	Dose-Dependent Formation of O2-PHBdT, O4-PHBdT, and O6-PHBdG in Mammalian Cells.
	Removal of O2-PHBdT, O4-PHBdT, and O6-PHBdG in Mammalian Cells.

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Scheme 1.
	Table 1.



