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Abstract

Aspects of Generalized Entropy And Quantum Null Energy Condition

by

Arvin Shahbazi-Moghaddam

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Raphael Bousso, Chair

There is a deep connection between entanglement and geometry in quantum gravity. One
manifestation of this connection is through the generalized entropy: the sum of the area of
Cauchy-dividing surfaces in Planck units and the von Neumann entropy of the fields on one
side of the surface. The generalized entropy is expected to satisfy fundamental thermody-
namical conditions which in certain limits result in quantum field theory (QFT) inequalities
relating the energy density and the shape derivatives of the von Neumann entropy, most
notably the quantum null energy condition (QNEC). This dissertation is devoted to study-
ing various aspect of the generalized entropy, the QNEC, and other information-theoretic
aspects of QFT. First, we will use the QNEC to demonstrate the locality of the logarithm
of the vacuum density matrix in certain regions of any holographic conformal field theory
(CFT). We will then holographically prove the QNEC in general curved spacetime of less
than six spacetime dimensions. Next, we will demonstrate a certain limit of the QNEC where
an equality between certain components of the stress tensor and the second shape derivative
of von Neumann entropy emerges. We will then focus on the study of generalized entropy.
Within the AdS/CFT framework, we find a microscopic description for the generalized en-
tropy of black holes using a geometric construction. We then apply this construction to
extremal surface in AdS, which constitutes the bulk dual of the Connes cocycle flow on the
boundary CFT. Finally, we use propose a novel lower bound on the total energy of spacetime
involving the generalized entropy on certain light-sheets.
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Chapter 1

Introduction

In the past twenty years, quantum gravity research has been dominated by the AdS/CFT
correspondence [1, 2]. AdS/CFT states that certain quantum gravity theories in asymptoti-
cally (d+ 1)-dimensional Anti-de Sitter (AdS) spacetime are dual to certain conformal field
theories (CFT) living on the d-dimensional asymptotic boundary of AdS. More recently,
powered by AdS/CFT, there have been exciting developments connecting concepts from
quantum information theory like entanglement and quantum error correction to geometry
and gravity [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. A central idea behind these new developments is
that black holes have entropy proportional to their area [13]:

SBH =
A

4G~
(1.0.1)

where A is the area of the black hole horizon, G is Newton’s constant, and ~ is Planck’s
constant.

This idea has been refined by the AdS/CFT correspondence where it has been shown
that the von Neumann entropy of certain subregions in the CFT can be computed by the
area of the minimal extremal surface in the bulk anchored to the boundary subregion [3]:

SCFT =
Aext

4G~
+O((G~)0) (1.0.2)

where we work with small G~ in the semiclassical bulk expansion. This provides areas with
a microscopic information-theoretic interpretation. Furthermore, it is known that the higher
order corrections to this formula are given by adding the von Neumann entropy of bulk fields
[5, 6]:

SCFT =
Aext

4G~
+ Sbulk (1.0.3)

The quantity on the RHS above is called the generalized entropy and can be defined for any
Cauchy-splitting surface in semiclassical quantum gravity. An interesting feature is that the
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divergences in the bulk von-Neumann are absorbed into the renormalization of G, resulting
in a finite quantity at the end [14, 11].

It was Bekenstein who realized that the generalized entropy behaves like thermodynamic
entropy in quantum gravity [13] and in particular, satisfies the generalized second law (GSL)
of thermodynamics. The GSL was proven in [15] where it was shown to follow from the
monotonicity of relative entropy in quantum field theory (QFT). This suggests a deep con-
nection between quantum gravity and QFT. The intuition behind this connection is simple:
spacetime curvature is related to energy by Einstein field equations, so one can re-interpret
statements about the dynamics of generalized entropy as relations between energy and von
Neumann entropy in the G→ 0 limit.

A recent example of such a connection is given by the quantum focusing conjecture (QFC)
[11] which is a statement from which the GSL and other important bounds in quantum
gravity follow. The non-gravitational limit of the QFC is the quantum null energy condition
(QNEC): a lower bound on certain components of the stress tensor given by the second
shape derivative of the von Neumann entropy. This is a novel energy condition predicted by
gravity that has since been laboriously proven within QFT [16, 17, 18], bringing together
ideas from the conformal bootstrap, quantum information, and algebraic QFT. Therefore,
studying spacetime thermodynamics could provide us with shortcuts to learning deep facts
in QFT as well as new insights into quantum gravity.

This dissertation is devoted to further studying the generalized entropy, the QNEC, and
other information-theoretic aspects of QFT. An important information theoretic quantity
that is well-motivated in QFT is the modular Hamiltonian, roughly the logarithm of a given
density matrix. The locality of the vacuum modular Hamiltonian is an essential ingredient
in connecting horizon physics in quantum gravity to statements about QFT, such as the
averaged null energy condition (ANEC) and the monotonicity of relative entropy. In Chapter
2, we show that the vacuum modular Hamiltonian of a region bounded by cuts of Killing
horizons is a local integral of the stress tensor if the QNEC is saturated in the vacuum.
We then show that for holographic CFTs, the QNEC is indeed saturated in the vacuum,
establishing the locality of the vacuum modular Hamiltonian for such CFTs.

In Chapter 3, following [19], we study the consequences of Entanglement Wedge Nesting,
an expected condition in general relativity, for holographical CFTs that live on arbitrary
curved backgrounds, and derive necessary and sufficient conditions for it to imply the QNEC
in d ≤ 5. We also show that these are the exact same conditions under which the QFT yields
the QNEC.

In Chapter 4, we compute the local second variation of the von Neumann entropy of
regions in holographic CFTs. For null variations our formula says that the narrow transverse
width limit of the QNEC is saturated in every state in d > 2, thus providing an equivalence
between energy and entropy. In Chapter 5, we demonstrate evidence for the saturation of
the QNEC in all QFTs with interacting UV fixed points. We do so by studying the defect
operator product expansion (OPE) of displacement operators in free and interacting CFTs
using the replica method. We show that as n approaches 1 a contact term can emerge when
the OPE contains defect operators of twist d − 2. For general states of interacting theories
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we give evidence that the only possibility is from the defect operator that approaches the
stress tensor in the n→ 1 limit. This implies that the QNEC is always saturated for CFTs
with a twist gap.

As discussed above, the generalized entropy of extremal surfaces has a well-established
microscopic interpretation as the von Neumann entropy of boundary subregions. It is a
natural to search for the boundary dual of the generalized entropy of black holes even when
there are no extremal surfaces around. In Chapter 6, we find such a microscopic explanation
for the generalized entropy of black holes within AdS/CFT. More technically, we propose
the existence of semi-classical states where the generalized entropy of a quantum marginally
trapped surface could be interpreted in a precise way as a coarse-grained entropy in the
fundamental (boundary) theory. We find that the non-gravitational limit of our coarse-
graining prescription corresponds to the Connes cocycle flow in algebraic QFT [18].

In chapter 7, we apply a version of the transformation used in Chapter 6 to extremal
surfaces in the bulk. The transformation intuitively starts with a Cauchy slice that con-
tains the extremal surface and then adds a “Kink” at the location of the extremal surface.
This “Kink’ transform’ generalizes the notion of a boost in arbitrary spacetimes satisfying
gravitational equations of motion. We provide evidence that the boundary dual of this bulk
transformation is the Connes cocycle flow [18].

It is natural to ask whether there are connections between total energy and generalized
entropy in quantum gravity. In Chapter 8, we propose such a connection in quantum gravity
whereby the total energy is lower bounded by the generalized entropy on certain light-sheets.
This inequality is the first quantum information bound on the total energy that involves
Newton’s constant and thus generalizes the classical Penrose inequality [20]. We also find
quantum states that violate the Penrose inequality but satisfy this new bound. We discuss
and rule out some alternative formulations.
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Chapter 2

Local Modular Hamiltonians from the
Quantum Null Energy Condition

2.1 Introduction and Summary

The reduced density operator ρ for a region in quantum field theory encodes all of the
information about observables localized to that region. Given any ρ, one can define the
modular Hamiltonian K by

ρ = e−K . (2.1.1)

Knowledge of this operator is equivalent to knowledge of ρ, but the modular Hamiltonian
frequently appears in calculations involving entanglement entropy. In general, i.e. for arbi-
trary states reduced to arbitrary regions, K is a complicated non-local operator. However,
in certain cases it is known to simplify.

The most basic example where K simplifies is the vacuum state of a QFT in Rindler
space, i.e. the half-space t = 0, x ≥ 0. The Bisognano–Wichmann theorem [21] states that
in this case the modular Hamiltonian is

∆K =
2π

~

∫
dd−2y

∫ ∞
0

xTtt dx (2.1.2)

where ∆K ≡ K − 〈K〉vac defines the vacuum-subtracted modular Hamiltonian, and y are
d − 2 coordinates parametrizing the transverse directions. The vacuum subtraction gen-
erally removes regulator-dependent UV-divergences in K. Other cases where the modular
Hamiltonian is known to simplify to an integral of local operators are obtained via conformal
transformation of Eq. (2.1.2), including spherical regions in CFTs [22], regions in a thermal
state of 1+1 CFTs [23], and null slabs [24, 10].

Using conservation of the energy-momentum tensor, one can easily re-express the Rindler
modular Hamiltonian in Eq. (2.1.2) as an integral over the future Rindler horizon u ≡ t−x =
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Figure 2.1: This image depicts a section of the plane u = t − x = 0. The region R is
defined to be one side of a Cauchy surface split by the codimension-two entangling surface
∂R = {(u = 0, v = V (y), y)}. The dashed line corresponds to a flat cut of the null plane.

0 which bounds the future of the Rindler wedge:

∆K =
2π

~

∫
dd−2y

∫ ∞
0

v Tvv dv, (2.1.3)

where v ≡ t+ x. It is important to note that standard derivations of (2.1.2) or (2.1.3), e.g.
[21, 22], do not apply when the entangling surface is defined by a non-constant cut of the
Rindler horizon (see Fig. 2.1). One of the primary goals of this paper is to provide such a
derivation.

For a large class of quantum field theories satisfying a precise condition specified momen-
tarily, we will show that the vacuum modular Hamiltonian for the region R[V (y)] above an
arbitrary cut v = V (y) of a null plane is given by

∆K =
2π

~

∫
dd−2y

∫ ∞
V (y)

(v − V (y))Tvv dv (2.1.4)

This equation has been previously derived by Wall for free field theories [15] building on
[25, 26], and to linear order in the deformation away from V (y) = const in general QFTs by
Faulkner et al. [27]. In CFTs, conformal transformations of Eq. (2.1.4) yield versions of the
modular Hamiltonian for non-constant cuts of the causal diamond of a sphere.

The condition leading to Eq. (2.1.4) is that the theory should satisfy the quantum null
energy condition (QNEC) [11, 28, 29, 30] — an inequality between the stress tensor and
the von Neumann entropy of a region — and saturate the QNEC in the vacuum for regions
defined by cuts of a null plane. We will review the statement of the QNEC in Sec. A.14.

The QNEC has been proven for free and superrenormalizable [28], as well as holographic
[29, 30] quantum field theories. We take this as reasonable evidence that the QNEC is a true
fact about relativistic quantum field theories in general, and for the purposes of this paper
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take it as an assumption. In Sec. A.14 we will show how saturation of the QNEC in a given
state leads to an operator equality relating certain derivatives of the modular Hamiltonian of
that state to the energy-momentum tensor. Applied to the case outlined above, this operator
equality will be integrated to give Eq. (2.1.4).

Given the argument in Sec. A.14, the only remaining question is whether the QNEC is
in fact saturated in the vacuum state for entangling surfaces which are cuts of a null plane.
This has been shown for free theories in [28]. In Sec. 6.3, we prove that this is the case for
holographic theories to all orders in 1/N . We emphasize that Eq. (2.1.4) holds purely as
a consequence of the validity of the QNEC and the saturation in the vacuum for R, two
facts which are potentially true in quantum field theories much more generally than free and
holographic theories.

Finally, in Sec. 6.6 we will conclude with a discussion of possible extensions to curved
backgrounds and more general regions, connections between the relative entropy and the
QNEC, and relations to other work.

2.2 Main Argument

Review of QNEC

The von Neumann entropy of a region in quantum field theory can be regarded as a functional
of the entangling surface. We will primarily be interested in regions to one side of a cut of
a null plane in flat space, for which the entangling surface can be specified by a function
V (y) which indicates the v-coordinate of the cut as a function of the transverse coordinates,
collectively denoted y. See Fig. 2.1 for the basic setup. Each cut V (y) defines a half-space,
namely the region to one side of the cut. We will pick the side towards the future of the null
plane. For the purposes of this section we are free to consider the more general situation
where the entangling surface is only locally given by a cut of a null plane. Thus the von
Neumann entropy can be considered as a functional of a profile V (y) which defines the shape
of the entangling surface, at least locally.

Suppose we define a one-parameter family of cuts V (y;λ) ≡ V (y; 0)+λV̇ (y), with V̇ (y) >
0 to ensure that R(λ1) ⊂ R(λ2) if λ1 > λ2. If S(λ) is the entropy of region R(λ), then the
QNEC in integrated form states that∫

dd−2y 〈Tvv(y)〉 V̇ (y)2 ≥ ~
2π

d2S

dλ2
. (2.2.1)

In general there would be a
√
h induced metric factor weighting the integral, but here and

in the rest of the paper we will assume that the y coordinates have been chosen such that√
h = 1.

By taking advantage of the arbitrariness of V̇ (y) we can derive from this the local form
of the QNEC. If we take a limit where V̇ (y′)2 → δ(y − y′), then the l.h.s. reduces to 〈Tvv〉.
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We define S ′′(y) as the limit of d2S/dλ2 in the same situation:

d2S

dλ2
→ S ′′(y) when V̇ (y′)2 → δ(y − y′). (2.2.2)

Taking the limit of the nonlocal QNEC then gives the local one:

〈Tvv〉 ≥
~
2π
S ′′. (2.2.3)

The local QNEC together with strong subadditivity can likewise be used to go backward and
derive the nonlocal QNEC [11, 28, 29]. The details of that argument are not important here.
In the next section we will discuss the consequences of the saturation of the QNEC, and will
have to distinguish whether we mean saturation of the nonlocal inequality Eq. (2.2.1) or the
local inequality Eq. (2.2.3), the latter condition being weaker.

The QNEC under state perturbations

In this section we consider how the QNEC behaves under small deformations of the state.
We begin with a reference state σ and consider the deformed state ρ = σ + δρ, with δρ
traceless but otherwise arbitrary.

Consider a one-parameter family of regions R(λ) as in the previous section. Define R(λ)
to be the complement of R(λ) within a Cauchy surface. The reduced density operator for
any given region R(λ) given by

ρ(λ) = σ(λ) + δρ(λ) = TrR(λ)σ + TrR(λ)δρ. (2.2.4)

By the First Law of entanglement entropy, the entropy of ρ(λ) is given by

S(ρ(λ)) = S(σ(λ))− TrR(λ)δρ(λ) log σ(λ) + o(δρ2). (2.2.5)

The second term can be written in a more useful way be defining the modular Hamiltonian
Kσ(λ) as

Kσ(λ) ≡ −1R(λ) ⊗ log σ(λ). (2.2.6)

Defining Kσ(λ) this way makes it a global operator, which makes taking derivatives with
respect to λ formally simpler. Using this definition, we can write Eq. (2.2.5) as

S(ρ(λ)) = S(σ(λ)) + Tr δρKσ(λ) + o(δρ2). (2.2.7)

Now in the second term the trace is over the global Hilbert space, and the λ-dependence has
been isolated to the operator Kσ(λ). Taking two derivatives, and simplifying the notation
slightly, we find

d2S

dλ2
(ρ) =

d2S

dλ2
(σ) + Tr δρ

d2Kσ

dλ2
+ o(δρ2). (2.2.8)
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Suppose that the nonlocal QNEC, Eq. (2.2.1), is saturated in the state σ for all profiles
V̇ (y). Then, using Eq. (2.2.8), the nonlocal QNEC for the state ρ can be written as∫

dd−2y (Tr δρ Tvv) V̇
2 ≥ ~

2π
Tr δρ

d2Kσ

dλ2
+ o(δρ2). (2.2.9)

The operator δρ was arbitrary, and in particular could be replaced by −δρ. Then the only
way that Eq. 2.2.9 can hold is if we have the operator equality

d2Kσ

dλ2
= C +

2π

~

∫
dd−2y TvvV̇

2. (2.2.10)

Here C is a number that we cannot fix using this method that is present because of the
tracelessness of δρ.

Eq. (2.2.10) can be integrated to derive the full modular Hamiltonian Kσ if we have
appropriate boundary conditions. Up until now we have only made use of local properties
of the entangling surface, but in order to provide boundary conditions for the integration of
Eq. (2.2.10) we will assume that the entangling surface is globally given by a cut of a null
plane, and that V (y;λ = 0) = 0. We will also make σ the vacuum state. In that situation it
is known that the QNEC is saturated for free theories, and in the next section we will show
that this is also true for holographic theories at all orders in the large-N expansion.

Our first boundary condition is at λ = ∞.1 Since we expect that Kσ(λ) should have a
finite expectation value in any state as λ → ∞, it must be that dKσ/dλ → 0 as λ → ∞.
Then integrating Eq. (2.2.10) gives

dKσ

dλ
= −2π

~

∫
dd−2y

∫ ∞
V (y;λ)

dv TvvV̇ . (2.2.11)

Note that this equation implies that the vacuum expectation value 〈Kσ(λ)〉vac is actually
λ-independent, which makes vacuum subtraction easy.

Our second boundary condition is Eq. (2.1.3), valid at λ = 0 when V (y;λ) = 0. Inte-
grating once morenand making use of this boundary condition, we find

∆Kσ(λ) =
2π

~

∫
dd−2y

∫ ∞
V (y;λ)

(v − V (y;λ))Tvv dv (2.2.12)

which is Eq. (2.1.4). Note that the l.h.s. of this equation is now the vacuum-subtracted
modular Hamiltonian.

1It is not always possible to consider the λ → ∞ limit of a null perturbation to an entangling surface
because parts of the entangling surface may become timelike related to each other at some finite value of λ,
at which point the surface is no longer the boundary of a region on a Cauchy surface. However, when the
entangling surface is globally equal to a cut of a null plane this is not an issue.
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Before moving on, we will briefly comment on the situation where the local QNEC,
Eq. (2.2.3), is saturated but the nonlocal QNEC, Eq. (2.2.1), is not. Then, analogously to
S ′′ in Eq. (2.2.2), one may define a local second derivative of Kσ:

d2Kσ

dλ2
→ K ′′σ(y) when V̇ (y′)2 → δ(y − y′). (2.2.13)

Very similar manipulations then show that saturation of the local QNEC implies the equality

K ′′σ =
2π

~
Tvv. (2.2.14)

This equation is weaker than Eq. (2.2.10), which is meant to be true for arbitrary profiles
of V̇ (y), but it may have a greater regime of validity. We will comment on this further in
Sec. 6.6.

2.3 Holographic Calculation

In the previous section we argued that the form of the modular Hamiltonian could be deduced
from saturation of the QNEC. In this section we will use the holographic entanglement
entropy formula [31, 3, 32, 5] to show that the QNEC is saturated in vacuum for entangling
surfaces defined by arbitrary cuts v = V (y) of the null plane u = 0 in holographic theories.
Our argument applies to any holographic theory defined by a relevant deformation to a
holographic CFT, and will be at all orders in the large-N expansion. To reach arbitrary
order in 1/N we will assume that the all-orders prescription for von Neumann entropy is
given by the quantum extremal surface proposal of Engelhardt and Wall [6]. This is the
same context in which the holographic proof of the QNEC was extended to all orders in
1/N [30].2

As before, the entangling surface in the field theory is given by the set of points ∂R =
{(u, v, y) : v = V (y), u = 0} with null coordinates u = t−x and v = t+x, and the regionR is
chosen to lie in the u < 0 portion of spacetime. Here y represents d−2 transverse coordinates.
The bulk quantum extremal surface anchored to this entangling surface is parameterized by
the functions V̄ (y, z) and Ū(y, z). It was shown in [29, 30] that if we let the profile V (y)
depend on a deformation parameter λ, then the second derivative of the entropy is given by

d2S

dλ2
= − d

4G~

∫
dd−2y

dŪ(d)

dλ
, (2.3.1)

to all orders in 1/N , where Ū(d)(y) is the coefficient of zd in the small-z expansion of Ū(z, y).
We will show that Ū = 0 identically for any profile V (y), which then implies that d2S/dλ2 =
0, which is the statement of QNEC saturation in the vacuum.

2It is crucial that we demonstrate saturation beyond leading order in large-N . The argument in the
previous section used exact saturation, and an error that is näıvely subleading when evaluated in certain
states may become very large in others.
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One way to show that Ū vanishes is to demonstrate that Ū = 0 solves the quantum
extremal surface equations of motion in the bulk geometry dual to the vacuum state of the
boundary theory. The quantum extremal surface is defined by having the sum of the area
plus the bulk entropy on one side be stationary with respect to first-order variations of its
position. One can show that Ū = 0 is a solution to the equations of motion if any only if

δSbulk

δV̄ (y, z)
= 0 (2.3.2)

in the vacuum everywhere along the extremal surface. This would follow from null quanti-
zation if the bulk fields were free [28], but that would only allow us to prove the result at
order-one in the 1/N expansion.

For an all-orders argument, we opt for a more indirect approach using subregion dual-
ity, or entanglement wedge reonstruction [33, 34, 35, 9].3 A version of this argument first
appeared in [30], and we elaborate on it here.

Entanglement wedge reconstruction requires two important consistency conditions in
the form of constraints on the bulk geometry which must hold at all orders in 1/N : The
first constraint, entanglement wedge nesting (EWN), states that if one boundary region is
contained inside the domain of dependence of another, then the quantum extremal surface
associated to the first boundary region must be contained within the entanglement wedge of
the second boundary region [33, 36]. The second constraint, C ⊆ E , demands that the causal
wedge of a boundary region be contained inside the entanglement wedge of that region [33,
34, 36, 6, 37]. Equivalently, it says that no part of the quantum extremal surface of a given
boundary region can be timelike-related to the (boundary) domain of dependence of that
boundary region. It was shown in [30] that C ⊆ E follows from EWN, and EWN itself is
simply the statement that a boundary region should contain all of the information about any
of its subregions. We will now explain the consequences of these two constraints for Ū(y, z).

Without loss of generality, suppose the region R is defined by a coordinate profile which
is positive, V (y) > 0. Consider a second region R0 which has an entangling surface at
v = u = 0 and whose domain of dependence (i.e., Rindler space) contains R. The quantum
extremal surface associated to R0 is given by Ū0 = V̄0 = 0. This essentially follows from
symmetry.4 The entanglement wedge of R0 is then a bulk extension of the boundary Rindler
space, namely the set of bulk points satisfying u ≤ 0 and v ≥ 0. Then EWN implies that
Ū ≤ 0 and V̄ ≥ 0.

The only additional constraint we need from C ⊆ E is the requirement that the quantum
extremal surface for R not be in the past of the domain of dependence of R. From the
definition of R, it is clear that a bulk point is in the past of the domain of dependence of R
if and only if it is in the past of the region u < 0 on the boundary, which is the same as the

3The entanglement wedge of a boundary region is the set of bulk points which are spacelike- or null-
related to that region’s quantum extremal surface on the same side of the quantum extremal surface as the
boundary region itself.

4One might worry that the quantum extremal surface equations display spontaneous symmetry breaking
in the vacuum, but this can be ruled out using C ⊆ E with an argument similar to the one we present here.
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region u < 0 in the bulk. Therefore it must be that Ū ≥ 0. Combined with the constraint
from EWN above, we then conclude that the only possibility is Ū = 0. This completes the
proof that the QNEC is saturated to all orders in 1/N .

2.4 Discussion

We conclude by discussing the generality of our analysis, some implications and future di-
rections, and connections with previous work.

Generalizations and Future Directions

General Killing horizons Though we restricted to cuts of Rindler horizons in flat space
for simplicity, all of our results continue to hold for cuts of bifurcate Killing horizons for QFTs
defined in arbitrary spacetimes, assuming the QNEC is true and saturated in the vacuum
in this context. In particular, Eq. (2.1.4) holds with v a coordinate along the horizon. For
holographic theories, entanglement wedge nesting (EWN) and the entanglement wedge being
outside of the causal wedge (C ⊆ E) continue to prove saturation of the QNEC. To see this,
note that a Killing horizon on the boundary implies a corresponding Killing horizon in the
bulk. Now take the reference region R0 satisfying V (y) = U(y) = 0 to be the boundary
bifurcation surface. By symmetry, the associated quantum extremal surface lies on the
bifurcation surface of the bulk Killing horizon. Then the quantum extremal surface of the
region R defined by V (y) ≥ 0 must lie in the entanglement wedge of R0 — inside the bulk
horizon — by entanglement wedge nesting, but must also lie on or outside of the bulk horizon
by C ⊆ E . Thus it lies on the bulk horizon, Ū = 0, and the QNEC remains saturated by
Eq. (2.3.1).

Future work In this work, we have only established the form of KR for regionsR bounded
by arbitrary cuts of a null plane. A natural next direction would be to understand if and
how we can extend Eq. (2.2.14) to more general entangling surfaces. As discussed above,
the QNEC was shown to hold for locally flat entangling surfaces in holographic, free and
super-renormalizable field theories [28, 29, 30]. Thus, if we could prove saturation, i.e. that
S ′′vac = 0 at all orders in 1/N , then we would establish (2.2.14) for all regions with a locally
flat boundary.

One technique to probe this question is to perturb the entangling surface away from a flat
cut and compute the contributions to the QNEC order-by-order in a perturbation parameter
ε. Preliminary calculations [38] have revealed that for holographic theories at leading order
in large N , S ′′vac = 0 at all orders in ε.

Another interesting problem is to show that in a general QFT vacuum, null derivatives of
entanglement entropy across arbitrary cuts of null planes vanish. That, along with a general
proof of QNEC will establish (18) as a consequence. We will leave this to future work.
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The QNEC as S(ρ‖σ)′′ ≥ 0

There is a connection between the QNEC and relative entropy, first pointed out in [30], that
we elaborate on here. The relative entropy S(ρ‖σ) between two states ρ and σ is defined as

S(ρ‖σ) = Tr ρ log ρ− Tr ρ log σ (2.4.1)

and provides a measure of distinguishability between the two states [39]. Substituting the
definition of K, Eq. (2.1.1), into Eq. (2.4.1) provides a useful alternate presentation:

S(ρ‖σ) = 〈Kσ〉ρ − S(ρ). (2.4.2)

If Eq. (2.1.4) is valid, then taking two derivatives with respect to a deformation parameter,
as in the main text, shows that the nonlocal QNEC, Eq. (2.2.1), is equivalent to

∂2
λS(ρ(λ)‖σ(λ)) ≥ 0. (2.4.3)

For comparison, monotonicity of relative entropy for the types of regions and deformations
we have been discussing can be written as

∂λS(ρ(λ)‖σ(λ)) ≤ 0. (2.4.4)

Eq. (2.4.3) is a sort of “convexity” of relative entropy.5 Unlike monotonicity of relative
entropy, which says that the first derivative is non-positive, there is no general information-
theoretic reason for the second derivative to be non-negative. In the event that Eq. (2.2.14)
holds but not Eq. (2.1.4), we would still have

S(ρ‖σ)′′ ≥ 0. (2.4.5)

where the ′′ notation denotes a local deformation as in Sec. A.14.
It would be extremely interesting to characterize what about quantum field theory and

null planes makes (2.4.3) true. We can model the null deformation as a non-unitary time
evolution in the space of states, with the vacuum state serving as an equilibrium state
for this evolution. Then an arbitrary finite-energy state will relax toward the equilibrium
state, with the relative entropy S(ρ‖σ) characterizing the free energy as a function of time.
Monotonicity of relative entropy is then nothing more than the statement that free energy
decreases, i.e. the second law of thermodynamics. The second derivative statement gives
more information about the approach to equilibrium. If that approach is of the form of
exponential decay, then all successive derivatives would alternate in sign. However, for null
deformations in quantum field theory we do not expect to have a general bound on the
behavior of derivatives of the energy-momentum tensor, meaning that the third derivative of
the free energy should not have a definite sign.6 Perhaps there is some way of characterizing
the approach to equilibrium we have here, which is in some sense smoother than the most
general possibility but not so constrained as to force exponential behavior.

5This is distinct from the well-known convexity of relative entropy, which says that S(tρ1+(1−t)ρ2‖σ) ≤
tS(ρ1‖σ) + (1− t)S(ρ2‖σ).

6We thank Aron Wall for a discussion of this point.
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Relation to previous work

Faulkner, Leigh, Parrikar and Wang [27] have discussed results very similar to the ones
presented here. They demonstrated that for first-order null deformations δV (y) to a flat cut
of a null plane, the perturbation to the modular Hamiltonian takes the form

〈KR〉ψ − 〈KR0〉ψ = −2π

~

∫
dd−2y

∫
V (y)

dv Tvv(y) δV (y) (2.4.6)

This is precisely the form expected from our equation (2.1.4). Faulkner et al. went on to
suggest that the natural generalization of the modular Hamiltonian to finite deformations
away from a flat cut takes the form of Eq. (2.1.4). In the context of holography they showed
that this conclusion applied both on the boundary and in the bulk is consistent with JLMS
[7]. In the present paper, we have shown that Eq. (2.1.4) holds for theories which obey
the QNEC, and for which the QNEC is saturated in the vacuum. A non-perturbative, field
theoretic proof of these assumptions remains a primary goal of future work.
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Chapter 3

The Quantum Null Energy Condition,
Entanglement Wedge Nesting, and
Quantum Focusing

3.1 Introduction and Summary

The Quantum Focusing Conjecture (QFC) is a new principle of semiclassical quantum gravity
proposed in [11]. Its formulation is motivated by classical focusing, which states that the
expansion θ of a null congruence of geodesics is nonincreasing. Classical focusing is at the
heart of several important results of classical gravity [40, 41, 42, 43], and likewise quantum
focusing can be used to prove quantum generalizations of many of these results [44, 45, 46,
47].

One of the most important and surprising consequences of the QFC is the Quantum Null
Energy Condition (QNEC), which was discovered as a particular nongravitational limit of
the QFC [11]. Subsequently the QNEC was proven for free fields [28] and for holographic
CFTs on flat backgrounds [29] (and recently extended in [48] in a similar way as we do here).
The formulation of the QNEC which naturally comes out of the proofs we provide here is as
follows.

Consider a codimension-two Cauchy-splitting surface Σ, which we will refer to as the
entangling surface. The Von Neumann entropy S[Σ] of the interior (or exterior) or Σ is
a functional of Σ, and in particular is a functional of the embedding functions X i(y) that
define Σ. Choose a one-parameter family of deformed surfaces Σ(λ), with Σ(0) = Σ, such
that (i) Σ(λ) is given by flowing along null geodesics generated by the null vector field ki

normal to Σ for affine time λ , and (ii) Σ(λ) is either “shrinking” or “growing” as a function
of λ, in the sense that the domain of dependence of the interior of Σ is either shrinking or
growing. Then for any point on the entangling surface we can define the combination

Tij(y)ki(y)kj(y)− 1

2π

d

dλ

(
ki(y)√
h(y)

δSren

δX i(y)

)
. (3.1.1)
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Here
√
h(y) is the induced metric determinant on Σ. Writing this down in a general curved

background requires a renormalization scheme both for the energy-momentum tensor Tij
and the renormalized entropy Sren. Assuming that this quantity is scheme-independent (and
hence well-defined), the QNEC states that it is positive. Our main task is to determine the
necessary and sufficient conditions we need to impose on Σ and the background spacetime
at the point y in order that the QNEC hold.

In addition to a proof through the QFC, the holographic proof method of [29] is eas-
ily adaptable to answering this question in full generality. The backbone of that proof
is Entanglement Wedge Nesting (EWN), which is a consequence of subregion duality in
AdS/CFT [47]. A given region on the boundary of AdS is associated with a particular region
of the bulk, called the entanglement wedge, which is defined as the bulk region spacelike-
related to the extremal surface [31, 32, 6, 49] used to compute the CFT entropy on the side
toward the boundary region. This bulk region is dual to the given boundary region, in the
sense that there is a correspondence between the algebras of operators in the bulk region and
the operators in the boundary region which are good semiclassical gravity operators (i.e.,
they act within the subspace of semiclassical states) [33, 7, 35]. EWN is the statement that
nested boundary regions must be dual to nested bulk regions, and clearly follows from the
consistency of subregion duality.

While the QNEC can be derived from both the QFC and EWN, there has been no clear
connection between these derivations.1 As it stands, there are apparently two QNECs, the
QNEC-from-QFC and the QNEC-from-EWN. We will show in full generality that these two
QNECs are in fact the same, at least in d ≤ 5 dimensions.

Here is a summary of our results:

• The holographic proof of the QNEC from EWN is extended to CFTs on arbitrary
curved backgrounds. In d = 5 we find necessary that the necessary and sufficient
conditions for the ordinary QNEC to hold at a point are that2

θ(k) = σ
(k)
ab = Daθ(k) = Daσ

(k)
bc = Rka = 0 (3.1.2)

at that point. For d < 5 only a subset of these conditions are necessary. This is the
subject of §3.2.

• We also show holographically that under the weaker set of conditions

σ
(k)
ab = Daθ(k) +Rka = Daσ

(k)
bc = 0 (3.1.3)

the Conformal QNEC holds. The Conformal QNEC was introduced in [29] as a
conformally-transformed version of the QNEC. This is the strongest inequality that
we can get out of EWN. This is the subject of §3.2

1In [47] it was shown that the QFC in the bulk implies EWN, which in turn implies the QNEC. This is
not the same as the connection we are referencing here. The QFC which would imply the boundary QNEC
in the sense that we mean is a boundary QFC, obtained by coupling the boundary theory to gravity.

2Here σ
(k)
ab and θ(k) are the shear and expansion in the ki direction, respectively, and Da is a surface

covariant derivative. Our notation is further explained in Appendix A.1.
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• By taking the non-gravitational limit of the QFC we are able to derive the QNEC
again under the same set of conditions as we did for EWN. This is the subject of §3.3.

• We argue in §3.3 that the statement of the QNEC is scheme-independent whenever
the conditions that allow us to prove it hold. This shows that the two proofs of the
QNEC are actually proving the same, unambiguous field–theoretic bound.

We conclude in §7.6 with a discussion and suggest future directions. A number of technical
Appendices are included as part of our analysis.

Relation to other work While this work was in preparation, [48] appeared which has
overlap with our discussion of EWN and the scheme-independence of the QNEC. The results
of [48] relied on a number of assumptions about the background: the null curvature condition
and a positive energy condition. From this they derive certain sufficient conditions for the
QNEC to hold. We do not assume anything about our backgrounds a priori, and include
all relevant higher curvature corrections. This gives our results greater generality, as we are
able to find both necessary and sufficient conditions for the QNEC to hold.

3.2 Entanglement Wedge Nesting

Subregion Duality

The statement of AdS/CFT includes a correspondence between operators in the semiclas-
sical bulk gravitational theory and CFT operators on the boundary. Moreover, it has been
shown [9, 35] that such a correspondence exists between the operator algebras of subregions
in the CFT and certain associated subregions in the bulk as follows: Consider a spatial
subregion A in the boundary geometry. The extremal surface anchored to ∂A, which is used
to compute the entropy of A [31, 32], bounds the so-called entanglement wedge of A, E(A),
in the bulk. More precisely E(A) is the codimension-zero bulk region spacelike-related to
the extremal surface on the same side of the extremal surface as A. Subregion duality is the
statement that the operator algebras of D(A) and E(A) are dual, where D(A) denotes the
domain of dependence of A.

Entanglement Wedge Nesting The results of this section follow from EWN, which we
now describe. Consider two boundary regions A1 and A2 such that D(A1) ⊆ D(A2). Then
consistency of subregion duality implies that E(A1) ⊆ E(A2) as well, and this is the statement
of EWN. In particular, EWN implies that the extremal surfaces associated to A1 and A2

cannot be timelike-related.
We will mainly be applying EWN to the case of a one-paramter family of boundary

regions, A(λ), where D(A(λ1)) ⊆ D(A(λ2)) whenever λ1 ≤ λ2. Then the union of the one-
parameter family of extremal surfaces associated to A(λ) forms a codimension-one surface
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Figure 3.1: Here we show the holographic setup which illustrates Entanglement Wedge
Nesting. A spatial region A1 on the boundary is deformed into the spatial region A2 by the
null vector δX i. The extremal surfaces of A1 and A2 are connected by a codimension-one
bulk surfaceM (shaded blue) that is nowhere timelike by EWN. Then the vectors δX̄µ and
sµ, which lie in M, have nonnegative norm.

in the bulk that is nowhere timelike. We denote this codimension-one surface by M. See
Fig. 3.1 for a picture of the setup.

Since M is nowhere timelike, every one of its tangent vectors must have nonnegative
norm. In particular, consider the embedding functions X̄µ of the extremal surfaces in some
coordinate system. Then the vectors δX̄µ ≡ ∂λX̄

µ is tangent toM, and represents a vector
that points from one extremal surface to another. Hence we have (δX̄)2 ≥ 0 from EWN,
and this is the inequality that we will discuss for most of the remainder of this section.

Before moving on, we will note that (δX̄)2 ≥ 0 is not necessarily the strongest inequality
we get from EWN. At each point on M, the vectors which are tangent to the extremal
surface passing through that point are known to be spacelike. Therefore if δX̄µ contains
any components which are tangent to the extremal surface, they will serve to make the
inequality (δX̄)2 ≥ 0 weaker. We define the vector sµ at any point of M to be the part of
δX̄µ orthogonal to the extremal surface passing through that point. Then (δX̄)2 ≥ s2 ≥ 0.
We will discuss the s2 ≥ 0 inequality in §3.2 after handling the (δX̄)2 ≥ 0 case.

Near-Boundary EWN

In this section we explain how to calculate the vector δX̄µ and sµ near the boundary explicitly
in terms of CFT data. Then the EWN inequalities (δX̄)2 > 0 and s2 > 0 can be given a
CFT meaning. The strategy is to use a Fefferman-Graham expansion of both the metric and
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extremal surface, leading to equations for δX̄µ and sµ as power series in the bulk coordinate
z (including possible log terms). In the following sections we will analyze the inequalities
that are derived in this section.

Bulk Metric We work with a bulk theory in AdSd+1 that consists of Einstein gravity
plus curvature-squared corrections. For d ≤ 5 this is the complete set of higher curvature
corrections that have an impact on our analysis. The Lagrangian is3

L =
1

16πGN

(
d(d− 1)

L̃2
+R+ `2λ1R2 + `2λ2R2

µν + `2λGBLGB

)
, (3.2.1)

where LGB = R2
µνρσ − 4R2

µν + R2 is the Gauss–Bonnet Lagrangian, `2 is the cutoff scale,

and L̃2 is the scale of the cosmological constant. The bulk metric has the following near
boundary expansion in Fefferman-Graham gauge [50]:

ds2 =
L2

z2
(dz2 + ḡij(x, z)dx

idxj), (3.2.2)

ḡij(x, z) = g
(0)
ij (x) + z2g

(2)
ij (x) + z4g

(4)
ij (x) + . . .+ zd log z g

(d,log)
ij (x) + zdg

(d)
ij (x) + o(zd).

(3.2.3)

Note that the length scale L is different from L̃, but the relationship between them will not
be important for us. Demanding that the above metric solve bulk gravitational equations
of motion gives expressions for all of the g

(n)
ij for n < d, including g

(d,log)
ij (x), in terms of

g
(0)
ij (x). This means, in particular, that these terms are all state-independent. One finds

that g
(d,log)
ij (x) vanishes unless d is even. We provide explicit expressions for some of these

terms in Appendix A.3.
The only state-dependent term we have displayed, g

(d)
ij (x), contains information about the

expectation value of the energy-momentum tensor Tij of the field theory. In odd dimensions
we have the simple formula [51]4

g
(d=odd)
ij =

16πGN

ηdLd−1
〈Tij〉, (3.2.4)

with

η = 1− 2 (d(d+ 1)λ1 + dλ2 + (d− 2)(d− 3)λGB)
`2

L2
(3.2.5)

In even dimensions the formula is more complicated. For d = 4 we discuss the form of the
metric in Appendix A.5

3For simplicity we will not include matter fields explicitly in the bulk, but their presence should not alter
any of our conclusions.

4Even though [51] worked with a flat boundary theory, one can check that this formula remains unchanged
when the boundary is curved.
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Extremal Surface EWN is a statement about the causal relation between entanglement
wedges. To study this, we need to calculate the position of the extremal surface. We
parametrize our extremal surface by the coordinate (ya, z), and the position of the surface
is determined by the embedding functions X̄µ(ya, z). The intrinsic metric of the extremal
surface is denoted by h̄αβ, where α = (a, z). For convenience we will impose the gauge
conditions X̄z = z and h̄az = 0.

The functions X̄(ya, z) are determined by extremizing the generalized entropy [6, 49] of
the entanglement wedge. This generalized entropy consists of geometric terms integrated
over the surface as well as bulk entropy terms. We defer a discussion of the bulk entropy
terms to §3.4 and write only the geometric terms, which are determined by the bulk action:

Sgen =
1

4GN

∫ √
h̄

[
1 + 2λ1`

2R+ λ2`
2

(
RµνN µν − 1

2
KµKµ

)
+ 2λGB`

2r̄

]
. (3.2.6)

We discuss this entropy functional in more detail in Appendix A.3. The Euler-Lagrange
equations for Sgen are the equations of motion for X̄µ. Like the bulk metric, the extremal
surface equations can be solved at small-z with a Fefferman–Graham-like expansion:

X̄ i(y, z) = X i
(0)(y) + z2X i

(2)(y) + z4X i
(4)(y) + . . .+ zd log z X i

(d,log)(y) + zdX i
(d)(y) + o(zd),

(3.2.7)

As with the metric, the coefficient functions X i
(n) for n < d, including the log term, can be

solved for in terms of X i
(0) and g

(0)
ij , and again the log term vanishes unless d is even. The

state-dependent term X i
(d) contains information about variations of the CFT entropy, as we

explain below.

The z-Expansion of EWN By taking the derivative of (3.2.7) with respect to λ, we find
the z-expansion of δX̄ i. We will discuss how to take those derivatives momentarily. But
given the z-expansion of δX̄ i, we can combine this with the z-expansion of ḡij in (3.2.3) to
get the z-expansion of (δX̄)2:

z2

L2
(δX̄)2 = g

(0)
ij δX

i
(0)δX

j
(0) + z2

(
2g

(0)
ij δX

i
(0)δX

j
(2) + g

(2)
ij δX

i
(0)δX

j
(0) +Xm

(2)∂mg
(0)
ij δX

i
(0)δX

j
(0)

)
+ · · ·

(3.2.8)

EWN implies that (δX̄)2 ≥ 0, and we will spend the next few sections examining this
inequality using the expansion (3.2.8). From the general arguments given above, we can
get a stronger inequality by considering the vector sµ and its norm rather than δX̄µ. The
construction of sµ is more involved, but we would similarly construct an equation for s2 at
small z. We defer further discussion of sµ to §3.2.

Now we return to the question of calculating δX̄ i. Since all of theX i
(n) for n < d are known

explicitly from solving the equation of motion, the λ-derivatives of those terms can be taken
and the results expressed in terms of the boundary conditions for the extremal surface. The
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variation of the state-dependent term, δX i
(d), is also determined by the boundary conditions

in principle, but in a horribly non-local way. However, we will now show that X i
(d) (and

hence δX i
(d)) can be re-expressed in terms of variations of the CFT entropy.

Variations of the Entropy The CFT entropy SCFT is equal to the generalized entropy
Sgen of the entanglement wedge in the bulk. To be precise, we need to introduce a cutoff at
z = ε and use holographic renormalization to properly define the entropy. Then we can use
the calculus of variations to determine variations of the entropy with respect to the boundary
conditions at z = ε. There will be terms which diverge as ε → 0, as well as a finite term,
which is the only one we are interested in at the moment. In odd dimensions, the finite term
is given by a simple integral over the entangling surface in the CFT:

δSCFT|finite = ηdLd−1

∫
dd−2y

√
hgijX

i
(d)δX

j. (3.2.9)

This finite part of SCFT is the renormalized entropy, Sren, in holographic renormalization.
Eventually we will want to assure ourselves that our results are scheme-independent. This
question was studied in [52], and we will discuss it further in §3.3. For now, the important
take-away from (3.2.9) is

1√
h

δSren

δX i(y)
= −ηdL

d−1

4GN

X i
(d,odd). (3.2.10)

The case of even d is more complicated, and we will cover the d = 4 case in Appendix A.5.

State-Independent Inequalities

The basic EWN inequality is (δX̄)2 ≥ 0. The challenge is to write this in terms of boundary
quantities. In this section we will look at the state-independent terms in the expansion of
(3.2.8). The boundary conditions at z = 0 are given by the CFT entangling surface and
background geometry, which we denote by X i and gij without a (0) subscript. The variation
vector of the entangling surface is the null vector ki = δX i. We can use the formulas of
Appendix A.4 to express the other X i

(n) for n < d in terms of X i and gij. This allows us to

express the state-independent parts of (δX̄)2 ≥ 0 in terms of CFT data. In this subsection
we will look at the leading and subleading state-independent parts. These will be sufficient
to fully cover the cases d ≤ 5.

Leading Inequality From (3.2.8), we see that the first term is actually kik
i = 0. The

next term is the one we call the leading term, which is

L−2(δX̄)2
∣∣
z0 = 2kiδX

i
(2) + g

(2)
ij k

ikj +Xm
(2)∂mgijk

ikj. (3.2.11)

From (A.3.10), we easily see that this is equivalent to

L−2 (δX̄ i)2
∣∣
z0 =

1

(d− 2)2
θ2

(k) +
1

d− 2
σ2

(k), (3.2.12)
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where σ
(k)
ab and θ(k) are the shear and expansion of the null congruence generated by ki,

and are given by the trace and trace-free parts of kiK
i
ab, with Ki

ab the extrinsic curvature of
the entangling surface. This leading inequality is always nonnegative, as required by EWN.
Since we are in the small-z limit, the subleading inequality is only relevant when this leading
inequality is saturated. So in our analysis below we will focus on the θ(k) = σ

(k)
ab = 0 case,

which can always be achieved by choosing the entangling surface appropriately. Note that
in d = 3 this is the only state-independent term in (δX̄)2, and furthermore we always have

σ
(k)
ab = 0 in d = 3.

Subleading Inequality The subleading term in (δX̄)2 is order z2 in d ≥ 5, and order
z2 log z in d = 4. These two cases are similar, but it will be easiest to focus first on d ≥ 5
and then explain what changes in d = 4. The terms we are looking for are

L−2(δX̄)2
∣∣
z2 = 2kiδX

i
(4) + 2g

(2)
ij k

iδXj
(2) + gijδX

i
(2)δX

j
(2) + g

(4)
ij k

ikj +Xm
(4)∂mgijk

ikj

+ 2Xm
(2)∂mgijk

iδXj
(2) +Xm

(2)∂mg
(2)
ij k

ikj +
1

2
Xm

(2)X
n
(2)∂m∂ngijk

ikj. (3.2.13)

This inequality is significantly more complicated than the previous one. The details of its
evaluation are left to Appendix A.4. The result, assuming θ(k) = σ

(k)
ab = 0, is

L−2(δX̄)2
∣∣
z2 =

1

4(d− 2)2
(Daθ(k) + 2Rka)

2

+
1

(d− 2)2(d− 4)
(Daθ(k) +Rka)

2 +
1

2(d− 2)(d− 4)
(Daσ

(k)
bc )2

+
κ

d− 4

(
CkabcC

abc
k − 2C c

k caC
b a
k b

)
. (3.2.14)

where κ is proportional to λGB`
2/L2 and is defined in Appendix A.4. Aside from the Gauss–

Bonnet term we have a sum of squares, which is good because EWN requires this to be
positive when θ(k) and σ(k) vanish. Since κ� 1, it cannot possibly interfere with positivity

unless the other terms were zero. This would require Daθ(k) = Daσ
(k)
bc = Rka = 0 in addition

to our other conditions. But, following the arguments of [53], this cannot happen unless
the components Ckabc of the Weyl tensor also vanish at the point in question. Thus EWN
is always satisfied. Also noteSecond, the last two terms in middle line of (3.2.14) are each

conformally invariant when θ(k) = σ
(k)
ab = 0, which we have assumed. This will become

important later.
Finally, though we have assumed d ≥ 5 to arrive at this result, we can use it to derive

the expression for L−2(δX̄)2
∣∣
z2 log z

in d = 4. The rule, explained in Appendix A.5, is to

multiply the RHS by 4− d and then set d = 4. This has the effect of killing the conformally
non-invariant term, leaving us with

L−2(δX̄)2
∣∣
z2 log z,d=4

= −1

4
(Daθ(k) +Rka)

2 − 1

4
(Daσ

(k)
bc )2. (3.2.15)
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The Gauss–Bonnet term also disappears because of a special Weyl tensor identity in d =
4 [52]. The overall minus sign is required since log z < 0 in the small z limit. In addition, we
no longer require that Rka and Daθ(k) vanish individually to saturate the inequality: only
their sum has to vanish. This still requires that Ckabc = 0, though.

The Quantum Null Energy Condition

The previous section dealt with the two leading state-independent inequalities that EWN
implies. Here we deal with the leading state-dependent inequality, which turns out to be the
QNEC.

At all orders lower than zd−2, (δX̄)2 is purely geometric. At order zd−2, however, the
CFT energy-momentum tensor enters via the Fefferman–Graham expansion of the metric,
and variations of the entropy enter through X i

(d). In odd dimensions the analysis is simple
and we will present it here, while in general even dimensions it is quite complicated. Since
our state-independent analysis is incomplete for d > 5 anyway, we will be content with
analyzing only d = 4 for the even case. The d = 4 calculation is presented in Appendix A.5.
Though is it more involved that the odd-dimensional case, the final result is the same.

Consider first the case where d is odd. Then we have

L−2(δX̄)2
∣∣
zd−2 = g

(d)
ij k

ikj + 2kiδX
i
(d) +Xm

(d)∂mgijk
ikj = g

(d)
ij k

ikj + 2δ
(
kiδX

i
(d)

)
. (3.2.16)

From (3.2.4) and (3.2.10), we find that

L−2(δX̄)2
∣∣
zd−2 =

16πGN

ηdLd−1

[
〈Tkk〉 − δ

(
ki

2π
√
h

δSren

δX i

)]
. (3.2.17)

The nonnegativity of the term in brackets is equivalent to the QNEC. The case where d is
even is more complicated, and we will go over the d = 4 case in Appendix A.5.

The Conformal QNEC

As mentioned in §3.2, we can get a stronger inequality from EWN by considering the norm
of the vector sµ, which is the part of δX̄µ orthogonal to the extremal surface. Our gauge
choice X̄z = z means that sµ 6= δX̄µ, and so we get a nontrivial improvement by considering
s2 ≥ 0 instead of (δX̄)2 ≥ 0.

We can actually use the results already derived above to compute s2 with the following
trick. We would have had δX̄µ = sµ if the surfaces of constant z were already orthogonal
to the extremal surfaces. But we can change our definition of the constant-z surfaces with
a coordinate transformation in the bulk to make this the case, apply the above results to
(δX̄)2 in the new coordinate system, and then transform back to the original coordinates.
The coordinate transformation we are interested in performing is a PBH transformation [54],
since it leaves the metric in Fefferman–Graham form, and so induces a Weyl transformation
on the boundary.
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So from the field theory point of view, we will just be calculating the consequences of
EWN in a different conformal frame, which is fine because we are working with a CFT.
With that in mind it is easy to guess the outcome: the best conformal frame to pick is one
in which all of the non-conformally-invariant parts of the state-independent terms in (δX̄)2

are set to zero, and when we transform the state-dependent term in the new frame back to
the original frame we get the so-called Conformal QNEC first defined in [29]. This is indeed
what happens, as we will now see.

Orthogonality Conditions First, we will examine in detail the conditions necessary for
δX̄µ = sµ, and their consequences on the inequalities derived above. We must check that

ḡij∂αX̄
iδX̄j = 0. (3.2.18)

for both α = z and α = a. As above, we will expand these conditions in z. When α = z, at
lowest order in z we find the condition

0 = kiX
i
(2), (3.2.19)

which is equivalent to θ(k) = 0. When α = a, the lowest-order in z inequality is automatically
satisfied because ki is defined to be orthogonal to the entangling surface on the boundary.
But at next-to-lowest order we find the condition

0 = ki∂aX
i
(2) + eaiδX

i
(2) + g

(2)
ij e

i
ak

j +Xm
(2)∂mgije

i
ak

j (3.2.20)

= − 1

2(d− 2)

[
(Da − 2wa)θ(k) + 2Rka

]
. (3.2.21)

Combined with the θ(k) = 0 condition, this tells us that that Daθ(k) = −2Rka is required.
When these conditions are satisfied, the state-dependent terms of (δX̄)2 analyzed above
become5

L−2(δX̄)2 =
1

d− 2
σ2

(k) +

[
1

(d− 2)2(d− 4)
(Rka)

2 +
1

2(d− 2)(d− 4)
(Daσ

(k)
bc )2

]
z2 + · · ·

(3.2.22)

Next we will demonstrate that θ(k) = 0 and Daθ(k) = −2Rka can be achieved by a Weyl
transformation, and then use that fact to write down the s2 ≥ 0 inequality that we are after.

Achieving δX̄µ = sµ with a Weyl Transformation Our goal now is to begin with
a generic situation in which δX̄µ 6= sµ and use a Weyl transformation to set δX̄µ → sµ.
This means finding a new conformal frame with ĝij = e2φ(x)gij such that θ̂(k) = 0 and

5We have not included some terms at order z2 which are proportional to σ
(k)
ab because they never play a

role in the EWN inequalities.
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D̂aθ̂(k) = −2R̂ka, which would then imply that δX̂µ = sµ (we omit the bar on δX̂µ to avoid

cluttering the notation, but logically it would be δ ˆ̄Xµ).
Computing the transformation properties of the geometric quantities involved is a stan-

dard exercise, but there is one extra twist involved here compared to the usual prescription.
Ordinarily a vector such as ki would be invariant under the Weyl transformation. However,
for our setup is it is important that ki generate an affine-parameterized null geodesic. Even
though the null geodesic itself is invariant under Weyl transofrmation, ki will no longer be
the correct generator. Instead, we have to use k̂i = e−2φki. Another way of saying this is
that ki = k̂i is invariant under the Weyl transformation. With this in mind, we have

e2φR̂ka = Rka − (d− 2)
[
Da∂kφ− wa∂kφ− kjKj

ab∂
bφ− ∂kφ∂aφ

]
, (3.2.23)

e2φθ̂(k) = θ(k) + (d− 2)∂kφ, (3.2.24)

e2φD̂aθ̂(k) = Daθ(k) + (d− 2)Da∂kφ− 2θ(k)∂aφ− 2(d− 2)∂kφ∂aφ, (3.2.25)

σ̂
(k)
ab = σ

(k)
ab , (3.2.26)

D̂cσ̂
(k)
ab = Dcσ

(k)
ab − 2

[
σ

(k)
c(b∂a)φ+ σ

(k)
ab ∂cφ− gc(aσ

(k)
b)d∇

dφ
]
, (3.2.27)

ŵa = wa − ∂aφ. (3.2.28)

So we may arrange θ̂(k) = 0 at a given point on the entangling surface by choosing ∂kφ =

−θ(k)/(d− 2) that that point. Having chosen that, and assuming σ
(k)
ab =0 at the same point,

one can check that

e2φ
(
D̂aθ̂(k) + 2R̂ka

)
= Daθ(k) − 2waθ(k) + 2Rka − (d− 2)Da∂kφ (3.2.29)

So we can choose Da∂kφ to make the combination D̂aθ̂(k) + 2R̂ka vanish. Then in the new

frame we have δX̂µ = sµ.

The s2 ≥ Inequality Based on the discussion above, we were able to find a conformal
frame that allows us to compute the s2. For the state-independent parts we have

L−2s2 =
1

d− 2
σ̂2

(k) +

[
1

(d− 2)2(d− 4)
(R̂ka)

2 +
1

2(d− 2)(d− 4)
(D̂aσ̂

(k)
bc )2

]
ẑ2 + · · · (3.2.30)

Here we also have a new bulk coordinate ẑ = zeφ associated with the bulk PBH transfor-
mation. All we have to do now is transform back into the original frame to find s2. Since
θ̂(k) = D̂aθ̂(k) + 2R̂ka = 0, we actually have that

R̂ka = D̂aθ̂(k) − ŵaθ̂(k) − R̂ka, (3.2.31)
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which transforms homogeneously under Weyl transformations when σ
(k)
ab = 0. Thus, up to

an overall scaling factor, we have

L−2s2 =
1

d− 2
σ2

(k)

+

[
1

(d− 2)2(d− 4)
(Daθ(k) − waθ(k) −Rka)

2 +
1

2(d− 2)(d− 4)
(Daσ

(k)
bc )2

]
z2 + · · · ,

(3.2.32)

where we have dropped terms of order z2 which vanish when σ
(k)
ab = 0. As predicted, these

terms are the conformally invariant contributions to (δX̄)2.
In order to access the state-dependent part of s2 we need the terms in (3.2.32) to vanish.

Note that in d = 3 this always happens. In that case there is no z2 term, and σ
(k)
ab = 0 always.

Though our expression is singular in d = 4, comparing to (3.2.22) shows that actually the
term in brackets above is essentially the same as the z2 log z term in δX̄. We already noted
that this term was conformally invariant, so this is expected. The difference now is that we no
longer need θ(k) = 0 in order to get to the QNEC in d = 4. In d = 5 the geometric conditions
for the state-independent parts of s2 to vanish are identical to those for d = 4, whereas in the
(δX̄)2 analysis we found that extra conditions were necessary. These were relics of the choice
of conformal frame. Finally, for d > 5 there will be additional state-independent terms that
we have not analyzed, but the results we have will still hold.

Conformal QNEC Now we analyze the state-dependent part of s2 at order zd−2. When
all of the state-independent parts vanish, the state-dependent part is given by the conformal
transformation of the QNEC. This is easily computed as follows:

L−2 s2
∣∣
zd−2 =

16πGN

ηdLd−1

[
2π〈T̂ij〉kikj − δ

(
ki√
h

δŜren

δX i(y)

)
− d

2
θ(k)

(
ki√
h

δŜren

δX i(y)

)]
. (3.2.33)

Of course, one would like to replace T̂ij with Tij and Ŝren with Sren. When d is odd this
is straightforward, as these quantities are conformally invariant. However, when d is even
there are anomalies that will contribute, leading to extra geometric terms in the conformal
QNEC [55, 29].

3.3 Connection to Quantum Focusing

The Quantum Foscusing Conjecture

We start by reviewing the statement of the QFC [11, 53] before moving on to its connection
to EWN and the QNEC. Consider a codimension-two Cauchy-splitting (i.e. entangling)
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surface Σ and a null vector field ki normal to Σ. Denote by N the null surface generated by
ki. The generalized entropy, Sgen, associated to Σ is given by

Sgen = 〈Sgrav〉+ Sren (3.3.1)

where Sgrav is a state-independent local integral on Σ and Sren is the renormalized von
Neumann entropy of the interior (or exterior of Σ. The terms in Sgrav are determined by
the low-energy effective action of the theory in a well-known way [56]. Even though 〈Sgrav〉
and Sren individually depend on the renormalization scheme, that dependence cancels out
between them so that Sgen is scheme-independent.

The generalized entropy is a functional of the entangling surface Σ, and the QFC is a
statement about what happens when we vary the shape of Σ be deforming it within the
surface N . Specifically, consider a one-parameter family Σ(λ) of cuts of N generated by
deforming the original surface using the vector field ki. Here λ is the affine parameter along
the geodesic generated by ki and Σ(0) ≡ Σ. To be more precise, let ya denote a set of intrinsic
coordinates for Σ, let hab be the induced metric on Σ, and let X i(y, λ) be the embedding
functions for Σ(λ). With this notation, ki = ∂λX

i. The change in the generalized entropy is
given by

dSgen

dλ

∣∣∣∣
λ=0

=

∫
Σ

dd−2y
δSgen

δX i(y)
∂λX

i(y) ≡ 1

4GN

∫
Σ

dd−2y
√
hΘ[Σ, y] (3.3.2)

This defines the quantum expansion Θ[Σ, y] in terms of the functional derivative of the
generalized entropy:

Θ[Σ, y] = 4GN
ki(y)√
h

δSgen

δX i(y)
. (3.3.3)

Note that we have suppressed the dependence of Θ on ki in the notation, but the dependence
is very simple: if ki(y)→ f(y)ki(y), then Θ[Σ, y]→ f(y)Θ[Σ, y].

The QFC is simple to state in terms of Θ. It says that Θ is non-increasing along the flow
generated by ki:

0 ≥ dΘ

dλ
=

∫
Σ

dd−2y
δΘ[Σ, y]

δX i(y′)
ki(y′). (3.3.4)

Before moving on, let us make two remarks about the QFC.
First, the functional derivative δΘ[Σ, y]/δX i(y′) will contain local terms (i.e. terms pro-

portional to δ-functions or derivatives of δ-functions with support at y = y′) as well as
non-local terms that have support even when y 6= y′. Sgrav, being a local integral, will only
contribute to the local terms of δΘ[Σ, y]/δX i(y′). The renormalized entropy Sren will con-
tribute both local and non-local terms. The non-local terms can be shown to be nonpositive
using strong subadditivity of the entropy [11], while the local terms coming from Sren are in
general extremely difficult to compute.

Second, and more importantly for us here, the QFC as written in (3.3.4) does not quite
make sense. We have to remember that Sgrav is really an operator, and its expectation value
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〈Sgrav〉 is really the thing that contributes to Θ. In order to be well-defined in the low-
energy effective theory of gravity, this expectation value must be smeared over a scale large
compared to the cutoff scale of the theory. Thus when we write an inequality like (3.3.4), we
are implicitly smearing in y against some profile. The profile we use is arbitrary as long as it
is slowly-varying on the cutoff scale. This extra smearing step is necessary to avoid certain
violations of (3.3.4), as we will see below [53].

QNEC from QFC

In this section we will explicitly evaluate the QFC inequality, (3.3.4), and derive the QNEC
in curved space from it as a nongravitational limit. We consider theories with a gravitational
action of the form

Igrav =
1

16πGN

∫
√
g
(
R + `2λ1R

2 + `2λ2RijR
ij + `2λGBLGB

)
(3.3.5)

where LGB = R2
ijmn − 4R2

ij + R2 is the Gauss-Bonnet Lagrangian. Here ` is the cutoff
length scale of the effective field theory, and the dimensionless couplings λ1, λ2, and λGB are
assumed to be renormalized.

The generalized entropy functional for these theories can be computed using standard
replica methods [56] and takes the form

Sgen =
A[Σ]

4GN

+
`2

4GN

∫
Σ

√
h

[
2λ1R + λ2

(
RijN

ij − 1

2
KiK

i

)
+ 2λGBr

]
+ Sren. (3.3.6)

Here A[Σ] is the area of the entangling surface, N ij is the projector onto the normal space
of Σ, Ki is the trace of the extrinsic curvature of Σ, and r is the intrinsic Ricci scalar of Σ.

We can easily compute Θ by taking a functional derivative of (3.3.6), taking care to
integrate by parts so that the result is proportional to ki(y) and not derivatives of ki(y).
One finds

Θ = θ(k) + `2

[
2λ1(θ(k)R +∇kR) + λ2

(
(Da − wa)2θ(k) +KiK

iabKk
ab (3.3.7)

+ θ(k)Rklkl +∇kR− 2∇lRkk + θ(k)Rkl − θ(l)Rkk + 2KkabRab

)
− 4λGB

(
rabKk

ab −
1

2
rθ(k)

)]
+ 4GN

ki√
h

δSren

δX i
(3.3.8)

Now we must compute the λ-derivative of Θ. When we do this, the leading term comes from
the derivative of θ(k), which by Raychaudhuri’s equation contains the terms θ2

(k) and σ2
(k).

Since we are ultimately interested in deriving the QNEC as the non-gravitational limit of
the QFC, we need to set θ(k) = σ

(k)
ab = 0 so that the nongravitational limit is not dominated
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by those terms. So for the rest of this section we will set θ(k) = σ
(k)
ab = 0 at the point of

evaluation (but not globally!). Then we find

dΘ

dλ
= −Rkk + 2λ1`

2
(
∇2
kR−RRkk

)
+ λ2`

2
[
2Da(w

aRkk) +∇2
kR−DaD

aRkk −
d

d− 2
(Daθ(k))

2 − 2RkbD
bθ(k) − 2(Daσbc)

2

− 2∇k∇lRkk − 2RkakbR
ab − θ(l)∇kRkk

]
− 2λGB`

2

[
d(d− 3)(d− 4)

(d− 1)(d− 2)2
RRkk

− 4
(d− 4)(d− 3)

(d− 2)2
RkkRkl −

2(d− 4)

d− 2
CklklRkk −

2(d− 4)

d− 2
RabCakbk + 4CkalbCkakb

]

+ 4GN
d

dλ

(
ki√
h

δSren

δX i

)
(3.3.9)

This expression is quite complicated, but it simplifies dramatically if we make use of the
equation of motion coming from (3.3.5) plus the action of the matter sector. Then we have
Rkk = 8πGTkk −Hkk where [57]

Hkk = 2λ1

(
RRkk −∇2

kR
)

+ λ2

(
2RkikjR

ij −∇2
kR + 2∇k∇lRkk − 2RklkiR

i
k

+DcD
cRkk − 2Dc(w

cRkk)− 2(Dbθ(k) +RbmkjP
mj)Rb

k + θ(l)∇kRkk

)
+ 2λGB

(
d(d− 3)(d− 4)

(d− 1)(d− 2)2
RRkk − 4

(d− 4)(d− 3)

(d− 2)2
RkkRkl − 2

d− 4

d− 2
RijCkikj + CkijmCk

ijm

)
(3.3.10)

For the Gauss-Bonnet term we have used the standard decomposition of the Riemann tensor
in terms of the Weyl and Ricci tensors. Using similar methods to those in Appendix A.4,
we have also exchanged kikj�Rij in the R2

ij equation of motion for surface quantities and
ambient curvatures.

After using the equation of motion we have the relatively simple formula

dΘ

dλ
= −λ2`

2

(
d

d− 2
(Daθ(k))

2 + 4Rb
kDbθ(k) + 2RbkR

b
k + 2(Daσ

(k)
bc )2

)
+ 2λGB`

2
(
CkabcCk

abc − 2Ckba
bCkc

ac
)

+ 4GN
d

dλ

(
ki√
h

δSren

δX i

)
− 8πGN 〈Tkk〉 (3.3.11)

The Gauss-Bonnet term agrees with the expression derived in [52]. However unlike [52] we
have not made any perturbative assumptions about the background curvature.

At first glance it seems like (3.3.11) does not have definite sign, even in the non-gravitational
limit, due to the geometric terms proportional to λ2 and λGB. The difficulty posed by the
Gauss-Bonnet term, in particular, was first pointed out in [48]. However, this is where we
have to remember the smearing prescription mentioned in §3.3. We must integrate (3.3.11)
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over a region of size larger than ` before testing its nonpositivity. The crucial point, used
in [53], is that we must also remember to integrate the terms θ2

(k) and σ2
(k) that we dropped

earlier over the same region. When we integrate θ2
(k) over a region of size ` centered at a point

where θ(k) = 0, the result is ξ`2(Daθ(k))
2 + o(`2), where ξ & 10 is a parameter associated

with the smearing profile. A similar result holds for σ
(k)
ab . Thus we arrive at

dΘ

dλ
= − ξ

d− 2
`2(Daθ(k))

2 − ξ`2(Daσ
(k)
bc )2

− λ2`
2

(
d

d− 2
(Daθ(k))

2 + 4Rb
kDbθ(k) + 2RbkR

b
k + 2(Daσ

(k)
bc )2

)
+ 2λGB`

2
(
CkabcCk

abc − 2Ckba
bCkc

ac
)

+ 4GN
d

dλ

(
ki√
h

δSren

δX i

)
− 8πGN 〈Tkk〉+ o(`2) (3.3.12)

Since the size of ξ is determined by the validity of the effective field theory, by construction
the terms proportional to ξ in (3.3.12) dominate over the others. Thus in order to take the
non-gravitational limit, we must eliminate these smeared terms.

Clearly we need to be able to choose a surface such that Daθ(k) = Daσ
(k)
bc = 0. Then

smearing θ2
(k) and σ2

(k) would only produce terms of order `4 (terms of that order would also

show up from smearing the operators proportional to λ2 and λGB). As explained in [53],
this is only possible given certain conditions on the background spacetime at the point of
evaluation. We must have

Ckabc =
1

d− 2
habRkc −

1

d− 2
hacRkb. (3.3.13)

This can be seen by using the Codazzi equation for Σ. Imposing this condition, which allows
us to set Daθ(k) = Daσ

(k)
bc = 0, we then have.

dΘ

dλ
= −2`2

(
λ2 + 2

(d− 3)(d− 4)

(d− 2)2
λGB

)
RbkR

b
k

+ 4GN
d

dλ

(
ki√
h

δSren

δX i

)
− 8πGN 〈Tkk〉+ o(`3). (3.3.14)

This is the quantity which must be negative according to the QFC. In deriving it, we had
to assume that θ(k) = σ(k) = Daθ(k) = Daσ

(k)
bc = 0.

We make two observations about (3.3.14). First, if we assume that Rka = 0 as an
additional assumption and take `→ 0, then we arrive at the QNEC as long as GN > o(`3).
This is the case when ` scales with the Planck length and d ≤ 5. These conditions are similar
to the ones we found previously from EWN, and below in §3.3 we will discuss that in more
detail.

The second observation has to do with the lingering possibility of a violation of the QFC
due to the terms involving the couplings. In order to have a violation, one would need the
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linear combination

λ2 + 2
(d− 3)(d− 4)

(d− 2)2
λGB (3.3.15)

to be negative. Then if one could find a situation where the first line of (3.3.14) dominated
over the second, there would be a violation. It would be interesting to interpret this as a
bound on the above linear combination of couplings coming from the QFC, but it is difficult
to find a situation where the first line of (3.3.14) dominates. The only way for Rka to be large
compared to the cutoff scale is if Tka is nonzero, in which case we would have Rka ∼ GNTka.
Then in order for the first line of (3.3.14) to dominate we would need

GN`
2TkaT

a
k � Tkk. (3.3.16)

As an example, for a scalar field Φ this condition would say

GN`
2(∂aΦ)2 � 1. (3.3.17)

This is not achievable within effective field theory, as it would require the field to have
super-Planckian gradients. We leave a detailed and complete discussion of this issue to
future work.

Scheme-Independence of the QNEC

We take a brief interlude to discuss the issue of the scheme-dependence of the QNEC, which
will be important in the following section. It was shown in [52], under some slightly stronger
assumptions than the ones we have been using, that the QNEC is scheme-independent under
the same conditions where we expect it to hold true. Here we will present our own proof of
this fact, which actually follows from the manipulations we performed above involving the
QFC.

In this section we will take the point of view of field theory on curved spacetime without
dynamical gravity. Then each of the terms in Igrav, defined above in (3.3.5), are completely
arbitrary, non-dynamical terms we can add to the Lagrangian at will.6 Dialing the values of
those various couplings corresponds to a choice of scheme, as even though those couplings are
non-dynamical they will still contribute to the definitions of quantities like the renormalized
energy-momentum tensor and the renormalized entropy (as defined through the replica trick).
The QNEC is scheme-independent if it is insensitive to the values of these couplings.

To show the scheme-independence of the QNEC, we will begin with the statement that
Sgen is scheme-independent. We remarked on this above, when our context was a theory
with dynamical gravity. But the scheme-independence of Sgen does not require use of the
equations of motion, so it is valid even in a non-gravitational theory on a fixed background.

6We should really be working at the level of the quantum effective action, or generating functional, for
correlation functions of Tij [48]. The geometrical part has the same form as the classical action Igrav and so
does not alter this discussion.
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In fact, only once in the above discussion did we make use of the gravitational equations of
motion, and that was in deriving (3.3.11). Following the same steps up to that point, but
without imposing the gravitational equations of motion, we find instead

dΘ

dλ
= −λ2`

2

(
d

d− 2
(Daθ(k))

2 + 4Rb
kDbθ(k) + 2RbkR

b
k + 2(Daσbc)

2

)
+ 2λGB`

2
(
CkabcCk

abc − 2Ckba
bCkc

ac
)

+ 4GN
d

dλ

(
ki√
h

δSren

δX i

)
− kikj

16πGN√
g

δIgrav

δgij
.

(3.3.18)

Since the theory is not gravitational, we would not claim that this quantity has a sign.
However, it is still scheme-independent.

To proceed, we will impose all of the additional conditions that are necessary to prove
the QNEC. That is, we impose Dbθ(k) = Rb

k = Daσbc = 0, as well as θ(k) = σ
(k)
ab = 0, which

in turn requires Ckabc = 0. Under these conditions, we learn that the combination

d

dλ

(
ki√
h

δSren

δX i

)
− kikj

4π
√
g

δIgrav

δgij
(3.3.19)

is scheme-independent. The second term here is one of the contributions to the renormalized
2π〈Tkk〉 in the non-gravitational setup, the other contribution being kikj

4π√
g
δImatter

δgij
. But Imatter

is already scheme-independent in the sense we are discussing, in that it is independent of the
parameters appearing in Igrav. So adding that to the terms we have above, we learn that

d

dλ

(
ki√
h

δSren

δX i

)
− 2π〈Tkk〉 (3.3.20)

is scheme-independent. This is what we wanted to show.

QFC vs EWN

As we have discussed above, by taking the non-gravitational limit of (3.3.14) under the

assumptions Dbθ(k) = Rb
k = Daσbc = θ(k) = σ

(k)
ab = 0 we find the QNEC as a consequence of

the QFC (at least for d ≤ 5). And under the same set of geometric assumptions, we found
the QNEC as a consequence of EWN in (3.2.17). The discussion of the previous section
demonstrates that these assumptions also guarantee that the QNEC is scheme-independent.
So even though these two QNEC inequalities were derived in different ways, we know that
at the end of the day they are the same QNEC. It is natural to ask if there is a further
relationship between EWN and the QFC, beyond the fact that they give the same QNEC.
We will begin to investigate that question in this section.
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The natural thing to ask about is the state-independent terms in the QFC and in (δX̄)2.
We begin by writing down all of the terms of (δX̄)2 in odd dimensions that we have computed:

(d− 2)L−2(δX̄ i)2 =
1

(d− 2)
θ2

(k) + σ2
(k)

+ z2 1

4(d− 2)
(Daθ(k) + 2Rka)

2

+ z2 1

(d− 2)(d− 4)
(Daθ(k) +Rka)

2 + z2 1

2(d− 4)
(Daσ

(k)
bc )2

+ z2 κ

d− 4

(
CkabcC

abc
k − 2C c

k caC
b a
k b

)
+ · · ·+ zd−2 16π(d− 2)GN

ηdLd−1

[
〈Tkk〉 − δ

(
ki

2π
√
h

δSren

δX i

)]
. (3.3.21)

The first line looks like −θ̇, which would be the leading term in dΘ/dλ, except it is missing
an Rkk. Of course, we eventually got rid of the Rkk in the QFC by using the equations of
motion. Suppose we set θ(k) = 0 and σ

(k)
ab = 0 to eliminate those terms, as we did with the

QFC. Then we can write (δX̄)2 suggestively as

(d− 2)L−2(δX̄ i)2 = z2λ̃2

( d

(d− 2)
(Daθk)

2 + 4Ra
kDaθ +

4(d− 3)

(d− 2)
RkaR

a
k + 2(Daσ

(k)
bc )2

)
− 2z2λ̃GB

(
CkabcC

abc
k − 2C c

k caC
b a
k b

)
+ · · ·+ 8πG̃N〈Tkk〉 − 4G̃Nδ

(
ki√
h

δSren

δX i

)
. (3.3.22)

where

G̃N = GN
2(d− 2)zd−2

ηdLd−1
, (3.3.23)

λ̃2 =
1

4(d− 4)
, (3.3.24)

λ̃GB = − κ

2(d− 4)
. (3.3.25)

Written this way, it almost seems like (d − 2)L−2(δX̄ i)2 ∼ −dΘ/dλ in some kind of model
gravitational theory. One discrepancy is in the coefficient of the RkaR

ka term, unless d = 4.
It is also intriguing that the effective coefficients G̃N , λ̃2, and λ̃GB are close to, but not
exactly the same as, the effective braneworld induced gravity coefficients found in [58]. This
is clearly something that deserves further study.

3.4 Discussion

We have displayed a strong similarity between the state-independent inequalities in the QFC
and the state-independent inequalities from EWN. We now discuss several possible future
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directions and open questions that follow naturally from these results.

Bulk Entropy Contributions

We ignored the bulk entropy Sbulk in this work, but we know that it produces a contribution
to CFT entropy [5] and plays a role in the position of the extremal surface [6, 49]. The
bulk entropy contributions to the entropy are subleading in N2 and do not interfere with the
gravitational terms in the entropy. We could include the bulk entropy as a source term in the
equations determining X̄, which could lead to extra contributions to the X(n) coefficients.
However, it does not seem possible for the bulk entropy to have an effect on the state-
independent parts of the extremal surface, namely on X(n) for n < d, which means the bulk
entropy would not affect the conditions we derived for when the QNEC should hold.

Another logical possibility is that the bulk entropy term could affect the statement of
the QNEC itself, meaning that the schematic form Tkk − S ′′ would be altered. This would
be problematic, especially given that the QFC always produces a QNEC of that same form.
It was argued in [47] that this does not happen, and that argument holds here as well.

Smearing of EWN

We were careful to include a smearing prescription for defining the QFC, and it was an
important ingredient in the analysis of §3.3. But what about smearing of EWN? Of course,
the answer is that we should smear EWN appropriately, but as we will see now it would not
make a difference to our analysis,

The issue is that the bulk theory is a low-energy effective theory of gravity with a cutoff
scale `, and the quantities that we use to probe EWN, like (δX̄)2, are operators in that
theory. As such, these operators need to be smeared over a region of proper size ` on the
extremal surface. Of course, due to the warp factor, such a region has coordinate size z`/L.
We can ask what effect such a smearing would have on the inequality (δX̄)2.

When we performed our QNEC derivation, we assumed that θ(k) = 0 at the point of
evaluation, so that the θ2

(k) term in (δX̄)2
∣∣
z0 would not contribute. However, after smearing

this term would contribute a term of the form `2(Daθ(k))
2/L2 to (δX̄)2

∣∣
z2 . But we already

had such a term at this order, so all this does is shift the coefficient. Furthermore, the
coefficient is shifted only by an amount of order `2/L2. If the cutoff ` is of order the Planck
scale, then this is suppressed in powers of N2. In other words, this effect is negligible for
the analysis. A similar statement applies for σ

(k)
ab . So in summary, EWN should be smeared,

but the analysis we performed was insensitive to it.

Future Work

There are a number of topics that merit investigation in future work. We will touch on a
few of them to finish our discussion.
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Relevant Deformations Perhaps the first natural extension of our work is to include rel-
evant deformations in the EWN calculation. There are a few reasons why this is interesting.
First, one would like to test the continued correspondence between the QFC and EWN when
it comes to the QNEC. The QFC arguments do not care whether relevant deformations are
turned on, so one would expect that the same is true in EWN. This is indeed the case when
the boundary theory is formulated on flat space [29], and one would expect similar results
to hold when the boundary is curved.

Another reason to add in relevant deformations is to test the status of the Conformal
QNEC when the theory is not a CFT. To be more precise, the (δX̄)2 and s2 calculations
we performed differed by a Weyl transformation on the boundary, and since our boundary
theory was a CFT this was a natural thing to do. When the boundary theory is not a CFT,
what is the relationship between (δX̄)2 and s2? One possibility, perhaps the most likely one,
is that they simply reduce to the same inequality, and the Conformal QNEC no longer holds.
It would be good to know the answer.

Finally, and more speculatively, having a relevant deformation turned on when the back-
ground is curved allows for interesting state-independent inequalities from EWN. We saw
that for a CFT the state-independent terms in both (δX̄)2 and s2 were trivially positive.
Perhaps when a relevant deformation is turned on then more nontrivial things might hap-
pen, such as the possibility of a c-theorem hiding inside of EWN. We are encouraged by
the similarity of inequalities used in recent proofs of the c-theorems to inequalities obtained
from EWN [59].

Higher Dimensions Another pressing issue is extending our results to d = 6 and beyond.
This is an algebraically daunting task using the methods we have used for d ≤ 5. Considering
the ultimate simplicity of our final expressions, especially compared to the intermediate steps
in the calculations, it is likely that there are better ways of formulating and performing the
analyses we performed here. It is hard to imagine performing the full d = 6 analysis without
such a simplification.

Further Connections Between EWN and QFC Despite the issues outlined in §3.3,
we are still intrigued by the similarities between EWN and the QFC. It is extremely natural
to couple the boundary theory in AdS/CFT to gravity using a braneworld setup [60, 61,
62, 58]. Upon doing this, one can formulate the QFC on the braneworld. However, at the
same time near-boundary EWN becomes lost, or at least changes form: extremal surfaces
anchored to a brane will in general not be orthogonal to the brane, and in that case a null
deformation on the brane will induce a timelike deformation of the extremal surface in the
vicinity of the brane. Of course, one has to be careful to take into account the uncertainty
in the position of the brane, which complicates things. We hope that such an analysis could
serve to unify the QFC with EWN, or at least illustrate their relationship with each other.
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Conformal QNEC from QFC While we emphasized the apparent similarity between
the EWN-derived inequality (δX̄)2 ≥ 0 and the QFC, the stronger EWN inequality s2 ≥ 0 is
nowhere to be found in the QFC discussion. It would be inteesting to see if there was some
direct QFC-like way to derive the Conformal QNEC (rather than first deriving the ordinary
QNEC and then performing a Weyl transformation). In particular, the Conformal QNEC
applies even in cases where θ(k) is nonzero, while in those cases the QFC is dominated
by classical effects. Perhaps there is a useful change of variables that one can do in the
semiclassical gravity when the matter sector is a CFT which makes the Conformal QNEC
manifest from the QFC point of view. This is worth exploring.
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Chapter 4

Energy is Entanglement

4.1 Introduction

The connection between quantum information and energy has been an emerging theme of
recent progress in quantum field theory. Causality combined with universal inequalities
like positivity and monotonicity of relative entropy can be used to derive many interesting
energy-entropy bounds. Examples include the Bekenstein bound [63], the quantum Bousso
bound [24, 64], the Averaged Null Energy Condition (ANEC) [27, 65], and the Quantum
Null Energy Condition (QNEC) [16, 29, 17, 66]. Here we strengthen the energy-entropy
connection, moving from bounds to equalities.

The key insight of the QNEC, which we will exploit, is that one should look at variations of
the entropy S of a region as the region is deformed. Consider the entropy as a functional of the
entangling surface embedding functions Xµ. Then one can compute the functional derivative
δ2S/δXµ(y)δXν(y′) which encodes how the entropy depends on the shape of the region. In
general, this second variation will contain contact, or “diagonal,” terms, proportional to
δ-functions and derivatives of δ-functions, as well as “off-diagonal” terms. Our interest here
is in the δ-function contact term, and we introduce S ′′µν as the coefficient of the δ-function:

δ2S

δXµ(y)δXν(y′)
= S ′′µν(y)δ(d−2)(y − y′) + · · · (4.1.1)

Null Variations First consider the null-null component of the second variation, S ′′vv(y),
where v is a null coordinate in a direction orthogonal to the entangling surface at the point
y.1 Suppose the entangling surface is locally restricted to lie in the null plane orthogonal to
v near the point y. With this setup we can apply the QNEC, which says S ′′vv ≤ 2π〈Tvv〉. Our
main conjecture is that this inequality is always saturated:2

S ′′vv = 2π〈Tvv〉. (4.1.2)
1We are restricting attention to field theories in Minkowski space throughout the main text.
2In [67] the issue of QNEC saturation was also investigated, but this is a different notion of saturation.

Their analysis did not isolate the δ-function component, and instead considered the total variation in the
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We believe this holds for all relativistic quantum field theories with an interacting UV fixed
point in d > 2 dimensions. For the special case of an interacting CFT this fully specifies the
stress tensor in terms of entropy variations: by considering (4.1.2) for all entangling surfaces
passing through a point, 〈Tµν〉 is completely determined up to a trace term. In a CFT the
trace of the stress tensor vanishes, and so the entropy variations determine the full stress
tensor in that case. This is the sense in which energy comes from entanglement.

Our primary evidence for (4.1.2) is holographic, as explained below. But if we restrict
attention to quantities that can be built out of local expectation values of operators and the
local surface geometry there is no other possibility for S ′′vv. A significant constraint comes
from considering the vacuum modular Hamiltonian, K, which is defined by

S(σ + δσ)− S(σ) = Tr (Kδσ) +O
(
δσ2
)
, (4.1.3)

where σ is the vacuum state reduced to the region under consideration and δσ is an arbitrary
perturbation of the state. If we had a general formula for S in terms of expectation values
of operators, we would be able to read off the modular Hamiltonian from the terms in
that formula linear in expectation values.3 For a region bounded by an entangling surface
restricted to a null plane the modular Hamiltonian has a known formula in terms of the
stress tensor [68], and in particular we have

K ′′vv = 2π〈Tvv〉. (4.1.4)

That is why 〈Tvv〉 is the only possible linear term we could have had in (4.1.2).
A nonlinear contribution to S ′′vv, such as a product of expectation values, is restricted

by dimensional analysis and unitarity bounds: the only possibility is if the theory contains
a free field. Then we can take the classical expression for Tvv, which is quadratic in the
field, and replace each of those fields with expectation values to get an expression quadratic
in expectation values with the right dimensionality to contribute to S ′′vv. For interacting
fields, nonzero anomalous dimensions prevent this from working. We will say more about
free theories in Appendix A.7, where we will see that this possibility is realized by a term
∼ 〈∂vφ〉2 for a free scalar field, which is why we limit ourselves to interacting theories in
the main text. The substance of (4.1.2), then, is the statement that there are no non-local
contributions to S ′′vv.

Relative Entropy There is a natural interpretation of (4.1.2) in terms of relative entropy.
The relative entropy of a state ρ and a reference state σ—for us, the vacuum—is a measure
of the distinguishability of the two states. We will denote the relative entropy of ρ and the
vacuum by Srel(ρ). By definition, the relative entropy is

Srel(ρ) = ∆〈K〉 −∆S, (4.1.5)

entropy including the contribution of off-diagonal terms. So the examples in [67] where the QNEC is not
“saturated” are not in contradiction with our results.

3For simplicity of the discussion we set all vacuum expectation values to zero.
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where ∆〈K〉 and ∆S denote the vacuum-subtracted modular energy and vacuum-subtracted
entropy, respectively. A consequence of (4.1.2) is that ∆S ′′vv = ∆〈K ′′vv〉, so we can say that

S ′′rel,vv = 0. (4.1.6)

This equation is implied by (4.1.2) but is weaker, since it does not require us to know what
the modular Hamiltonian actually is. The extra information of (4.1.2) is the expression
(4.1.4) for the second variation of the modular Hamiltonian. It can be useful to formulate
our results in terms of relative entropy instead of entropy itself because relative entropy is
generally free from UV divergences, at least for nice states.4

Non-Null Deformations Now let us move beyond the null case. Our goal in doing
this is to understand the simplest setup where non-null deformations can be analyzed, and
so we will make several additional restrictions that we do not make in the null case. As
explained in [69, 52] and below in Section 4.2, (4.1.2) for the null case is a well-defined, finite
equation in field theory. Local stationarity conditions on the entangling surface are enough to
eliminate state-independent geometric divergences in the entropy, and the remaining state-
dependent divergences cancel between the entropy and stress tensor. In the non-null case,
eliminating divergences is more difficult. State-independent divergences can be dealt with
by considering the vacuum-subtracted entropy ∆S rather than just S. State-dependent
divergences associated with low-lying operators in the theory are more problematic. To
eliminate these divergences, it is enough to restrict our attention theories where all relevant
couplings have mass dimension greater than d/2, and to states where operators of dimension
∆ ≤ d/2 have vanishing expectation values near the entangling surface. The idea of these
restrictions is to make sure there are no parameters with scaling dimension small enough
to contribute to divergences. We will make the further restriction in the non-null case to
planar entangling surfaces, and this last restriction is made purely to simplify the analysis
and presentation. With these assumptions in place we find

∆S ′′µν = 2π

(
nρµn

σ
ν 〈Tρσ〉+

d2 − 3d− 2

2(d+ 1)(d− 2)
nµνh

ab〈Tab〉
)
, (4.1.7)

where nµν is the normal projector to the entangling surface and hab is the intrinsic metric
on the entangling surface.5 Note that (6.3.8) implies that S ′′rel,µν = 0.

4It is possible for relative entropy to be infinite, for instance if we take our region to be the whole space
and consider two orthogonal pure states. This is an expected and understood type of infinity, and not
dependent on a choice of UV regulator.

5In [66], a quantum version of the dominant energy condition which involved spacelike deformations of
entropy was proposed for d = 2 dimensions. In that inequality, timelike components of the stress tensor
were bounded by spacelike components of the entropy variation, whereas in (6.3.8) timelike components of
the stress tensor are related to timelike components of ∆S′′µν (ignoring the second term of (6.3.8), which
is absent in two dimensions). Our techniques are not directly applicable to two dimensions, and a näıve
extrapolation of (6.3.8) is probably incorrect, but it would interesting to investigate this issue further in the
future.
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Consequences for Field Theory and Gravity We view (4.1.2) and (6.3.8) as deep
truths about interacting quantum field theories, worthy of further study. At present, our
evidence for these conjectures comes from holography. We will calculate S ′′µν directly and
prove that (4.1.2) and (6.3.8) hold precisely at leading order in large-N for all bulk states.
We will also argue that subleading corrections in 1/N do not alter these conclusions. While
this does not amount to a full proof, it is enough evidence for us to posit that (4.1.2) is true
universally, and that (6.3.8) holds with relatively few additional assumptions.

An immediate application, which we discuss in Section 4.6, is to gravity. If we couple our
field theory to gravity, then we can effectively isolate the δ-function part of the null second
variation by deforming the entangling surface over a Planck-sized, or slightly larger, domain.
According to the Raychaudhuri equation, if the surface is locally stationary then the leading
change in its area due to this deformation is determined by Rvv, the null-null component
of the Ricci tensor. Using (4.1.2) together with Einstein’s equations, Rvv = 8πGNTvv, we
learn that this change in area is precisely canceled by 4GNS

′′
vv. This means that the leading-

order change in generalized entropy—area in Planck units plus entropy—is actually zero
under such a deformation. In Section 4.6 we will show how this argument can also be re-
versed, demonstrating that this leading-order cancellation in the variation of the generalized
entropy can be taken as a fundamental principle and used to derive Einstein’s equations.
This is essentially an update of the thermodynamic derivation of Einstein’s equations by
Jacobson [70].

Outline In Section 4.2 we review some of the basic concepts of entropy, relative entropy,
and the holographic setup that will be relevant for our calculation. In Section 4.3 we prove
(4.1.2) for situations where it is sufficient to consider linear perturbations of the bulk ge-
ometry. This includes any state where gravitational backreaction in the bulk is small. In
Section 4.4 we extend this proof to any bulk state. The idea is that S ′′vv is related to near-
boundary physics in the bulk, and for any state the near-boundary geometry is approximately
vacuum. So the proof reduces to the linear case. In Section 4.5 we move away from null
deformations to prove (6.3.8) using the same techniques. We conclude in Section 4.6 with
a discussion of extensions and implications of our work. Several appendices are included
discussing closely related topics.

4.2 Setup and Conventions

In this section we will make some general remarks about the known relations between entropy
and energy, and the implications of our conjecture.

The Field Theory Setup

Let u = (t − x)/
√

2 and v = (t + x)/
√

2 be null coordinates, and let y denote the other
d − 2 spatial coordinates. For now, and for most of the rest of the paper, we will take
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Figure 4.1: Most of our work concerns the variations of entanglement entropy for the yellow
regionR whose boundary ∂R lies on the null plane u = 0. The entangling surface is specified
by the function V (y).

the boundary of our region ∂R to be a section of the null plane u = 0. This boundary is
specified by the equation v = V (y). We take the region R to be a surface lying witin the
“right quadrant,” having u < 0 and v > V (y) (marked in yellow in Fig 4.1). A one-parameter
family of functions Vλ(y) specifies a one-parameter family of regions R(λ). We always take
the one-parameter family to be of the form Vλ(y) = V0(y) + λV̇ (y) with V̇ ≥ 0, so that λ
plays the roll of an affine parameter along a future-directed null geodesic located at position
y.

Given any global state of the theory, we can compute the von Neumann entropy S of the
region R. Keeping the state fixed, the entropy becomes a functional of the boundary of the
region, S = S[V (y)]. When we have a one-parameter family of regions, then we can write
S(λ) = S[Vλ(y)]. Throughout the rest of this work we will be interested in the derivatives of
S with respect to λ, as well as the functional derivatives of S with respect to V (y). These
are related by the chain rule:

dS

dλ
=

∫
dd−2y

δS

δV (y)
V̇ (y), (4.2.1)

d2S

dλ2
=

∫
dd−2ydd−2y′

δ2S

δV (y)δV (y′)
V̇ (y)V̇ (y′). (4.2.2)

We can parametrize the second functional derivative as follows:

δ2S

δV (y)δV (y′)
= S ′′vv(y)δ(d−2)(y − y′) +

(
δ2S

δV (y)δV (y′)

)
od

. (4.2.3)



CHAPTER 4. ENERGY IS ENTANGLEMENT 41

We have extracted the δ-function term explicitly, which we sometimes refer to as the “di-
agonal” part, and the remainder carries the label “od” for “off-diagonal.” Note that the
off-diagonal part of the variation does not have to vanish at y = y′. The quantity S ′′vv is the
same as S ′′ in [16, 19, 11].

In addition to the entropy of the region R, we can define the vacuum-subtracted modular
energy, ∆〈K〉, and relative entropy with respect to the vacuum, Srel, associated to the region
R. The modular energy is given by the boost energy along each generator of the null
plane [68]:

∆〈K〉 = 2π

∫
dd−2y

∫ ∞
V (y)

dv (v − V (y))〈Tvv〉. (4.2.4)

The relative entropy is defined as the difference between the vacuum-subtracted modular
energy and the vacuum-subtracted entropy:

Srel = ∆〈K〉 −∆S. (4.2.5)

For the regions we are talking about, the entropy of the vacuum is stationary and so drops
out when we take derivatives of Srel. Then for a one-parameter family of regions we have
the relations

dSrel

dλ
= −

∫
dd−2y

[
δS

δV (y)
+ 2π

∫ ∞
V (y)

dv 〈Tvv〉
]
V̇ (y), (4.2.6)

d2Srel

dλ2
=

∫
dd−2y (2π〈Tvv〉 − S ′′vv) V̇ (y)2 −

∫
dd−2ydd−2y′

(
δ2S

δV (y)δV (y′)

)
od

V̇ (y)V̇ (y′).

(4.2.7)

Note here that our conjectured equation (4.1.2) can be restated as saying that the diagonal
second variation of the relative entropy is zero. These equations will be mirrored holograph-
ically in Section 4.3 below.

The Bulk Setup

While we have a few remarks on the free-field and weakly-interacting cases in Appendix A.7,
most of our nontrivial evidence for (4.1.2) and (6.3.8) comes from holography. In this section
we will describe the holographic setup for the calculations outlined above. We are actually
able to do without much of this machinery in Section 4.3, though it will become important
afterward.

The boundary theory is a quantum field theory in d-dimensional Minkowski space ob-
tained by deforming a CFT with relevant couplings. We take the bulk metric to be in
Fefferman-Graham gauge (at least near the boundary) and choose to set the AdS length to
one:

ds2
d+1 =

1

z2

(
dz2 − 2dudv + d~y2

d−2 + γµνdx
µdxν

)
. (4.2.8)
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Here xµ stands for u, v, or y. In the small-z expansion, the metric γµν is given by [71]6

γµν =
∑
α

γ(α)
µν z

α (4.2.9)

In a fully-quantum treatment, γµν is an operator in the bulk theory and we would need to
take the expectation value of any geometric expression to extract a numerical result. Then
there would be a difference between, say, 〈γµν〉2 and 〈γ2

µν〉 that we would have to resolve
in order to move beyond leading order in a semiclassical expansion. A consequence of our
analysis below is that only expressions which are linear γµν end up being important for
proving (4.1.2) and (6.3.8), and thus this potential difficulty is avoided. With that in mind,
we will treat the bulk geometry as classical for ease of presentation.

The term at order zd in (4.2.9), γ
(d)
µν , contains information about 〈Tµν〉 [72]. We will review

the dictionary below. The terms at lower orders than zd are associated with low-dimension
operators in the theory [71]. If O is a relevant operator of dimension ∆ and coupling g, then
possible such terms that we need to be aware of include

〈Om〉ηµνzm∆, gmηµνz
m(d−∆), g〈O〉ηµνzd, (4.2.10)

with m ≥ 2. The coupling g, when present, is a constant. With only a single operator, terms
involving derivatives of O will always be of higher order than zd as long as the unitarity
bound ∆ > (d − 2)/2 is obeyed. When there is more than one low-dimension operator
then we can also have terms with different combinatorial mixes of couplings and expectation
values [73]. In this case, there could also be terms of the form

gl1〈O2〉ηµνzl(d−∆1)+∆2 , gl1∂µ∂ν〈O2〉zl(d−∆1)+∆2+2 (4.2.11)

where O1 and O2 are two operators and g1 is a relevant coupling associated to O1. There are
other possibilities as well, but we will not need to enumerate them. In order to demonstrate
the cancellation of divergences explicitly in (4.1.2), we would need to make use of certain
relationships among the various parts of the small-z expansion of the metric. Since there are
general arguments for the finiteness of (4.1.2), we will be content to show that the leading
state-dependent divergences cancel.7 To that end, we will need the following fact. Suppose
that in the sum (4.2.9) there is a term of the form γ

(α)
µν = γ(α)ηµν . Then, assuming that α

cannot be written as α1 +α2 for some other α1, α2 occuring in the sum, there will be another
term γ

(α+2)
µν with a null-null component given by

γ(α+2)
vv =

d− 2

(α + 2)(d− 2− α)
∂2
vγ

(α). (4.2.12)

6For the purposes of this discussion, we will assume all operators have generic scaling dimensions. In the
generic case on a flat background a log z term in the metric expansion is unnecessary.

7In other words, we will only explicitly demonstrate the finiteness of (4.1.2) given some conditions on
the operator dimensions which make the terms we display the only ones that are around.
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This equation is obtained by solving Einstein’s equations at small-z [72, 71]. Four-derivative
terms are also possible, at order α + 4, but if d ≤ 6 then the unitarity bound ensures that
α + 4 > d. For simplicity we will ignore those terms in this section, but with a little more
effort they can also be accounted for.

Holographic Entropy and its Variations Our tool for computing the entropy is the
Ryu-Takayanagi holographic entropy formula [31, 32] including the first quantum correc-
tions [5],8

S =
Aext

4GN

+ Sbulk. (4.2.13)

Aext refers to the area of the extremal area surface anchored to ∂R at z = 0. The dictionary
for computing variations in the entropy as a function of V (y) was laid out in [19] as follows.
Let the bulk location of the extremal surface be given by

xµ = X̄µ(y, z) = Xµ(y) + z2Xµ
(2)(y) + · · ·+ zd log zXµ

log + zdXµ
(d) + · · · , (4.2.14)

where the log term is important for even dimensions and the in the case of relevant defor-
mations with particular operator dimensions. Xµ(y) are the embedding functions of ∂R and
X̄µ(y, z) satisfies the extremal surface equation,

1√
H
∂α

(√
HHαβ∂βX̄

µ
)

+ ΓµρσH
αβ∂αX̄

ρ∂βX̄
σ = 0, (4.2.15)

where H is the induced metric on the extremal surface and Γ are bulk Christoffel symbols.
Note that we have introduced the notation X̄µ for the bulk extremal surface coordinates
which approach Xµ on the boundary. We will be interested in computing δAext/δX

µ(y),
which by extremality is a pure boundary term evaluated at a z = ε cutoff surface:

δAext = δ

∫
dd−2ydz

√
H = −

∫
z=ε

dd−2y
√
HHzzgµν∂zX̄

µδX̄ν . (4.2.16)

All of the factors appearing in the integrand need to be expanded in ε. The result will be a
power series in ε containing divergent terms as well as finite terms:

δAext

δXµ
= − Kµ

(d− 2)εd−2
+ (lower-order divergences in ε)− (dX(d)

µ +X(log)
µ ) +O(ε). (4.2.17)

Here Kµ is the extrinsic curvature of the entangling surface. We need to ensure that all
divergences cancel or otherwise vanish in (4.1.2) and (6.3.8) in order that these be well-
defined statements. So here we will explain the structure of the divergences in the entropy
variations, as well as how to extract the finite part.

8In this section and in our main analysis we are only working to next-to-leading order so that the
prescriptions of [5] and [74, 49] agree. If we wanted to work to higher orders in 1/N , we would need to use
the quantum extremal surface prescription instead [74, 49]. We discuss this further in Section 4.6.
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Null Variations First, we will consider the special case Xµ(y) = V (y), which is the
relevant case for (4.1.2). If there are no terms of the form (4.2.11) in the metric, then the
situation reduces to that of [19], in which it was shown that the divergent terms in (4.2.17)
are absent as long as the entangling surface ∂R is locally constrained to lie in a null plane.
If there are state-dependent terms of the form (4.2.11) in the metric, then there will be non-
vanishing divergent contributions to δAext/δV (y) proportional to, e.g., g1∂v〈O2〉. In general,
an extra term at order zα in the metric leads to a contribution at order α + 2 in X̄µ that
we can obtain by solving (4.2.15) at small z. We only need to concern ourselves with terms
that have α + 2 < d, as those are the ones which lead to divergences. As mentioned above,
for d ≤ 6 the only terms in the metric at order α such that α + 2 < d are those of the form
γ

(α)
µν = γ(α)ηµν . After solving the extremal surface equation in the presence of such a term

we find

(α + 2)(α + 2− d)Xµ
(α+2) =

2(d− 2)− αd
2(d− 2)

Kµγ(α) +
d− 2

2
∂µγ(α). (4.2.18)

Plugging this in to (4.2.16) leads to

δAext

δV (y)
=

d− 2

2(d− 2− α)εd−2−α∂vγ
(α)(y) + dU(d)(y) +

δSbulk

δV (y)
, (4.2.19)

where we have eliminated a potential log term by restricting ourselves to the case of generic
operator dimensions. The non-generic case can be recovered later as a limit. Using this, we
can find the leading-order contribution to the second variation of the entropy:

δ2S

δV (y)δV (y′)
=

d− 2

8GN(d− 2− α)εd−2−α∂
2
vγ

(α)(y)δ(d−2)(y−y′)+
d

4GN

δU(d)(y)

δV (y′)
+

δ2Sbulk

δV (y)δV (y′)
.

(4.2.20)
Even though this is a very complicated expression in general, we will be able to extract the
δ-function contribution and see that it is given by 〈Tvv〉 as in (4.1.2).

Non-Null Variations For a general non-null variation we lose some of the simplifications
present in the non-null case. One additional assumption we will make in Section 4.5 is
to consider entangling surfaces which are planar prior to being deformed, which simplifies
some of the geometric expressions. More importantly, however, notice that (6.3.8) only
makes reference to the vacuum-subtracted entropy variation, ∆S ′′µν , and not S ′′µν itself. So
any state-independent terms in (4.2.17) can be ignored. Furthermore, for the discussion of
the non-null variations we are only going to consider theories where relevant couplings (if
present) have mass dimension greater than d/2, and states where operators of dimension
∆ ≤ d/2 have vanishing expectation values in the vicinity of the entangling surface. The
result of these restrictions is that terms like (4.2.11) will not be present in the metric up to
order zd, and so there will be no state-dependent entropy divergences. Thus for our analysis
of non-null deformations, it follows from (4.2.17) that

δ2∆S

δXµ(y)δXν(y′)
= − d

4GN

∆

(
δX

(d)
µ (y)

δXν(y′)

)
+

δ2∆Sbulk

δXµ(y)δXν(y′)
. (4.2.21)
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In Section 4.5 we will also not deal explicitly with the bulk entropy term, but we expect its
contributions to be qualitatively similar to the bulk entropy term in the null case.

Identification of the Stress Tensor We will also need a holographic formula for the
stress tensor, 〈Tµν〉. Normally a renormalization procedure is required to define a finite
stress tensor. Since our conjectures (4.1.2) and (6.3.8) are meant to be finite equations, it
will be enough to regulate the stress tensor with a cutoff as we did with the entropy above.9

By definition, the (regulated) stress tensor is computed as the derivative of the regulated
action:

〈Tµν〉 =
2
√
g

δIreg

δgµν
− (vacuum energy) . (4.2.22)

In holography, the regulated action is defined as the action of the bulk spacetime within the
z = ε cutoff surface, plus additional boundary terms (like the Gibbons-Hawking-York term)
which are necessary to make the variational principle well-defined. [72, 75]. For Einstein
gravity in the bulk with minimally-coupled matter fields, the regulated stress tensor is then
given by the Brown-York stress tensor evaluated on the z = ε cutoff surface [76]:10

2
√
g

δIreg

δgµν
=

−1

8πGNεd−2

(
Kµν −

1

2
Kgµν(x, ε)

)
=

−1

8πGNεd−2

(
− 1

2ε
∂εγµν(x, ε) +

1

2ε
ηµνη

ρσ∂εγρσ(x, ε) +
1− d
ε2

ηµν

)
(4.2.23)

Any state-dependent terms in the metric that occur at order zα with α < d will contribute
to divergences in the stress tensor. In particular, when we discuss null variations we will find
contributions from terms of the form (4.2.12). In total we find

〈Tvv〉 =
α + 2

16πGNεd−2−αγ
(α+2)
vv +

d

16πGN

γ(d)
vv

=
d− 2

16πGN(d− 2− α)εd−2−α∂
2
vγ

(α) +
d

16πGN

γ(d)
vv . (4.2.24)

In the second line we used (4.2.12). Comparing this to (4.2.20), we see that the divergences
indeed cancel out in (4.1.2).

For the non-null case we have additional difficulties. One can easily see that, in general,
there are state-dependent divergences in 〈Tµν〉 that do not appear in S ′′µν . For example, if
there are operators of dimension ∆ < d/2 in the theory then there will be a term in γµν at

9We still want to define the stress tensor so that 〈Tµν〉 = 0 in vacuum, so the constant vacuum energy
term will be subtracted.

10Care must be taken to impose the correct boundary conditions at z = ε. Since we are interested in
a flat-space result, we must place a flat metric boundary condition at z = ε before taking ε → 0. This is
the only way to get the divergences to cancel out properly between the entropy and the energy in (4.1.2),
and this treatment of the boundary condition is especially important if one wants to extend the analysis to
curved space [69].
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order z2∆ proportional to 〈O2〉ηµν . By the unitary bound, 2∆ > d− 2, such a term will not
contribute divergences to S ′′µν , but it will contribute divergences to the stress-tensor of the
form

〈Tµν〉 |ε2∆−d ∝ ε2∆−d〈O2〉ηµν . (4.2.25)

Thus, when we derive the relationship (6.3.8) in Section 4.5, we will put sufficient restrictions
on the theory and the states in consideration so that both sides of the equality are finite and
well-defined. As in the case of the entropy variation, all divergences in 〈Tµν〉 can be eliminated
by restricting the theory so that any nonzero relevant couplings have mass dimension greater
than d/2, and by restricting the state so that operators of dimension ∆ ≤ d/2 have vanishing
expectation values (at least locally near the entangling surface). When this is true, the metric
perturbation γµν starts at order zd, and so 〈Tµν〉 will be finite. Furthermore, we can treat the
stress tensor as being effectively traceless even though we are not in a CFT. That is because
in general the trace is proportional to products of couplings and scalar expectation values,
g〈O〉, but with our restrictions on the theory and state there is no pair of nonzero coupling
and operator expectation value with total dimension adding up to d. The end result is the
standard formula for the stress tensor familiar from holographic renormalization [72]:

〈Tµν〉 =
d

16πGN

γ(d)
µν . (4.2.26)

We will make use of this formula in Section 4.5.

4.3 Null Deformations and Perturbative Geometry

In this section we will prove the relation S ′′vv = 2π〈Tvv〉 for states with geometries corre-
sponding to perturbations of vacuum AdS where it suffices to work to linear order in the
metric perturbation. This includes classical as well as quantum states. Below in Section 4.4
we will extend our results to non-perturbative geometries.

The arguments presented here can be repeated for linearized perturbations to a non-
AdS vacuum, i.e., the vacuum of a non-CFT. We restrict ourselves to the AdS case because
explicit solutions to the equations are available, and the AdS case also suffices for nearly all
applications in the following sections. We will see in Section 4.4 that in certain situations
an appeal to the non-AdS vacuum case is necessary, but because of general arguments (like
the known form of the modular Hamiltonian as discussed in the Introduction) we know that
the non-AdS case should not behave differently than the AdS case.

Bulk and Boundary Relative Entropies

In [7] it was argued that bulk and boundary relative entropies are identical:

Srel = Srel,bulk, (4.3.1)
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where Srel,bulk is calculated using the bulk quantum state restricted to the entanglement
wedge of the boundary region R — the region of the bulk bounded by the extremal surface
and R.11

We already discussed in Section 4.2 the form of Srel for the regions we are considering,
but to leading order in bulk perturbation theory there is an analogous simple formula for
Srel,bulk. We only need to know two simple facts. First, if ∂R is restricted to lie in the u = 0
plane on the boundary then, to leading order, the extremal surface in the bulk also lies in
the u = 0 plane. Second, to leading order the bulk modular energy corresponding to such a
region is given by the AdS analogue of (4.2.4):

∆Kbulk = 2π

∫
dzdd−2y

zd−1

∫ ∞
V̄ (y)

dv (v − V̄ (y, z))〈T bulk
vv 〉. (4.3.2)

In keeping with our earlier notation, V̄ (y, z) gives the location of the bulk extremal surface
with V̄ (y, z = 0) = V (y). Now we simply solve (4.3.1) for the vacuum-subtracted boundary
entropy ∆S,

∆S = ∆〈K〉 −∆〈Kbulk〉+ ∆Sbulk, (4.3.3)

and take two derivatives with respect to a deformation parameter λ to find

d2S

dλ2
= 2π

∫
dd−2y 〈Tvv〉V̇ 2 − 2π

∫
dzdd−2y

zd−1
〈T bulk

vv 〉 ˙̄V 2 +
d2Sbulk

dλ2
. (4.3.4)

The first term represents a contribution of 2π〈Tvv〉 to S ′′vv. So (4.1.2), S ′′vv = 2π〈Tvv〉, amounts
to showing that the remaining two terms do not contribute to S ′′vv. We examine them both
in the next section.

Proof of the Conjecture

From the discussion around (4.3.4), the conjecture S ′′vv = 2π〈Tvv〉 amounts to the statement
that the terms

− 2π

∫
dzdd−2y

zd−1
〈T bulk

vv 〉 ˙̄V 2 +
d2Sbulk

dλ2
. (4.3.5)

do not contribute a δ-function to the second variation of S. Together these terms comprise
the second derivative of the bulk relative entropy. We treat the two terms individually.

Bulk Modular Energy The modular energy term is simple to evaluate. Note that (4.3.2)
depends on the entangling surface V (y) through the extremal surface V̄ (y, z). So functional
derivatives of that expression with respect to V (y) involves factors of δV̄ (y, z)/δV (y′). This

11At higher orders in 1/N this equation is corrected [5, 56, 6]. We will not go into these corrections in
detail, but will make a few comments below in Section 4.6.



CHAPTER 4. ENERGY IS ENTANGLEMENT 48

is the boundary-to-bulk propagator of the extremal surface equation in pure AdS. The result,
which can be extracted from our discussion in later sections, is [77]

δV̄ (y, z)

δV (y)
=

2d−2Γ(d−1
2

)

π
d−1

2

zd

(z2 + (y − y′)2)d−1
. (4.3.6)

Then we have

δ2Kbulk

δV (y1)δV (y2)
= 2π

(
2d−2Γ(d−1

2
)

π
d−1

2

)2 ∫
dzdd−2y

zd−1
〈T bulk

vv 〉
z2d

(z2 + (y − y1)2)d−1(z2 + (y − y2)2)d−1

(4.3.7)
We can diagnose the presence of a δ-function by integrating with respect to y1 over a small
neighborhood of y2. If the result remains finite as the size of the neighborhood goes to zero,
then we have a δ-function. Whether or not this happens depends on the falloff conditions
on 〈T bulk

vv 〉 near z = 0, which in turn depends on the matter content of the bulk theory. If we
suppose 〈T bulk

vv 〉 ∼ zβ as z → 0, then it is easy to see that there is no δ-function so long as

β > d− 2. (4.3.8)

For scalar fields in the bulk, T bulk
vv ∼ (∂vφ)2 ∼ z2∆ where ∆ is the dimension of the dual

operator. This is even true when the non-normalizable mode φ ∼ gzd−∆ is turned on, as
long as the coupling g is constant. For bulk Dirac fields, T bulk

vv ∼ ψ̄Γv∇vψ ∼ z2∆−1. In
either case, equation (4.3.8) reduces to the unitarity bound on the dual operator dimension,
∆ > (d − 2)/2 + s, where s = 0, 1/2 is the spin. In the limiting case where the unitarity
bound is saturated and the dual operator is a free scalar or free fermion, one may find a
δ-function in (4.3.7). Indeed, in Appendix A.7 we find extra contributions to S ′′vv besides
2π〈Tvv〉 for a free scalar field, so the appearance of an additional δ-function in this case is an
expected feature. The case of a free fermion has not yet been worked out in the field theory,
but methods similar to those in Appendix A.7 should be applicable. For operators which do
not saturate the unitarity bound, we have shown that ∆Kbulk does not contribute to S ′′vv.

Bulk Entropy It is much more difficult to make statements about d2Sbulk/dλ
2. In a

coherent bulk state we know that d2Sbulk/dλ
2 = 0, so for that class of states we are done.12

More generally, we can write

δ2Sbulk

δV (y1)δV (y2)
=(

2d−2Γ(d−1
2

)

π
d−1

2

)2 ∫
dd−2ydzdd−2y′dz′

δ2Sbulk

δV̄ (y, z)δV̄ (y′, z′)

(zz′)d

(z2 + (y − y1)2)d−1(z′2 + (y′ − y2)2)d−1

(4.3.9)

12In this section we treat the bulk matter fields as free. If we turn on weak interactions, then the comments
of Appendix A.7 apply. Qualitatively nothing changes.
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and ask what sort of behavior would be required of δ2Sbulk/δV̄ (y, z)V̄ (y′, z′) in order to lead
to a δ-function in y1 − y2.

As a toy model, we can imagine a collection of particles on the u = 0 surface which are
entangled in a way that depends on their distance from each other. This is a fairly general
ansatz for the state of a free theory in the formalism of null quantization [15]. At small z
(which is the dominant part for our calculation) this would correspond to a second variation
of the form

δ2Sbulk

δV̄ (y, z)δV̄ (y′, z′)
∼ (zz′)∆

(zz′)d−1
F

(
zz′

(z − z′)2 + (y − y′)2

)
. (4.3.10)

The factor (zz′)∆/(zz′)d−1 reflects that entropy variations should be proportional to the
amount of matter present at locations z and z′. The numerator encodes the falloff conditions
on the density of particles in a way that is consistent with the falloff conditions for a bosonic
matter field, and the denominator is a measure factor that converts coordinate areas to
physical areas. The function F is arbitrary.

With the assumption of (4.3.10), a constant rescaling of all coordinates by α leads to
an overall factor of α4−2d+2∆ in (4.3.9). A δ-function in y1 − y2 would scale like α2−d, and
anything that scales with a power of α less than 2− d would correspond to a more-divergent
distribution, like the derivative of a δ-function. As long as ∆ > (d − 2)/2 this is avoided,
and a δ-function is only present when the unitarity bound ∆ = (d− 2)/2 is saturated. This
is consistent with what we found previously for the modular energy, and with our general
expectations for free theories.

4.4 Non-Perturbative Bulk Geometry

Now we turn to a proof that applies for a general bulk geometry, still restricting the deforma-
tions to be null on the boundary. We will use the techniques outlined in Section 4.2, which
relate the entropy variations to changes in the bulk extremal surface location. At first we
will stick to boundary regions where ∂R is restricted to a null plane, leaving a generalization
to regions where ∂R only satisfies certain local conditions for Section 4.6.

Extremal Surface Equations

Small z, Large k The extremal surface equation (4.2.15) for Ū and V̄ is a very complicated
equation. If we perturb the boundary conditions by taking V → V + δV , then the responses
δŪ and δV̄ will satisfy the linearized extremal surface equation, which is a bit simpler. It
may be that the coordinates we have chosen are not well-suited to describing the surface
perturbations deep into the bulk. That problem is solved by only aiming to analyze the
equations in the range z < z∗ for some small but finite z∗. In fact, by choosing z∗ small
enough we can say that the spacetime is perturbatively close to vacuum AdS, with the
perturbation given by the Fefferman-Graham expansion (4.2.9). Since the corrections to the
vacuum geometry are small when z∗ is small, the extremal surface equation reduces to the
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Figure 4.2: By restricting attention to z < z∗ the geometry is close to pure AdS, and we can
solve for δX̄ perturbatively. All of the z < z∗ data imprints itself as boundary conditions at
z = z∗. We show that these boundary conditions are unimportant for our analysis, which
means that a perturbative calculation is enough.

vacuum extremal surface equation plus perturbative corrections. All of the deep-in-the-bulk
physics is encoded in boundary conditions at z = z∗. The situation is illustrated in Fig. 4.2

The boundary conditions at z = z∗ are essentially impossible to find in the general case,
so the restriction to z < z∗ does not make the problem of finding the extremal surface any
easier. However, according to (4.2.20) all we are interested in is the δ-function part of δU(d).
It will turn out that this quantity is actually independent of those boundary conditions.

The idea is very simple. In Fourier space a δ-function has constant magnitude. That
means it does not go to zero at large values of k, unlike the Fourier transform of a smooth
function. So the strategy will be to analyze the extremal surface equation in Fourier space at
large k. We will see that the large-k response of Ū (and hence U(d)) is completely determined
by near-boundary physics, and in particular will match the results we found in previous
sections. This will establish that S ′′vv = 2π〈Tvv〉 for very general bulk states.

Integral Equation for Ū We will begin by finding an integral equation for Ū in the range
z < z∗. Since Ū vanishes at z = 0 it must remain small throughout z < z∗, as long as z∗ is
small enough, and so we can use perturbation theory to find Ū in that range. Then we will
compute the response of Ū to variations of the boundary conditions V at z = 0. Expanding
(4.2.15) in small z, we can write the equation for Ū as

∂2
aŪ + ∂2

z Ū +
1− d
z

∂zŪ = J [γµν , V̄ , Ū ], (4.4.1)
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where γµν/z
2 is the deviation of the metric from vacuum AdS, as in (4.2.9). To solve this

equation perturbatively we require a Green’s function G(z, y|z′, y′) of the linearized extremal
surface equation that vanishes when z = 0 or z = z∗. Then the solution to (4.4.1) can be
written as

Ū(y, z) =

∫
dd−2y′

zd−1
∗

∂z′G(y, z|y′, z∗)Ū(y′, z∗) +

∫
z<z∗

dd−2y′dz′

z′d−1
G(y, z|y′, z′)J(y′, z′) (4.4.2)

It is important to remember that J(y, z) is itself a functional of Ū , and the usual methods
of perturbation theory would involve solving for Ū iteratively. It will be more useful for us
to look at the Fourier transform of this equation:

Ū(k, z) = z1−d
∗ ∂z′Gk(z|z∗)Ū(k, z∗) +

∫ z∗

0

dz′

z′d−1
Gk(z|z′)J(k, z′). (4.4.3)

The Green’s function with the correct boundary conditions is easily obtained from the stan-
dard Green’s function GAdS by adding a particular solution of the vacuum extremal surface
equation. In Fourier space, the answer is

Gk(z|z′) = GAdS
k (z|z′) + (zz′)d/2Id/2(kz)Id/2(kz′)

Kd/2(kz∗)

Id/2(kz∗)
(4.4.4)

where

GAdS
k (z|z′) = −

{
(zz′)d/2Id/2(kz)Kd/2(kz′), z < z′,

(zz′)d/2Id/2(kz′)Kd/2(kz), z > z′.
(4.4.5)

In the limit of large k, the first term of (4.4.3) becomes exponentially suppressed. So we see
that the boundary conditions at z = z∗ do not matter. Furthermore, the integration range
z′ & 1/k in the second term also becomes exponentially suppressed. So only the small-z part
of the source J contributes at leading order in the large-k limit.

Terms in the Source

Let us consider the form of the source in position space in more detail. We know that J =
J [Ū , V̄ , γ] is a functional of the extremal surface coordinates and the metric perturbation.
We can treat J as a double power series in γ and Ū since we are doing perturbation theory
in those two parameters. We will repeatedly take advantage of the “boost” symmetry of
the equation: under the coordinate transformation u → αu, v → α−1v, the source must
transform as J → αJ in order for the whole equation to be covariant. Since every occurrence
of V̄ must be accompanied by either a γ or Ū to preserve the boost symmetry, J [Ū , V̄ , γ]
is actually a triple power series in all three of its parameters. Another important fact
is dimensional analysis, which comes from scaling all coordinates together: J has length
dimension −1, while Ū and V̄ have dimension 1 and γ has dimension zero. This will also be
used to restrict the types of terms we can find.



CHAPTER 4. ENERGY IS ENTANGLEMENT 52

The variation δŪ satisfies an integral equation similar to that of Ū except with the source,
J , replaced by the variation of the source, δJ . Like J , we can treat δJ as a power series.
Each term in the δJ power series contains a single δŪ , δγ, or δV̄ , multiplied by some number
of Ū , V̄ , and γ factors (and their derivatives). It is important to note that these unvaried
Ū , V̄ , and γ factors are smooth, and therefore their Fourier transforms decay at large k. So
the Fourier transform of a term in δJ looks schematically like

δJ(k) ∼
∫
k′<<k

dk′ h(k′)δΨ(k − k′), (4.4.6)

where Ψ is either γ, V̄ , Ū , or their derivatives and h is the Fourier transform of a smooth
function. The k-dependence at large k of a given term in δJ is completely determined by
the factor δΨ being varied. The case where Ψ = γ can be reduced immediately to the other
two, because δγ = δV̄ ∂vγ + δŪ∂uγ.

In Fourier space, we can write δJ(k, z) as a sum of terms of the form δJmnz
mkn at small

z and large k.13 Since the effect of z∗ is exponentially suppressed at large k, we can drop
the first term in (4.4.3) and push the limit in the second term off to infinity. Additionally,
the difference between Gk(z|z′) and GAdS

k (z|z′) is exponentially suppressed. Thus for our
purposes we have

δŪ(k, z) =
∑
m,n

∫ ∞
0

GAdS
k (z|z′)δJmnzmkn +O(e−kz∗) (4.4.7)

=
∑
m,n

δJmn

(
knz2+m(d− 2(m+ 2))

d(m+ 2)(d−m− 2)
− zd2m−dkn−m−2+dΓ

(
1 + m

2

)
Γ
(
m−d+2

2

)
Γ(1 + d/2)

)
+O(zd+1)

If m < d−2 then the first term in (4.4.7) represents a contribution to Ū that could have been
obtained by doing the small-z expansion of the extremal surface equation. In a CFT these
would consist only of geometric terms that depend on extrinsic curvatures of the entangling
surface, but our boundary condition U = 0 guarantees that those vanish. Still, when a
relevant deformation is turned on there may be terms proportional to gl1∂v〈O2〉 which enter
Ū at low orders in z. An important fact, enforced by the unitarity bound, is that these
low-order terms are all linear in expectation values. When m = d − 2 each of the terms in
(4.4.7) becomes singular, but actually the combination above remains finite and generates
at zd log z term. Since (4.4.7) is well-behaved in this limit, we can treat the non-generic
case m = d− 2 as a limiting case of generic m. Thus throughout our discussion below m is
assumed to be generic. Finally, for d > 6 another term proportional to z4+m (and z6+m in
d > 8, etc.) should be included, but for simplicity we have not written it down. Qualitatively
it has the same properties as the z2+m term.

13There may also be terms in the source of the form zm log(z). Qualitatively these terms behave similarly
to the zm terms as far as the δ-function part of the entropy variation is concerned, so we will not explicitly
keep track of them.
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Our focus is on the zd term, as this is where the finite contributions to the entropy
variation come from, as in (4.2.20). From (4.4.7), we see that the δ-function is determined
by source terms with n−m = 2−d, which corresponds to k0 behavior at large k. So our task
is simply to enumerate the possible terms in δJ which have this behavior. We will see that
such terms are completely accounted for by the linearized analysis of the previous section,14

which completes the proof.

Ingredients Before diving into the terms of the source, we will collect all of the facts we
need about the function Ū , V̄ , γ, and their variations. In particular, we will need to know
what powers of k and z we can expect them to contribute to the source.

We begin with V̄ . Unlike Ū , V̄ does not have any particular boundary condition at
z = 0. Thus the Fefferman-Graham expansion for V̄ contains low powers of z that depend
on geometric data of the entangling surface. In particular, the boundary condition itself
enters V̄ at order z0, which is neutral in terms of the n−m counting. That same behavior
extends to the variation δV̄ : in Fourier space, the state-independent parts of δV̄ are functions
of the combination kz. In other words, we find schematically

δV̄ ∼ (1 + k2z2 + k4z4 + · · · )δV. (4.4.8)

The boundary condition δV itself is taken to go like k0 at large k (i.e., a δ-function variation).
So in terms of our power counting, which only depends on n − m, these terms are all
completely neutral. So a factor of δV̄ in the source is “free” as far as the power counting
is concerned. There will be other terms in δV̄ , even at low powers of z, but the terms in
(4.4.8) are the ones which dominate the n−m counting.

Ū is also an extremal surface coordinate, but it has the restricted boundary condition
U = 0. That means it does not possess terms like those in (4.4.8). The lowest-order-in-z
terms that can be present are of the form gl1∂v〈O2〉z2+l(d−∆1)+∆2 . It is only terms like this
which contain a single factor of O that can show up at lower orders than zd, because of the
unitarity bound ∆ > (d− 2)/2. Taking a variation, we find a term in δŪ of the form

δŪ ∼ gl1∂
2
v〈O2〉δV z2+l(d−∆1))+∆2 , (4.4.9)

which has n−m = −(2 + l(d−∆1) + ∆2).
The final ingredient is the metric perturbation γ. We don’t have to consider variations

of γ directly, since they can be re-expressed in term s of variations of Ū and V̄ . γ itself has a
Fefferman-Graham expansion which in includes information about the stress tensor at order
zd, but can have lower-order terms as well that depend on couplings and expectation values
of operators. We will see that the important terms in the source that affect the δ-function
response are those which are linear in γ.

14As mentioned in the previous section, for simplicity of presentation we are performing our perturbation
theory around empty AdS, whereas in complete generality one would want to perform the analysis based
around the vacuum of the theory in question. The difference is that some terms which are linear in expectation
values 〈O〉 might appear at higher orders in perturbation theory around empty AdS even though they are
fully accounted for in the linearized analysis about the correct vacuum.
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Terms with δŪ Now we will analyze the possible terms in the source which can be obtained
by piecing together the above ingredients. We begin with terms proportional to δŪ . As
stated above, there are dominant contributions to Ū in terms of the n −m counting which
are proportional to derivatives of expectation values of operators.

But Ū does not occur alone in the source J : since all terms with Ū alone in the equation
of motion are part of the linearized equation of motion on the left-hand-side of (4.4.1).
An additional factor of V̄ does not affect the dominant n − m value of the term, but the
combination Ū V̄ is also prevented from appearing in J by boost symmetry. We need to have
at least another factor of Ū , or else a factor of γ. The dominant possibility without using
γ is something of the form ∂Ū∂V̄ ∂2δŪ , where derivatives have been inserted to enforce the
correct total dimensionality. Taking into account the derivatives, a term like this can have
at most n−m = 3− 2(2 + l(d−∆1) + ∆2) < 1− d− 2l(d−∆1) < 2− d, using the unitarity
bound. So this sort of term will not matter for the δ-function response.

Making use of γ allows for more possibilities. Terms of the schematic form γδŪ in the
source can have n−m > 2−d, and if we allow fine-tuning of operator dimensions we can even
reach n −m = 2 − d. These sources are obtained by taking a state-independent term in γ
which is proportional to some power of g1 and a term in δŪ which is proportional to ∂2

v〈O2〉.
We can even multiply by more factors of γ, giving γlδŪ schematically, as well as factors of
V̄ , as long as we don’t involve more factors of Ū . A second factor of Ū brings with it a large
z-scaling, so we run into the same problem we had above in the Ū V̄ δŪ case. The end result is
that all of the potentially-important terms in this analysis are linear in the expectation value
〈O〉. That means they are subject to restrictions on the modular Hamiltonian as mentioned
in the Introduction, which means that they will actually not show up in (4.1.2) despite being
allowed by dimensional analysis.

Terms with δV̄ Now we consider terms in δJ that are proportional to a variation δV̄ .
As discussed above, δV̄ has several state-independent terms which are neutral in the n−m
counting. Due to the boost symmetry, δV̄ cannot occur alone in δJ . It must be accompanied
by at least two factors of Ū or one factor of γ. We have already discussed how two factors
of Ū have a large-enough z-scaling to make the term uninteresting, so it remains to consider
factors of γ.

Terms in the source proportional to δV̄ with only a single factor of γ are those present
in the theory of linearized gravity about vacuum AdS. Furthermore, since we argued that
boundary conditions at z = z∗ do not affect the answer, the Green’s function we use to
compute the effects of the source is also the same as we would use in linearized gravity
about vacuum AdS. We already considered the linearized gravity setup in Section 4.3, even
though we didn’t solve it using the methods of this section. In Section 4.3 we saw that
S ′′vv = 2π〈Tvv〉, and so it is enough for us now to prove that the general computation of the
δ-function terms reduces to the linearized gravity case. There is only one more loose end to
consider: terms in δJ proportional to δV̄ that have more than one factor of γ.

With more than a single factor of γ, it is clear that the only contributions that could
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possibly be important at large k are those coming from the powers of z less than zd in
(4.2.9). These terms are made up of couplings g, operator expectation values 〈O〉, and their
derivatives. In order to have the correct boost scaling, we need to include v-derivatives
acting on operator expectation values. As we have discussed many times, the unitarity
bound prevents any term with more than one factor of 〈O〉 from being important. So just
as with the δŪ terms discussed previously, all of these terms are subject to constraints from
the modular Hamiltonian and hence do not appear in (4.1.2)

Our analysis so far has been very simple , but we have reached an important conclusion
that bears repeating: the source terms which give the k0 behavior for δU(d) were already
present in the linearized gravity calculation of the previous section, and we are allowed to
use the ordinary Green’s function GAdS to compute their effects. In other words, for the
purpose of calculating the δ-function response we have reduced the problem to linearized
gravity. We have shown previously that the linearized gravity setup leads to S ′′vv = 2π〈Tvv〉,
and so our proof is complete.

4.5 Non-Null Deformations

Having established S ′′vv = 2π〈Tvv〉 for deformations of entangling surfaces restricted to lie in
the plane u = 0, we will now analyze arbitrary deformations of the entangling surface to
prove (6.3.8). The technique is very similar to that of the previous section. As discussed in
Sec 4.2, there are additional assumptions and restrictions we make in this case to help us deal
with divergences and to simplify the analysis. First, we restrict attention to theories where
all relevant couplings, if present, have mass dimension greater than d/2. Second, we restrict
the state so that operators with scaling dimension ∆ ≤ d/2 have vanishing expectation value
near the entangling surface. Finally, we restrict the entangling surface itself to be planar
prior to taking any variations.

New Boundary Conditions

Above we analyzed deformations within the null plane u = 0 at small z and large k. These
limits allowed us to show that the perturbation theory for δU(d) reduced to linearized gravity,
which we had already studied in Section 4.3. There strategy here is the same, except we
want to be able to perform perturbation theory on both Ū and V̄ in order to get more than
just the null-null variations. The simplest case, which is all that we will analyze in this work,
is to start with the boundary condition V = 0 at z = 0 in addition to U = 0. In other words,
we take our undeformed entangling surface to be the v = u = 0 plane. That is a severe
restriction on the type of surface we are considering, but we gain the flexibility of being able
to do perturbation theory in both Ū and V̄ . From (4.2.21),

δ2∆S

δXµ(y)δXν(y′)
= − d

4GN

∆

(
δX

(d)
µ (y)

δXν(y′)

)
+

δ2∆Sbulk

δXµ(y)δXν(y′)
, (4.5.1)
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where ∆S refers to the vacuum-subtracted entropy. Vacuum subtraction removes all state-
independent terms from the entropy, including divergences. blueFor the remainder of the
section, we will drop the bulk entropy contribution.

With the U = V = 0 boundary conditions, we can again write down our perturbative
extremal surface equation for the z < z∗ part of the bulk. Since the null direction is no
longer preferred, we will use a covariant form of the linearized equation:

∂2
aX̄

µ + ∂2
zX̄

µ +
1− d
z

∂zX̄
µ = Jµ[γ, X̄] (4.5.2)

Following the same steps as in the previous section, we can use Green’s functions to solve
this equation in Fourier space. There is one new ingredient that we did not have before.
When we computed the variation of U(d) with respect to V , we were changing the boundary
conditions of V̄ and computing the response in Ū . In particular, the boundary condition of
Ū itself remained zero. In the more general setup of this section, we need to compute the
response of a particular component of X̄µ when its own boundary conditions at z = 0 are
varied.

Since we only care about the δ-function contribution to the entropy variation, we will
immediately use δXµ(k) = eiky0ξµ as the boundary condition for δX̄µ. Here ξµ is just
a constant vector which tells us the direction of the perturbation. The presence of this
boundary condition at z = 0 is simple to account for with one additional term in the integral
equation for X̄µ compared to (4.4.3) in the previous section. In total, we now have

δXµ(k, z) = zd/2Kd/2(kz)
dkd/2

2d/2Γ(1 + d/2)
ξµeiky0

+ z1−d
∗ ∂z′G(z|z∗)δX̄µ(k, z∗) +

∫ z∗

0

dz′

z′d−1
Gk(z|z′)δJµ(k, z′) (4.5.3)

As above, in the large-k limit the term coming from boundary conditions at z = z∗ (the
first term in the second line of (4.5.3)) will drop out and so can be ignored completely.
The term from boundary conditions at z = 0 (the first line of (4.5.3)) will not drop out
automatically, and so will contribute to the second entropy variation. This contribution
to the entropy variation is known as the entanglement density in the literature and was
previously computed in [78, 79]. From (4.5.3) it is clear that the entanglement density is
completely determined by the AdS Green’s function and is therefore state-independent. By
restricting attention to the vacuum-subtracted entropy the entanglement density will drop
out, and in any case is not proportional to a δ-function.

Terms in the Source

As in the null deformation discussion of Section 4.4, we need to compute the effects of the
source δJµ. As we did there, we will accomplish this by cataloging the various terms which
can appear in the power series expansion of Jµ as a function of X̄ and γ. Again, terms
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which scale like knzm ultimately lead to kn−m+d−2 dependence at large k for δXµ
(d). Any

term in δJµ will look like δX̄ν multiplied by some function of γ and X̄. For the purposes
of computing δJµ only the state-independent parts of δX̄ν , represented by the first line of
(4.5.3), will matter. That is because these terms are a function of the combination kz, which
means they have n−m = 0. Now we just have to consider all of the possible combinations
of γ and X̄ which multiply δX̄.

There cannot be any terms in δJµ that are schematically of the form X̄δX̄ with some
derivatives but no factors of γ. Such a term would have to come from nonlinearities in the
vacuum AdS extremal surface equation. That equation is invariant under X̄ → −X̄, so
all terms have to have odd parity like the linear terms. Anything of the form X̄X̄δX̄, or
higher powers of X̄, will not contribute at large k because of power counting: The vanishing
boundary condition means that X̄ starts at order zd, which means that the most favorable
possible term of this type, (∂zX̄)2∂2

zδX̄, still only amounts to a contribution to the entropy
variation which scales like k2−d.

Now we consider terms which have at least one factor of γ. Because we have assumed
that all couplings have dimension greater than d/2 and that expectation values of operators
with dimension ∆ ≤ d/2 vanish, the leading order piece of γ scales like zd. Thus we can
get contributions to δX(d) which go like k0 from source terms which are schematically of the
form γ∂2δX̄, as well as other combinations. Given their importance, we will analyze terms
of the form γδX̄ below in more detail.

Terms with additional factors of X̄ or γ beyond the first power of γ will not lead to
non-decaying behavior at large k because of power counting. So we see that only the lin-
ear gravitational backreaction is necessary to completely characterize ∆S ′′µν . We will now
calculate those terms explicitly.

Linearized Geometry

We have reduced our task to computing Jµ to linear order in γ and X̄µ (the latter condition
comes from our choice of a planar undeformed entangling surface). This is a simple exercise
in expanding (4.2.15). The result in position space is

Jµ =− 1

2
∂zγcc∂zX̄

µ + ∂a(γab∂bX̄
µ)− ηµν∂zγνρ∂zX̄ρ

− ηµν(∂aγνρ + ∂ργνa − ∂νγaρ)∂aX̄ρ − 1

2
ηµν(2∂aγνa − ∂νγaa)−

1

2
∂aγcc∂aX̄

µ. (4.5.4)

a, b, c indices represent the y-directions and repeated indices are summed over. Taking the
variation and evaluating at X̄µ = 0 gives

δJµ =− 1

2
∂zγcc∂zδX̄

µ + ∂a(γab∂bδX̄
µ)− ηµν∂zγνρ∂zδX̄ρ

− ηµν(∂aγνρ + ∂ργνa − ∂νγaρ)∂aδX̄ρ

− 1

2
ηµν(2∂ρ∂aγνa − ∂ρ∂νγaa)δX̄ρ − 1

2
∂aγcc∂aδX̄

µ. (4.5.5)
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The only terms in (4.5.5) that will contribute at k0 are those with two y derivatives acting
on δX̄µ or with z derivatives, i.e., the first line of (4.5.5). Then the result for δXµ

(d) at large

k is obtained from (4.5.3) as

δXµ
(d)(k) =

−1

2d−2Γ(d/2)2

[(
〈γ(d)µ
ν 〉+

1

2
hab〈γ(d)

ab 〉η
µ
ν

)(
lim
z→0

1

2
zdKd/2(z)2

)
−
(
ηµν
kakb

k2
〈γ(d)
ab 〉
)(∫ ∞

0

dzzd+1Kd/2(z)2

)]
eiky0ξν

= −8πGN

d

[
〈T µν 〉+

1

2
hab〈Tab〉ηµν −

d

d+ 1
ηµν
kakb

k2
〈Tab〉

]
eiky0ξν (4.5.6)

Here we have explicitly included factors of the entangling surface metric hab (which is equal
to δab) rather than using repeated a, b indices for added clarity. In the last line, we have

used the dictionary (4.2.26) to replace γ
(d)
µν with 〈Tµν〉.

The first two terms of (4.5.6) correspond to δ-functions in position space. The final term
clearly contains a δ-function piece which will end up being proportional to the trace of 〈Tab〉,
but it also contains off-diagonal contributions. We can use the identity∫

dd−2k
kakb

k2
eik(y−y0) ∝ ∂a∂b

1

|y − y0|d−4
∝ δab − (d− 2)(y − y0)a(y − y0)b/(y − y0)2

|y − y0|d−2
.

(4.5.7)
to see the full effect in position space. However, for our purposes we are only interested in
the δ-function contribution. Isolating this part and combining it with the first two terms of
(4.5.6), we ultimately find

∆S ′′µν = 2π

(
nρµn

σ
ν 〈Tρσ〉+

d2 − 3d− 2

2(d+ 1)(d− 2)
nµνh

ab〈Tab〉
)

(4.5.8)

where nµν is the normal projector of the entangling surface. This completes our derivation
of (6.3.8).

4.6 Discussion

We have found formulas for the δ-function piece of the second variation of entanglement
entropy in terms of the expectation values of the stress tensor. In this section we conclude
by discussing a number of possible extensions and future applications of this result.

Higher Orders in 1/N

Since we believe (4.1.2) and (6.3.8) to be valid at finite N , it must be that our calculations
are not affected by higher-order corrections within holography.
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One potential source of higher-order corrections comes from incorporating quantum fluc-
tuations in the geometry, rather than treating the geometry as a classical background. We
have already addressed this issue in Section 4.2, but we will repeat it here. The problem of
a fluctuating geometry arises because the metric fluctuation γµν is actually a quantum oper-
ator, and as such a classical expression which is nonlinear in γµν has an ambiguous quantum
interpretation because, in general, 〈γ2

µν〉 6= 〈γµν〉2. However, our analysis has shown that the
δ-function part of the second entropy variation is determined entirely by terms which are
linear in γµν , and so this problem is avoided.

There are two other classes of higher-order corrections we can consider: those coming form
higher-curvature corrections to the bulk gravity, and those coming from the bulk entropy.
These corrections can be encapsulated in the all-orders formula [6, 49]

S = Sgen[e(R)] = SDong[e(R)] + Sbulk[e(R)]. (4.6.1)

The first term here is the Dong entropy functional [56], which is an integral of geometric
data over the surface e(R),15 and the second term is the bulk entropy lying within the region
bounded by e(R). Finally, the surface e(R) is the one that extremizes the Sgen functional.

If we ignore the Sbulk term for a moment, then SDong behaves qualitatively the same way
as the area in the Ryu-Takayanagi formula. The coordinates X̄µ of e(R) obey a certain
differential equation, and the variations in the entropy are still related to δXµ

(d) as before.

One change is that the overall coefficient of δXµ
(d) relative to the entropy will change in a

way that depends on the bulk higher curvature couplings. However, the dictionary relating
γµν to Tµν also changes in a way that precisely preserves (4.1.2) and (6.3.8) [69].

Incorporating the Sbulk term is simple in principle but difficult in practice to deal with.
Since it is Sgen that must be extremized, we have to include an extra term in the extremal
surface equation of motion proportional to δSbulk/δX̄

µ(y). That means the bulk entropy
itself plays a role in determining the position of the surface. It was argued in [47] (assuming
some mild falloff conditions on variations of the bulk entropy) that the presence of this
source could be incorporated to all orders simply by removing the explicit bulk entropy term
from (4.2.20). In other words, calculating δXµ

(d) using the correct quantum extremal surface
equation is enough to properly account for all bulk entropy contributions to the total entropy
variation. At order-one in the large-N expansion this prescription agrees with our analysis
above, as it must. Beyond this, the most we can say about the contributions of the entropy
are arguments of the type given above in Section 4.3. While this is a potential loophole in
our arguments, we still believe that our evidence suggests that new contributions to (4.1.2)
and (6.3.8) do not appear.

Local Conditions On ∂R Are Enough

We now briefly discuss why we expect that we can relax the stationarity conditions on the
entangling surface to hold just in the vicinity of the deformation point. We will focus on the

15Really SDong is the expectation value of geometric data, but we have already argued that it is enough
to treat the geometry classically for our purposes.
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null-null case, but a similar result should hold in the non-null case (where it should also be
true that our restriction on expectation values for operators with ∆ < d/2 is allowed to be
local).

We can analyze the source (4.4.6) in a little more detail in the case where we only impose
local stationarity near y = y0. Even though in position space Ū(y0, z) does not contain any
state-independent terms at low orders in the z-expansion near, the inherent non-locality of
the Fourier transform Ū(k, z) will contain those terms. There are two ways this could affect
(4.4.6): through δΨ = δŪ or through the h-factor. In either case, the large k limit reduces
to the problem back to the globally-stationary setup.

For example, by setting δV (k) = eiky0 we can isolate the part of δU(d) that gives a δ-
function localized at y = y0. Then the important part of δV̄ (i.e., the state-independent
part) is

δV̄ (k, z) = eiky02
d−2

2 Γ(d/2)(kz)d/2Kd/2(kz). (4.6.2)

Then we can organize (4.4.6) as a derivative expansion of h, with the leading term given by

δJ(k, z) ∼ eiky0h(z, y0)(kz)d/2Kd/2(kz), (4.6.3)

and the remaining terms suppressed by powers of k. In other words, the integral over k′ in
(4.4.6) combined with the (k− k′)-dependence of δV essentually returns h to position space
localized near y = y0. Only the first d derivatives of h at y = y0 will be relevant at large k,
so only the first d derivatives of U need to be set equal to zero at y = y0 in order for the
large-k behavior to match the case where U vanishes identically. Thus it is enough to have
entangling surfaces which are in the u = 0 plane up to order d in y − y0.

Note, this crude analysis does not strictly apply if the entangling surface cannot be
globally written in terms of functions U(y), V (y). For example, an entangling surface which
is topologically a sphere does not fall within the regime of our arguments. We leave an
analysis of those types of regions for future work.

Curved Backgrounds

It is interesting to ask what happens to this proof when the boundary spacetime is curved.
Our arguments make it clear that S ′′µν is completely determined by local properties of the
state in the bulk and on the boundary. So naturally one would expect that there is a curved-
space analogue of the same formula. In [69, 48], several local conditions on the entangling
surface and spacetime curvature were found such that the QNEC would hold in curved space
and be manifestly scheme-independent. We would expect that under those same conditions
one could show that S ′′vv = 2π〈Tvv〉. Non-null variations in a curved background have yet
to be explored, and it would be interesting to investigate aspects of the curved background
setup in more detail.
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Connections to the QFC and Gravity

An interesting application of our result is to the interpretation of Einstein’s equations. Com-
bining (6.3.8) with Einstein’s equations leads to an explicit formula relating geometry to
entropy. This result is the latest in a growing trend of connections between geometry and
entanglement [80, 81, 82, 83, 84, 85, 86].

We can make a direct connection with the deep result by Jacobson of the Einstein equa-
tion of state [70]. There it was argued that Einstein’s equations were equivalent to a state-
ment of thermal equilibrium across an arbitrary local Rindler horizon, namely the equation
δQ = TδS, together with an assumption that S is proportional to area. This argument used
a thermodynamic definition of the entropy without mentioning quantum entanglement. We
can give this result a modern interpretation with the equation S ′′vv = 2π〈Tvv〉.

The connection to our result is most easily phrased in terms of the generalized entropy
for a field theory coupled to gravity, which is defined as

Sgen = SDong + Sren. (4.6.4)

Here GN is the renormalized Newton’s constant, and Sren is the renormalized entropy of the
field theory system restricted to a region, and SDong is the same geometric functional of the
boundary of the region introduced in Section 4.6, and which at leading order is Area/4GN .
Variations of this quantity were considered in [11], where the conjecture S ′′gen,vv ≤ 0 was
dubbed the Quantum Focusing Conjecture (QFC).

Inspired by the arguments of [70], we will consider evaluating S ′′gen,vv on a surface passing
through a given point in an arbitrary spacetimem where v now denotes a null direction of our
choosing. We will want to make sure that the surface is as close to stationary as possible in
the v direction. It is always possible to make the expansion and shear of our surface vanish
at the chosen point, but generically these quantities will have nonzero derivatives along the
surface. In order to keep our calculations well-defined, and avoid potential violations of the
QFC [52], we should consider deformations which are integrated over at least a Planck-sized
region of the surface [87]. While not strictly a δ-function, if the mass scales governing the
matter sector are must less than the Planck scale then for all practical purposes this is the
same as a δ-function deformation from the point of view of the matter entropy. The result
of doing this type of deformation is [88]

4GNS
′′
gen,vv = −Rvv + 4GNSren,vv +O(`2/L4), (4.6.5)

where L is the characteristic scale of the background geometry and ` is the Planck scale
(or whatever other cutoff scale is appropriate for the effective gravitational theory). The
corrections at order `2/L4 come both from higher curvature corrections present in SDong

beyond the Area/4GN term, as well as from the generic non-zero derivatives of the expansion
and shear at the central point of the deformation.

Now suppose we imposed the principle that 4GNS
′′
gen,vv is always of order `2/L4, which

is much smaller than the size 1/L2 of the first term −Rvv. Then it must be that this large
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contribution is canceled by 4GNSren,vv, which by our result above (or, more precisely, by the
appropriate curved-space generalization) is equal to 8πGN〈Tvv〉. In other words, we would
be imposing

Rvv = 8πGN〈Tvv〉+O(`2/L4). (4.6.6)

This is the leading-order part of the full gravitational equations of motion, up to an unknown
cosmological constant term coming from our restriction to null variations. The argument
can also be run the other way, so that Einstein’s equations, interpreted as the leading order
part of the gravitational equations of motion, become equivalent to the statement

4GNS
′′
gen,vv = O(`2/L4). (4.6.7)

We have essentially retraced the steps of [70], replacing the Jacobson’s original assumption
of δQ = TδS with the this statement about the generalized entropy, together with (4.1.2).

Proof for General CFTs

We view our results as sufficient motivation to look for a proof of (6.3.8) and (4.1.2) in
general field theories. In conformal field theories, entanglement entropy can be calculated
using the replica trick. A replicated CFT is equivalent to a CFT with a twist defect. Within
the technology of defect CFTs, shape deformations of entropy is generated by displacement
operators (see [17] for a review of these concepts). The variation δ2S/δV (y)δV (y′) then is
related to the OPE structure of displacement operators in this setup. Since the coefficient of
the delta function piece in (4.1.1) is fixed to have dimension d and spin 2, one might be able
to see that only the stress tensor could appear as a local operator in S ′′vv. It further needs to
be shown that no other non-linear (in the state) contributions could appear in S ′′vv. Results
in that direction will be reported in future work [89].
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Chapter 5

Entropy Variations and Light Ray
Operators from Replica Defects

5.1 Introduction

Despite much progress in understanding entanglement entropy using bulk geometric methods
in holographic field theories [31, 3, 32], significantly less progress has been made on the more
difficult problem of computing entanglement entropy directly in field theory. Part of what
makes entanglement entropy such a difficult object to study in field theory is its inherently
non-local and state-dependent nature.

One way to access the structure of entanglement in field theories is to study its dependence
on the shape of the entangling surface. Such considerations have led to important results on
the nature of entanglement in quantum field theories [27, 28, 29, 69, 16, 17, 90, 78, 91]. To
study the shape dependence of entanglement entropy for QFTs in d > 2 dimensions, consider
a Cauchy slice Σ containing a subregionR with entangling surface ∂R in a general conformal
field theory. By unitary equivalence of Cauchy slices which intersect the same surface ∂R,
the entanglement entropy for some fixed global state can be viewed as a functional of the
entangling surface embedding coordinates Xµ(yi) where the yi with i = 1, ..., d − 2 are
internal coordinates on ∂R. We write:

SR = S[X(y)]. (5.1.1)

The shape dependence of the entanglement entropy can then be accessed by taking functional
derivatives. In particular, we can expand the entanglement entropy about some background
entangling surface X(y) = X0(y) + δX(y) as

S[X] = S[X0] +

∫
dd−2y

δSR
δXµ(y)

∣∣∣∣
X0

δXµ(y)

+

∫
dd−2ydd−2y′

δ2SR
δXµ(y)δXν(y′)

∣∣∣∣
X0

δXµ(y)δXν(y′) + ... . (5.1.2)
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Figure 5.1: We consider the entanglement entropy associated to a spatial subregion R. The
entangling surface lies along x− = 0 and x+ = X+(y). In this work, we study the dependence
of the entanglement entropy on the profile X+(y).

This second variation has received a lot of attention in part because it is an essential
ingredient in defining the quantum null energy condition (QNEC) [11, 16]. The QNEC
bounds the null-null component of the stress tensor at a point by a specific contribution
from the second shape variation of the entanglement entropy. More specifically, this second
variation can be naturally split into two pieces - the diagonal term which is proportional to
a delta function in the internal coordinates yi and the off-diagonal terms1

δ2SR
δX+(y)δX+(y′)

= S
′′
(y)δ(d−2)(y − y′) + (off-diagonal). (5.1.3)

where (X+, X−) are the null directions orthogonal to the defect. The QNEC states that the
null energy flowing past a point must be lower bounded by the diagonal second variation

〈T++(y)〉 ≥ ~
2π
S
′′
(y), (5.1.4)

1Note that the entanglement entropy, being UV divergent, will typically have divergent contributions
that are local to the entangling surface. These will show up as a limited set of diagonal/contact terms in
(5.1.3). For deformations about a sufficiently flat entangling surface these terms do not contribute to the
contact term that is the subject of the QNEC. The divergent terms will not be the subject of investigation
here.
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where we are taking R to be a Rindler wedge. This inequality was first proposed as the
GN → 0 limit of the quantum focussing conjecture [11], and was first proven in free and
super-renormalizable field theories in [28]. The proof for general QFTs with an interacting
UV fixed point was given in [17]. More recently, yet another proof was given using techniques
from algebraic quantum field theory [18].

The method of proof in the free case involved explicitly computing S
′′
++ where it was

found that

S
′′

=
2π

~
〈T++〉 −Q (5.1.5)

where for general states Q ≥ 0. In contrast, the proof in general QFTs relied on relating the
inequality (5.1.4) to the causality of a certain correlation function involving modular flow.
This left open the question of whether S

′′
could be explicility computed in more general field

theories.
In [92] the diagonal term S

′′
was computed in large N QFTs in states with a geometric

dual. Remarkably, the result was

S
′′
(y) = 2π 〈T++(y)〉 (5.1.6)

where we have now set ~ = 1. In other words, Q = 0 for such theories. In that work, it was
argued that neither finite coupling nor finite N corrections should affect this formula. This
led the authors of [92] to conjecture (5.1.6) for all interacting CFTs. The main goal of this
paper is to provide evidence for (5.1.6) in general CFTs with a twist gap.

The method of argument will follow from the replica trick for computing entanglement
entropy. The replica trick uses the formula

S[R] = lim
n→1

(1− n∂n) log Tr[ρnR] (5.1.7)

to relate the entanglement entropy to the partition function of the CFT on a replicated
manifold [93, 94] (see also [95, 96, 97, 4])

Tr[ρnR] = Zn/(Z1)n. (5.1.8)

At integer n, Zn can be computed via a path integral on a branched manifold with n-sheets.
Alternatively, one can compute this as a path integral on an unbranched manifold but in the
presence of a twist defect operator Σn of co-dimension 2 that lives at the entangling surface
[98]. Doing so allows us to employ techniques from defect CFTs. See [99, 100, 101, 102] for
a general introduction to these tools.

In particular, shape deformations of the defect are controlled by a defect operator, namely
the displacement operator, with components D̂+, D̂−. This operator is universal to defect
CFTs. Its importance in entanglement entropy computations was elucidated in [99, 17, 98].
Consequently, the second variation of the entanglement entropy is related to the two-point
function of displacement operators

δ2S

δX+(y)δX+(y′)
= lim

n→1

−2π

n− 1
〈Σψ

nD̂+(y)D̂+(y′)〉 , (5.1.9)
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where the notation Σψ
n will be explained in the next section.

Since we are interested in the delta function contribution to this second variation, we
can take the limit where the two displacement operators approach each other, y → y′. This
suggests that we should study the OPE of two displacement operators and look for terms
which produce a delta function, at least as n→ 1.

It might seem strange to look for a delta function in an OPE since the latter, without
further input, results in an expansion in powers of |y− y′|. We will find a delta function can
emerge from a delicate interplay between the OPE and the replica limit n→ 1.

An obvious check of our understanding of (5.1.6) is to explain how this formula can be
true for interacting theories while there exist states for which Q > 0 in free theories. This
is a particularly pertinent concern in, for example, N = 4 super-Yang Mills where one can
tune the coupling to zero while remaining at a CFT fixed point. We will find that in the
free limit certain terms in the off-diagonal contributions of (5.1.3) become more singular and
“condense” into a delta function in the zero coupling limit. In a weakly interacting theory
it becomes a question of resolution as to whether one considers Q to be zero or not.

In fact this phenomenon is not unprecedented. The authors of [103] studied energy
correlation functions in a so called conformal collider setup. The statistical properties of the
angular distribution of energy in excited states collected at long distances is very different
for free and interacting CFTs. We conjecture that these situations are controlled by the
same physics. Explicitly, in certain special “near vacuum” states, there is a contribution to
the second variation of entanglement that can be written in terms of these energy correlation
functions.

Schematically, we will find

δ2S

δX+(y)δX+(y′)
− 2π

~
〈T++〉 δ(d−2)(y − y′) ∼

∫
dses 〈OÊ+(y)Ê+(y′)eiKsO〉 (5.1.10)

where

Ê+(y) =

∫ ∞
−∞

dλ 〈T++(x+ = λ, x− = 0, y)〉 (5.1.11)

is the averaged null energy operator discussed in [103] and the O’s should be thought of
as state-creation operators. The operator K is the boost generator about the undeformed
entangling surface.

The singularities in |y − y′| of the correlator in (5.1.10) are then understood by taking
the OPE of two averaged null energy operators. This OPE was first discussed in [103] where
a new non-local “light ray” operator of spin 3 was found to control the small y − y′ limit.

In the free limit, we will show that this non-local operator has the correct scaling di-
mension to give rise to a new delta function term in (5.1.10). In the interacting case this
operator picks up an anomalous dimension and thus lifts the delta function.

In other words, the presence of an extra delta function in the second variation of the en-
tanglement entropy in free theories can be viewed as a manifestation of the singular behavior
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of the conformal collider energy correlation functions in free theories. This is just another
manifestation of the important relationship between entanglement and energy density in
QFT.

The presence of this spin-3 light ray operator in the shape variation of entanglement in
specific states however points to an issue with our defect OPE argument. In particular one
can show that this contribution cannot come directly from one of the local defect operators
that we enumerated in order to argue for saturation. Thus one might worry that there are
other additional non-trivial contributions to the OPE that we miss by simply analyzing this
local defect spectrum. The main issue seems to be that the n→ 1 limit does not commute
with the OPE limit. Thus in order to take the limit in the proper order we should first
re-sum a subset of the defect operators in the OPE before taking the limit n → 1. For
specific states we can effectively achieve this resummation (by giving a general expression
valid for finite |y− y′|) however for general states we have not managed to do this. Thus, we
are not sure how this spin-3 light ray operator will show up for more general states beyond
those covered by (5.1.10). Nevertheless we will refer to these non-standard contributions as
arising from “nonlocal defect operators.”

The basic reason it is hard to make a general statement is that entanglement can be
thought of as a state dependent observable. This state dependence shows up in the replica
trick as a non-trivial n dependence in the limit n→ 1 so the order of limits issue discussed
above is linked to this state dependence. We are thus left to compute the OPE of two
displacement operators for some specific states and configurations. This allows us to check
the power laws that appear in the |y1 − y2| expansion for possible saturation violations.
Given this we present two main pieces of evidence that the nonlocal defect operators do
not lead to violations of QNEC saturation. The first is the aforementioned near vacuum
state calculation. The second is a new calculation of the fourth shape variation of vacuum
entanglement entropy which is also sensitive to the displacement operator defect OPE. In
both cases we find that the only new operator that shows up is the spin-3 light ray operator.
The outline of the paper is as follows.

• In Section 5.2, we begin by reviewing the basics of the replica trick and the relevant
ideas from defect conformal field theory. We review the spectrum of local operators
that are induced on the defect, including the infinite family of so-called higher spin
displacement operators. We show that, in an interacting theory, these higher spin
operators by themselves cannot contribute to the diagonal QNEC. We also present a
present a certain conjecture about the nonlocal defect operators.

• In Section 5.3, we discuss how a delta function appears in the OPE of two displacement
operators. We focus on a specific defect operator that limits to T++ as n→ 1. For this
defect operator we derive a prediction for the ratio of the D+D+ OPE coefficient and
its anomalous defect dimension. In Section 5.4, we check this prediction by making
use of a modified Ward identity for the defect theory. In Appendix A.10-A.11 we also
explicitly compute the anomalous dimension and the OPE coefficient to confirm this
prediction.
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• In Section 5.5, we take up the concern that there could be other operators which lead to
delta functions even for interacting CFTs. To do this, we compute the defect four point
function Fn := 〈Σ0

nD̂+(y1)D̂+(y2)D̂−(y3)D̂−(y4)〉 in the limit n→ 1. From this we can
read off the spectrum by analyzing the powers of |y1− y2| that appear as y1 → y2. We
will find that these powers arise from the light-ray OPE of two averaged null energy
operators.

• Finally, in Section 5.6, we check our results by explicitly computing the entanglement
entropy second variation in near-vacuum states. By using null quantiation for free
theories, we show that our results agree with that of [16].

• In Section 5.7, we end with a discussion of our results.

5.2 Replica Trick and the Displacement Operator

In this section, we will review the replica trick and discuss the connection between entan-
glement entropy and defect operators. This naturally leads to the displacement operator,
which will be the key tool for studying (5.1.6).

As outlined in the introduction, the replica trick instructs us to compute the partition
function Zn/(Z1)n = Tr[ρnR], which can be understood as a path integral on a branched
manifoldMn(R), where taking the product of density matrices acts to glue each consecutive
sheet together. Using the state operator correspondence, a general state can be represented
by the insertion of of a scalar operator in the Euclidean section, so that

Zn = 〈ψ†⊗nψ⊗n〉Mn(R) (5.2.1)

where each ψ is inserted on cyclicly consecutive sheets. Alternatively, we can view this 2n-
point correlation function as being computed not on an n-sheeted manifold but on a manifold
with trivial topology in the presence of a codimension 2 twist defect operator

Zn = 〈Σ0
nψ
†⊗nψ⊗n〉CFT⊗n/Zn ≡ 〈Σ

ψ
n〉 (5.2.2)

where we have used a compact notation for the twist operator that includes the state operator
insertions: Σψ

n ≡ Σ0
nψ
†⊗nψ⊗n. It is convenient (and possible) to orbifold the CFT⊗n which

projects onto states in the singlet of Zn. This allows us to work with a CFT that for example
has only one conserved stress tensor.

We take the defect Σ0
n to be associated to a flat cut of a null plane in Minkowski space.

We take the metric to be

ds2 = dzdz̄ + d~y2 (5.2.3)

where z and z̄ are complexified lightcone coordinates. That is, on the Lorentzian section
we have z = −x− = x + iτ and z̄ = x+ = x − iτ . Thus, we take the defect to lie at
x− = X−(y) = 0 and x+ = X+(y) = 0.
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For the case of a flat defect, the operator Σ0
n breaks the conformal symmetry group

down to SO(2)× SO(d− 1, 1), with the SO(2) corresponding to the rotations of the plane
orthogonal to the defect. This symmetry group suggests that a bulk dimension-d CFT
descends to a dimension d− 2 defect CFT, which describes the excitations of the defect. We
can thus use the language of boundary CFTs to analyze this problem. We will only give a
cursory overview of this rich subject. For a more thorough review of the topic see [17, 98,
99], and for additional background see [104, 105, 106, 107]. The important aspect for us will
be the spectrum of operators that live on the defect.

The spectrum of operators associated to the twist defect was studied in [17]. In that
work, techniques were laid out to understand how bulk primary operators induce operators
on the defect. This can be quantitatively understood by examining the two-point function
of bulk scalar operators in the limit that they both approach the defect. We imagine that
as a bulk operator approaches the defect, we can expand in the transverse distance |z| in a
bulk to defect OPE so that

lim
|z|→0

n−1∑
k=0

O(k)(z, z̄, y)Σ0
n = z−(∆O+`O)z̄−(∆O−`O)

∑
j

Cj
Oz

(∆̂j+`j)/2z̄(∆̂j−`j)/2Ôj(y)Σ0
n (5.2.4)

where ∆O is the dimension of the bulk operator, while ∆̂j is the dimension of the jth defect

operator Ôj. Every operator is also now labeled by its spin, `, under the SO(2) rotations
z → ze−iφ. From the defect CFT point of view, the SO(2) spin is an internal symmetry and
the `j’s are the defect operators’ associated quantum numbers. Notice that the Zn symmetry
has the effect of projecting out operators of non-integer spin. This is another reason for why
the Zn orbifolding is needed for treating the theory on the defect as a normal Euclidean
CFT.

Equation (5.2.4) suggests an easy way to obtain defect operators in terms of the bulk
operators. Consider the lowest dimension defect operator ∆̂` of a fixed spin `. Then we can
extract the defect operator via a residue projection,

Ô`(0)Σ0
n = lim

|z|→0

|z|−τ̂`+τα
2πi

∮
dz

z
z−`+`α

n−1∑
k=0

O(k)
α (z, |z|2/z, 0)Σ0

n (5.2.5)

where τ̂` and τα are the twists of the defect and bulk operators respectively. Note that these
leading twist operators are necessarily defect primaries.

Note that in general, due to the breaking of full conformal symmetry, ∆̂` will contain
an anomalous dimension γ`(n). In this paper we will mainly be interested in the defect
spectrum near n = 1 so after analytically continuing in n we can expand γ`(n) around n = 1
as γ(n) = γ(0) + γ(1)(n− 1) +O((n− 1)2). We now give a brief review of the various defect
operators discovered in [17].2

2See [108] for a complementary method for computing the defect spectrum from the bootstrap and an
appropriate Lorentzian inversion formula. It would be interesting to derive some of the results presented
here in that language.
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Operators induced by bulk scalars or spin one primaries

Associated to each bulk scalar φ, or spin-one primary Vµ, of dimension ∆φ,∆V , the authors

of [17] found a family of defect operators of dimension ∆̂`
φ,V = ∆φ,V − Jφ,V + ` + γ

(1)
φ,V (n −

1) +O((n− 1)2) with SO(2) spin ` along with their defect descendants. Here Jφ,V = 0, 1 for
φ and V respectively and importantly ` ≥ J . The anomalous dimensions for the operators
induced by bulk scalars, γφ, are given in formula (3.25) of [17]. We will not be concerned
with these two families in this paper.

Operators induced by bulk primaries of spin J ≥ 2

For primary operators of spin J ≥ 2, the authors of [17] again found a similar family of

operators with dimensions ∆̂`
J = ∆J − J + `+ γ

(1)
J,` (n− 1) +O((n− 1)2) where ` ≥ J .

For a primary of spin J ≥ 2, there are also J − 1 “new” operators with SO(2) charge
J − 1 ≥ ` ≥ 1. These “displacement operators” can be written at integer n as

D̂J
` = i

∮
dz̄

z̄J−`−1

|z|γJ,`(n)

n−1∑
k=0

J (k)
+...+(|z|2/z̄, z̄) (5.2.6)

where J is the spin of the bulk primary J+...+ and 1 ≤ ` ≤ J − 1 is the SO(2) spin of
the defect operator. The power of |z|γ accounts for the dependence of the defect operator
dimension on n.

We will primarily be interested in the spectrum of T++ on the defect for which there is
only one displacement operator, D̂+. The displacement operator can also be equivalently
defined in terms of the diffeomorphism Ward identity in the presence of the defect [99]

∇µ〈Σψ
nTµν〉 = δ(z, z̄)〈Σψ

nD̂ν〉. (5.2.7)

This implies that D̂+ corresponds to a null deformation of the orbifold partition function
with respect to the entangling surface. In particular, entropy variations are given by D̂+

insertions in the limit n→ 1:

〈Σψ
nD̂+(y)〉 = (n− 1)〈Σψ

n〉
δSψ

δx+(y)
+O((n− 1)2) (5.2.8)

The generalization to two derivatives is then just

〈Σψ
nD̂+(y)D̂+(y′)〉 = (n− 1)〈Σψ

n〉
δ2Sψ

δX+(y)X+(y′)
+O((n− 1)2). (5.2.9)

We see importantly that statements about entropy variations can be related directly to
displacement operator correlation functions.
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5.3 Towards saturation of the QNEC

With the displacement operator in hand, we can now describe an argument for QNEC satu-
ration. As just described, second derivatives of the entanglement entropy can be computed
via two point functions of the defect CFT displacement operator. Thus, we are interested
in proving the following identity:

lim
n→1

1

n− 1
〈Σψ

nD̂+(y)D̂+(y′)〉 = 2π 〈T̂++(y)〉ψ δ
d−2(y − y′)

+ (less divergent in |y − y′|) (5.3.1)

where |ψ〉 is any well-defined state in the CFT.
Since we are only interested in the short distance behavior of this equality - namely the

delta function piece - we can examine the OPE of the displacement operators

1

n− 1
D̂+(y)D̂+(y′) =

1

n− 1

∑
α

cα(n)Ôα++(y)

|y − y′|2(d−1)−∆α+γα(n)
+ descendants (5.3.2)

where ∆α is the dimension of the defect primary Ôα at n = 1 and γα(n) gives the n depen-
dence of the dimension away from n = 1. We will refer to γα(n) as an anomalous dimension.
Note that this is an OPE defined purely in the defect CFT. The ++ labels denote the SO(2)
spin of the defect operator, which must match on both sides of the equation. The dimension
of the displacement operators themselves are independent of n and fixed by a Ward identity
to be d− 1.

At first glance, this equation would suggest that there are no delta functions in the
OPE, only power law divergences. In computing the entanglement entropy, however, we are
interested in the limit as n → 1. In this limit, it is possible for a power law to turn into a
delta function as follows:

lim
n→1

n− 1

|y − y′|d−2−γ(1)(n−1)
=
Sd−3

γ(1)
δ(d−2)(y − y′) (5.3.3)

where γ = γ(1)(n− 1) +O((n− 1)2) and Sd−3 in the area of the d− 3 sphere. Comparison
of equations (5.3.3) and (5.3.2) shows that a delta function can “condense” in the D̂+ × D̂+

OPE only if the OPE coefficient and anomalous dimension obey

cα(n)/γα(n) ∼ (n− 1) +O((n− 1)2) (5.3.4)

as n approaches 1.
This is, however, not sufficient for a delta function to appear in (5.3.2) as n → 1. We

also need to have

∆α = d (5.3.5)
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at n = 1. In other words, the defect operators we are looking for must limit to an operator
of SO(2) spin two and dimension d as the defect disappears. Clearly, the ` = 2 operator
induced by the bulk stress tensor, T̂++, satisfies these conditions. Indeed, the first law of
entanglement necessitates the appearance of T̂++ in the D̂+× D̂+ OPE with a delta function
(see Section 5.4 below).

Our main claim, (5.3.1), is the statement that no other operator can show up in (5.3.2)
whose contribution becomes a delta function in the n→ 1 limit. In the rest of this section,
we enumerate all the possible operators that could appear in the D̂+ × D̂+ OPE (5.3.2).

Defect operators induced by low-dimension scalars

If there exists a scalar operator of dimension ∆ = d− 2, then the associated defect operator
with SO(2) spin ` = 2 will have dimension ∆ = d at leading order in n− 1. This possibility
was discussed in [92]. The contribution of such an operator was found to drop out of the
final quantity 〈T++〉 − 1

2π
S ′′++ for holographic CFTs. We expect the same thing to happen

in general CFTs in the presence of such an operator, so we ignore this possibility.

` = 2 operators induced by spin one primaries

As discussed earlier, these defect operators have dimension ∆̂ = ∆V + 1 +O(n− 1). We see
that for spin one primaries not saturating the unitarity bound, i.e. ∆V > d−1, these cannot
contribute delta functions. Actually, since these operators exist in the CFT at n = 1, we
will argue in the next section that the first law of entanglement forces their OPE coefficients
to be of order (n− 1)2.

For spin-one primaries saturating the unitarity bound, Vµ is then the current associated to
some internal symmetry. The entropy is uncharged under all symmetries, so such operators
cannot contribute to D̂+ × D̂+.

` = 2 higher spin displacement operators

The most natural candidate for contributions to the D̂+ × D̂+ OPE are the ` = 2 higher
spin displacement operators discussed in the previous section. These operators are given by
equation (5.2.6).

To show that such operators do not contribute delta functions to D̂+ × D̂+, we need to
argue that their dimensions ∆n(` = 2, J) do not limit to d as n → 1. As discussed in the
previous section, the dimensions of the higher spin displacement operators are given by

∆n(`, J) = ∆J − J + `+O(n− 1). (5.3.6)

The anomalous dimensions have not yet been computed but we expect them to be of order
n − 1, although we will not need this calculation here. The important point for us will be
that in a CFT with a twist gap, the leading order dimension of these operators is

∆n(2, J) = τJ + 2 +O(n− 1) > d (5.3.7)
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assuming the twist of the bulk primaries satisfies τJ > d− 2. Here we are using a result on
the convexity of twist on the leading Regge trajectory for all J proven in [109]. We see that
the bulk higher spin operators would need to saturate the unitarity bound to contribute a
delta function. Furthermore, there could be defect descendants of the form (∂iy∂

i
y)
kD̂J

++(y).
But such operators will necessarily contribute to the OPE with larger, positive powers of
|y − y′|, hence they cannot produce delta functions.

Nonlocal defect operators

So far we have focused on the individual contribution of local defect operators and by power
counting we see that these operators cannot appear in the diagonal QNEC. At fixed n, it is
reasonable to conjecture that this list we just provided is complete. However we have not
fully concluded that something more exotic does not appear in the OPE. As discussed in
the introduction this possibility arises because the n → 1 limit may not commute with the
OPE.

Indeed, we will find evidence that something non-standard does appear in the displace-
ment OPE. In Section 5.5 and Section 5.6 we will present some computations of correlation
functions of the displacement operator for particular states and entangling surfaces. In these
specific cases we will be able to make the analytic continuation to n → 1 before taking the
OPE. In both cases, we find that the power laws as y1 → y2 are controlled by the dimensions
associated to non-local spin-3 light ray operators [110]. In the discussion section we will
come back to the possibility that these contributions come from an infinite tower of the local
defect operators that we have thus far enumerated. We conjecture that when this tower is
appropriately re-summed, we will find these non-standard contributions to the entanglement
entropy.

We will refer to these operators as nonlocal defect operators, and we further conjecture
that a complete list of such operators and dimensions is determined by the nonlocal J = 3
lightray operators that appear in the lightray OPE of two averaged null energy operators
as studied in [103, 111] for the CFT without a defect. In order to give further evidence for
this conjecture, in Section 5.5 we will compute the analytic continuation of the spectrum of
operators appearing around n = 1 in the D̂+× D̂+ OPE by computing a fourth order shape
variation of vacuum entanglement. Our answer is consistent with the above conjecture.
While this relies on a specific continuation in n (a specific choice of “state dependence”) we
think this is strong evidence that we have not missed anything.

Before studying this nonlocal contribution further, we return to the local defect contri-
bution where we would like to check that the ratio of c(n)/γ(n) for T̂++ obeys (5.3.4).

5.4 Contribution of T̂++

In this section, we will review the first law argument which fixes the coefficient of the stress
tensor defect operator to leading order in n− 1. We will then use defect methods to demon-
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strate that the stress tensor does contribute with the correct ratio of c(n) and γ(n) to produce
a delta function with the right coefficient demanded by the first law. To do this, we will make
use of a slightly modified form of the usual diffeomorphism Ward identity in the presence of
a twist defect that will compute c(n)/γ(n). In Appendices A.10 and A.11, we also explicitly
calculate c(n) and γ(n) separately for the stress tensor and show that they agree with the
result of this sub-section.

The First Law

A powerful guiding principle for constraining which defect operators can appear in the
OPE (5.3.2) is the first law of entanglement entropy. The entanglement entropy S(ρ) =
−Tr[ρ log ρ], when viewed as the expectation value of the operator − log ρ, is manifestly
non-linear in the state. The first law of entanglement says that if one linearizes the von
Neumann entropy about a reference density matrix - σ - then the change in the entropy
is just equal to the change in the expectation value of the vacuum modular Hamiltonian.
Specifically it says that

δTr[ρ log ρ] = Tr[δρ log σ] (5.4.1)

where ρ = σ + δρ.
The case we will be interested in here is when σ is taken to be the vacuum density

matrix for the Rindler wedge. The first law then tells us that the only contributions to
〈Σψ

nD̂+(y)D̂+(y′)〉 that are linear in the state as n→ 1 must come from the shape variations
of the vacuum modular Hamiltonian.

The second shape derivative of the Rindler wedge modular Hamiltonian is easy to com-
pute from the form of the vacuum modular Hamiltonian associated to generalized Rindler
regions [15, 27, 112, 68]. Defining ∆ 〈Hσ

R〉ψ = −Tr[ρR log σR] + Tr[σR log σR] to be the
vacuum subtracted modular Hamiltonian for a general region R bounded by a cut of the
x− = 0 null plane, then we have the simple universal formula

δ2∆ 〈Hσ
R〉ψ

δX+(y)δX+(y′)
=

2π

~
〈T++〉ψ δ

(d−2)(y − y′). (5.4.2)

This is a simple but powerful constraint on the displacement operator OPE; it tells us
that the only operator on the defect which is manifestly linear in the state as n → 1 and
appears in D̂+ × D̂+ at n = 1 is the stress tensor defect operator

T̂++ =

∮
dz̄

z̄|z|γn

n−1∑
j=0

T
(j)
++(|z|2/z̄, z̄). (5.4.3)

Thus, any other operator which appears in the OPE around n = 1 must contribute in
a manifestly non-linear fashion. Examining the list of local defect operators discussed in
Section 5.3 the only operators that are allowed by the above argument, aside from T̂++, are
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the higher spin displacement operators. As shown in [17] the limit n→ 1 of the expectation
value of these operators give a contribution that is non-linear in the state.

We will return to these state dependent operators in later sections. Now we check that
indeed the stress tensor contributes with the correct coefficient.

Using the modified Ward identity

In Appendix A.8, we prove the following intuitive identity:∫
dd−2y′〈Σ0

nD̂+(y′)D̂+(y)T−−(w, w̄, 0)〉 = −∂w̄〈Σ0
nD̂+(y)T−−(w, w̄, 0)〉. (5.4.4)

We now show that the identity (5.4.4) allows us to compute the stress tensor contribution
to the D̂+ × D̂+ OPE, which can be written as:

D̂+(y)D̂+(y′) ⊃ c(n)

|y − y′|d−2−γ(n)
T̂++(y) + . . . (5.4.5)

where we have focused on the T̂++ contribution and the ellipsis stand for the defect descen-
dants of T̂++. We are free to ignore other defect primaries since they get projected out by
the T−−(w, w̄, 0) insertion in (5.4.4). Of course, since (5.4.4) involves a y integral, one might
worry that we are using the OPE outside its radius of convergence. For now, we will follow
through with this heuristic computation using the OPE. At the end of this subsection, we
will say a few words about why this is justified.

Inserting (5.4.5) into (5.4.4) and ignoring the descendants, we find∫
dd−2y′

c(n)

|y − y′|d−2−γ(n)
〈Σ0

nT̂++(y)T−−(w, w̄, 0)〉 =
c(n)

γ(n)
Sd−3 〈Σ0

nT̂++(y)T−−(w, w̄, 0)〉

(5.4.6)

where Sn is the area of the unit n-sphere. We can write T̂++(y) in terms of T++ integrated
around the defect:

T̂++(y) = − 1

2πi

n−1∑
k=0

∮
dz̄

z̄|z|γ(n)
T

(k)
++(|z|2/z̄, z̄, y) (5.4.7)

We now take the n→ 1 limit of equation (5.4.4). Since the right hand side starts at order
(n− 1), we see that c(n) must begin at one higher order in n− 1 than γ(n). Generically we
expect γ(n) to begin at order n− 1 and in Appendix A.11 we will see that it does. We thus
get the relation

c(2)

γ(1)
〈Σ0

1T̂++(y)T−−(w, w̄, 0)〉 = −∂n
∣∣
n=1

∂w̄ 〈Σ0
nD̂+(y)T−−(w, w̄, 0)〉 (5.4.8)
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where c(n) = c(1)(n− 1) + c(2)(n− 1)2 + ... and γ(n) = γ(1)(n− 1) + ... .
At n = 1, 〈Σ0

1T̂++(y)T−−(w, w̄, 0)〉 is just the usual stress tensor 2-point function. More-
over, we can evaluate the right hand side of (5.4.4) at order (n − 1) by following the steps
leading up to eq. (3.31) of [17]. This leads to

∂w̄〈D̂+(y)T−−(w, w̄, 0)〉
∣∣∣
|w|→0

= i(n− 1)

∮
dz̄ ∂w̄

(∫ −∞
0

dλ λ2

(λ− 1)2

cTy
4

4(ww̄ − wz̄λ+ y2)d+2

)∣∣∣∣
|w|,|z|→0

= −2π(n− 1)
cT
4
y−2d (5.4.9)

We are then left with the following expressions for c1 and c2:

c(2) =
2πγ(1)

Sd−3

, c(1) = 0 (5.4.10)

This is exactly what is needed in order to write (5.4.5) near y = y′ as D̂+(y)D̂+(y′) ⊃
δ(d−2)(y − y′)T̂++(y).

We now comment on the justification for using the D̂+ × D̂+ OPE. Since the left hand
side of (5.4.4) involves a y integral over the whole defect, one might worry that the we have
to integrate outside the radius of convergence for the D̂+× D̂+ OPE. We see, however, that
the y integral produces an enhancement in (n− 1) only for the T++ primary. In particular,
this enhancement does not happen for the descendants of T++. This suggests that if we were
to plug in the explicit form of the defect-defect-bulk 3 point function into equation (5.4.4) we
would have seen that the (n− 1) enhancement comes from a region of the y integral where
D̂+ and D̂+ approach each other. We could then effectively cap the integral over y so that it
only runs over regions where the OPE is convergent and still land on the same answer. As
a check of our reasoning, in Appendices A.10 and A.11, we also compute the c(n) and γ(n)
coefficients separately and check that they have the correct ratio.

5.5 Higher order variations of vacuum entanglement

In this section, we return to the possibility mentioned in Section 5.3 that something non-
standard might appear in the displacement operator OPE. The authors of [17] argued that
they had found a complete list of all local defect operators. This leaves open the possibility
that the n → 1 limit behaves in such a way that forces us to re-sum an infinite number
of defect operators. In this Section and the next, we will find evidence that indeed this
does occur. We will also give evidence that we have found a complete list of such nonlocal
operators important for the D̂+× D̂+ OPE. In interacting theories with a twist gap this list
does not include an operator with the correct dimension and spin that would contribute a
delta function and violate saturation.

To get a better handle on what such a re-summed operator might be, we turn to explicitly
computing the spectrum of operators in the D̂× D̂ OPE. To do this, we consider the defect
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four point function

Fn(y1, y2, y3, y4) = 〈Σ0
nD̂+(y1)D̂+(y2)D̂−(y3)D̂−(y4)〉 . (5.5.1)

We will consider configurations where |y1 − y2| = |y3 − y4| are small but |y1 − y4| is large.
With these kinematics, we can use the D̂×D̂ OPE twice and re-write the four point function
as a sum over defect two point functions

Fn =
∑
O,O′

cO++(n)cO
′
−−(n) 〈Σ0

nÔ++(y2)Ô′−−(y4)〉
|y1 − y2|2(d−1)+∆̂On |y3 − y4|2(d−1)+∆̂O′n

(5.5.2)

where O,O′ denote the local defect primaries and their descendants appearing in D̂ × D̂.
We immediately see that by examining the powers of |y1− y2| appearing in Fn, we can read
off the spectrum of operators we are after. That is, at least before taking the limit n → 1.
We have not attempted to compute the OPE coefficients explicitly for all the local defect
operators. This is left as an important open problem that would greatly clarify some of our
discussion, but this is beyond the scope of this paper.

If we assume that the n → 1 limit commutes with the OPE limit y1 → y2 we can now
find a contradiction. To see this contradiction, we can compute limn→1Fn in an alternate
manner holding y1, y2 fixed and compare to (5.5.2). The main result we will find is that
the divergences in |y1 − y2| appear to arise from defect operators of dimension ∆J∗ − J∗ + 2
where J∗ = 3 and ∆J∗ is defined by analytically continuing the dimensions in (5.3.6) to odd
J (recall that (5.3.6) was only considered for even spins previously.) Generically we do not
expect these particular dimensions to appear in the list of operator dimensions of the local
defect operators that we enumerated. However we conjecture that by including such operator
dimensions we complete the list of possible powers that can appear in the displacement OPE
at n = 1.

This discussion further suggests that the final non-local defect operator that makes the
leading contribution beside T++ should be an analytic continuation in spin of the local higher
spin displacement operators. We will come back to this possibility in the discussion.

We now turn to computing Fn without using the defect OPE. In Appendix A.12, we
explicitly do the analytic continuation of Fn, but here we simply state the answer. We find
that Fn takes the form

Fn ∼ (n− 1)

∫
dse−s

〈
T−−(x+ = 0, x− = −1, y3)Ê+(y1)Ê+(y2)T−−(x+ = 0, x− = −e−s, y4)

〉
+O

(
(n− 1)2

)
, (5.5.3)

which can also be written as:

Fn ∼ (n− 1)

〈
E−(y3)Ê+(y1)Ê+(y2)E−(y4)

〉
volSO(1, 1)

. (5.5.4)
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Figure 5.2: The answer for the defect four point function Fn upon analytic continuation to
n = 1. We find that there are two insertions of half-averaged null energy operators, E−,
as well as two insertions of Ê+. Note that strictly speaking, in (5.5.3), the half-averaged
null energy operators are inserted in the right Rindler wedge, but by CRT invariance of the
vacuum, we can take the half-averaged null energy operators to lie in the left Rindler wedge
instead, as in the figure.

The later division by the infinite volume of the 1 dimensional group of boosts is necessary to
remove an infinity arising from an overall boost invariance of the four light-ray integrals. See
for example [113]. The un-hatted E− operators represent half averaged null energy operators,
integrated from the entangling surface to infinity. Similar modifications to light-ray operators
were used in [111] in order to define their correlation functions and it is necessary here since
otherwise the full light-ray operator would annihilate the vacuum.

We see that the effect of two D̂+ insertions was to create two Ê+ insertions in the limit
n → 1. Thus considering the OPE of two displacement operators leads us to the OPE of
two null energy operators. This object was studied in [103] and more recently [111]. These
authors found that the two averaged null energy insertions can be effectively replaced by a
sum over spin 3 “light-ray” operators, one for each Regge trajectory. In other words,

Ê+(y1)Ê+(y2) ∼
∑
i

ciÔi(y2)

|y1 − y2|2(d−2)−τ ieven,J=3

(5.5.5)

where τ ieven,J=3 is the twist of the even J primaries on the ith Regge trajectory analytically
continued down to J = 3. A delta function can appear in this expression if τ ieven,J=3 = d− 2,
i.e. if the dimensions saturate the unitarity bound.
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Using the recent results in [109] again, we know that the twists on the leading Regge

trajectory obey dτ(J)
dJ
≥ 0 and d2τ(J)

dJ2 ≤ 0. Since the stress tensor saturates the unitarity
bound, for a theory with a twist gap we know that τ ieven,J=3 > d− 2, therefore there cannot
be a delta function in y1− y2. By the previous discussion then, formula (5.5.3) suggests that
there are no extra operators besides the stress tensor that produce a delta function. To give
further evidence for this we next explicitly work out another case where we can compute the
n→ 1 limit before we do the OPE and we find the same spectrum of operators.

5.6 Near Vacuum States

We have just seen that the OPE of two displacement operators appears to be controlled by
defect operators of dimension ∆J=3−1. As a check of this result, we will now independently
compute the second variation of the entanglement entropy for a special class of states. In
these states, we will again see the appearance of the OPE of two null energy operators
Ê+(y)Ê+(y′). This again implies a lack of a delta function for theories with a twist gap.

This computation is particularly illuminating in the case of free field theory where we
can use the techniques of null quantization (see Appendix A.13 for a brief review). Null
quantization allows us to reduce a computation in a general state of a free theory to a near-
vacuum computation. In this way we will also reproduce the computations in [16] using a
different method.

The state we will consider is a near vacuum state reduced to a right half-space

ρ(λ) = σ + λδρ+O(λ2) (5.6.1)

where σ is the vacuum reduced to the right Rindler wedge. We can imagine ρ(λ) as coming
from the following pure state reduced to the right wedge

|ψ(λ)〉 =

(
1 + iλ

∫
drdθdd−2yg(r, θ, y)O(r, θ, y)

)
|Ω〉+O(λ2) (5.6.2)

where (r, θ, y) are euclidean coordinates centered around the entangling surface and

O(r, θ, y) = exp (iHσ
Rθ)O(r, 0, y) exp (−iHσ

Rθ) (5.6.3)

where Hσ
R is the Rindler Hamiltonian for the right wedge.

From this expression for |Ψ(λ)〉, we have the formula

δρ = σ

∫
drdθdd−2yf(r, θ, y)O(r, θ, y) (5.6.4)

where

f(r, θ, y) = i (g(r, θ, y)− g(r, 2π − θ, y)∗) . (5.6.5)
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Note that f obeys the reality condition f(r, θ, y) = f(r, 2π − θ, y)∗.
We are interested in calculating the shape variations of the von-Neumann entropy. To this

aim, since the vacuum has trivial shape variations we can compute the vacuum-subtracted
entropy ∆S instead. We start by using the following identity

∆S = Tr ((ρ(λ)− σ)Hσ)− Srel(ρ(λ)|σ). (5.6.6)

We can now obtain ∆S to second order in λ. The vacuum modular Hamiltonian of the
Rindler wedge is just the boost energy

Tr [(ρ(λ)− σ)Hσ] =

∫
dd−2y

∫
dvvTr [ρ(λ)T++(u = 0, v, y)] (5.6.7)

where the computation of Srel(ρ(λ)|σ) was done in Appendix B of [114]. There it was
demonstrated that

Srel(ρ(λ)|σ) = −λ
2

2

∫
ds

4 sinh2( s+iε
2

)
Tr
[
σ−1δρσ

is
2π δρσ

−is
2π

]
+O(λ3) (5.6.8)

For a pure state like (5.6.2), we can instead write the above expression as a correlation
function

Srel(ρ|σ) = −λ
2

2

∫
dµ

∫
ds

4 sinh2( s+iε
2

)
〈O(r1, θ1, y1)eisK̂O(r2, θ2, y2)〉 (5.6.9)

where we have used the shorthand∫
dµ =

∫
dr1,2dθ1,2d

d−2y1,2f(r1, θ1, y1)f(r2, θ2, y2) (5.6.10)

and K̂ = Hσ
R−Hσ

L is the full modular Hamiltonian associated to Rindler space. This formula
(5.6.9) and generalizations has been applied and tested in various contexts [115, 116, 86, 117].
Most of these papers worked with perturbations about a state and a cut with associated to
a modular Hamiltonian with a local flow such as the Rindler case. However it turns out that
this formula can be applied more widely where K̂ need not be local.3

We can thus safely replace the Rindler Hamiltonian in (5.6.9) with the Hamiltonian
associated to an arbitrary cut of the null plane. This allows us to take shape deformations
directly from (5.6.9); by using the algebraic relation for arbitrary-cut modular Hamiltonians
[68]

e−iK̂(X+)seiK̂(0)s = ei(e
s−1)

∫
dy

∫
dx+X+(y)T++(x+) (5.6.11)

3The only real subtlety is the angular ordering of the insertion of O in Euclidean. This can be dealt
with via an appropriate insertion of the modular conjugation operator - a detail that does not affect the final
result. We plan to work out these details in future work.
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Figure 5.3: For near vacuum states, the insertions of displacement operators limit to two
insertions of the averaged null energy operators Ê+.

we have

δ2Srel(ρ|σ)

δX+(y)δX+(y′)
=
λ2

2

∫
dµ

∫
dses〈O(r1, θ1, y1)E+(y)E+(y′)eisK̂(X+)O(r2, θ2, y2)〉 (5.6.12)

where the states ρ, σ depend implicitly on X+(y).4 Notice that upon taking the variations
the double poles in the 1/ sinh2(s/2) kernel of (5.6.8) were precisely canceled by the factors
of es − 1 in the exponent of equation (5.6.11).

This equation is the main result of this section. We see that taking shape derivatives of
the entropy can for this class of states be accomplished by insertions of averaged null energy
operators. This helps to explain the appearance and disappearance of extra delta functions
as we change the coupling in a CFT continuously connected to a free theory. For example,
in a free scalar theory, one can show that the OPE contains a delta function,

Ê+(y)Ê+(y′) ⊃ δd−2(y − y′). (5.6.13)

This is consistent with the findings of [28] where this extra delta function contribution to
the QNEC was computed explicitly. To this aim, in Appendix A.13, we explicitly reproduce
the answer in [28] using the above techniques.

4Note the similarity between (5.6.12) and (A.12.6). This is because one can view the defect four point
function in (5.5.3) as going to second order in a state-deformation created by stress tensors with a particular
smearing profile.
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5.7 Discussion

In this discussion, we briefly elaborate on the possible origin of the non-local operators whose
dimensions we found in the displacement operator OPE considered in Sections 5.5 and 5.6.
As mentioned in the main text, the appearance of new operators is a bit puzzling since the
authors in [17] found a complete set of defect operators as n → 1. In other words, at fixed
n > 1, it should in principle be possible to expand these new operators as a (perhaps infinite)
sum of ` = 2 defect operators.

In particular, we expect them to be representable as an infinite sum over the higher spin
displacement operators. We believe that it is necessary to do such an infinite sum before
taking the n→ 1 limit, which entails that the OPE and replica limits do not commute. This
is why [17] did not find such operators. It also seems, given the non-trivial re-derivation of
the results in [17] using algebraic tecniques in [18], that these new non-local defect operators
are not necessary for the limit n→ 1 limit of the bulk to defect OPE used in [17] to compute
modular flow correlation functions.

We give the following speculative picture for how the nonlocal defect operators might
arise:

D̂+(y1)D̂+(y2) =
cJ=2(n)T̂++

|y1 − y2|2(d−1)−∆J=2
n

+
∞∑
J=3

cJ(n)D̂
(J)
++

|y1 − y2|2(d−1)−∆J
n

(5.7.1)

where we have suppressed the contribution of defect descendants. The latter sum in (5.7.1)
comes from the spin 2 displacement operators that come from the spin J CFT operator.
This is a natural infinite class of operators that one could try to re-sum should that prove
necessary.

In our calculations, we did not see any powers in |y1 − y2| that could be associated to
any individual higher spin displacement operator (as in the second term in (5.7.1)). Instead,
in Section 5.5 and Section 5.6 after taking the n→ 1 limit we observed dimensions that did
not belong to any of the known local defect operators. One possibility is that the higher spin
operators in (5.7.1) re-sum into a new term that has a non-trivial interplay with the n→ 1
limit. One way this might happen is if the OPE coefficients of the higher spin displacement
operators take the form

cJ=2k(n) ∼ 1

(J − 3)(n− 1)J−3
(5.7.2)

so that they diverge as n approaches 1. Such a divergent expansion is highly reminiscent of
the Regge limit for four point functions where instead the divergence appears from the choice
of kinematics. This pattern of divergence where the degree increases linearly with spin can
be handled using the Sommerfeld-Watson trick for re-summing the series. The basic idea
is to re-write the sum as a contour integral in the complex J-plane. One then unwraps the
contour and picks up various other features depending on the correlator.

Our conjecture in (5.7.2) is that the other features which one encounters upon unwrapping
the J contour is quite simple: there is just one pole at J = 3. Upon unwrapping the
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contour in the J-plane, we pick up the pole at J = 3, which suggests that indeed these new
divergences in |y1 − y2| are associated to operators which are analytic continuations in spin
of the higher spin displacement operators. In this way we would reproduce the correct power
law in |y1 − y2| as predicted for near vacuum states.

Note that this needs to be true for any CFT - not just at large N or large coupling. The
universality of this presumably comes from the universality of three point functions. Indeed,
one can try to compute these OPE coefficients. We should consider the following three point
function:

〈Σ0
nD̂+(y1)D̂+(y2)D̂

(J)
−−(y3)〉 ∼ cJ(n) 〈Σ0

nD̂
(J)
++(y2)D̂

(J)
−−(y3)〉

|y1 − y2|2(d−1)−∆̂n(J)
(5.7.3)

Via calculations based on the results in Appendix A.9, we find the three point function
above in the the replica limit is:

∼ (n− 1)

∮
dwwJ−3 〈J−...−(w, w̄ = 0, y3)Ê+(y1)E+(y2)〉+O((n− 1)2). (5.7.4)

Naively, the full null energy operator Ê+(y1) commutes with the half null energy operator
E+(y2) and one can use the fact that Ê+(y1) |Ω〉 = 0 to conclude that cJ(n = 1) vanishes. This
seems to be incorrect however due to a divergence that arrises in the null energy integrals.
Rather we claim that this coefficient diverges. The way to see this is to write

〈J−...−(w, w̄ = 0, y3)Ê+(y1)E+(y2)〉 =∫ ∞
−∞

dx+
1

∫ ∞
0

dx+
2 〈J−...−(w, w̄ = 0, y3)T++(0, x+

1 , y1)T++(0, x+
2 , y2)〉 . (5.7.5)

We can now attempt to apply the bulk OPE between the two T++’s which in these kinematics
must become5

T++(x− = 0, x+
1 , y1)T++(x− = 0, x+

2 , y2) =
∞∑
J=2

(x+
12)J−4J J

+...+(x+
2 , y2)

|y1 − y2|2(d−1)−∆̂1(J)
+ (descendants).

(5.7.6)

where ∆̂1(J) = ∆J − J + 2. Plugging (5.7.6) into (5.7.5) and re-labeling x1 → λ1x2, we see
that for even J ≥ 3, the λ1 integral has an IR divergence

5To get the exact answer, one needs to account for all of the SO(2) descendants in this OPE as well
since they contribute equally to the higher spin displacement operator. We expect all of these descendants
to have the same scaling behavior with n− 1 and J − 3.
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One can cut-off the integral over λ1 at some cutoff Λ. The answer will then diverge like(∫ Λ

−Λ

dλ1 λ
J−4
1

)
|y1 − y2|2(d−1)−∆̂1(J)

×
∫ ∞

0

dx2x
J−3
2 〈J−...−(w, w̄ = 0, y3)J+...+(z = 0, z̄ = x+

2 , y2)〉

∼ ΛJ−3

J − 3

∫ ∞
0

dx2 x
J−3
2 〈J−...−(w, w̄ = 0, y3)J+...+(z = 0, z̄ = x+

2 , y2)〉 × 1

|y1 − y2|2(d−1)−∆̂1(J)
.

(5.7.7)

The J − J correlator on the right is precisely the order n− 1 piece in 〈Σ0
nD̂

J
++D̂

(J)
−−〉 so

we find that the OPE coefficient scales like c(n = 1) ∼ ΛJ−3

J−3
.

Since Λ is some auxiliary parameter, it is tempting to assign Λ ∼ 1/(n− 1); we then find
the conjectured behavior in (5.7.2). This is ad hoc and we do not have an argument for this
assignmennt, except to say that the divergence is likely naturally regulated by working at
fixed n close to 1. This is technically difficult so we leave this calculation to future work.
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Chapter 6

Ignorance is Cheap: From Black Hole
Entropy To Energy-Minimizing States
In QFT

6.1 Introduction and Summary

There is a remarkable interplay between testable low-energy properties of quantum field
theory (QFT), and certain conjectures about quantum gravity, in which the area of surfaces
is associated to an entropy. For example, the classical focussing theorem in General Relativity
relies on the Null Energy Condition and so can fail in the presence of quantum matter. A
Quantum Focussing Conjecture (QFC) was proposed to hold in the semiclassical regime; it
implements a quantum correction to the classical statement by replacing the area with the
area plus exterior entropy, i.e., the “generalized entropy.” This was a guess about quantum
gravity, but it led to a new result in QFT. Namely, the Quantum Null Energy Condition
(QNEC) was discovered as the QFT limit of the QFC [11].

The QNEC has since been laboriously proven within relativistic quantum field theory [16,
17, 18]. The fact that the QNEC arises more directly and simply from a hypothesis about
quantum gravity is striking. Experimental tests of the QNEC may be viable and should be
regarded as test of this hypothesis.

Here we will discover a related but distinct connection of this type. We begin again
with a classical gravity construction, though one motivated by quantum gravity. The notion
that black holes carry Bekenstein-Hawking entropy (proportional to their area) has been
fruitful and widely explored, but we stress here that it is a hypothesis that has not been
experimentally tested. This hypothesis leads to a puzzle: if the black hole was formed from
a pure state, then the entropy should vanish. Thus the Bekenstein-Hawking entropy must
be the von Neumann entropy of another quantum state, presumably one that is obtained by
an appropriate coarse-graining of the original state. What characterizes this coarse-grained
state?
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This question was the subject of a recent conjecture by Engelhardt and Wall (EW) [118].
The EW conjecture applies to a class of surfaces that may lie on or inside the event horizon.
The Bekenstein-Hawking entropy associated with a “minimar” surface σ is the area of the
extremal (Ryu-Takayanagi [31] or HRT [32]) surface, maximized over all spacetimes that
agree with the given solution outside of σ. (The input spacetime may have no such surface
and thus no entropy.) Engelhardt and Wall showed that the coarse-grained entropy so
defined does indeed agree with the area of σ. The interpretation of extremal surface area
as an entropy in the quantum gravity theory is well-motivated by the success of the RT
proposal in asymptotically Anti-de Sitter spacetimes. We review the EW coarse-graining
procedure in Sec. 6.2.

However, the EW construction and proof are purely classical. In particular, the construc-
tion fails when quantum matter is included, because it relies on the Null Energy Condition.
Moreover, there is considerable evidence that in semi-classical gravity, it is the generalized
entropy [119] (and not the area) that is naturally associated with thermal states of the
underlying quantum gravity theory [5, 74].

Here, we will formulate a semi-classical extension of the EW coarse-graining proposal for
black hole states; that is, we include effects that are suppressed by one power of G~ compared
to the classical construction. In Sec. 6.3, we consider a suitably defined quantum version of
a “minimar” surface. At this order, we must hold fixed not only its exterior geometry but
also the exterior state of the quantum fields. We conjecture a construction that explains the
generalized entropy of the quantum minimar surface σ in terms of a suitably coarse-grained
state: one can find an interior completion of the geometry and quantum state that contains
a quantum stationary surface [5, 74, 49] with equal generalized entropy, but none with larger
generalized entropy. Moreover, we propose that saturation is obtained by extending σ along
a stationary null hypersurface whose classical and quantum expansions both vanish.

Unlike the classical EW construction, we cannot prove our conjecture. But in Sec. 6.4,
following the example of the QFC → QNEC derivation, we are able to extract a pure
quantum field theory limit. We apply our construction to states on a fixed background
black hole spacetime with a complete Killing horizon. In this limit, coarse-graining requires
the existence of QFT states with specific and somewhat surprising properties, which we list.
The most striking property of the coarse-grained state is that the energy flux across the
horizon has delta-function support on σ; and that it vanishes at all earlier times on the
horizon. (At later times the state agrees with the input state by construction.) The strength
of the delta function is set by the derivative of the von Neumann entropy along the horizon
in the input state, ~S ′/2π.

In particular, the existence of a quantum state with these properties would imply a new
result in QFT, Wall’s “ant conjecture” [66] concerning the minimum energy of global comple-
tions of a half-space quantum state. (We review the ant conjecture in Appendix A.14. The
QNEC follows from this conjecture, but it has also been directly proven.) Our proposal thus
implies that a state that maximizes the generalized entropy minimizes the nongravitational
energy inside of a cut of a Killing horizon, subject to holding fixed the state on the outside.
Roughly speaking, ignorance saves energy.
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In fact, Wall’s ant conjecture was recently proven by Ceyhan and Faulkner (CF) [18].
The CF construction takes as input a state on a Killing horizon and a cut at some surface σ
on the horizon. Connes cocycle flow then generates a family of states that differ only to the
past of the cut. In the limit of infinite flow, a state is approached whose properties prove
the ant conjecture.

In greater than 1+1 dimensions, the requirements we derive appear to be stronger than
those demanded by the ant conjecture; see Appendix A.14. Thus it is not immediately ob-
vious that the quantum states required for our coarse-graining proposal exist. However, in
Sec. 6.5 we show that the CF family of states attains all of the properties required by our
conjecture. In particular, a delta function shock appears at the cut, with precisely the pre-
dicted strength. It is interesting that this feature arises in an algebraic construction whereas
in the black hole setting, it arose geometrically from requiring a source for a discontinuity
in the metric derivative. Thus, the CF construction proves the QFT limit of our conjecture,
even though it was originally designed to prove the ant conjecture.

We briefly discuss some future directions in Sec. 6.6.

6.2 Classical coarse-graining of black hole states

In this section we review a classical geometric construction by Engelhardt and Wall (EW) [118,
120]. In Sec. 6.2, we provide definitions of (classically) marginally trapped, “minimar”, sta-
tionary, and HRT surfaces.

In Sec. 6.2, we summarize the EW proposal for the outer entropy of a “minimar” surface,
a marginally trapped surface σ that satisfies certain addition conditions. EW define this
entropy in terms of geometries that agree with in the exterior of σ but differ in the interior.
For any such auxiliary geometry, inspired by the Ryu-Takayanagi proposal, the von Neumann
entropy is assumed to be given by the area of a stationary surface. Maximizing this area
over all possible auxiliary geometries, EW show that it agrees with the area of σ, which thus
represents a coarse-grained entropy in agreement with the Bekenstein-Hawking formula.

Classical marginal, minimar, and stationary surfaces

We begin by fixing some notations and conventions; see Sec. 2 of [120] for details. Let σ be
a Cauchy splitting surface, that is, σ is an achronal codimension two compact surface that
divides a Cauchy surface Σ into two sides, Σin and Σout.

Let ka, la be the two future-directed null vector fields orthogonal to σ, normalized so
that kal

a = −1; and let θk, θl be their expansions.
If exactly one null expansion vanishes, we shall take this to be the k-expansion. Then σ

is called marginally outer trapped, with k defining the “outside.” If θl < 0 everywhere on a
marginally outer trapped σ, we call σ marginally trapped.
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Figure 6.1: Penrose diagram of a black hole formed from collapse in Anti-de Sitter space,
showing a minimar surface σ and its outer wedge OW [σ] with Cauchy surface Σ.

The outer wedge OW [σ] of a marginally trapped surface σ is the set of spacelike separated
events on the outside of σ (the side that k points towards, see above): OW [σ] ≡ D[Σout],
where D denotes the domain of dependence. See Fig. 6.1.

A minimar surface is a marginally trapped surface σ that satisfies two additional restric-
tions:

• OW [σ] contains a connected component B of an asymptotic conformal boundary (as
would be the case, for example, if σ lies in a single black hole formed from collapse
in asymptotically anti-de Sitter or flat spacetime). Moreover, OW [σ] admits a Cauchy
surface on which σ is the surface homologous to B that minimizes the area; see Fig. 6.1.

• ka∇aθ(l) < 0

A stationary surface X is a surface whose expansion vanishes in both null directions, k
and l:

θk = θl = 0 everywhere on X . (6.2.1)

A Hubeny-Rangamani-Takayanagi (HRT) surface X is a stationary surface that satisfies
additional requirements: it is the stationary surface with the smallest area, subject to a
homology condition [32, 31]. Here, we will require that X be homologous to a minimar
surface σ, and hence to a connected component B of a conformal boundary.
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Bekenstein-Hawking entropy from coarse-graining behind
minimar surfaces

Engelhardt and Wall [120] argued that the area of a minimar surface σ can be understood
as a coarse-grained entropy. For geometries with a CFT dual, an explicit prescription for
this coarse-graining can be formulated in the CFT. Here, we will be interested in the bulk
definition of this coarse-graining, which can be discussed in more general geometries.

In the bulk, the coarse-graining consists of holding fixed the outer wedge of σ, OW [σ],
while erasing the spatial interior of σ and replacing it with an auxiliary geometry. One seeks
the auxiliary geometry with the largest possible HRT surface X behind σ. The coarse-grained
entropy of σ is defined as A[X]/4G~.

So far, we have reviewed the definition of the outer entropy. The EW proposal is the
conjecture that

• Souter ≡ A[X]/4G~ represents the von Neumann entropy of a well-defined state in a
quantum gravity theory; and

• A[X] = A[σ].

EW proved the first part of the conjecture for the special case where B lies on the
conformal boundary of an asymptotically AdS spacetime, and σ lies on a perturbed Killing
horizon; moreover the proof assumes the Ryu-Takayanagi [31] and HRT [32] proposals for
the von Neumann entropy of the boundary CFT. In this case, it is possible to construct the
dual CFT state explicitly, and to show that its entropy agrees with Souter.

The second part of the conjecture was proven more generally [120]. Using the maximin
definition of the HRT surface [36], it can be shown that

A[X] ≤ A[σ] . (6.2.2)

This argument assumes the Null Energy Condition (NEC), that the stress tensor satisfies

Tabk
akb ≥ 0 (6.2.3)

for any null vector ka.
EW explicitly construct an interior geometry that saturates the inequality (6.2.2). This

implies

Souter[σ] ≡ A[X]

4G~
=
A[σ]

4G~
. (6.2.4)

The interior geometry with A[X] = A[σ] is constructed by specifying initial conditions
on the null hypersurface N−k orthogonal to σ towards the interior and past. Appropriate
initial data is generated by null-translating the intrinsic geometry of σ, thus generating a
stationary null hypersurface:

θk = 0 on N−k . (6.2.5)
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This ensures that all cross sections of N−k —in particular, X—have the same intrinsic metric
and area as σ. This construction is consistent with the relevant constraint, the Raychaudhuri
equation,

ka∇aθk = −1

2
θ2
k − ς2 − 8πGTkk , (6.2.6)

if one sets
ς = 0 and Tkk = 0 on N−k . (6.2.7)

on N−k . EW [120] show that this choice is always possible. Since θk vanishes on σ,
Eqs. (A.16.13) and (6.2.7) ensure that the entire extrinsic curvature tensor in the k-direction
vanishes everywhere on N−k , achieving the desired stationarity of N−k .

Moreover, it is important to show that there exists a stationary (HRT) surface X on
N−k . The outgoing expansion θk vanishes on any cut of N−k , by the above construction. The
question is whether there exists a cut X on which the ingong expansion θl vanishes as well.
This is accomplished in the following sequence of steps.

The minimar assumption dictates that on σ, θl < 0 and ka∇aθl < 0. One can choose
initial conditions on N−k such that along every null generator of N−k , ka∇aθl is constant and
equal to its value on σ: by the cross-focussing equation,

ka∇aθl = −1

2
R− θkθl + χ2 +∇ · χ+ 8πGTkl , (6.2.8)

this can be accomplished by choosing all terms on the right hand side to be constant on
N−k . This is already ensured for the intrinsic curvature scalar R and for the (vanishing) θkθl
term, by stationarity of N−k . The twist, or normal 1-form, is defined by

χa = hcal
d∇ckd , (6.2.9)

where hab = gab + 2l(akb) is the induced metric on a cut. The twist evolves according to

ka∇aχi = 8πTik(+ terms that vanish when θk = ς = 0) . (6.2.10)

To summarize, one can accomplish ka∇aθl = ka∇aθl|σ on N−k by choosing Eqs. (6.2.5)
and (6.2.7) and in addition, along each null generator of N−k ,

Tkl = Tkl|σ and Tik = 0 on N−k . (6.2.11)

Again, EW argue that these choices are always possible.
Let v be the affine parameter associated to ka, and let y be the transverse coordinates

(angular coordinates) on σ. The location of a stationary surface X, v = f(y), is determined
by the differential equation

La[f ] = −θl|σ , (6.2.12)

where La is the stability operator (see Ref. [120] for details). This can be shown to have a
solution with −∞ < f < 0, so the HRT surface exists and lies on N−k .
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EW then glue the geometry exterior to X (that is, N−k and the outer wedge) to its CPT
image across X. This constructs a “two-sided” geometry in which X functions as a kind
of bifurcation surface of a two-sided black hole/white hole pair. (However, the stationary
auxiliary portion N−k does not in general correspond to the horizon of a Kerr-Newman black
hole, as its intrinsic metric can differ.)

In a final step, EW show that X is not just stationary but is an HRT surface, i.e., that
X is the smallest-area stationary surface homologous to σ. This step uses the NEC as well
as the second part of the minimar property of σ.

This concludes our summary of the EW coarse-graining prescription. Again, we refer the
interested reader to Ref. [120] for more detailed definitions and arguments.

6.3 Semiclassical coarse-graining of black hole states

In this section, we formulate a semiclassical extension of the Engelhardt-Wall construction,
starting from a quantum marginally trapped surface σ. We conjecture that the semiclassical
state invoked in our construction exists in the full quantum gravity theory; and that in this
theory this state has a von Neumann entropy given by the generalized entropy of σ.

In Sec. 6.3, we introduce relevant concepts such as generalized entropy, quantum expan-
sion, quantum marginally trapped surfaces, and quantum HRT surfaces.

In Sec. 6.3, we state our quantum extension of the EW coarse-graining proposal.
In Sec. 6.3, we refine our conjecture by describing key properties that the coarse-grained

state is expected to satisfy at the level of semiclassical gravity. (These properties will be
shown to have an interesting nongravitational limit in Sec. 6.4. In Sec. 6.5 we will show that
a recent construction by Ceyhan and Faulkner [18] generates quantum field theory states
which achieve these properties in a certain limit.)

Quantum marginal, minimar, and stationary surfaces

Before we turn to the question of why and how the EW construction should be extended
to the semiclassical regime, we introduce here the relevant concepts: generalized entropy,
quantum expansion, quantum (marginally) trapped surfaces, and quantum extremal surfaces.
More details can be found, e.g., in Refs. [45, 6, 16, 15].

The notion of generalized entropy was originally introduced by Bekenstein [119] as an
extension of ordinary entropy that includes the contribution from black holes, Sout → Sout +
A

4G~ . But in an expansion in G~, it is the exterior entropy that should be regarded as a
quantum correction:

Sgen =
A

4G~
+ Sout + . . . , (6.3.1)

Equivalently, 4G~Sgen represents a quantum-corrected area.
In Bekenstein’s original proposal, A represented the area of a cut of a black hole event

horizon; and Sout represented the entropy in the black hole’s exterior. However, the general-
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ized entropy can be defined for any Cauchy-splitting surface σ, with Sout the von Neumann
entropy of the quantum fields restricted to one side of σ. A/4G~ should be regarded as the
leading counterterm that cancels divergences in the entropy; we suppress subleading terms
here. Given its wide applicability, the notion of generalized entropy can be used to define
quantum-corrected notions of trapped, stationary, etc., as follows.

Recall that the classical expansion of a surface σ̂ at a point y ∈ σ̂ is the trace of the null
extrinsic curvature at y. It can also be defined as a functional derivative,

θ[σ̂; y] = h(y)−1/2 δA[V ]

δV (y)
, (6.3.2)

where h is the area element on σ̂. Here V (y) defines a surface that lies an affine parameter
distance V from σ̂ along the null geodesic emanating from σ̂ at y.

The above definition is overkill, as the classical expansion depends only on the local
geometry near y. But it generalizes directly to the quantum expansion, Θ, which depends
on σ̂ nonlocally:

Θ[σ̂; y] =
4G~√
h(y)

δSgen[V ]

δV (y)
. (6.3.3)

A quantum marginally outer trapped surface is a surface whose quantum expansion in
one of the two null directions (say, k) vanishes at every point. Let σ be such a surface:

Θk[σ; y] ≡ 0 . (6.3.4)

It follows that

θk(y) = − 4G~√
h(y)

δSout

δV (y)
(6.3.5)

at every point on σ.
A quantum marginally trapped surface is a quantum marginally outer trapped surface for

which in addition
Θl[σ; y] < 0 . (6.3.6)

(As usual, anti-trapped corresponds to the opposite inequality on the l-expansion.)
The outer wedge OW [σ] of a quantum marginal surface σ is the set of spacelike separated

events on the “marginal” side of σ, i.e., the side that k points towards: OW [σ] = D[Σout];
see Fig. 6.1.

A quantum minimar surface, is a quantum marginally trapped surface σ that satisfies
two additional restrictions:

• OW [σ] contains a connected component of an asymptotic conformal boundary (as would
be the case, for example, if σ lies in a single black hole formed from collapse in asymp-
totically anti-de Sitter or flat spacetime). Moreover, OW [σ] admits a Cauchy surface
on which σ is the surface homologous to B that minimizes the generalized entropy; see
Fig. 6.1.
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• ka∇aθl < 0 .

Note that we impose the second condition on the classical expansion, not the quantum
expansion. Since the inequality is strict, the classical expansion θl will dominate in the
semiclassical expansion in G~.

A quantum stationary surface1 is a surface whose quantum expansions vanish in both
null directions, k and l. We will demand that X be such a surface:

Θk[X; y] ≡ 0 , Θl[X; y] ≡ 0 . (6.3.7)

A quantum HRT surface satisfies additional requirements: it is the quantum stationary
surface with the smallest generalized entropy; and it must obey a homology condition. Here,
we will require that it be homologous to a quantum minimar surface σ, and and hence to a
connected component B of a conformal boundary.

Generalized entropy from coarse-graining behind quantum
marginally trapped surfaces

We will now motivate and formulate a quantum extension of the EW proposal. To see
that such an extension is needed, note that the classical EW construction relies on the Null
Energy Condition, Eq. (8.1.2). The NEC guarantees that no HRT surface with area greater
than that of the marginally trapped surface can be constructed. It also guarantees that the
stationary surface with equal area is an HRT surface. But the NEC is known to fail in any
relativistic quantum field theory, so none of these conclusions survive at the semiclassical
level.

Indeed, one does not expect any quantum state of the full quantum gravity theory to
correspond to just the area of a surface (as is implicit in the classical EW construction).
Rather, one expects its von Neumann entropy to match the generalized entropy. That is, to
the extent that a quantum state corresponds to a surface, one expects it to also describe the
surface’s exterior.

There is significant evidence supporting this expectation from the AdS/CFT correspon-
dence [1]. Consider the quantum state ρB on a region B, where B can be all or part of the
boundary. This state is expected [5] to describe the entire entanglement wedge of B, i.e.,
the spacetime region enclosed by B and the HRT surface X[B]. The 1/N expansion on the
boundary (with N the rank of the CFT’s gauge group) corresponds to the G~ expansion
in the bulk. In particular, the von Neumann entropy S(ρB) can be expanded in this way,
with the leading O(N2) piece corresponding to the area of X[B], and the subleading O(1)
piece corresponding to the exterior bulk entropy Sout. When expanding to higher orders, XB

should be taken to be the quantum HRT surface of B [6].
We thus seek a proposal in which the generalized entropy of a surface σ is explained as a

coarse-grained entropy. The coarse-graining should correspond to maximizing the generalized

1In an abuse of language, this is sometimes referred to as extremal rather than stationary.
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entropy of a quantum HRT surface X, subject to holding fixed the outer wedge OW [σ] (now
including the quantum state of bulk fields in OW [σ]). The coarse-graining prescription will
be successful if Sgen[X] = Sgen[σ].

The remaining question is what characterizes a surface σ that we may consider for coarse-
graining. In the classical case, the appropriate criterion was that σ be minimar. In the
quantum case, the natural candidates are minimar surfaces or quantum minimar surfaces.
In the EW construction of the maximally coarse-grained state, the HRT surface X of the
coarse-grained state lies on a stationary null surface N−k extended to the past and inwards
from σ. Our construction will share this feature. This excludes (classically) minimar as the
relevant criterion for σ. The variation of Sout does not have definite sign on such surfaces,
and so their quantum expansion would not have a definite sign. However, if Θ[σ] > 0 then
by the quantum focussing conjecture, it would be impossible to find an X with Θ[X] = 0 on
N−k [σ]. Therefore, we will require that σ be quantum minimar; in particular, Θ[σ] = 0.

We now state our proposal. Let σ be a quantum minimar surface homologous to a
boundary region B, with generalized entropy Sgen[σ] and outer wedge OW [σ]. Let X̄ be a
quantum HRT surface in any geometry such that:

• OW [X̄] ⊃ OW [σ].

• X̄ is homologous to σ.

• Both the geometry and the quantum state of OW [X̄] agree with that of OW [σ] upon
restriction of OW [X̄] to OW [σ]. (To be precise, let Σout[X̄] be a Cauchy surface of
OW [X̄] such that Σout[X̄] ∩ OW [σ] is a Cauchy surface of OW [σ], Σout[σ], and let ρX̄
and ρσ be the state of the quantum fields on Σout[X̄] and Σout[σ], respectively. We
require that TrΣout[X̄]−Σout[σ] ρX̄ = ρσ.)

We claim that
supX̄Sgen[X̄] = Sgen[σ] . (6.3.8)

Moreover, let X be a surface X̄ that achieves the supremum. (This should be taken as
a limiting statement if no such X exists.) Then OW [X] represents a coarse-graining of
the original geometry, with respect to the quantum minimar surface σ. In particular, in
AdS/CFT the quantum state on B dual to the entanglement wedge OW [X] has von Neumann
entropy Sgen[σ].

Unlike the classical case, we will not prove this conjecture, but we will provide some
evidence supporting its plausibility. We proceed in two steps as in the classical case: first,
we will argue that

Sgen[X̄] ≤ Sgen[σ] (6.3.9)

for any X̄ satisfying the conditions in our proposal. We then refine our conjecture by detailing
the properties of a semiclassical geometry and quantum state that would achieve equality.

In order to show Eq. (6.3.9), we generalize the result in [120] to the quantum case. This
involves two main assumptions. The first assumption is the quantum focusing conjecture [11]
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which asserts that in the semi-classical limit the derivative of the quantum expansion of
codimension 2 surfaces under any null deformation is non-negative:

δΘk[X; y]

δV (y)
≤ 0 . (6.3.10)

The second assumption is a slightly weaker quantum generalization of the classical maximin
construction [36]. More precisely, we assume that the quantum extremal surface X̄ is also
the surface of minimal generalized entropy on some Cauchy slice Σ.

By global hyperbolicity, the congruence of null geodesics orthogonal to σ in the ±k direc-
tions intersect Σ at some Cauchy splitting surface σ̄. (The congruence should be terminated
at conjugate points or self-intersections [121, 122]. Since σ is a quantum marginally trapped
surface, quantum focusing ensures that

Sgen[σ̄] ≤ Sgen[σ] . (6.3.11)

The quantum maximin assumption further implies

Sgen[X̄] ≤ Sgen[σ̄] , (6.3.12)

which establishes Eq. (6.3.9).

Properties of a Generalized Entropy Maximizing Bulk State

We will now describe a geometry and quantum state with a quantum extremal surface X
whose generalized entropy saturates the inequality (6.3.9). The existence of a state with the
properties we describe would imply our conjecture, Eq. (6.3.8).

By asserting the existence of this semiclassical state, we are refining our conjecture. In
Sec. 6.4, we will explore the implications of this refinement in a pure field theory limit. In
Sec. 6.5, we will show that these implications are realized in a recent construction by Ceyhan
and Faulkner [18].

Our construction will be analogous to the classical one, in that we will approach X along
the null hypersurface N−k [σ]. Since we require Θk[σ] = Θk[X] = 0, the quantum focussing
conjecture (Θ′k ≤ 0) requires that Θk = 0 everywhere on N−k . That is, Sgen must be constant
along N−k . (This is analogous to classical focussing and the null energy condition requiring
that N−k have constant area in the classical case.)

In the classical case, all relevant quantities could be chosen to be constant on N−k . In
other words, the surface N−k is truly stationary. This would not be the case if θ and the
derivative of the entropy varied along N−k , with only their sum Θk vanishing. Motivated
by this observation, we conjecture that a state can be found such that the two terms in Θk

vanish separately on N−k :

θk = 0 and
δSout

δV (y)
= 0 . (6.3.13)
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In analogy with the classical construction we also take the shear tensor to vanish at all orders
in ~ along N−k :

ς = 0 . (6.3.14)

These considerations place nontrivial constraints on the limit state we seek. For θk and ς
to vanish everywhere on N−k , the stress tensor component Tkk must vanish on N−k . Moreover,
note that θk need not vanish on σ, where only Θk = 0 is required. It follows that generically,
θk must jump discontinuously, by an amount

∆θk|σ = − 4G~√
h(y)

δSout

δV (y)

∣∣∣∣
σ

. (6.3.15)

By Raychaudhuri’s equation, this implies the presence of a delta function term in the stress
tensor, at σ. Combining these results, we conclude that

Tvv =
~
2π

δSout

δV (y)

∣∣∣∣
σ

δ(v) , v ≤ 0 , (6.3.16)

i.e., in the region N−k ∪ σ.
To summarize, we conjecture the existence of a state with

Tvv =
~
2π

δSout

δV (y)

∣∣∣∣
σ

δ(v) , v ≤ 0 , (6.3.17)

ς = 0 , v < 0 , (6.3.18)

δSout

δV (y)
= 0 , v < 0. (6.3.19)

Eq. (6.3.17) trivially implies that ∫ v

−∞
dv Tvv = 0 , (6.3.20)

and we will use this property in Sec. 6.4.2 In addition, we assume that the remaining EW
conditions listed in Eq. (6.2.11) can be met at the classical level.

With these assumptions, the existence of a classical HRT surface on N−k is guaranteed
by the argument summarized around Eq. (6.2.12). This surface satisfies θl = 0. A quantum
stationary surface X can be found nearby (in the G~ → 0 limit), by solving iteratively for
θl = − 4G~√

h(y)

δS
δU(y)

, where the functional derivative refers to the shape deformation along the

l-congruence.
Finally, we need to show that X is quantum HRT, i.e., that it is the quantum stationary

surface homologous to σ with smallest generalized entropy. This proceeds in exact analogy
with the classical argument [120], with the QFC replacing the NEC, so we will not spell out
the argument here. See [123] for details.

2Strictly, we must allow for the possibility that a state with the properties we conjecture does not itself
exist. It suffices that the properties we require can be arbitrarily well approximated by some family or
sequence of states (as in the example of Sec. 6.5). In this case, Eq. (6.3.17) need not imply Eq. (6.3.20), so
the latter property should be considered explicitly as part of our refined conjecture.
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Figure 6.2: Coarse-graining behind a Killing horizon. Any cut V0 can be viewed as a quantum
marginally trapped surface in the limit as G → 0. The state ρ>V0 on the Cauchy surface
Σ of the outer wedge is held fixed. The coarse-grained geometry is the original geometry.
The stationary null surface N−k is the past of V0 on the Killing horizon. The coarse-grained
quantum state demanded by our proposal lives on N−k ∪ σ ∪ Σ. We identify the properties
the state must have, and we show that the Ceyhan and Faulkner “ant states” satisfy these.

6.4 Quantum field theory limit of coarse-grained

quantum gravity states

In this section, we study the implications of our conjecture for quantum field theory decoupled
from gravity. We will apply our proposal to input states that are small perturbations of the
Killing horizon of a maximally extended vacuum solution such as Kruskal; see Fig. 6.2.

In the perturbative setting, any quantum marginally trapped surface σ will be at a
distance of order G from the Killing horizon, and so will lie on the horizon as G → 0. We
can think of the area and null expansion of σ as fields defined on the unperturbed Killing
horizon whose changes are sourced by the state of the matter fields on the horizon. Thus,
every cut of the Killing horizon can be viewed as quantum marginally trapped, and our
conjecture can be applied.

We will first establish notation and review some standard results in Sec. 6.4. In Sec. 6.4,
we will derive some interesting additional properties of the coarse-graining states that must
hold in the perturbative setting. In the limit as G → 0, our conjecture thus implies the
existence of states with both the properties established in the previous section, and the
additional properties derived here, in quantum field theory on a fixed background. This is
an in-principle testable conjecture about quantum field theory.
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Notation, definitions, and standard results

Consider a quantum field theory on a background with a Killing horizon and an arbitrary
global state ρ defined on the horizon. Let v be the affine parameter on the Killing horizon,
u the affine parameter that moves off of the Killing horizon (associated with null vectors k
and l respectively), and take y to be the transverse coordinates on a cut V (y) of the horizon.
The cut defines a surface σ, which we assume to be Cauchy-splitting as usual.

Let the right half-space state ρ>V0 be the restriction of ρ to the half-space v > V0(y) as
in Fig. 6.2:

ρ>V0 ≡ Tr≤V0ρ . (6.4.1)

where the trace is over the algebra associated with the complement region. Let us denote
the von Neumann entropy of ρ>V0 by

S(V0) = −Tr ρ>V0 log ρ>V0 . (6.4.2)

Let σ ≡ |Ω〉〈Ω| be the global vacuum, which can be reduced to the right vacuum σ>V0 =
Tr≤V0σ. The vacuum-subtracted von Neumann entropy of ρ>V0 is

∆S(V0) = S(V0) + Trσ>V0 log σ>V0 . (6.4.3)

The right (half-)modular Hamiltonian K is defined by the relation

σ>V0 =
e−K(V0)

Tr e−K(V0)
. (6.4.4)

The right modular energy in a global state ρ is 〈K(V0)〉 ≡ Tr [K(V0)ρ>V0 ], and the vacuum-
subtracted right modular energy is

∆K(V0) ≡ 〈K(V0)〉 − Tr [σ>V0K(V0)] (6.4.5)

=
2π

~

∫
dy

∫ ∞
V0(y)

dv [v − V0(y)]Tvv , (6.4.6)

where the explicit expression is due to Bisognano and Wichmann [124] and its generalization
to arbitrary cuts of Killing horizons [27, 125]. The relative entropy of ρ>v0 with respect to
the reduced global vacuum, σ>v0 , is defined as

Srel(V0) ≡ S(ρ>V0 |σ>V0) (6.4.7)

≡ Tr ρ>V0 log ρ>V0 − Tr ρ>V0 log σ>V0 . (6.4.8)

It follows from this definition that

Srel(V ) = ∆K(V )−∆S(V ) . (6.4.9)

We will often be interested in derivatives, where the vacuum-subtraction drops out. For
example,

δK

δV (y)
=

δ∆K

δV (y)
= −2π

~

∫ ∞
v

dṽ Tvv(y) . (6.4.10)
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Figure 6.3: The spacetime region associated to the interval V < v < V0 on the null surface
for which all observables in the algebra should register vacuum values in the coarse-graining
state.

Similar definitions apply to the region v < V0; we denote the associated “left” quantities
with an overbar. Strictly, we define the left and right quantities in terms of the limit as
ε→ 0 of the open intervals (−∞, V0(y) + ε) and (V0(y) + ε,∞), respectively. The small shift
ensures that any distributional sources at V0(y) contribute asymmetrically to the left but
not to the right quantities. (We will see that in the minimum energy states of interest in
this paper, the stress tensor generically has a delta function at V0(y). Our choice resolves
an associated ambiguity, attributing this energy entirely to the left.)

The relative entropy satisfies positivity and monotonicity:

Srel ≥ 0 ,
δSrel

δV
≤ 0 . (6.4.11)

Via Eq. (6.4.9), monotonicity implies

δK̄

δV
≥ δS̄

δV
≥ δS

δV
. (6.4.12)

The second inequality follows from the strong subadditivity of the von Neumann entropy,

SBC + SCD ≥ SB + SD , (6.4.13)

applied to the intervals B = (−∞, v0), C = [v0, v0 + δ], D = (v0 + δ,∞) in the limit as
δ → 0 [66].
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Additional properties of the coarse-graining states

Our conjecture says that the coarse-grained state will have vanishing Tvv and constant right
entropy in the left region:

〈Tvv〉 =
~
2π

δS

δV (y)

∣∣∣∣
σ

δ(v − V0(y)) , v ≤ V0 , (6.4.14)

δS

δV (y)
= 0 , v < 0 . (6.4.15)

In particular, in the strong form of Eq. (6.3.20), these properties imply the ant conjecture
(see Appendix A.14).

But additionally, on the Killing horizon, the nested inequalities (6.4.12) hold. Combined
with the above equations, this implies that the left von Neumann entropy is also constant:

0 =

∫ V (y)

−∞
〈Tvv〉 ≥

δS̄

δV (y)
≥ δS

δV (y)
= 0 (6.4.16)

=⇒ δS̄

δV (y)
= 0, v < V0(y) . (6.4.17)

By Eqs. (6.3.20), (6.4.9) and (6.4.10), it follows that the left relative entropy is constant:

δS̄rel(ρ<V |σ<V )

δV (y)
= 0, v < V0(y) . (6.4.18)

But the relative entropy is a measure of the distinguishability of the state ρ<V from the
vacuum σ<V . Suppose that by moving up the cut V , i.e., by gaining access to a larger
region, one could perform some measurement that would better distinguish ρ<V from the
vacuum. Then the relative entropy of the larger region would have to be greater. Thus,
Eq. (6.4.18) implies that all observables restricted to the difference between the left domains
of dependence associated to cuts V0(y) and V (y) (as in Fig. 6.3) need to register vacuum
values. In particular, the stress tensor one-point function must vanish:

〈Tµν(x)〉 = 0, x ∈ D(V0)−D(V ) . (6.4.19)

It is more subtle to draw conclusions about 〈Tµν(x)〉 when x is on the boundary of the
region (marked by red in Fig. 6.3), u = 0, v < V0. Because Tµν does not exist as an operator
unless it is smeared to both sides of this boundary, it will not be in the left operator algebra,
and it cannot be used to distinguish ρ<V from the vacuum σ<V .

We will now give a rough physical argument that certain components of 〈Tµν(x)〉 must
vanish also on the Killing horizon below the cut, u = 0, v < V0. We emphasize that this
argument is not rigorous, as it borrows from classical intuition. (In forthcoming work we will
explore a more detailed coarse-graining proposal involving a family of states; in that setting
a rigorous argument can be given.)
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Physically, 〈Tvv〉 can be thought of as the momentum orthogonal to an observer’s world-
line in the (u, v) plane, in the limit as the observer moves at the speed of light in the
v-direction. Similarly, Tiv is the transverse momentum seen by such an observer. Since
all observables in the algebra associated to D(V0) − D(V ) have to register vacuum values,
no excitations can enter this region. By causality, therefore, the state on the null surface
u = 0, v < V0 can only differ from the vacuum by matter moving along it, i.e., purely in the
v-direction. This implies 〈Tvv〉 = 0, consistent with Eq. (6.4.15) above. It also implies the
new result

〈Tiv〉 = 0 , v < V0 . (6.4.20)

Conservation of the stress tensor,

−∂v〈Tuv〉 − ∂u〈Tvv〉+ ∂i〈Tiv〉 = 0 , (6.4.21)

combined with (6.4.14) then yields

〈Tuv〉 = const . (6.4.22)

We conclude that coarse-grained states on Killing horizons must satisfy not only Eqs. (6.4.14)
and (6.4.15) but also Eqs. (6.4.17), (6.4.18), (6.4.20), and (6.4.22).

Crucially, these results pertain to quantum field theory on a fixed background, so they
can be checked in a rigorous setting. In the next section we will see that all of the above
properties are indeed satisfied by the “ant states” constructed by Ceyhan and Faulkner [18].
This proves our conjecture in the Killing horizon limit.

6.5 Existence of coarse-graining states in QFT limit

In this section we show that the “predictions” of the previous section have already been
confirmed. We consider a recent explicit construction of states in QFT by Ceyhan and
Faulkner (CF) [18]. CF constructed these states in order to prove a conjecture by Wall
[126] that we will discuss in detail in Appendix A.14 below. For now, we merely verify that
they satisfy the properties we found for the coarse-graining state on Killing horizons in the
non-gravitational limit: Eqs. (6.4.14), (6.4.15), (6.4.17), (6.4.18), (6.4.20), and (6.4.22).

Consider a cut V0(y) of the Rindler horizon u = 0 and let AV0 ,A′V0
be the algebra of

operators associated to the region {u = 0, v > V0(y)} and its complement respectively.
Given a global state |ψ〉 we can consider its restriction to AV0 . One can then purify this
restriction in different ways, including the trivial purification. We will be interested in the
purification introduced in [18], which is based on modular flow.

For the global vacuum |Ω〉 recall that the full modular Hamiltonian associated to the cut
V0 defines a modular operator via KV0 = − log ∆Ω;AV0

and that ∆is
Ω;AV0

simply acts as the

boost that fixes V0. We note that ∆Ω;AV0
is related to the reduced density matrix in Eq.

(6.4.4) by ∆Ω;AV0
= log σ>V0 ⊗ 1<V0 − 1>V0 ⊗ log σ<V0 .
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For a general state |ψ〉 that is cyclic and separating, one can define the relative modular
operator as [127, 124, 128]

∆ψ|Ω;AV0
= S†ψ|Ω;AV0

Sψ|Ω;AV0
, (6.5.1)

where

Sψ|Ω;AV0
α|ψ〉 = α†|Ω〉, ∀α ∈ AV0 (6.5.2)

defines the Tomita operator.
We then purify |ψ〉 restricted to AV0 using the Connes cocycle

|ψs〉 = u′s|ψ〉, u′s = (∆′Ω)is(∆′Ω|ψ)−is ∈ A′V0
. (6.5.3)

The Connes cocycle can roughly be thought of as a half-sided boost that fixes the state
restricted to AV0 but stretches all of the excited modes in the complement region. Specif-
ically, expectation values of operators in AV0 are left invariant whereas expectation values
of operators in A′V0

are equivalent to those evaluated in the state ∆−isΩ |ψ〉. This follows
(restricting to cyclic and separating states for simplicity) from the relation (∆′)isψ|Ω∆−isΩ|ψ = 1,
which implies

|ψs〉 = ∆−isΩ us|ψ〉 . (6.5.4)

If we consider an operator O′ ∈ A′V0
then [us,O′] = 0 so

〈ψs|O′|ψs〉 = 〈ψ|∆is
ΩO′∆−isΩ |ψ〉 . (6.5.5)

Note that v = V0(y) is a fixed point of the boost.
In the limit s→∞ all of these excitations become soft. More specifically,

〈Tvv〉s|v<V0(y) ≡ 〈ψs|Tvv(v)|ψs〉|v<V0(y)

= e−4πs〈ψ|Tvv(V0 + e−2πs(v − V0))|ψ〉|v<V0(y) (6.5.6)

which just follows from the usual algebra of half-sided modular inclusions. Hence 〈Tvv〉s → 0
as s→∞ for v < V0(y).

Not only that but also

lim
s→∞

∫ v

−∞
dv 〈Tvv〉s → 0, v < V0(y) . (6.5.7)

To see what this implies about the energy of the boosted side, we make use of the sum
rule derived in [18] for null derivatives of the relative entropy:

2π
(
Ps − e−2πsP

)
=
(
e−2πs − 1

) δSrel(ψ|Ω;AV )

δV

∣∣∣
V0

, (6.5.8)
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where

P =

∫ ∞
−∞

dv 〈Tvv〉ψ (6.5.9)

is the average null energy of the original state, Ps is the average null energy of |ψs〉, and

Srel(ψ|Ω;AV ) = −〈ψ| log ∆ψ|Ω;AV |ψ〉 (6.5.10)

is the relative entropy of the original state for some general cut V (y).
The relative entropy can also be written as

Srel(ψ|Ω;AV ) = 〈KV 〉ψ − S(V ) (6.5.11)

and moreover [18]

δ〈KV 〉ψ
δV

∣∣∣
V0

= −2π

∫ ∞
V0(y)

dv 〈Tvv〉ψ . (6.5.12)

Thus in the limit s→∞ we find, using Eq. (6.5.7),

〈Tvv〉|v≤V0(y)=
1

2π

δS

δV

∣∣∣
V0

δ(v − V0(y)) (6.5.13)

as desired. This reproduces both Eq. (6.4.14) and Eq. (6.4.15).
As a final point, note that under the Connes cocycle we also have the following properties:

〈Tuv〉s→∞ = 〈Tuv(V0)〉ψ , (6.5.14)

〈Tiv〉s→∞ → 0 . (6.5.15)

This very easily reproduces the properties Eq. (6.4.20) and Eq. (6.4.22).

6.6 Discussion

We end by discussing the boundary interpretation of the generalized entropy of a QMT
surface. We will also briefly describe future work on a systematic algorithm for constructing
the states we conjectured in Sec. 6.3.

Boundary dual

Within AdS/CFT, it is natural to ask whether the coarse-graining prescription for Souter

in Sec. 6.3 has a boundary dual. In other words, there must exist a boundary state dual
to the bulk coarse-grained semiclassical state of Sec. 6.3. Based on Eq. (6.3.12), we know
that the boundary dual to this state is a mixed state that maximizes the boundary von



CHAPTER 6. IGNORANCE IS CHEAP: FROM BLACK HOLE ENTROPY TO
ENERGY-MINIMIZING STATES IN QFT 104

Neumann entropy subject to fixing the semiclassical state in OW [µ]. Since in Sec. 6.3 we
only considered a case where we have reflecting boundary conditions at infinity, fixing OW [µ]
amounts to fixing the past boundary of OW [µ], labelled N−l(ti) in Fig. 6.4.

Therefore, the question of whether there is a natural boundary dual to our bulk coarse-
graining prescription reduces to that of whether fixing the semiclassical state on N−l(ti) has
a natural interpretation in the boundary. Our answer to this question is very similar to the
simple entropy Ssimple prescription of [118, 120].

Since we would like to refer to the bulk as little as possible, we define the QMT surface µ
associated to a time slice ti of the boundary by constructing an ingoing null surface from ti
and marking the first QMT surface on it. In general, this surface could reach caustics before
reaching µ; Ref. [120] deals with this technicality. Here we ignore this issue by restricting to
special classes of states (e.g. perturbations to Killing horizons).

Let ρ(ti) be the original boundary state at time ti. We would like to construct a boundary
state with maximum von Neumann entropy, which agrees with the semiclassical bulk state
on N−l(ti). In order to accomplish this, we must find a boundary definition of F , the set of
density matrices dual to the semiclassical state on N−l(ti).

Let us first consider F to be the states that agree with ρ(ti) on simple boundary observ-
ables A on t > ti. Simple observables are defined to be boundary operators whose associated
excitations propagate causally in the bulk [118, 120], so this data fixes the bulk causal wedge
of t > ti (C[ti] in Fig. 6.4). However, C[ti] ⊆ OW [σti ], so in general this set F would not be
constrained enough to fix all of the data on N−l(ti).

The discrepancy between C[ti] and OW [σti ] arises from matter that enters the black hole
to the future of σti . This causes the event horizon to grow and lie properly inside of the
outer wedge. To fix all of OW [σti ] given ρ(ti), one must turn on boundary sources that will
absorb the future infalling excitations and achieve C[ti] = OW [σti ]. This may seem acausal,
but so is the definition of simple operator as an operator that can be represented by local
boundary operators smeared over space and time.

Therefore, the coarse-graining set F should consist of the states such that the simple
boundary observables A agree with those of ρ(ti) even after both states have been subject
to turning on various simple sources on the boundary:

Ssimple(ti) = max
ρ̃∈F

S(ρ̃) (6.6.1)

with

F = {ρ : 〈EAE†〉ρ̃(t) = 〈EAE†〉ρ, t ≥ ti; ∀E} (6.6.2)

where A is the set of simple observables and E denotes unitaries associated with turning on
various simple boundary sources.

Note that C[ti] ⊆ OW [σti ] in all semiclassical states [45]. Therefore, subjecting the states
to various simple sources is never going to make a slice larger than N−l(ti) causally accessible
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Figure 6.4: We would like to fix the data on N−l(ti) (green thick line), while coarse-graining
in the interior of the QMT surface. Simple data in the boundary region t > ti fixes the
causal wedge C[ti] and thus fixes only a portion of N−l(ti). In order to fix all of N−l(ti) one
must allow for sources that remove the excitations (red arrows) that enter the black hole
after σ; this can cause the causal wedge to grow to include N−l. In the coarse-graining set
F , the simple data must agree for all allowed sources.

from the boundary. Given the state ρ(ti), there exists a fine-tuned choice of sources that will
make C[ti] = OW [σti ]. But since this choice is state-dependent and difficult to specify from a
pure boundary perspective, we choose the boundary coarse-graining family F to agree with
ρ(ti) on simple data subject to all simple sources turned on.

So far we have defined A as the set of boundary observers that correspond to bulk
excitations that propagate causally. The classical analysis of Refs. [118, 120] further specified
A to consist only of one point functions of all local operators on the boundary. This will fix
the states of the classical fields in the bulk that are causally determined by the boundary
region t ≥ ti. Since here we are interested in fixing the quantum state of the bulk fields on
N−l(ti), our set A needs to include higher point function of local bulk operators.

However, we are still interested in maintaining locality in the bulk and therefore want to
disallow a large density of local probes in any bulk region. This is following the expectation
that such excitations would cause large backreaction and therefore a breakdown of locality [8].
From a boundary perspective, a local bulk operator in the causal wedge is dual to a smeared
boundary operator [129]. Therefore, our set A needs to include all products of smeared
boundary operator as long as there is not an O(N) number of overlap in the support of
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the smeared operators. This choice of A in Eq. (6.6.2) is a natural candidate for fixing the
quantum state on N−l(ti); we leave a thorough investigation of this issue to future work.

We refer the reader to [120] for a careful demonstration of Ssimple = Souter in the bulk
classical limit.

Semiclassical Stretched States

In this paper, we started from a classical construction in general relativity, whose quantum
interpretation is the coarse-graining of a quantum state so that its entropy matches the
area of a marginally trapped surface. We elevated this to a semi-classical conjecture that
we interpret as a coarse-graining that will match the generalized entropy of a quantum
marginally trapped surface, while holding fixed the exterior quantum state. In the QFT
limit, our conjecture is confirmed by the limit of the CF sequence of states [18].

Thus, we were able to derive a nontrivial, testable property of QFT from a hypothetical
assumption about quantum gravity. This is similar to how the QNEC was derived from the
QFC, a hypothetical extension of the classical focussing property of general relativity. This
is a satisfying connection. QFT has not been directly probed in this limit, and a direct
verification of the CF limit or of the QNEC would constitute a test of our ideas about
quantum gravity.

Interestingly, there appears to be a larger set of relations of the type we explored here. Our
starting point, the EW construction, is essentially unique. However, the CF construction
produces a one-parameter family of states, given an input state and a cut on a Killing
horizon. Here we only made use of the limit approached by these states as the flow parameter
diverges. But we expect that there exists a classical construction (which may limit to the
EW construction) that matches the entire one-parameter CF family.

In the special case where the cut is a bifurcation surface of the Killing horizon, the
CF construction admits an interesting intuitive interpretation: all correlators of operators
restricted to the left (or to the right) behave as if we had boosted the state on the left side of
the cut (but not on the right). In QFT, a one-sided boost would result in a divergent-energy
shock at the cut, because it would destroy the vacuum. But the CF flow is more subtle;
in a sense it boosts only the “excited part” of the state on N−k , while leaving the vacuum
entanglement across the cut intact.

This suggests a simple classical analogue of CF flow. At the classical level, a half-sided
boost is innocuous. It can be applied to initial data on the null surface N−k with no ill
consequences at the cut. However, a generic cut of a Killing horizon is not a bifurcation
surface and hence is not a fixed point of the Killing flow.

Nonetheless, one can construct a sequence of geometries by a construction we will call
the left stretch. Given the state and affine parameter v on the entire Killing horizon Nk,
rescale V → V ′ = esV on the left side N−k , and do nothing on the right: V → V ′ on N+

k .
This will rescale all v-derivatives of classical fields by e−s. To preserve the inner product
kala ≡ gab(∂v)

a(∂u)
b = −1, rescale the u-derivatives at constant (v, y) by es. Then glue the

two halves back together, treating V ′ as a true affine parameter.
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For the full initial data on N , we need to know not only the intrinsic geometry but also
θl, the expansion in the null direction off of Nk. This is obtained by holding θl fixed on N+

k

and integrating the cross-focussing equation,

ka∇aθl = −1

2
R− θkθl + χ2 +∇ · χ+ 8πGTkl , (6.6.3)

to obtain θl on N−k . Since all terms on the right hand side scale trivially, this rescales the
difference θl − θl|V0 by es.

Because θl is not given by a simple rescaling unless θl|V0 = 0, the left stretch results in
physically inequivalent initial data even in the left exterior of σ alone. The intrinsic data on
N−k are stretched, as measured by a ruler defined by the evolution of the extrinsic curvature
θl.

Interestingly, the left stretch is physically sensible if and only if the cut is a trapped
surface. This is because the expansion θk along Nk is determined not only by the left stretch
itself, but also by the Raychaudhuri equation, and the two methods must agree. Let the
inaffinity κ be defined by kb∇bk

a = κka. Affine parametrization corresponds to κ = 0
everywhere. The left stretch implements

V (y)→ esH[−V (y)+V0(y)]V (y) , (6.6.4)

where H(v) is the Heaviside step function and v = V0(y) is the marginally trapped surface
σ. This generates a non-zero inaffinity

κ = (1− e−s)δ[V (y)] . (6.6.5)

The Raychaudhuri equation for non-affine parametrization reads

ka∇aθk = −1

2
θ2
k − ς2

k − κθk − 8πG Tkk . (6.6.6)

We insist that the new parameter V ′ be treated as affine, which means we are demanding
that the inaffinity term κθ vanishes even after the left stretch. By Eq. (6.6.5), this will be
the case if and only if θk = 0 at the cut.

Importantly, Eqs. (6.2.5), (6.2.7) and (6.2.11) become satisfied in the limit as s → ∞.
These are precisely the conditions imposed by EW for the classical coarse-graining construc-
tion. In this sense the left stretch can be viewed as generating a one-parameter interpolation
from the original initial data to the coarse-grained data.3

We close with two brief remarks. At the level of semiclassical gravity, the left stretch
should naturally combine with the CF construction, so that not only the geometric and
classical data, but also the quantum initial data are stretched. Moreover, we expect that
the left stretch (applied classically to the RT or semiclassically to the quantum RT surface)
is the gravity dual of the CF flow applied to the boundary of Anti-de Sitter space.

3However, there are interesting differences to the EW analysis. For example, the left stretch yields
divergent Tuu, as does the CF limit. Yet, EW argue that this can be avoided. There may be a larger family
of relevant states.
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Figure 6.5: The left stretch is a classical analogue of the CF flow that generalizes it to
nontrivial geometries. Left: The null surface Nk split by the marginally trapped surface σ.
Middle: The affine parameter is rescaled on N−k but held fixed on N+

k . This is the same
initial data in nonaffine parametrization. Right: The two pieces are glued back together,
treating the new parameter as affine. This yields inequivalent initial data.
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Chapter 7

Gravity Dual of Connes Cocycle Flow

7.1 Introduction

The AdS/CFT duality [1, 2, 130] has led to tremendous progress in the study of quantum
gravity. However, our understanding of the holographic dictionary remains limited. In recent
years, quantum error correction was found to play an important role in the emergence of a
gravitating (“bulk”) spacetime from the boundary theory [8, 9, 131]. The study of modular
operators led to the result that the boundary relative entropy in a region A equals the bulk
relative entropy in its entanglement wedge EW(A) [7]. The combination of these insights was
used to derive subregion duality: bulk operators in EW(A) can in principle be reconstructed
from operators in the subregion A [35].

The relation between bulk modular flow in EW(A) and boundary modular flow in A has
been used to explicitly reconstruct bulk operators both directly [132, 133], and indirectly via
the Petz recovery map and its variants [134, 135, 136]. Thus, modular flow has shed light on
the emergence of the bulk spacetime from entanglement properties of the boundary theory.

Modular flow has also played an important role in proving various properties of quantum
field theory (QFT), such as the averaged null energy condition (ANEC) and quantum null
energy condition (QNEC) [27, 137]. Tomita-Takesaki theory, the study of modular flow in
algebraic QFT, puts constraints on correlation functions that are otherwise hard to prove
directly [138].

Recently, an alternate proof of the QNEC was found using techniques from Tomita-
Takesaki theory [18]. The key ingredient was Connes cocyle (CC) flow. Given a subregion
A and global pure state ψ, Connes cocycle flow acts with a certain combination of modular
operators to generate a sequence of well-defined global states ψs. In the limit s → ∞,
these states saturate Wall’s “ant conjecture” [126] on the minimum amount of energy in the
complementary region A′. This proves the ant conjecture, which, in turn, implies the QNEC.

CC flow also arises from a fascinating interplay between quantum gravity, quantum in-
formation, and QFT. Recently, the classical black hole coarse-graining construction of En-
gelhardt and Wall [118] was conjecturally extended to the semiclassical level [139]. In the
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non-gravitational limit, this conjecture requires the existence of flat space QFT states with
properties identical to the s → ∞ limit of CC flowed states. This is somewhat reminiscent
of how the QNEC was first discovered as the nongravitational limit of the quantum focusing
conjecture [28]. Clearly, CC flow plays an important role in the connection between QFT
and gravity. Our goal in this paper is to investigate this connection at a deeper level within
the setting of AdS/CFT.

In Sec. 7.2, we define CC flow and discuss some of its properties. If ∂A lies on a null plane
in Minkowski space, operator expectation values and subregion entropies within the region
A remain the same, whereas those in A′ transform analogously to a boost [18]. Further,
CC flowed states ψs exhibit a characteristic stress tensor shock at the cut ∂A, controlled
by the derivative of the von Neumann entropy of the region A in the state ψ under shape
deformations of ∂A [139].

As is familiar from other examples in holography, bulk duals of complicated boundary
objects are often much simpler [31, 29]. Motivated by the known properties of CC flow,
we define a bulk construction in Sec. 7.3, which we call the “kink transform.” This is a
one-parameter transformation of the initial data of the bulk spacetime dual to the original
boundary state ψ. We consider a Cauchy surface Σ that contains the Ryu-Takayanagi surface
R of the subregion A. The kink transform acts as the identity except at R, where an s-
dependent shock is added to the extrinsic curvature of Σ. We show that this is equivalent
to a one-sided boost of Σ in the normal bundle to R. We prove that the new initial data
satisfies the gravitational constraint equations, thus demonstrating that the kink transform
defines a valid bulk spacetime Ms. We show that Ms is independent of the choice of Σ.

We propose that Ms is the holographic dual to the CC-flowed state ψs, if the boundary
cut ∂A is (conformally) a flat plane in Minkowski space.

In Sec. 7.4, we provide evidence for this proposal. The kink transform separately preserves
the entanglement wedges of A and A′, but it glues them together with a relative boost by
rapidity 2πs. This implies the one-sided expectation values and subregion entropies of the
CC flowed state ψs are correctly reproduced when they are computed holographically in
the bulk spacetime Ms. We then perform a more nontrivial check of this proposal. By
computing the boundary stress tensor holographically inMs, we reproduce the stress tensor
shock at ∂A in the CC-flowed state ψs.

Having provided evidence for kink transform/CC flow duality, we use the duality to
make a novel prediction for CC flow in Sec. 7.5. The kink transform fully determines all
independent components of the shock at ∂A in terms of shape derivatives of the entanglement
entropy. Strictly, our results only apply only to the CC flow of a holographic CFT across
a planar cut. However, their universal form suggests that they will hold for general QFTs
under CC flow. Moreover, the shocks we find agree with properties required to exist in
quantum states under the coarse-graining proposal of Ref. [140]. Thus, our new results may
also hold for CC flow across general cuts of a null plane.

In Sec. 7.6, we discuss the relation of our construction to earlier work on the role of
modular flow in AdS/CFT [141, 7, 142]. The result of Jafferis et al. (JLMS) [7] has conven-
tionally been understood as a relation that holds for a small code subspace of bulk states on
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a fixed background spacetime. However, results from quantum error correction suggest that
this code subspace could be made much larger to include different background geometries
[9, 143, 144, 145]. Our proposal then follows from such an extended version of the JLMS
result which includes non-perturbatively different background geometries. Equipped with
this understanding, we can distinguish our proposal from the closely related bulk duals of
one-sided modular flowed states [141, 142]. We provide additional evidence for our proposal
based on two sided correlation functions of heavy operators, and we discuss generalizations
and applications of the proposed kink transform/CC flow duality.

In Appendix A.15 we derive the null limit of the kink transform, and show that it gener-
ates a Weyl shock, which provides intuition for how the kink transform modifies gravitational
observables.

7.2 Connes Cocycle Flow

In this section, we review Connes cocycle flow and its salient properties; for more details see
[18, 139]. We then reformulate Connes cocycle flow in as a simpler map to a state defined
on a “precursor” slice. This will prove useful in later sections.

Definition and General Properties

Consider a quantum field theory on Minkowski space Rd−1,1 in standard Cartesian coordi-
nates (t, x, y1, . . . , yd−2). Consider a Cauchy surface C that is the disjoint union of the open
regions A0, A

′
0 and their shared boundary ∂A0. Let A0,A′0 denote the associated algebras

of operators. Let |ψ〉 be a cyclic and separating state on C, and denote by |Ω〉 the global
vacuum (the assumption of cyclic and separating could be relaxed for |ψ〉, at the cost of
complicating the discussion below). The Tomita operator is defined by

Sψ|Ω;A0α|ψ〉 = α†|Ω〉,∀α ∈ A0 . (7.2.1)

The relative modular operator is defined as

∆ψ|Ω ≡ S†ψ|Ω;A0
Sψ|Ω;A0 , (7.2.2)

and the vacuum modular operator is

∆Ω ≡ ∆Ω|Ω . (7.2.3)

Note that we do not include the subscript A0 on ∆; instead, for modular operators, we
indicate whether they were constructed from A0 or A′0 by writing ∆ or ∆′.

Connes cocycle (CC) flow of |ψ〉 generates a one parameter family of states |ψs〉, s ∈ R,
defined by

|ψs〉 = (∆′Ω)is(∆′Ω|ψ)−is|ψ〉 . (7.2.4)
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Thus far the definitions have been purely algebraic. In order to elucidate the intuition
behind CC flow, let us write out the modular operators in terms of the left and right density
operators, ρψA0

= TrA′0 |ψ〉〈ψ| and ρψA′0
= TrA0|ψ〉〈ψ|:1

∆ψ|Ω = ρΩ
A0
⊗ (ρψA′0

)−1 . (7.2.5)

One finds that the CC operator acts only in A′0:

(∆′Ω)is(∆′Ω|ψ)−is = (ρΩ
A′0

)is(ρψA′0
)−is ∈ A′0 . (7.2.6)

It follows that the reduced state on the right algebra satisfies

ρψsA0
= ρψA0

. (7.2.7)

Therefore, expectation values of observables O ∈ A0 remain invariant under CC flow. These
heuristic arguments would be valid only for finite-dimensional Hilbert spaces [146]; but
Eq. (7.2.6) can be derived rigorously [18].

It can also be shown that (∆′ψ|Ω)is∆is
Ω|ψ = 1. Hence for operators O′ ∈ A′0, one finds that

CC flow acts as ∆is
Ω inside of expectation values:

〈ψs|O′|ψs〉 = TrA′0

[
ρψA′0

(∆−isψ|Ω∆is
Ω)O′(∆−isΩ ∆is

ψ|Ω)
]
,

= TrA′0

(
ρψA′0

(ρΩ
A′0

)−isO′(ρΩ
A′0

)is
)

(7.2.8)

= Tr
[
|ψ〉〈ψ|∆is

Ω(1⊗O′)∆−isΩ

]
, (7.2.9)

where we have used the cyclicity of the trace.
To summarize, expectation values of one-sided operators transform as follows:

〈ψs|O|ψs〉 = 〈ψ|O|ψ〉 , (7.2.10)

〈ψs|O′|ψs〉 = 〈ψ|∆is
ΩO′∆−isΩ |ψ〉 . (7.2.11)

There is no simple description of two-sided correlators in |ψs〉 such as 〈ψs|OO′|ψs〉; we discuss
such objects in Sec. 7.6.

CC Flow from Cuts on a Null Plane

Let us now specialize to the case where ∂A0 corresponds to a cut v = V0(y) of the Rindler
horizon u = 0. We have introduced null coordinates u = t − x and v = t + x and denoted
the transverse coordinates collectively by y. It can be shown that the modular operator ∆is

Ω

1We follow the conventions in [146] where complement operators are written to the right of the tensor
product.
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acts locally on each null generator y of u = 0 as a boost about the cut V0(y) [125]. More

explicitly, one can define the full vacuum modular Hamiltonian K̂V0 by

K̂V0 = − log ∆Ω;AV0
. (7.2.12)

We can write the full modular Hamiltonian as

K̂V0 = KV0 ⊗ 1′ − 1⊗K ′V0
. (7.2.13)

Let ∆ denote vacuum subtraction, ∆〈O〉 = 〈O〉ψ − 〈O〉Ω. Then, for arbitrary cuts of the
Rindler horizon, we have [125]

∆〈K ′V0
〉 = −2π

∫
dy

∫ V0

−∞
dv[v − V0(y)]〈Tvv〉ψ , (7.2.14)

and similarly for KV0 . Thus K ′V0
is simply the boost generator about the cut V0(y) in the

left Rindler wedge. That is, it generates a y-dependent dilation,

v → V0(y) + [v − V0(y)]e2πs . (7.2.15)

This allows us to evaluate Eq. (7.2.11) explicitly for local operators at u = 0. For example,
the CC flow of the stress tensor is

〈ψs|Tvv|ψs〉|v<V0= e−4πs〈ψ|Tvv
(
V0 + e−2πs(v − V0)

)
|ψ〉|v<V0 , (7.2.16)

and similarly for the other components of Tµν . There is a slight caveat here since ∆is
Ω only

acts as a boost strictly at u = 0. This would be sufficient for free theories, where Tvv can be
defined through null quantization on the Rindler horizon with a smearing that only needs
support on u = 0 [15]. More generally, Tµν must be smeared in an open neighborhood of
u = 0. However, if V0(y) is a perturbation of a flat cut then one can show that inside
correlation functions ∆is

Ω approximately acts as a boost with subleading errors that vanish
as u→ 0, to all orders in the perturbation [137, 147]. In the non-perturbative case, evidence
comes from the fact that classically the vector field on the Rindler horizon which generates
boosts about V0(y) can be extended to an approximate Killing vector field in a neighborhood
of the horizon [148, 149]. Therefore we expect Eq. (7.2.16) to hold on the null surface even
after smearing.

Now consider a second cut V (y) of the Rindler horizon which lies entirely below V0(y),
so V < V0 for all y. The cut defines a surface ∂AV that splits a Cauchy surface CV =
A′V ∪ ∂AV ∪ AV ; we take A′V to be the “left” side (v < V ), with operator algebra A′V . The
Araki definition of relative entropy is [146]

S ′rel(ψ|Ω;V ) = −〈ψ| log ∆ψ|Ω;A′V |ψ〉 . (7.2.17)
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It has the following transformation properties [18]:

Srel(ψs|Ω;V ) = Srel(ψ|Ω;V0 + e−2πs(V − V0)) , (7.2.18)

δSrel(ψs|Ω;V )

δV
= e−2πs δSrel(ψ|Ω;V0 + e−2πs(V − V0))

δV
. (7.2.19)

Moreover, the “left” von Neumann entropy is defined as

S ′(ψ, V ) = −trA′V ρ
ψ
A′V

log ρψA′V
. (7.2.20)

With these definitions in hand, one can decompose the relative entropy as

S ′rel(ψ|Ω;V ) = ∆〈K ′V 〉 −∆S ′(V ) . (7.2.21)

At this point we drop the explicit vacuum subtractions, as we will only be interested in shape
derivatives of the vacuum subtracted quantities, which automatically annihilate the vacuum
expectation values. In particular, one can directly compute shape derivatives of K ′V :

δ〈K ′V 〉ψ
δV

∣∣∣
V0

= 2π

∫ V0

−∞
dv 〈Tvv〉ψ . (7.2.22)

Hence the transformations of both K ′V and its derivative simply follow from Eq. (7.2.16).
Combining Eq. (7.2.18) and Eq. (7.2.14), as well as Eq. (7.2.19) and Eq. (7.2.22), we see

that S ′(ψ, V ) and its derivative transform as

S ′(ψs, V ) = S ′(ψ, V0 + e−2πs(V − V0)) , (7.2.23)

δS ′

δV

∣∣∣
ψs,V

= e−2πs δS
′

δV

∣∣∣
ψ,V0+e−2πs(V−V0)

. (7.2.24)

The respective properties of the complement entropy follow from purity.

Stress Tensor Shock at the Cut

CC flow generates a stress tensor shock at the cut V0, proportional to the jump in the
variation of the one-sided von Neumann entropy under deformations, at the cut [139]. To
see this, let us start with the sum rule derived in [18] for null variations of relative entropy:2

2π(Ps − e−2πsP0) = (e−2πs − 1)
δS ′rel(ψ|Ω;V )

δV

∣∣∣
V0

, (7.2.25)

where

P ≡
∫ ∞
−∞

dv Tvv (7.2.26)

2For type I algebras, one can derive the analogous sum rule from simpler arguments [107].
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is the averaged null energy operator at u = 0, and Ps ≡ 〈ψs|P |ψs〉, so in particular P0 ≡
〈ψ|P |ψ〉. (There is one such operator for every generator, i.e., for every y.)

Inserting Eq. (7.2.21) and Eq. (7.2.22) into Eq. (7.2.25), and making use of Eq. (7.2.16),
we see that there must exist a shock at v = V0(y):

〈ψs|Tvv|ψs〉 = (1− e−2πs)
1

2π

δS ′

δV

∣∣∣
V0

δ(v − V0) + o(δ) . (7.2.27)

Here o(δ) designates the finite (non-distributional) terms. These are determined by Eq. (7.2.16),
and by its trivial counterpart in the v > V0 region.

This s-dependent shock is a detailed characteristic of the CC flowed state. As such,
reproducing it through the holographic dictionary will be the key test of our proposal of the
bulk dual of CC flow (see Sec. 7.4).

Flat Cuts and the Precursor Slice

For the remainder of the paper we further specialize to flat cuts of the Rindler horizon, so
that ∂A0 corresponds to u = v = 0. We therefore set V0 = 0 in what follows. We take C to
be the Cauchy surface t = 0, so that A0 (t = 0, x > 0) and A′0 (t = 0, x < 0) are partial
Cauchy surfaces for the right and left Rindler wedges.

In this case ∆is
Ω is a global boost by rapidity s about ∂A0 [21]. Thus, it has a simple

geometric action not only on the null plane u = 0, but everywhere. CC flow transforms
observables in A′0 by ∆is

Ω and leaves invariant those in A0. For a flat cut, this action can
be represented as a geometric boost in the entire left Rindler wedge. This allows us to
characterize the CC flowed state |ψ(s)〉 on C very simply in terms of a different state on a
different Cauchy surface which we call the “precursor slice”. This description will motivate
the formulation of our bulk construction in Sec. 7.3.

By Eq. (7.2.11), the CC flowed state on the slice C,

|ψs(C)〉 = (∆′Ω)is(∆′Ω|ψ)−is |ψ(C)〉 , (7.2.28)

satisfies

〈ψs(C)| OA |ψs(C)〉 = 〈ψ(C)| OA |ψ(C)〉 , (7.2.29)

〈ψs(C)|∆−isΩ OA′∆
is
Ω |ψs(C)〉 = 〈ψ(C)| OA′ |ψ(C)〉 , (7.2.30)

where OA and OA′ denote an arbitrary collection of local operators that act on spacelike
half-slices A and A′ of C respectively.3 In the second equality above, we used the fact that ∆is

Ω

acts as a global boost to move it to the other side of the equality, compared to Eq. (7.2.11).

3More precisely, one would have to smear the operator in a codimension 0 neighborhood of points on the
slices.
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We work in the Schrödinger picture where the argument C should be interpreted as the
time variable. The fact that ∆is

Ω acts as a boost around ∂A0 motivates us to consider the
time slice

Cs = A′s ∪ ∂A0 ∪ A0 , (7.2.31)

where
A′s = {t = (tanh 2πs)x, x < 0} . (7.2.32)

By Eqs. (7.2.29) and (7.2.30), each side of the CC-flowed state |ψs(Cs)〉 is simply related to
the left and right restrictions of the original state on the original slice:

〈ψs(Cs)| OA |ψs(Cs)〉 = 〈ψ(C)| OA |ψ(C)〉 , (7.2.33)

〈ψs(Cs)| OA′s |ψs(Cs)〉 = 〈ψ(C)| OA′ |ψ(C)〉 . (7.2.34)

In the second equation, OA′s denotes local operators on A′s which are analogous to OA′ on
A′. More precisely, because the intrinsic metric of A′ and A′s are the same, there exists a
natural map between local operators on A′ and A′s.

In words, Eqs. (7.2.33) and (7.2.34) say that correlation functions in each half of C in the
state |ψ(C)〉 are equal to the analogous correlation functions on each half of Cs in the state
|ψs(Cs)〉. This justifies calling Cs the precursor slice since the CC flowed state on C arises
from it by time evolution.

We find it instructive to repeat this point in the less rigorous language of density opera-
tors. In the density operator form of CC flow,

|ψs(C)〉 = (ρΩ
A′0

)is(ρψA′0
)−is |ψ(C)〉 , (7.2.35)

it is evident that the action of (ρΩ
A′0

)is can be absorbed into a change of time slice C → Cs:

|ψs(Cs)〉 = (ρψA′0
)−is |ψ(C)〉 . (7.2.36)

Tracing out each side of ∂A0 implies

ρψsA0
= ρψA0

, (7.2.37)

ρψsA′s = ρψA′0
. (7.2.38)

The first equality is trivial and was already discussed in Eq. (7.2.7). The second equal-
ity follows because (ρψA′0

)is commutes with (ρψA′0
). This is the density operator version of

Eqs. (7.2.33) and (7.2.34).
Eq. (7.2.36) should be contrasted with the one-sided modular-flowed state |φ(C)〉 =

(ρψA′0
)−is |ψ(C)〉. The latter state would live on the original slice C, but it is not well-defined

since it would have infinite energy at the entangling surface.
It will be useful to define new coordinates adapted to the precursor slice Cs. Let

ṽ = vΘ(v) + e−2πs v (1−Θ(v)) , (7.2.39)

ũ = e2πsuΘ(u) + u (1−Θ(u)) , (7.2.40)
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where Θ(.) is the Heaviside step function. Let t̃ = 1
2
(ṽ + ũ) and x̃ = 1

2
(ṽ − ũ). In these

coordinates, the Minkowski metric takes the form

ds2 =
[
Θ(t̃+ x̃) + e2πs(1−Θ(t̃+ x̃))

] [
e−2πsΘ(t̃− x̃) + (1−Θ(t̃− x̃))

]
(−dt̃2 + dx̃2)

+ dd−2y , (7.2.41)

and the precursor slice corresponds to t̃ = 0.
In these “tilde” coordinates, the stress tensor shock of Eq. (7.2.27) takes the form4

〈ψs|Tṽṽ|ψs〉 =
1

2π

(
∂v

∂ṽ

)2

(1− e−2πs)
δS

δV

∣∣∣
V=0

δ(v) + o(δ) . (7.2.42)

Recall that the entropy variation is evaluated in the state |ψ〉. By Eq. (7.2.24),

δS

δV

∣∣∣
ψ

=
δS

δṼ

∣∣∣
ψs
, (7.2.43)

where Ṽ (y) is a cut of the Rindler horizon in the ṽ coordinates. Thus we may instead evaluate
the entropy variation in the state |ψs〉 on the precursor slice. This will be convenient when
matching the bulk and boundary.

The Jacobian in Eq. (7.2.42) has a step function in it, as will the Jacobian coming from
δ(v). A step function multiplying a delta function is well-defined if one averages the left and
right derivatives: (

∂v

∂ṽ

)2

δ(v) =
1

2

(
∂v

∂ṽ

∣∣∣
0−

+
∂v

∂ṽ

∣∣∣
0+

)
δ(ṽ) . (7.2.44)

Thus Eq. (7.2.42) becomes

〈ψs|Tṽṽ(ṽ)|ψs〉 =
1

2π
sinh(2πs)

δS

δṼ

∣∣∣
ψs,Ṽ=0

δ(ṽ) + o(δ). (7.2.45)

Since we are dealing with a flat cut, the symmetry s↔ −s, v ↔ u implies that CC flow
also generates a Tuu shock in the state |ψs〉 at u = v = 0:

〈ψs|Tũũ|ψs〉 =
1

2π
sinh(2πs)

δS

δŨ

∣∣∣
ψs,Ṽ=0

δ(ũ) + o(δ) . (7.2.46)

(Note that δ/δV goes to −δ/δU .) The linear combination

〈ψs|Tt̃x̃(t̃, x̃)|ψs〉 =
1

2π
sinh(2πs)

δS

δX̃

∣∣∣
ψs,X̃=0

δ(x̃) + 〈ψ|Ttx(t = t̃, x = x̃)|ψ〉 . (7.2.47)

will be useful in Sec. 7.4. The last term was obtained from Eqs. (7.2.37) and (7.2.38); it
makes the finite piece explicit. Note that these equations are valid in the entire left and right
wedges, not just on Cs.

4We remind the reader that o(δ) refers to any finite (non-distributional) terms.
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7.3 Kink Transform

In this section, we introduce a novel geometric transformation called the kink transform. The
construction is motivated by thinking about what the bulk dual of the boundary CC flow
would be in the context of AdS/CFT. As we discussed in Sec. 7.2, CC flow boosts observables
in D(A′) and leaves observables in D(A) unchanged. Subregion duality in AdS/CFT then
implies that the bulk dual of the state |ψs〉 has to have the property that the entanglement
wedges of D(A) and D(A′) will be diffeomorphic to those of the state |ψ〉, but are glued
together with a “one-sided boost” at the HRT surface. In a general geometry, a boost
Killing symmetry need not exist. The kink transform appropriately generalizes the notion
of a one-sided boost to any extremal surface.

In Sec. 7.3, we formulate the kink transform. In Sec. 7.3, we describe a different but
equivalent formulation of the kink transform and show that the kink transform results in the
same new spacetime, regardless of which Cauchy surface containing the extremal surface is
used for the construction. In Sec. 7.4, we will describe the duality between the bulk kink
transform and the boundary CC flow in AdS/CFT and provide evidence for it.

Formulation

Consider a d + 1 dimensional spacetime M with metric gµν satisfying the Einstein field
equations. (We will discuss higher curvature gravity in Sec. 7.6.) Let Σ be a Cauchy surface
of M that contains an extremal surface R of codimension 1 in Σ. (That is, the expansion
of both sets of null geodesics orthogonal to R vanishes.)

Initial data on Σ consist of [150] the intrinsic metric (hΣ)ab and the extrinsic curvature,

(KΣ)ab = P µ
a P

ν
b ∇(µtν) . (7.3.1)

Here P µ
a is the projector from M onto Σ, and tµ is the unit norm timelike vector field

orthogonal to Σ. Indices a, b, . . . are reserved for directions tangent to Σ. For matter fields,
initial data consist of the fields and normal derivatives, for example φ(wa) and [tµ∇µφ](wa),
where φ is a scalar field and wa are coordinates on Σ.

By the Einstein equations, the initial data on Σ must satisfy the following constraints:

rΣ +K2
Σ − (KΣ)ab(KΣ)ab = 16πGTµνt

µtν , (7.3.2)

Da(KΣ)ab −DbKΣ = 8πGTbνt
ν , (7.3.3)

where Da = P µ
a∇µ is the covariant derivative that Σ inherits from (M, gµν); rΣ is the Ricci

scalar intrinsic to Σ; and KΣ is the trace of the extrinsic curvature: KΣ = (hΣ)ab(KΣ)ab.
Let Σ be a Cauchy slice of M containing R and smooth in a neighborhood of R. The

kink transform is then a map of the initial data on Σ to a new initial data set, parametrized
by a real number s analogous to boost rapidity. The transform acts as the identity on all
data except for the extrinsic curvature, which is modified only at the location of the extremal
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Figure 7.1: Kink transform. Left: a Cauchy surface Σ of the original bulk M. An extremal
surface R is shown in red. The orthonormal vector fields ta and xa span the normal bundle
to R; xa is tangent to Σ. Right: The kink transformed Cauchy surface Σs. As an initial data
set, Σs differs from Σ only in the extrinsic curvature at R through Eq. (7.3.4). Equivalently,
the kink transform is a relative boost in the normal bundle to R, Eq. (7.3.21).

surface R, as follows:

(KΣ)ab → (KΣs)ab = (KΣ)ab − sinh (2πs) xaxb δ(R) . (7.3.4)

Here xa is a unit norm vector field orthogonal to R and tangent to Σ, and we define

δ(R) ≡ δ(x) , (7.3.5)

where x is the Gaussian normal coordinate to R in Σ (∂x = xa). Thus, the only change in
the initial data is in the component of the extrinsic curvature normal to R. An equivalent
transformation exists for initial choices of Σ that are not smooth around R though the
transformation rule will be more complicated than Eq. (7.3.4). We will discuss this later in
the section.

Let Σs be a time slice with this new initial data, as in Fig. 7.1, and letMs be the Cauchy
development of Σs. That is, Ms is the new spacetime resulting from the evolution of the
kink-transformed initial data. Since the intrinsic metric of Σs and Σ are the same, they can
be identified as d-manifolds with metric; the subscript s merely reminds us of the different
extrinsic data they carry. In particular the surface R can be so identified; thus Rs has the
same intrinsic metric as R. It also trivially has identical extrinsic data with respect to Σs.
In fact, we will find below that like R inM, Rs is an extremal surface inMs. However, the
trace-free part of the extrinsic curvature of Rs in Ms may have discontinuities.

We will now show that the constraint equations hold on Σs; that is, the kink transform
generates valid initial data. This need only be verified at R since the transform acts as the
identity elsewhere. Here we will make essential use of the extremality of R in M, which we
express as follows.
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The extrinsic curvature of R with respect toM has two independent components. Often
these are chosen to be the two orthogonal null directions, but we find it useful to consider

(B
(t)
R )ij = P µ

i P
ν
j ∇(µtν) , (7.3.6)

(B
(x)
R )ij = P µ

i P
ν
j ∇(µxν) . (7.3.7)

Here i, j represent directions tangent to R, and P µ
i is the projector from M to R. Ex-

tremality of R in M is the statement that the trace of each extrinsic curvature component
vanishes:

B
(t)
R = (γR)ij(B

(t)
R )ij = 0 , (7.3.8)

B
(x)
R = (γR)ij(B

(x)
R )ij = 0 , (7.3.9)

where (γR)ij = P a
i P

b
j (hΣ)ab is the intrinsic metric on R.

Orthogonality of tµ and xµ implies that P µ
i = P a

i P
µ
a , and hence

(B
(t)
R )ij = P a

i P
b
j (KΣ)ab . (7.3.10)

Since xa is the unit norm orthogonal vector field at R, the trace of (KΣ)ab at R can be
written as:

KΣ|R = xaxb(KΣ)ab + (γR)ij(B
(t)
R )ij = xaxb(KΣ)ab . (7.3.11)

A little algebra then implies

(KΣs)
2 − (KΣs)ab(KΣs)

ab = (KΣ)2 − (KΣ)ab(KΣ)ab . (7.3.12)

Moreover, we have rΣ = rΣs since the two initial data slices have the same intrinsic met-
ric. Thus Eq. (7.3.2) implies that the kink-transformed slice satisfies the scalar constraint
equation:

rΣs + (KΣs)
2 − (KΣs)ab(KΣs)

ab = 16πGTµνt
µtν . (7.3.13)

To check the vector constraint Eq. (7.3.3), we separately consider the two cases of b = x
and b = i where i, j represent directions tangent to R:

Da(KΣs)
a
x −DxKΣs = Da(KΣ)ax −DxKΣ +B

(x)
R sinh (2πs)δ(x)

= Da(KΣ)ax −DxKΣ = 8πGTxνt
ν , (7.3.14)

Da(KΣs)
a
i −DiKΣs = Da(KΣ)ai −DiKΣ = 8πGTiνt

ν , (7.3.15)

where the second line of the first equation follows from the extremality of R.
We conclude that the kink transform is a valid modification to the initial data. For both

constraints to be satisfied after the kink, it was essential that R is an extremal surface. Thus
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the kink transform is only well-defined across an extremal surface. Note also that Rs ⊂ Σs

is an extremal surface in Ms. By Eq. (7.3.10),

(B
(t)
Rs)ij = P a

i P
b
j (KΣs)ab|Rs = (B

(t)
R )ij =⇒ B

(t)
Rs = 0 . (7.3.16)

In the second equality we used Eq. (7.3.4) as well as the fact that all relevant quantities are
intrinsic to Σs, so Rs can be identified with R. Moreover,

(B
(x)
Rs )ij = (B

(x)
R )ij =⇒ B

(x)
Rs = 0 , (7.3.17)

since this quantity depends only on the intrinsic metrics of Σ and Σs, which are identical.

Properties

We will now establish important properties and an equivalent formulation of the kink trans-
form.

Let us write Σ as the disjoint union

Σ = a′ ∪R ∪ a . (7.3.18)

The spacetime M contains D(a) and D(a′) where D(.) denotes the domain of dependence.
The kink transformed slice Σs contains regions a and a′ with identical initial data, so Ms

also contains D(a) and D(a′). Because Σs has different extrinsic curvature at R, the two
domains of dependence will be glued to each other differently in Ms, so the full spacetime
will differ from M in the future and past of R. This is depicted in Fig. 7.2.

We will now derive an alternative formulation of the kink transform as a one-sided local
Lorentz boost at R. The unit vector field tµΣs normal to Σs is discontinuous at R due to the
kink. Let

(tµΣs)R = lim
x→0+

tµΣs , (7.3.19)

(tµΣs)L = lim
x→0−

tµΣs (7.3.20)

be the left and right limits to R. The metric of Ms is continuous since it arises from valid
initial data on Σs. Therefore, the normal bundle of 1+1 dimensional normal spacetimes to
points in R is well-defined. The above vector fields (tµΣs)R and (tµΣs)L belong to this normal
bundle. Therefore at each point on R, the two vectors can only differ by a Lorentz boost
acting in 1+1 dimensional Minkowski space. The kink transform, Eq. (7.3.4), implies:

(tµΣs)R = (Λ2πs)
µ
ν (tνΣs)L , (7.3.21)

where (Λ2πs)
µ
ν is a Lorentz boost of rapidity 2πs. In this sense, the kink transform resembles

a local boost around R. Alternatively, we can view Eq. (7.3.21) as the definition of the kink
transform. This definition can be applied to Cauchy slices that are not smooth around R,
but it reduces to Eq. (7.3.4) in the smooth case.
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Figure 7.2: The kink-transformed spacetime Ms is generated by the Cauchy evolution of
the kinked slice Σs. This reproduces the left and right entanglement wedges D(a) and D(a′)
of the original spacetime M. The future and past of the extremal surface R are in general
not related to the original spacetime.

This observation applies equally to any other vector field ξµ in the normal bundle to R, if
ξµ has a smooth extension into D(a′) and D(a) inM. The norm of ξµ and its inner products
with (tµΣs)L and (tµΣs)R are unchanged by the kink transform. Hence, in Ms, the left and
right limits of ξµ to R will satisfy

ξµR = (Λ2πs)
µ
νξ

ν
L . (7.3.22)

Now let Ξ ⊃ R be another Cauchy slice of D(Σ). Since Ξ contains R, its timelike normal
vector field ξµ (at R) lies in the normal bundle to R. We have shown that Eq. (7.3.21) is
equivalent to the kink transform of Σ; that Eq. (7.3.22) is equivalent to the kink transform
of Ξ; and that Eq. (7.3.21) is equivalent to Eq. (7.3.22). Hence the kink transform of Σ is
equivalent to the kink transform of Ξ. In other words, the spacetime resulting from a kink
transform about R does not depend on which Cauchy surface containing R we apply the
kink transform to.

The kink transform (with s 6= 0) always generates physically inequivalent initial data.
HoweverMs need not differ fromM. They will be the same if and only if Σs is an initial data
set in M. There is an interesting special case where this holds for all values of s. Namely,
suppose M has a Killing vector field that reduces to a boost in the normal bundle to R.
Then Σs ⊂ M (as a full initial data set), for all s. For example, the kink transform maps
straight to kinked slices in the Rindler or maximally extended Schwarzschild spacetimes (see
Fig. 7.3).
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Figure 7.3: Straight slices Σ (red) in a maximally extended Schwarzschild (left) and Rindler
(right) spacetime get mapped to kinked slices Σs (blue) under the kink transform about R.

We can also consider the kink transform of matter fields on a fixed background spacetime
with the above symmetry. Geometrically,M =Ms for all s, but the matter fields will differ
in Ms by a one-sided action of the Killing vector field. For example, let M be Minkowski
space, with two balls at rest at x = ±1, y = z = 0 (see Fig. 7.4); and let R given by
x = t = 0. In the spacetime Ms obtained by a kink transform, the two balls will approach
with velocity tanh 2πs and so will collide. The right and left Rindler wedge, D(a) and D(a′),
are separately preserved; the collision happens in the past or future of R.

7.4 Bulk Kink Transform = Boundary CC Flow

In this section, we will argue that the kink transform is the bulk dual of boundary CC flow.
We will show that the kink transform satisfies two nontrivial necessary conditions. First,
in Sec. 7.4, we show that the left and right bulk region are the subregion duals to the left
and right boundary region, respectively. In Sec. 7.4 we show that the bulk kink transform
leads to precisely the stress tensor shock at the boundary generated by boundary CC flow,
Eq. (7.2.47). (In Sec. 7.5 we will show that the kink transform predicts additional shocks in
the CC flowed state, which have not been derived previously purely from QFT methods.)

Matching Left and Right Reduced States

The entanglement wedge of a boundary region A in a (pure or mixed) state ρA,

EW(ρA) = D[a(ρA)] (7.4.1)
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Figure 7.4: On a fixed background with boost symmetry, the kink transform changes the
initial data of the matter fields. In this example, M is Minkowski space with two balls
relatively at rest (red).The kink transform is still Minkowski space, but the balls collide in
the future of R (blue).

is the domain of dependence of a bulk achronal region a satisfying the following properties [31,
32, 5, 6]:

1. The topological boundary of a (in the unphysical spacetime that includes the conformal
boundary of AdS) is given by ∂a = A ∪R.

2. Sgen(a) is stationary under small deformations of R.

3. Among all regions that satisfy the previous criteria, EW(ρA) is the one with the smallest
Sgen(a).

We neglect end-of-the-world branes in this discussion [151, 152]. The generalized entropy is
given by

Sgen =
Area(R)

4G~
+ S(a) + . . . , (7.4.2)

where S(a) is the von Neumann entropy of the region a and the dots indicate subleading
geometric terms. The entanglement wedge is also referred to as the Wheeler-DeWitt patch
of A.

There is significant evidence [35, 131] that EW(ρA) represents the entire bulk dual to
the boundary region A. That is, all bulk operators in EW(ρA) have a representation in
the algebra of operators A associated with A; and all simple correlation functions in A can
be computed from the bulk. In other words, the entanglement wedge appears to be the
answer [6] to the question [153, 154, 33, 37] of “subregion duality.” A bulk surface R is
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called quantum extremal (with respect to A in the state ρ) if it satisfies the first two criteria,
and quantum RT if it satisfies all three. When the von Neumann entropy term in Eq. (7.4.2)
is neglected, R is called an extremal or RT surface, respectively. This will be the case
everywhere in this paper except in Sec. 7.6.

We now specialize to the setting in which CC flow was considered in Sec. 7.2. Recall
that the pure boundary state |ψ(C)〉 is given on a boundary slice C corresponding to t = 0
in standard Minkowski coordinates; and that we regard C as the disjoint union of the left
region A′0 (x < 0), with reduced state ρψA0

; the cut ∂A0 (x = 0); and the right region A0

(x > 0), with reduced state ρψA′0
. Let a′0 and a0 be arbitrary Cauchy surfaces of the associated

entanglement wedges EW(ρψA′0
) and EW(ρψA0

).

The entanglement wedges of non-overlapping regions are always disjoint, so

EW(ρψA′0
) ∩ EW(ρψA0

) = ∅ . (7.4.3)

For the bipartition of a pure boundary state ψ, entanglement wedge complementarity holds:

a[|ψ(C)〉] = a′0 ∪R ∪ a0 , (7.4.4)

where a[|ψ(C)〉] is a Cauchy surface of EW(|ψ(C)〉). In particular, the left and right entan-
glement wedge share the same HRT surface R.

Crucially, the classical initial data on a[|ψ(C)〉] is almost completely determined by the
data on a′0 and a0; however the data on R are not contained in a′0 nor in a0. In the semi-
classical regime, the quantum state on a[|ψ(C)〉] also includes global information (through
its entanglement structure) that neither subregion contains on its own. Hence in general

EW(|ψ(C)〉) = D
[
EW(ρψA′0

) ∪R ∪ EW(ρψA0
)
]

(7.4.5)

is a proper superset of EW(ρψA′0
) ∪ EW(ρψA0

) that also includes some of the past and future

of R.
Now consider the CC-flowed state on the precursor slice |ψs(Cs)〉. By Eqs. (7.2.37) and

(7.2.38), we have

EW(ρψsA′s) = EW(ρψA′0
) = D(a′0) , (7.4.6)

EW(ρψsA0
) = EW(ρψA0

) = D(a0) , (7.4.7)

Since |ψs〉 is again a pure state, EW[|ψs(Cs)〉] = D (a[|ψs(Cs)〉]) where

a[|ψs(Cs)〉] = a′0 ∪R ∪ a0 . (7.4.8)

We see that this initial data slice has the same intrinsic geometry as that of the original
bulk dual. Indeed, by the remarks following Eq. (7.4.4), the full classical initial data for the
bulk dual to |ψs〉 will be identical on a′0 ∪ a0 and can only differ from the initial data for the
original bulk at R.
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We pause here to note that a kink transform of a[|ψ(C)〉] centered on R satisfies this
necessary condition and hence becomes a candidate for a[|ψs(Cs)〉]. However, this does not
yet constrain the value of s. In order to go further, we would now like to show that a kink
transform of a[|ψ(C)〉] with parameter s yields a bulk slice whose boundary is geometrically
the precursor slice Cs.

The bulk metric takes the asymptotic form [155]:5

ds2 =
1

z2

[
dz2 + ηABdx

AdxB +O(zd)
]
, (7.4.9)

where ηAB is the metric of Minkowski space. Consider a stationary bulk surface R anchored
on the boundary cut u = v = 0. At leading order, R will reside at u = v = 0 in the
asymptotic bulk, in the above metric [29]. (The first subleading term, which appears at
order zd, will be crucial in our derivation of the boundary stress tensor shock in Sec. 7.4.)

Let Σ be a bulk surface that contains R and satisfies t = 0 + O(zd) in the metric of
Eq. (7.4.9). Since the initial data on each side of R are separately preserved (see Sec. 7.3),
Eq. (7.3.21) dictates that the kink transform Σs of Σ satisfies t = 0 (x > 0) and t = x tanh 2πs
(x < 0), again up to corrections of order zd. The corrections all vanish at z = 0, where Σ
is bounded by C and Σs is bounded by Cs (see Eq. (7.2.32)). Recall also that the kink
transform is slice-independent. Thus we have established that the kink transform of any
Cauchy surface a[|ψ(C)〉], by s along R, yields a Cauchy surface bounded by the precursor
slice Cs.

The above arguments establish that

EW[|ψs(Cs)〉] = D (a[|ψs(Cs)〉]) , (7.4.10)

where a[|ψs(Cs)〉] is given by Eq. (7.4.8). In words, the bulk dual of the CC-flowed boundary
state is the Cauchy development of the kink-transform of a Cauchy slice containing the HRT
surface R. Note that the classical initial data on this Cauchy surface is fully determined
by the initial data on a′0 and a0 inherited from the bulk dual of |ψ(C)〉, combined with the
distributional geometric initial data consisting of the extrinsic curvature shock at R. The
full spacetime geometry will differ from EW[|ψ(C)〉] because of the different gluing at R.

Matching Bulk and Boundary Shocks

In Sec. 7.3, we gave a prescription for generating bulk geometries in AdS by inserting a kink
on the Cauchy surface, at the HRT surface. With the standard holographic dictionary, the
resulting geometry manifestly yields the correct behavior of one-sided boundary observables
under CC flow. This was shown in the previous subsection.

Another characteristic aspect of the CC flowed state |ψs〉 is the presence of a stress tensor
shock at the cut (Sec. 7.2), proportional to shape derivatives of the von Neumann entropy;
see Eq. (7.2.47). We will now verify that this shock is reproduced by the kink transform

5We set `AdS = 1.
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in the bulk, upon applying the AdS/CFT dictionary. Notably, the shock is not localized
to either wedge. Verifying kink/CC duality for this observable furnishes an independent,
nontrivial check of our proposal.

We will now keep the first subleading term in the Fefferman-Graham expansion of the
asymptotic bulk metric [155, 29]:

ds2 =
1

z2

(
dz2 + gAB(x, z)dxAdxB

)
, (7.4.11)

gAB(x, z) = ηAB + zd
16πG

d
〈TAB〉+ o(zd) , (7.4.12)

where indices A,B, . . . correspond to directions along z = const. surfaces.
The location of the RT surface R in the bulk can be described by a collection of (d− 1)

embedding functions
Xµ(y, z) = (z,XA(y, z)) , (7.4.13)

where (y, z) are intrinsic coordinates on R. The expansion in z takes the simple form

XA(y, z)) = zdXA
(d) + o(zd) , (7.4.14)

because the boundary anchor is the flat cut u = v = 0 of the Rindler horizon [29]. Station-
arity of R can be shown to imply [29]

XA
(d) = −4G

d

δS

δXA

∣∣∣∣
R
. (7.4.15)

We consider a bulk Cauchy slice Σ ⊃ R for which ∂Σ corresponds to the t = 0 slice on
the boundary. Since the subleading terms in Eqs. (7.4.12) and (7.4.14) start at zd, we are
free to choose Σ so that it is given by

t = zdς(x) + o(zd) , (7.4.16)

Recall that the vector fields tµ and xµ are defined to be orthogonal to R, and respectively
orthogonal and tangent to Σs. In FG coordinates one finds:

tA = z
(
tA(0) + zdtA(d) + o(zd)

)
, (7.4.17)

xA = z
(
xA(0) + zdxA(d) + o(zd)

)
, (7.4.18)

tz = z
(
zd−1tz(d−1) + o(zd−1)

)
, (7.4.19)

xz = z
(
zd−1xz(d−1) + o(zd−1)

)
. . (7.4.20)

The overall factor of z is due to normalization. Note that tµ(0) is a coordinate vector field but
in general, tµ is not. Individual coordinate components of vectors and tensors are defined by
contractions with tµ(0) and xµ(0) respectively, for example tt ≡ tµt

µ
(0).
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We now consider a contraction of the extrinsic curvature tensor on Σ,

(KΣ)abx
b = P µ

a x
ν∇(µtν) . (7.4.21)

We would like to further project the a index onto the z direction. Deep in the bulk the z
direction does not lie entirely in Σ. However, note that gµzt

µ → 0 in the limit z → 0 due to
Eq. (7.4.19). Therefore, at leading order in z, the z direction does lie entirely in Σ; moreover,
P µ
z → δµz as z → 0. We will only be interested in evaluating Eq. (7.4.21) at leading order in
z so we may freely set a = z, which yields:6

(KΣ)zνx
ν − xν∂(ztν) = xνtγ Γγνz (7.4.22)

= z2Γtxz + zxtΓttz + ztxΓxxz + xztzΓzzz + o(zd−1) (7.4.23)

=
(d− 2)

2
zd−1 16πG

d
〈Ttx〉 − z−3tzxz − zd−1(tx(d) − xt(d)) + o(zd−1) .

(7.4.24)

The condition xµt
µ = 0 implies that

zd−1 16πG

d
〈Ttx〉+ z−3xztz + zd−1(tx(d) − xt(d)) + o(zd−1) = 0 . (7.4.25)

Hence we find
(KΣ)zνx

ν − xν∂(ztν) = zd−1 8πG 〈Ttx〉+ o(zd−1) . (7.4.26)

We now apply the kink transform to Σ (viewed as an initial data set). This yields a new
initial data set on a slice Σs in a new spacetimeMs. We again expand in Fefferman-Graham
coordinates:

ds2 =
1

z2

(
dz2 + g̃AB(x̃, z)dx̃Adx̃B

)
, (7.4.27)

g̃AB(x, z) = η̃AB + zd
16πG

d
〈T̃AB〉+ o(zd) . (7.4.28)

Here η̃AB is still Minkowski space; any change in the bulk geometry will be encoded in the
subleading term.

The notation η̃AB indicates that we will be using the specific coordinates in which the
metric of d-dimensional Minkowski space takes the nonstandard form given by Eq. (7.2.41).
This has the advantage that the coordinate form of all vectors, tensors, and embedding
equations in D(a′) ∪R ∪D(a) will be unchanged by the kink transform, if we use standard
Cartesian coordinates before the transform and the tilde coordinates afterwards.

For example, the invariance of the left and right bulk domains of dependence under the
kink transform implies that Σs is given by

t̃ = zdς(x̃) + o(zd) , (7.4.29)

6In d > 2 the terms involving xztz will be higher order, by Eqs. (7.4.19) and (7.4.20), and need not be
included. Since they cancel out either way, we include them here to avoid an explicit case distinction.
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with the same ς that appeared in Eq. (7.4.16). (In fact, this extends to at all orders in z.)
As already shown in the previous subsection, ∂Σs lies at t̃ = 0, z = 0.

As another example, the coordinate components of the unit normal vector to Σs in Ms,
t̃µ, will be the same as the components of the normal vector to Σ in M, tµ, and therefore

∂(ztν)

∣∣
M = ∂(z t̃ν)

∣∣
Ms

. (7.4.30)

Below we will use the convention that any quantity with a tilde is evaluated in Ms, in
the coordinates of Eq. (7.4.28). Any quantity without a tilde is evaluated in M, in the
coordinates of Eq. (7.4.12). The only exception is the extrinsic curvature tensor, where the
corresponding distinction is indicated by the subscript Σs or Σ, for consistency with Sec. 7.3.

We now consider the extrinsic curvature of Σs. A calculation analogous to the derivation
of Eq. (7.4.26) implies

(KΣs)zν x̃
ν − x̃ν∂(z t̃ν) = zd−1 8πG 〈T̃t̃x̃〉+ o(zd−1) . (7.4.31)

From Eqs. (7.4.26) and (7.4.30) we find

zd−1〈T̃t̃x̃〉 = zd−1〈Ttx〉+
1

8πG
[(KΣs)zν − (KΣ)zν ]x

ν + o(zd−1) , (7.4.32)

= zd−1〈Ttx〉 −
sinh (2πs)

8πG
δ(R)xz + o(zd−1) . (7.4.33)

In the first equality, we used the fact that xµ and x̃µ can be identified as vector fields, and
the extrinsic curvature tensors can be compared, in the submanifold Σ = Σs. The second
equality follows from the definition of the kink transform, Eq. (7.3.4).

By Eq. (7.4.18), δ(R) = δ(z−1x̃) = zδ(x̃). The condition xµ∂zX
µ = 0 yields

xz = −d zd−2X̃(d) + o(zd−2) , (7.4.34)

where X̃(d) is the A = x̃ component of XA
(d). Taking z → 0 and using Eq. (7.4.15), we thus

find

〈T̃t̃x̃〉 = 〈Ttx〉+
1

2π
sinh(2πs)

δS

δX̃

∣∣∣
X̃=0

δ(x̃) , (7.4.35)

which agrees precisely with Eq. (7.2.47).
Note that this derivation applies to any boosted coordinate system (ť, x̌) as well. Linear

combinations of Eq. (7.4.35) with its boosted version reproduces both the Tũũ shock of
Eq. (7.2.46) and the Tṽṽ shock of Eq. (7.2.45) holographically.

7.5 Predictions

Having found nontrivial evidence for kink transform/CC flow duality, we now change our
viewpoint and assume the duality. In this section, we will derive a novel property of CC flow
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from the kink transform: a shock in the 〈Txx〉 component of the stress tensor in the CC flowed
state. We do not yet know of a way to derive this directly in the quantum field theory, so
this result demonstrates the utility of the kink transform in extracting nontrivial properties
of CC flow. We further argue that 〈Txx〉 and 〈Ttx〉 constitute all of the independent, nonzero
stress tensor shocks in the CC flowed state.

Our holographic derivation only depends on near boundary behavior, and the value of
the shock takes a universal form similar to Eq. (7.4.35). Thus, we expect that the properties
we find in holographic CC flow hold in non-holographic QFTs as well.

To derive the 〈Txx〉 shock, we use the Gauss-Codazzi relation [156]

P µ
a P

ν
b P

α
c P

β
d Rµναβ = KacKbd −KbcKad + rabcd , (7.5.1)

where rabcd is the intrinsic Riemann tensor of Σ. It is important to note that this relation is
purely intrinsic to Σ. Since Σ = Σs as submanifolds, we can not only evaluate Eq. (7.5.1) in
both M and Ms but also meaningfully subtract the two. We emphasize that the following
calculation is only nontrivial in d > 2 (in d = 2, the Gauss-Codazzi relation is trivial). We
comment on d = 2 at the end.

First we evaluate Eq. (7.5.1) inM. We will only be interested in evaluating it to leading
order in z in the Fefferman-Graham expansion. As argued in Sec. 7.4, when working at
leading order we can freely set a = c = z. We then compute the following at leading order
in z:

Rzxzx = KzzKxx − (Kxz)
2 + rzxzx . (7.5.2)

We start by computing Kzz. First we note that Γαzztα = 0 identically. Therefore,

Kzz = ∂ztz = 4G(d− 2)zd−3 δS

δT

∣∣∣
R

+ o(zd−3) . (7.5.3)

We have made use of

tz = 4Gzd−2 δS

δT

∣∣∣
R

+ o(zd−2) , (7.5.4)

which follows from tµ∂zX
µ = 0.

Next we compute

Rzxzx = ∂xΓ
x
zz − ∂zΓxxz + ΓxxµΓµzz − ΓxzµΓµxz . (7.5.5)

One finds

∂zΓ
x
xz =

1

2
(d− 2)(d− 1)zd−2 16πG

d
〈Txx〉+ o(zd−2) , (7.5.6)

ΓxxzΓ
z
zz = −1

2
(d− 2)zd−2 16πG

d
〈Txx〉+ o(zd−2) , (7.5.7)
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with all other terms either subleading in z or identically vanishing, and hence

Rzxzx = −8πG(d− 2)zd−2〈Txx〉+ o(zd−2) . (7.5.8)

Putting all this together, we have

−8πG(d− 2)zd−2〈Txx〉 = 4Gzd−3 δS

δT̃

∣∣∣
R
Kxx − (Kxz)

2 + rzxzx + o(zd−2) . (7.5.9)

The analogous relation evaluated in Ms reads

−8πG(d− 2)zd−2〈T̃x̃x̃〉 = 4Gzd−3 δS

δT̃

∣∣∣
R
K̃x̃x̃ − (K̃x̃z)

2 + r̃zx̃zx̃ + o(zd−2) , (7.5.10)

where we have made use of Eq. (7.4.30) to set Kzz = K̃zz. We can now subtract these two
relations. First note that r̃abcd = rabcd since it is purely intrinsic to Σ. Next, recall from the
definition of the kink transform Eq. (7.3.4) that

K̃x̃x̃ −Kxx = −z sinh(2πs)δ(x̃) . (7.5.11)

Lastly, it is easy to check that Kxz ∼ o(zd−2) hence its contribution to Eq. (7.5.9) is sublead-
ing, and similarly for Eq. (7.5.10). Thus, subtracting Eq. (7.5.10) from Eq. (7.5.9) yields

〈T̃x̃x̃〉 − 〈Txx〉 =
1

2π
sinh(2πs)

δS

δT̃

∣∣∣
X̃=0

δ(x̃) . (7.5.12)

The above calculation only works in d > 2. In d = 2, since the boundary theory is a CFT,
tracelessness of the boundary stress tensor further implies that 〈Ttx〉 is the only independent
component of the stress tensor shock so there is no need for a calculation analogous to the
one above. We expect that this argument is robust under relevant deformations of the CFT
since the shock is highly localized and should universally depend only on the UV fixed point.

Together with the 〈Ttx〉 shock we reproduced in the previous section, and using Lorentz
invariance of the boundary, this result determines the transformation of the the stress tensor
contracted with any pair of linear combinations of t and x, such as 〈Ttt〉. This linear space
contains all of the independent nonvanishing components of the shock. To see this, note that

xν (∇ν ỹµ −∇νyµ) = 0 , (7.5.13)

yν (∇ν ỹµ −∇νyν) = 0 , (7.5.14)

yν
(
∇ν t̃µ −∇νtµ

)
= 0 , (7.5.15)

where yµ = P µ
i y

i for any vector field yi in the tangent bundle of R. Eqs. (7.5.13) and
(7.5.14) follow trivially from the fact that the prescription Eq. (7.3.22) only introduces a
discontinuity in vector fields in the normal bundle of R, while Eq. (7.5.15) simply follows
from Eq. (7.3.4). Evaluating the µ = z components in the same way as in Sec. 7.4, we find,

〈T̃µ̃ỹ〉 − 〈Tµy〉 = 0 . (7.5.16)
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For s → ∞, the shocks derived in the previous two sections agree with those found to
be required for the existence of certain coarse grained bulk states in Ref. [139]. In that
work, the cut was allowed to be a wiggly or flat cut of a bifurcate horizon such as a Rindler
horizon, and the state could belong to any quantum field theory. Interpolation of these
results suggests that the shocks we have derived here generalize to the case of CC flow for a
wiggly cut of the Rindler horizon, in general QFTs with a conformal fixed point.

7.6 Discussion

Relation to JLMS and One Sided Modular Flow

The bulk dual of one-sided modular flow [141, 142] resembles the kink transform. CC flow
yields a well defined state, however, whereas a one sided modular flowed state is singular
in QFT. Correspondingly, the kink transform defined here yields a smooth bulk solution
whereas the version implicitly defined in Ref. [142] results in a singular spacetime (see also
Ref. [18], footnote 4). We will now explain this in detail.

Consider a boundary region A0 with reduced state ρA0 , dual to a semi-classical state ρa
in the bulk entanglement wedge a associated to A0 as seen in Fig. 7.5. We denote by KA =
− log ρA and Ka = − log ρa the boundary and bulk modular Hamiltonians, respectively. The
JLMS result [7] states that

K̂A0 =
Â[R]

4G
+ K̂a , (7.6.1)

where Â[R] is the area operator that formally evaluates the area of the quantum extremal
surface R [6].

Suppose now that A0 has a nonempty boundary ∂A0. Then there is an interesting
asymmetry in Eq. (7.6.1). The one-sided boundary modular operator appearing on the left
hand side is well-defined only with a UV cutoff. On the other hand, at least the leading
(area) term in the bulk modular operator on the right hand side has a well-defined action.
Let us discuss each side in turn.

In Einstein gravity, the area operator Â is the generator of one-sided boosts. To see
this, let us restrict the gravitational phase space to the bulk region D(Σε). There exists a
(non-unique) vector field ξa in D(a′) ∪ R such that ξa generates an infinitesimal one-sided
boost at R [157, 158]. This boost can be quantified by a parameter s in the normal bundle
to R, as described in Sec. 7.3. The area functional A[R]/4G is the Noether charge at R
associated to ξa, given by the expectation value of the area operator in the semi-classical
bulk state:

A[R] = 〈Â[R]〉 . (7.6.2)

Each point in the gravitational phase space can be specified by the metric in D(a′), the
metric in D(a), and the boost angle s at R with which the two domains of dependence are
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Figure 7.5: A boundary subregion A0 (pink) has a quantum extremal surface denoted R
(brown) and an entanglement wedge denoted a. The complementary region A′0 (light blue)
has the entanglement wedge a′. CC flow generates valid states, but one-sided modular flow
is only defined with a UV cutoff. For example, one can consider regulated subregions A(ε)

(deep blue) and A′(ε) (red). In the bulk, this amounts to excising an infrared region (gray)
from the joint entanglement wedge (yellow).

glued together [142, 158, 159, 144]. The action of

〈e2πisÂ[R]/4G〉 (7.6.3)

on points in the gravitational phase space is to simply shift the conjugate variable, i.e., the
relative boost angle between the left and right domains of dependence, by s. Note that the
metrics in the left and right domains of dependence are unchanged since the area functional
acts purely on the phase space data at R. This is the classical analogue of the statement
that the area operator is in the center of the algebras of the domains of dependence [9].
Comparing with Sec. 7.3, we see that this action is equivalent to the kink transform of Σε

about R by s. We stress that this action is well-defined even if R extends all the way out
to the conformal boundary, i.e., in the far ultra-violet from the boundary perspective.

We turn to the right hand side of Eq. (7.6.1), still assuming that A0 has a nonempty
boundary ∂A. Since the algebra of a QFT subregion A0 is a Type-III1 von Neumann algebra,
the Hilbert space does not factorize across ∂A0 [146]. A reduced density matrix ρA0 , and
hence K̂A0 , do not exist. Physically, the action of K̂A0 on a fixed boundary time slice would
break the vacuum entanglement of arbitrarily short wavelength modes across ∂A0; this would
create infinite energy.

Therefore, any discussion of K̂A0 requires introducing a UV regulator. Consider the reg-

ulated subregions A
(ε)
0 and A

′(ε)
0 shown in Fig. 7.5. The split property in algebraic QFT [146,
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160] guarantees the existence of a (non-unique) Type-I von Neumann algebra N nested

between the algebras of subregion A
(ε)
0 and the complementary algebra of A

′(ε)
0 , i.e.,

A(ε)
0 ⊂ N ⊂

(
A′(ε)0

)′
. (7.6.4)

With this prescription, one can define a regulated version of the reduced density matrix ρA
by using the Type-I factor N [161]. It has been suggested that there exists an N consistent
with the geometric cutoff shown in Fig. 7.5 [162, 160]: the quantum extremal surface R
in the bulk is regulated by a cutoff brane B demarcating the entanglement wedge of the
subregion A

(ε)
0 ∪ A

′(ε)
0 . The regulated area operator Â[R]/4G is well defined once boundary

conditions on B are specified.
Let us now specialize to the case for which we have conjectured kink transform/CC-

flow duality: the boundary slice C = A0 ∪ A′0 is a Cauchy surface of Minkowski space, and
∂A0 is the flat cut u = v = 0 of the Rindler horizon. We have just argued that the kink
transformation is generated by the area operator through Eq. (7.6.3). By Eq. (7.6.1), the
boundary dual of this action should be one-sided modular flow, not CC flow. By Eqs. (7.2.4)
and (7.2.6), these are manifestly different operations. Indeed, unlike one-sided modular flow,
Connes cocycle flow yields a well-defined boundary state for all s, without any UV divergence
at the cut ∂A0: |ψ(C)〉 → |ψs(C)〉.

In fact there is no contradiction. For both modular flow and CC flow on the boundary,
a bulk-dual Cauchy surface Σs is generated by the kink transform. The difference is in how
Σs is glued back to the boundary.

For modular flow, Σs is glued back to the original slice C. Generically, this would violate
the asymptotically AdS boundary conditions, necessitating a regulator such as the excision
of the grey asymptotic region in Fig. 7.5 and interpolation by a brane B. The boundary
dual is an appropriately regulated modular flowed state with energy concentrated near the
cut ∂A0. This construction is possible even if ∂A0 is not a flat plane, but the regulator is
ambiguous and cannot be removed.7

For CC flow, Σs is glued to the precursor slice Cs as discussed in Sec. 7.3. This yields
|ψs(Cs)〉. Time evolution on the boundary yields |ψs(C)〉, the CC-flowed state on the original
slice C.

On the boundary, we can use the one-sided modular operator in two ways. As a map
between states on C [7, 132] it requires a UV regulator. As a map that takes a state on C
to a state on the precursor slice Cs, |ψ(C)〉 → |ψs(Cs)〉, it is equivalent to CC flow on C by
Eqs. (7.2.35) and (7.2.36). This is a more natural choice due to its UV-finiteness. But it is
available only if the vacuum modular operator for cut ∂A is geometric, so that the precursor
slice is well-defined.

7There is evidence that a code subspace can be defined with an appropriate regulator such that one-sided
modular flow keeps the state within the code subspace [144, 143, 145].
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Quantum Corrections

It is natural to include semiclassical bulk corrections to all orders in G to our proposal. The
natural guess would be to perform the kink transform operation about the quantum extremal
surface along with a CC flow for the bulk state. In general, it is difficult to describe this
procedure within EFT. In states far from the vacuum, the background spacetime changes
under the kink transform, and it is unclear how to map states from one spacetime to another.
However, we will find some evidence that suggests that the bulk operation relating the two
states is a generalized version of CC flow in curved spacetime.

To see this, note that the quantum extremal surface R satisfies the equations

B(t)
R + 4G~

δS

δT
= 0 , (7.6.5)

B(x)
R + 4G~

δS

δX
= 0 , (7.6.6)

where (B(t)
R ) and (B(x)

R ) denote the trace of the extrinsic curvature (expansion) in the two
normal directions to R, i.e., tµ and xµ respectively. Similarly δS

δT
and δS

δX
are the entropy

variations in the tµ and xµ directions respectively.
The classical kink transform involves an extrinsic curvature shock at the classical RT

surface. As shown in Sec. 7.3, extremality of the surface ensures that the constraint equations
continue to be satisfied after the kink transform in this case. However, the quantum extremal
surface has non-vanishing expansion, the constraint equations are not automatically satisfied
when an extrinsic curvature shock is added at the quantum RT surface.

More precisely, the left hand side of the constraint equations on a slice Σ are modified
by the kink transform by

∆
(
rΣ − (KΣ)ab(KΣ)ab + (KΣ)2

)
= 8G~ sinh(2πs)

δS

δT
δ(X) , (7.6.7)

∆ (Da(KΣ)ax −DxKΣ) = 4G~ sinh (2πs)
δS

δX
δ(X) , (7.6.8)

∆ (Da(KΣ)ai −DiKΣ) = 0 , (7.6.9)

where ∆ represents the difference in the constraint equations between the original spacetime
M and the kink transformed spacetime Ms, and we have used Eqs. (7.6.5) and (7.3.4).
These are essentially the analogs of Eqs. (7.3.13) and (7.3.14), and we have simplified the
notation slightly.

For the constraint equations to be solved, the kink transform would have to generate
the same change on the right hand side of the constraints. It would thus have to induce an
additional stress tensor shock of the form

∆TTT =
1

2π
sinh(2πs)

δS

δT
δ(X) , (7.6.10)

∆TTX =
1

2π
sinh(2πs)

δS

δX
δ(X) . (7.6.11)
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Formally, these conditions agree precisely with the properties of CC flow discussed in Sec. 7.2.
Thus, we might expect a generalized bulk CC flow to result in shocks of precisely this form.

In fact, the existence of semiclassical states satisfying the above equations was conjectured
in [139]; the fact that CC flow generates such states in the non-gravitational limit was
interpreted as non-trivial evidence in support of the conjecture. Thus, we expect a kink
transform at the quantum extremal surface with a suitable modification of the state to
provide the bulk dual of CC flow to all orders in G.

At a more speculative level, we can also discuss the bulk dual of CC flow in certain
special states called fixed area states, which serve as a natural basis for modular flow [143,
144, 145]. These are approximate eigenstates of the area operator and are therefore unlike
smooth semiclassical states which are analogous to coherent states. The Lorentzian bulk
dual of such states potentially involves superpositions over geometries [163].

However, by construction, the reduced density matrix is maximally mixed at leading
order in G. Thus, the state |ψ〉 is unaffected by one sided modular flow, and the only effect
of CC flow is that we describe the state on a kinematically related slice Cs. Thus, the dual
description must be invariant under CC flow up to a diffeomorphism.

In such states, one could apply the semiclassical prescription using Eq. (7.6.1). As dis-
cussed above, the action of the area operators results in a diffeomorphism of the geometric
description, if it exists. From Eq. 7.6.1, the remaining action of the boundary CC flow is to
simply induce a bulk CC flow.

Beyond Flat Cuts

Kink transform/CC flow duality can be generalized to other choices of boundary subsystems,
so long as a precursor slice can be defined. The precursor slice is generated by acting on the
original slice with the vacuum modular Hamiltonian; this is well-defined only if this action is
geometric. In Sec. 7.2, we ensured this by taking the boundary to be Minkowski space and
choosing a planar cut. Precursor slices also exist in any conformally related choice, such as
a spherical cut.

But there are other settings where the vacuum modular Hamiltonian acts geometrically.
This includes multiple asymptotically AdS boundaries where the boundary manifold has a
time translation symmetry. For example, consider a two-sided black hole geometry M with
a compact RT surface R as seen in Fig. 7.6. The boundary manifold is of the form C × R,
where the first factor corresponds to the spatial geometry and the second corresponds to the
time direction. The boundary Hilbert spaces factorizes; each boundary algebra is a Type-I
factor. Thus, the version of CC flow defined in terms of density matrices in Eq. (7.2.6)
becomes rigorous in this situation. A natural choice of vacuum state is the thermofield
double [164, 165]. The reduced state on each side is thermal, ρA0 ∼ exp(−βH). Thus the
modular Hamiltonian is proportional to the ordinary Hamiltonian on each boundary. This
generates time translations and so is geometric.

Now, in any such geometry M one can pick a Cauchy slice Σ that ends on boundary
time slices on both sides and contains R. In obvious analogy with Sec. 7.3, we conjecture
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Figure 7.6: An arbitrary spacetime M with two asymptotic boundaries is transformed to a
physically different spacetimeMs by performing a kink transform on the Cauchy slice Σ. A
piecewise geodesic (dashed gray line) in M connecting x and y with boost angle 2πs at R
becomes a geodesic between xs and y in Ms.

that the domain of dependence of the kink transformed slice Σs in a modified geometryMs

is dual to the boundary state:

|ψs(Cs)〉LR = ρ−isL |ψ(C)〉LR , (7.6.12)

where we have used the notation of Eq. (7.2.36).
In such a situation, it is again manifest that the Wheeler-DeWitt patches dual to either

side are preserved by arguments similar to those made in Sec. 7.4. However, since there is no
portion of R that reaches the asymptotic boundary, there is no analog of the shock matching
done in Sec. 7.4. Notably, since ∂A = ∅ in this case, there is no subtlety regarding boundary
conditions for JLMS and thus, one-sided modular flow makes sense without any regulator.
Thus, our construction is simply kinematically related to the construction in [142].

An interesting situation arises for wiggly cuts of the Rindler horizon, i.e., u = 0 and
v = V (y). The modular Hamiltonian acts locally, but only when restricted to the null plane
[125]. Its action becomes non-local when extended to the rest of the domain of dependence.
The properties of CC flow described in Sections 7.2-7.2 all hold for this choice of cut. This
constrains one-sided operator expectation values on the null plane, subregion entropies for
cuts entirely to one side of V (y), and even the Tvv shock at the cut. Interestingly, all of them
are matched by the kink transform, by the arguments given in Sec. 7.3. Even the expected
stress tensor shock can still be derived, by taking a null limit of our derivation as described
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in Appendix A.15. One might then guess that the kink transform is also dual to CC flow
for arbitrary wiggly cuts.

Even in the vacuum, however, the kink transform across a wiggly cut results in a boundary
slice that cannot be embedded in Minkowski space, due to the absence of a boost symmetry
that preserves the entangling surface. Thus, the kink transform would have to be modified to
work for wiggly cuts. The transformation of boundary observables off the null plane is quite
complicated for wiggly cut CC flow. Thus, we also expect that regions of the entanglement
wedge probed by such observables should be drastically modified, unlike the case where the
entangling surface is a flat Rindler cut.

However, the wiggly-cut boundary transformation remains simple for observables re-
stricted to the null plane. Thus one could try to formulate a version of the kink transform
on Cauchy slices anchored to the null plane on the boundary and the RT surface in the
bulk. Perhaps a non-trivial transformation of the entanglement wedge arises from the need
to ensure that the kink transformed initial data be compatible with corner conditions at the
junction where the slice meets the asymptotic boundary [166]. We leave this question to
future work.

Other Probes of CC Flow

In Sec. 7.4, we provided evidence for kink transform/CC flow duality. The preservation of
the left and right entanglement wedges under the kink transform ensures that all one-sided
correlation functions transform as required. It would be interesting to consider two sided
correlation functions. However, these do not change universally and are difficult to compute
in general. In the bulk, this is manifested by the fact that the future and past wedges do
not change simply and need to be solved for.

However, because of the shared role of the kink transform, we can take advantage of
the modular toolkit for one-sided modular flow [142]. Let |ψ̃s〉 = ρ−i sA |ψ〉 be a family of
states generated by one-sided modular flow as discussed in Sec. 7.6. Then certain two sided
correlation functions 〈ψ̃s|O(x)O(y) |ψ̃s〉 can be computed as follows.

Suppose O(x) is an operator dual to a “heavy” bulk field with mass m such that 1/`AdS �
m� 1/`P, 1/`s. Correlation functions for such an operator can then be computed using the
geodesic approximation,

〈O(x)O(y)〉 ≈ exp(−mL) , (7.6.13)

where L is the length of the bulk geodesic connecting boundary points x and y. Now consider
boundary points x and y such that there is a piecewise bulk geodesic of length L(x, y) joining
them in the spacetime dual to the state |ψ〉.

This kinked geodesic is required to pass through the RT surface of subregion A with a
specific boost angle 2πs as seen in Fig. 7.6. (This is a fine-tuned condition on the set of
points x, y.) Since single sided modular flow behaves locally as a boost at the RT surface, it
straightens out the kinked geodesic such that it is now a true geodesic in the spacetime dual
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to the state |ψ̃s〉. Thus, we have

〈ψ̃s|O(x)O(y) |ψ̃s〉 ≈ exp(−mL(x, y)) . (7.6.14)

As discussed in Sec. 7.2, the CC flowed state can equivalently be thought of as the single
sided modular flowed state |ψ̃s〉 on a kinematically transformed slice Cs. Thus, the above
rules can still be used to compute two sided correlation functions in the CC flowed state
|ψs〉 = us |ψ〉 as

〈ψs|O(xs)O(y) |ψs〉 ≈ exp(−mL(x, y)) , (7.6.15)

where xs is the point related to x by the vacuum modular flow transformation.
We also note that the shock matching performed in Sec. 7.4 was a near boundary cal-

culation. However, a bulk shock exists everywhere on the RT surface. One could solve for
the position of the RT surface to further subleading orders and relate the bulk shock to the
boundary stress tensor. This would yield a sequence of relations that the stress tensor must
satisfy in order to be dual to the kink transform. In general these relations may be highly
theory-dependent, but it would be interesting to see if some follow directly from CC flow or
make interesting universal predictions for CC flow in holographic theories.

Higher Curvature Corrections

In Sec. 7.4, we argued that the bulk kink transform in a theory of Einstein gravity satisfies
properties consistent with the boundary CC flow. However, this result is robust to the
addition of higher curvature corrections in the bulk theory. The preservation of the two
entanglement wedges, i.e., Eq. (7.2.38), is a geometric fact that remains unchanged.8

Further, the matching of the stress tensor shock crucially depended on two ingredients.
Firstly, Eq. (7.4.12), the holographic dictionary between the boundary stress tensor and
the bulk metric perturbation and secondly, Eq. (7.4.15), the relation between the boundary
entropy variation and the shape of the RT surface. Both of these relations are modified
once higher curvature corrections are included [51, 92]. However, it follows generally from
dimension counting arguments that

g
(d)
ij = η1

16πG

d
〈Tij〉 , (7.6.16)

XA
(d) = −η2

4G

d

δS

δXA

∣∣∣∣
R
, (7.6.17)

where η1 and η2 are constants that depend on the higher curvature couplings. Using the first
law of entanglement, it can be shown that in fact η1 = η2 [51, 92]. Hence, the boundary stress
tensor shock obtained from the kink transform is robust to higher curvature corrections.

8Here we assume that the initial value formulation of Einstein gravity can be perturbatively adjusted
to include higher curvature corrections despite the fact that a non-perturbative classical analysis of higher
curvature theories is often problematic due to the Ostrogradsky instability [167].
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Figure 7.7: Holographic proofs. Left: Boundary causality is respected by the red curve that
goes through the bulk in a spacetimeM; this is used in proving the ANEC. The RT surfaces
R1 and R2 must be spacelike separated; this is used in proving the QNEC. Right: In the
kink transformed spacetime Ms as s → ∞, the QNEC follows from causality of the red
curve, which only gets contributions from the Weyl shocks (blue) at R1 and R2, and the
metric perturbation in the region between them.

Holographic proof of QNEC

A recent proof of the QNEC from the ANEC [18] considers CC flow for a subregion A on
the null plane u = 0 with entangling surfaces v = V1(y) and v = V2(y) surrounding a given
point p. From the transformation properties of the stress tensor under CC flow described in
Sec. 7.2, Tvv → 0 as s→∞. In addition, there are stress tensor shocks at ∂A, as described

in Sec. 7.2, of weight f(s) δS
δV (y)

∣∣∣
ψ,∂A

. In the limit V1(y) → V2(y), computing the ANEC in

the CC flowed state, one obtains contributions from the stress tensor Tvv(p) in subregion A,

and a contribution proportional to δ2S
δV (y1)δV (y2)

∣∣∣
ψ,p

from the shocks. Positivity of the averaged

null energy in the CC flowed state then implies the QNEC in the original state.
Prior to the QFT proofs, both the ANEC and QNEC had been proved holographically

[168, 29]. The guiding principle behind both of these proofs was the fact that consistency of
the holographic duality requires bulk causality to respect boundary causality as we demon-
strate in Fig. 7.7. In the case of the ANEC, one considers an infinitely long curve connecting
points on past null infinity to future null infinity through the bulk and demands that it
respect boundary causality [168]. In the proof of the QNEC, one requires that curves joining
the RT surfaces of subregions v < V1(y) and v > V2(y), denoted R1 and R2, respect bound-
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ary causality [29, 137]. There are two contributions to the lightcone tilt of this bulk curve
coming from the metric perturbation hvv in the near boundary geometry, and the shape of
the RT surface Xµ(y, z). By the holographic dictionary, these contributions can be related
to the boundary stress tensor Tvv and the entropy variations δS

δV
as discussed in Sec. 7.4.

Now performing the kink transform removes the contribution coming from the shape of
the RT surface and puts it into a time advance/delay coming from shocks in the bulk Weyl
tensor that we compute in Appendix A.15. Considering the extended curve from past to
future null infinity, we see that whether or not it respects boundary causality is determined
entirely by the region between the entangling surfaces R1 and R2 since the bulk solution
approaches the vacuum everywhere else in the limit s→∞. Requiring causality of the ANEC
curve then results in the QNEC, making the connection to the boundary proof manifest.
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Chapter 8

Quantum Information Bound on the
Energy

8.1 Introduction

Semiclassical General Relativity allows for quantum matter while keeping the gravitational
field classical, by coupling the metric to the expectation value of the stress tensor:

Gab = 8πG〈Tab〉 . (8.1.1)

Since 〈Tab〉 receives quantum contributions proportional to ~, this approximation can be
organized as a perturbative expansion in G~ and solved iteratively. This approach has
proven to be quite useful, leading to the discovery of black hole thermodynamics and the
associated information paradox.

Numerous theorems in General Relativity rely on the Null Energy Condition (NEC),
which states that

Tabk
akb ≥ 0 (8.1.2)

at every point in the spacetime, where ka is any null vector. The NEC underlies the area
theorems for event horizons [169] and for future holographic screens [170, 171], the focussing
theorem [172], and Penrose’s singularity theorem [173]. In other theorems, the stress tensor is
assumed to obey even stronger conditions, which are nevertheless satisfied by known classical
matter and radiation.

However, in relativistic quantum field theories (QFTs) such as the Standard Model, there
are states in which 〈Tab〉 violates the NEC in some regions of spacetime. Hence, none of the
classical theorems mentioned above apply at the semiclassical level. The evaporation of a
black hole, for example, is accompanied by violations of all of the above theorems. This is
possible because the NEC is violated in the vicinity of the horizon.

Remarkably, there is considerable evidence that all of the above theorems admit a con-
jectural semiclassical extension. The key step to obtaining a viable proposal is to replace the
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area of surfaces with their generalized entropy. Thus the area theorem becomes the Gen-
eralized Second Law (GSL) for event horizons [174, 175, 176] and for Q-screens [177]. The
focussing theorem becomes the Quantum Focussing Conjecture (QFC) [178]; and Penrose’s
singularity theorem becomes Wall’s Quantum Singularity Theorem [179].

Though these are conjectural statements about the semiclassical limit of quantum grav-
ity, they can have interesting nongravitational limits. Some of these limit statements were
already known, but others came as completely new and nontrivial results in QFT. The main
example is the Quantum Null Energy Condition [178], which has since been rigorously proven
within QFT, using a variety of methods [180, 181, 182]. Thus, the study of semiclassical
gravity has had considerable impact in a seemingly unrelated arena.

The present work is inspired by these developments. We will study an important conjec-
ture in classical General Relativity, the Penrose inequality [20]. This a relation between the
area of certain marginally trapped surfaces µ in the spacetime and the total mass defined at
spatial infinity [183]:

m ≥
√

A[µ]

16πG2
. (8.1.3)

The conjecture can be thought of as a generalization of the positive mass theorem [184].
For either statement, it is clearly essential that matter with negative energy be excluded.
This can be implemented by assuming the dominant energy condition (DEC), that for any
timelike future-directed vector ta, −T abtb is timelike and future-directed.

The Penrose inequality has not been proven and thus is not a theorem. But no coun-
terexample to the conjecture is known. We will review the classical Penrose inequality in
Sec. 8.2, where we provide both the reasoning motivating it, and a more careful formulation.

Since quantum matter can violate the NEC it can also violate the DEC, threatening the
validity of the Penrose inequality. It is not immediately obvious that Eq. (8.1.3) fails, since
the stress tensor in QFT cannot be dialed arbitrarily.

In fact, we find in Sec. 8.3 that Eq. (8.1.3) continues to be satisfied in a simple example of
black hole formation and evaporation. However, we then provide an explicit counterexample
to the classical Penrose inequality, by exploiting the thermal nature of the vacuum state near
the horizon. When the thermal state is depleted, the vicinity of the horizon can contribute
significant negative energy. This cancels an order one fraction of the black hole’s mass,
leading to a substantial violation of Eq. (8.1.3).

We are thus motivated, in Sec. 8.4, to propose a quantum-corrected version of the Penrose
inequality. We introduce the relevant concepts of generalized entropy, quantum expansion,
and quantum (marginally) trapped surfaces. We draw some lessons from the failure of the
classical Penrose inequality in the semiclassical setting, and we formulate a Quantum Penrose
Inequality (QPI).

In Sec. 8.5, we provide evidence for our proposal. We consider several interesting examples
that could challenge the QPI, and we show that our proposal survives these tests. In Sec. 8.6,
we discuss a number of alternative formulations of the QPI. We show why they are either
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excluded or not ideal. In Sec. 8.7, we discuss the formulation of a QPI in asymptotically
Anti-de Sitter spacetimes. This helps us identify subtleties that also affect the original QPI.

In Sec. 8.8, we discuss the classical and the nongravitational limits of the QPI.
Penrose’s motivation in proposing Eq. (8.1.3) was as a test of the weak Cosmic Censorship

Conjecture (CCC). In Sec. 8.9, we review this connection and the status of the CCC. We
speculate that the Quantum Penrose Inequality could inform the formulation of a “quantum”
CCC that accommodates the known, physically sensible violations of the classical CCC.

In Appendix A.16, we compute the expansion of outgoing null rays and the positions of
classical and quantum marginally trapped surfaces for an evaporating Schwarzschild black
hole. In Appendix A.17, we present a perturbative construction of Q-screens [177], which
plays a role in our discussion of the Quantum Penrose Inequality in Anti-de Sitter spacetimes.

A brief summary of the main results of our investigation has appeared elsewhere [185].

8.2 Classical Penrose Inequality

In this section we describe the (classical) Penrose inequality; see Ref. [186] for a broader
review.

Formulation

We formulate the classical Penrose inequality as follows:
Let m be the total mass of an asymptotically flat spacetime. Let µ be a trapped surface

that has minimal area among all surfaces that enclose it, on some Cauchy surface that
contains µ. Then

m ≥
√

A[µ]

16πG2
. (8.2.1)

Next, we provide detailed definitions and explanations of the terms appearing in this formu-
lation.

Let (M, gab) be a connected Lorentzian spacetime with metric. Let µ be a codimension
1 + 1 compact spacelike submanifold (a “surface”). 1 Let θ± be the expansion of the future-
directed light-rays emanating orthogonally from µ to either side. If θ+ ≤ 0 and θ− ≤ 0 then
µ is called trapped. If θ+ = 0 and θ− ≤ 0 then µ is marginally trapped.

Now let (M, gab) be in addition asymptotically flat. Note that we do not require µ to be
connected; for example in a spacetime where multiple black holes are forming, µ could be
the union of connected marginally trapped surfaces inside some or all of them.

Suppose that the surface µ has an “outer wedge” OW that contains a single asymptotic
region. By this we mean that µ forms the only boundary of any Cauchy surface of a globally
hyperbolic region of space OW that (in the “unphysical spacetime” or Penrose diagram)

1In the remainder of this paper we will specialize to 3+1 dimensional spacetime, so that µ will be a
2-dimensional surface. Generalization to higher dimensions is trivial.
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contains a single copy of spatial infinity, i0. This will be the case for trapped surfaces in a
spacetime with a single asymptotic region. In the case of “two-sided” black hole solutions,
it will hold if µ is homologous2 to a horizon (with either choice of side), but not if µ is
contractible. We will be interested in bounding the mass at spatial infinity [183] from below.

Finally, we assume that there exists a Cauchy surface Σ of OW on which µ is the minimal
area surface homologous to large spheres near i0 (or in the AdS case, homologous to the
boundary sphere) [187]. The purpose of this set of assumptions will become clear as we turn
to presenting a heuristic argument that the Penrose Inequality should hold for µ.

Heuristic Argument

The Penrose Inequality was originally intended as a test of cosmic censorship, which guar-
antees that an asymptotically flat spacetime with regular initial conditions will be strongly
asymptotically predictable [172]. If this latter property holds, then a compelling argument
can be given that the Penrose inequality must hold; thus, any regular initial data set that
violates the Penrose inequality would likely exclude cosmic censorship. We now present the
argument.

Roughly speaking, strong asymptotic predictability establishes the existence of Ṽ , a
globally hyperbolic open subset of M that contains any black hole horizons and their exterior,
Ṽ ⊃ ¯J−(I+). (See Ref. [172] for more details.) The black hole region is B ≡ M − J−(I+).
The black hole event horizon is its boundary Ḃ.

Suppose that
Rabk

akb ≥ 0 , (8.2.2)

as would be the case if Einstein’s equations hold with matter satisfying the Null Energy
Condition. Then any trapped or marginally trapped surface µ must lie in the black hole
region:

µ ⊂ B . (8.2.3)

For a proof, see Propositions 12.2.2 in Ref. [172]. The key technical assumption is that M
be strongly asymptotically predictable.3

Let H = Ḃ ∪ Σ be the slice of the black hole event horizon (possibly with multiple
disconnected components), on the Cauchy surface Σ of OW . Since µ has minimal area on Σ,
it follows that the horizon must be at least as large:4

A[H] ≥ A[µ] . (8.2.4)
2Two cycles (closed submanifolds which are not boundaries of any other submanifolds) are said to be

homologous, or equivalently, belong to the same homology class, if they can be continuously deformed into
each other.

3The same property, ν ⊂ B, follows from Proposition 12.2.3 in Ref. Wald for another class of surfaces
called outer trapped. These would form an alternate starting point from which the classical and quantum
Penrose conjectures could be developed along the same lines as we do here for trapped surfaces.

4Instead of assuming that µ has minimal area on some Cauchy slice of OW , an alternative way of
handling this issue is to replace A[µ] with the minimal area of all surfaces enclosing µ on a given initial
Cauchy slice [186]. Verifying this assumption does not require knowledge of more than the initial slice.
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The Null Curvature Condition, Eq. (8.2.2), and strong asymptotic predictability imply
that the area of the event horizon cannot decrease with time [169]. Let H ′ = Ḃ ∪ Σ′, where
Σ′ is a Cauchy surface to the future of Σ. Then

A[H ′] ≥ A[H] . (8.2.5)

Physically, it is reasonable to assume that regular initial data will eventually settle down
to a Kerr black hole. (In four dimensions, this follows from the assumption of late-time
stationarity, by the Israel-Hawking-Carter theorems [188].) Letting H ′ be a slice of the
horizon at this late time, the formula for the area of a Kerr black hole implies that

16πG2m2
Kerr ≥ A[H ′] . (8.2.6)

The spacetime will not be exactly Kerr, however. One expects that massive fields will have
fallen into the black hole, but there may be massless fields that propagate to future null
infinity. Because this radiation becomes dilute and well separated from the black hole,
gravitational binding energy will be negligible. Hence the ADM mass, m, will be given by
the sum

m = mKerr +mrad ≥ mKerr . (8.2.7)

Combining the previous four inequalities, we obtain the Penrose conjecture, Eq. (8.2.1).
We would like to add a second, somewhat independent heuristic argument for Eq. (8.2.1).

A future holographic screen is a hypersurface foliated by marginally trapped surfaces called
leaves [189, 190, 170]. Assuming the Null Energy Condition, the area of the leaves increases
monotonically along this foliation [170, 171]. In the spherically symmetric case, the screen
eventually asymptotes to the event horizon (from the interior), so its final area will be equal
to the late time event horizon area. Thus the screen area theorem implies the Penrose
inequality in this case. More generally, given a marginally trapped surface µ, a future
holographic screen can be constructed at least in a neighborhood. The Penrose inequality
would follow from the stronger assumption that there exists a future holographic screen that
interpolates from µ to the late-time event horizon, as in the spherical case.

8.3 Violation by Quantum Effects

In this section, we will show that there is a need for a quantum generalization of the classical
Penrose inequality (CPI). We will construct an explicit counterexample that is based on a
Boulware-like state outside a Schwarzschild black hole. It violates the CPI by a substantial,
classical amount.

This will be a counterexample to the CPI in the same sense as black hole evaporation is a
counterexample to Hawking’s area theorem: we identify a physically allowed state in which
a key assumption of the classical statement, the Null Energy Condition, does not hold, and
we verify that the conclusion fails as well.
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Figure 8.1: Left: A null shell collapsing in asymptotically flat spacetime. The classically
marginally trapped surface µ is slightly outside of the event horizon due to the evaporation.
It is not clear that this example violates the CPI. Right: initial data that violates the
classical Penrose inequality. Here µ is the bifurcation surface of the Schwarzschild (Kruskal)
solution. Inside a proper distance dc, the state is the Hartle-Hawking vacuum. Outside of
dc,it becomes the Boulware vacuum, which has negative energy in the near-horizon zone
(blue strip). This lowers the mass at infinity by an O(1) fraction compared to a classical
black hole.

However, before we turn to our counterexample, it is worth noting that no obvious
violation of the CPI arises in the “normal” formation and evaporation of a black hole in
the Unruh state. This is interesting, because in this setting the Null Energy Condition is
already violated, and other theorems like the area theorem or the focussing theorem do fail.
In order to have full control and exclude transient effects, let us consider the collapse of a
null shell of mass m; see Fig. 8.1. Then by causality, there are no corrections to the classical
solution on the shell and to its past, where the spacetime is a portion of Minkowski space.
In particular, the marginally trapped surface on the shell will have the same area as in the
classical case, and the CPI will be saturated. (The fact that the event horizon is inside of
this surface is irrelevant.) At later times, we expect the apparent horizon area to decrease.
Since the mass at infinity does not change during evaporation, the CPI will remain satisfied.

We do not claim that the CPI will hold for all black holes formed from collapse; and even
in the above example, its validity may rely on idealizations, such as treating the collapsing
null shell as infinitely thin and stable. But we would like to exhibit a situation where the
CPI is definitely violated; in order to do this, we will consider a somewhat more artificial
(but certainly valid) quantum state.
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To demonstrate a violation of the classical PI by quantum effects, we now consider a
Boulware-like state [191] of a massless scalar field, on one side of a maximally extended
Schwarzschild black hole, at the time-symmetric slice; see Fig. 8.1. The Boulware vacuum
is analogous to the Rindler vacuum. It corresponds to vanishing occupation number of the
modes with support strictly outside the event horizon. This will contribute some negative
energy outside of the black hole, in the near-horizon region R < r < 3R/2. Far from the
black hole, the stress tensor vanishes in the Boulware vacuum.

Note that the classical Penrose inequality, applied to the bifurcation surface, is classically
saturated. (That is, it is saturated if the stress tensor vanishes everywhere outside the black
hole.) Thus, any net negative energy in the exterior will lead to a violation of Eq. (8.2.1).

The local stress tensor diverges in the Boulware vacuum as the horizon is approached [191,
192]. We regulate this divergence by building wavepackets with support strictly outside of
a sphere Hc at proper distance dc > 0 from the horizon (in this case, from the bifurcation
surface). For full control of the semiclassical expansion, we choose

lP � dc � R . (8.3.1)

Roughly speaking, this yields a Hartle-Hawking-like state (vanishing stress tensor) inside of
Hc, and a Boulware-like state outside of Hc.

Integration of the QFT stress tensor computed in Ref. [192], outside the regulator sphere
Hc, yields a QFT contribution to the energy at infinity of order −(lP/dc)

2M , where M =
R/2G is the mass of the black hole [185]. Here we will go further; instead of naively gluing
to QFT states across a surface (which is does not generally yield an allowed QFT state), we
consider junction effects at Hc. Positivity of the energy for infalling observers requires some
positive energy near Hc, which we wish to estimate and show to be negligible.

For this purpose it will be useful to analyze the problem mode by mode. This will allow
us to distinguish between two cutoffs that we can freely choose: the angular momentum of
the included QFT modes, and dc. Establishing a small hierarchy between these cutoffs will
give us a control parameter 1/nnode � 1, by which the positive energy at Hc is suppressed
at infinity, relative to the negative contribution.

We will focus on the most relevant modes in the near-horizon zone, which have occupation
number of order one in the thermal ensemble corresponding to the Hartle-Hawking state.
These modes have the property that any wavepacket constructed from them has characteristic
wavelength comparable to its distance from the horizon. Moreover, increasing the occupation
number of the mode by 1 increases the energy at infinity by ~/R.

This set of modes includes s-waves as well as modes with nonzero angular momentum.
Here we will use ` = 0, 1, . . . for the angular momentum quantum number. The number of
modes in the thermal atmosphere can be estimated from the number of nodes in a strictly
outgoing Rindler mode in an interval beginning at proper distance dc from the horizon and
ending at a distance R (for the spherical modes, which we approximate as propagating
freely) or R/(`+1) (for the modes with angular momentum, which we approximate as being
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Figure 8.2: A typical wavepacket mode in the thermal atmosphere of the black hole, reg-
ulated to have support outside a sphere a proper distance dc outside of the horizon. The
classical Penrose inequality is violated in a Boulware-like state in which such modes have
zero occupation number and negative energy. In a local inertial frame (black Killing vector
field, ∂τ , where τ is proper time), a large fraction of their energy is concentrated near the
cutoff dc. The total energy must appear positive in this frame; this can be satisfied by adding
a comparable amount of positive energy inside of dc. To an asymptotic observer (red Killing
vector field, ∂t), the negative energy is spread evenly over the mode, due to the greater
redshift near the horizon. Thus the positive energy beyond the cutoff has a negligible effect
on the ADM mass.

reflected by an angular momentum barrier). See Fig. 8.2. Hence there are

n` = (2`+ 1) log

(
R/(`+ 1)

dc

)
(8.3.2)

linearly independent modes with angular momentum `.
In the Hartle-Hawking state, these modes are all thermally excited with O(1) occupation

numbers; this corresponds to vanishing stress tensor near the horizon. In the Boulware-like
state, the modes are unoccupied. This corresponds to a negative stress tensor; it contributes
an energy at infinity of order −~/R, per mode. We choose a cutoff `max on the angular
momentum such that the angular momentum barrier is somewhat outside the short distance
cutoff dc:

log log

(
R/(`max + 1)

dc

)
∼ O(1) , (8.3.3)
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where the second log enforces a small hierarchy whose purpose will become clear below.
From the previous two equations, the total number of unoccupied modes is

ntotal ≡
`max∑
`=0

n` ∼
R2

d2
c

. (8.3.4)

Thus the total energy at infinity of the quantum field will be

Eneg ∼ −
~
R
ntotal ∼ −αM , (8.3.5)

where

α =
l2P
d2
c

. (8.3.6)

The presence of a substantial amount of negative energy outside the black hole may seem
suspect. However, we note that our construction cannot achieve vanishing or negative total
ADM mass. Since the black hole contributes M , the total mass is (1 − α)M . Making this
negative would require taking dc . lP , in conflict with Eq. (8.3.1), and so would take us
outside of the semi-classical expansion. Moreover, our result is consistent with positive total
matter energy in an appropriate neighborhood of the horizon. This is important since the
spacetime can be treated as approximately flat on a distance scale dc � dflat � R.

To see this, we note that the wavepackets we study have approximately constant Killing
energy per cycle, where a cycle denotes the portion of a wavepacket between two nodes.
See Fig. 8.2. The local proper wavelength of a given mode grows as the distance from the
horizon, but this is precisely cancelled by the decreasing redshift. Thus from the viewpoint
of infinity, each cycle of each mode contributes an ADM energy (per occupation number) of
~/(Rnnode), where

nnode(`) ∼ log

(
R/(`+ 1)

dc

)
(8.3.7)

is the number of nodes or cycles in the wavepacket.
In a local inertial frame, on the other hand, there is no redshift effect. Yet, the proper

wavelength grows exponentially away from the horizon, roughly doubling with every cycle.
Thus an O(1) fraction of the local energy of a mode is contained in the first phase cycle. In
the Boulware-like state, this is the negative energy that must be cancelled. To have positive
energy in the local frame, it suffices to have compensating positive energy just for this first
cycle. The positive energy can be localized, for example, just below dc.

This positive energy will partially cancel the negative ADM energy of the quantum state,
Eq. (8.3.5). But because all cycles of the wavepacket contribute equally to the Killing energy,
the correction is parametrically small, of order |Eneg|/nnode � |Eneg|. In practice, nnode of
order a few suffices, so we will not update Eq. (8.3.6). The purpose of the second log in
Eq. (8.3.3) was to chose the angular momentum cutoff `max so as to achieve nnode ∼ a few,
for all modes involved in the construction.
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Finally, we note that the location and area of the marginally trapped surface do not
receive large enough corrections to rescue the classical Penrose inequality. The bifurca-
tion surface remains marginally trapped when we pass from the classical treatment to the
Hartle-Hawking state, since the stress tensor vanishes there. Our construction keeps the
Hartle-Hawking state near the bifurcation surface, up to corrections that can be suppressed
arbitrarily by dialing nnode � 1.

To summarize, one can reduce the mass at infinity from M (in the Unruh state) to
(1−α)M in the Boulware-like state. Since we require that lP � dc for control, this correction
is parametrically small, α � 1. But since the Penrose inequality is saturated classically for
a Schwarzschild black hole, our example violates it.

Moreover, the violation is substantial in the sense that it is not O(~) but O(1). The
contribution from each mode is O(~); but the number of available modes in the thermal
atmosphere, at fixed control parameter lP/dc, is ntotal ∼ O(~−1). Thus, the negative energy
of the quantum fields can cancel off an O(1) fraction of the black hole’s classical mass.

8.4 Quantum Penrose Inequality

In this section, we will formulate the Quantum Penrose Inequality (QPI). In Sec. 8.4, we
review various concepts necessary for the quantum generalization of classical statements
involving area and null expansion. In Sec. 8.4, we draw some conclusions from the failure of
the classical Penrose inequality. In Sec. 8.4, we formulate our proposal for the QPI.

Generalized Entropy and Quantum Expansion

We begin by introducing the notion of generalized entropy and its main properties. We then
use the generalized entropy to define certain quantum generalizations of various geometric
quantities, necessary for formulating the Quantum Penrose Inequality; see [178] for more
details.

The generalized entropy Sgen, was first introduced by Bekenstein [174, 175] as the total
entropy of a system consisting of a black hole and its exterior on a given time slice. The
definition can be extended to apply not only to the horizon of a black hole, but to any
Cauchy-splitting surface σ:

Sgen ≡
A[σ]

4G~
+ Sout + . . . , (8.4.1)

where A[σ] is the area of σ, and

Sout = −Trρout log ρout (8.4.2)

is the von Neumann entropy of the state of the quantum fields, restricted to one side of σ:

ρout = Trout ρ . (8.4.3)
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Here, the state ρ is the global quantum state, and the trace is over the complement region,
which we define as out.

The von Neumann entropy Sout quantifies the amount of entanglement in the vacuum
across σ, and as such, has divergences coming from short-distance entanglement. The leading
divergence is given by A/ε2, where ε is a short-distance cutoff. However, we can think of the
geometric term in Eq. (8.4.1) as a counterterm. The dots indicate the presence of subleading
divergences in Sout which come with their own geometric counterterms. It is expected that
the divergences coming from the renormalization of G and from short-distance entanglement
will cancel out [178], so as to keep Sgen a finite and well-defined quantity.

One can interpret Sgen in two distinct ways. Following the original motivation, one can
view the area-term as a (large) “correction” to the entropy of quantum fields. Alternatively,
we can define a quantum-corrected area of the surface σ:

AQ[σ] ≡ A[σ] + 4G~Sout + . . . , (8.4.4)

in a semiclassical expansion in G~. Hence, one can use the notion of generalized entropy
to incorporate quantum effects into certain geometrical objects that derive from the area of
surfaces.

One example is the notion of quantum expansion. Recall, the classical expansion of a
surface σ at a point y ∈ σ is defined as the trace of the null extrinsic curvature at y.
Equivalently, one can define the classical expansion as a functional derivative,

θ[σ; y] =
1√
h(y)

δA[V ]

δV (y)
, (8.4.5)

where h represents the area element of the metric restricted to σ, inserted to ensure that
the functional derivative is taken per unit proper area, not coordinate area. The function
V (y) is used to specify the affine location of σ and nearby surfaces along a congruence of
null geodesics orthogonal to σ. The above definition of the classical expansion is needlessly
complicated, in that it invokes the entire surface σ, even though θ depends only on its
local extrinsic curvature at y. However, this definition naturally generalizes to the quantum
expansion, Θ, which does depend on all of σ:

Θ[σ; y] ≡ 4G~√
h(y)

δSgen[V ]

δV (y)
. (8.4.6)

As in the classical case, we can use the notion of expansion to define certain types of
surfaces (see Sec. 8.2). Let Θ± be the quantum expansion of the future-directed light-rays
orthogonal to a surface µQ. (As before, we take the + label to refer to the direction of spatial
infinity.) If Θ+ ≤ 0 (Θ+ = 0) and Θ− ≤ 0, then we call µQ a quantum (marginally) trapped
surface.

Quantum trapped surfaces, in the semiclassical setting, have some of the properties
obeyed by trapped surfaces in the classical setting. For example, trapped surfaces cannot



CHAPTER 8. QUANTUM INFORMATION BOUND ON THE ENERGY 153

lie outside the black hole, assuming weak cosmic censorship and the Null Energy Condition.
When the NEC is violated, they can; however, quantum trapped surfaces must still lie in-
side or on the horizon [179] (still assuming weak cosmic censorship). This will prove to be
important for our formulation of the quantum Penrose inequality.

A quantum future holographic screen, or Q-screen, is a hypersurface foliated by quantum
marginally trapped surfaces. Assuming the quantum focussing conjecture [178], Q-screens
obey a Generalized Second Law [177].

Lessons From the Counterexample

The failure of the classical PI in the presence of quantum matter (Sec. 8.3) illustrates the
need for a Quantum Penrose Inequality. It also motivates some of the choices we will make
below.

Let us distinguish two different time-scales: the time for the negative energy of the
Boulware-like state to enter the black hole, and the evaporation time. The former is of order
the scrambling time ∆ts ∼ R log(R/lP ). The latter is much greater, of order R3/G~.

On the shorter time-scale, the process results in an outcome very similar to that invoked in
motivating the classical Penrose inequality: a Kerr black hole with area Alate and no further
evolution. That is, we neglect evaporation since it occurs on a much greater timescale; and
by construction, no matter that will ever enter the black hole. Thus, the mass should obey
16πG2m2 ≥ Alate.

The key difference to the classical case is that the “late” area need not be greater than the
area of trapped surfaces at earlier times; indeed our counterexample shows that it will not
be. However, we know that the Generalized Second Law (GSL) takes the place of the area
theorem in this setting. Thus, we expect that the generalized entropy of earlier quantum
trapped surfaces should be less than Alate/4G~. And so, the generalized entropy of quantum
trapped surfaces should replace the area of trapped surfaces when we replace the classical
by a Quantum Penrose Inequality.

This argument is based on the GSL for the event horizon, and so involves an intermediate
step where one argues that the generalized entropy of a quantum marginally trapped surfaces
inside the black hole will not be greater than that of the event horizon. To avoid this step,
we can generalize the second heuristic argument for the classical Penrose inequality, which
was based on the area theorem for future holographic screens. Q-screens obey a GSL that
interpolates directly between different marginally quantum trapped surfaces. If a suitable
Q-screen connects µQ to the late-time event horizon, this establishes a Quantum Penrose
Inequality. Of course this is far from a trivial assumption; our goal here was only to gain
some intuition.

In the above heuristic arguments, it was important that the late-time generalized entropy
should be given just by Alate, i.e., that no entropy remains outside of the black hole. However,
this will not be the case in general examples. This will motivate our choice, below, that the
generalized entropy entering the Quantum Penrose Inequality should be evaluated on slices
that remain inside the black hole. We will discuss this important issue further in Sec. 8.6.
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Formulation

We will now obtain a Quantum Penrose Inequality from the classical PI, in three steps. First,
we replace the area with generalized entropy in Eq. (8.2.1):

A→ 4G~Sgen ≡ A+ 4G~Sout . (8.4.7)

Thus we propose an inequality of the form

m ≥
√

~Sgen

4πG
. (8.4.8)

Secondly, we must specify the surfaces to which the inequality can be applied. In the
classical case, a surface µ has to be trapped for the Penrose inequality to apply, corresponding
to criteria satisfied by the classical expansion. For the QPI, it is natural to apply the same
criteria to the quantum expansion:

θ → Θ . (8.4.9)

Thus in Eq. (8.4.8), Sgen is the generalized entropy of any surface µQ that is quantum
trapped. We expect that the most interesting bounds will obtain when µQ is quantum
marginally trapped, and we will only consider this case in all examples below.

Next, we must specify on which achronal hypersurface the generalized entropy appearing
in Eq. (8.4.8) should be computed. As we will explain in Sec. 8.6, this cannot be chosen
to be a Cauchy surface of the outer wedge. Instead, we will propose that this hypersurface
should be entirely contained in the “black hole region” B ≡ M − J−(I+), i.e., inside or on
the horizon.

More precisely, we require that Sgen should be evaluated on the “future portion” of the
boundary of the outer wedge,

L(µQ) ≡ ȮW (µQ)− I−(OW (µQ)) . (8.4.10)

See Fig. 8.3. L is generated by the congruence of future-directed outgoing null geodesics
orthogonal to µQ [172, 193]. Their initial quantum expansion is Θ+ = 0 by construction, so
assuming the QFC [178], Θ+ ≤ 0 everywhere on L. Hence L will be a (quantum) lightsheet
of µQ. Assuming an appropriate version of weak cosmic censorship, L will terminate on the
singularity inside the black hole. (Strictly, in order to remain in the semi-classical regime,
one should terminate L slightly earlier, resulting in a second area term that can be made
small by approaching the singularity.)

Note that the surface µQ must be quantum trapped with respect to L; it need not
be quantum trapped with respect to any other hypersurface, such as a Cauchy surface of
OW (µQ). To find a suitable µQ, consider a null hypersurface N inside the black hole, for
example the boundary of the future of an event q inside the black hole; see Fig. 8.3. Typically
the area of N will increase near q and later decrease towards the singularity. Hence the area
will have a maximum on some cut of N , and the generalized entropy of cuts of N (computed
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Figure 8.3: The Quantum Penrose Inequality bounds the mass at infinity in terms of the
generalized entropy of a quantum marginally trapped surface µQ. The generalized entropy
must be evaluated on the lightsheet L (red line), not on a Cauchy surface Σ of the outer
wedge OW [µQ] (shaded region).

with respect to the future of the cuts on N) will have a maximum on some nearby cut. This
cut will be a suitable quantum marginally trapped surface µQ, and later cuts will also be
quantum trapped.

Finally, we must impose a requirement analogous to the minimum area condition imposed
on µ in the classical case. This condition demanded that there exist a Cauchy surface of
OW on which no surface enclosing µQ has area less than µQ. Here, we will instead consider
the generalized entropy of any surface ν enclosing µQ, computed on the boundary of the
future of the outer wedge of ν. For the QPI to apply to a quantum trapped surface µQ,
we demand that there exist a Cauchy surface of OW [µQ] on which no enclosing surface ν
satisfies Sgen[ȮW (ν)− I−(OW (ν))] < Sgen[L(µQ)].

To summarize, we propose that the mass at spatial infinity of an asymptotically flat
spacetime satisfies the Quantum Penrose Inequality

m ≥
√

~Sgen[L(µQ)]

4πG
, (8.4.11)

where Sgen is computed on the future-outgoing lightsheet of µQ, and µQ is any quantum
trapped surface homologous to spatial infinity that has minimal generalized entropy on some
Cauchy surface of its outer wedge, in the sense described above.



CHAPTER 8. QUANTUM INFORMATION BOUND ON THE ENERGY 156

We close by discussing a subtlety that introduces a small uncertainty in the formulation
of the QPI. In Eq. (8.4.11), we used the classical functional relation between the area and
mass of Schwarzschild black holes; we merely replaced the area with the generalized entropy.
In fact, there will be a field-content-dependent quantum correction to the functional relation
itself. However, this correction is small compared to the difference between our QPI and the
classical Penrose inequality.

This is easier to discuss in asymptotically Anti-de Sitter (AdS) space, where the Schwarzschild
black hole can be in thermal equilibrium. Therefore, we will revisit the issue in more detail in
Sec. 8.7. In general, the black hole exterior will have nonzero energy density in equilibrium.
This is a kind of Casimir energy associated with the potential well provided by the near
horizon zone. It contributes to the total mass at infinity; but since it stays outside the black
hole, it will not contribute to Sgen[L(µQ)].

By dimensional analysis, one expects each field theory degree of freedom to contribute an
amount of order ~/R to this Casimir energy. In Eq. (8.4.11), this is equivalent to changing
the area or generalized entropy by O(c), where c is the number of matter quantum fields.
For large black holes in AdS, it is possible to determine this correction and include it in the
QPI (see Sec. 8.7). In general, however, we are presently unable to determine it.

Since Sgen is O(~−1) and c is O(1), the undetermined Casimir term in Eq. (8.4.11) is
subleading. But naively, it is comparable to the refinement we introduced in passing from
the classical Penrose inequality to the QPI. However, the Casimir correction cannot be
enhanced by factors proportional to ~−1. Thus it is much smaller than the violations of the
classical Penrose inequality that were exhibited in Sec. 8.3. Because of the ~−1 enhancement,
Eq. (8.2.1) can be violated by a classical amount through quantum effects. Correspondingly,
a successful QPI cannot be a small modification of the classical Penrose inequality. Indeed,
it is not: as we shall demonstrate in the next section, the counterexample to Eq. (8.2.1) is
evaded by Eq. (8.4.11). In this and many other interesting examples, the Casimir correction
is small compared to the difference between Eq. (8.2.1) and Eq. (8.4.11).

8.5 Evidence for the Quantum Penrose Inequality

We will now analyze the validity of our proposal in a number of examples. In the process, we
will gain some intuition about the key quantity that appears in it: Sgen[L], the generalized
entropy of the future-outgoing lightsheet L of a quantum marginally trapped surface µQ.

Black Hole in the Unruh State

As a first example, consider a black hole formed from collapse of a null shell; see Fig. 8.4.
This is the example we analyzed in the context of the classical Penrose inequality, at the
beginning of Sec. 8.3. We showed there that the CPI is saturated, since the area of the
classically marginally trapped surface µ immediately after the collapse satisfies

16πG2m2 = A[µ] . (8.5.1)
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Figure 8.4: Black hole formed from the collapse of a null shell (orange line). The classically
marginally trapped surface µ lies a Planckian distance outside of the event horizon. The
quantum marginally trapped surface µQ lies a Planckian distance inside the horizon. The
lightsheet L(µQ) captures ∼ log(R/lP ) infalling Hawking modes (orange dashed lines); in the
Unruh states these modes are unoccupied and so contribute negative entropy on L, compared
to the Hartle-Hawking state. L ends at the singularity and does not encounter any later
infalling modes (purple dashed lines). The entropy on L can also be computed using the
mutual information, SL = SC − SB + I(L : B).

Here we are interested in a quantum marginally trapped surface with largest generalized
entropy, for which the QPI provides the greatest lower bound on the mass. The area of
(quantum) trapped surfaces decreases along with the event horizon, and the contribution
from the entropy term is approximately time-independent. Hence we will again choose the
earliest possible surface µQ, right after the collapse.

The quantum marginally trapped surface µQ must lie inside the event horizon [179],
whereas µ lies outside. Therefore

A[µQ] < A[µ] . (8.5.2)

We now turn to estimating Sgen[L]. Strictly, Sgen[L] should be computed from the quan-
tum state on a global Cauchy surface Σ that contains L. One would first compute the
(divergent) field theory entropy S[L] by tracing over the complement of L on Σ. One would
then add the gravitational counterterms whose leading contribution is A[µQ]. Locally, in a
vacuum state, one expects Sgen ≈ A[µQ]/4G~, where G is the “infrared” value of Newton’s
constant that would be observed at large distances.
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However, the state on L is not a standard vacuum state. L nearly coincides with the
black hole horizon for a time t� ∆ts, where ∆ts is the scrambling time. The vacuum state
on the horizon is the Hartle-Hawking state, which contains ingoing radiation. The ingoing
radiation on L is entangled with modes on the other side of L. This contribution must be
canceled by the counterterm so as to obtain Sgen ≈ A[µQ]/4G~ in the Hartle-Hawking state.

The actual state we consider here is the Unruh state, which does not have this ingoing
radiation. As a result, the lightsheet will contain less entropy than in the vacuum state.
Thus

Sgen[L] <
A[µQ]

4G~
. (8.5.3)

Combined with Eqs. (8.5.1) and (8.5.2) this establishes that the QPI is satisfied (and not
saturated) in this example.

We would like to go further and estimate the “gap” by which the QPI fails to be saturated
in this example,

∆ ≡ 4πG

~
m2 − Sgen[L] . (8.5.4)

We will be interested only in the order of magnitude of this gap and so will make a number
of approximations. We refer to Sec. 8.3 for notation and conventions.

First, we will assume that the higher angular momentum modes, ` > 0, in the near-
horizon zone completely reflect off of the angular momentum barrier and so will behave as
if they were in the Hartle-Hawking state. In this approximation, the Unruh state differs
only through the spherical (` = 0) modes, which we treat as having no angular momentum
barrier at all. We also assume that the ingoing and outgoing s-waves do not interact.

A Planck sized, radially outgoing wavepacket starting a Planck distance from the horizon
will be redshifted in such a way that its proper distance from the horizon remains comparable
to its proper wavelength, while it propagates in the near horizon zone, r . 3R/2. Thus, the
number of independent ingoing s-wave modes captured by L is of order log(R/lP ), as shown
in Fig. 8.4. In other words, L “sees” what enters the black hole in the first scrambling time
after infalling geodesics that would have crossed µQ (see also Appendix A.16).

Every such mode would contribute O(1) entropy in the Hartle-Hawking state but is pure
in the Unruh state (since it is in the ground state). The missing entropy, and the gap to
saturating the QPI, is thus

∆ ∼ log
R

lP
. (8.5.5)

The entropy on null surfaces can have surprising and counterintuitive properties [194].
As a check on the above arguments, we now verify this result by evaluating Sgen[L] using
an alternative method, in which von Neumann entropies are evaluated only on spacelike
hypersurfaces.5

5We thank Aron Wall for suggesting this approach.
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The mutual information of any two systems is defined in terms of the von Neumann
entropies of the individual and joint systems as follows:

I(L : B) ≡ SL + SB − SLB . (8.5.6)

Here we consider the lightsheet L and the partial Cauchy surface B shown in Fig. 8.4.
We take B to be null until it meets the end of the near horizon zone, r = 3R/2, and to
coincide approximately with a constant t hypersurface outside of this radius. To stay in the
semiclassical regime, one can terminate L slightly before the singularity. We can choose this
terminal surface to have area cl2P , where 1� c� log(R/lP ). The second inequality ensures
that its contribution will be subleading to our result.

Note that the joint system LB is equivalent by unitary evolution to the purely spacelike
Cauchy surface C. We can thus evaluate the von Neumann entropy on L as

SL = SC − SB + I(L : B) . (8.5.7)

Moreover, L and C have the same boundary, µQ, whereas B has a boundary of negligible
area. It follows that

Sgen[L] = Sgen[C]− SB + I(L : B) . (8.5.8)

We chose µQ to be just after black hole formation, so there will be no outgoing Hawking radi-
ation present on C. In the Unruh state, the ingoing spherical modes in the near-horizon zone
are unoccupied, which reduces the entropy by log(R/lP ) compared to the Hartle-Hawking
value. Hence

Sgen[C]− A[µQ]

4G~
∼ log

R

lP
. (8.5.9)

In our approximation, B captures the same outgoing modes as C, but none of the ingoing
modes that cross L, so SB = 0. There is no data on L that is entangled with data on
B, so I(L : B) = 0. Hence Eq. (8.5.7) implies Sgen[L] = Sgen[C] in our example. Since
16πG2m2 = A[µ] = A[µQ] +O(l2P ), we recover Eq. (8.5.5).

Note that the Planck length enters Eq. (8.5.5) through the position of the quantum
marginally trapped surface µQ, which is a proper distance of order lP inside of the event
horizon (or of µ). It would appear, therefore, that ∆ could be minimized if one could
arrange for µQ to lie a distance comparable to R inside the horizon. However, this requires
a large perturbation of the black hole, to which the current analysis does not apply. We will
revisit this question in Sec. 8.5.

Near-Saturation of the QPI

In the previous subsection, we found that in a newly formed Schwarzschild black hole with
no exterior matter, the QPI will be satisfied but not quite saturated, with a gap of ∆ ∼
log(R/lP ). The gap is only logarithmic, but it still becomes arbitrarily large for large black
holes. Here we show that the logarithmic gap can be eliminated. Thus, the QPI can be
saturated up to a fixed gap of order a Planck area, which we do not have full control over.
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The simplest way to accomplish this is to time-reverse the state of the semiclassical fields
on the partial Cauchy surface C shown in Fig. 8.4. In our approximation, this will not affect
the ` > 0 modes, but it will put the spherical waves in a time-reversed Unruh state. That is,
the outgoing modes will be unoccupied and the ingoing modes will be occupied, reversing the
situation considered in the previous subsection. Crucially, this modification will not change
the mass m at infinity, so we still have

16πG2m2 = A[µ] = A[µQ] +O(l2P ) . (8.5.10)

Because of the restriction to semiclassical modes, there is a cutoff near µQ at least of
order lP . Thus, while the initial conditions we now impose are somewhat unnatural, they
will persist only for one scrambling time ∆ts ∼ R log(R/lP ). After this time, the black hole
will begin to evaporate. In particular, unlike the full Boulware state, there is no singularity
at the horizon. Note also that this state differs from the one we considered in Sec. 8.3 in
that the ` > 0 modes are not in the Boulware vacuum.

The lightsheet L is sensitive only to the ingoing part of the radiation, so its generalized
entropy will be the same as it would be in the Hartle-Hawking state:

Sgen[L] =
A[µQ]

4G~
. (8.5.11)

Thus we find that the QPI is nearly saturated:

∆ ≡ 4πG

~
m2 − Sgen[L] ∼ O(1) . (8.5.12)

Perturbative Regime: QPI from the GSL

Next, we will consider the more general case where matter enters into the black hole after its
formation. We consider the same formation process as above. We will again focus on µQ right
after formation so as to obtain the tightest bound. But now we will allow for a nontrivial
quantum state outside of the black hole. This could be an ordinary matter system carrying
some thermodynamic entropy. It could also be a quantum state with negative energy, such
as the Boulware-like state that we considered in Sec. 8.3 as a counterexample to the CPI.

The future-outgoing lightsheet L of µQ will only receive matter that falls into the black
hole within the first scrambling time after µQ; see Fig. 8.4. To be precise, consider a family
of radially infalling geodesics that are initially at rest at some large radius r � R. The
geodesics are all at the same angle but shifted in time. It is easy to check that the geodesic
that passes through µQ and the last geodesic that reaches L are separated at large radius
by a time of order ∆ts ∼ R log(R/lP ). Any matter that falls in later will hit the singularity
before reaching Σ. This statement does not depend on the initial radius, and it also holds
also for ingoing null geodesics; see Appendix A.16.

In the following subsection, we will consider the effects of matter that falls in after the
first scrambling time and so does not reach L. However, now we will focus on matter that
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can be registered on L. By the above argument, we can take this matter to reside within the
near-horizon zone, R < r < 3R/2, on the partial Cauchy surface C. Let H be the portion
of the event horizon to the future of C, and let Sgen[H] be its generalized entropy.

We begin by making a simplifying assumption that will be relaxed below, that all of the
matter that falls across the horizon will also cross L (as opposed to passing through the
portion of B inside the black hole). The quantum marginally trapped surface µQ and the
boundary of H have approximately the same area, so there is a simple relationship between
the entropy on H and L:

Sgen[L] = Sgen[H]−∆S[Hlate] +O(1), (8.5.13)

where Hlate is the portion of the horizon above a sufficiently late Cauchy slice, when the
black hole has relaxed to equilibrium, but early enough that negligible Hawking radiation
has been produced.

We have assumed a state in which there is negligible mutual information between L and
Hlate. For example, if the black hole simply evaporates with no further matter falling in,
∆S[Hlate] is the (negative) renormalized entropy that exists on the horizon in the Unruh
state (due to the missing infalling modes when to compared the Hartle-Hawking state).

From

Sgen[Hlate]−∆S[Hlate] =
Alate

4G~
(8.5.14)

and Eq. (8.5.13), the QPI follows:

Sgen[L] = Sgen[H]−∆S[Hlate] ≤ Sgen[Hlate]−∆S[Hlate] =
Alate

4G~
≤ 4πG

~
m2 . (8.5.15)

The first inequality in this sequence is the GSL for event horizons. Note that we have ignored
the O(1) additive uncertainty in Eq. (8.5.13) in light of the discussion at the end of Sec. 8.4.

This argument establishes the QPI for a large class of examples, including the Boulware-
like state that served as a counterexample to the classical Penrose inequality in Sec. 8.3.
In this case, Alate (which sets the mass) will be significantly smaller than the area of the
trapped surface µ. Here we use the quantum trapped surface µQ, but its area is almost the
same as that of µ. What saves the QPI is the contribution of the entropy on L, which is
negative in this example. Specifically, the GSL guarantees that the lower bound, Sgen[L], is
smaller than the area of µQ by a sufficient amount for the QPI to hold.

In the case where positive entropy registers on H and L, our QPI is stronger than the
classical Penrose inequality. The lightsheet “knows” that more matter will enter the the black
hole after µQ, and the GSL “knows” that this will result in an area increase. Effectively, this
larger area becomes the lower bound on the mass.

Failed Counterexample: Negative Energy That Misses the
Lightsheet

In the previous subsection, we considered the case where all matter outside the quantum
trapped surface µQ crosses its lightsheet L. Here we generalize to discuss matter for which
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Figure 8.5: The QPI is threatened by any negative energy (blue worldvolume) that fails to
register on the lightsheet L. We analyze three possibilities but find that none of them leads
to a violation of the QPI. (a) Negative energy outside of the near horizon zone (vertical
green line). (b) Negative energy that enters the black hole soon after µQ but evades L by
accelerating outward. (c) Negative energy that remains near the black hole for more than a
scrambling time.

this does not happen. In this case, we cannot use the GSL for the event horizon to constrain
the relation between Sgen[L] and the mass at infinity. However, we will give some plausibility
arguments for the validity of the QPI.

In the previous subsections, we argued that the QPI will hold true if all matter outside
of µQ passes through L. We can think of the present situation as a complication where we
add matter that does not satisfy this property. Since this cannot affect S[L], the only way
that the QPI can now be violated is if the matter we added contributes negative mass at
infinity. We will now argue that this is impossible in the semiclassical regime.

Matter outside of µQ can fail to register on L for any of the following three reasons (see
Fig. 8.5):

1. The matter never enters the black hole.

2. The matter enters the black hole during the first scrambling time after C but escapes
through the portion of B inside the black hole.

3. The matter enters the black hole later than a scrambling time after C.

In the first case, the matter can be approximately treated as isolated from the black
hole. But the total mass of isolated systems is positive, so distant systems can never cause
violations of the QPI. (This does not rule out regions with negative energy, but it implies
that sufficient positive energy must be present nearby.)

In the second case, the matter system can be initially near the black hole and so could
have regions of negative energy density (as in the example of Sec. 8.3). However, in order
to miss L, it would have to accelerate outwards after crossing the horizon. This requires
positive energy. We will not attempt to demonstrate here that this always results in a net
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positive mass contribution; our goal is only to note that the QPI is not obviously violated
in this setup. This question merits further study.

In the third case, we again must choose the matter system to be close to the horizon
if we wish to give it negative energy. For example, the Boulware-like state of Sec. 8.3
would qualify. However, by assumption this state would have to be present more than one
scrambling time after C. Moreover, the modes for which it is possible to obtain net negative
energy are those that make up the thermal atmosphere of the black hole; these modes evolve
exponentially close to the horizon under backward time evolution. Thus the state on C
would contain transplanckian energy density (similar to a firewall). The initial state would
not be a semiclassical state. This argument is robust and rules out an entire class of what
naively seemed like promising counterexamples. We view this as nontrivial evidence in favor
of our proposal.

8.6 Alternative Proposals

In this section we consider various alternative conjectures for the QPI. In Sec. 8.6 we give
counterexamples to proposals that might otherwise seem natural. In Sec. 8.6 we discuss
modifications of our proposal that appear viable, and we explain why we are not currently
advocating for them.

Nonviable Alternatives

We will now discuss several alternative conjectures for a QPI that we considered in the
process of this work. Our goal is to explain our choice in Sec. 8.4, and to illustrate that the
problem is rather constrained. This proves neither that our formulation is unique, nor that
it is correct. But we will see that it is remarkably difficult to find any alternative statement
of the QPI that is not immediately ruled out.

Cauchy surfaces that reach spatial infinity First, we explain why we do not allow
Σ[µQ] to reach outside the black hole. This prohibition is motivated by the asymptotically
flat case, to which we will specialize for now. Let Σ∞ be a Cauchy surface of OW [µQ], in
violation of our requirements. An example is the black slice in the Fig. 8.6. Let Sgen[Σ∞(µQ)]
be the generalized entropy evaluated on Σ∞. The alternative QPI thus would take the form

m
?

≥
√

~
4πG

Sgen[Σ∞(µQ)] . (8.6.1)

But it is easy to find a counterexample to Eq. (8.6.1): an arbitrary amount of matter
entropy can be placed in regions far from the black hole, at arbitrarily little cost in mass.
We now discuss this in detail.

Consider a dilute gas of N photon wave packets, each of characteristic size λ. Each
photon occupies a region of volume λ3, so the photons can be dilute if they occupy a region
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Figure 8.6: Left: the generalized entropy on the slice Σ∞ can be dominated by distant soft
particles (brown) and so does not yield a viable lower bound on the mass. The global Cauchy
surface Σglobal plays a role in an alternative proposal discussed in the main text. Right: the
long slice Σlong captures all of the missing infalling Hawking modes.

of volume Nλ3. We can take each photon to be in a mixed state (say, of polarizations), and
in a product state with respect to the rest of the universe. Then the gas contributes of order
N to the generalized entropy on Σ.

We take the gas to be very far from the black hole or any other matter, so that gravi-
tational binding energy to other objects is negligible. The gravitational binding energy of
the photon cloud itself will be negligible if NG~/λ � N1/3λ, so we shall take λ � N1/3lP ,
where lP ≡ (G~)1/2 is the Planck length. Then the gas of photons contributes a mass of
order N~/λ to the ADM mass. This mass contribution can be taken to be arbitrarily small
by taking λ→∞ at fixed N without violating any of the previous assumptions.

We are still free to choose N to take any value we like. Thus we have found a family
of initial data with bounded m but unbounded Sgen[µQ] ≈ c1 + c2N , where c1 and c2 are
independent of N . For large enough N , this leads to a violation of Eq. (8.6.1).

Area of marginally quantum trapped surfaces A second alternative conjecture would
be to use only the area of µQ, not its generalized entropy:

m
?

≥
√
A[µQ]

16πG2
. (8.6.2)
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That is, one would conjecture that Eq. (8.2.1) holds if A is taken to be the area of a quantum
trapped surface. This possibility is attractive because the entropy of distant soft radiation
would never contribute to the lower bound in the first place.

However, Eq. (8.6.2) is ruled out (among other reasons) by the Boulware-like counterex-
ample to the classical Penrose inequality. This is because the area of the bifurcation surface
will receive only a correction that can be made parametrically small. This follows from the
remarks concerning the classically marginally trapped surface at the end of Sec. 8.3. The
same argument implies that the marginally quantum trapped surface area receives only a
parametrically small correction, which cannot compete with the large decrease in mass.

Subtracting global entropy; interior generalized entropy Let us revisit the proposal
of Sec. 8.6 and consider the generalized entropy Sgen[Σ∞(µQ)] of a marginally trapped surface
µQ, evaluated on a Cauchy surface that reaches outside of the black hole all the way to spatial
infinity. This proposal suffered from the problem that distant soft modes can contribute
unbounded entropy with bounded energy, so Sgen[Σ∞(µQ)] is unrelated to any lower bound
on the mass.

A natural idea is to subtract the von Neumann entropy on a global Cauchy surface (see
Fig. 8.6):

m
?

≥
√

~(Sgen[Σ∞(µQ)]− S[Σglobal]

4πG
. (8.6.3)

If the distant soft modes have the same entropy in the global state as in the generalized
entropy, then their dangerous contribution will cancel out.

However, this need not be the case. Consider a collapsing star that forms a Schwarzschild
black hole of area A. The entropy of the star can be of order Sstar ∼ (A/G~)3/4 or even
Sstar ∼ A/G~ [195]. We can chose the global state to contain only distant soft radiation that
purifies the star, so that S[Σglobal] = 0 and

m =

√
A[µQ]

16πG2
+ ε , (8.6.4)

where ε can be arbitrarily small. But then

Sgen[Σ∞(µQ)] ≈ A[µQ]

4G~
+ Sstar , (8.6.5)

so that Eq. (8.6.3) is violated.
The violation in our example remains bounded, since Sstar cannot exceed A[µQ]/4G~ by

the GSL. One might consider absorbing this violation by adding a correction factor of 1/2 to
the right hand side of Eq. (8.6.3). But by considering initial data with a second asymptotic
region, one can arrange S[Σglobal] = 0 with unbounded Sgen[Σ∞(µQ)] at fixed m, leading to
unbounded violations.

A variation of this idea is to use the generalized entropy in the interior (not the exterior)
of the surface µQ. It is easy to check that it fails for the same reasons.
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Possible Modifications of the QPI

We will now discuss an alternative formulation of the QPI that we cannot currently rule out,
and we comment on some of its properties that have led us to reject it as our main proposal.

The basic idea is to consider partial Cauchy surfaces other than L, still bounded by µQ
and remaining inside the black hole. For example, we could assert that

m ≥
√

~Sgen[Σ]

4πG
(8.6.6)

holds for any achronal hypersurface Σ ⊂ B ∩ OW [µQ] whose only boundary is µQ. This
class includes the lightsheet L, so this conjecture would be strictly stronger than our main
proposal. It is clear that the heuristic arguments in support of QPI in Sec. 8.5 also apply to
this family of slices.

There are some clear downsides to this choice. The region B and therefore this family of
slices are defined teleologically. Furthermore, it is not clear to us how one would formulate
a minimality requirement in this case, analogous to the requirement that the classically
trapped surface minimize the area on some Cauchy surface.

A variation would be to insist on a Cauchy surface that is as “long” as possible, i.e.,
which does not have any endpoint on the future singularity. Roughly, this means it ends on
the future endpoints of the horizon generators, see Σlong in Fig. 8.6. This proposal is weaker
than the previous one and neither stronger nor weaker than our main proposal. We will now
argue that for an evaporating black hole this results in a less stringent bound than the one
obtained from L.

As discussed in Sec. 8.5, in the Unruh state there is negative entropy falling across the
horizon, due to the missing ingoing modes compared to the Hartle-Hawking state. The long
slice will capture this negative entropy through the entire process of evaporation. (Here we
are assuming that the semiclassical expansion is valid until the black hole area is Planckian
in size.) The generalized entropy on this slice is:

Sgen[Σlong] =
A[µQ]

4G~
− γA[µQ]

4G~
, (8.6.7)

where γ ≥ 1 by the GSL, and the second term arises from the contribution of the missing
ingoing modes on Σ.

It is difficult to compute γ exactly. If γ > 1, then Sgen will be negative. This renders
(8.6) ill-defined. Negative Sgen is also conceptually in conflict with the interpretation of
Sgen as an entropy in the fundamental theory of quantum gravity. This suggests that a
careful computation will reveal that γ = 1, in which case Eq. (8.6) reduces back to the
statement of the positivity of the ADM mass. Along with the downsides mentioned earlier,
this conundrum shows that such long slices are not ideal for formulating the QPI.
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8.7 Quantum Penrose Inequality in Anti-de Sitter

Space

The classical Penrose inequality was motivated by the heuristic argument that a Schwarz-
schild black hole with no exterior matter should have the smallest possible mass for a given
trapped surface area. In Eq. (8.2.1) we assumed a vanishing cosmological constant Λ. An
analogous argument for asymptotically Anti-de Sitter spacetimes with curvature scale L =
(−Λ/3)1/2 yields the classical inequality

m ≥ fAdS(A[µ]) , (8.7.1)

where

fAdS(A) ≡
(

A

16πG2

)1/2

+

(
A

16πG2

)3/2
G2

L2
(8.7.2)

and µ is again a trapped surface satisfying an appropriate minimality condition (see Sec. 8.2).
Following our QPI proposal for asymptotically flat space, it would appear natural to

propose the following QPI in asymptotically AdS spacetimes:

m
?

≥
(
~Sgen

4πG

)1/2

+

(
~Sgen

4πG

)3/2
G2

L2
. (8.7.3)

in asymptotically AdS spacetimes with curvature scale L. Here Sgen is defined with respect
to slices defined in Sec. 8.4; see Fig. 8.7. However, due to O(1) subtleties discussed at the
end of Sec. 8.4, it is not clear that Eq. (8.7.3) will hold exactly in the AdS Hartle-Hawking
state (referred to as σ henceforth). The issue is the radiation mass outside of the black
hole which could be negative, lowering the LHS of Eq. (8.7.3) to violation. As we will
discuss here, in asymptotically AdS spacetimes one could fix this O(1) issue. Note that the
quantum-corrected ADM mass in this state is

m =

(
A

16πG

)1/2

+

(
A

16πG

)3/2
G2

L2
+mrad , (8.7.4)

with

mrad =

∫
Σ1

dΣνtµ〈Tµν〉σ , (8.7.5)

where 〈Tµν〉σ is the renormalized stress tensor in σ, Σ1 is a Cauchy slice stretching from
the bifurcation surface to the boundary of AdS, and tµ is the Killing field in Schwarzschild-
AdS that is timelike at infinity. Also, note that the area term in Eq. (8.7.4) is not the
quantum-corrected area. Furthermore, based on formulation in Sec. 8.4, Sgen in the σ is
computed on the part of the horizon in the future of the bifurcation surface µQ; see Fig. 8.8.
The quantum stress tensor 〈Tµν〉 has been computed in the Hartle-Hawking state in 2+1
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Figure 8.7: Different choices of slices anchored to the surface µQ on which one could compute
Sgen. The red lightsheet L is defined analogously to the asymptotically flat case. Since distant
soft modes do not exist for large black holes in AdS, one could also consider computing Sgen

on the black slice Σ∞ that ends on the asymptotic boundary.

dimensions with different choices of boundary conditions [196]. One finds that mrad depends
on the field content and the boundary conditions; moreover, mrad does not have a definite
sign [196]. Explicit calculations in 2+1 dimensions show that mrad can be negative. We do
not expect that the entropy of the matter on Σ2 and the quantum corrections to the area
term would compensate for this negative value of mrad so as to uphold Eq. (8.7.3). Therefore,
we expect that Eq. (8.7.3) can be violated in the Hartle-Hawking state. Furthermore, the
non-universality of mrad seems to suggest that the correct formulation of QPI for large AdS
black holes must depend on various factors that mrad depends on (e.g. the field content and
the boundary conditions).

Here we propose a way to introduce this dependence into a Quantum Penrose Inequality
for asymptotically Anti-de Sitter spacetimes. Let f qAdS be a function such that in the Hartle-
Hawking state,

m = f qAdS(Sgen[Σ2]) , (8.7.6)

where m is the quantum-corrected ADM mass and Sgen is associated to the future portion
Σ2 of the horizon; see Fig. 8.8. Now, we propose

m ≥ f qAdS(Sgen[L]) , (8.7.7)
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Figure 8.8: The Hartle-Hawking state is essential for our definition of f qAdS via m =
f qAdS(Sgen). Here m is the ADM mass including the quantum corrections associated with
the radiation mass. mrad is computed on the black slice Σ1 with respect to the time-like
Killing field tµ whose orbits are shown in the figure. Sgen is computed on the red null slice
Σ2 on the horizon that ends on the bifurcation surface µQ.

for any marginally trapped surface µQ in an asymptotically AdS spacetime with a large AdS
black hole. A heuristic argument for Eq. (8.7.7) is as follows: First, the above inequality
will follow from the classical Penrose inequality unless we are in a state perturbatively close
to Kerr-AdS. In that limit, it can be shown (see Appendix A.17) that given any quantum
marginally trapped surface, there exists a Q-screen that approaches the horizon of the Kerr-
AdS at late times and has the quantum marginally trapped surface as a leaf. As discussed
in Sec. 8.4, Q-screens are known to satisfy a generalized second law [177]. The QPI would
then follow from:

Sgen|early ≤ Sgen|Kerr−AdS

=⇒ f qAdS (Sgen|early) ≤ f qAdS (Sgen|Kerr−AdS) ≤ f qAdS (Sgen|σ) = m , (8.7.8)

where the first inequality on the second line follows from the generalized second law of
Q-screens and the second inequality follows from assuming f qAdS is a monotonic function.

In general we could have states where the AdS black hole is not large enough to reach
stable thermal equilibrium with the asymptotic boundary of the spacetime, so a few words
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about the case of these small AdS black holes are in order. For such black holes, we cannot
define the function f qAdS as above. Our proposal would then follow more closely our proposal
for asymptotically flat spacetimes, where we formulate our conjecture using the function f
appearing in the classical Penrose inequality for AdS.

m ≥ fAdS(4G~Sgen[L]) , (8.7.9)

where fAdS is defined in Eq. (8.7.2). The phase transition for (in)stability of AdS black holes
happen around ADM mass L/G, so our proposal changes for mass above and below the
phase transition point. The exact value of mass associated to a phase transition depends on
the choice of boundary conditions and the field content.

An important difference between QPI for large AdS black holes and flat space black
holes is the absence of the challenge associated with soft modes. As discussed in Sec. 8.6,
in asymptotically flat space, one can add entropy far away from the black hole at negligi-
ble cost to the ADM mass. This prevents any formulation of QPI where the generalized
entropy is computed on partial Cauchy slices approaching spatial infinity in asymptotically
flat spacetimes.

However, in asymptotically AdS spacetimes and in the presence of a large black hole,
excitations require considerable energy to remain outside of the black hole, so the arguments
of Sec. 8.6 do not go through and matter entropy outside of the black hole has an energy
cost. Therefore, in the presence of large AdS black holes the slice on which Sgen is evaluated
could end on the asymptotic boundary of AdS. This possibility was discussed in the context
of AdS/CFT in [187]. To define the function f qAdS in this version of QPI, we need to consider
the Hartle-Hawking state and the generalized entropy on the spatial slice Σ1 of Fig. 8.8,

m = f qAdS(Sgen[Σ1]) . (8.7.10)

The quantum extremal surface prescription [197] equates Sgen[Σ1] with the von Neumann
entropy of the dual CFT in the thermofield double state. Therefore, this definition of the
function f qAdS has a very natural interpretation from the CFT perspective

〈H〉TFD = f qAdS (SCFT[TFD]) , (8.7.11)

where 〈H〉TFD is the expectation value of the CFT Hamiltonian in the thermofield double
state.

8.8 Classical and Non-gravitational Limits

In this section we discuss two interesting limits of the QPI: the classical limit, ~ → 0; and
the non-gravitational limit, G→ 0.
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In the ~→ 0 of QPI, we recover the classical Penrose inequality. This is easy to see. The
amount of matter entropy on L is O((G~)0), and therefore

lim
~→0

4G~Sgen[L] = A[µQ] . (8.8.1)

Furthermore, the surface µQ is perturbatively close to a (classically) marginally trapped
surface such that their area difference is due to quantum corrections and therefore of order
G~ and can be neglected. Lastly, any ~ corrections to the function f can trivially be ignored
in the ~→ 0 limit. We therefore have the desired implication:

f q (4G~Sgen[µQ]) ≤ m
~→0
=⇒ f c (A[µ]) ≤ m . (8.8.2)

We turn to the G → 0 limit of the QPI. This is of interest because some semiclassical
conjectures yield nontrivial and novel implications about QFT in this limit. For example, the
QNEC was first discovered by taking the G→ 0 limit of the QFC in a particular setting [178].
In order to sidestep the small “Casimir uncertainty” discussed in Sec. 8.4, we will consider
the QPI in AdS. We further restrict to two complementary scenarios.

First, consider a perturbation to a Hartle-Hawking state such that in a finite amount of
time the state settles back down to a Hartle-Hawking state (with a different temperature).
In this case, Eq. (8.7.8) shows that the QPI is equivalent to the GSL. The non-gravitational
limit of the GSL the monotonicity of relative entropy. This is a nontrivial but well-known
statement in quantum information theory, which applies in particular in QFT.

The second scenario is when the perturbation does not relax to equilibrium. This means
that the excitation that takes the state away from the Hartle-Hawking state remains outside
of the black hole. Therefore such excitations do not change the generalized entropy on L or
the geometry of the event horizon. Let δm be the change in the ADM mass caused by this
perturbation. Since the QPI is saturated in the Hartle-Hawking state, it reduces to

δm ≥ 0 (8.8.3)

in the G → 0 limit. Here δm =
∫

Σ1
dΣµξνTµν (see Fig. 8.8), and tν is the timelike Killing

vector field outside the black hole. This makes physical sense: if the field excitations are
isolated from the black hole, they need to satisfy their own positive energy condition.

8.9 Cosmic Censorship Conjecture

In this section, we consider the current status of the cosmic censorship conjecture (CCC)
and its relation to the Penrose inequality. We argue that there is a need for a quantum
generalization of the CCC, and we suggest that the proposed Quantum Penrose Inequality
may inform the formulation of a quantum CCC.

The formation of singularities in gravitational collapse is guaranteed by classical [173]
and quantum [179] singularity theorems. However, it is not clear that the formation of a
singularity implies the formation of a black hole.
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The weak CCC asserts that singularities (regions of arbitrarily high curvature) will not
be visible to a distant observer.6 A precise statement of the conjecture can be formulated
as follows [172]: Let (Σ, hµν , Kµν) be an asymptotically flat initial data set for Einstein’s
equation with (Σ, hµν) a complete Riemannian manifold. Let the matter sources be such that
Tµν satisfies the dominant energy condition and the coupled Einstein-matter field equations
are of the form �φ(x) = F (x, φ,∇µφ), where F is a smooth function of its variables. In
addition let the initial data for the matter fields on Σ satisfy appropriate asymptotic falloff
conditions at spatial infinity. Then the maximal Cauchy evolution of these initial data is an
asymptotically flat, strongly asymptotically predictable spacetime.

The CCC has not been proven. Indeed, there are a number of known “mild” violations
that we will discuss shortly. The (classical) Penrose inequality is only a necessary condition
for the CCC, as explained in Sec. 8.2. Even this weaker statement has not been proven; but
as a quantitative relation between mass and area, it has been extensively explored. The fact
that no counterexample has been found can be viewed as indirect evidence that some version
of the CCC may indeed hold.

Let us now discuss the mild violations mentioned in the previous paragraph. A black
string in 4+1 dimensions suffers from the Gregory-Laflamme instability [198]. Further evolu-
tion causes the string to become arbitrarily thin in some regions [199, 200] and so arbitrarly
high curvatures become visible to a distant observer.

In 3+1 dimensions, there exist fine-tuned initial data sets such that the solution exhibits
a self-similar behavior near the threshold of formation of a black hole [201, 202, 203, 204]. At
the threshold, a naked singularity forms. In some examples, the naked singularity propagates
out to I+.

In the above two examples, the initial data satisfy the dominant energy condition, as
required by the CCC. The black string is not asymptotically flat, but one expects that it
can be truncated at a sufficiently great length so that local evolution far from the ends still
leads to a naked singularity.

Let us now add a third example, which is physically relevant but does not obey the
dominant energy condition: a black hole that evaporates completely. In this case, treating
the spacetime as a classical manifold, a naked singularity is inevitable [205, 206].

Only the last example explicitly involves quantum effects. But it points to a resolution of
all three violations: clearly, it makes no sense to treat the spacetime as a classical manifold
near the endpoint of evaporation (i.e., arbitrarily close to the naked singularity). When the
curvature formally exceeds the Planck curvature, the semiclassical expansion breaks down,
and a classical geometric description of the spacetime need not exist.

But this observation also applies to the other known examples of CCC violation. One
would expect a black string to pinch off before it becomes thinner than a Planck length.
Similarly, one would expect quantum effects to smooth out the fine-tuned initial data, or at
least the singularities they lead to.

6We will consider only the weak CCC here. The strong form of the CCC states, roughly, that no observer
can see a singularity. In all cases, one assumes regular initial data.
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Naively, all three examples violate the spirit of the CCC: starting from a highly classical
regime, evolution produces an outcome in which quantum gravity is required to maintain
predictability. But in an important sense, the violation is “small” in each case. The energies
involved are likely no greater than the Planck mass, and we can “guess” a plausible future
evolution without having a full quantum gravity theory. For example, the Planck-sized black
hole will probably decay into a few more particles, and the black string will simply pinch off.

It would be of interest to formulate a quantum version of the CCC which accounts for
these physically reasonable phenomena, i.e., one that is not formally violated by them.7

We expect the Quantum Penrose Inequality to play a role analogous to the classical one:
as a necessary condition for the quantum CCC, and thus as a useful test. Perhaps more
importantly, the Quantum Penrose Inequality may be of some use in identifying the correct
formulation of a quantum CCC in the first place.

7A specific proposal will be studied in forthcoming work.
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Appendix A

Appendix

A.1 Notation and Definitions

Basic Notation

Notation for basic bulk and boundary quantities

• Bulk indices are µ, ν, . . ..

• Boundary indices are i, j, . . .. Then µ = (z, i).

• We assume a Fefferman–Graham form for the metric: ds2 = L2

z2 (dz2 + ḡijdx
idxj).

• The expansion for ḡij(x, z) at fixed x is

ḡij = g
(0)
ij + z2g

(2)
ij + z4g

(4)
ij + · · ·+ zd log zg

(d,log)
ij + zdg

(d)
ij + · · · . (A.1.1)

The coefficients g
(n)
ij for n < d and g

(d,log)
ij are determined in terms of g

(0)
ij , while g

(d)
ij is

state-dependent and contains the energy-momentum tensor of the CFT. If d is even,
then g

(d,log)
ij = 0. To avoid clutter we will often write g

(0)
ij simply as gij. Unless otherwise

indicated, i, j indices are raised and lowered by g
(0)
ij .

• We use R, Rµν , Rµνρσ to denote bulk curvature tensors, and R, Rij, Rijmn to denote
boundary curvature tensors.

Notation for extremal surface and entangling surface quantities

• Extremal surface indices are α, β, . . ..

• Boundary indices are a, b, . . .. Then α = (z, a).
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• The extremal surface is parameterized by functions X̄µ(z, ya). We choose a gauge such
that Xz = z, and expand the remaining coordinates as

X̄ i = X i
(0) + z2X i

(2) + z4X i
(4) + · · ·+ zd log zX i

(d,log) + zdX i
(d) + · · · . (A.1.2)

The coefficients X i
(n) for n < d and X i

(d,log) are determined in terms of X i
(0) and g

(0)
ij ,

while X i
(d) is state-dependent and is related to the renormalized entropy of the CFT

region.

• The extremal surface induced metric will be denoted h̄αβ and gauge-fixed so that
h̄za = 0.

• The entangling surface induced metric will be denoted hab.

• Note that we will often want to expand bulk quantities in z at fixed y instead of fixed
x. For instance, the bulk metric at fixed y is

ḡij(y, z) = ḡij(X̄(z, y), z) = ḡij(X(0)(y) + z2X(2)(y) + · · · , z)

= g
(0)
ij + z2

(
g

(2)
ij +Xm

(2)∂mg
(0)
ij

)
+ · · · (A.1.3)

Similar remarks apply for things like Christoffel symbols. The prescription is to always
compute the given quantity as a function of x first, the plug in X̄(y, z) and expand in
a Taylor series.

Intrinsic and Extrinsic Geometry

Now will introduce several geometric quantities, and their notations, which we will need.
First, we define a basis of surface tangent vectors by

eia = ∂aX
i. (A.1.4)

We will also make use of the convention that ambient tensors which are not inherently defined
on the surface but are written with surface indices (a, b, etc.) are defined by contracting
with eia. For instance:

g
(2)
aj = eiag

(2)
ij . (A.1.5)

We can form the surface projector by contracting the surface indices on two copies of eia:

P ij = habeiae
j
b = eiae

ja. (A.1.6)

We introduces a surface covariant derivative Da that acts as the covariant derivative on both
surface and ambient indices. So it is compatible with both metrics:

Dahbc = 0 = Dagij. (A.1.7)
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Note also that when acting on objects with only ambient indices, we have the relationship

DaV
ij···
pq··· = ema ∇mV

ij···
pq··· , (A.1.8)

where ∇i is the ambient covariant derivative compatible with gij.
The extrinsic curvature is computed by taking the Da derivative of a surface basis vector:

Ki
ab = −Dae

i
b = −∂aeib + γcabe

i
b − Γiab. (A.1.9)

Note the overall sign we have chosen. Here γcab is the Christoffel symbol of the metric hab,
and the lower indices on the Γ symbol were contracted with two basis tangent vectors to
turn them into surface indices. Note that Ki

ab is symmetric in its lower indices. It is an
exercise to check that it is normal to the surface in its upper index:

eicK
i
ab = 0. (A.1.10)

The trace of the extrinsic curvature is denoted by Ki:

Ki = habKi
ab. (A.1.11)

Below we will introduce the null basis of normal vectors ki and li. Then we can define
expansion θ(k) (θ(l)) and shear σ

(k)
ab (σ

(l)
ab ) as the trace and traceless parts of kiK

i
ab (liK

i
ab),

respectively.
There are a couple of important formulas involving the extrinsic curvature. First is the

Codazzi Equation, which can be computed from the commutator of covariant derivatives:

DcK
i
ab −DbK

i
ac = (DbDc −DcDb)e

i
a

= Ri
abc − rdabceid.

(A.1.12)

Here Ri
abc is the ambient curvature (appropriately contracted with surface basis vectors),

while rdabc is the surface curvature. We can take traces of this equation to get others. Another
useful thing to do is contract this equation with eid and differentiate by parts, which yields
the Gauss–Codazzi equation:

KcdiK
i
ab −KbdiK

i
ac = Rdabc − rdabc. (A.1.13)

Various traces of this equation are also useful.

Null Normals k and l

A primary object in our analysis is the bull vector ki, which is orthogonal to the entangling
surface and gives the direction of the surface deformation. It will be convenient to also
introduce the null normal li, which is defined so that lik

i = +1. This choice of sign is
different from the one that is usually made in these sorts of analysis, but it is necessary to
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avoid a proliferation of minus signs. With this convention, the projector onto the normal
space of the surface is

N ij ≡ gij − P ij = kilj + kjli = 2k(ilj). (A.1.14)

As we did with the tangent vectors eia, we will introduce a shorthand notation to denote
contraction with ki or li: any tensor with k or l index means it has been contracted with ki

or li. As such we will avoid using the letters k and l as dummy indices. For instance.

Rkl ≡ kiljRij. (A.1.15)

Another quantity associated with ki and li is the normal connection wa, defined through

wa ≡ liDak
i. (A.1.16)

With this definition, the tangent derivative of ki can be shown to be

Dak
i = wak

i +Kk
abe

bi, (A.1.17)

which is a formula that is used repeatedly in our analysis.
At certain intermediate stages of our calculations it will be convenient to define extensions

of ki and li off of the entangling surface, so here we will define such an extension. Surface
deformations in both the QNEC and QFC follow geodesics generated by ki, so it makes sense
to define ki to satisfy the geodesic equation:

∇kk
i = 0. (A.1.18)

However, we will not define li by parallel transport along ki. It is conceptually cleaner to
maintain the orthogonality of li to the surface even as the surface is deformed along the
geodesics generated by ki. This means that li satisfies the equation

∇kl
i = −waeia. (A.1.19)

These equations are enough to specify li and ki on the null surface formed by the geodesics
generated by ki. To extend ki and li off of this surface, we specify that they are both
parallel-transported along li. In other words, the null surface generated by ki forms the
initial condition surface for the vector fields ki and li which satisfy the differential equations

∇lk
i = 0, ∇ll

i = 0 . (A.1.20)

This suffices to specify ki an li completely in a neighborhood of the original entangling
surface. Now that we have done that, we record the commutator of the two fields for future
use:

[k, l]i = ∇kl
i −∇lk

i = −wceic. (A.1.21)
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A.2 Surface Variations

Most of the technical parts of our analysis have to do with variations of surface quantities
under the deformationX i → X i+δX i of the surface embedding coordinates. Here δX i should
be interpreted a vector field defined on the surface. In principle it can include both normal
and tangential components, but since tangential components do not actually correspond to
physical deformations of the surface we will assume that δX i is normal. The operator δ
denotes the change in a quantity under the variation. In the case where δX i = ∂λX

i, which
is the case we are primarily interested in, δ can be identified with ∂λ. With this in mind,
we will always impose the geodesic equation on ki whenever convenient. In terms of the
notation we are introducing here, this is

δki = −Γikk. (A.2.1)

To make contact with the main text, we will use the notation ki ≡ δX i, and assume
that ki is null since that is ultimately the case we care about. Some of the formulas we
discuss below will not depend on the fact that ki is null, but we will not make an attempt
to distinguish them.

Ambient Quantities For ambient quantities, like curvature tensors, the variation δ can be
interpreted straightforwardly as ki∂i with no other qualification. Thus we can freely use, for
instance, the ambient covariant derivative ∇k to simplify the calculations of these quantities.
Note that δ itself is not the covariant derivative. As defined, δ is a coordinate dependent
operator. This may be less-than-optimal from a geometric point of view, but it has the most
conceptually straightforward interpretation in terms of the calculus of variations. In all of
the variational formulas below, then, we will see explicit Christoffel symbols appear. Of
course, ultimately these non-covariant terms must cancel out of physical quantities. That
they do serves as a nice check on our algebra.

Tangent Vectors The most fundamental formula is that of the variation of the tangent
vectors eia ≡ ∂aX

i. Directly from the definition, we have

δeia = ∂ak
i = Dak

i − Γiak = wak
i +Kk

abe
bi − Γiak. (A.2.2)

This formula, together with the discussion of how ambient quantities transform, can be used
together to compute the variations of many other quantities.

Intrinsic Geometry and Normal Vectors The intrinsic metric variation is easily com-
puted from the above formula as

δhab = 2Kk
ab. (A.2.3)



APPENDIX A. APPENDIX 179

From here we can find the variation of the tangent projector, for instance:

δP ij = δhabeiae
j
b + 2habe(i

a ∂bk
j)

= −2Kab
k e

i
ae
j
b + 2habe(i

aDbk
j) − 2habe(i

aΓ
j)
bk

= 2wae(i
a k

j) − 2habe(i
aΓ

j)
bk. (A.2.4)

Notice that the second line features a derivative of ki = δX i. In a context where we are
taking functional derivatives, such as when computing equations of motion, this term would
require integration by parts. We can write the last line covariantly as

∇kP
ij = 2wae(i

a k
j). (A.2.5)

Earlier we saw that li satisfied the equation ∇kl
i = −waeia as a result of keeping li

orthogonal to the surface even as the surface is deformed. In the language of this section,
this is seen by the following manipulation:

eiaδli = −li∂aki = −wa − Γlak. (A.2.6)

Again, note the derivative of ki. It is easy to confirm that represents the only nonzero
component of ∇kl

i.
The normal connection wa = liDaki makes frequent appearances in our calculations, and

we will need to know its variation. We can calculate that as follows:

δwa = δliDaki + li∂aδki − liδΓnjiejakn − liΓnji∂akjkn − liΓnjiejaδkn
= ∇kl

iDaki +Rklak

= −wcKac +Rklak. (A.2.7)

Extrinsic Curvatures The simplest extrinsic curvature variation is that of the trace of
the extrinsic curvature

δKi = −KmΓimk −DaD
aki −Ri

mkjP
mj +

(
2Da(Kk

ad)−Dd(K
k)
)
edi − 2Kab

k K
i
ab (A.2.8)

Note that the combination δK i +KkΓikmk
m is covariant, so it makes sense to write

∇kK
i = −DaD

aki −Ri
mkjP

mj +
(
2Da(Kk

ad)−Dd(K
k)
)
edi − 2Kab

k K
i
ab (A.2.9)

This formula is noteworthy because of the first term, which features derivatives of ki = δX i.
This is important because when Ki occurs inside of an integral and we want to compute the
functional derivative then we have to first integrate by parts to move those derivatives off of
ki. This issue arises when computing Θ as in the QFC, for instance.

We can contract the previous formulas with li and ki to produce other useful formulas.
For instance, contracting with ki leads to

δKk = −KkabKk
ab −Rkk, (A.2.10)
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which is nothing but the Raychaudhuri equation.
The variation of the full extrinsic curvature Ki

ab is quite complicated, but we will not
needed. However, its contraction with ki will be useful and so we record it here:

kiδK
i
ab = −Kj

abΓ
m
jnkmk

n − kiDaDbk
i −Rkakb. (A.2.11)

A.3 z-Expansions

Bulk Metric

We are focusing on bulk theories with gravitational Lagrangians

L =
1

16πGN

(
d(d− 1)

L̃2
+R+ `2λ1R2 + `2λ2R2

µν + `2λGBLGB

)
. (A.3.1)

where LGB = R2
µνρσ − 4R2

µν + R2 is the Gauss-Bonnet Lagrangian, ` is the cutoff length
scale of the bulk effective field theory, and the couplings λ1, λ2, and λGB are defined to be
dimensionless. We have decided to include LGB as part of our basis of interactions rather
than R2

µνρσ because of certain nice properties that the Gauss-Bonnet term has, but this is
not important.

We recall that the Fefferman–Graham form of the metric is defined by

ds2 =
1

z2
(dz2 + ḡijdx

idxj), (A.3.2)

where ḡij(x, z) is expanded as a series in z:

ḡij = g
(0)
ij + z2g

(2)
ij + z4g

(4)
ij + · · ·+ zd log zg

(d,log)
ij + zdg

(d)
ij + · · · . (A.3.3)

In principle, one would evaluate the equation of motion from the above Lagrangian using
the Fefferman–Graham metric form as an ansatz to compute these coefficients. The results
of this calculation are largely in the literature, and we quote them here. To save notational
clutter, in this section we will set gij = g

(0)
ij .

The first nontrivial term in the metric expansion is independent of the higher-derivative
couplings, and in fact is completely determined by symmetry [54]:

g
(2)
ij = − 1

d− 2

(
Rij −

1

2(d− 1)
Rgij

)
. (A.3.4)

The next term is also largely determined by symmetry, except for a pair of coefficients [54].

We are only interested in the kk-component of g
(4)
ij , and where one of the coefficients drops

out. The result is

g
(4)
kk =

1

d− 4

[
κCkijmC

ijm
k +

1

8(d− 1)
∇2
kR−

1

4(d− 2)
kikj�Rij

− 1

2(d− 2)
RijRkikj +

d− 4

2(d− 2)2
RkiR

i
k +

1

(d− 1)(d− 2)2
RRkk

]
, (A.3.5)
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where Cijmn is the Weyl tensor and

κ = −λGB
`2

L2

(
1 +O

(
`2

L2

))
. (A.3.6)

In d = 4 we will need an expression for g
(4,log)
kk as well. One can check that this is obtainable

from g
(4)
kk by first multiplying by 4 − d and then setting d → 4. We record the answer for

future reference:

g
(4,log)
kk = −

[
κCkijmC

ijm
k +

1

24
∇2
kR−

1

8
kikj�Rij −

1

4
RijRkikj +

1

12
RRkk

]
. (A.3.7)

Extremal Surface Coordinates

The extremal surface position is determined by extremizing the generalized entropy func-
tional [6, 49]:

Sgen =
1

4GN

∫ √
h̄

[
1 + 2λ1`

2R+ λ2`
2

(
RµνN µν − 1

2
KµKµ

)
+ 2λGB`

2r̄

]
+ Sbulk. (A.3.8)

Here we are using Ki to denote the extrinsic curvature and r̄ the intrinsic Ricci scalar of the
surface.

The equation of motion comes from varying Sgen and is (ignoring the Sbulk term for
simplicity)

0 = Kµ
[
1 + 2λ1`

2R+ λ2`
2

(
RρνN ρν − 1

2
KρKρ

)
+ 2λGB`

2r̄

]
+ 2λ1`

2∇µR

+ λ2`
2
(
N ρν∇µRρν + 2Pρν∇ρRµ

ν − 2Rµ
ρKρ + 2KµαβRαβ +DαD

αKµ

+KρRµσρνPνσ + 2KµαβKνKναβ
)
− 4λGB`

2r̄αβKµαβ. (A.3.9)

This equation is very complicated, but since we are working in d ≤ 5 dimensions we only
need to solve perturbatively in z for X i

(2) and X i
(4)

1. Furthermore, X i
(2) is fully determined

by symmetry to be [207]

X i
(2) =

1

2(d− 2)
Da∂aX

i
(0) = − 1

2(d− 2)
Ki, (A.3.10)

where Ki denotes the extrinsic curvature of the X i
(0) surface, but we are leaving off the (0)

in our notation to save space.

1It goes without saying that these formulas are only valid for d > 2 and d > 4, respectively.
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The computation of X i
(4) is straightforward but tedious. We will only need to know kiX

i
(4)

(where indices are being raised and lowered with g
(0)
ij ), and the answer turns out to be

4(d− 4)Xk
(4) = 2Xk

(2)

(
P jmg

(2)
jm − 4(X(2))

2
)

+Kk
abg

ab
(2) + 4g

(2)
kmX

m
(2) + 2X

(2)
j Kj

abK
kab + kiDaD

aX i
(2)

+ kj(∇ng
(2)
jm −

1

2
∇jg

(2)
mn)Pmn +Xn

(2)RkmnjP
jm

+ 8κσab(k)Ckalb − 2(d− 4)ΓkjmX
j
(2)X

m
(2). (A.3.11)

Here κ depends on λGB as in (A.3.6). Notice that the last term in this expression is the
only source of noncovariant-ness. One can confirm that this noncovariant piece is required
from the definition of X i

(4)—despite its index, X i
(4) does not transform like a vector under

boundary diffeomorphisms.
We also note that the terms in Xk

(4) with covariant derivatives of g
(2)
ij can be simplified

using the extended ki and li fields described §A.1 and the Bianchi identity:

kj(∇ng
(2)
jm −

1

2
∇jg

(2)
mn)Pmn = − 1

4(d− 1)
∇kR +

1

d− 2
∇lRkk. (A.3.12)

Finally, we record here the formula for Xk
(4,log) which is obtained from Xk

(4) by multiplying
by 4− d and sending d→ 4:

−4Xk
(4,log) = 2Xk

(2)

(
P jmg

(2)
jm − 4(X(2))

2
)

+Kk
abg

ab
(2) + 4g

(2)
kmX

m
(2) + 2X

(2)
j Kj

abK
kab + kiDaD

aX i
(2)

+ kj(∇ng
(2)
jm −

1

2
∇jg

(2)
mn)Pmn +Xn

(2)RkmnjP
jm

+ 8κσab(k)Ckalb. (A.3.13)

We will not bother unpacking all of the definitions, but the main things to notice is that the
noncovariant part disappears.

A.4 Details of the EWN Calculations

In this section we provide some insight into the algebra necessary to complete the calculations
of the main text, primarily regarding the calculation of the subleading part of (δX̄)2 in §3.2.
The task is to simplify (3.2.13),

L−2(δX̄)2
∣∣
z2 = 2kiδX

i
(4) + 2g

(2)
ij k

iδXj
(2) + gijδX

i
(2)δX

j
(2) + g

(4)
ij k

ikj +Xm
(4)∂mgijk

ikj

+ 2Xm
(2)∂mgijk

iδXj
(2) +Xm

(2)∂mg
(2)
ij k

ikj +
1

2
Xm

(2)X
n
(2)∂m∂ngijk

ikj. (A.4.1)
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After some algebra, we can write this as

L−2(δX̄)2
∣∣
z2 = g

(4)
kk + 2δ(Xk

(4,cov)) + 2g
(2)
ik ∇kX

i
(2) +∇kX

(2)
j ∇kX

j
(2) −

1

d− 2
(X l

(2))∇kRkk.

(A.4.2)
Here we have defined

X i
(4,cov) = X i

(4) +
1

2
ΓilmX

l
(2)X

m
(2), (A.4.3)

which transforms like a vector (unlike X i
(4)). From here, the algebra leading to (3.2.14) is

mostly straightforward, though tedious. The two main tasks which require further explana-
tion are the simplification of one of the terms in g

(4)
kk and one of the terms in δXk

(4,cov). We
will explain those now.

g
(4)
kk Simplification We recall the formula for g

(4)
kk from (A.3.5):

g
(4)
kk =

1

d− 4

[
κCkijmC

ijm
k +

1

8(d− 1)
∇2
kR−

1

4(d− 2)
kikj�Rij

− 1

2(d− 2)
RijRkikj +

d− 4

2(d− 2)2
RkiR

i
k +

1

(d− 1)(d− 2)2
RRkk

]
. (A.4.4)

The main difficulty is with the term kikj�Rij. We will rewrite this term by making use of
the geometric quantities introduced in the other appendices, and in particular we make use
of the extended k and l field from §A.1. We first separate it into two terms:

kikj�Rij = kikjN rs∇r∇sRij + kikjP rs∇r∇sRij. (A.4.5)

Now we compute each of these terms individually:

kikjN rs∇r∇sRij = 2kikjls∇k∇sRij + 2RkmlkR
m
k

= 2∇k∇lRkk + 2wckikjDcRij + 2RkmlkR
m
k

= 2∇k∇lRkk + 2wcDcRkk − 4wcwcRkk − 4wcKa
ckRka + 2RkmlkR

m
k

= 2∇k∇lRkk + 2wcDcRkk − 4wcwcRkk + 2RkmlkR
m
k .

(A.4.6)

In the last line we assumed that σ(k) = 0 and θ(k) = 0, which is the only case we will need
to worry about. The other term is slightly messier, becoming

kikjP rs∇r∇sRij = kikjescDc∇sRij

= Dc(k
ikjDcRij)−Dc(k

ikjesc)∇sRij

= Dc(k
ikjDcRij)− 2wcD

cRkk + 4wcw
cRkk + 6wcK

ca
k Rak

− 2Kca
k DcRka + 2Kca

k K
i
caRik + 2Kca

k K
bk
c Rab +Ks∇sRkk

= DcD
cRkk − 2Dc(w

cRkk)− 2Dc(K
cakRka)− 2wcD

cRkk + 4wcw
cRkk + 6wcK

ca
k Rak

− 2Kca
k DcRka + 2Kca

k K
i
caRik + 2Kca

k K
bk
c Rab +Ks∇sRkk

= DcD
cRkk − 2Dc(w

cRkk)− 2Dc(K
cak)Rka − 2wcD

cRkk + 4wcw
cRkk +Ks∇sRkk.

(A.4.7)
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In the last line we again assumed that σ(k) = 0 and θ(k) = 0. Putting the two terms together
leads to some canellations:

kikj�Rij = 2∇k∇lRkk + 2RkmlkR
m
k +DcD

cRkk − 2Dc(w
cRkk)

− 2(Daθ(k) +Rkcac)R
a
k +Ks∇sRkk.

(A.4.8)

δXk
(4,cov) Simplification The most difficult term in (A.3.11), which also gives the most

interesting results, is

kiDaD
aX i

(2) = − 1

2(d− 2)
(Da − wa)2θ(k) +

1

2(d− 2)
KabK

abiKi. (A.4.9)

The interesting part here is the first term, so we will take the rest of this section to discuss
its variation. The underlying formula is (A.2.7),

δwa = −wcKac +Rklak. (A.4.10)

From this we can compute the following related variations, assuming that θ(k) = 0 and
σ(k) = 0:

δ(Dawa) = DaRklak + wa∂aθ(k) − 3Da(K
ab
k wb) (A.4.11)

δ(waDaθ(k)) = −3Kab
k waDbθ(k) +RklakD

aθ(k) + waDaθ̇(k) (A.4.12)

δ(DaDaθ(k)) = DaDaθ̇ − ∂aθ(k)∂
aθ(k) − 2P jmRkjbmD

bθ(k). (A.4.13)

Here θ̇(k) ≡ δθ(k) is given by the Raychaudhuri equation. We can combine these equations
to get

δ
(
(Da − wa)2θ(k)

)
= δ

(
DaDaθ(k)

)
− 2δ

(
waDaθ(k)

)
− δ

(
(Daw

a)θ(k)

)
+ δ

(
waw

aθ(k)

)
= −DaDaRkk + 2waDaRkk + (Daw

a)Rkk − wawaRkk

− d

d− 2
(Daθ(k))

2 − 2RkbD
bθ(k) − 2(Dσ)2. (A.4.14)

A.5 The d = 4 Case

As mentioned in the main text, many of our calculations are more complicated in even
dimensions, though most of the end results are the same. The only nontrivial even dimension
we study is d = 4, so in this section we record the formulas and special derivations necessary
for understanding the d = 4 case. Some of these have been mentioned elsewhere already,
but we repeat them here so that they are all in the same place.
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Log Terms In d = 4 we get log terms in the extremal surface, the metric, and the EWN
inequality. By looking at the structure of the extremal surface equation, it’s easy to see that
the log term in in the extremal surface is related to X i

(4) in d 6= 4 by first multipling by 4−d
and then setting d→ 4. The result was recorded in (A.3.13), and we repeat it here:

−4Xk
(4,log) = 2Xk

(2)

(
P jmg

(2)
jm − 4(X(2))

2
)

+Kk
abg

ab
(2) + 4g

(2)
kmX

m
(2) + 2X

(2)
j Kj

abK
kab + kiDaD

aX i
(2)

+ kj(∇ng
(2)
jm −

1

2
∇jg

(2)
mn)Pmn +Xn

(2)RkmnjP
jm

+ 8κσab(k)Ckalb. (A.5.1)

There is a similar story for g
(4,log)
kk , which was recorded earlier in (A.3.7):

g
(4,log)
kk = −

[
κCkijmC

ijm
k +

1

24
∇2
kR−

1

8
kikj�Rij −

1

4
RijRkikj +

1

12
RRkk

]
. (A.5.2)

From these two equations, it is easy to see that the log term in (δX̄)2 has precisely the same
form as the subleading EWN inequality (3.2.14) in d ≥ 5, except we first multiply by 4− d
and then set d→ 4. This results in

L−2(δX̄)2
∣∣
z2 log z,d=4

= −1

4
(Daθ(k) +Rka)

2 − 1

4
(Daσ

(k)
bc )2. (A.5.3)

Note that the Gauss-Bonnet term drops out completely due to special identities of the Weyl
tensor valid in d = 4 [52]. The overall minus sign is important because log z should be
regarded as negative.

QNEC in Einstein Gravity For simplicity we will only discuss the case of Einstein
gravity for the QNEC in d = 4, so that the entropy functional is just given by the extremal
surface area divided by 4GN . At order z2, the norm of δX̄µ is formally the same as the
expression in other dimensions:

L−2(δX̄)2
∣∣
z2 = g

(4)
kk + 2g

(2)
ik ∇kX

i
(2) +∇kX

(2)
j ∇kX

j
(2) −

1

2
X l

(2)∇kRkk + 2δ(kiX
i
(4)cov). (A.5.4)

Now, though, Xk
(4) and g

(4)
kk are state-dependent and must be related to the entropy and

energy-momentum, respectively.
We begin with the entropy. From the calculus of variations, we know that the variation

of the extremal surface area is given by

δA = − lim
ε→0

L3

ε3

∫ √
h

1√
1 + gnm∂zX̄n∂zX̄m

gij∂zX̄
iδXj. (A.5.5)
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A few words about this formula are required. The X̄µ factors appearing here must be
expanded in ε, but the terms without any (n) in their notation do not refer to (0), unlike
elsewhere in this paper. The reason is that we have to do holographic renormalization
carefully at this stage, and that means the boundary conditions are set at z = ε. So when
we expand out X̄µ we will find its coefficients determined by the usual formulas in terms
of X i

(0). We need to then solve for X i
(0) in term of X i ≡ X̄ i(z = ε) re-express the result

in terms of X i alone. Since we are not in a high dimension this task is relatively easy. An
intermediate result is

ki

L3
√
h

δA

δX i

∣∣∣∣
ε0

= −2 Xk
(2)

∣∣
ε2
− 4

(
Xk

(4) − (X(2))
2Xk

(2)

)
−Xk

(4,log). (A.5.6)

The notation on the first term refers to the order ε2 part of X i
(2) that is generated when X i

(2)

is written in terms of X̄ i(z = ε). The result of that calculation is

−4 Xk
(2)

∣∣
ε2

= 2X
(2)
j KjabKi

abki + kiD
bDbX

i
(2) +KmΓimlX

l
(2)ki

+ gab(2)K
i
abki + P kjRi

jmkX
m
(2)ki + km

(
∇jg

(2)
mk −

1

2
∇mg

(2)
jk

)
P jk

= −4Xk
(4,log) − 2Xk

(2)

(
P jmg

(2)
jm − 4(X(2))

2
)
− 4g

(2)
kmX

m
(2) +KmΓimlX

l
(2)ki. (A.5.7)

We have dropped terms of higher order in ε. Thus we can write

ki

L3
√
h

δA

δX i

∣∣∣∣
ε0

= −3Xk
(log) −Xk

(2)P
jmg

(2)
jm + 8Xk

(2)(X(2))
2 − 2g

(2)
kmX

m
(2) − 4Xk

(4)cov. (A.5.8)

We will want to take one more variation of this formula so that we can extract δXk
(4)cov. We

can get some help by demanding that the z2 log z part of EWN be saturated, which states

g
(log)
kk + 2δXk

log = 0. (A.5.9)

Then we have

δ

(
ki

L3
√
h

δA

δX i

∣∣∣∣
ε0

)
=

3

2
g

(log)
kk − δ(Xk

(2)P
jmg

(2)
jm) + 8δ(Xk

(2)(X(2))
2)− 2δ(g

(2)
kmX

m
(2))− 4δXk

(4)cov.

(A.5.10)

Assuming that θ(k) = σ(k) = 0, we can simplify this to

δ

(
ki

L3
√
h

δA

δX i

∣∣∣∣
ε0

)
=

3

2
g

(log)
kk − 1

4
RkkP

jmg
(2)
jm −

1

4
∇k(θ(l)Rkk)−

1

2
g

(2)
kl Rkk − 4δXk

(4)cov.

(A.5.11)
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We can combine this with the holographic renormalization formula [72]

g
(4)
kk = 4πGNL

−3Tkk +
1

2
(g2

(2))kk −
1

4
g

(2)
kk g

ijg
(2)
ij −

3

4
g

(log)
kk

= 4πGNL
−3Tkk +

1

8
Ri
kRik −

1

16
RkkR−

3

4
g

(log)
kk (A.5.12)

to get

L−2(δX̄ i)2
∣∣
z2 = 4πGNL

−3Tkk −
1

2
δ

(
ki

L3
√
h

δA

δX i

∣∣∣∣
ε0

)
. (A.5.13)

After dividing by 4GN , we recognize the QNEC.

A.6 Connections to the ANEC

In A.6 we briefly review the connection between the relative entropy and the ANEC. Equa-
tion (4.1.2) then implies an interesting connection between the off-diagonal second variation
of the entropy and the ANEC. In A.6 we analyze this result in more detail for holographic
field theory states dual to perturbative bulk geometries.

ANEC and Relative Entropy

As in Section 4.2, the region R is a region whose boundary ∂R lies in the u = 0 plane.
We also consider a one-parameter family of such regions, indexed by λ, with the convention
that increasing λ makes the R smaller. In this section we will focus on a globally pure state
reduced to these regions. The relative entropy (with respect to the vacuum) and its first two
derivatives obey the following set of alternating inequalities:

Srel ≥ 0,
dSrel

dλ
≤ 0,

d2Srel

dλ2
≥ 0. (A.6.1)

The first two of these are general properties of relative entropy in quantum mechanics, known
as the positivity and monotonicity of relative entropy, respectively. The third inequality is
the QNEC together with strong subadditivity.

We can also consider the entropy S̄ and relative entropy S̄rel of the complement of R,
which we will denote by R̄. Since we specified that the global state is pure, we have S̄ = S.
The set of inequalities obeyed by S̄rel is

S̄rel ≥ 0,
dS̄rel

dλ
≥ 0,

d2S̄rel

dλ2
≥ 0. (A.6.2)

From (4.2.6) and the analogous equation for S̄rel, together with the monotonicity of relative
entropy inequalities, we can conclude

dS̄rel

dλ
− dSrel

dλ
= 2π

∫
dd−2ydv 〈Tvv〉 V̇ (y) ≥ 0. (A.6.3)
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This is the ANEC, and its connection to relative entropy was first pointed out in [208, 27].
The relation (A.6.3) has interesting implications. Note that the integral of Tvv is com-

pletely independent of λ. If we let λ → ∞, it must be the case that dSrel/dλ → 0 or
else positivity of relative entropy will be violated. Similarly, as λ → −∞ we must have
dS̄rel/dλ→ 0. Then we can say∫ ∞

−∞
dλ

d2Srel

dλ2
=
dSrel

dλ
(∞)− dSrel

dλ
(−∞) = 2π

∫
dd−2ydv 〈Tvv〉 V̇ (y). (A.6.4)

From the definition of relative entropy, this means that∫ ∞
−∞

dλ

∫
dd−2y S ′′V̇ (y)2 = −

∫ ∞
−∞

dλ

∫
dd−2ydd−2y′

(
δ2S

δV (y)δV (y′)

)
od

V̇ (y)V̇ (y′).

(A.6.5)
So the diagonal and off-diagonal parts of the second variation entropy contribute equally
when integrated over the entire one-parameter family of surface deformations. Since there
are two y integrals on the RHS of (A.6.5), näıvely one might have thought that a limiting
case for V̇ (y) existed which caused the RHS of this equation to vanish while leaving the
LHS finite, but this is not true. We will say more about the order-of-limits involved in
the holographic context below. Applying the relation S ′′vv = 2π〈Tvv〉 we see that, after
integration, the off-diagonal variations can be related back to the ANEC:

2π

∫
dd−2ydv 〈Tvv〉V̇ (y) = −

∫ ∞
−∞

dλ

∫
dd−2ydd−2y′

(
δ2S

δV (y)δV (y′)

)
od

V̇ (y)V̇ (y′). (A.6.6)

This is a nontrivial consequence of (4.1.2). Note that δ2Sod/δV (y)δV (y′) ≤ 0 by strong
subadditivity [11].

ANEC in a Perturbative Bulk

In this section we will investigate (A.6.6) in AdS/CFT for perturbative bulk states. Once
again, we will drop the contributions of Sbulk for simplicity. This amounts to considering
coherent states in the bulk.

From (4.3.4), we can see that for perturbative classical bulk states the bulk boost energy
completely accounts for the off-diagonal entropy variation. Then from (4.3.7) we get

δ2Sod

δV (y1)δV (y2)
= −2π

(
2d−2Γ(d−1

2
)

π
d−1

2

)2 ∫
dzdd−2y

zd−1
〈T bulk

vv 〉
z2d

(z2 + (y − y1)2)d−1(z2 + (y − y2)2)d−1

(A.6.7)
As a consequence of (A.6.6) we then have the equation∫

dd−2ydv 〈Tvv〉V̇ (y) =

∫
dvdzdd−2y

zd−1
〈T bulk

vv 〉 ˙̄V (y, z). (A.6.8)
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This is a nontrivial matching between the ANEC on the boundary and an associated ANEC

in the bulk, made possible by the relationship between V̇ and ˙̄V that comes from solving
the extremal surface equation:

˙̄V (y, z) =
2d−2Γ(d−1

2
)

π
d−1

2

∫
dd−2y′

zd

(z2 + (y − y′)2)d−1
V̇ (y′). (A.6.9)

We can get some intuition for these equations by considering shockwave solutions in the
bulk.

Shockwaves Consider a shockwave geometry in the bulk. The bulk stress tensor is [209]

〈T bulk
vv 〉 = Ezd−1

0 δ(v)δd−2(y)δ(z − z0) (A.6.10)

and the boundary stress tensor is

〈Tvv〉 = E
2d−2Γ

(
d−1

2

)
zd0

π
d−1

2 (z2
0 + y2)d−1

δ(v) (A.6.11)

The parameters z0 and E characterize the solution. One can see directly that (A.6.8) holds.
It is also interesting to integrate over a finite range of the deformation parameter. As

the range is extended to infinity we recover (A.6.8), but for finite amounts of deformation
we can see how the diagonal and off-diagonal parts of the entropy compete. We take the
undeformed surface at λ = 0 to be the flat plane V (y) = 0 and we place the shockwave at
v = v0. Then integrating over a range of deformations about zero we find on the boundary∫ λ

0

dλ′
∫
dd−2y 〈Tvv〉V̇ (y)2 =

∫
dd−2y E

2d−2Γ
(
d−1

2

)
zd0

π
d−1

2 (z2
0 + y2)d−1

V̇ (y)Θ(λV̇ (y = 0)− v0)

= E ˙̄V (y = 0, z = z0)Θ(λV̇ (y = 0)− v0). (A.6.12)

As soon as the integration range crosses v = v0, the total energy jumps from zero to the
final answer. On the other hand, in the bulk we get∫ λ

0

dλ′
∫
dzdd−2y

zd−1
〈T bulk

vv 〉 ˙̄V (y, z)2 = E ˙̄V (y = 0, z = z0)Θ
(
λ ˙̄V (y = 0, z = z0)− v0

)
.

(A.6.13)

This is a very similar answer, but now the jump does not occur until later: ˙̄V (y = 0, z = z0)
will always be less than V̇ (y), which means λ has to get larger. How much larger? We can
estimate it by looking at the example of a bump function deformation with V̇ (y) = 1 over
a region of area A � zd−2

0 and zero elsewhere. Then the boundary energy will register at
λ = v0, while the bulk energy will register at

λ =
π
d−1

2

2d−2Γ(d−1
2

)

zd−2
0

A
v0 � v0 . (A.6.14)



APPENDIX A. APPENDIX 190

So for very narrow deformations, the off-diagonal contributions to the entropy can only be
seen when integrated over a large range of the deformation parameter. From the boundary
point of view, the parameter z0 controls how diffuse the energy is in the y-directions. It is a
measure of the nonlocality of the state. The off-diagonal entropy variations are sensitive to
this nonlocality.

Note that the order of limits we have discovered here is worth repeating. If we take
A → 0 before taking λ → ∞ then our integration will only be sensitive to the diagonal
entropy variation (i.e., the boundary stress tensor) and we will find apparent violations of
(A.6.6). The reason is that there are important contributions to the off-diagonal entropy
variations when λ ∼ zd−2

0 /A, where z0 controls the level of nonlocality in the state.

Superpositions of Shockwaves At linear order in the bulk perturbations we can take
superpositions of shockwaves. This allows us to create any bulk and boundary bulk stress
tensor profile along the u = 0 plane, and in that sense represents the most general state for
the purpose of this calculation. The bulk and boundary stress tensors would be

〈T bulk
vv (y, z, v)〉 = zd−1ρ(y, z, v) (A.6.15)

and

〈Tvv(y, v)〉 =
2d−2Γ

(
d−1

2

)
π
d−1

2

∫
dd−2y′dz′ρ(y′, z′, v)

(z′)d

((z′)2 + (y − y′)2)d−1
(A.6.16)

The single shockwave is the special case ρ = Eδ(v)δd−2(y)δ(z − z0). We can repeat some of
the calculations we did before, but qualitatively the results will be the same. The deformed
bulk extremal surface always “lags behind” the deformed entangling surface in a way that
depends on z and the width of the deformation, and as a result the bulk energy flux at
finite deformation parameters will always be less than the boundary energy flux. Taking the
deformation width to zero at finite deformation parameters will cause the bulk energy flux
to drop to zero. It would be interesting to characterize this behavior directly in the field
theory without the bulk picture.

A.7 Free and Weakly-Interacting Theories

Our conjectures (6.3.8) and (4.1.2) are only meant to apply to interacting theories. In this
appendix we will explain how the null-null relation (4.1.2) is violated in free theories, and
indicate how it might be fixed when interactions are included.

The Case of Free Scalars

The case of free scalar fields for entangling surfaces restricted to u = 0 was analyzed ex-
tensively in [16], and we will make use of that analysis here. As in Section 4.2 we have a
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one-parameter family of regions indexed by λ. The deformation velocity V̇ (y) is taken to
be a unit step-function with support on a small region of area A in the y-directions. The
crucial point is to focus attention on the pencil of the u = 0 plane that is the support of
V̇ (y). As λ varies, the entangling surface moves within this pencil but stays fixed outside of
it.

The State and the Entropy For the purpose of constructing the state, we can model
the full theory as a 1 + 1-dimensional massless chiral boson living on the pencil, together
with an auxiliary system consisting of the rest of the u = 0 plane. This is the formalism of
null quantization, which is reviewed in [16].

There are two facts we’re going to use to write down the sate ρ(λ) on the pencil+auxiliary
system. First, in the limit of small A, the state on the pencil becomes approximately
disentangled from the auxiliary system. The fully-disentangled part A0 part of the state
looks like the vacuum, while the leading correction goes like A1/2 and consists of single-
particle states on the pencil entangled with states of the auxiliary system. The second fact
is that we can always translate our state in the pencil by an amount λ so that the entangling
surface is at the origin and the operators which create the state are displaced by an amount
λ from their original positions. A coordinate system where the entangling surface is fixed is
preferable. Putting these facts together lets us write

ρ(λ) = ρvac ⊗

(∑
i

e−2πKi |i〉〈i|

)
+A1/2

∑
i,j

ρ
(1/2)
ij (λ)⊗

(
e−π(Ki+Kj)/2|i〉〈j|

)
+ · · · (A.7.1)

The states |i〉 of the auxiliary system are merely those which diagonalize the A0 part of ρ,
and the Ki are numbers specifying the eigenvalues.

As indicated above the state ρ
(1/2)
ij (λ) should be interpreted as a state on the half-line

x > 0. We can write this state in terms of a Euclidean path integral in the complex plane:

ρ
(1/2)
ij [φ−, φ+] =

∫ φ(x−)=φ−

φ(x+)=φ+

Dφ Oij(λ)e−SE , (A.7.2)

where φ(x±) refers to boundary conditions just above/below the positive real axis. The
insertion Oij(λ) is a single-field insertion which specifies the state:

Oij(λ) =

∫
dzdz̄ ψij(z, z̄)∂φ(z − λ). (A.7.3)

As in [16] we will normalize our field so that 〈∂φ(z)∂φ(0)〉vac = −1/z2 and Tvv = (∂φ)2/4πA.
Then one can show that Q ≡ S ′′vv − 2πTvv is given by

Q(λ) = −1

2

∑
ij

∣∣∣∣∫ dxdτ (z − λ)−2+iαijψij(x, τ)

∣∣∣∣2 π(1 + α2
ij)αij

sinhπαij
e2παij (A.7.4)
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where αij = Ki −Kj and if z = reiθ with 0 ≤ θ < 2π then

ziα = riαe−αθ. (A.7.5)

The quantity Q is manifestly negative, as required by the QNEC, but it is not zero.

Recovering the ANEC In Appendix A.6 we showed how one can recover the ANEC by
integrating the QNEC on a globally pure state. In the present context, we don’t have any
off-diagonal contributions to the entropy. Instead we have the function Q, and repeating the
argument above would lead us to conclude∫ ∞

−∞
dλ Q(λ) = −2π

∫
dλ 〈Tvv(λ)〉. (A.7.6)

We can check this equation by integrating (A.7.4). Note that the assumption of global purity
that was used in Appendix A.6 is crucial: the expectation value of Tvv(λ) depends only on
the part of the state proportional to A, which we have not specified and in principle has
many independent parameters. For a globally pure state there is a relationship between that
part of the state and the A1/2 part of the state which we must exploit.

In the pencil+auxiliary model, the global Hilbert space consists of the full pencil plus a
doubled auxiliary system. The doubling allows the auxiliary state to be purified. Let the
global pure state by |Ψ〉. Then we have

|Ψ〉 = |vac〉 ⊗

(∑
i

e−πKi |i〉 ⊗ |i〉

)
+A1/2

∑
i,j

e−παij/2 |Ψij〉 ⊗ |i〉 ⊗ |j〉+ · · · (A.7.7)

Any subsequent terms will not affect the ANEC. The factor of exp(−παij/2) is purely for
future convenience, and the |Ψij〉 are not necessarily normalized. The expectation value of
the ANEC operator in this state is given by

2π

∫
dλ 〈Tvv(λ)〉Ψ = 2πA

∑
i,j

e−παij
∫
dλ 〈Ψij|Tvv(λ) |Ψij〉 . (A.7.8)

We can make contact with our earlier formulas by computing the density matrix |Ψ〉〈Ψ| and
tracing over the second copy of the auxiliary system. We find that

ρ
(1/2)
ij = Trx<0 (|Ψij〉〈vac|+ |vac〉〈Ψji|) . (A.7.9)

This lets us identify the part of Oij in the lower half-plane as the operator which creates
|Ψij〉. Then, in our previous notation, we find

2π

∫
dλ 〈Tvv(λ)〉Ψ = 4πi

∑
i,j

e−παij
∫
dxdτdx′dτ ′

ψij(x, τ)ψij(x
′, τ ′)∗

(z − w∗)3
Θ(−τ)Θ(−τ ′).

(A.7.10)
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Our job now is to reproduce this by integrating (A.7.4) with respect to λ. The main identity
we will need is∫ ∞
−∞

dλ

(z − λ)2−iαij(w∗ − λ)2+iαij
=

4ie−2παij sinh παij
αij(1 + α2

ij)(w
∗ − z)3

(
eπαijΘ(τ)Θ(τ ′)− e−παijΘ(−τ)Θ(−τ ′)

)
.

(A.7.11)
Using this formula, the integral of (A.7.4) splits into two terms. We may combine them by
exchanging i and j in the first term, leaving us with∫
dλ Q(λ) = −2πi

∑
ij

∫
dxdτdx′dτ ′

ψij(x, τ)ψij(x
′, τ ′)∗

(w∗ − z)3

(
eπαijΘ(τ)Θ(τ ′)− e−παijΘ(−τ)Θ(−τ ′)

)
= −4πi

∑
ij

e−παij
∫
dxdτdx′dτ ′

ψij(x, τ)ψij(x
′, τ ′)∗

(z − w∗)3
Θ(−τ)Θ(−τ ′). (A.7.12)

Coherent States For coherent states we obtain a correspondence between Q and Tvv
without integrating over λ. This must be true because coherent states satisfy S ′′vv = 0, but
it is reassuring to see it happen explicitly. In a coherent state of the original d-dimensional
theory, the pencil and auxiliary system factorize and the pencil is in a 1 + 1-dimensional
coherent state. In other words, we have

ρ(λ)[φ−, φ+] =

(∫ φ(x−)=φ−

φ(x+)=φ+

Dφ e−SE+A1/2O(λ)

)
⊗

(∑
i

e−2πKi |i〉〈i|

)
. (A.7.13)

We can obtain Q for this state by taking the general equation (A.7.4) specializing to the case
where ψij = ψδij exp(−πKi). Making use of the normalization condition

∑
i exp(−2πKi) = 1

we find the simple expression

Qcoherent(λ) = −1

2

∣∣∣∣∫ dxdτ
ψ(x, τ)

(z − λ)2

∣∣∣∣2 = − 1

2A
〈∂φ(λ)〉2coherent. (A.7.14)

We recognize this as simply −2π〈Tvv〉coherent, as expected.

Weakly Interacting Effective Field Theories

In the main text we provided evidence for that S ′′vv = 2π〈Tvv〉 for interacting theories, but
in the previous section we explained that for free theories Q = S ′′vv − 2π〈Tvv〉 was nonzero,
and in fact could be quite large. In this section we will show how we can transition from
S ′′vv 6= 2π〈Tvv〉 to S ′′vv = 2π〈Tvv〉 when a weak coupling is turned on.2

The essential point is that one should always consider the total variation d2S/dλ2 as the
primary physical quantity. S ′′vv is a derived quantity obtained by considering a limiting case

2We thank Thomas Faulkner for first pointing out the arguments we present in this section.
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of arbitrarily thin deformations. However, a weakly-coupled effective field theory in the IR
comes with a cutoff scale ε, and we cannot reliably compute d2S/dλ2 for deformations of
width ` . ε. Now we will see how this can resolve the issue.

In the free theory, as we have explained above, the second functional derivative of the
entropy has the form

δ2Sfree

δV (y)δV (y′)
= 2π〈Tvv〉δ(d−2)(y − y′) +Qδ(d−2)(y − y′) +

(
δ2S

δV (y)δV (y′)

)
od

. (A.7.15)

The function Q is related to the square of the expectation value of the field ∂φ. This is
especially obvious in the formula for the coherent state, (A.7.14), but the more general
formula is essentially of the same form. In a free theory (∂φ)2 has dimension d and is
exactly of the right form to contribute to a δ-function. This fact was touched upon in
the Introduction. When we turn on a weak coupling g, the dimension of φ will shift to
∆φ = (d − 2)/2 + γ(g).3 There will still be a term in the second variation of the entropy
associated to (∂φ)2, which we will call Qg, but now it no longer comes with a δ-function:

δ2Sg
δV (y)δV (y′)

= 2π 〈Tvv〉 δ(d−2)(y − y′) +Qgfg(y − y′) + (other off-diagonal terms) . (A.7.16)

Here fg is some function of mass dimension d − 2 − 2γ which limits to a δ-function as
g → 0, such as fg(y) ∼ γ/yd−2−2γ. So the Qg term has migrated from the δ-function to the
off-diagonal part of the entropy variation.

Now consider integrating (A.7.16) twice against a deformation profile of width ` and unit
height to get a total second derivative of the entropy. Suppose that ` is very small compared
to the length scales of the state, but still large compared to the cutoff ε. Then we have

d2Sg
dλ2

= 2π 〈Tvv〉 `d−2 +Qg`
d−2+2γ + (other smeared off-diagonal terms) . (A.7.17)

We can write Qg ∼ QM2γ, where M is a mass scale characterizing the state and Q is what
we get in the g → 0 limit. So at weak coupling, we can say that

Qg`
d−2+2γ ∼ Q`d−2 (1 + 2γ logM`+ · · · ) . (A.7.18)

Thus we find that the answer for the weakly-coupled theory is approximately the same as
for the free theory, as long as γ logM` � 1. The smallest we can make ` is of order the
cutoff ε, and the condition that γ logMε remain small is analogous to the problem of large
logarithms in perturbation theory. The renormalization group is typically used to get around
the problem of large logarithms, and it would be interesting to apply those same ideas to
the present situation.

3We treat g and γ as fixed numbers that do not themselves depend on scale. A more complete treatment
that incorporates the RG flow of the coupling would be interesting.
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This argument hints that for general effective field theories S ′′vv may not have a good
operational meaning in terms of physical observables. The relevant condition for isolating
the δ-function is that (M`)2γ � 1 should be possible within the effective description. Clearly
this can be done in an exact CFT with finite anomalous dimensions, but it should also be
possible if the theory is approximately given by an interacting CFT over some large range
of length scales. For instance, if an interacting CFT is weakly coupled to gravity and we
consider states with energy M much less than the Planck scale then it should be possible to
have (M`)2γ � 1 while maintaining `� `Planck.

Finally, a more precise version of the arguments given above can be given by interpreting
the second functional derivative of the entropy as an OPE. We hope to use these techniques
to find the exact form of fg in future work [89].

A.8 Modified Ward identity

In this Appendix, we prove the following identity:∫
dd−2y′〈Σ0

nD̂+(y′)D̂+(y)T−−(w, w̄, 0)〉 = −∂w̄〈Σ0
nD̂+(y)T−−(w, w̄, 0)〉. (A.8.1)

This is similar to the defect CFT ward identity of [99] except there is another insertion of
the displacement operator. A priori it is not obvious that some form of the Ward identity
carries through in the case where more than one operator is a defect operator. We will argue
essentially that the second insertion of a D̂+ just comes along for the ride.

To show this, first we write the displacement operator as a stress tensor integrated around
the defect:

D̂+(y) = i

∮
dz̄ T++(0, z̄, y) (A.8.2)

where we have suppressed the sum over replicas to avoid clutter. We will then argue that
the following equality holds

i lim
ε→0

∮
ε>|z̄|

dz̄

∫
|y−y′|>ε

dd−2y′〈Σ0
nD̂+(y′)T++(0, z̄, y)T−−(w, w̄, 0)〉

=

∫
dd−2y′〈Σ0

nD̂+(y′)D̂+(y)T−−(w, w̄, 0)〉 (A.8.3)

for some appropriate ε > 0 that acts as the cutoff |y′ − y| > ε.
To see this, simply note that we can replace T++(0, z̄, y) by a sum over local defect

operators at y using the bulk-defect OPE. The important point is that this OPE converges
because the z̄ contour is always inside of the sphere of size ε (by construction). We can take
|z̄| to be arbitrarily small by making the size of the z̄ contour as small as we like. The z̄
integral outside now simply projects the sum onto the displacement operator since we only
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consider the leading twist d − 2 operators in the lightcone limit. Explicitly, we will be left
with

i lim
ε→0

∮
ε>|z̄|

dz̄

∫
|y−y′|>ε

dd−2y′〈Σ0
nD̂+(y′)T++(0, z̄, y)T−−(w, w̄, 0)〉

= lim
ε→0

∫
|y−y′|>ε

dd−2y′〈Σ0
nD̂+(y′)D̂+(y)T−−(w, w̄, 0)〉. (A.8.4)

Note that perturbatively around n = 1, the integral over |y − y′| > ε will miss the delta
function contribution to the D̂+ × D̂+ OPE. Non-perturbatively away from n = 1, however,
there are no delta-function singularities in |y − y′| present in the D̂+ × D̂+ OPE. In what
follows, we must be careful to take ε→ 0 before taking n→ 1.

Using this identity, we can view the displacement-displacement-bulk three point function
as the contour integral of a displacement-bulk-bulk three point function. We can then use
the regular displacement operator Ward identity on the latter three point function. This
Ward identity follows from general diffeomorphism invariance [99]. To do this, define the
deformation vector field

ξ(y′) = f(y′)∂+ with f(y′) = Θ(|y′ − y| − ε). (A.8.5)

For this deformation, the Ward identity takes the form

i

∮
ε>|z̄|

dz̄

∫
|y−y′|>ε

dd−2y′〈Σ0
nD̂+(y′)T++(0, z̄, y)T−−(w, w̄, 0)〉

= −f(0)∂w̄〈Σ0
nD̂+(y)T−−(w, w̄, 0)〉 − i

∮
dz̄f(y)∂z̄〈Σ0

nT++(0, z̄, y)T−−(w, w̄, 0)〉

− i
∫
Mn

ddx′
∮
dz̄ 〈T++(0, z̄, y)T−−(w, w̄, 0)T µν(x′)∂µξν(x

′)〉 (A.8.6)

where Mn is the full replica manifold.
The second term on the right hand side of the equality vanishes because f(y) = 0. Since

f(0) = 1 by construction we just need to argue that the last term in (A.8.6) vanishes.

Arguing the last term vanishes

It is tempting at this stage to integrate by parts on the last term and conclude that this
vanishes as one sends ε → 0. Unfortunately, the last term in (A.8.6) can produce 1/ε
enhancements due to Ti+ operator coming ε close to T++. Therefore one must take care to
first do the x′ integral and then take the ε→ 0 limit when evaluating this term.

To do so, note that

T µν(x′)∂µξν(x
′) =

1

2
Ti+(x′)n̂iδ(|y′ − y| − ε) (A.8.7)
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where n̂i = (y′ − y)i/|y′ − y|. We then have the following∫
Mn

ddx′
∮
dz̄ 〈T++(0, z̄, y)T−−(w, w̄, 0)T µν(x′)∂µξν(x

′)〉

=
1

2
εd−3

∫
ρ′dρ′dθ′

∮
dz̄

∫
dd−3ϑ′ n̂i〈T++(0, z̄, y)T−−(w, w̄, 0)Ti+(|~y + ~ε|, ϑ′~ε, ρ′e−iθ

′
, ρ′e−iθ

′
)〉

(A.8.8)

where |~ε| = ε. In going to the second line we have done the coordinate transformation
x′+ = ρ′e−iθ

′
, x′− = ρ′eiθ

′
because we are in the Euclidean section, and in going to the last

line we have written y′ in spherical coordinates on the defect. At this point we can safely
send w, w̄ → 0 so that T−− is simply fixed at the origin. Then, in particular, let us focus on∫

dθ′
∮
dz̄ 〈T++(0, z̄, y)T−−(0)Ti+(|~y + ~ε|, ϑ′~ε, ρ′e−iθ

′
, ρ′e−iθ

′
)〉. (A.8.9)

It is easy to see that this identically vanishes from the boost weights of the quantities involved.
Specifically, T++ will yield a factor of e2iθ′ , Ti+ will yield a factor of eiθ

′
, T−− does not have

a boost weight since it is fixed at the origin, and the measure dz̄ will yield a factor of e−iθ
′

so overall we will have
∫ 2π

0
dθ′eiθ

′
= 0. Therefore (A.8.8) is zero for any ε.

Thus, the identity in (A.8.6) becomes

i lim
ε→0

∮
ε>|z̄|

dz̄

∫
|y−y′|>ε

dd−2y′〈Σ0
nD̂+(y′)T++(0, z̄, y)T−−(w, w̄, 0)〉

= −∂w̄〈Σ0
nD̂+(y)T−−(w, w̄, 0)〉 (A.8.10)

which, using (A.8.3), proves (A.8.1).

A.9 Analytic Continuation of a Replica Three Point

Function

In this section, we analytically continue a general Zn-symmetrized three point function of
the form4

A(3)
n = n

n−1∑
j=0

n−1∑
k=0

Tr
[
e−2πnHT Oa(0)Ob(τba + 2πj)Oc(τca + 2πk)

]
(A.9.1)

where H is the vacuum modular Hamiltonian for the Rindler wedge and T denotes Euclidean
time ordering with respect to this Hamiltonian.

4Note that we are writing this as a thermal three point function on Hd−1 × S1, which is related to the
flat space replica answer via conformal transformation. For a review of the relevant conformal factors, which
we suppress for convenience, see [115].
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Figure A.1: The analytic structure of the integral in equation (A.9.2) represented in the sb
plane for fixed sk = i(2πk+ τca) for n = 6. The dots represent poles at sb = i(2πj+ τba) and
the fuzzy lines denote light-cone branch cuts. The bottom and top branch cuts (which are
identified by the KMS condition) arise from Ob becoming null separated from Oa and the
middle branch cut arises from Ob becoming null separated from Oc. Note that in this figure,
k = 3 and τca > τba > 0. We start with the contour Cb represented by the dashed lines
encircling the poles at sb = i(2πj + τba) and unwrap so that it just picks up contributions
from the branch-cuts. Region I corresponds to the ordering OaObOc whereas region II
corresponds to OaOcOb.

.

Following [115], we begin by rewriting the the j-sum as as a contour integral

n

2πi

n−1∑
k=0

∮
Cb

dsb
Tr
[
e−2πnHT Oa(0)Ob(−isb)Oc(2πk + τca)

]
(esb−iτba − 1)

(A.9.2)

where the contour Cb wraps the n poles at sb = i(2πj + τba) for j = 0, ..., n − 1. We will
now unwrap the sb contour integral in the complex plane, but will need to be careful as the
analytic structure of the integrand in (A.9.2) is non-trivial as a function of sb; the integrand
has poles at sb = i(2πj + τba) and light-cone branch cuts lying along the lines =sb = 0, 2πn
and =sb = 2πk + τca for a fixed k. The first two branch cuts were discussed in [115]. The
third (middle in the figure) branch cut arises from singularities due to Ob and Oc lying on
the same light-cone.

We can unwrap the Cb contour now so that it hugs the branch cuts as in the right-hand
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panel of Figure A.1. We will then be left with a sum of four Lorentzian integrals

n

2πi

n−1∑
k=0

Tr

[
e−2πnH

∫ ∞
−∞

dsb×

Oa(0)Ob(−isb + εj)Oc(2πk + τca)

(esb−iτba − 1)
− Oa(0)Ob(−isb + 2πik + τca − ε)Oc(2πk + τca)

(esb+2πik+τca−iε−iτba − 1)

+
Oa(0)Oc(2πk + τca)Ob(−isb + 2πk + τca + ε)

(esb+2πik+τca+iε−iτba − 1)
− Oa(0)Oc(2πk + τca)Ob(−isb + 2πn− ε)

(esb+i2πn−iε−iτba − 1)

]
,

(A.9.3)

where we have set 2πk+τca = −isc since the Cc contour still wraps the poles at these values.
We now need to make a choice about how to do the analytic continuation in n. The

usual prescription, which was advocated for in [115], is to set e2πin = 1 in the last term of
(A.9.3). We will follow this but also make one other choice. In the second and third terms
in the integrand of (A.9.3) we make the choice to set e2πik = 1 for all k = 0, ..., n− 1.

Making this analytic continuation, we can now re-write the k-sum as a contour integral
over sc along some contour Cc. Unwrapping this sc contour into the Lorentzian section, and
after repeated use of the KMS condition to push operators back around the trace, we land
on the relatively simple formula

A(3)
n =

−n
4π2

∫ ∞
−∞

dscdsb Tr

[
e−2πnH

(
[[Oa(0),Ob(−isb)],Oc(−isc)]

(esb−iτba − 1)(esc−iτca − 1)
− [Oa(0), [Ob(−isb − isc),Oc(−isc)]]

(esb+iτca−iτba − 1)(esc−iτca − 1)

)]
(A.9.4)

In deriving this formula, we have assumed τba > 0 and τca > 0 but we have not yet assumed
any relationship between τba and τca. This formula is the full answer. One could stop here,
but we will massage this formula into a slightly different form for future convenience. Instead
of following [115] and applying ∂n at this stage, which drops down powers of H, we will use
a slightly different (although equivalent) technique.

We first focus on re-writing the two Lorentzian integrals in region I of Figure A.1 as one
double integral.

Region I

Before re-writing the k-sum as a contour integral, the integrals in region I are5

n

2πi

n−1∑
k=0

∫ ∞
−∞

dsb

(
〈Oa(0)Ob(−isb)Oc(2πk + τca)〉n

(esb−iτba − 1)
− 〈Oa(0)Ob(−isb + 2πk + τca − ε)Oc(2πk + τca)〉n

(esb+iτca−iτba − 1)

)
(A.9.5)

5For ease of notation, we have switched to 〈O1O2O3〉n = Tr[e−2πnHO1O2O3].
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Figure A.2: This figure illustrates the contour shift sb → sb− iτca done at the cost of picking
up the pole at s = i(2πk + τba) when τcb = τca − τba > 0.

where as before we have set e2πik = 1 in the second term. The goal will be to make the
denominators in these two terms the same so that we may combine their numerators. We
will try to shift the sb contour in the second term by an amount −iτca, making sure not to
cross any poles or branch cuts. To make our lives easier, we will assume a fixed ordering of
the operators. For now, we will pick τca > τba > 0. Note that any other ordering can be
reached just by exchanging the a, b, c labels.

In this ordering, sending sb → sb − iτca crosses a pole at =sb = 2πk + τba. This contour
shift is illustrated in Figure A.2. After doing this shift, we get

n

2πi

n−1∑
k=0

∫ ∞
−∞

dsb

(
〈Oa(0)Ob(−isb)Oc(2πk + τca)〉n − 〈Oa(0)Ob(−isb + 2πk)Oc(2πk + τca)〉n

(esb−iτba − 1)

)
+ θ(τcb)× (terms with j = k). (A.9.6)

where we will mostly neglect the extra term coming from picking up the pole since it will
not be important for most calculations we are interested in. We will refer to these terms
as the “replica diagonal terms” since they arise from terms in the double sum over j, k in
(A.9.1) where j = k.

The numerator for the first term in equation (A.9.6) then looks like the integral of a total
derivative in some auxiliary parameter tb which we write as

−n
2πi

n−1∑
k=0

∫ ∞
−∞

dsb

∫ i2πk

0

dtb

(
d
dtb
〈Oa(0)Ob(−isb − itb)Oc(2πk + τca)〉n

(esb−iτba − 1)

)
. (A.9.7)
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Since tb shows up on equal footing with sb in the numerator, we see we can re-write the
derivative in tb as one in sb. Integrating by parts and dropping the boundary terms6, we get

−n
2πi

n−1∑
k=0

∫ ∞
−∞

dsb

∫ i2πk

0

dtb
〈Oa(0)Ob(−isb − itb)Oc(2πk + τca)〉n

4 sinh2((sb − iτba)/2)
. (A.9.8)

We are now ready, as above, to turn the sum over k into a contour integral over some
Lorentzian parameter sc. We can then execute the same trick as before: we re-write two
terms as the boundary terms of one integral in some new auxiliary parameter tc. After all
of this, the answer we find is the relatively simple result for region I

region I =
−n
4π2

∫ ∞
−∞

dscdsb

∫ i2π(n−1)

0

dtc

∫ sc+tc

0

dtb
〈Oa(0)Ob(−isb − itb)Oc(−isc − itc + τca)〉n

16 sinh2((sb − iτba)/2) sinh2((sc − iε)/2)

+ θ(τcb)× (terms with j = k). (A.9.9)

Note that the quadruple integral term is manifestly order n− 1 because of the limits on the
tc integral.

Region II

In region II of Figure A.1, the calculations are exactly analogous, except now the ordering
of the operators is different. We find that (up to terms that again come from picking up
specific poles) the answer for region II is

region II =

−n
4π2

∫ ∞
−∞

dscdsb

∫ i2π(n−1)

0

dtc

∫ i2πn

sc+tc+i2π

dtb
〈Oa(0)Oc(−isc − itc + τca)Ob(−isb − itb)〉n

16 sinh2((sb − iτba)/2) sinh2((sc − iε)/2)

+ θ(τbc)× (terms with j = k). (A.9.10)

Combining Regions I and II

Adding the Region I and Region II contributions, we get for the non-replica diagonal con-
tributions to A(3)

n

n

4π2

∫ ∞
−∞

dscdsb

∫ i2π(n−1)

0

dtc

∫ sc+tc

0

dtb
〈[Ob(−isb − itb),Oa(0)]Oc(−isc − itc + τca)〉n

16 sinh2((sb − iτba)/2) sinh2((sc − iε)/2)

+
n

4π2

∫ ∞
−∞

dscdsb

∫ i2π(n−1)

0

dtc

∫ sc+tc+i2π(1−n)

sc+tc

dtb
〈Ob(−isb − itb)Oa(0)Oc(−isc − itc + τca)〉n

16 sinh2((sb − iτba)/2) sinh2((sc − iε)/2)
(A.9.11)

6We will drop boundary terms at large Lorentzian time everywhere throughout this discussion, as we
expect thermal correlators to fall off sufficiently quickly [115].
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where we used the KMS condition to push Ob around to the left of Oa in (A.9.10). We then
split the tb contour in (A.9.10) into two pieces, one purely Lorentzian integral from tb = 0 to
tb = sc+tc and another purely Euclidean integral from tb = sc+tc to tb = sc+tc+2πi(n−1).

Again, this is the full answer for the replica three point function, A(3)
n , at all n excluding the

replica diagonal terms.
From this we can compute the leading order in n correction to the three-point function

(dropping the diagonal terms). Taking an n-derivative and setting n→ 1, the total correction
is

A(3)
n ∼

i(n− 1)

2π

∫ ∞
−∞

dscdsb

∫ sc

0

dtb
〈[Ob(−isb − itb),Oa(0)]Oc(−isc + τca)〉1
16 sinh2((sb − iτba)/2) sinh2((sc − iε)/2)

+ (replica diagonal terms) +O
(
(n− 1)2

)
. (A.9.12)

Replica Diagonal Terms

For future reference, we now list the replica diagonal (or j = k) terms that we have sup-
pressed. In the order we considered above, we have

nθ(τcb)θ(τba)
n−1∑
k=0

〈Oa(0)Ob(2πk + τba)Oc(2πk + τca)〉n

= nθ(τcb)θ(τba)

(
〈Oa(0)Ob(τba)Oc(τca)〉n−

1

2πi

∫ i2πn

i2π

dtc

∫ ∞
−∞

dsc
〈Oa(0)Ob(−isc − itc − τcb)Oc(−isc − itc)〉n

4 sinh2((sc − iτca)/2)

)
. (A.9.13)

Again, other orderings can be found just by swapping the a, b, c labels accordingly. Note
that at n = 1, the integral term vanishes and the answer reduces to the angular ordered
three-point function as expected.

A.10 Explicit Calculation of c(2)

In this section, we compute the OPE coefficient of T̂++ in the D̂+ × D̂+ OPE. This requires
us to compute the twist defect three point function 〈Σ0

nD̂+D̂+T̂−−〉. As described around
equation (A.8.3), the appearence of a delta function in the D̂+ × D̂+ OPE requires that the
coefficient cn for T̂−− must be at least of order (n− 1)2 near n = 1. We now show that this
is indeed true. In the next section, we will explicitly compute the anomalous dimension of
T̂−− and show that it behaves as gn ∼ γ(1)(n− 1) +O((n− 1)2). We will finally show that
their ratio obeys the relation

c(2)/γ(1) = 2π/Sd−3 (A.10.1)

as required by the first law of entanglement entropy.
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The three point function we are after, at integer n, takes the form

〈Σ0
nT̂−−(y′)D̂+(y)D̂+(y = 0)〉 (A.10.2)

= −
∮
dz̄

∮
dw̄

∮
du

2πiu
〈Σ0

nT−−(u, ū = 0, y′)T++(z = 0, z̄, y)T++(w = 0, w̄, 0)〉

where it is understood that all the stress tensor operators should be Zn symmetrized. Our
goal is now to analytically continue this expression in n and then expand around n = 1.
We can turn to the previous section for this result, letting Oa = T++(w = 0, w̄, 0), Ob =
T++(z = 0, z̄, y) and Oc = T−−(u, ū = 0, 0).

Just as in Section 5.5, a major simplification occurs for this correlator; the two displace-
ment operators are space-like separated from each other, so they commute even upon analytic
continuation. Thus, any terms with commutators between Oa and Ob in the previous section
drop out.

Furthermore, the so-called “replica diagonal” terms in the previous section will also
vanish. This is because they do not contain enough s-integrals that produce necessary poles
in z̄ and w̄. Thus, these terms vanish upon the contour integration over z̄ and w̄ in (A.10.2).

These considerations together with equation (A.9.11) of the previous section make it
clear that the correlator in (A.10.2) vanishes up to order (n−1)2. Indeed, the only surviving
contribution is the second term in (A.9.11). Expanding that to second order while being
careful to account for the spin of the stress tensors, we find

〈Σ0
nT̂−−D̂+D̂+〉n =

−(n− 1)2

2

∮
dz̄dw̄

du

2πiu

∫ ∞
0

∫ ∞
0

dλbdλcλ
2
bλ

2
c

〈T++(z̄λb, y)T++(w̄λc)T−−(u, y′)〉
(λb − 1− iε)2(λc − 1 + iε)2

+O((n− 1)3).

(A.10.3)

Rescaling λb → λb/z̄ and λ→ λc/w̄, we can then expand the denominators in small z̄, w̄
and perform the residue projections in z̄, w̄ and u. The final answer is the simple result

〈Σ0
nT̂−−D̂+D̂+〉 = 2π2(n− 1)2 〈E+(y)E+(y = 0)T−−(u = 0, y′)〉+O((n− 1)3). (A.10.4)

where E+(y) is the half-averaged null energy operator

E+(y) =

∫ ∞
0

dλT++(z = 0, λ, y) (A.10.5)

We now set about computing this correlator. Expanding the stress tensor three point
function in a general CFT into the free field basis, we have

〈TTT 〉 = ns 〈TTT 〉s + nf 〈TTT 〉f + nv 〈TTT 〉v (A.10.6)

where ns, nf and nv are charges characterizing the specific theory.
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One can demonstrate that the only non-vanishing contribution from these three terms is
from the scalar three point function. The way to see this is as follows. The fermion term can
be computed by considering a putative free Dirac fermion theory with field ψ. The stress
tensor looks like T++ ∼ ψ̄Γ+∂+ψ. Then we can compute the 〈TTT 〉 three point function via
Wick contractions. There will always be at least one Wick contraction between operators in
each T++. The kinematics of these operators ensure that such a contraction vanishes because
they are both on the same null plane.7

The same argument can be made for the vector fields. In fact, the only reason that the
scalar contribution doesn’t vanish is because of the presence of a total derivative term in the
conformal stress tensor, namely T++ ⊃ − d−2

4(d−1)
∂2

+ :φ2 :. One can then show that the only
non-vanishing term is

〈E+(y)E+(0)T−−(y′)〉 =
4ns(d− 2)

(d− 1)3

1

|y|d−2|y′|2d
. (A.10.7)

Dividing by the two point function 〈T++(0)T−−(y′)〉 = cT
4|y′|2d , we find

c(2) =
32π2ns(d− 2)

cT (d− 1)3
. (A.10.8)

We now turn to computing the anomalous dimension γ(1) for the stress tensor operator T̂
on the defect.

A.11 Explicit Calculation of γ(1)

In this section, we will follow the steps laid out in [17] for computing the spectrum of defect
operators and associated anomalous dimension induced by the bulk stress tensor. To do this,
we must compute

n
n−1∑
j=0

〈Σ0
nT−−(w, 0, y)T++(0, z̄, 0)〉 . (A.11.1)

To leading order in n− 1 this expression takes the form of a sum of two terms, a “modular
energy” piece and a “relative entropy” piece

(∂n − 1) 〈Σ0
nT̂−−T̂++〉 |n=1 = (−2π 〈HT−−(w, 0, y)T++(0, z̄, 0)〉

−
∫ −∞

0

dλ
λ2

(λ− 1 + iε)2
〈T−−(w, 0, y)T++(0, z̄λ, 0)〉

)
(A.11.2)

7Actually these contractions will be proportional to a delta function δd−2(y) but we are assuming the
three stress tensors sit at different y’s.



APPENDIX A. APPENDIX 205

We will try to extract the anomalous dimensions and spectra of operators by examining
the two point function of the defect stress tensor. In this framework, the signal of an
anomalous dimension is a logarithmic divergence. As explained in [17], the log needs to be
cutoff by z̄w/y2 or zw̄/y2. In fact, there will be two such logarithms that will add to make
the final answer single-valued on the Euclidean section.

We are thus tasked with looking for all of the terms containing log divergences in (A.11.2).
Since the modular Hamiltonian is just a local integral of the stress tensor

H =

∫
dd−2y′

∫ ∞
0

dx+x+T++(x− = 0, x+, y′) (A.11.3)

then the first term on the r.h.s. of (A.11.2) is a stress tensor three point function. Following
the method of the previous section, we can then break up (A.11.2) into the free field basis.
This determines both terms on the r.h.s of (A.11.2) in terms of charges ns, nf and nv. This
allows us to instead compute the answer in a theory of free massless scalars, fermions and
vectors. While this might seem like three times the work, it actually illuminates why gn is
only dependent on ns. We start by examining the case of a free scalar and will see why the
free fermion and free vector terms do not contribute to gn.

Spectrum induced by free scalar

This spectrum of φ(z, z̄, y) was analyzed in [98]. The authors found that the leading twist
defect primaries are all twist one (in d = 4) and have dimension independent of n. As
noted in Appendix C of that work, this can be understood in any dimension from the
fact that φ is annihilated by the bulk Laplacian. This constraint - for defect primaries -
enforces holomorphicity in z, z̄ of the bulk-defect OPE which translates to a lack of anomalous
dimensions. For free fermions and vectors, the same argument goes through since their two
point functions are also annihilated by the Laplacian.

One might be confused because the anomalous dimension for scalar operators of dimen-
sion ∆ was computed in [17] and found to be non-zero for operators of dimension ∆ = d−2

2
.

This discrepancy has to do with a subtlety related to the extra boundary term in the modu-
lar Hamiltonian for free scalars. This discrepancy is related to the choice of the stress tensor
- the traceless, conformal stress tensor vs. the canonical stress tensor.

The authors of [98] worked with canonical free fields, for which the stress tensor is just
T canonical

++ = ∂+φ∂+φ. Indeed if one inserts the canonical stress tensor into the modular
Hamiltonian in equation (3.20) of [17], then the anomalous dimension vanishes. On the

other hand, if one uses the conformal stress tensor, T conformal
++ = : ∂+φ∂+φ :− (d−2)

4(d−1)
∂2

+ :φ2 :,

then anomalous dimension for φ is given by [17].
This discrepancy thus amounts to a choice of the stress tensor. Note that this is special

to free scalars and does not exist for free fermions and vectors since there are no dimension
d−2 scalar primaries in these CFTs. This proves that if one works with canonical free fields,
there should be no anomalous dimension for the defect operators induced by the fundamental
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fields φ, ψ and Aµ. This is enough to prove that the defect primary induced by the canonical
bulk stress tensor must also have zero anomalous dimension since this is just formed by
normal-ordered products of the defect primaries induced by the bulk fundamental fields.

Back to the stress tensor

The upshot is that we only need to worry about the terms in (A.11.2) proportional to
ns. Furthermore, we only need to worry about terms in the 〈HTT 〉 term that involve the
boundary term of the modular Hamiltonian. This reduces the expression down to the term

〈HTT 〉 ⊃ − (d− 2)

4(d− 1)

∫
dd−2y 〈:φ2 :T++(0, z̄, y)T−−(w, 0, 0)〉 . (A.11.4)

A simple calculation shows that the only contractions that give log divergences come from

〈HTT 〉 ⊃ ns(d− 2)2

4(d− 1)2

∫
dd−2y′ 〈φ(0, 0, y′)φ(0, 0, 0)〉 〈φ(0, 0, y′)∂2

z̄φ(0, z̄, 0)T−−(0, 0, y)〉

= −
nsc

3
φφd(d− 2)4

16(d− 1)3

∫
dd−2y′

1

|y′|d−2|y − y′|d−2|y|d+2
. (A.11.5)

This integral has two log divergences coming from y′ = 0 and y′ = y, however they can be
regulated by fixing z, z̄ and w, w̄ away from zero. The two singularities just add to make the
final answer single valued under rotations by 2π about the defect as in [17]. We thus find

〈HTT 〉 ⊃ − ns
c3
φφd(d− 2)4

32(d− 1)3
Sd−3 log(ww̄zz̄/|y|4)

1

|y|2d
= −2ns(d− 2)

(d− 1)3
Sd−3 log(ww̄zz̄/|y|4)

1

|y|2d
.

(A.11.6)

Dividing by 〈T++T−−〉 gives

γ(1) =
16πns(d− 2)

cT (d− 1)3
Sd−3. (A.11.7)

Comparing with (A.10.8), we see that

c(2)

γ(1)
=

2π

Sd−3

(A.11.8)

as required by the first law of entanglement.

A.12 Calculating Fn
At first glance, Fn seems difficult to calculate; we would like a method to compute this
correlation function at leading order in n − 1 without having to analytically continue a
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Zn symmetrized four point function. The method for analytic continuation is detailed in
Appendix A.9.

As detailed in Appendix A.9, part of what makes the analytic continuation in n difficult
is the analytic structure (branch cuts) due to various operators becoming null separated from
each other in Lorentzian signature. One might naively worry that we have to track this for
four operators in the four point function Fn.

We will leverage the fact that the two stress tensors in D̂+(y1) and D̂+(y2) are in the
lightcone limit with respect to the defect since

D̂+(y1) = lim
|z|→0

i

∮
dz̄

n−1∑
j=0

T
(j)
++(z = 0, z̄, y1). (A.12.1)

Thus, the stress tensors at y1 and y2 commute with each other even after a finite amount of
boost. This means that these two operators do not see each other in the analytic continua-
tion. In other words, the analytic structure for each of these operators is just that of a Zn
symmetrised three point function. This was computed in Appendix A.9.

We can thus jump straight to (A.9.12) but now with two Ob operators. The final replica
four point function assuming [Ob1 ,Ob2 ] = 0 is given by8

(n− 1)

8π2

∫ ∞
−∞

dscdsb1dsb2

∫ sc

0

dtb1dtb2
〈[Ob2(−isb2 − itb2), [Ob1(−isb1 − itb1),Oa(0)]]Oc(−isc + τca)〉1
64 sinh2((sb1 − iτb1a) sinh2((sb2 − iτb2a)/2) sinh2((sc − iε)/2)

+O((n− 1)2). (A.12.2)

To make contact with Fn, we assign

Ob1(−is1) = lim
|z|→0

i

∮
dz̄ e2s1−2iτb1aT++(x− = 0, x+ = rz̄e

s1 , y1)

Ob2(−is2) = lim
|w|→0

i

∮
dw̄ e2s2−2iτb2aT++(x− = 0, x+ = rw̄e

s2 , y2)

Oc(−isc) = lim
|u|→0

i

∮
du e−2sc+2iτcaT−−(x− = −rue−sc , x+ = 0, y4)

Oa(0) = lim
|v|→0

i

∮
dv

2πi
T−−(x− = −rv, x+ = 0, y3)

(A.12.3)

with z̄, w̄ = rz̄,w̄e
iτb1,b2 and u, v = ru,ve

−iτa,c . The funny factors of e2s−2iτ are to account for
the spin of the stress tensor.

8We have dropped the so-called “replica diagonal” terms in (A.9.12) since they will drop out of the final
answer after the residue projection in (A.12.1).
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Shifting sb1,2 → sb1,2 − tb1,2 − log(r1,2) and moving to null coordinates λ = es, we find the
expression

Fn = lim
|z|,|w|,|u|,|v|→0

∮
dz̄ dw̄ du dv×

(n− 1)

8π2

∫ ∞
−∞

dsc

∫ ∞
0

dλb1,2 λ
2
b1
λ2
b2

z̄3w̄3

∫ sc

0

dtb1dtb2e
−sce−tb1−tb2e6iτa ×

〈[T++(x+ = λb1), [T++(x+ = λb2), T−−(x− = −rv)]]T−−(x− = −rue−sc−iτca)〉1(
λb1e

iτa

z̄e
tb1
− 1
)2 (λb2eiτa

w̄e
tb2
− 1
)2

(esc−iε − 1)2
. (A.12.4)

The first line in (A.12.4) comes from the residue projections in the definitions of the
displacement operators. Expanding the integrand at small |z̄| and |w̄|, we can perform the
residue integrals over z̄ and w̄ leaving us with

Fn = lim
|u|,|v|→0

∮
du dv×

1− n
2

∫ ∞
−∞

dsc

∫ sc

0

dtb1dtb2e
−sc+2iτaetb1+tb2

〈[E+(y1), [E+(y2), T−−(x− = −rv)]]T−−(x− = −ue−sc+iτa)〉1
(esc−iε − 1)2

(A.12.5)

where E+(y1) is a half-averaged null energy operator,

∫ ∞
0

dx+T++(x+).

We can now do the tb1 and tb2 integrals which produce two factors of esc − 1 precisely
cancelling the denominator. Note that a similar cancellation occurred in equation (5.6.12).
We can then replace commutators of half-averaged null energy operators with commutators
of full averaged null energy operators. Using the fact that Ê+ |Ω〉 = 0, we are left with the
expression

Fn = lim
|v|,|u|→0

∮
dudv×

(1− n)

2

∫ ∞
−∞

dsc e
−sc+2iτa

〈
T−−(x− = −rv, x+ = 0, y3)Ê+(y1)Ê+(y2)T−−(x− = −ue−sc+iτa , x+ = 0, y4)

〉
1
.

(A.12.6)

Using boost invariance, we can also write this as

Fn = 4π2(n− 1)

∫ ∞
−∞

dsc e
−sc
〈
T−−(x− = −1, x+ = 0, y3)Ê+(y1)Ê+(y2)T−−(x− = −e−sc , x+ = 0, y4)

〉
1

(A.12.7)

where we have performed the projection over v, u.
This is precisely the formula we were after. From here, one can just insert the Ê+ × Ê+

OPE as described in the main text.
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A.13 Free Field Theories and Null Quantization

In this section we review the basics of null quantization (see [208, 28]). We then show
that our computations in Section 5.6 can reproduce the results of [28]. In free (and super-
renormalizable) quantum field theories, one can evolve the algebra of operators on some
space-like slice up to the null plane x− = 0 and quantize using the null generator P+ =∫
dd−2y dx+ T++(x+, y) as the Hamiltonian. One can show that for free scalar fields, the

algebra on the null plane factorizes across each null-generator (or “pencil”) of the x− = 0
plane. For each pencil, the algebra Apy is just the algebra associated to a 1+1-d chiral CFT.
Accordingly, the vacuum state factorizes as an infinite tensor product of 1 + 1-d chiral CFT
vacua:

|Ω〉 =
⊗
y

|Ω〉py (A.13.1)

where |0〉py is the vacuum for the chiral 1 + 1-d CFT living on the pencil at transverse
coordinate y.

Thus, if we trace out everything to the past of some (possibly wiggly) cut of the null
plane defined by x+ = X+(y), we will be left with an infinite product of reduced vacuum
density matrices for a 1 + 1-d CFT on the pencil

σX+(y) =
⊗
y

σ
py
x+>X+(y). (A.13.2)

As discussed in [28], a general excited state on the null plane |Ψ〉 can also be expanded in
the small transverse size of A of a given pencil. For any py, the full reduced density matrix
above some cut of the null plane takes the form

ρ = σ
py
X+(y) ⊗ ρ

(0)
aux +A1/2

∑
ij

σ
py
X+(y)

∫
drdθfij(r, θ)∂φ(reiθ)⊗ Eij(θ) (A.13.3)

where ∂φ is an operator acting on the pencil Hilbert space and Eij(θ) = eθ(Ki−Kj) |i〉 〈j|,
with |i〉 eigenvectors for the auxiliary modular Hamiltonian, Kaux. Note that Eij parame-
terizes our ignorance about the rest of the state on the null plane which is not necessarily
the vacuum.

As a consistency check of (5.6.12), we now demonstrate agreement with the result of
[28]. In null quantization, the delta function piece of the shape deformation corresponds
to a shape deformation of the pencil while keeping the auxiliary system fixed. Note that
the ansatz A.13.3 is analogous to the λ expansion in Section 5.6 even though we are now
considering a general excited state

ρ = σ +A1/2δρ+O(A). (A.13.4)
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Figure A.3: The Hilbert space on a null hypersurface of a free (or superrenormalizable)
quantum field theory factorizes across narrow pencils of width A. One pencil is shown above
in yellow. The neighboring pencils then can be thought of as an auxiliary system (shown in
blue). In the vacuum, the state between the pencil and the auxiliary system factorizes, but
in an excited state there could be nontrivial entanglement between the two systems.

We now just plug in our expression of δρ into (5.6.8) and find that the relative entropy
second variation is

d2

dX+(y)2Srel(ρ|ρ0) =
1

2

∑
ij

∫ ∫
(drdθ)1(drdθ)2(fij(r, θ))1(fji(r, θ))2∫
ds es〈(∂φ)1E+E+(∂φ)2(s)〉p〈Eij(θ1)Eji(θ2 − is)〉aux.

(A.13.5)

Now on the pencil, E+ is the translation generator so we can use the commutator
i[E+, ∂φ] = ∂2φ and the fact that E+ |0〉 = 0 to get

d2

dX+(y)2Srel(ρ|ρ0) =
1

2

∑
ij

∫ ∫
(drdθ)1(drdθ)2(fij(r, θ))1(fji(r, θ))2∫
dses〈(∂3φ)1(∂φ)2(s)〉p〈Eij(θ1)Eji(θ2 − is)〉aux. (A.13.6)

Using the chiral two-point function we have

〈(∂3φ)1(∂φ)2(s)〉p =
es

(r1eiθ1 − r2eiθ2+s)4
. (A.13.7)
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Moreover, the auxiliary correlator is given by

〈Eij(θ1)Eji(θ2 − is)〉 = e−2πKieνij(θ1−θ2+is), νij = Ki −Kj (A.13.8)

We now shift the integration contour by s → s + i(θ1 − θ2) + iπ + log(r1/r2). Putting
this all together we are left with evaluating

e−π(Ki+Kj)e−2i(θ1+θ2)

(
r1

r2

)iνij 1

(r1r2)2

∫ ∞
−∞

ds
eisνije2s

(1 + es)4
. (A.13.9)

The θ integrals project us onto the m = 2 Fourier modes of fij, f
(m=2)
ij (r), and we find the

final answer

d2

dX+(y)2Srel(ρ|ρ0) =
1

2

∑
ij

|F (2)
ij |2e−π(Ki+Kj)g(νij) (A.13.10)

where

F
(m)
ij =

∫
dr

rm
riνijf

(m)
ij (r), g(ν) =

πν(1 + ν2)

sinh(πν)
. (A.13.11)

This is precisely the answer that was found by different methods in [28]. Note that the right
hand side of (A.13.10) is manifestly positive as required by the QNEC.

A.14 Ant Conjecture and Properties of Energy

Minimizing States

In Sec. 6.5, we showed that the Ceyhan-Faulkner construction proves our conjecture in the
pure-QFT limit. The original purpose of the CF construction, however, was to prove Wall’s
“ant conjecture” [66] (and thus, the Quantum Null Energy Condition [16]). It is therefore
of interest to ask how closely related our coarse-graining conjecture is to the ant conjecture
on Killing horizons.It is easy to see that Eqs. (6.4.14) and (6.4.15) imply the ant conjecture.
Conversely, we will show in this section that the ant conjecture implies Eqs. (6.4.14) and
(6.4.15), but only in 1+1 dimensions.

In Appendix A.14, we will review the ant conjecture. In Appendices A.14 and A.14,
we establish some general properties that energy-minimizing states must satisfy. We show
that the minimum energy completion has vanishing stress tensor on the unconstrained half-
space, with all of the remaining energy appearing as a shock immediately on the cut. We
also show that for a pure minimum energy state, the von Neumann entropy of semi-infinite
regions is constant so long as the region’s boundary lies on the unconstrained side. In 1+1
dimensions, we can also show that the integrated left stress tensor vanishes. Thus the ant
conjecture implies Eqs. (6.4.14) and (6.4.15), the key properties of the field theory limit of
our coarse-graining conjecture. In higher dimensions, we are unable to establish this result.
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Figure A.4: The ant conjecture in 1+1 dimensions. A left-walking ant has access to all the
information in the right wedge. It asks what is the least amount of additional energy it
might still encounter to the left of v0. The conjecture states that this is ~S ′/2π, where S ′ is
the right derivative of the von Neumann entropy of the reduced state on the right, evaluated
at the cut. We show that this statement is equivalent to the nongravitational limit of our
coarse-graining conjecture.

Ant Conjecture

Wall’s “ant argument” for the Quantum Null Energy Condition in 1+1 dimensions invokes
an ant that has walked left from +∞ to v0. (See Fig. A.4.) That is, given a global state
ρ, the ant has knowledge only of the right half-space state ρ>v0 . Pausing for rest, the ant
contemplates how much energy it might still encounter in the remainder of its path, the
interval (−∞, v0]. Because of global energy conditions, this amount is bounded from below.

Let M(v0) be the lowest energy of any global state that reduces to the same ρ>v0 .9 More
precisely,

M(v0) ≡ infρ̂

[∫ ∞
−∞

dṽ 〈Tvv〉
∣∣
ρ̂

]
. (A.14.1)

9We should point out two differences in our conventions compared to [66]. First, we have switched the
side on which the state is held fixed, from left to right. Secondly, in [66], M was the infimum of the energy
density integrated only over the complement of that fixed half-space, whereas here it is the infimum the
global energy. This choice is more convenient as otherwise the presence of distributional sources at the cut
v0 would lead to ambiguities and require a more elaborate definition. In this respect, our conventions agree
with [18].
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The infimum is over all global states ρ̂ that agree with ρ in the region v > v0: Tr≤v0 ρ̂ = ρ>v0 .
A strictly larger set of global states will agree with ρ on a smaller region, ρv1 , v1 > v0, so
the infimum can only decrease with v:

∂vM(v) ≤ 0 . (A.14.2)

One can readily establish a lower bound on M(v). The global energy appearing in
the infimum can be written as (~/2π)(∂vK̄ − ∂vK), by Eq. (6.4.10) and its left analogue.
Moreover, Eq. (6.4.12) must hold for all states appearing in the infimum, so by adding ∂vK
to it one finds that

M(v0) ≥ − ~
2π
∂vSrel|v0 , (A.14.3)

where we have used Eq. (6.4.9). Note that the lower bound is determined solely by the input
state ρ.

Wall conjectured [66] that this inequality is saturated:

M(v0) = − ~
2π
∂vSrel|v0 . (A.14.4)

This conjecture is equivalent to the existence of a sequence of states ρ̂(n), all of which reduce
to ρ>v0 on the right, such that

lim
n→∞

∫ ∞
−∞

dṽ〈Tvv〉|ρ̂(n) = − ~
2π
∂vSrel|v0 . (A.14.5)

Here we will assume the conjecture to be true. We will be interested in certain universal
properties of the states in this sequence that emerge in the limit as n→∞.

Properties of the minimum energy completion in 1+1 dimensions

For compactness of notation, we will ascribe any limiting properties of the states ρ̂(n) as
n → ∞ to a “limit state” ρ̂∞. We stress that such a state need not exist. Rather, ρ̂∞ is
shorthand for limn→∞ ρ̂

(n), where the limit should be moved outside of any maps of the state
to other quantitities. Moreover, we indicate ρ̂∞ as the argument of a map by the superscript
∞. For example,

S∞(v0) = lim
n→∞

[
−Tr ρ̂

(n)
>v0

log ρ̂
(n)
>v0

]
. (A.14.6)

By Eq. (A.14.4) and the discussion leading to Eq. (A.14.3), the state ρ̂∞ must saturate
both inequalities in Eq. (6.4.12):

∂vK̄
∞|v0 = ∂vS̄

∞|v0 = ∂vS
∞|v0 . (A.14.7)

The first equality implies
∂vS̄

∞
rel|v0 = 0 . (A.14.8)
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Applying the left analogues of Eqs. (A.14.2) and (A.14.4) to M̄ (with ρ̂∞ as the input state!),
we have

∂2
v S̄
∞
rel ≥ 0 , (A.14.9)

for all v. The above two consequences of Wall’s conjecture, combined with positivity and
monotonicity of the left relative entropy,

S̄∞rel ≥ 0 , (A.14.10)

∂vS̄
∞
rel ≥ 0 , (A.14.11)

imply that

∂vS̄
∞
rel = 0 for all v < v0 . (A.14.12)

This is a very strong condition and it intuitively suggests that for v < v0 we have a vacuum-
like state. In particular all local observable in the region between v and v0 for v < v0 need
to register vacuum values otherwise we would have S∞rel(v0) > S∞rel(v). This is particular tells
us that

〈Tvv(v)〉|ρ̂∞ = 0 for v < v0 . (A.14.13)

The above equation combined with Eq. (A.14.12) implies

∂2
v S̄
∞ = 0 =⇒ ∂vS̄

∞ = α for v ≤ v0 , (A.14.14)

In fact, in 1+1 CFTs we can argue that α = 0 by invoking the strengthened version of the
QNEC [210, 19] 10:

〈Tvv〉 ≥
~
2π
∂2
v S̄ +

6~
c

(∂vS̄)2 . (A.14.15)

Now, Eq. (A.14.12) implies that

〈Tvv〉 =
~
2π
∂2
v S̄ for v < v0 , (A.14.16)

which together with Eq. (A.14.15) implies that ∂vS̄ = 0. So, we conclude that for v < v0,

∂vS̄
∞ = 0 and ∂vS̄

∞
rel = 0 =⇒ (A.14.17)

lim
ε→0

∫ v0−ε

−∞
dṽ 〈Tvv〉

∣∣
ρ̂(∞) = 0 . (A.14.18)

We also know that

lim
ε→0

[∫ v0+ε

−∞
dṽ 〈Tvv〉

∣∣
ρ̂∞

]
=

~
2π
∂vS

∣∣
v0
. (A.14.19)

10We thank Aron Wall for suggesting the use of strengthened QNEC here
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This along with Eq. (A.14.17) implies that the minimum energy state contains a shock (a
delta function in energy density) at v0, and vanishing energy to its left:

〈Tvv〉 =

(
~
2π
∂vS

∣∣
v0

)
δ(v − v0) for v ≤ v0 . (A.14.20)

If ρ̂∞ is a pure state11 this further implies that

∂vS = 0 for v < v0 . (A.14.21)

In fact, we expect that ρ̂∞ can always taken to be pure. The basic idea is that any density
operator can be purified by a suitable auxiliary system. In general the auxiliary system has
to be external, but we now argue it can be taken to be distant soft modes in the quantum
field itself.

Suppose we had identified a sequence ρ̂(n) that limits to a mixed ρ̂∞. Finiteness of the
energy requires that each state in the sequence looks like the vacuum in some sufficiently
distant left region v < v(n) with v(n) < v0. We can take v(n) → −∞ as n → ∞. We can
add a purification of the state ρ̂(n) in soft wavepackets localized to the region v < v(n). This
results in a new, pure state and we redefine ρ̂(n) to be that state. Since we have not modified
the state in the region v > v0, it will still reduce to the given right state ρ>v0 ; and since the
region v < v(n) is semi-infinite, we can take the purifying wave-packets to have arbitrarily
small energy. In particular, we can take their contribution to the energy to vanish in the
limit as n→∞.

Higher-dimensional case

The generalization of the above result to higher dimensions is straightforward. We can
consider any Killing horizon N = R × B, with v ∈ R an affine parameter along light-rays
orthogonal to the d− 2 dimensional spatial surface B with collective coordinates y.

The analogue of the 1+1 dimensional ant is now an army of ants that have walked along
the null generators from v = +∞ to the position v = V (y), so that they know the state
ρ>V (y). (See Fig. A.5.) The ants again ask about the minimum global energy consistent with
this knowledge, M [V (y)]. This quantity can only decrease under deformations of V (y) that
are everywhere positive:

δM

δV (y)
≤ 0 . (A.14.22)

The definition of M differs from the 1+1 case only through an additional transverse inte-
gral over dd−2y. It can be shown [112, 68] that the modular Hamiltonian, too, is simply the
sum of the local Rindler energies associated with the individual null generators, Eq. (6.4.6):

∆K(V0(y)) =
2π

~

∫
dd−2y

∫ ∞
V0(y)

dv (v − V0(y))Tvv , (A.14.23)

11The conclusion would extend to mixed states under the assumption that ∆S(v) remains bounded from
below for any v in the limit as n→∞. The status of this assumption is not clear to us, however.
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Figure A.5: A general cut of the Rindler horizon in d > 2. An army of ants marches down
along the null direction towards the cut. Given the state above the cut, they ask what is the
minimum energy still to come.

By the analogue of Eq. (6.4.12),

δK̄

δV (y)
≥ δS̄

δV (y)
≥ δS

δV (y)
, (A.14.24)

one finds

M ≥ − ~
2π

δSrel

δV (y)
. (A.14.25)

The ant conjecture again demands that this be an equality. That is, there exists a global
state ρ̂∞ that saturates Eq. (A.14.25) (or if not, saturation can at least be approached, in
the limit of a sequence of global states). The same arguments as in the 1+1 dimensional
case imply that ρ̂∞ satisfies

δS̄∞rel

δV (y)
= 0 for all v < V0(y) . (A.14.26)

Exactly as in the 1+1 case, the above condition implies

〈Tvv(v)〉|ρ̂∞ = 0 for v < V0(y) , (A.14.27)

δ2S̄∞

δV (y1)δV (y2)
= 0 =⇒ δS̄∞

δV (y)
= α for all v < V0(y) . (A.14.28)

where α is some constant. As was discussed at the end of the previous section, we can take
ρ∞ to be a limit of pure states where we additionally have

δS∞

δV (y)
= α for all v < V0(y) , (A.14.29)
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At this point, it would be nice to argue that α = 0 as in the 1+1 dimensional case, but
we will leave this to future work. If we assume that α = 0, then the purity of the global
state implies

δS̄∞

δV (y)
= 0 for all v < V0(y) , (A.14.30)

and together with Eq. (A.14.26) one obtains

lim
ε→0

[∫ V0(y)−ε

−∞
dṽ 〈Tvv〉

∣∣
ρ̂∞

]
= 0 , (A.14.31)

for all y. Note that Eq. (A.14.31) does not otherwise follow from Eq. (A.14.27): because
ρ̂∞ is defined as a limit of a sequence, it would be possible for 〈Tvv〉 to approach zero while
its integral approaches a finite value. Assuming the ant conjecture, that Eq. (A.14.25) is an
equality, it follows that

〈Tvv(v, y)〉
∣∣
ρ̂∞

=

(
~
2π

δS

δV (y)

∣∣
V0

)
δ(v − V0(y))

for v ≤ V0(y) . (A.14.32)

To summarize, in 1+1 dimensions, the ant conjecture implies the key properties of the
coarse-graining states we conjectured: Eqs. (6.4.14) and (6.4.15) hold on a Killing horizon.
In greater than 1+1 dimensions, this implication obtains only with the unproven assumption
that α = 0 above.

A.15 Null Limit of the Kink Transform

In this appendix we apply the kink transform to a Cauchy slice Σ that has null segments. In
the null limit we express the kink transform in terms of the null initial value problem. We
then show that this leads to a shock in the Weyl tensor for d > 2. From this Weyl shock we
extract the boundary stress tensor shock. This serves a two-fold purpose. The first is that
it provides direct intuition for how the kink transform modifies the geometry. The second is
that, as will be evident from the calculation below, the derivation of the stress tensor shock
from the Weyl shock works even for wiggly cuts of the Rindler horizon on the boundary.12

Let Nk be a null segment of Σ in a neighborhood of R and let ka be the null generator
of Nk. We now allow the boundary anchor of R to be an arbitrary cut V0(y) of the Rindler
horizon, as considered in Sec. 7.2. Lastly, denote by P a

µ and P i
µ the projectors onto Nk and

12The results of this section do not apply when d = 2, as the shear and the Weyl tensor vanish identically.
However in d = 2 there is no distinction between flat and wiggly cuts on the boundary so we gain neither
additional intuition nor generality compared with the analysis in Sec. 7.4.
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cross-sections of Nk (including the RT surface R), respectively. We can compose these to
obtain the projector P i

a.
By Eq. (7.3.4), when Σ is spacelike in a neighborhood of R the kink transform can be

contracted as follows:

xa(KΣ)ab → xa(KΣ)ab − sinh (2πs)xb δ(R) . (A.15.1)

In the null limit both xa and tµ approach ka. Therefore, the quantity in the LHS of
Eq. (A.15.1) has the following null limit:

xa(KΣ)ab
null→ ka∇akb . (A.15.2)

The transformation of Eq. (A.15.1) then becomes

κ→ κ− sinh (2πs)δ(λ) , (A.15.3)

where λ is a null parameter adapted to ka and κ is the inaffinity defined by

kb∇bk
a = κka . (A.15.4)

We refer to this transformation as the left stretch, as it arises from a one-sided dilatation
along Nk. This transformation was originally described in [139] in the context of black hole
coarse-graining.

We now show that the left stretch generates a Weyl tensor shock at the RT surface. The
shear of a null congruence is defined by

σij = P a
i P

b
j∇(akb) . (A.15.5)

It satisfies the evolution equation [156]

Lkσij = κσij + σi
kσkj − P µ

i P
µ
j k

akbCaµbν . (A.15.6)

Now let λ be a parametrization of Nk adapted to ka, with λ = 0 corresponding to R. In
terms of λ, the evolution equation can be written as

∂λσij = κσij + σi
kσkj − Cλiλj . (A.15.7)

Consider now the new spacetime Ms generated by the left stretch. As in Sec. 7.4, we
denote quantities in Ms with tildes. We can then write the evolution equation in Ms,

∂λ̃σ̃ij = κ̃σ̃ij + σ̃i
kσ̃kj − C̃λiλj . (A.15.8)

Since ka is tangent to Nk, and (Nk)s = Nk as submanifolds, we can identify ka with k̃a.
Thus we can use the same parameter λ in both spacetimes. Since σij is intrinsic to Nk, we
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can identify σij and σ̃ij for the same reason. Comparing Eqs. (A.15.7) and (A.15.8), and
inserting Eq. (A.15.3), we find that there is a Weyl shock

C̃λiλj = Cλiλj − sinh(2πs)σijδ(λ) . (A.15.9)

We now show that the Weyl shock Eq. (A.15.9) reproduces the near boundary shock
Eq. (7.2.44), but now for wiggly cuts of the Rindler horizon. To do this, we evaluate both
σij and Cλiλj in Fefferman-Graham coordinates to leading non-trivial order. The Fefferman-
Graham coordinates for M and Ms are defined exactly as in Sec. 7.4, except we now use
null coordinates (u, v) and (ũ, ṽ) on the boundary as defined in Sec. 7.2. To start with, we
note that ka∂zX̄

a = 0 since ∂zX̄
a is tangent to the RT surface. Evaluating this at leading

order yields the relation

kz = −dzd−3U(d) +O(zd−4) . (A.15.10)

We recall that

U(d) = −4G

d

δS

δV

∣∣∣
V0

. (A.15.11)

Moreover, the projector is given by

P µ
i = ∂iX̄

µ . (A.15.12)

From this definition, one can check that

P z
i = δzi +O(zd−1) , (A.15.13)

PA
i = O(zd−1) . (A.15.14)

Furthermore,

∇zkA, ∇Akz ∼ O(z−1) ,

∇AkB ∼ O(1) ,

∇zkz = −d(d− 2)U(d)z
d−4 +O(zd−5) , (A.15.15)

where we have used that kA ∼ O(1). Hence to leading order we simply have

σij = −d(d− 2)U(d)z
d−4δzi δ

z
j +O(zd−5) . (A.15.16)

Finally, a straightforward but tedious calculation of the Weyl tensor yields

C̃ṽiṽj = Cvivj − 8πG(d− 2)
(
〈T̃ṽṽ〉 − 〈Tvv〉

)
zd−4δzi δ

z
j δ(ṽ − V0) +O(zd−5) , (A.15.17)

where we have used that λ → v, ṽ as z → 0 in M,Ms respectively. Putting this together
yields the desired shock for wiggly cuts of the Rindler horizon.
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A.16 (Quantum) Trapped Surfaces in the

Schwarzschild Geometry

Classical Solution and Semiclassical Corrections

The Schwarzschild metric is

ds2 = −
(

1− R

r

)
dt2 +

dr2

1−R/r
+ r2dΩ2 . (A.16.1)

where R = 2GM is the Schwarzschild radius. In ingoing Eddington-Finkelstein coordinates,

ds2 = −
(

1− R

r

)
dv2 + 2dv dr + r2dΩ2 , (A.16.2)

where

v = t+ r∗ , r∗ = r +R log | r
R
− 1| , dr

dr∗
= 1− R

r
. (A.16.3)

Ingoing radial null congruences are at constant v, so dv = 0. Outgoing null congruences
satisfy dv = 2dr∗, so

v = 2r∗ + const . (A.16.4)

We are interested in their expansion,

θ =
dA/dλ

A
(A.16.5)

in terms of a convenient affine parameter, λ.
To find λ, first note that r is an affine parameter. This follows because A = 4πr2, so

θ =
2

r

dr

dλ
; (A.16.6)

and Raychaudhuri’s equation in the vacuum, for spherical symmetry, reduces to

dθ

dλ
+

1

2
θ2 = 0 . (A.16.7)

This implies that dr/dλ must be constant for any affine λ. We can take that constant to be
1 if we like, and choose another constant of integration so that r = λ.

However, this choice is not convenient for outgoing lightrays, because we are interested
in radial null congruences near and on the event horizon,

|r −R| � R . (A.16.8)

Intuitively, the radius r does not change much for these congruences, so small changes in
r correspond to large motions along the congruence. On the horizon, r is degenerate, and
inside the black hole, r runs towards the past.



APPENDIX A. APPENDIX 221

To remedy this, let us consider the coordinate distance c = r − R from the horizon.
We will work in the near-horizon limit of Eq. (A.16.8), i.e., to first order in c/R � 1. For
example, r∗ = R + R log(|c|/R) in this approximation; and by Eq. (A.16.4), an outgoing
congruence satisfies v = 2R log(|c|/R)+ const. Inverting this, we find

c = c0e
v/2R (A.16.9)

where c0 is the coordinate distance from the horizon at v = 0. This is the quantity that
vanishes on the horizon and goes negative inside, so we can define a nondegenerate, always
future-directed parameter by choosing λ = c/c0. This is affine since λ = (r−R)/c0 and r is
affine.

To summarize, we choose the affine parameter

λ = ev/2R (A.16.10)

on outgoing null geodesics near the horizon. By Eq. (A.16.6), the expansion of any such
congruence is given by

θ =
2c0

R
, (A.16.11)

where we again used r − R � R. All surfaces on the event horizon have c0 = 0 and hence
θ = 0; they are marginally outer trapped. It is easy to check that these are the only such
surfaces.

Any null vector tangent to the outgoing congruences must be proportional to ∂t + ∂r∗ .
Let ka be the particular null vector associated to the affine parameter λ. From Eq. (A.16.10)
we have

k =
d

dλ
=

2R

λ

d

dv

∣∣∣∣
cong

=
R

λ
(∂t + ∂r∗) , (A.16.12)

For the second equality, we used that on the outgoing congruence t = (v + const)/2, r∗ =
(v − const)/2.

For all ingoing spherical congruences in the region covered by the ingoing Eddington-
Finkelstein coordinates, −r is a future-directed nondegenerate affine parameter. Thus Eq. (A.16.6)
implies that their expansion, θl, is everywhere negative. This establishes that every spherical
cut of the event horizon is marginally trapped, i.e., satisfies θ = 0 and θl ≤ 0.

To treat quantum matter as a small perturbation, we expand the Einstein equation, Gab =
8πG〈Tab〉, in powers of G~, to first order. (We drop the expectation value symbol below.)
In this approximation, we can compute matter effects on the expansion of congruences by
integrating the Raychaudhuri equation,

dθ

dλ
= −1

2
θ2 − ς2 − 8πGTkk . (A.16.13)

Here Tkk = Tabk
akb, and ka = ( d

dλ
)a is the affine tangent vector to the null congruence. The

shear term vanishes for the spherical congruences we consider. In general, the θ2 term will
be O((G~)0) and thus dominant.
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However, here we will be interested in surfaces where classical and quantum effects com-
pete. Such surfaces must have θ ∼ O(G~) classically. By Eq. (A.16.11) they are found in a
neighborhood |c| ≤ O(G~) of the event horizon. Hence θ2 ∼ O((G~)2) will be negligible in
the region of interest, and Eq. (A.16.13) reduces to

θ(λ)− θ(λ0) = −8πG

∫ λ

λ0

Tkk . (A.16.14)

Classically Trapped Surfaces During Evaporation

We will now compute the effect of the quantum stress tensor for the Unruh state [192] on
the position of (marginally) trapped surfaces in the Schwarzschild geometry.

The renormalized stress tensor in the Unruh vacuum takes the form

〈U |T b
a |U〉ren

r−→2M−−−−→ L

4πR2

(
f−1 −1
f−2 −f−1

)
, (A.16.15)

where f = (1−R/r), R = 2M , a and b range over t and r, and

L ∼ ~
R2

(A.16.16)

is the luminosity of the black hole. Lowering indices we find

〈U |Tab |U〉ren

r−→2M−−−−→ L

4πR2

(
−1 −f−1

−f−1 −f−2

)
, (A.16.17)

Using

∂r∗ =
dr

dr∗
∂r =

(
1− R

r

)
∂r , (A.16.18)

we can express the null vector k in (t, r) coordinates,

k =
R

λ

(
∂t +

(
1− R

r

)
∂r

)
= kt∂t + kr∂r . (A.16.19)

and we obtain

〈Tµνkµkν〉 = 〈Tttktkt〉+ 〈Trrkrkr〉+ 2〈Ttrktkr〉

= − L

πλ2
= − ~

πR2λ2

(A.16.20)

Next we compute the change in the expansion induced by the above quantum stress
tensor. We consider a black hole at the onset of evaporation, for which there is no Hawking
radiation outside the near horizon zone yet. Thus we expect the geometry to revert to the
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classical vacuum Schwarzschild solution far from the black hole. And so, to find the corrected
expansion, we integrate backwards from λ =∞ to find the shift:

δθ ≡ θ(λ)− θ(∞) = −8πG

∫ λ

∞
〈Tµνkµkν〉dλ′ =

= 8πG

∫ λ

λ0

~
πR2λ′2

dλ′ = −8G~
R2λ

.

(A.16.21)

To find the (classically) marginally trapped surfaces in the Unruh state, we solve

θ(0) + δθ = 0 , (A.16.22)

where θ(0) is the uncorrected classical expansion given in Eq. A.16.11. Using c = c0λ, we
find that the classical marginally trapped surfaces are located at

cMTS ∼
G~
R

(A.16.23)

in the quantum-corrected geometry. Very near the horizon, we can treat the radial coordinate
to be essentially R to zeroth order.

An alternative useful notion of distance is the proper radial distance from the horizon, `,
which satisfies

d` =
dr√
1− R

r

'
√
R

dr√
r −R

−→ ` ' 2
√
R(r −R) ∼ (Rc)1/2 (A.16.24)

Since G~ = l2p, we see that the trapped surfaces are about a Planck length outside the
horizon:

`MTS ∼ O(lp). (A.16.25)

Thus, the area of the classical marginally trapped surface is increased by the quantum
correction, by

∆AMTS ∼ G~ = l2P (A.16.26)

Quantum Trapped Surfaces During Evaporation

We still consider the quantum-corrected geometry in the Unruh state, so the classical ex-
pansion is given by

θ = θ(0) + δθ ∼ c0

R
− G~
R2λ

. (A.16.27)

The generalized entropy is

Sgen =
A

4G~
+ S , (A.16.28)
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where S = −Tr ρ log ρ and ρ is the quantum state in the region exterior to the Cauchy-
splitting sphere. The quantum expansion Θ is (4G~ times) the rate of change of the gen-
eralized entropy, per unit area, under shape deformations. In the spherically symmetric
case,

Θ = θ +
4G~
A

dS

dλ
, (A.16.29)

Quantum marginally trapped surfaces are characterized by Θ = 0.
The Generalized Second Law (GSL) states that any outgoing radial congruence on or

outside the event horizon must satisfy Θ ≥ 0, so the quantum marginally trapped surfaces
must lie inside the horizon [179]. By Eq. (A.16.27), θ < 0 on and inside the horizon. We see
from Eq. (A.16.29) that the GSL requires

4G~
A

dS

dλ
= −αθ|H , (A.16.30)

where H refers to the horizon. We take α−1 ∼ O(1), in line with Page’s explicit calculation
for an evaporating black hole in the Unruh state [211].

Combining these results and neglecting factors of order unity where appropriate, we find

Θ = θ − αθ|H =
c

Rλ
− G~
R2λ

+ α
G~
R2λ

. (A.16.31)

Setting Θ = 0 yields
c

Rλ
= −(α− 1)

G~
R2λ

−→ c ∼ −G~
R
. (A.16.32)

Using the proper area, we find
∆AQMTS ∼ −l2P . (A.16.33)

Thus, the quantum marginally trapped surfaces are a proper distance of order the Planck
length inside of the horizon.

We will now show that the “duration” of the lightsheet L of a quantum marginally
trapped surface µQ is of order of scrambling time

∆ts ∼ R log
R

lP
. (A.16.34)

This assumes that µQ is about one Planck length inside of the event horizon, as would be
the case for an isolated, slowly evaporating black hole. Of course, the points on L are null
or spacelike separated. What we mean by the “duration” of L is the amount of time, as
measured at large radius r, for which it will be the case that matter falling in radially from
this radius will cross L (see Fig. A.6).

We will approximate the infalling matter as ingoing radial null geodesics; the result would
be the same for timelike geodesics starting at rest at large radius. Let the earliest geodesic
crossing L be at v = v1 in the Eddington-Finkelstein coordinates defined in Appendix A.16.
It will meet L at µQ, whose radius satisfies R − rµQ ∼ l2P/R. The last geodesic that meets
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Figure A.6: The future outgoing lightsheet of µQ (top red line) is crossed by two ingoing
radial null geodesics at v1 (at µQ) and v2 (at the singularity). Their Schwarzschild time
difference at fixed r is the scrambling time, ∆ts.

L will do so where L hits the singularity, at r = 0. The lightsheet L is characterized by
u = const, where u is the ingoing Eddington-Finkelstein coordinate, u ≡ t − r∗. Here r∗ is
the tortoise coordinate defined in Eq. A.16.3. Since r∗ depends only on r, we have

∆t = t2 − t1 = r∗(rµQ)− r∗(0) = rµQ +R log
R

l2P/R
∼ ∆ts . (A.16.35)

A similar analysis demonstrates that the scrambling time is how long it takes a geodesic
to propagate from about a Planck distance outside the horizon to the edge of the near-horizon
zone, at r = 3R/2.

A.17 Perturbative Construction of Q-screens

Let µQ be a quantum marginally trapped surface near a perturbed Killing horizon that ap-
proaches the Hartle-Hawking state in the future. Then there exists a Q-screen that approaches
the Killing horizon in the future and contains µQ as a leaf.

This fact is useful in sketching a heuristic argument for our conjectured QPI in asymptot-
ically AdS spacetime, following Eq. (8.7.8). We will now demonstrate this claim by explicit
construction.
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Figure A.7: A quantum marginally trapped surface µQ in the vicinity of a perturbed Killing
horizon H. We construct a Q-screen containing µQ that asymptotes to the Killing horizon at
late times. We first fire a null plane towards H that intersects it on µH . We then foliate H
starting from µH . At every leaf of this foliation, we fire null planes inwards and to the future.
On each null plane, we find a quantum marginally trapped surface at an affine distance δU
from H. The Q-screen is the union of these quantum marginally trapped surfaces.

Consider an event horizonH which is a perturbation to a Killing horizon caused by matter
excitations Tµν ∼ O(~) such that in the far future H settles down to a Killing horizon in
the Hartle-Hawking state. Furthermore, assume that there exists a quantum marginally
trapped surface near H. It is known [179] that quantum marginally trapped surfaces are
behind event horizons, so µQ will be a small distance in the inward direction l from H. Given
any co-dimension 2 surface in this spacetime, k and l respectively represent the outward and
inward null vectors perpendicular to the surface. Let y parametrize the transverse position
of the surface; see Fig. A.7.

For the construction of the Q-screen, we start by emanating a past outwards-directed
null plane from µQ and mark its intersection with the horizon as µH . Now, we can pick a
foliation of the horizon that starts from µH and continues towards the future of H such that
it eventually approaches the preferred foliation of the Killing horizon. Mark the leaves of
this foliation by λ such that λ = 0 is µH and λ grows along the future leaves. We construct
the Q-screen by shooting null future-directed inward null planes from the leaves µH and on
that null plane look for a quantum marginally trapped surface.

Suppose that a given leaf of our foliation of H (marked by λ) has a quantum expansion
Θk(λ; y) at a given transverse position y. By the generalized second law, Θk ≥ 0. Then,
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perturbatively we can find the location of a quantum marginally trapped surface as

Θk(λ; y) + δU(λ; y) (∂lΘk(λ; y)) = 0 , (A.17.1)

where δU is the amount of affine parameter in the l direction we need to venture to find a
quantum marginally trapped surface and Θk = O(G~).

We need to solve for a function δU(y) and show that it approaches zero as we go towards
higher values of λ. From the definition of quantum expansion it follows that

∂lΘk = ∂lθk + 4G~∂l∂kSout . (A.17.2)

The cross-focusing equation is

∂lθk = −1

2
R− θlθk +∇.χ+ χ2 + 8πG Tkl , (A.17.3)

where R is the intrinsic Ricci scalar of the leaf and χ is its twist [212]. From Eq. (A.17.1),
we see that in order to solve for δU to first non-trivial order in G~, we only need the leading
order expression for ∂lΘk. The leading order term is

∂lΘk = −1

2
R(0) +O(G~) , (A.17.4)

where R(0) is the (y-independent) intrinsic Ricci scalar of the leaf on the unperturbed Killing
horizon. For a 2-sphere R(0) = 2. Combining the above equations with (A.17.1), we can
solve for δU to the first non-trivial order in O(G~):

δU(y;λ) = Θk(λ; y) . (A.17.5)

Since by assumption H approaches a Killing horizon in the Hartle-Hawking state in the
future, we have

lim
λ→∞

Θk(λ; y) = 0 =⇒ lim
λ→∞

δU(λ; y) = 0 , (A.17.6)

where the implication follows from Eq. (A.17.5). This means that the leaves of the Q-screen
start at µQ and approach the late times of the event horizon, which is what we set out to
show.
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