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ABSTRACT OF THE DISSERTATION

Large-dimensional Expectile Regression with Heavy-tailed Data

by

Zian Wang

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2023

Professor Wenxin Zhou, Chair

High-dimensional data can often display heterogeneity due to heteroscedastic variance

or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer

useful tools to detect heteroscedasticity in high-dimensional data. However, the former is

computationally challenging due to the non-smooth nature of the check loss, and the latter is

sensitive to heavy-tailed error distributions. In this thesis, we propose and study (penalized)

robust expectile regression (retire) with random designs and heavy-tailed noises. Theoretically,

we establish the statistical properties of the retire estimator under two regimes: (i) low-

dimensional regime in which d� n; (ii) high-dimensional regime in which s� n� d with s

denoting the number of significant predictors. In the low-dimensional setting, we theoretically

xi



establish explicit nonasymptotic high probability error bounds, Bahadur representation and a

Berry-Esseen bound, from which we derive asymptotic normality for the retire estimator. In the

high-dimensional setting, we focus on iteratively reweighted `1-penalization which reduces the

estimation bias from `1-penalization and leads to oracle properties. We thoroughly analyze the

statistical properties of the solution path of iteratively reweighted `1-penalized retire estimation,

adapted from the local linear approximation algorithm for folded-concave regularization. Under a

mild minimum signal strength condition, we demonstrate that with as few as log(logd) iterations,

the final iterate of our proposed approach achieves the oracle convergence rate. At each iteration,

we solve the weighted `1-penalized convex program using a local adaptive majorize-minimization

algorithm. Moreover, extensions to group-structured penalizations are also studied. Numerical

studies demonstrate the promising performance of the proposed procedure in comparison to both

non-robust and quantile regression based alternatives.

xii



Chapter 1

Expectile Regression in Low Dimensions

1.1 Motivation and Overview

Simple linear regression has been widely used nowadays. Its focus is primarily on

inferring the conditional mean of the response given the a set of predictors/covariates. In many

economic applications, however, more aspects than the mean of the conditional distribution of the

response given the covariates are of interest, and that the covariate effects may be inhomogeneous

and/or the noise variables exhibit heavy-tailed and asymmetric tails. For instance, in the Job

Training Partners Act studied in Abadie, Angrist and Imbens (2002), one is more interested

in the lower tail than the mean of the conditional distribution of income given a large pool of

predictors. To capture heterogeneity in the set of covariates at different locations of the response

distribution, methods such as quantile regression (Koenker and Bassett, 1978) and asymmetric

least squares regression (Newey and Powell, 1987) have been widely used.

Quantile regression expresses the conditional quantiles of the response as a linear function

of the covariates, and finding the regression model involves minimizing a piece-wise linear loss.

However, there are two major drawbacks to the quantile regression approach. One is that the

loss function (check function) is not continuously differentiable, which leads to computational

challenges. The other one, perhaps most importantly, is that quantile regression requires (non-

parametric) estimation of density function for errors, and such estimation depends on the degree

of smoothing chosen empirically by researchers.
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An alternative approach to explore heterogeneity and/or asymmetry in the response distri-

bution is the expectile regression (Newey and Powell, 1987), which is essentially a least squares

analogue of regression quantile estimation. Both quantiles and expectiles are useful descriptors

of the tail behavior of a distribution in the same way as the median and mean are related to its

central behavior. They share similar properties, and as shown by Jones (1994), expectiles are

exactly quantiles of a transformed version of the original distribution. Quantiles are naturally

more dominant in the literature due to the fact that expectiles lack an intuitive interpretation while

quantiles are simply the inverse of the distribution function and directly indicate relative fre-

quency. The key advantage of expectile regression is its computational expediency (for example,

via the iteratively-reweighted least squares algorithm), and the asymptotic covariance matrix can

be estimated without the need of estimating the conditional density function (nonparametrically).

Therefore, it offers a convenient and relatively efficient method of summarizing the conditional

response distribution.

We continue to discuss the aforementioned approaches in the following section.

1.2 Quantile/Expectile Regression

In the section, we introduce the (uniform) problem setup for both quantile regression

and expectile regression. Let y ∈ R be a scalar response variable and xxx = (x1, . . . ,xd)
T ∈ Rd be a

d-dimensional vector of covariates. The training data (y1,xxx1), . . . ,(yn,xxxn) are independent copies

of (y,xxx). Given a location parameter τ ∈ (0,1), we consider the linear model

yi = xxxT
i βββ
∗(τ)+ εi(τ), (1.1)

where βββ
∗(τ) is the unknown d-dimensional vector of regression coefficients, and εi(τ)’s are

independent random noise. Model (1.1) allows the regression coefficients βββ
∗(τ) to vary across

different values of τ , and thereby offers insights into the entire conditional distribution of y given

xxx. We let x1 = 1 so that β ∗1 denotes the intercept term, and suppress the dependency of βββ
∗(τ)

2



and ε(τ) on τ whenever there is no ambiguity. Here we introduce two popular approaches, the

quantile regression and the expectile regression, to estimate βββ
∗ at various level τ .

Quantile regression is perhaps the most natural way to relate the conditional distribution

of y given xxx and the parameter process {βββ ∗(τ),τ ∈ (0,1)}, under the assumption that F−1
yi|xxxi

(τ) =

xxxT
i βββ
∗(τ), or equivalently, P{εi(τ)≤ 0 |xxxi}= τ . Fitting such conditional quantile model involves

minimizing a non-smooth piecewise linear loss function, ϕτ(u) = u{τ −1(u < 0)}, typically

recast as a linear program, solvable by the simplex algorithm or interior-point methods. For

the latter, Portnoy and Koenker (1997) showed that the average-case computational complexity

grows as a cubic function of the dimension d, and thus, is computationally demanding for

problems with large dimensions.

Expectile regression is the other approach. Adapted from the concept of quantiles, Newey

and Powell (1987) and Efron (1991) separately proposed an alternative class of location measures

of a distribution, named the expectile according to the former. The resulting regression methods

are referred to as the expectile regression or the asymmetric least squares regression, which are

easy to compute and reasonably efficient under normality conditions.

We start with the definition of expectiles. Let Z ∈ R be a random variable with finite

moment, i.e., E(|Z|)< ∞. The τ-th expectile or τ-mean of Z is defined as

eτ(Z) := argmin
u∈R

E
{

ητ(Z−u)−ητ(Z)
}
, τ ∈ (0,1), (1.2)

where

ητ(u) = |τ−1(u < 0)| · u
2

2
=

τ

2
{max(u,0)}2 +

1− τ

2
{max(−u,0)}2 (1.3)

is the asymmetric squared/`2 loss (Newey and Powell, 1987). The quantity eτ(Z) is well defined

as long as E|Z| is finite. When τ = 1/2, it can be easily seen that e1/2(Z) = E(Z). Therefore,

expectiles can be viewed as an asymmetric generalization of the mean, and the term “expectile”

3



stems from a combination of “expectation” and “quantile”. Moreover, expectiles are uniquely

identified by the first-order condition

τ ·E(Z− eτ(Z))+ = (1− τ) ·E(Z− eτ(Z))−,

where x+ = max(x,0) and x− = max(−x,0). Note also that the τ-expectile of Z defined in (1.2)

is equivalent to Efron’s ω-mean with ω = τ/(1− τ) (Efron, 1991).

Given independent observations Z1, . . . ,Zn from Z, the expectile location estimator is

given by êτ = argminu∈R∑
n
i=1 ητ(Zi−u), which is uniquely defined due to the strong convexity

of the asymmetric `2-loss. The expectile estimator êτ can also be interpreted as a maximum

likelihood estimator of a normal distributed sample with unequal weights given to disturbances

of differing signs, with a larger relative weight given to less variable disturbances (Aigner,

Amemiya and Poirier, 1976).

Essentially the asymmetric squared loss ητ(·) is an `2-version of the check function ϕτ(·)

for quantile regression. Given train data from the linear model (1.1) subject to eτ(εi|xxxi) = 0,

the expectile regression estimator (Newey and Powell, 1987) is defined as the minimizer of the

following convex optimization problem

minimize
βββ∈Rd

1
n

n

∑
i=1

ητ(yi− xxxT
i βββ ), (1.4)

which consistently estimates βββ
∗ when d = o(n) as n→ ∞. In particular, expectile regression

with τ = 0.5 reduces to the ordinary least squares regression.

1.3 Interpretation of Quantiles and Expectiles

Expectiles are computational efficient, but not as intuitive as quantiles. Mathematically,

the notion of expectiles is a least squares counterpart of quantiles, and can be viewed as an

alternative measure of “locations” of a random variable Z ∈R with finite moment, i.e., E(|Z|)<∞.
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For example, 1/2-expectile and 1/2-quantile correspond to the mean and median, both of which

are related to the central behavior. In general, τ-expectile (eτ) and τ-quantile (qτ) with τ close

to zero and one describe the lower and higher regions of the distribution of Z, respectively. The

latter is the point below which 100τ% of the mass of Z lies, i.e., qτ = F−1
Z (τ); whereas the

former specifies the “position” such that the average distance from Z below eτ to eτ itself is

100τ% of the average distance between Z and eτ , i.e., τ = {E(Z− eτ)−}/E|Z− eτ |.

Both quantile and expectile regression have found applications in various fields, including

risk analysis (Taylor, 2008, Kuan et al., 2009, Xie et al., 2014, Bellini and Bernardino, 2017,

Daouia et al., 2018), as well as the study of determinants of inflation (Busetti et al., 2021) and

life expectancy and economic production (Schnabel and Eilers, 2009). In finance applications,

quantile based Value at Risk (QVaR) is one of the most popular risk measures. Specifically,

given α ∈ (0,1), QVaR is defined as the tail quantiles qα of some underlying return distribution,

and it may be interpreted as the possible maximum loss of a given portfolio over a prescribed

holding period with probability (1−α).

Despite its overwhelming popularity in financial risk analysis, QVaR has two major

drawbacks. Firstly, QVaR is not a coherent risk measure since it lacks subadditivity, meaning

that the total risk of a portfolio can be even larger than the sum of the risks of the portfolio’s

constituent components, which violates the conventional wisdom that diversification reduces

risk. Secondly, perhaps most importantly, QVaR reports only the tail probability of losses while

ignoring information on the magnitude of losses. To see this, recall that the α-quantile qα ∈ R

minimizes E[|α −1(Z ≤ qα)| · |Z− qα |], and its first order condition implies
∫ qα

−∞ dF(z) = α .

Consequently, qα depends only on the probability of extreme losses but not their magnitude.

Expected Shortfall (ES) is another popular risk measure in finance (Acerbie and Tasche,

2002). It is defined as the conditional expectation of a loss given that it exceeds the QVaR, i.e.,

E(Z|Z > qα). Although ES is a coherent risk measure that considers the magnitude of losses

and possesses subadditivity by the nature of expectations, it is not elicitable (Gneiting, 2011),

meaning that the risk measure can not be obtained by minimizing the expectation of a forecasting
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objective function, which poses challenges for its estimation.

Expectile based VaR (EVaR) is a risk measure to remedy the aforementioned issues.

In fact, the EVaR is the only risk measure that is both coherent and elicitable, making it a

valuable tool for financial risk management and decision-making (Bellini and Bernardino, 2017,

Ziegel, 2016, Bellini and Bignozzi, 2015). Specifically, the τ-expectile is the quantity eτ ∈ R

that minimizes E[|τ − 1(Z < eτ)| · (Z − eτ)
2]. Rearranging the first order condition yields

τ =
∫ eτ

−∞
|y− eτ |dF(y)/

∫
∞

−∞
|y− eτ |dF(y). Hence, eτ depends on both the magnitude and the

probabilities of tail realizations, whereas qα is determined solely by the (lower) tail probabilities.

In other words, expectiles are more “global” than quantiles, since changing the upper tails or the

magnitude of Z would only affect the expectiles.

Indeed, let τ(α) be such that eτ(α) = qα , Yao, Q. and Tong, H. (1996) pointed out an

one-to-one mapping:

τ(α) =
αqα −

∫ qα

−∞ zdF(z)
E(Z)−2

∫ qα

−∞ zdF(z)− (1−2α)qα

.

It can be seen that the EVaR with a given τ corresponds to the QVaR with distinct tail probabilities

α under different distributions. Thus, EVaR may be interpreted as a flexible QVaR, in the sense

that its confidence level τ(α) is determined by the distribution of Z. This is in contrast with the

conventional QVaR with a given α . Note that α 6= τ generally.

1.4 Retire: Robust Expectile Regression

Expectile regression (1.4), despite its computational advantage over quantile regression,

is much more sensitive to heavy-tailed distributions due to the squared loss component in (1.3).

This lack of robustness is amplified in the presence of high-dimensional covariates and heavy-

tailed random noise, causing the estimated coefficients β̂ββ to deviate from the true underlying

coefficients βββ
∗. This necessitates the development of a robust expectile regression approach that

utilizes a new class of asymmetric loss functions that preserves the robustness of the check loss
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to some degree.

To this end, we construct a class of asymmetric robust loss functions that is more resistant

against heavy-tailed error/response distributions. The main idea is to replace the quadratic

component in (1.3) with a Lipschitz and locally strongly convex alternative, typified by the

Huber loss (Huber, 1964) that is a hybrid `1/`2 function. The proposed loss function, `γ(u),

contains a tuning parameter γ > 0 that is to be chosen to achieve a balanced trade-off between

the robustification bias and the degree of robustness. At a high level, we focus on the class of

loss functions that satisfies Condition 1 below.

Condition 1. Let `γ(u) = γ2`(u/γ) for u ∈ R, where the function ` : R 7→ [0,∞) satisfies: (i)

`′(0) = 0 and |`′(u)| ≤min(a1, |u|) for all u ∈ R; (ii) `′′(0) = 1 and `′′(u)≥ a2 for all |u| ≤ a3;

and (iii) |`′(u)−u| ≤ u2 for all u ∈ R, where a1, a2, and a3 are positive constants.

Condition 1 encompasses many commonly used robust loss functions such as the Huber

loss `(u) = min{u2/2, |u|−1/2} (Huber, 1964), pseudo-Huber losses `(u) =
√

1+u2−1 and

`(u) = log(eu/2+ e−u/2), smoothed Huber losses `(u) = min{u2/2−|u|3/6, |u|/2−1/6} and

`(u)=min{u2/2−u4/24,(2
√

2/3)|u|−1/2}, among other smooth approximations of the Huber

loss (Lange, 1990).

Consequently, we consider the following asymmetric robust loss

Lτ,γ(u) := |τ−1(u < 0)| · `γ(u), (1.5)

where `γ(·) is subject to Condition 1. Note that τ determines the location (asymmetry level) and

γ determines the trade-off between the robustification bias and the degree of robustness.

Given a location parameter τ ∈ (0,1), we define the retire estimator (when d < n) as

β̂ββ = β̂ββ γ = argmin
βββ∈Rd

1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ ), (1.6)

where γ > 0 is a robustification parameter that will be calibrated adaptively from data as we
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detail in Section 1.7. Numerically, the optimization problem (1.6) can be efficiently solved

by either gradient descent or quasi-Newton methods (Nocedal and Wright, 1999), such as the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm that can be implemented as on option of

the base function optim() in R.

Recall that the population parameter βββ
∗ is uniquely identified as

βββ
∗ = argmin

βββ∈Rd
E{Lτ,∞(y− xxxT

βββ )} with Lτ,∞(u) := |τ−1(u < 0)| ·u2/2.

Meanwhile, β̂ββ can be viewed an M-estimator of the following population parameter

βββ
∗
γ := argmin

βββ∈Rd
E{Lτ,γ(y− xxxT

βββ )}.

It is worth pointing out that βββ
∗
γ typically differs from βββ

∗ for any given γ > 0. To see this, note that

the convexity of the robust loss Lτ,γ : Rd → R implies the first-order condition, that is, E{|τ−

1(y < xxxTβββ
∗
γ)| · `′τ,γ(y− xxxTβββ

∗
γ)xxx}= 0. On the other hand, we have eτ(ε|xxx) = eτ(y− xxxTβββ

∗|xxx) = 0,

implying E{|τ−1(ε < 0)| · εxxx} = 0. Since the random error ε given xxx is asymmetric around

zero, in general we have

0 6= E{|τ−1(ε < 0)| · `′τ,γ(ε)xxx}= E{|τ−1(y < xxxT
βββ
∗)| · `′τ,γ(y− xxxT

βββ
∗)xxx},

which in turn implies that βββ
∗ 6= βββ

∗
γ . We refer to the difference ‖βββ ∗γ −βββ

∗‖2 as the robustification

bias. In Section 1.6, we will show that under mild conditions, the robustification bias is of the

order O(γ−1), and a properly chosen γ balances bias and robustness.

To perform statistical inference on β ∗j ’s, we construct normal-based confidence intervals

based on the asymptotic theory developed in Section 1.6. To this end, we first introduce some

additional notation. Let ε̂i = yi− xxxT
i β̂ββ be the residuals from the fitted model and let e j ∈ Rd be

the canonical basis vector, i.e., the j-th entry equals one and all other entries equal zero. Let
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Ĵ = n−1
∑

n
i=1 |τ−1(ε̂i < 0)| · xxxixxxT

i . An approximate 95% confidence interval for β ∗j can thus be

constructed as

[
β̂ j−1.96

σ̂(e j)√
n

, β̂ j−1.96
σ̂(e j)√

n

]
, (1.7)

where

σ̂
2(e j) := eT

j Ĵ−1

[
1
n

n

∑
i=1

ζ
2(ε̂i)xxxixxxT

i

]
Ĵ−1e j,

and ζ (u) = L′τ,γ(u) = |τ−1(u < 0)| · `′γ(u) is the first-order derivative of Lτ,γ(·) given in (1.5).

1.5 Computational Methods

In this section, we provide a computational method (gradient descent with Barzilai-

Borwein stepsize) to solve the optimization problems (1.6). Starting from the convex and

continuous differentiable loss function Lτ,γ , the simplest and most intuitive algorithm is perhaps

a vanilla gradient descent (GD) algorithm. Let Rn(βββ )=
1
n ∑

n
i=1 Lτ,γ(yi−xxxT

i βββ ), given an initializer

βββ
(0) ∈ Rd , GD iteratively computes

βββ
(t+1) = βββ

(t)−ηt ·∇Rn(βββ
(t)) for t = 0,1, . . . ,

where ηt ∈ R is the stepsize for t-th iteration, and we choose a fixed stepsize for vanilla GD

at each iteration, i.e., ηt = η . It is worth mentioning that the choice of stepsize is one of

the most important issues for GD-type algorithm. Larger stepsizes tend to overshoot, while

smaller stepsizes suffer from slow convergence speed. Note that the loss function Lτ,γ is twice

differentiable, it is natural to employ the Newton-Raphson method that utilizes the inverse of

Hessian matrix {∇2Rn(βββ )}−1 to serve as adaptive stepsizes. More specifically, Newton-Raphson
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method iteratively computes

βββ
(t+1) = βββ

(t)−
{

∇
2Rn(βββ

(t))
}−1 ·∇Rn(βββ

(t)) for t = 0,1, . . . .

Newton-Raphson has been proven to be very successful in solving nonlinear optimization

problems. It enjoys fast convergence rates since it uses second-order information from the

Hessian matrix ∇2Rn(βββ ). However the computation of the inverse of a d×d matrix may be

quite expensive or numerically unstable, especially when d is large. For this reason, many

quasi-Newton methods seek a simple approximation of the inverse of Hessian matrix. Here we

introduce the method of gradient descent with Barzilai-Borwein (Barzilai and Browein, 1988)

stepsize, which we refer as GD-BB algorithm.

Recall that at the t-th iteration of Newton-Raphson method, we have the secant equation

J(t)δδδ (t) = ggg(t), where

J(t) = ∇
2Rn(βββ

(t)), δδδ
(t) = βββ

(t)−βββ
(t−1) and ggg(t) = ∇Rn(βββ

(t))−∇Rn(βββ
(t−1)).

To find the approximation of J(t), Barzilai and Browein (1988) considered choosing the stepsize

η that satisfies ηId∇Rn(βββ
(t)) ≈

{
J(t)
}−1

∇Rn(βββ
(t)). By the secant equation J(t)δδδ (t) = ggg(t), it

suffices to choose η that satisfies η−1δδδ
(t)≈ ggg(t) or δδδ

(t)≈ηggg(t). Via least squares approximations,

one may use η
−1
1,t = argminα ||αδδδ

(t)−ggg(t)||22 or η2,t = argminη ||δδδ
(t)−ηggg(t)||22. Therefore the

BB stepsizes have the following explicit forms

η1,t =
〈δδδ (t),δδδ (t)〉
〈δδδ (t),ggg(t)〉

and η2,t =
〈δδδ (t),ggg(t)〉
〈ggg(t),ggg(t)〉

.

Consequently, the BB iteration takes the form

βββ
(t+1) = βββ

(t)−min
{

η1,t ,η2,t ,ηmax
}
·∇Rn(βββ

(t)) for t = 1,2, . . . ,
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where ηmax is the max learning rate to avoid overshoots. It is worth mentioning that the BB

iteration starts at the 1-th iteration, while βββ
(1) is simply the one-step update using classic vanilla

gradient descent with stepsize 1 from some initializer βββ
(0). We summarize the aforementioned

procedure into the following Algorithm 1

Algorithm 1. Gradient descent with Barzilai-Borwein stepsize (GD-BB) for solving (1.6).
Input: Expectile level τ , Huber loss tuning parameter γ , and convergence criterion ε .

Initialization: β̂ββ
(0)

= 0,ηmax = 50.
Compute: βββ

(1)← βββ
(0)−∇Rn(βββ

(0)).

Iterate: the following until the stopping criterion ‖β̂ββ
(k)
− β̂ββ

(k−1)
‖2 ≤ ε is met, where β̂ββ

(k)
is the value of

βββ obtained at the k-th iteration.

1. δδδ
(t)← βββ

(t)−βββ
(t−1) and ggg(t) = ∇Rn(βββ

(t))−∇Rn(βββ
(t−1)).

2. η1,t ← 〈δδδ (t),δδδ (t)〉/〈δδδ (t),ggg(t)〉 and η2,t ← 〈δδδ (t),ggg(t)〉/〈ggg(t),ggg(t)〉.

3. ηt = min
{

η1,t ,η2,t ,ηmax
}
.

4. βββ
(t+1) = βββ

(t)−ηt ·∇Rn(βββ
(t))

Output: the final iterate β̂ββ
(k)

.

1.6 Statistical Analysis

In this section, we consider the robust expectile regression (retire) estimator β̂ββ that is

defined in (1.6) under the classical setting that d < n. Its statistical properties, both asymptotic

and nonasymptotic, will be given under the so-called “many regressor” model (Belloni et

al., 2015) in which the dimension d = dn is allowed to grow with n subject to the constraint

dn = o(na) for some 0 < a≤ 1. Note that our proposed estimator relies on the choice of robust

loss function in Condition 1. For simplicity, we focus on the Huber loss `(u) = u2/2 ·1(|u| ≤

1)+(|u|−1/2) ·1(|u|> 1) throughout our analysis, i.e., a1 = a2 = a3 = 1 in Condition 1, but

note that similar results hold for any robust loss that satisfies Condition 1. Throughout the

theoretical analysis, we assume that the location measure τ ∈ (0,1) is fixed.
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We first defined the empirical loss function and its gradient as

Rn(βββ ) =
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ ) and ∇Rn(βββ ) =−

1
n

n

∑
i=1

L′τ,γ(yi− xxxT
i βββ )xxxi,

respectively. Moreover, we impose some common conditions on the random covariates xxx and the

random noise ε . In particular, we assume that the random covariates xxx ∈ Rd are sub-exponential

and that the random noise ε is heavy-tailed with finite second moment.

Condition 2. Let ΣΣΣ=E(xxxxxxT) be a positive definite matrix with λu≥ λmax(ΣΣΣ)≥ λmin(ΣΣΣ)≥ λl > 0

and assume that λl = 1 for simplicity. There exists ν0 ≥ 1 such that P(|uuuTΣΣΣ
−1/2xxx| ≥ ν0‖uuu‖2 · t)≤

e−t for all t ∈ R and uuu ∈ Rd . For notational convenience, let σ2
xxx = max1≤ j≤d σ j j, where σ j j is

the j-th diagonal entry of ΣΣΣ.

Condition 3. The random noise ε has a finite second moment, i.e., E(ε2|xxx)≤ σ2
ε < ∞. Moreover,

the conditional τ-expectile of ε satisfies E[wτ(ε)ε|xxx] = 0, where wτ(u) := |τ−1(u < 0)|.

Next, we provide nonasymptotic error bounds for the retire estimator, β̂ββ , under the

regime in which n > d but d is allowed to diverge. Moreover, we establish a nonasymptotic

Bahadur representation for β̂ββ −βββ
∗, based on which we construct a Berry-Esseen bound for a

normal approximation. As mentioned in Section 1.4, the robustification bias ||βββ ∗γ −βββ
∗||2 is

inevitable due to the asymmetry nature of error term ε . Let τ = min(τ,1−τ), τ̄ = max(τ,1−τ),

and A1 ≥ 1 be a constant satisfying E(uuuTΣΣΣ
−1/2xxx)4 ≤ A4

1‖uuu‖4
2 for all uuu ∈ Rd . The following

proposition reveals the fact that the robustification bias scales at the rate γ−1, which decays as γ

grows.

Proposition 1.6.1. Assume Conditions 1, 2, and 3 hold. Provided that γ ≥ 2σεA2
1τ̄/τ , we have

‖ΣΣΣ1/2(βββ ∗γ −βββ
∗)‖2 ≤ 2γ

−1(τ̄/τ)σ2
ε .

The key to our subsequent analysis for the retire estimator β̂ββ is the strong convexity

property of the empirical loss function Rn(·) uniformly over a local ellipsoid centered at βββ
∗ with
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high probability. Let κ1 = min|u|≤1 `
′′(u), BΣΣΣ(r) = {δδδ ∈Rd : ‖ΣΣΣ1/2

δδδ‖2 ≤ r} be an ellipsoid. We

characterize the strong convexity of Rn(·) in Lemma 1.6.1. With the aid of Lemma 1.6.1, we

establish a non-asymptotic error bound for the retire estimator β̂ββ in Theorem 1.6.1.

Lemma 1.6.1. Let (γ,n) satisfy γ ≥ 4
√

2max{σε ,2A2
1r} and n & (γ/r)2(d + t). Under Condi-

tions 1, 2, and 3, with probability at least 1− e−t , we have

〈∇Rn(βββ )−∇Rn(βββ
∗),βββ −βββ

∗〉 ≥ 1
2

κ1τ‖ΣΣΣ1/2(βββ −βββ
∗)‖2

2 uniformly over βββ ∈ βββ
∗+BΣΣΣ(r).

Theorem 1.6.1. Assume Conditions 1, 2, and 3 hold. For any t > 0, the retire estimator β̂ββ in

(1.6) with γ = σε

√
n/(d + t) satisfies the bound

‖ΣΣΣ1/2(β̂ββ −βββ
∗)‖2 ≤C(τ̄/τ)κ−1

1 σεv0

√
d + t

n
,

with probability at least 1−2e−t as long as n & d + t, where C > 0 is an absolute constant.

Theorem 1.6.1 shows that under the sub-exponential design with heavy-tailed random

errors with bounded second moment, the retire estimator β̂ββ exhibits a sub-Gaussian type devia-

tion bound, provided that the robustification parameter is properly chosen, i.e., γ =σε

√
n/(d + t).

In other words, the proposed retire estimator gains robustness to heavy-tailed random noise

without compromising statistical accuracy.

Remark 1.6.1. The choice of γ = σε

√
n/(d + t) in Theorem 1.6.1 is a reflection of the bias and

robustness trade-off for the retire estimator β̂ββ . Intuitively, a large γ creates less robustification

bias but sacrifices robustness. More specifically, we shall see from the proof of Theorem 1.6.1

that conditioning on the event {β̂ββ ∈ βββ
∗+BΣΣΣ(rloc)},

‖ΣΣΣ1/2(β̂ββ −βββ
∗)‖2 .

σ2
ε

γ︸︷︷︸
robustification bias

+ σε

√
d
n
+ γ

d
n︸ ︷︷ ︸

statistical error
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with high probability. Therefore, we choose γ = σε

√
n/(d + t) to minimize the right-hand side

as a function of γ .

To proceed, we establish nonasymptotic Bahadur representation for the difference β̂ββ−βββ
∗.

To this end, we need slightly stronger conditions on both the random covariates xxx and the random

noise ε . In particular, we require that the random covariates xxx to be sub-Gaussian and that the

conditional density of the random noise ε is upper bounded. We formalize the above into the

following conditions.

Condition 4. There exists ν1 ≥ 1 such that P(|uuuTΣΣΣ
−1/2xxx| ≥ v1||uuu||2t) ≤ 2e−t2/2 for all t ∈ R

and uuu ∈ Rd .

Condition 5. Let fε|xxx(·) be the conditional density function of the random noise ε . There exists

f̄ε|xxx > 0 such that supu∈R fε|xxx(u)≤ f̄ε|xxx almost surely (for all xxx).

Recall that wτ(u) = |τ−1(u < 0)| and that ζ (u) = L′τ,γ(u) = wτ(u)`′γ(u). Moreover, let

J=E{wτ(ε)xxxxxxT} be the Hessian matrix. Theorem 1.6.2 establishes the Bahadur representation of

the retire estimator β̂ββ . Specifically, we show that the remainder of the Bahadur representation

for β̂ββ exhibits sub-exponential tails, which we will use to establish the Berry-Esseen bound for

linear projections of β̂ββ −βββ
∗ in Theorem 1.6.3.

Theorem 1.6.2. Assume Conditions 1, 3, 4, and 5 hold. For any t > 0, the retire estima-

tor β̂ββ given in (1.6) with γ = σε

√
n/(d + t) satisfies the following nonasymptotic Bahadur

representation

∥∥∥∥ΣΣΣ
−1/2J(β̂ββ −βββ

∗)− 1
n

n

∑
i=1

ζ (εi)ΣΣΣ
−1/2xxxi

∥∥∥∥
2
≤Cσε ·

d + t
n

(1.8)

with probability at least 1−3e−t as long as n & d+ t , where C > 0 is a constant independent of

(n,d) and t.
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Theorem 1.6.3. Under the same set of conditions as in Theorem 1.6.2, assume further that

E(|ε|3|xxx) ≤ v3 < ∞ (almost surely). Then, the retire estimator β̂ββ in (1.6) with robustness

parameter γ = σε

√
n/(d + logn) satisfies

sup
uuu∈Rd ,z∈R

∣∣P(n1/2〈uuu, β̂ββ −βββ
∗〉 ≤ σz)−Φ(z)

∣∣. d + logn√
n

,

where σ2 = σ2(uuu) := uuuTJ−1E{ζ 2(ε)xxxxxxT}J−1uuu and Φ(·) is the standard normal cumulative

distribution function.

Theorem 1.6.3 shows that with a diverging parameter γ = σε

√
n/(d + logn), for any

uuu ∈ Rd , the linear projection of β̂ββ −βββ
∗ is asymptotically normal after some standardization as

long as (n,d) satisfies the scaling condition d = o(
√

n).

1.7 Numerical Experiments

We evaluate the performance of the proposed retire estimator (1.6) via numerical

studies. For all of the numerical studies, we generate the covariates xxxi from a multivariate normal

distribution N(0,ΣΣΣ = (σ jk)1≤ j,k≤d) with σ jk = 0.5| j−k|. We then generate the response variable

yi from one of the following three models:

1. Homoscedastic model:

yi = xxxT
i βββ
∗+ εi, (1.9)

2. Quantile heteroscedastic model:

yi = xxxT
i βββ
∗+(0.5|xid|+0.5){εi−F−1

εi
(τ)}, (1.10)

3. Expectile heteroscedastic model:

yi = xxxT
i βββ
∗+(0.5|xid|+0.5){εi− eτ(εi)}, (1.11)
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where εi is the random noise, F−1
εi

(·) denotes the inverse cumulative distribution function

of εi, and eτ(εi) denotes the inverse of the expectile function of εi. Note that under Gaus-

sian and t-distributed noises, the two models (1.11) and (1.10) are the same for τ = 0.5.

We set the regression coefficient vector βββ
∗ = (β ∗1 ,β

∗
2 , . . . ,β

∗
d )

T as β ∗1 = 2 (intercept), β ∗j =

{1.8,1.6,1.4,1.2,1,−1,−1.2,−1.4,−1.6,−1.8} for j = 2,3, . . . ,11. The random noise is gen-

erated from either a Gaussian distribution, N(0,2), or a t distribution with 2.1 degrees of freedom.

For the heteroscedastic models, we consider two quantile/expectile levels τ = {0.5,0.8}.

We propose to select γ using a heuristic tuning method that involves updating γ at the

beginning of each iteration in Algorithm 1. More specifically, let rk
i = yi− xxxT

i β̂ββ
k−1

, i = 1, . . . ,n

be the residuals, where β̂ββ
k−1

is obtained from the (k− 1)-th iteration of Algorithm 1. Let

r̃k
i = (1−τ)rk

i 1rk
i≤0+τrk

i 1rk
i >0 be the asymmetric residuals, and let r̃k = (r̃k

1, . . . , r̃
k
n)

T. We define

mad(r̃k) = {Φ−1(0.75)}−1median(|r̃k−median(r̃k)|) as the median absolute deviation of the

asymmetric residuals, adjusted by a factor Φ−1(0.75), where Φ(·) is the cumulative distribution

function of standard normal distribution. We start with setting γ =
√

n/(d + logn). At the k-th

iteration of Algorithm 1, we update the robustification parameter by

γ
k = mad(r̃k) ·

√
n

d + logn
.

Throughout our numerical studies, we have found that γ chosen using the above heuristic

approach works well across different scenarios. Our computational results are reproducible using

codes available from https://github.com/ZianWang0128/Retire.

1.7.1 Estimation

In this subsection, we compare retire to three other competitive methods: (i) Huber

regression (huber); (ii) asymmetric least squares regression (als), and (iii) quantile regression

(qr) implemented via the R package quantreg. To assess the performance across different

methods, we report the estimation error under the `2-norm, i.e., ‖β̂ββ −βββ
∗‖2 and its standard
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errors.

Note that huber and als are special cases of retire by taking τ = 0.5 and γ → ∞,

respectively. Thus, both huber and als can be implemented via Algorithm 1. Also note that

both huber and retire require tuning an additional robustness parameter γ , which is tuned by

the aforementioned heuristic approach. The results, averaged over 1000 repetitions, are reported

in Table 1.1 for three low-dimensional settings (n = 200/400/800, d = 10).

Table 1.1. Estimation error under `2-norm (and its standard errors) are reported, averaged over
1000 repetitions.

Method
Homo-model (1.9) Quantile hetero-model (1.10) Expectile hetero-model (1.11)

τ = 0.5 τ = 0.5 τ = 0.8 τ = 0.8
ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1

n = 200
d = 10

retire 0.421 (0.108) 0.427 (0.117) 0.387 (0.098) 0.386 (0.105) 0.498 (0.105) 0.515 (0.126) 0.457 (0.114) 0.508 (0.129)
huber 0.421 (0.108) 0.427 (0.117) 0.387 (0.098) 0.386 (0.105) 1.107 (0.101) 0.995 (0.099) 0.779 (0.099) 0.964 (0.098)

als 0.416 (0.108) 0.767 (0.521) 0.402 (0.101) 0.725 (0.487) 0.574 (0.102) 1.051 (1.171) 0.433 (0.107) 1.049 (1.175)
qr 0.509 (0.125) 0.430 (0.113) 0.438 (0.109) 0.368 (0.100) 0.500 (0.128) 0.539 (0.159) 0.603 (0.140) 0.542 (0.162)

n = 400
d = 10

retire 0.287 (0.073) 0.319 (0.080) 0.272 (0.068) 0.287 (0.073) 0.400 (0.072) 0.385 (0.083) 0.305 (0.076) 0.373 (0.084)
huber 0.287 (0.073) 0.319 (0.080) 0.272 (0.068) 0.287 (0.073) 1.087 (0.070) 0.968 (0.076) 0.738 (0.069) 0.936 (0.075)

als 0.287 (0.073) 0.569 (0.441) 0.279 (0.070) 0.543 (0.408) 0.477 (0.073) 0.799 (0.919) 0.301 (0.076) 0.797 (0.922)
qr 0.360 (0.088) 0.292 (0.075) 0.305 (0.074) 0.248 (0.064) 0.353 (0.090) 0.372 (0.099) 0.493 (0.098) 0.375 (0.103)

n = 800
d = 10

retire 0.199 (0.050) 0.240 (0.060) 0.193 (0.048) 0.218 (0.055) 0.375 (0.051) 0.301 (0.058) 0.213 (0.053) 0.285 (0.059)
huber 0.199 (0.050) 0.240 (0.060) 0.193 (0.048) 0.218 (0.055) 1.083 (0.049) 0.957 (0.054) 0.722 (0.048) 0.924 (0.054)

als 0.199 (0.050) 0.404 (0.219) 0.195 (0.049) 0.389 (0.200) 0.428 (0.051) 0.572 (0.354) 0.213 (0.054) 0.570 (0.358)
qr 0.253 (0.063) 0.202 (0.050) 0.214 (0.052) 0.170 (0.041) 0.243 (0.060) 0.258 (0.065) 0.420 (0.061) 0.261 (0.068)

Table 1.1 shows the results for all methods under various models. Generally, the ro-

bustified expectile method retire has the smallest estimation errors across all settings. For

the Huber regression method huber, its performance deteriorates when τ = 0.8. This is not

surprising since huber implicitly assumes τ = 0.5, thus non-negligible bias is introduced when

τ = 0.8. For the asymmetric least-square method als, (comparing with retire) it has similar

performance under Gaussian noises, but worse performance under t2.1 noises, indicating that the

robustness of retire loss comparing to asymmetric least-square loss is beneficial especially

under heavy-tailed noises. The quantile regression method qr performs the best under t2.1 noises,

but it loses its advantages under Gaussian noises. This may due to the fact that quantile loss

(check loss) is the most robust to outliers among the other losses, while losing the sensitivity for

small variations.

In summary the numerical studies suggest that retire is a robust alternative to its least
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squares counterpart als and a flexible extension from huber to accommodate asymmetry, while

maintaining sensitivity for light-tailed noises comparing to the quantile regression approach qr.

1.7.2 Inference for Confidence Intervals

In this subsuction, we apply Multiple Bootstrap (MB) technique to obtain confidence

intervals for signals β ∗j . Here we briefly outline the Multiple Bootstrap (MB) procedure to obtain

confidence intervals for signals β ∗j under low-dimensional settings.

Consider data {(yi,xxxi)}n
i=1 that follows the data generation process detailed in Section 1.7,

and recall that Lτ,γ is the loss function defined in (1.5) that satisfies Condition 1. Let wb
1, . . . ,w

b
n

be i.i.d. random bootstrap weights that satisfy E(wb
i ) = var(wb

i ) = 1. For convenience, we

focus on the Huber loss for which `(u) = u2/2 ·1(|u| ≤ 1)+(|u|−1/2) ·1(|u|> 1), and choose

exponential i.i.d. bootstrap weights, i.e., wb
i ∼ exp(1).

First we compute an initial retire estimator, denoted as β̂ββ
ini

, by minimizing the ob-

jective function n−1
∑

n
i=1 Lτ,γ(yi− xxxT

i βββ ). Next, we obtain low-dimensional bootstrap samples

{β̂ββ
boot
1 , . . . , β̂ββ

boot
B } by repeatedly minimizing randomly weighted objective functions n−1

∑
n
i=1 wb

i ·

Lτ,γ(yi− xxxT
i βββ ), based on which we construct confidence intervals. More specifically, we can

construct MB confidence intervals for all the slope coefficients using one of the three classical

methods, the percentile method, the pivotal method, and the normal-based method. Let α ∈ (0,1)

be a prespecified confidence level.

1. Efron’s percentile method: For each q ∈ (0,1) and 2 ≤ j ≤ d, define the conditional

q-quantile of β̂ boot
j given the observed data as

cb
j(q) = inf{t ∈ R : P∗(β̂ boot

j ≤ t)≥ q}.

Then then Efron’s percentile interval for β ∗j takes the form

[
cb

j(α/2),cb
j(1−α/2)

]
. (1.12)
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2. Pivotal method: The pivotal interval approximates the conditional distribution of β̂ββ −βββ
∗

by the bootstrap quantity β̂ββ
boot
− β̂ββ . More specifically, the pivotal confidence interval for

β ∗j takes the form

[
2β̂

ini
j − cb

j(1−α/2),2β̂
ini
j − cb

j(α/2)
]
. (1.13)

Pivotal confidence intervals are connected to percentile confidence intervals in sense that

the latter are the pivotal confidence intervals reflected about the point β̂ j
boot

.

3. Normal-based method: Let Φ−1(·) be the inverse of the cumulative distribution function

of a standard normal random variable. Denote std(·) as the sample standard deviation.

Then the normal-based confidence interval for β ∗j takes the form

[
β̂

ini
j −Φ

−1(1−α/2) · std
{

β̂
boot
·, j
}
, β̂ ini

j +Φ
−1(1−α/2) · std

{
β̂

boot
·, j
}]

. (1.14)

We summarize the whole process as follow:

Procedure 2. Multiple Bootstrap Inference for β ∗ under low-dimensional settings.
Input: generated data {(yi,xxxi)}n

i=1, bootstrap weights wi, Huber loss tuning parameter γ .
Initialization: B = 200.

1. Compute an initializer β̂ββ
ini

based on the dataset {(yi,xxxi)}n
i=1 by solving

β̂ββ
ini
∈minimize

βββ∈Rd

1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )

2. For b = 1, . . . ,B, obtain low-dimensional bootstrapped estimators by solving

β̂ββ
boot
b ∈minimize

βββ∈Rd

1
n

n

∑
i=1

wb
i ·Lτ,γ(yi− xxxT

i βββ ).

3. Calculate confidence intervals from {β̂ββ
boot
1 , . . . , β̂ββ

boot
B } by (1.12), (1.13) and (1.14).

Output: Multiple bootstrap confidence intervals.

For low-dimensional confidence interval inference, we follow the same data generation
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process, model settings, and hyper-parameter selection methods as Section 1.7. And we use the

approximate 95% confidence interval (1.7) derived from asymptotic normality as the benchmark.

All inference results, averaged over 1000 repetitions, are reported in the following table.

Table 1.2. Inference results for low-dimensional settings. Coverage rate (and the width of
confidence intervals) are reported, averaged over 1000 repetitions.

CI type
Homo-model (2.7) Quantile hetero-model (2.8) Expectile hetero-model (2.9)

τ = 0.5 τ = 0.5 τ = 0.8 τ = 0.8
ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1

n = 200
d = 10

Percentile 0.924 (0.473) 0.922 (0.574) 0.921 (0.453) 0.923 (0.541) 0.916 (0.461) 0.912 (0.678) 0.911 (0.466) 0.912 (0.679)
Pivotal 0.916 (0.473) 0.942 (0.574) 0.915 (0.453) 0.940 (0.541) 0.906 (0.461) 0.925 (0.678) 0.899 (0.466) 0.925 (0.679)

MB-normal 0.926 (0.484) 0.942 (0.591) 0.922 (0.465) 0.941 (0.549) 0.920 (0.469) 0.930 (0.687) 0.916 (0.475) 0.929 (0.687)
Normal 0.930 (0.491) 0.919 (0.537) 0.925 (0.466) 0.920 (0.508) 0.924 (0.476) 0.902 (0.629) 0.923 (0.484) 0.902 (0.630)

n = 400
d = 10

Percentile 0.933 (0.337) 0.934 (0.429) 0.931 (0.326) 0.932 (0.407) 0.923 (0.336) 0.914 (0.526) 0.924 (0.343) 0.914 (0.527)
Pivotal 0.935 (0.337) 0.944 (0.429) 0.935 (0.326) 0.945 (0.407) 0.921 (0.336) 0.930 (0.526) 0.923 (0.343) 0.930 (0.527)

MB-normal 0.941 (0.343) 0.947 (0.436) 0.942 (0.332) 0.946 (0.413) 0.930 (0.342) 0.934 (0.532) 0.932 (0.349) 0.934 (0.533)
Normal 0.946 (0.349) 0.939 (0.419) 0.945 (0.337) 0.942 (0.398) 0.939 (0.351) 0.927 (0.517) 0.938 (0.359) 0.926 (0.518)

n = 800
d = 10

Percentile 0.938 (0.239) 0.932 (0.324) 0.935 (0.233) 0.934 (0.309) 0.929 (0.243) 0.924 (0.419) 0.927 (0.248) 0.924 (0.420)
Pivotal 0.937 (0.239) 0.941 (0.324) 0.934 (0.233) 0.942 (0.309) 0.926 (0.243) 0.937 (0.419) 0.927 (0.248) 0.937 (0.420)

MB-normal 0.945 (0.244) 0.945 (0.329) 0.943 (0.238) 0.944 (0.314) 0.937 (0.248) 0.938 (0.424) 0.935 (0.253) 0.939 (0.425)
Normal 0.948 (0.247) 0.941 (0.324) 0.946 (0.240) 0.943 (0.309) 0.943 (0.253) 0.939 (0.421) 0.942 (0.259) 0.939 (0.422)

From Table 1.2 we see that all confidence intervals perform fairly well, higher coverage

and narrower width are observed as the dimension n increases. All three types of bootstrap

confidence intervals perform similarly, while the benchmark confidence interval derived from

asymptotic normality tends to perform slightly better under normal noises.

1.7.3 Data Application: Job Training Partners Act Data

In this subsection, we analyze the Job Training Partners Act (JTPA) data, previously

studied in Abadie, Angrist and Imbens (2002), using the retire estimator proposed in Sec-

tion 1.4. The JTPA began funding federal training programs in 1983, and its largest component

Title II supports training for the economically disadvantaged. Specifically, applicants who faced

“barriers to employment”, the most common of which were high-school dropout status and long

periods of unemployment, were typically considered eligible for JTPA training. The services

offered as a part of training included classroom training, basic education, on-the-job training, job

search assistance, and probationary employment.

In this data set, applicants who applied for training evaluation between November 1987
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and September 1989 were randomly selected to enroll for the JTPA training program. Of the

6,102 adult women in the study, 4,088 were offered training and 2,722 enrolled in the JTPA

services, and of the 5,102 adult men in the study, 3,399 were offered training and 2,136 enrolled

in the services. The goal is to assess the effect of subsidized training program on earnings.

Motivated by Abadie, Angrist and Imbens (2002), we use the 30-month earnings data collected

from the Title II JTPA training evaluation study as the response variable. Moreover, we consider

the following covariates: (1) whether or not the individual enrolled in the JTPA services (yes=1,

no=0), (2) individual’s sex (male=1, female=0), (3) whether or not the individual graduated high

school or obtained a GED (yes=1, no=0), (4) whether or not the individual is black (yes=1, no=0),

(5) whether or not the individual is Hispanic (yes=1, no=0), (6) marriage status (married=1,

not married=0) and (7) whether or not the individual worked less than 13 weeks in the 12

months preceding random assignment (yes=1, no=0). We study the conditional distribution

of 30-month earnings at different expectile levels τ = {0.1,0.5,0.9}. Our proposed method

involves robustification parameter γ , which we select using the tuning method described in

Section 1.7.

The regression coefficients and their associated 95% confidence intervals are shown in

Table 1.3. We find that covariates with positive regression coefficients for all quantile levels

are enrollment for JTPA services, individual’s sex, high school graduation or GED status, and

marriage status. Black, hispanic, and worked less than 13 weeks in the past year had negative

regression coefficients. The regression coefficients varied across the three different expectile

levels we considered. The positive regression coefficients increase as the τ level increases and the

negative regression coefficients decrease as the τ level increases. That is, for the lower expectile

level of 30-month earnings, the covariates have a smaller in magnitude effect on the individual’s

earnings compared to the higher expectile level. The regression coefficient for enrollment in

JTPA services was 1685.34, 2637.57, and 2714.57 at τ = {0.1,0.5,0.9}, respectively. The

τ-expectile of 30-month earnings for τ = {0.1,0.5,0.9} is 5068.02, 15815.29, and 32754.89

dollars, respectively. Compared to the expectile at the given τ , the (relative) effect of subsidized
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training was larger for lower expectile levels. Notably, if an individual is a male, conditional on

other covariates, their 30-month earnings increase by 5,005 dollars for τ = 0.5 and increase by

10,311 dollars for τ = 0.9. From the confidence intervals, we see that all variables are statistically

significant except Hispanic.

Table 1.3. Regression coefficients (and their associated 95% confidence intervals) for the retire
estimator.

Variable τ = 0.1 τ = 0.5 τ = 0.9
enrolled in services 1685.34 (1401.03, 1969.65) 2637.57 (2079.74, 3195.40) 2714.57 (1766.01, 3663.13)

male 1706.87 (1435.04, 1978.69) 5005.12 (4449.07, 5561.17) 10310.62 (9338.91, 11282.34)
high school or GED 1477.19 (1218.33, 1736.06) 3656.13 (3140.12, 4172.14) 5718.62 (4803.60, 6633.63)

black -580.04 (-917.86, -242.21) -1567.03 (-2265.51, -868.56) -2459.81 (-3686.14, -1233.48)
hispanic -130.72 (-588.11, 326.66) -669.76 (-1626.83, 287.32) -1495.33 (-3306.12, 315.46)
married 1268.30 (933.66, 1602.94) 3343.63 (2668.95, 4018.30) 4518.43 (3376.92, 5659.93)

worked less than 13 wks -3677.98 (-3957.24, -3398.72) -6879.14 (-7438.20, -6320.08) -8206.16 (-9151.81, -7260.50)
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Chapter 2

Expectile Regression in High Dimensions

2.1 Motivation and Overview

In this chapter, we focus on high-dimensional regression models in which the number of

covariates, d, is considerably larger than the number of observations, n. Recall that the goal is to

infer the conditional distribution of the response variable y given the covariates xxx based on the

training data (y1,xxx1), . . . ,(yn,xxxn) ∈ R×Rd . For high-dimensional settings, ordinary (unpenal-

ized) methods are generally inconsistent due to high dimensions, and the mainstream approach

is to use penalization techniques to perform variable selection and estimation simultaneously.

The most intuitive method to explore conditional distribution in high dimensions is the

sparse quantile regression (QR). Belloni and Chernozhukov (2011) studied quantile regression

with `1-penalization in order to remove covariates whose population coefficients are zero. They

established the uniform (over a range of quantile levels) convergence rate of
√

s log(d∨n)/n,

where s is the sparsity level—cardinality of the true active set S = supp(βββ ∗). To alleviate the

bias induced by the `1 penalty, Wang, Wu and Li (2012) proposed concave penalized quantile

regression, and showed that the oracle estimator is a local solution to the resulting optimization

problem. Via the one-step local linear approximation (LLA) algorithm, Fan, Xue and Zou (2014)

proved that the oracle estimator can be obtained (with high probability) as long as the magnitude

of true nonzero regression coefficients is at least of order
√

s log(d)/n. We refer to Wang and He

(2022) for a unified analysis of global and local optima of penalized quantile regressions. While
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quantile regression offers the flexibility to model the conditional response distribution and is

robust to outliers, together the non-differentiability of the check function and the non-convexity

of the penalty pose substantial technical and computational challenges. To our knowledge, the

theoretical guarantee of the convergence of a computationally efficient algorithm to the oracle

QR estimator under the weak minimum signal strength condition—min j∈S |β ∗j |&
√

log(d)/n

with S = supp(βββ ∗)—remains unclear.

An alternative method for analyzing the conditional distribution in high dimensions

is the penalized expectile regression. Gu and Zou (2016) considered the penalized expectile

regression using both convex and concave penalty functions. Since the expectile loss is convex

and twice-differentiable, scalable algorithms, such as the cyclic coordinate decent and proximal

gradient descent, can be employed to solve the resulting optimization problem. Theoretically, the

consistency of penalized expectile regression in the high-dimensional regime “log(d)� n� d”

requires sub-Gaussian error distributions (Gu and Zou, 2016). This is in strong contrast to penal-

ized QR, the consistency of which requires no moment condition (Belloni and Chernozhukov,

2011, Wang and He, 2022) although certain regularity conditions on the conditional density

function are still needed. Lack of robustness to heavy-tailedness for expectile regression is also

observed in numerical studies. Since expectile regression is primarily introduced to explore

the tail behavior of the conditional response distribution, its sensitivity to the tails of the error

distributions, particularly in the presence of high-dimensional covariates, raises a major concern

from a robustness viewpoint.

Therefore, we aim to shrink the gap between quantile and expectile regressions, specif-

ically in high dimensions, by proposing a penalized robust expectile regression (penalized-

retire) method that inherits the computational expediency and statistical efficiency of expectile

regression and is nearly as robust as quantile regression against heavy-tailed response dis-

tributions. The main idea, which is adapted from Sun, Zhou and Fan (2020), is to replace

the asymmetric squared loss associated with expectile regression with a Lipschitz and locally

quadratic robust alternative, parameterized by a data-dependent parameter to achieve a desirable
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trade-off between bias and robustness.

The class of robustified expectile (retire) loss is already detailed in Section 1.4, and

we will discuss various penalty techniques in the following section.

2.2 Penalization Techniques

For high-dimensional regression models in which the number of covariates, d, is consid-

erably larger than the number of observations, n, our goal is to infer the conditional distribution

of the response variable y given the covariates xxx based on the training data (y1,xxx1), . . . ,(yn,xxxn) ∈

R×Rd . Meanwhile, by the nature of high dimensionality, some sort of low-dimensional

structures are inevitable for the regression problem to be solvable. We impose strict sparsity as-

sumption on high-dimensional data—only a small number of significant predictors are associated

with the response.

When fitting high-dimensional regression models, we aim to both select the significant

variables and estimate their coefficients correctly. One famous approach is the stepwise selection,

which first selects a subset of important variables by various criteria, and then performs a ordinary

least squares regression on the selected variables. Albeit being logically intuitive and practically

useful, stepwise selection is generally computationally expensive, and it ignores stochastic

errors inherited in the stages of variable selections. Hence, its theoretical properties are hard to

understand.

Another famous approach is the penalization or regularization technique in hope to

perform variable selection and coefficient estimation simultaneously. To this end, we may use

various convex and non-convex penalty functions so as to achieve a desirable trade-off between

model complexity and statistical accuracy (Bühlmann and van de Geer, 2011, Wainwright, 2019,

Fan et al., 2020). For example, the ridge regression proposed by Hoerl, A.E. and Kennard, R.W.

(1970) and the least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani

(1996). However, ridge regression rarely introduces sparsity despite being computationally
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efficient, and Lasso introduces sparsity at the cost of inducing non-negligible bias, which may

prevent consistent variable selection. To see this, consider the case of orthogonal design where

all the vectors zzzi are orthogonal to each other. It can be shown that adding `1 penalty results

in coordinate-wise soft thresholdings β̂ j = sign(z j)(z j−λ )+. Therefore, small coefficients are

shrunk to zero to provide sparsity, and large coefficients are shrunk towards zero to induce

non-negligible bias. Intuitively, the `1 penalty ||βββ ||1 penalizes the true parameter βββ
∗ differently.

Large coefficients are penalized much more than small coefficients, thus inducing non-negligible

bias. Consequently, the selected model with a relatively small prediction error tends to include

many false positives, unless stringent assumptions are imposed on the design matrix (Zhang and

Zhang, 2012, Zou and Li, 2008, Su, Bogdan and Candés, 2017, Lahiri, 2021).

To construct a penalty that performs variable selection and coefficient estimation simul-

taneously while inducing as least bias as possible, Fan and Li (2001) considered the folded

concave penalties. They showed that such penalty functions have to, (i) be singular at the

origin to produce sparse solutions whose estimated coefficients are mostly zero; (ii) be bounded

by a constant to produce nearly unbiased estimates for large coefficients; (iii) be symmetric,

continuously differentiable and non-convex over (0,∞) to produce continuous models so that the

variable selection process is stable. In summary, they proposed the smoothly clipped absolute

deviation (SCAD) penalty pλ (θ) where p′
λ
(θ) = λ{1(θ ≤ λ )+ (aλ−θ)+

(a−1)λ 1(θ > λ )} for some

a > 2, usually a = 3.7 from a Bayes risk perspective. Other widely used nonconvex penalties

like the capped-`1 penalty, the minimax concave penalty (MCP) (Zhang, 2010a) follows the

similar principle. It can be shown that with proper choice of regularization parameters λ , the

proposed estimators perform as well as the oracle procedure in variable selection, i.e., they work

as well as if the correct submodel were known.

Next, we discuss from the computational perspective. Even though the folded concave

penalized estimator is proven to achieve the oracle property provided the signals are sufficiently

strong, i.e., the estimator has the same rate of convergence as that of the oracle estimator obtained

by fitting the regression model with true active predictors that are unknown in practice, the
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singularity and nonconvexity of the penalty function challenge us computationally. Directly

minimizing the concave penalized loss raises numerical instabilities, and standard gradient-based

algorithms are often guaranteed to find a stationary point, while oracle results are primarily

derived for the hypothetical global minimum. To overcome the aforementioned challenges,

Zou and Li (2008) proposed a unified algorithm for folded-concave penalized estimation based

on local linear approximation (LLA). It relaxes the non-convex optimization problem into a

sequence of iteratively reweighted `1-penalized subproblems. It is also shown that LLA is the

best convex majorization–minimization (MM) algorithm, thus proving the convergence of the

LLA algorithm by the ascent property of MM algorithms.

Furthermore, Fan, Xue and Zou (2014) pointed out that, although the sequence of LLA

estimators are guaranteed to converge to a local stationary point instead of the global minimizer,

the computed local solution satisfies oracle property with high probability. More specifically, the

probability that this specific local solution exactly equals the oracle estimator is lower-bounded

by 1−δ0−δ1−δ2 , where δ0 corresponds to the exception probability of the localizability of

the underlying model, δ1 and δ2 represent the exception probabilities of the regularity of the

oracle estimator, which are usually very small under weak regularity conditions, and irrelevant

to the actual estimation method.

2.3 Penalized Retire: Penalized Robust Expectile Regression

In this section, we propose the penalized retire estimator for high-dimensional data

with d > n, obtained by minimizing the robust loss 1
n ∑

n
i=1 Lτ,γ(yi−xxxT

i βββ ), plus a penalty function

pλ (·) that induces sparsity on the regression coefficients. As mentioned in Section 2.2, the

non-negligible estimation bias introduced by convex penalties (e.g., the Lasso penalty) can be

reduced by folded-concave regularization when the signals are sufficiently strong, that is, the

minimum of magnitudes of all nonzero coefficients are away from zero to some extent. The

latter, however, is computationally more challenging and unstable due to non-convexity.

27



Adapted from the local linear approximation algorithm proposed by Zou and Li (2008),

we apply an iteratively reweighted `1-penalized algorithm for fitting sparse robust expectile

regression models with the robust loss Lτ,γ(·). At each iteration, the penalty weights depend

on the previous iterate and the choice of a (folded) concave regularizer satisfying Condition 6

(Zhang and Zhang, 2012) below. Some popular examples include the smoothly clipped absolute

deviation (SCAD) penalty (Fan and Li, 2001), the minimax concave penalty (Zhang, 2010a), and

the capped-`1 penalty. We refer the reader to Zhang and Zhang (2012) and Section 4.4 of Fan

et al. (2020) for more details.

Condition 6. The penalty function pλ (λ > 0) is of the form pλ (t) = λ 2 p0(t/λ ) for t ≥ 0, where

the function p0 : R+→ R+ satisfies: (i) p0(·) is non-decreasing on [0,∞) with p0(0) = 0; (ii)

p0(·) is differentiable almost everywhere on (0,∞) and limt↓0 p′0(t) = 1; (iii) p′0(t1)≤ p′0(t2) for

all t1 ≥ t2 > 0.

Let pλ (·) be a prespecified concave regularizer that satisfies Condition 6, and let p′
λ
(·)

be its first-order derivative. Starting at iteration 0 an initial estimate β̂ββ
(0)

, we sequentially solve

the following weighted `1-penalized convex optimization problems:

β̂ββ
(t)
∈minimize

βββ∈Rd

{
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )+

d

∑
j=2

p′
λ
(|β̂ (t−1)

j |)|β j|

}
, (2.1)

where β̂ββ
(t)

= (β̂
(t)
1 , . . . , β̂

(t)
d )T. At each iteration, β̂ββ

(t)
is a weighted `1-penalized robust ex-

pectile regression estimate, where the weight p′
λ
(|β̂ (t−1)

j |)|β j| can be viewed as a local linear

approximation of the concave regularizer pλ (|β j|) around |β̂ (t−1)
j |. With the trivial initialization

β̂ββ
(0)

= 0, the first optimization problem (2.1) (when t = 1) reduces to the `1-penalized robust

expectile regression because p′
λ
(0) = λ . This iterative procedure outputs a sequence of estimates

β̂ββ
(1)
, . . . , β̂ββ

(T )
, where the number of iterations T can either be set before running the algorithm

or depend on a stopping criterion. Throughout this thesis, we refer to the sequence of estimates

{β̂ββ
(t)
}t=1,...,T given in (2.1) as the iteratively reweighted `1-penalized retire estimators. We will
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describe the computation algorithm in Section 2.4, and characterize their statistical properties

in Section 2.5, including the theoretical choice of T in order to obtain a statistically optimal

estimator.

Remark 2.3.1. Our work differs from Gu and Zou (2016) in three main aspects. Firstly, we

extend the ordinary expectile loss to a class of robustified expectile loss which can handle heavy-

tailed error/response distributions. Our proposed robustified expectile loss retains local strong

convexity near the origin, behaves (at most) linearly when the input is large, and is differentiable

everywhere. Therefore, gradient descent based algorithms can be employed to solve the resulting

optimization problem while being robust to heavy-tailed distributions at the mean time. Secondly,

we consider a much broader error distribution that could better suit the heavy-tailed distribution.

We only require finite second moments and zero conditional τ−expectile for the random error ε ,

i.e., E(ε2|xxx)≤ σ2
ε < ∞ and E[wτ(ε)ε|xxx] = 0, where wτ(u) := |τ−1(u < 0)|. As a comparison,

Gu and Zou (2016) requires a much more stringent i.i.d. sub-Gaussian condition and zero

conditional τ−expectile for the random error ε . Lastly, we work on random designs and imposes

less conditions on the design matrix—the design vector xxx is sub-Exponential. In contrast, Gu and

Zou (2016) considers the fixed design that requires the restricted eigenvalue condition and the

generalized invertability factor (GIF) condition, both of which are difficult to verify in practice.

It will be shown that with an appropriate choice of the robust parameters γ and penalty

parameter λ , `1-penalized retire with bounded-second-moment noises satisfies sub-Gausssian

deviation bounds with near-optimal convergence rate as if sub-Gaussian random noise were

assumed in Gu and Zou (2016). Therefore, our work with less stringent conditions for broader

scenarios can be viewed as an extension over the previous work.

2.4 Computational Methods

In this section we introduce the Local Adaptive Majorize-minimization (LAMM) algo-

rithm (Fan et al., 2018) for solving the iteratively reweighted `1-penalized convex optimization
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problem in (2.1). On a high level, the LAMM algorithm can be viewed as a high dimensional

generalization of the majorize-minimization (MM) algorithm (Hunter, D. R. and Lange, K. ,

2004) and the iterative shrinkage-thresholding algorithm (ISTA) (Beck and Teboulle, 2009).

The main idea of the LAMM algorithm is to construct an isotropic quadratic objective function

that locally majorizes the retire loss function, while permitting closed-form updates at each

iteration. The quadratic coefficient used for local majorization is adaptively chosen in order to

guarantee the decrease of the objective function.

Note that the penalized retire regression can be formulated as a linear programming or

a second-order cone programming (SOCP) problem, depending on the type of sparsity-inducing

penalties. Therefore, general-purpose optimization toolboxes (e.g. interior point methods) can be

applied. However, such toolboxes are only adapted to small-scale problems and usually lead to

solutions with high precision. For large-scale problems, they tend to be too slow or often run out

of memory. As a contrast, the LAMM algorithm is a simpler gradient-based algorithm which is

particularly suited for large-scale problems, and the dominant computational effort is a relatively

cheap matrix-vector multiplication. The (local) strong convexity of the retire loss function

facilitates the convergence of such a first order method. Moreover, the LAMM algorithm can be

extended to a broad class of convex penalties, we will detail this in Chapter 3.

To elaborate the main idea of the LAMM algorithm, consider the minimization of a

general smooth non-linear function f (βββ ). The LAMM algorithm locally majorizes f (βββ ) at

β̂ββ
(k−1)

by a properly constructed function g(βββ |β̂ββ
(k−1)

) that satisfies the following local property

f (β̂ββ
(k)
)≤ g(β̂ββ

(k)
|β̂ββ

(k−1)
) and g(β̂ββ

(k−1)
|β̂ββ

(k−1)
) = f (β̂ββ

(k−1)
), (2.2)

where β̂ββ
(k)

= argminβββ g(βββ |β̂ββ
(k−1)

). It can be checked that f (β̂ββ
(k)
)≤ f (β̂ββ

(k−1)
), i.e., the objec-

tive function f (βββ ) decreases at each iteration. Therefore, the minimization of f (βββ ) decomposes

into two parts, constructing a series of local majorization functions g(·), and solving the min-

imization problem β̂ββ
(k)

= argminβββ g(βββ |β̂ββ
(k−1)

) for each constructed g(·). Note that (2.2) is a
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relaxation of the global majorization requirement used in general MM algorithms that require

f (βββ )≤ g(βββ |β̂ββ
(k−1)

) for all βββ ∈ Rd . This relaxation was observed by Fan et al. (2018).

Motivated by the local property in (2.2), we now derive an iterative algorithm for solving

the series of iteratively reweighted `1-penalized convex optimization problems in (2.1). To

proceed, we consider the special case of weighted `1-penalized problem

β̂ββ ∈minimize
βββ∈Rd

{
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )+

d

∑
j=2

λ j|β j|

}
, (2.3)

which is indeed a sub-problem of (2.1). Let Rn(βββ ) = n−1
∑

n
i=1 Lτ,γ(yi− xxxT

i βββ ) and ∇Rn(βββ ) be

its gradient, and let P(βββ ) = ∑
d
j=2 λ j|β j|. We locally majorize Rn(βββ ) at β̂ββ

(k−1)
by constructing

an isotropic quadratic function Gn(·) of the form

Gn(βββ |φk, β̂ββ
(k−1)

) = Rn(β̂ββ
(k−1)

)+ 〈∇Rn(β̂ββ
(k−1)

),βββ − β̂ββ
(k−1)
〉+ φk

2
||βββ − β̂ββ

(k−1)
||22,

where φk > 0 is a quadratic parameter to be determined at the k-th iteration. Then define the k-th

iterate β̂ββ
(k)

as the solution to

minimize
βββ∈Rd

Gn(βββ |φk, β̂ββ
(k−1)

)+P(βββ ). (2.4)

Clearly we have Gn(β̂ββ
(k−1)
|φk, β̂ββ

(k−1)
) = Rn(β̂ββ

(k−1)
) by construction. To ensure such

constructed isotropic quadratic function Gn(·) is indeed a majorization of Rn(·), we may

pick an adaptive and sufficiently large quadratic parameter φk > 0 such that Rn(β̂ββ
(k)
) ≤

Gn(β̂ββ
(k)
|φk, β̂ββ

(k−1)
). Below we show that such construction also ensures the descent of the
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objective function Rn(βββ )+P(βββ ) at each iteration.

Rn(β̂ββ
(k)
)+P(β̂ββ

(k)
)≤ Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
)+P(β̂ββ

(k)
)

≤ Gn(β̂ββ
(k−1)
|φk, β̂ββ

(k−1)
)+P(β̂ββ

(k−1)
)

= Rn(β̂ββ
(k−1)

)+P(β̂ββ
(k−1)

),

where the second inequality is due to the fact that β̂ββ
(k)

is a minimizer of (2.4). In practice,

we choose φk by starting from a small value φ0 = 0.01 and successively inflate it by a factor

Γ = 1.25 until the local majorization requirement Rn(β̂ββ
(k)
)≤Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
) is met at each

iteration of the LAMM algorithm.

The main crux of our approach is the isotropic form of Gn(βββ |φk, β̂ββ
(k−1)

). As a function

of βββ , Gn(·) permits a simple analytic solution solution β̂ββ
(k)

for weighted Lasso penalty P(βββ ) =

∑
d
j=2 λ j|β j|. It is easy to check that β̂ββ

(k)
takes a simple explicit form


β̂
(k)
1 = β̂

(k−1)
1 −φ

−1
k ∇β1Rn(β̂ββ

(k−1)
),

β̂
(k)
j = S

(
β̂
(k−1)
j −φ

−1
k ∇β jR(β̂ββ

(k−1)
),φ−1

k λ j
)

for j ≥ 2,

where S(a,b)= sign(a) ·(|a|−b)+ denotes the shrinkage operator, sign(·) is the sign function and

(c)+ = max(c,0). As a result, the minimization problem at each iteration of LAMM algorithm

has an explicit formula, thus β̂ββ
(k)

can be updated efficiently by vector-matrix multiplications.

We summarize the whole procedure in the following Algorithm 3 and Algorithm 4.

2.5 Statistical Analysis

In this section, we analyze the sequence of estimators {β̂ββ
(t)
}T

t=1 obtained in (2.1) under

the high-dimensional regime in which d > n. Throughout the theoretical analysis, we assume

that the regression parameter βββ
∗ ∈ Rd in model yi = xxxT

i βββ
∗(τ)+ εi(τ) is exactly sparse, i.e.,

βββ
∗ has s non-zero coordinates. Let S = {1 ≤ j ≤ d : β ∗j 6= 0} be the active set of βββ

∗ with
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Algorithm 3. Local Adaptive Majorize-minimization (LAMM) Algorithm for Solving (2.3) with
retire loss.
Input: regularization parameters λ j, expectile level τ , Huber loss tuning parameter γ , inflation factor
Γ = 1.25 and convergence criterion ε .

Initialization: β̂ββ
(0)

= 0, φ0 = 0.01.

Iterate: the following until the stopping criterion ‖β̂ββ
(k)
− β̂ββ

(k−1)
‖2 ≤ ε is met, where β̂ββ

(k)
is the value of

βββ obtained at the k-th iteration.

1. Set φk←max(φ0,φk−1/Γ).

2. repeat

3. β̂
(k)
1 ← β̂

(k−1)
1 −φ

−1
k ∇β1Rn(β̂ββ

(k−1)
), β̂

(k)
j ← S(β̂ (k−1)

j −φ
−1
k ∇β jRn(β̂ββ

(k−1)
),φ−1

k λ j) for j ≥ 2.

4. if Rn(β̂ββ
(k)
)> Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
), set φk← Γφk.

5. until Rn(β̂ββ
(k)
)≤ Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
).

Output: the final iterate β̂ββ
(k)

.

Algorithm 4. Local Adaptive Majorize-minimization (LAMM) Algorithm for Solving (2.1) with
retire loss.
Input: regularization parameters λ , penalty function pλ , expectile level τ , Huber loss tuning parameter γ ,
inflation factor Γ = 1.25 and convergence criterion ε .

Initialization: β̂ββ
(0)

= 0, φ0 = 0.01.

Iterate: the following until the stopping criterion ‖β̂ββ
(k)
− β̂ββ

(k−1)
‖2 ≤ ε is met, where β̂ββ

(k)
is the value of

βββ obtained at the k-th iteration.

1. Set λ1← 0, λ j← p′
λ
(|β̂ j

(k−1)|) for j ≥ 2.

2. apply Algorithm 3 with parameters (λ j,γ,Γ,ε) .

3. update β̂ββ
(k)

.

Output: the final iterate β̂ββ
(k)

.
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cardinality |S |= s. Recall that τ = min(τ,1− τ), κ1 = min|u|≤1 `
′′(u) and A1 > 0 is a constant

that satisfies E(uuuTΣΣΣ
−1/2xxx)4 ≤ A4

1‖uuu‖4
2 for all uuu ∈ Rd , where xxx satisfies Condition 2. Similar

to the low-dimensional setting, the key to our high-dimensional analysis is an event Ersc that

characterizes the local restricted strong convexity property of the empirical loss function Rn(·)

over the intersection of an `1-cone and a local `2-ball centered at βββ
∗ (Loh and Wainwright, 2015).

Lemma 2.5.1 below shows that the event Ersc occurs with high probability for suitably chosen

parameters.

Definition 2.5.1. Given radii parameters r,L > 0 and a curvature parameter κ > 0, define the

event

Ersc(r,L,κ) =

{
inf

βββ∈βββ
∗+B(r)∩C(L)

〈∇Rn(βββ )−∇Rn(βββ
∗),βββ −βββ

∗〉
‖βββ −βββ

∗‖2
2

≥ κ

}
,

where B(r) = {δδδ ∈Rd : ‖δδδ‖2 ≤ r} is an `2-ball with radius r, and C(L) = {δδδ : ‖δδδ‖1 ≤ L‖δδδ‖2}

is an `1-cone.

Lemma 2.5.1. Let the radii parameters (r,L) and the robustification parameter γ satisfy

γ ≥ 4
√

2λu max{σε ,2A2
1r} and n & (σxxxν0γ/r)2(L2 logd + t).

Then, under Conditions 1, 2, and 3, event Ersc(r,L,κ) with κ = κ1τ/2 occurs with probability at

least 1− e−t .

Under the local restricted strong convexity, in Theorem 2.5.1, we provide an upper bound

on the estimation error of β̂ββ
(1)

, i.e., the `1-penalized retire estimator.

Theorem 2.5.1. Assume Conditions 1, 2, and 3 hold. Then, the `1-penalized retire estimator

β̂ββ
(1)

with γ = σε

√
n/(logd + t) and λ �

√
(logd + t)/n satisfies the bounds

‖β̂ββ
(1)
−βββ

∗‖2 ≤ 3(κ1τ)−1s1/2
λ and ‖β̂ββ

(1)
−βββ

∗‖1 ≤ 12(κ1τ)−1sλ ,
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with probability as least 1−3e−t .

Theorem 2.5.1 shows that with an appropriate choice of the tuning parameters γ and λ , the

`1-penalized robust expectile regression satisfies exponential deviation bounds with near-optimal

convergence rate as if sub-Gaussian random noise were assumed (Gu and Zou, 2016).

Remark 2.5.1. Condition 3 can be further relaxed to accommodate heavy-tailed random er-

ror with finite (1+ φ) moment with 0 < φ < 1. Specifically, it can be shown that under the

`2 norm, the estimation error of the `1-penalized Huber regression estimator takes the form

s1/2{log(d)/n}min{φ/(1+φ),1/2} (Sun, Zhou and Fan, 2020, Tan, Sun and Witten, 2022). Similar

results can be obtained for the proposed `1-penalized retire estimator and we leave it for

future work.

Remark 2.5.2. Throughout this section, we assume that the underlying regression parameter

βββ
∗ ∈ Rd is exactly sparse. In this case, iteratively reweighted `1-penalization helps reduce

the estimation bias from `1-penalization as signal strengthens. For weakly sparse vectors βββ
∗

satisfying ∑
d
j=1 |β ∗j |q ≤ Rq for some 0 < q ≤ 1 and Rq > 0, Fan, Li and Wang (2017) showed

that the convergence rate (under `2-norm) of the `1-penalized adaptive Huber estimator with

a suitably chosen robustification parameter is of order O(σ
√

Rq {log(d)/n}1/2−q/4). Using

the same argument, the results in Theorem 2.5.1 can be directly extended to the weakly sparse

case where βββ
∗ belongs to an Lq-ball for some 0 < q≤ 1. For recovering weakly sparse signals,

folded-concave penalization no longer improves upon `1-penalization, and therefore we will not

provide details on such an extension.

Next, we establish the statistical properties for the entire sequence of estimators {β̂ββ
(1)
,

β̂ββ
(2)
, . . . , β̂ββ

(T )
} obtained from solving the convex optimization problem (2.1) iteratively. Let

‖βββ ∗S ‖min = min j∈S |β ∗j | be the smallest (in absolute value) non-zero regression coefficient.

Under a beta-min condition, we show that the estimation error of β̂ββ
(1)

stated in Theorem 2.5.1

can be refined. More specifically, given the previous iterate β̂ββ
(T−1)

, the estimation error of the

subsequent estimator, β̂ββ
(T )

, can be improved by a δ -fraction for some constant δ ∈ (0,1).
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Theorem 2.5.2. Let p0(·) be a penalty function satisfying Condition 6. Under Conditions 1, 2

and 3, assume there exist some constants a1 > a0 > 0 such that

a0 >
√

5/(κ1τ), p′0(a0)> 0, p′0(a1) = 0.

Assume further the minimum signal strength condition ‖βββ ∗S ‖min ≥ (a0 +a1)λ and the sample

size requirement n & s logd + t. Picking γ � σε

√
n/(s+ logd + t) and λ � σε

√
(logd + t)/n,

we have

‖β̂ββ
(T )
−βββ

∗‖2 . δ
T−1

σε

√
s(logd + t)

n
+

σε

1−δ

√
s+ logd + t

n
,

with probability at least 1−4e−t . Furthermore, setting T & log{log(d)+t}
log(1/δ ) , we have

‖β̂ββ
(T )
−βββ

∗‖2 . σε

√
s+ logd + t

n
(2.5)

and ‖β̂ββ
(T )
−βββ

∗‖1 . σεs1/2

√
s+ logd + t

n
(2.6)

with probability at least 1−4e−t , where δ =
√

5/(a0κ1τ)< 1.

Theorem 2.5.2 shows that under the beta-min condition ‖βββ ∗S ‖min &
√

log(d)/n, the

iteratively reweighted `1-penalized retire estimator β̂ββ
(T )

with T � log{log(d)} achieves the

near-oracle convergence rate, i.e., the convergence rate of the oracle estimator that has access to

the true support of βββ
∗. This is also known as the weak oracle property. Picking t = logd, we see

that iteratively reweighted `1-penalization refines the statistical rate from
√

s log(d)/n for β̂ββ
(1)

to
√

(s+ logd)/n for β̂ββ
(T )

.

Remark 2.5.3. Theorem 2.5.2 reveals the so-called weak oracle property in the sense that the

regularized estimator β̂ββ
(T )

enjoys the same convergence rate as the oracle estimator defined

by regressing only on the significant predictors. To obtain such a result, the required minimum

signal strength ‖βββ ∗S ‖min &
√

log(d)/n is almost necessary and sufficient. To see this, consider
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the linear model yi = xxxT
i βββ
∗+ εi with εi ∼ N(0,σ2) independent of xxxi, and define the parameter

space Ωs,a = {βββ ∈ Rd : ‖βββ‖0 ≤ s,min j:β j 6=0 |β j| ≥ a} for a > 0. Under the assumption that

the design matrix X = (xxx1, . . . ,xxxn)
T ∈ Rn×d satisfies a restricted isometry property and has

normalized columns, Ndaoud (2019) derived the following sharp lower bounds for the minimax

risk ψ(s,a) := inf
β̂ββ

sup
βββ
∗∈Ωs,a

E‖β̂ββ −βββ
∗‖2

2: for any ε ∈ (0,1),

ψ(s,a)≥ {1+o(1)}2σ2s log(ed/s)
n

for any a≤ (1− ε)σ

√
2log(ed/s)

n

and ψ(s,a)≥ {1+o(1)}σ2s
n

for any a≥ (1+ ε)σ

√
2log(ed/s)

n
,

where the limit corresponds to s/d→ 0 and s log(ed/s)/n→ 0.

The minimax rate 2σ2s log(ed/s)/n is attainable by both Lasso and Slope (Bellec, Lecué

and Tsybakov, 2018), while the oracle rate σ2s/n can only be achieved when the magnitude of the

minimum signal is of order σ
√

log(d/s)/n. The beta-min condition imposed in Theorem 2.5.2

is thus (nearly) necessary and sufficient, and is the weakest possible within constant factors.

Under a stronger beta-min condition ‖βββ ∗S ‖min &
√

s log(d)/n, Gu and Zou (2016)

showed that with high probability, the IRW-`1 expectile regression estimator (initialized by zero)

coincides with the oracle estimator after three iterations. This is known as the strong oracle

property. Based on the more refined analysis by Pan, Sun and Zhou (2021), we conjecture that

the IRW-`1 retire estimator β̂ββ
(T )

with T � log(s∨ logd) achieves the strong oracle property

provided ‖βββ ∗S ‖min &
√

log(d)/n without the
√

s-factor.

2.6 Numerical Experiments

In this section, we access the performance of the proposed penalized retire estimator

via extensive numerical studies. For all of the numerical studies, we generate the covariates

xxxi from a multivariate normal distribution N(0,ΣΣΣ = (σ jk)1≤ j,k≤d) with σ jk = 0.5| j−k|. We then

generate the response variable yi from one of the following three models:
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1. Homoscedastic model:

yi = xxxT
i βββ
∗+ εi, (2.7)

2. Quantile heteroscedastic model:

yi = xxxT
i βββ
∗+(0.5|xid|+0.5){εi−F−1

εi
(τ)}, (2.8)

3. Expectile heteroscedastic model:

yi = xxxT
i βββ
∗+(0.5|xid|+0.5){εi− eτ(εi)}, (2.9)

where εi is the random noise, F−1
εi

(·) denotes the inverse cumulative distribution function of

εi, and eτ(εi) denotes the inverse of the expectile function of εi. Note that under Gaussian and

t-distributed noises, the two models (2.9) and (2.8) are the same for τ = 0.5. We set the regression

coefficient vector βββ
∗ = (β ∗1 ,β

∗
2 , . . . ,β

∗
d )

T as β ∗1 = 2 (intercept), β ∗j = {1.8,1.6,1.4,1.2,1,−1,

−1.2,−1.4,−1.6,−1.8} for j = 2,4, . . . ,20, and 0 otherwise. The random noise is generated

from either a Gaussian distribution, N(0,2), or a t distribution with 2.1 degrees of freedom. For

the heteroscedastic models, we consider two quantile/expectile levels τ = {0.5,0.8}.

Similar to Section 1.7, we update the robustification parameter γ using a heuristic tuning

method

γ
k = mad(r̃k) ·

√
n

log(nd)
. (2.10)

Throughout our numerical studies, we have found that γ chosen using the above heuristic

approach works well across different scenarios. Our computational results are reproducible using

codes available from https://github.com/ZianWang0128/Retire.
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2.6.1 Estimation

In this subsection, we implement the `1-penalized retire and the IRW-`1-penalized

retire using SCAD-based weights with T = 3, which we compare to three other competitive

methods: (i) `1-penalized Huber regression (huber); (ii) `1-penalized asymmetric least squares

regression (sales) proposed by Gu and Zou (2016), and (iii) `1-penalized quantile regression

(qr) implemented via the R package rqPen (Sherwood and Maidman, 2020). To assess the

performance across different methods, we report the estimation error under the `2-norm, i.e.,

‖β̂ββ −βββ
∗‖2, the true positive rate (TPR), and the false positive rate (FPR). Here, TPR is defined

as the proportion of the number of correctly identified non-zeros and the false positive rate is

calculated as the proportion of the number of incorrectly identified nonzeros.

Note that huber and sales are special cases of retire by taking τ = 0.5 and γ → ∞,

respectively. Thus, both huber and sales can be implemented via Algorithm 4. For all methods,

the sparsity inducing tuning parameter λ is selected via ten-fold cross-validation. Specifically,

for methods `1-penalized retire, huber, and sales, we select the largest tuning parameter that

yields a value of the asymmetric least squares loss that is less than the minimum of the asymmetric

least squares loss plus one standard error. For qr, we use the default cross validation function in

R package rqPen to select the largest tuning parameter that yields a value of its corresponding

loss function that is less than the minimum of the quantile loss plus one standard error. For

IRW retire, we select the largest tuning parameter that yields a value of the asymmetric least

squares loss that is the minimum of the asymmetric least squares. Also note that both huber

and retire require tuning an additional robustness parameter γ . We select γ using the heuristic

tuning method (2.10) to update γ at the beginning of each iteration in Algorithm 4.

The results, averaged over 100 repetitions, are reported in Tables 2.1–2.4 for the moderate-

(n = 400, d = 200) and high-dimensional (n = 400, d = 500) settings.

Table 2.1 contains results (τ = 0.5) under the homoscedastic model (2.7) with normally

and t-distributed noise. For Gaussian noise, the four `1-penalized estimators have similar
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Table 2.1. Homoscedastic model (2.7) with Gaussian noise (ε ∼N(0,2)) and t2.1 noise (ε ∼ t2.1).
Estimation error under `2-norm (and its standard deviation), true positive rate (TPR) and false
positive rate (FPR), averaged over 100 repetitions, are reported.

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

Gaussian `1 retire 0.569 (0.076) 1.000 (0.000) 0.026 (0.016) 0.604 (0.094) 1.000 (0.000) 0.012 (0.009)
IRW retire (SCAD) 0.256 (0.059) 1.000 (0.000) 0.014 (0.027) 0.261 (0.068) 1.000 (0.000) 0.008 (0.015)

`1 huber 0.569 (0.076) 1.000 (0.000) 0.026 (0.016) 0.604 (0.094) 1.000 (0.000) 0.012 (0.009)
`1 sales 0.569 (0.076) 1.000 (0.000) 0.026 (0.016) 0.605 (0.094) 1.000 (0.000) 0.012 (0.009)
`1 qr 0.566 (0.084) 1.000 (0.000) 0.153 (0.036) 0.661 (0.073) 1.000 (0.000) 0.154 (0.030)

t2.1 `1 retire 1.206 (0.349) 0.996 (0.020) 0.006 (0.005) 1.266 (0.398) 0.992 (0.031) 0.003 (0.003)
IRW retire (SCAD) 0.299 (0.083) 1.000 (0.000) 0.017 (0.035) 0.299 (0.079) 1.000 (0.000) 0.011 (0.020)

`1 huber 1.206 (0.349) 0.996 (0.020) 0.006 (0.005) 1.266 (0.398) 0.992 (0.031) 0.003 (0.003)
`1 sales 1.317 (0.384) 0.994 (0.024) 0.010 (0.007) 1.380 (0.425) 0.985 (0.041) 0.004 (0.004)
`1 qr 0.497 (0.090) 1.000 (0.000) 0.126 (0.036) 0.560 (0.074) 1.000 (0.000) 0.141 (0.030)

Table 2.2. Heteroscedastic model (2.8) with Gaussian noise (ε ∼ N(0,2)) and quantile levels
τ = {0.5,0.8}. Estimation error under `2-norm (and its standard deviation), true positive rate
(TPR) and false positive rate (FPR), averaged over 100 repetitions, are reported.

n = 400,d = 200 n = 400,d = 500
τ Method `2 error TPR FPR `2 error TPR FPR

0.5 `1 retire 0.555 (0.077) 1.000 (0.000) 0.022 (0.015) 0.584 (0.094) 1.000 (0.000) 0.011 (0.011)
IRW retire (SCAD) 0.237 (0.052) 1.000 (0.000) 0.012 (0.024) 0.243 (0.064) 1.000 (0.000) 0.008 (0.016)

`1 huber 0.555 (0.077) 1.000 (0.000) 0.022 (0.015) 0.584 (0.094) 1.000 (0.000) 0.011 (0.011)
`1 sales 0.560 (0.079) 1.000 (0.000) 0.023 (0.015) 0.594 (0.096) 1.000 (0.000) 0.010 (0.010)
`1 qr 0.478 (0.078) 1.000 (0.000) 0.150 (0.037) 0.551 (0.066) 1.000 (0.000) 0.151 (0.030)

0.8 `1 retire 0.628 (0.083) 1.000 (0.000) 0.030 (0.033) 0.651 (0.097) 1.000 (0.000) 0.013 (0.010)
IRW retire (SCAD) 0.385 (0.076) 1.000 (0.000) 0.009 (0.019) 0.383 (0.066) 1.000 (0.000) 0.005 (0.011)

`1 huber 1.200 (0.080) 1.000 (0.000) 0.023 (0.017) 1.212 (0.086) 1.000 (0.000) 0.011 (0.011)
`1 sales 0.669 (0.083) 1.000 (0.000) 0.026 (0.024) 0.696 (0.093) 1.000 (0.000) 0.010 (0.008)
`1 qr 0.563 (0.093) 1.000 (0.000) 0.176 (0.038) 0.661 (0.089) 1.000 (0.000) 0.176 (0.025)

Table 2.3. Heteroscedastic model (2.8) with t2.1 noise (ε ∼ t2.1) and quantile levels τ = {0.5,0.8}.
Estimation error under `2-norm (and its standard deviation), true positive rate (TPR) and false
positive rate (FPR), averaged over 100 repetitions, are reported.

n = 400,d = 200 n = 400,d = 500
τ Method `2 error TPR FPR `2 error TPR FPR

0.5 `1 retire 1.149 (0.364) 0.998 (0.014) 0.006 (0.005) 1.187 (0.396) 0.994 (0.028) 0.002 (0.003)
IRW retire (SCAD) 0.264 (0.079) 1.000 (0.000) 0.014 (0.030) 0.269 (0.077) 1.000 (0.000) 0.012 (0.022)

`1 huber 1.149 (0.364) 0.998 (0.014) 0.006 (0.005) 1.187 (0.396) 0.994 (0.028) 0.002 (0.003)
`1 sales 1.263 (0.397) 0.995 (0.022) 0.009 (0.007) 1.297 (0.421) 0.992 (0.031) 0.004 (0.003)
`1 qr 0.414 (0.079) 1.000 (0.000) 0.120 (0.034) 0.466 (0.068) 1.000 (0.000) 0.136 (0.032)

0.8 `1 retire 1.479 (0.710) 0.972 (0.064) 0.007 (0.006) 1.455 (0.640) 0.980 (0.051) 0.003 (0.003)
IRW retire (SCAD) 0.378 (0.168) 1.000 (0.000) 0.015 (0.033) 0.362 (0.114) 1.000 (0.000) 0.008 (0.017)

`1 huber 1.503 (0.286) 0.998 (0.014) 0.006 (0.005) 1.534 (0.314) 0.995 (0.022) 0.003 (0.003)
`1 sales 1.619 (0.684) 0.967 (0.064) 0.013 (0.013) 1.592 (0.616) 0.972 (0.062) 0.005 (0.005)
`1 qr 0.621 (0.133) 1.000 (0.000) 0.155 (0.045) 0.704 (0.104) 1.000 (0.000) 0.167 (0.039)
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Table 2.4. Heteroscedastic model (2.9) with Gaussian noise (ε ∼N(0,2)) and t2.1 noise (ε ∼ t2.1),
under the τ-expectile = 0.8. Estimation error under `2-norm (and its standard deviation), true
positive rate (TPR) and false positive rate (FPR), averaged over 100 repetitions, are reported.

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

Gaussian `1 retire 0.607 (0.091) 1.000 (0.000) 0.030 (0.033) 0.645 (0.114) 1.000 (0.000) 0.013 (0.010)
IRW retire (SCAD) 0.274 (0.102) 1.000 (0.000) 0.011 (0.029) 0.271 (0.068) 1.000 (0.000) 0.006 (0.011)

`1 huber 0.887 (0.080) 1.000 (0.000) 0.023 (0.017) 0.904 (0.088) 1.000 (0.000) 0.011 (0.012)
`1 sales 0.606 (0.093) 1.000 (0.000) 0.026 (0.028) 0.639 (0.113) 1.000 (0.000) 0.011 (0.009)
`1 qr 0.653 (0.101) 1.000 (0.000) 0.178 (0.036) 0.701 (0.087) 1.000 (0.000) 0.177 (0.026)

t2.1 `1 retire 1.486 (0.711) 0.973 (0.063) 0.007 (0.007) 1.462 (0.645) 0.980 (0.051) 0.003 (0.003)
IRW retire (SCAD) 0.363 (0.170) 1.000 (0.000) 0.014 (0.032) 0.349 (0.118) 1.000 (0.000) 0.008 (0.017)

`1 huber 1.481 (0.290) 0.998 (0.014) 0.006 (0.005) 1.511 (0.318) 0.995 (0.022) 0.003 (0.003)
`1 sales 1.625 (0.688) 0.967 (0.064) 0.013 (0.013) 1.598 (0.621) 0.972 (0.062) 0.005 (0.005)
`1 qr 0.624 (0.136) 1.000 (0.000) 0.154 (0.045) 0.706 (0.105) 1.000 (0.000) 0.168 (0.039)

performance, except that `1 qr has a much worse FPR. IRW retire (with SCAD) significantly

reduces estimation error while remaining comparable FPR. For the t2.1 noise, we see that

IRW retire gains considerable advantage over all other methods in estimation error while

maintaining model selection accuracy, suggesting that the proposed estimator gains robustness

without compromising statistical accuracy. t2.1 noise is fairly heavy-tailed, thus large biases are

introduced due to the `1 penalty. IRW retire reduces such bias by iteratively solving a series

of optimization problems with smaller λ levels, at the cost of more computation involved.

Tables 2.2 and 2.3 show results under the quantile heteroscedastic model (2.8) with the

Gaussian and t2.1 noise, respectively. Two quantile levels τ = {0.5,0.8} are considered. We

see that huber and `1-penalized retire have the same performance when τ = 0.5 since they

are indeed equivalent for the case when τ = 0.5. When τ = 0.8, the performance of huber

deteriorates since huber implicitly assumes τ = 0.5 and there is a non-negligible bias when

τ = 0.8. Moreover, IRW retire has the lowest estimation error among all methods. Similar

results can also be found in Table 2.4 for the expectile heteroscedastic model (2.9).

We want to point out that in general the quantile regression method qr is quite ‘stable’.

It always produces acceptable estimation error (especially under the t2.1 noise) and much higher

FPR than other methods. In fact, the quantile loss is more robust to outliers than the asymmetric

square losses, which contributes to low estimation errors under the t2.1 noise. As a side effect

of being robust for the quantile loss, it hardly shows curvature for the cross-validation process
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when tuning the penalty levels λ . Therefore, the performance of qr method highly depends on

the candidate λ sequence generated by the rqPen package, which might cause the consistent

high FPR for qr than other methods. In summary, the numerical studies confirm IRW retire as

a robust alternative with better statistical accuracy to its least squares counterpart sales.

2.6.2 Inference for Confidence Intervals

In this subsection, we apply both Multiple Bootstrap (MB) technique and Post Selection

Inference (PSI) to obtain confidence intervals for signals β ∗j . Details of Multiple Bootstrap

technique and Post Selection Inference will be found in the following subsections.

We use the following 95% confidence interval derived from asymptotic normality as a

benchmark. It is a simple consequence of Theorem 1.6.3 and its derivation can be found in (1.7).

[
β̂ j−1.96

σ̂(e j)√
n

, β̂ j−1.96
σ̂(e j)√

n

]
,

where

σ̂
2(e j) := eT

j Ĵ−1

[
1
n

n

∑
i=1

ζ
2(ε̂i)xxxixxxT

i

]
Ĵ−1e j,

and ζ (u) = L′τ,γ(u) = |τ−1(u < 0)| · `′γ(u) is the first-order derivative of Lτ,γ(·) given in (1.5).

Multiple Bootstrap

Here we briefly outline three main steps of Multiple Bootstrap (MB) procedure to obtain

confidence intervals for signals β ∗j .

Firstly, given data {(yi,xxxi)}n
i=1 that follows the data generation process detailed in Sec-

tion 2.6.1, we obtain bootstrap samples {β̂ββ
boot
1 , . . . , β̂ββ

boot
B } by repeatedly minimizing randomly

weighted objective functions {n−1
∑

n
i=1 wb

i ·Lτ,γ(yi−xxxT
i βββ )+∑

d
j=2 p′

λ
(|β̂ b,(t−1)

j |)|β j|}, where Lτ,γ

is defined in (1.5) that satisfies Condition 1, p′
λ

satisfies Condition 6, and wb
1, . . . ,w

b
n are i.i.d.

random bootstrap weights that satisfy E(wb
i ) = var(wb

i ) = 1. For convenience, we focus on the

Huber loss for which `(u) = u2/2 ·1(|u| ≤ 1)+ (|u|−1/2) ·1(|u| > 1). Moreover we choose
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SCAD penalty and exponential i.i.d. bootstrap weights, i.e., wb
i ∼ exp(1).

Secondly, we perform a majority vote to obtain bootstrap estimated active set S := { j =

2, . . . ,d : p̂ j ≥ 0.5}, where p̂ j =
1
B ∑

B
b=11(|β̂ boot

b, j | > 0) is the selection rate for each covariate

(intercept excluded). Construct the selected low-dimensional dataset {(yi,xxxi,{1}∪S )}n
i=1, based

on which compute a (unregularized) retire estimator, denoted as β̂ββ
ini(low)

. The benchmark

confidence interval (1.7) can be constructed based on β̂ββ
ini(low)

.

Lastly, we obtain low-dimensional bootstrap samples {β̂ββ
boot(low)
1 , . . . , β̂ββ

boot(low)
B } by re-

peatedly minimizing randomly weighted objective functions n−1
∑

n
i=1 wb

i ·Lτ,γ(yi− xxxT
i,{1}∪S βββ ),

and construct confidence intervals. More specifically, we can construct MB confidence intervals

for all the slope coefficients using one of the three classical methods, the percentile method, the

pivotal method, and the normal-based method. Let α ∈ (0,1) be a prespecified confidence level.

1. Efron’s percentile method: For each q ∈ (0,1) and 2 ≤ j ≤ d, define the conditional

q-quantile of β̂
boot(low)
j given the observed data as

cb
j(q) = inf{t ∈ R : P∗(β̂ boot(low)

j ≤ t)≥ q}.

Then then Efron’s percentile interval for β ∗j takes the form

[
cb

j(α/2),cb
j(1−α/2)

]
. (2.11)

2. Pivotal method: The pivotal interval approximates the conditional distribution of β̂ββ −βββ
∗

by the bootstrap quantity β̂ββ
boot
− β̂ββ . More specifically, the pivotal confidence interval for

β ∗j takes the form

[
2β̂

ini(low)
j − cb

j(1−α/2),2β̂
ini(low)
j − cb

j(α/2)
]
. (2.12)

Pivotal confidence intervals are connected to percentile confidence intervals in sense that

43



the latter are the pivotal confidence intervals reflected about the point β̂ j
boot

.

3. Normal-based method: Let Φ−1(·) be the inverse of the cumulative distribution function

of a standard normal random variable. Denote std(·) as the sample standard deviation.

Then the normal-based confidence interval for β ∗j takes the form

[
β̂

ini(low)
j −Φ

−1(1−α/2) · std
{

β̂
boot(low)
·, j

}
, β̂

ini(low)
j +Φ

−1(1−α/2) · std
{

β̂
boot(low)
·, j

}]
.

(2.13)

We summarize the whole process as follow:

Procedure 5. Multiple Bootstrap Inference for β ∗.
Input: generated data {(yi,xxxi)}n

i=1, bootstrap weights wi, cross-validation selected regularization
parameter λ , Huber loss tuning parameter γ , penalty function pλ , and corresponding solution β̂ββ ini.
Initialization: B = 200,T = 3.

1. For b = 1, . . . ,B, obtain bootstrapped regularized estimators by iteratively solving

β̂ββ
b,(t)
∈minimize

βββ∈Rd

{
1
n

n

∑
i=1

wb
i ·Lτ,γ(yi− xxxT

i βββ )+
d

∑
j=2

p′
λ
(|β̂ b,(t−1)

j |)|β j|

}
, t = 1,2, . . . ,T,

where β̂ββ
b,(0)

= β̂ββ ini, and denote the final iterate β̂ββ
b,(T )

by β̂ββ
boot
b .

2. Perform majority vote to obtain the estimated active set S = { j = 2, . . . ,d : p̂ j ≥ 0.5}, where
p̂ j =

1
B ∑

B
b=11(|β̂ boot

b, j |> 0).

3. Compute an (unregularized) estimator β̂ββ
ini(low)

based on the selected dataset {(yi,xxxi,{1}∪S )}n
i=1.

4. For b = 1, . . . ,B, obtain low-dimensional bootstrapped estimators by solving

β̂ββ
boot(low)
b ∈minimize

βββ∈R|S |+1

1
n

n

∑
i=1

wb
i ·Lτ,γ(yi− xxxT

i,{1}∪S βββ ).

5. Calculate confidence intervals from {β̂ββ
boot(low)
1 , . . . , β̂ββ

boot(low)
B } by (2.11), (2.12) and (2.13).

Output: Multiple bootstrap confidence intervals.
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Post Selection Inference

Recall that for a linear regression model

yi = xxxT
i βββ
∗+ εi,

where yi ∈ R is a response variable and xxxi ∈ Rd is a d-dimensional covariate, the noise term

εi ∈R may be heavy-tailed and asymmetrically distributed. Under moderate to high-dimensional

settings where d can be of the same order as n or greater than n, our goal is to construct confidence

intervals for the true signals β ∗j based on some sparse estimators/initializers. However, sparse

estimators such as the Lasso do not have a tractable limiting distribution, therefore statistical

inference with high-dimensional data is challenging.

More specifically, starting with an initial estimator β̂ββ
ini

, we aim to debias the estimator

for the true signal β ∗j by solving

β̂ j ∈minimize
β j∈R

1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i,− jβ̂ββ

ini
− j− xi, jβ j),

where Lτ,γ is defined in (1.5) that satisfies Condition 1, xxxi,− j and β̂ββ
ini
− j are, respectively, the sub-

vectors of xxxi and β̂ββ
ini

, deleting the j-th element. However, it is well known that the asymptotic

normality of β̂ j can not be established if the initial estimator β̂ββ
ini

is not n1/2-consistent. Inspired

by orthogonalization (Neyman, J. , 1959, Zhang and Zhang, 2014, Belloni, Chernozhukov and

Kato, 2015) and decorrelated score (Ning and Liu, 2017), we conjecture the following orthogonal

property

∂

∂η
E
{
(−xi, j + xxxT

i,− jvvv j)L′τ,γ(yi− xxxT
i,− jβββ− j− xi, jβ

∗
j )
}∣∣∣

η=η∗
= 0, (2.14)

where vvv∗j = argminvvv j
E(xi, j− xxxT

i,− jvvv j)
2, η = (vvvT

j,βββ
T
− j)

T and η∗ = (vvv∗T
j ,βββ

∗T
− j)

T. Corresponding to
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orthogonal property (2.14), we consider its empirical version as an estimation equation for β ∗j

1
n

n

∑
i=1

(−xi, j + xxxT
i,− jv̂vv j)L′τ,γ(yi− xxxT

i,− jβ̂ββ
ini
− j− xi, jβ j), (2.15)

where v̂vv j is a consistent estimator of vvv∗j . The orthogonal property (2.14) ensures the convergence

rate of β̂ j derived from (2.15) will not be affected by β̂ββ
ini

, i.e., β̂ββ
ini

is allowed to have a slower

convergence rate than o(n1/2). However, it is difficult to solve (2.15) directly due to the existence

of indicator functions inside L′τ,γ . To proceed, we resort to the idea of one-step estimation

(Bickel, 1975). Define S(β j) = E
{
(−xi, j + xxxT

i,− jvvv
∗
j)L
′
τ,γ(yi− xxxT

i,− jβββ
∗
− j− xi, jβ j)

}
, let S′(β j) be

its derivative with respect to β j and ε ini
i = yi− xxxT

i β̂ββ
ini

. Instead of solving (2.15), we consider

the one-step estimator β̂ j = β̂ ini
j +{S′(β ∗j )}−1n−1

∑
n
i=1(xi, j− xxxT

i,− jv̂vv j)L′τ,γ(ε
ini
i ), and plug-in an

empirical counterpart of the unknown S′(β ∗j ) to obtain

β̂ j = β̂
ini
j +

∑
n
i=1(xi, j− xxxT

i,− jv̂vv j)L′τ,γ(ε
ini
i )

∑
n
i=1 xi, j(xi, j− xxxT

i,− jv̂vv j)× 1
n ∑

n
i=1 L′′τ,γ(ε

ini
i )

.

And the PSI confidence interval for β ∗j has the form

[
β̂ j−Φ

−1(1−α/2)n−1/2
σ̂ , β̂ j +Φ

−1(1−α/2)n−1/2
σ̂
]
,

where

σ̂
2 =

∑
n
i=1
{

L′τ,γ(ε
ini
i )
}2

∑
n
i=1 xi, j(xi, j− xxxT

i,− jv̂vv j)×
{1

n ∑
n
i=1 L′′τ,γ(ε

ini
i )
}2 .

We use IRW retire (with SCAD) as the initial estimator β̂ββ
ini

, and estimate v̂vv j by the

Lasso estimator v̂vv j ∈ minimize
vvv j

n−1(xi, j − xxxT
i,− jvvv j)

2 + λ j||vvv j||1 with cross-validation selected

penalty level λ j.

For both Multiple Bootstrap and Post Selection Inference, we follow the same data
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generation process, model settings, and hyper-parameter selection methods as Section 2.6.1. All

inference results, averaged over 100 repetitions, are reported in the following table.

Table 2.5. Inference results for Multiple Bootstrap (MB) and Post Selection Inference (PSI).
Coverage rate (and the width of confidence intervals) are reported, averaged over 100 repetitions.

CI type
Homo-model (2.7) Quantile hetero-model (2.8) Expectile hetero-model (2.9)

τ = 0.5 τ = 0.5 τ = 0.8 τ = 0.8
ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1 ε ∼ N(0,2) ε ∼ t2.1

n = 400
d = 200

Percentile 0.912 (0.277) 0.932 (0.358) 0.920 (0.264) 0.927 (0.333) 0.918 (0.271) 0.907 (0.427) 0.914 (0.276) 0.906 (0.428)
Pivotal 0.921 (0.277) 0.938 (0.358) 0.920 (0.264) 0.944 (0.333) 0.917 (0.271) 0.920 (0.427) 0.908 (0.276) 0.921 (0.428)

MB-normal 0.923 (0.282) 0.940 (0.365) 0.927 (0.268) 0.940 (0.339) 0.922 (0.276) 0.928 (0.433) 0.920 (0.281) 0.927 (0.434)
PSI 0.949 (0.333) 0.948 (0.358) 0.951 (0.310) 0.947 (0.342) 0.939 (0.321) 0.931 (0.389) 0.933 (0.327) 0.932 (0.391)

Normal 0.934 (0.288) 0.929 (0.351) 0.929 (0.272) 0.933 (0.327) 0.932 (0.284) 0.916 (0.420) 0.927 (0.290) 0.917 (0.420)

n = 400
d = 500

Percentile 0.907 (0.277) 0.914 (0.351) 0.916 (0.263) 0.919 (0.325) 0.898 (0.269) 0.908 (0.407) 0.897 (0.275) 0.911 (0.407)
Pivotal 0.913 (0.277) 0.926 (0.351) 0.919 (0.263) 0.928 (0.325) 0.898 (0.269) 0.920 (0.407) 0.895 (0.275) 0.919 (0.407)

MB-normal 0.923 (0.282) 0.925 (0.355) 0.925 (0.267) 0.929 (0.330) 0.912 (0.274) 0.928 (0.412) 0.917 (0.280) 0.928 (0.412)
PSI 0.949 (0.330) 0.951 (0.373) 0.946 (0.306) 0.949 (0.330) 0.935 (0.317) 0.938 (0.363) 0.936 (0.324) 0.938 (0.364)

Normal 0.927 (0.287) 0.919 (0.343) 0.931 (0.271) 0.925 (0.320) 0.916 (0.281) 0.921 (0.402) 0.915 (0.287) 0.922 (0.403)

From Table 2.5 we see that all methods except PSI have coverage rates slightly lower than

95%. It is not surprising since those methods require a majority vote process to select estimated

active sets from the whole dataset, and such selection may miss some of the true signals β ∗j ,

resulting in lower coverage rates for confidence intervals. Other than this, all types of confidence

intervals perform similarly.

2.6.3 Data Application: NCI-60 Cancer Cell Lines Data

In this subsection, we apply the proposed method to the NCI-60 dataset, a panel of

60 diverse human cancer cell lines. We use two NCI-60 transcript profile datasets, the gene

expression dataset and the protein profile dataset. Both datasets can be obtained via the CellMiner

database and query tool (Reinhold et al., 2012, Shankavaram et al., 2009). The gene expression

data are obtained on Affymetrix HG-U133A/B chips, log2-transformed, and normalized using

the guanine cytosine robust multi-array analysis as in Hansen et al. (2012). It measures 17992

gene expression levels for 60 human cancer cell lines. The protein profile data of 162 antibody

(protein) expression levels are obtained on reverse-phase protein lysate arrays for a total of 60

human cancer cell lines. We remove one observation since all values are missing, reducing the

number of observations to n = 59.
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Figure 2.1. Histograms of the KRT19 antibody expression levels and the kurtosis of gene
expression levels. The red line at 3 is the kurtosis of a standard normal distribution.

We center the gene expression for each gene to have mean zero, and select the first 2000

genes with largest standard deviations. In our analysis, we take the protein expression based on

KRT19 antibody as the response variable since it has the largest standard deviation. The KRT19

antibody is a type I keratin, also known as Cyfra 21-1, encoded by the KRT19 gene. Due to its

high sensitivity, the KRT19 antibody is the most used biomarker for the tumor cells disseminated

in lymph nodes, peripheral blood, and bone marrow of breast cancer patients (Nakata et al.,

2004).

We first plot the histograms for the KRT19 antibody (protein) expression levels, and

kurtosis of the 2000 selected gene expression levels in Figure 2.1. The left panel of Figure 2.1

shows that the distribution of the response variable is asymmetric and bimodal. The right panel

shows that 61.65% of the gene expressions have kurtosis larger than three, and 17.1% of the

gene expressions have kurtosis larger than nine. In other words, 61.65% of the genes have

gene expressions that are heavier tails than the normal distribution, and 17.1% of them have

heavier tails than t5, the t-distribution with five degrees of freedom. This suggests that even

after performing normalization, the data can still exhibit heavy-tailedness (Purdom and Holmes,

2005).

We now estimate the conditional distribution of the protein expressions based on KRT19
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antibody at the expectile levels τ = {0.25,0.5,0.75}. We are interested in the solution paths for

the first 15 genes that are included in the model for the different expectile levels. Selected genes

in solution paths might provide insights for further biological investigations. In particular, we

start with a large value of tuning parameter λ and incrementally decrease λ to obtain the first 15

covariates with non-zero regression coefficients. The list of genes are presented in Table 2.6.

Table 2.6. Solution path for NCI-60 dataset

τ 1 2 3 4 5 6 7 8
0.25 ARHGAP29 C19orf33 BAMBI NRN1 TFF3 CA2 CEMIP IGFBP2
0.5 C19orf33 ANXA3 MAL2 BAMBI MALL CA2 ARHGAP29 NRN1

0.75 C19orf33 MAL2 KRT8 ANXA3 MALL VAMP8 MAGEA12 KRT19
τ 9 10 11 12 13 14 15

0.25 ANAX3 SPARC ALDH1A1 BEX1 EMP3 F3 ALDH1A3
0.5 HOXC10 CEMIP BEX1 TFF3 SPARC G0S2 PDLIM1

0.75 SPARC CA2 NRN1 GDA BAMBI AKR1B10 GPX3

From Table 2.6, we see that six genes are commonly selected across the three different

expectile levels: C19orf33, ANXA3, SPARC, CA2, NRN1, and BAMBI. Interestingly, most of the

six genes are found to be associated with breast cancer patients’ survival time. The gene ANXA3

is shown to be upregulated, i.e., the cell increases the quantity of the component in response

to an external stimulus, in breast cancer tissues and is positively correlated with poor overall

survival (Du et al., 2018). Zhou et al. (2017) suggested that silencing of ANXA3 expression by

RNA interference inhibits the proliferation and invasion of breast cancer cells. Fritzmann et al.

(2009) showed that the transforming growth factor-β inhibitor BAMBI was highly expressed in

metastatic primary tumors and metastases, and observed an inverse correlation between level of

BAMBI expression and metastasis-free survival time of patients. A very recent study in Wen et al.

(2020) found that immortalization-upregulated protein, also known as C19orf33, was upregulated

significantly in breast cancer tissues compared with noncancerous tissue. Watkins et al. (2005)

reported that the transcript levels of SPARC were found to be significantly higher in tumor tissue

when compared to normal background breast tissue, and concluded that SPARC plays a crucial

role in tumor development in breast cancer and as such has a significant bearing on patient

prognosis and long-term survival.
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Chapter 3

Extension to Various Penalties

3.1 Introduction to Various Penalties

In this section, we extend the LAMM algorithm introduced in Section 2.4 to a broad

class of convex penalties that still inherit the two essential features of the standard lasso, namely

the shrinkage and the selection of (groups of) variables.

Consider the general optimization problem

β̂ββ ∈minimize
βββ∈Rd

{
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )+P(βββ )

}
,

where P(βββ ) is a generic convex penalty function and Lτ,γ(·) is the retire loss that satisfies

Condition 1. In this chapter, we focus on the following four widely used convex penalty functions.

1. Weighted lasso (Tibshirani, 1996): P(βββ ) = ∑
d
j=1 λ j|β j|, where λ j ≥ 0 for j = 1, . . . ,d.

2. Elastic net (Zou and Hastie, 2005): P(βββ ) = λα||βββ ||1 +λ (1−α)||βββ ||22, where λ > 0 is a

sparsity-inducing parameter and α ∈ (0,1) is a user-specified constant that controls the

trade-off between the `1 penalty and the ridge penalty.

3. Group lasso (Yuan and Lin, 2006): P(βββ ) = λ ∑
G
g=1 wg||βββ g||2, where βββ = (βββ T

1, . . . ,βββ
T
G)

T

and βββ G is a sub-vector of βββ corresponding to the g-th group of coefficients, and wg > 0

are predetermined weights.
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4. Sparse group lasso (Simon et al., 2013): P(βββ ) = λ ||βββ ||1 +λ ∑
G
g=1 wg||βββ g||2.

Remark 3.1.1. Elastic net penalty can be viewed as a hybrid of `1 and `2 penalty, and the

quadratic component is beneficial when the features are highly correlated. For instance, in

microarray studies, features are often found to be in correlated groups, simply performing lasso

will likely end up with erratic and wild behavior of the coefficient paths. To see this, consider

an extreme case where two features are identical copies of each other, i.e., X j = X j′ . Then

we have infinitely many pairs of coefficients (β̂ j, β̂ j′) such that β̂ j + β̂ j′ equals a constant that

depends on the given penalty level λ . When both β̂ j and β̂ j′ are positive, the resulting loss

function Lτ,γ(·) and `1 penalty remain the same for all pairs of (β̂ j, β̂ j′), meaning that the lasso

can not differentiate these pairs, which often leads to erratic behavior of coefficient paths. A

quadratic penalty, on the other hand, will differentiate these two twins so that strong within-group

correlations can be better handled. Meanwhile, the quadratic component adds strict convexity

for the penalty function P(βββ ), which facilitates gradient based algorithms.

Remark 3.1.2. Group lasso penalty is designed for selecting (or omitting) all coefficients within

a group simultaneously. A leading example is when we have qualitative factors among our

predictors. We typically code their levels using a set of dummy variables or contrasts, and would

want to include or exclude this group of variables together. It can be checked that the group

lasso penalty reduces to the lasso penalty when all the groups are singletons, i.e., ||β j||2 = |β j|.

Consequently, the group lasso penalty can be viewed as an extension of the lasso penalty when

group structures are presented.

Remark 3.1.3. Even though the group lasso penalty achieves between-group sparsity, by the

nature of `2-norm, all coefficients in a group are nonzero simultaneously if that group is selected

by a group lasso fit. However, sometimes we would emphasize within-group sparsity since not all

features in a group are indeed significant. For example, a biological pathway may be implicated

in the progression of a particular type of cancer, but not all genes in the pathway need to be active.

The sparse group lasso penalty is designed to achieve such within-group sparsity by adding extra
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`1 penalty to the group lasso penalty. Note that if we restrain on a specific sub-vector βββ g, the

sparse group lasso penalty P(βββ g) = λ ||βββ g||1+λwg||βββ g||2 reduces to a variant of the elastic net

penalty. Consequently within-group sparsity is introduced in the same way as the elastic net

penalty.

3.2 Computational Mehtods

In this section we extend the LAMM algorithm mentioned in Section 2.4 to accommodate

the aforementioned convex penalties. Recall that our target is to solve the general optimization

problem

β̂ββ ∈minimize
βββ∈Rd

{
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )+P(βββ )

}
. (3.1)

Let Rn(βββ ) = n−1
∑

n
i=1 Lτ,γ(yi−xxxT

i βββ ) and ∇Rn(βββ ) be its gradient. Following the principal of the

LAMM algorithm, we locally majorize Rn(βββ ) at β̂ββ
(k−1)

by constructing an isotropic quadratic

function Gn(·) of the form

Gn(βββ |φk, β̂ββ
(k−1)

) = Rn(β̂ββ
(k−1)

)+ 〈∇Rn(β̂ββ
(k−1)

),βββ − β̂ββ
(k−1)
〉+ φk

2
||βββ − β̂ββ

(k−1)
||22,

where φk > 0 is a quadratic parameter to be determined at the k-th iteration. Then define the k-th

iterate β̂ββ
(k)

as the solution to

minimize
βββ∈Rd

Gn(βββ |φk, β̂ββ
(k−1)

)+P(βββ ).

By the first-order optimization condition, β̂ββ
(k)

satisfies

0 ∈ ∇Rn(β̂ββ
(k−1)

)+φk(β̂ββ
(k)
− β̂ββ

(k−1)
)+∂P(βββ )|

βββ=β̂ββ
(k),

where ∂P denotes the subdifferential of P : Rd → [0,∞). In practice, we often leave the intercept
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term unpenalized, and its update rule takes a simple form β̂
(k)
1 = β̂

(k−1)
1 −φ

−1
k ∇β1Rn(β̂ββ

(k−1)
).

The update rules for coefficients other than intercept can be derived similarly as in Section

2.4, and we postpone their derivations to the Appendix C.1. For all four types of penalties, we

obtain explicit formulas for each iteration, thus β̂ββ
(k)

can be updated efficiently by vector-matrix

multiplications. Recall that S(a,b) = sign(a) · (|a|− b)+ denotes the shrinkage operator, and

sign(·) is the sign function and (c)+ = max(c,0). We summarize the whole procedure in the

following Algorithm 6.

Algorithm 6. Local Adaptive Majorize-minimization (LAMM) Algorithm for Solving (3.1) with
various convex penalties.
Input: regularization parameters λ j, expectile level τ , Huber loss tuning parameter γ , inflation factor
Γ = 1.25 and convergence criterion ε .
Input(optional): hybrid level α , group structure (1, . . . ,G) and group weight (w1, . . . ,wG).

Initialization: β̂ββ
(0)

= 0, φ0 = 0.01.

Iterate: the following until the stopping criterion ‖β̂ββ
(k)
− β̂ββ

(k−1)
‖2 ≤ ε is met, where β̂ββ

(k)
is the value of

βββ obtained at the k-th iteration.

1. Set φk←max(φ0,φk−1/Γ).

2. repeat

3. β̂
(k)
1 ← β̂

(k−1)
1 −φ

−1
k ∇β1Rn(β̂ββ

(k−1)
).

4. for j = 2, . . . ,d (or g = 2, . . . ,G), update β̂
(k)
j (or β̂ββ

(k)
g ) as follows

weighted lasso β̂
(k)
j ← S

{
β̂
(k−1)
j −φ

−1
k ∇β j Rn(β̂ββ

(k−1)
),φ−1

k λ j
}
.

elastic net β̂
(k)
j ←

1
1+2φ

−1
k λ (1−α)

S
{

β̂
(k−1)
j −φ

−1
k ∇β j Rn(β̂ββ

(k−1)
),φ−1

k λα
}
.

group lasso β̂ββ
(k)
g ←

{
β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

)
}
·
(

1− λwg

φk ||β̂ββ
(k−1)
g −φ

−1
k ∇βββg

Rn(β̂ββ
(k−1)

)||2

)
+

.

sparse group lasso β̂ββ
(k)
g ← S

{
β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

),φ−1
k λ

}
·
(

1− λwg

φk ||S{β̂ββ
(k−1)
g −φ

−1
k ∇βββg

Rn(β̂ββ
(k−1)

),φ−1
k λ}||2

)
+

.

5. if Rn(β̂ββ
(k)
)> Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
), set φk← Γφk.

6. until Rn(β̂ββ
(k)
)≤ Gn(β̂ββ

(k)
|φk, β̂ββ

(k−1)
).

Output: the final iterate β̂ββ
(k)

.
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3.3 Numerical Experiments

In this section, we perform extensive numerical studies to access the performance of the

proposed penalized retire estimator with four convex penalties, the lasso, elastic net, group

lasso and sparse group lasso. For all of the numerical studies, we generate the covariates xxxi from

a multivariate normal distribution N(0,ΣΣΣ = (σ jk)1≤ j,k≤d) with correlated (or block correlated)

ΣΣΣ. And we generate the response variable yi from the following model:

Expectile heteroscedastic model: yi = xxxT
i βββ
∗+(0.5|xid|+0.5){εi− eτ(εi)}, (3.2)

where εi is the random noise, and eτ(εi) denotes the inverse of the expectile function of εi. The

random noise is generated from either a Gaussian distribution, N(0,2), or a t distribution with

2.1 degrees of freedom. Moreover, we consider two expectile levels τ = {0.5,0.8} to access the

performance under asymmetry data. Lastly, we adaptively update the robustification parameter γ

using a heuristic tuning method as detailed in Section 2.6

γ
k = mad(r̃k) ·

√
n

log(nd)
. (3.3)

This heuristic approach works well across different scenarios throughout the section. Our com-

putational results are reproducible using codes available from https://github.com/ZianWang0128/

Retire.

In Subsection 3.3.1, we fit the penalized retire estimator with the `1 and elastic net

penalties on simulated data with two types of non-grouped regression coefficients, the sparse

βββ
∗ and the dense βββ

∗. In Subsection 3.3.2, we fit the penalized retire estimator with the group

lasso and spares group lasso penalties on simulated data with two types of grouped regression

coefficients, the grouped βββ
∗ and the sparse grouped βββ

∗.
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3.3.1 Simulated Data with Non-grouped Regression Coefficients

In this subsection we consider the covariates xxxi ∈ Rd from a multivariate normal dis-

tribution N(0,ΣΣΣ = (σ jk)1≤ j,k≤d) with σ jk = 0.7| j−k|. And we consider two types of regression

coefficients βββ
∗ = (β ∗1 ,β

∗
2 , . . . ,β

∗
d )

T.

1. Sparse βββ
∗: β ∗1 = 4 (intercept), β ∗j = {1.8,1.6,1.4,1.2,1,−1,−1.2,−1.4,−1.6,−1.8} for

j = 2,4, . . . ,20, and 0 otherwise.

2. Dense βββ
∗: β ∗1 = 4 (intercept), β ∗j = 0.8 for j = 2, . . . ,100, and 0 otherwise.

We implement the `1-penalized retire and the elastic net-penalized retire with three

α levels (α ∈ {0.2,0.5,0.8}). We add the `1-penalized asymmetric least squares regression

(sales) proposed by Gu and Zou (2016) as comparison. To assess the performance across

different methods, we report the estimation error under the `2-norm, i.e., ‖β̂ββ −βββ
∗‖2, the true

positive rate (TPR), and the false positive rate (FPR). Here, TPR is defined as the proportion of the

number of correctly identified non-zeros and the false positive rate is calculated as the proportion

of the number of incorrectly identified nonzeros. For all methods, the sparsity inducing tuning

parameter λ is selected via ten-fold cross-validation. Specifically, we select the largest tuning

parameter that yields a value of the asymmetric least squares loss that is less than the minimum

of the asymmetric least squares loss plus one standard error. Also note that both `1-penalized

retire and elastic net-penalized retire require tuning an additional robustness parameter γ .

We select γ using the heuristic tuning method (3.3) to update γ at the beginning of each iteration

in Algorithm 6.

The results for the sparse βββ
∗ and dense βββ

∗ under both the moderate- (n = 400, d = 200)

and high-dimensional (n = 400, d = 500) settings, averaged over 100 repetitions, are reported

in Table 3.1 and Table 3.2, respectively.

Table 3.1 contains results for the Expectile heteroscedastic model (3.2) under sparse βββ
∗.

We see that both `1 retire and `1 sales outperform the elastic net-penalized retire in all

55



Table 3.1. Expectile heteroscedastic model (3.2) under Sparse βββ
∗. Estimation error under

`2-norm (and its standard deviation), true positive rate (TPR) and false positive rate (FPR),
averaged over 100 repetitions, are reported.

Expectile heteroscedastic model (3.2) with Sparse βββ
∗ and τ = 0.5

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

N(0,2)

`1 retire 0.656 (0.107) 1.000 (0.000) 0.028 (0.015) 0.706 (0.124) 1.000 (0.000) 0.012 (0.007)
`1 sales 0.663 (0.108) 1.000 (0.000) 0.029(0.015) 0.716 (0.129) 1.000 (0.000) 0.012 (0.007)

elastic net retire (α = 0.2) 1.897 (0.161) 1.000 (0.000) 0.631 (0.061) 2.433 (0.103) 1.000 (0.000) 0.446 (0.045)
elastic net retire (α = 0.5) 1.503 (0.170) 1.000 (0.000) 0.272 (0.060) 1.816 (0.139) 1.000 (0.000) 0.157 (0.035)
elastic net retire (α = 0.8) 1.026 (0.152) 1.000 (0.000) 0.101 (0.030) 1.151 (0.147) 1.000 (0.000) 0.049 (0.019)

t2.1

`1 retire 1.317 (0.336) 0.962 (0.069) 0.015 (0.008) 1.320 (0.364) 0.961 (0.071) 0.006 (0.003)
`1 sales 1.442 (0.361) 0.949 (0.073) 0.017 (0.008) 1.465 (0.397) 0.952 (0.072) 0.007 (0.004)

elastic net retire (α = 0.2) 2.575 (0.275) 1.000 (0.000) 0.415 (0.107) 2.816 (0.168) 1.000 (0.000) 0.313 (0.073)
elastic net retire (α = 0.5) 2.283 (0.331) 1.000 (0.000) 0.122 (0.054) 2.412 (0.274) 1.000 (0.000) 0.066 (0.038)
elastic net retire (α = 0.8) 1.812 (0.385) 0.989 (0.035) 0.052 (0.013) 1.849 (0.375) 0.991 (0.029) 0.022 (0.007)

Expectile heteroscedastic model (3.2) with Sparse βββ
∗ and τ = 0.8

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

N(0,2)

`1 retire 0.708 (0.124) 1.000 (0.000) 0.031 (0.015) 0.769 (0.143) 1.000 (0.000) 0.014 (0.009)
`1 sales 0.707 (0.124) 1.000 (0.000) 0.031 (0.015) 0.776 (0.139) 1.000 (0.000) 0.013 (0.008)

elastic net retire (α = 0.2) 2.012 (0.174) 1.000 (0.000) 0.622 (0.064) 2.565 (0.109) 1.000 (0.000) 0.421 (0.038)
elastic net retire (α = 0.5) 1.593 (0.182) 1.000 (0.000) 0.276 (0.056) 1.941 (0.155) 1.000 (0.000) 0.152 (0.029)
elastic net retire (α = 0.8) 1.091 (0.161) 1.000 (0.000) 0.101 (0.029) 1.232 (0.172) 1.000 (0.000) 0.052 (0.020)

t2.1

`1 retire 1.635 (0.548) 0.928 (0.090) 0.014 (0.008) 1.553 (0.534) 0.936 (0.089) 0.005 (0.003)
`1 sales 1.791 (0.554) 0.913 (0.093) 0.017 (0.008) 1.708 (0.542) 0.927 (0.089) 0.008 (0.004)

elastic net retire (α = 0.2) 2.841 (0.359) 1.000 (0.000) 0.376 (0.012) 3.025 (0.265) 1.000 (0.000) 0.295 (0.084)
elastic net retire (α = 0.5) 2.581 (0.471) 0.991 (0.029) 0.111 (0.059) 2.655 (0.389) 0.993 (0.029) 0.064 (0.038)
elastic net retire (α = 0.8) 2.122 (0.565) 0.964 (0.069) 0.051 (0.015) 2.095 (0.523) 0.965 (0.066) 0.022 (0.010)

three metrics. `1 retire and `1 sales perform almost identically under normal noise, while the

former gains a little advantage over the latter under t-distributed noise, which is probably due to

the extra robustness of retire loss over the asymmetric square loss. The performance of elastic

net-penalized retire deteriorates as α decreases due to the large number of zeros in the sparse

βββ
∗. In conclusion, the simulation suggests that `1-penalized retire is the most suitable method

under spare βββ
∗ setting.

Table 3.2 contains results for the Expectile heteroscedastic model (3.2) under dense βββ
∗.

The performance of elastic net-penalized retire deteriorates as α decreases. When α = 0.8,

the elastic net-penalized retire admits lower `2 errors while maintaining the highest TPR and

comparable FPR over `1-penalized methods, suggesting that the elastic net penalty may be

beneficial when the true signals are dense and the signal-to-noise ratio is relatively low.
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Table 3.2. Expectile heteroscedastic model (3.2) under Dense βββ
∗. Estimation error under `2-

norm (and its standard deviation), true positive rate (TPR) and false positive rate (FPR), averaged
over 100 repetitions, are reported.

Expectile heteroscedastic model (3.2) with Dense βββ
∗ and τ = 0.5

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

N(0,2)

`1 retire 1.352 (0.108) 1.000 (0.000) 0.097 (0.051) 1.482 (0.162) 1.000 (0.000) 0.049 (0.025)
`1 sales 1.352 (0.107) 1.000 (0.000) 0.097 (0.051) 1.484 (0.164) 1.000 (0.000) 0.049 (0.024)

elastic net retire (α = 0.2) 1.043 (0.076) 1.000 (0.000) 0.677 (0.049) 1.469 (0.095) 1.000 (0.000) 0.614 (0.040)
elastic net retire (α = 0.5) 1.004 (0.073) 1.000 (0.000) 0.305 (0.060) 1.141 (0.087) 1.000 (0.000) 0.228 (0.033)
elastic net retire (α = 0.8) 1.144 (0.081) 1.000 (0.000) 0.136 (0.057) 1.226 (0.114) 1.000 (0.000) 0.84 (0.028)

t2.1

`1 retire 2.156 (0.499) 0.998 (0.008) 0.036 (0.038) 2.269 (0.568) 0.995 (0.020) 0.018 (0.016)
`1 sales 2.574 (0.765) 0.991 (0.026) 0.053 (0.040) 2.679 (0.845) 0.986 (0.048) 0.028 (0.018)

elastic net retire (α = 0.2) 1.276 (0.193) 1.000 (0.000) 0.576 (0.087) 1.696 (0.223) 1.000 (0.000) 0.545 (0.061)
elastic net retire (α = 0.5) 1.282 (0.207) 1.000 (0.000) 0.198 (0.069) 1.409 (0.265) 1.000 (0.000) 0.158 (0.049)
elastic net retire (α = 0.8) 1.553 (0.248) 1.000 (0.000) 0.058 (0.043) 1.611 (0.310) 1.000 (0.000) 0.037 (0.025)

Expectile heteroscedastic model (3.2) with Dense βββ
∗ and τ = 0.8

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error TPR FPR `2 error TPR FPR

N(0,2)

`1 retire 1.429 (0.121) 1.000 (0.000) 0.109 (0.048) 1.574 (0.167) 1.000 (0.000) 0.048 (0.024)
`1 sales 1.422 (0.122) 1.000 (0.000) 0.109 (0.048) 1.566 (0.167) 1.000 (0.000) 0.049 (0.024)

elastic net retire (α = 0.2) 1.083 (0.072) 1.000 (0.000) 0.679 (0.051) 1.472 (0.086) 1.000 (0.000) 0.594 (0.037)
elastic net retire (α = 0.5) 1.056 (0.072) 1.000 (0.000) 0.317 (0.065) 1.182 (0.086) 1.000 (0.000) 0.217 (0.030)
elastic net retire (α = 0.8) 1.210 (0.085) 1.000 (0.000) 0.152 (0.053) 1.294 (0.115) 1.000 (0.000) 0.078 (0.024)

t2.1

`1 retire 2.596 (0.636) 0.994 (0.017) 0.044 (0.041) 2.574 (0.584) 0.995 (0.012) 0.024 (0.020)
`1 sales 2.992 (0.940) 0.981 (0.041) 0.060 (0.046) 2.943 (0.843) 0.985 (0.031) 0.024 (0.020)

elastic net retire (α = 0.2) 1.520 (0.389) 1.000 (0.000) 0.584 (0.085) 1.820 (0.262) 1.000 (0.000) 0.551 (0.050)
elastic net retire (α = 0.5) 1.551 (0.404) 1.000 (0.000) 0.200 (0.069) 1.588 (0.307) 1.000 (0.000) 0.171 (0.045)
elastic net retire (α = 0.8) 1.871 (0.405) 1.000 (0.000) 0.065 (0.049) 1.838 (0.350) 1.000 (0.000) 0.043 (0.025)

3.3.2 Simulated Data with Grouped Regression Coefficients

In this subsection we consider the covariates xxxi ∈ Rd from a multivariate normal dis-

tribution N(0,ΣΣΣ) with block diagonal covariance matrix ΣΣΣ ∈ Rd×d . More specifically, ΣΣΣ =

diag(ΣΣΣ1, . . . ,ΣΣΣ15), where ΣΣΣ1,ΣΣΣ2 ∈R5×5, ΣΣΣ3,ΣΣΣ4,ΣΣΣ5 ∈R10×10, and ΣΣΣ6, . . . ,ΣΣΣ15 ∈R
d−40

10 ×
d−40

10 . Each

block is an exchangeable covariance matrix with diagonal 1 and off-diagonal elements 0.6, mean-

ing that coefficients within each group is highly correlated, but coefficients between groups are

uncorrelated. And we consider two types of regression coefficients βββ
∗ = (βββ ∗T

1 ,βββ ∗T
2 , . . . ,βββ ∗T

G )T.

1. Group βββ
∗: β ∗0 = 4 (intercept), βββ

∗
1 = 2 ∈ R5,βββ ∗2 = 1.6 ∈ R5,βββ ∗3 = −2 ∈ R10,βββ ∗4 = 1 ∈

R10,βββ ∗5 = 0.6 ∈ R10 and βββ
∗
6 = · · ·= βββ

∗
15 = 0.

2. Sparse group βββ
∗: β ∗0 = 4 (intercept), βββ

∗
1 = (2,2,0,0,0)T ∈ R5,βββ ∗2 = (1.6,1.6,0,0,0)T ∈

R5,βββ ∗3 = (−2, . . . ,−2,0, . . . ,0)T ∈ R10,βββ ∗4 = (1, . . . ,1,0, . . . ,0)T ∈ R10,βββ ∗5 = (0.6, . . . ,

0.6,0, . . . ,0)T ∈ R10 and βββ
∗
6 = · · ·= βββ

∗
15 = 0. The first half of the signals in each group
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are nonzeros, while the other half of signals in each group are zeros.

We implement the group lasso-penalized retire and the sparse group lasso-penalized

retire with the weights wg =
√
|βββ g|, where |βββ g| is the dimension of the sub-vector βββ g. As a

comparison, we add the sparse group lasso-penalized least square regression estimator computed

by the R package SGL. Also, we compute the `1-penalized retire estimator that utilizes no

group structure information as the benchmark.

To assess the performance across different methods, we report the estimation error under

the `2-norm, i.e., ‖β̂ββ − βββ
∗‖2, the group true positive rate (group TPR), and the group false

positive rate (group FPR). Here, group TPR is defined as the proportion of groups that are

correctly estimated to contain non-zeros, and the group FPR is calculated as the proportion

of groups that are incorrectly estimated to contain non-zeros. For all methods, the sparsity

inducing tuning parameter λ is selected via ten-fold cross-validation. Specifically, for `1/group

lasso/sparse group lasso-penalized retire, we select the largest tuning parameter that yields a

value of the asymmetric least squares loss that is less than the minimum of the asymmetric least

squares loss plus one standard error. For the estimator from SGL package, we select the largest

tuning parameter that yields a value of the least squares loss that is less than the minimum of

the asymmetric least squares loss plus one standard error. Also note that all penalized retire

regressions require tuning an additional robustness parameter γ . We select γ using the heuristic

tuning method (3.3) to update γ at the beginning of each iteration in Algorithm 6.

The results for the sparse βββ
∗ and dense βββ

∗ under both the moderate- (n = 400, d = 200)

and high-dimensional (n = 400, d = 500) settings, averaged over 100 repetitions, are reported

in Table 3.3 and Table 3.4, respectively.

Table 3.3 contains results for the Expectile heteroscedastic model (3.2) under group βββ
∗.

We see that as a benchmark, `1 retire fails to control group FPR, indicating its inappropriateness

when the true signal βββ
∗ possesses group structures. Also, we see that group lasso-penalized

retire has the lowest `2 errors across all scenario. The other two sparse group lasso-penalized
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Table 3.3. Expectile heteroscedastic model (3.2) under Group βββ
∗. Estimation error under `2-

norm (and its standard deviation), group true positive rate (group TPR) and group false positive
rate (group FPR), averaged over 100 repetitions, are reported.

Expectile heteroscedastic model (3.2) with Group βββ
∗ and τ = 0.5

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error Group TPR Group FPR `2 error Group TPR Group FPR

N(0,2)

`1 retire 0.716 (0.094) 1.000 (0.000) 0.182 (0.065) 0.729 (0.088) 1.000 (0.000) 0.248 (0.183)
group lasso retire 0.536 (0.063) 1.000 (0.000) 0.010 (0.036) 0.536 (0.060) 1.000 (0.000) 0.007 (0.036)

sparse group lasso retire 0.614 (0.072) 1.000 (0.000) 0.007 (0.029) 0.615 (0.068) 1.000 (0.000) 0.000 (0.000)
SGL package 1.075 (0.525) 1.000 (0.000) 0.006 (0.024) 1.062 (0.512) 1.000 (0.000) 0.006 (0.024)

t2.1

`1 retire 1.256 (0.489) 1.000 (0.000) 0.023 (0.068) 1.188 (0.310) 1.000 (0.000) 0.028 (0.073)
group lasso retire 0.856 (0.332) 1.000 (0.000) 0.001 (0.010) 0.807 (0.209) 1.000 (0.000) 0.001 (0.010)

sparse group lasso retire 0.966 (0.342) 1.000 (0.000) 0.001 (0.010) 0.912 (0.215) 1.000 (0.000) 0.001 (0.010)
SGL package 1.495 (0.672) 1.000 (0.000) 0.000 (0.000) 1.493 (0.653) 0.998 (0.020) 0.000 (0.000)

Expectile heteroscedastic model (3.2) with group βββ
∗ and τ = 0.8

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error Group TPR Group FPR `2 error Group TPR Group FPR

N(0,2)

`1 retire 0.778 (0.104) 1.000 (0.000) 0.176 (0.148) 0.797 (0.106) 1.000 (0.000) 0.229 (0.183)
group lasso retire 0.574 (0.066) 1.000 (0.000) 0.012 (0.038) 0.573 (0.070) 1.000 (0.000) 0.006 (0.031)

sparse group lasso retire 0.680 (0.077) 1.000 (0.000) 0.001 (0.010) 0.680 (0.078) 1.000 (0.000) 0.001 (0.010)
SGL package 1.262 (0.691) 1.000 (0.000) 0.005 (0.022) 1.299 (0.651) 1.000 (0.000) 0.005 (0.022)

t2.1

`1 retire 1.660 (0.924) 1.000 (0.000) 0.039 (0.087) 1.434 (0.377) 1.000 (0.000) 0.033 (0.073)
group lasso retire 1.166 (0.827) 1.000 (0.000) 0.001 (0.010) 0.968 (0.330) 1.000 (0.000) 0.001 (0.010)

sparse group lasso retire 1.294 (0.794) 1.000 (0.000) 0.001 (0.010) 1.101 (0.309) 1.000 (0.000) 0.000 (0.000)
SGL package 1.746 (0.802) 1.000 (0.000) 0.000 (0.000) 1.777 (0.784) 0.998 (0.020) 0.000 (0.000)

methods (sparse group lasso retire and SGL package) tend to have slightly lower group FPRs,

but the gain over group lasso retire is barely marginal. When τ = 0.8, the performance of

estimators from SGL package deteriorates since it implicitly assumes τ = 0.5 and there is a

non-negligible bias when τ = 0.8. The simulation results suggest that when the signal βββ
∗ is

genuinely group structured, group lasso-penalized retire may be the most suitable method.

Table 3.4 contains results for the Expectile heteroscedastic model (3.2) under sparse

group βββ
∗. We see that both the `1-penalized retire and the group lasso-penalized retire fail

to control group FPR when within-group sparsity presents. Both the sparse group lasso-penalized

retire and the SGL package perform fairly well, while the former has slight advantages over the

latter in all three facets, especially when under t-distributed noises. This is not surprising since

retire loss is a robust modification of the asymmetric square loss used in the SGL package.

When τ = 0.8, the performance of estimators from SGL package deteriorates since it implicitly

assumes τ = 0.5 and there is a non-negligible bias when τ = 0.8. The simulation results suggest

that when the signal βββ
∗ possesses within-group sparsity, sparse group lasso-penalized retire
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Table 3.4. Expectile heteroscedastic model (3.2) under Sparse Group βββ
∗. Estimation error

under `2-norm (and its standard deviation), group true positive rate (group TPR) and group false
positive rate (group FPR), averaged over 100 repetitions, are reported.

Expectile heteroscedastic model (3.2) with Sparse Group βββ
∗ and τ = 0.5

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error Group TPR Group FPR `2 error Group TPR Group FPR

N(0,2)

`1 retire 0.599 (0.087) 1.000 (0.000) 0.117 (0.129) 0.618 (0.082) 1.000 (0.000) 0.158 (0.158)
group lasso retire 1.024 (0.122) 1.000 (0.000) 0.227 (0.156) 1.134 (0.126) 1.000 (0.000) 0.167 (0.121)

sparse group lasso retire 0.892 (0.106) 1.000 (0.000) 0.059 (0.077) 0.938 (0.114) 1.000 (0.000) 0.035 (0.058)
SGL package 0.982 (0.200) 1.000 (0.000) 0.106 (0.112) 0.998 (0.176) 1.000 (0.000) 0.098 (0.092)

t2.1

`1 retire 1.134 (0.452) 1.000 (0.000) 0.007 (0.036) 1.080 (0.375) 1.000 (0.000) 0.008 (0.031)
group lasso retire 2.048 (0.680) 1.000 (0.000) 0.027 (0.058) 2.000 (0.607) 1.000 (0.000) 0.028 (0.064)

sparse group lasso retire 1.758 (0.636) 0.998 (0.020) 0.003 (0.022) 1.689 (0.534) 1.000 (0.000) 0.003 (0.017)
SGL package 2.063 (0.891) 0.980 (0.119) 0.011 (0.035) 2.015 (0.792) 0.990 (0.100) 0.008 (0.034)

Expectile heteroscedastic model (3.2) with Sparse Group βββ
∗ and τ = 0.8

n = 400,d = 200 n = 400,d = 500
Noise Method `2 error Group TPR Group FPR `2 error Group TPR Group FPR

N(0,2)

`1 retire 0.658 (0.096) 1.000 (0.000) 0.126 (0.143) 0.678 (0.098) 1.000 (0.000) 0.165 (0.161)
group lasso retire 1.124 (0.121) 1.000 (0.000) 0.215 (0.153) 1.235 (0.134) 1.000 (0.000) 0.148 (0.111)

sparse group lasso retire 1.011 (0.114) 1.000 (0.000) 0.040 (0.070) 1.049 (0.125) 1.000 (0.000) 0.028 (0.049)
SGL package 1.209 (0.327) 1.000 (0.000) 0.108 (0.114) 1.247 (0.306) 1.000 (0.000) 0.092 (0.095)

t2.1

`1 retire 1.491 (0.845) 0.990 (0.059) 0.015 (0.044) 1.301 (0.472) 1.000 (0.000) 0.014 (0.043)
group lasso retire 2.427 (0.977) 0.988 (0.074) 0.028 (0.062) 2.263 (0.657) 1.000 (0.000) 0.030 (0.069)

sparse group lasso retire 2.136 (1.027) 0.984 (0.101) 0.009 (0.032) 1.935 (0.595) 1.000 (0.000) 0.005 (0.026)
SGL package 2.289 (0.858) 0.978 (0.127) 0.009 (0.032) 2.249 (0.781) 0.990 (0.100) 0.005 (0.033)

may be more favorable when group FPR is more emphasized than `2 error.
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Appendix A

Supplementary Material for Chapter 1

A.1 Preliminary Results

Given τ ∈ (0,1), let {(yi,xxxi)}n
i=1 be a sample of independent data vectors from the linear

regression model in (1.1), yi = xxxT
i βββ
∗(τ)+ εi(τ), where εi(τ) satisfies eτ(εi|xxxi) = 0. In other

words, the conditional τ-mean of yi give xxxi is a linear combination of xxxi. We suppress the

dependency of βββ
∗(τ) and ε(τ) on τ throughout the Appendix. Let wτ(u) := |τ−1(u < 0)| and

let `γ(u) = γ2`(u/γ). Recall from (1.5) that L(u) := Lτ,γ(u) = wτ(u)`γ(u) and let

Rn(βββ ) =
1
n

n

∑
i=1

L(yi− xxxT
i βββ ) and ∇Rn(βββ ) =−

1
n

n

∑
i=1

L′(yi− xxxT
i βββ )xxxi,

where L′(u) = γwτ(u)`′(u/γ) is the first-order derivative of L(u).

For βββ ∈Rd , let www(βββ ) = ∇Rn(βββ )−∇R(βββ ), where R(βββ ) =E{Rn(βββ )} is the population

loss. Moreover, we define the quantity www∗ = ∇Rn(βββ
∗)−∇R(βββ ∗) as the centered score function.

Recall that C(L) = {δδδ : ‖δδδ‖1 ≤ L‖δδδ‖2}, and let C1 := {δδδ : ‖δδδS c‖1 ≤ 3‖δδδS ‖1}. Furthermore,

define the symmetrized Bregman divergence B : Rp×Rp→ [0,∞) associated with the convex

function Rn(·) evaluated at βββ 1,βββ 2 as

B(βββ 1,βββ 2) = 〈∇Rn(βββ 1)−∇Rn(βββ 2),βββ 1−βββ 2〉. (A.1)

Lastly, it can be checked that we have λu ≥ λmax(ΣΣΣ) where ΣΣΣ = E(xxxxxxT) from Condition 2, and
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E(ε2|xxx)≤ σ2
ε from Condition 3.

We first present two technical lemmas that are useful for proving theoretical results in

the low-dimensional setting for the non-penalized retire estimator in Section 1.4, i.e.,

β̂ββ = β̂ββ γ = argmin
βββ∈Rd

1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ ). (A.2)

Lemma A.1.1. Under Conditions 1, 2, and 3, we have ‖ΣΣΣ−1/2
∇R(βββ ∗)‖2 ≤ γ−1τ̄σ2

ε . Moreover,

for any t > 0,

∣∣∣∣ΣΣΣ−1/2{
∇Rn(βββ

∗)−∇R(βββ ∗)
}∣∣∣∣

2 ≤ 3τ̄v0

(
σε

√
2d + t

n
+ γ

2d + t
2n

)

with probability at least 1− e−t .

Lemma A.1.2. Let ε be a real-valued random variable with E(ε) = σ2
ε , E|ε|3 = v3 < ∞, and

E{wτ(ε)ε}= 0 with wτ(u) = |τ−1(u < 0)|. Let `γ(·) be the Huber loss with parameter γ . We

have

∣∣E{wτ(ε)`
′
γ(ε)}

∣∣≤ τ̄v3/γ
2 and τ

2
(

σ
2
ε − v3/γ

)
≤ E

{
wτ(ε)`

′
γ(ε)

}2
≤ τ̄

2
σ

2
ε .

The proofs of all of the technical lemmas are deferred to Appendix A.5.

A.2 Proof of Theorems

A.2.1 Proof of Theorem 1.6.1

Proof. Recall from (A.2) that β̂ββ = argmin Rn(βββ ) and from (A.1) that B(βββ ,βββ ∗) = 〈∇Rn(βββ )−

∇Rn(βββ
∗),βββ −βββ

∗〉 is the symmetric Bregman divergence. The main idea is to establish lower

and upper bounds for B(β̂ββ ,βββ ∗).

We start with obtaining a lower bound for B(β̂ββ ,βββ ∗). Let rloc = γ/(8
√

2A2
1) and define an

intermediate quantity β̂ββ η = ηβ̂ββ +(1−η)βββ ∗, where η = sup{η ∈ [0,1] : β̂ββ η ∈ βββ
∗+BΣΣΣ(rloc)}.
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Then β̂ββ η ∈ βββ
∗+ ∂BΣΣΣ(rloc) whenever β̂ββ /∈ βββ

∗+BΣΣΣ(rloc), where ∂BΣΣΣ(rloc) is the boundary of

BΣΣΣ(rloc). On the other hand, β̂ββ η = β̂ββ whenever β̂ββ ∈ βββ
∗+BΣΣΣ(rloc). By an application of

Lemma 1.6.1, provided that γ ≥ 4
√

2σε and n & d + t, we obtain

B(β̂ββ η ,βββ
∗)≥ 1

2
κ1τ‖β̂ββ η −βββ

∗‖2
ΣΣΣ, (A.3)

with probability at least 1− e−t .

Next, we proceed to obtain an upper bound of B(β̂ββ ,βββ ∗). By an application of Lemma

C.1 in Sun, Zhou and Fan (2020) and the first order condition ∇Rn(β̂ββ ) = 000, we have

B(β̂ββ η ,βββ
∗)≤ ηB(β̂ββ ,βββ ∗) (A.4)

= η〈−∇Rn(βββ
∗), β̂ββ −βββ

∗〉

≤ ||ΣΣΣ−1/2
∇Rn(βββ

∗)||2 · ‖β̂ββ η −βββ
∗‖ΣΣΣ

≤
[∣∣∣∣ΣΣΣ−1/2

∇R(βββ ∗)
∣∣∣∣

2 +
∣∣∣∣ΣΣΣ−1/2{

∇Rn(βββ
∗)−∇R(βββ ∗)

}∣∣∣∣
2

]
· ‖β̂ββ η −βββ

∗‖ΣΣΣ.

(A.5)

Combining the above upper and lower bounds in (A.3) and (A.4), applying Lemma A.1.1, and

picking γ = σε

√
n/(d + t), we have

‖β̂ββ η −βββ
∗‖ΣΣΣ ≤C(τ̄/τ)κ−1

1 σεv0

√
d + t

n
, (A.6)

with probability at least 1−2e−t as long as n & d + t, where C is an absolute constant.

Lastly, it can be checked that with our proper choice of γ and rloc, we have ‖β̂ββ η−βββ
∗‖ΣΣΣ .

σε

√
(d + t)/n < σε

√
n/(d + t)� rloc. It immediately implies β̂ββ η ∈ βββ

∗+BΣΣΣ(rloc) and β̂ββ η = β̂ββ

by construction. Thus (A.6) also holds when replacing β̂ββ η by β̂ββ .

63



A.2.2 Proof of Theorem 1.6.2

Proof. We consider the following vector-valued random process

BBB(βββ ) = ΣΣΣ
−1/2{∇Rn(βββ )−∇Rn(βββ

∗)}− 1
n

n

∑
i=1

ΣΣΣ
−1/2Ewτ(εi)xxxixxxT

i (βββ −βββ
∗).

By the first order condition ∇Rn(β̂ββ ) = 000, it can be shown that the nonasymptotic Bahadur

representation in (1.8) takes the form ‖BBB(β̂ββ )‖2. By the triangle inequality, we have

‖BBB(β̂ββ )‖2 ≤ sup
βββ∈βββ

∗+BΣΣΣ(r)
‖E{BBB(βββ )}‖2 + sup

βββ∈βββ
∗+BΣΣΣ(r)

‖BBB(βββ )−E{BBB(βββ )}‖2

for radius r that satisfies β̂ββ ∈ βββ
∗+BΣΣΣ(r) with high probability. It suffices to obtain upper bounds

for the two terms separately.

We start with an upper bound on sup
βββ∈βββ

∗+BΣΣΣ(r) ‖E{BBB(βββ )}‖2. By the mean value theorem

for vector-valued functions (Theorem 12 in Section 2 of Pugh (2015)), we obtain

E{BBB(βββ )}= ΣΣΣ
−1/2E

∫ 1

0
∇

2Rn(βββ
∗
t )dt(βββ −βββ

∗)− 1
n

n

∑
i=1

ΣΣΣ
−1/2Ewτ(εi)xxxixxxT

i (βββ −βββ
∗)

=
〈∫ 1

0

{
ΣΣΣ
−1/2E∇

2Rn(βββ
∗
t )ΣΣΣ
−1/2− 1

n

n

∑
i=1

Ewτ(εi)zzzizzzT
i

}
dt,ΣΣΣ1/2(βββ −βββ

∗)
〉
,

where βββ
∗
t = (1− t)βββ ∗+ tβββ for (0 ≤ t ≤ 1) and zzzi = ΣΣΣ

−1/2xxxi. Let δδδ t = ΣΣΣ
1/2(βββ ∗t −βββ

∗). Since

βββ ∈ βββ
∗+BΣΣΣ(r), we have ||δδδ t ||2 ≤ r and yi− xxxT

i βββ
∗
t = εi−δδδ

T
t zzzi. For all uuu ∈ Sd−1, we obtain

∣∣∣∣uuuT
{

ΣΣΣ
−1/2E∇

2Rn(βββ
∗
t )ΣΣΣ
−1/2− 1

n

n

∑
i=1

Ewτ(εi)zzzizzzT
i

}
uuu
∣∣∣∣

=

∣∣∣∣1n n

∑
i=1

uuuT

[
Ewτ(εi−δδδ

T
t zzzi)
{

1−1(|εi−δδδ
T
t zzzi|> γ)

}
zzzizzzT

i −Ewτ(εi)zzzizzzT
i

]
uuu
∣∣∣∣

≤
∣∣∣∣1n n

∑
i=1

E
[
(uuuTzzzi)

2E
{

wτ(εi−δδδ
T
t zzzi)−wτ(εi)|zzzi

}]∣∣∣∣+ ∣∣∣∣1n n

∑
i=1

E(uuuTzzzi)
2wτ(εi−δδδ

T
t zzzi)1(|εi−δδδ

T
t zzzi|> γ)

∣∣∣∣
:= Π1 +Π2.
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For Π1, let fε|xxx be the conditional density function of ε given xxx, and recall that it is upper

bounded by f̄ε|xxx. Moreover, let m3 > 0 be a constant that satisfies supuuu∈Sd−1 E|uuuTΣΣΣ
−1/2xxx|3 ≤

m3. We have E
{

wτ(εi− δδδ
T
t zzzi)−wτ(εi)|zzzi

}
=
∫

∞

−∞

{
wτ(u− δδδ

T
t zzzi)−wτ(u)

}
fε|xxx(u)du ≤ (τ̄ −

τ) f̄ε|xxx|δδδ
T
t zzzi|. Consequently,

Π1 ≤
1
n

n

∑
i=1

(τ̄− τ) f̄ε|xxxE
{
(uuuTzzzi)

2|δδδ T
t zzzi|
}
≤ (τ̄− τ) f̄ε|xxxm3rt. (A.7)

For Π2, we first note that 1(|εi− δδδ
T
t zzzi| > γ) ≤ 1(|εi| > γ/2)+1(|δδδ T

t zzzi| > γ/2). By an

application of the Markov’s inequality, we obtain

Π2 ≤
∣∣∣∣τ̄E(uuuTzzz)2

{
1(|ε|> γ/2)+1(|δδδ T

t zzz|> γ/2)
}∣∣∣∣

≤ τ̄

∣∣∣∣E( |ε|γ/2

)2

(uuuTzzz)2
∣∣∣∣+ τ̄

∣∣∣∣E |δδδ T
t zzz|

γ/2
(uuuTzzz)2

∣∣∣∣
≤ 4τ̄σ2

ε

γ2 +
2τ̄m3r

γ
. (A.8)

Combining (A.7) and (A.8), we have

sup
βββ∈βββ

∗+BΣΣΣ(r)
‖E{BBB(βββ )}‖2 ≤ δ (r)r :=

{
(τ̄− τ) f̄ε|xxxm3rt +

4τ̄σ2
ε

γ2 +
2τ̄m3r

γ

}
r. (A.9)

Next, we obtain an upper bound for sup
βββ∈βββ

∗+BΣΣΣ(r) ‖BBB(βββ )−E{BBB(βββ )}‖2. With some

abuse of notation, let B̄BB(δδδ ) = BBB(βββ )−E{BBB(βββ )} where δδδ = ΣΣΣ
1/2(βββ − βββ

∗) ∈ B(r). It can be

checked that B̄BB(000) = 000, E{B̄BB(δδδ )}= 000, and

∇δδδ B̄BB(δδδ ) =
1
n

n

∑
i=1

[
wτ(εi−δδδ

Tzzzi)`
′′
γ (εi−δδδ

Tzzzi)zzzizzzT
i −E

{
wτ(εi−δδδ

Tzzzi)`
′′
γ (εi−δδδ

Tzzzi)zzzizzzT
i

}]
:=

1
n

n

∑
i=1

AAAi.
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For all uuu,vvv∈ Sd−1 and λ ∈R, with careful calculation, we see that EuuuTAAAivvv= 0, |uuuTAAAivvv| ≤

τ̄|uuuTzzzivvvTzzzi|+ τ̄E|uuuTzzzivvvTzzzi| and |uuuTAAAivvv|2 ≤ 2τ̄2(|uuuTzzzivvvTzzzi|2 +E2|uuuTzzzivvvTzzzi|
)
. It then follows from

the elementary inequality |ez−1− z| ≤ z2e|z|/2 and bound

E|uuuTzzzivvvTzzzi| ≤
{
E(uuuTzzzi)

2}1/2{E(vvvTzzzi)
2}1/2 ≤ 1

that

Eexp
{

λ
√

nuuuT
∇δδδ B̄BB(δδδ )vvv

}
=

n

∏
i=1

Eexp
{

λ√
n

uuuTAAAivvv
}

≤
n

∏
i=1

E

{
1+

λ√
n

uuuTAAAivvv+
(

λ√
n

uuuTAAAivvv
)2

e
∣∣ λ√

n uuuTAAAivvv
∣∣
/2

}

≤
n

∏
i=1

E

{
1+

λ 2τ̄2

n
e
|λ |τ̄√

n
(

e
|λ |τ̄√

n |uuu
TzzzivvvTzzzi|+ |uuuTzzzivvvTzzzi|2e

|λ |τ̄√
n |uuu

TzzzivvvTzzzi|
)}

.

(A.10)

Here we upper-bound the components appeared in the right-hand side of (A.10). For all

t > 0, it follows from Cauchy-Schwarz inequality and the elementary inequality ab≤ a2/2+b2/2

that

E|uuuTzzzivvvTzzzi|2et|uuuTzzzivvvTzzzi| ≤ E(uuuTzzzi)
2(vvvTzzzi)

2et(uuuTzzzi)
2/2+t(vvvTzzzi)

2/2

≤
{
E(uuuTzzzi)

4et(uuuTzzzi)
2
}1/2{

E(vvvTzzzi)
4et(vvvTzzzi)

2
}1/2

.

Consequently E|uuuTzzzivvvTzzzi|2et|uuuTzzzivvvTzzzi| ≤ supuuu∈Sd−1 E(uuuTzzzi)
4et(uuuTzzzi)

2
, and similarly Eet|uuuTzzzivvvTzzzi| ≤

supuuu∈Sd−1 Eet(uuuTzzzi)
2
. To further upper-bound these supremums, let χ := (uuuTzzz)2/(2v1)

2. Recall

the sub-Gaussian condition P(|〈uuu,ΣΣΣ−1/2xxx〉| ≥ v1||uuu||2t) ≤ 2e−t2/2, we have P(χ ≥ t) ≤ 2e−2t

(i.e., χ is sub-Exponential). It follows that Eeχ = 1+
∫

∞

0 etP(χ ≥ t)dt ≤ 1+2
∫

∞

0 e−tdt = 3, and

E(χ2eχ) =
∫

∞

0
(t2 +2t)etP(χ ≥ t)dt ≤ 2

∫
∞

0
(t2 +2t)e−tdt = 8.
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Along with the monotonicity of exponential function, we conclude both E|uuuTzzzivvvTzzzi|2e
|λ |τ̄√

n |uuu
TzzzivvvTzzzi|

and Ee
|λ |τ̄√

n |uuu
TzzzivvvTzzzi| can be upper-bounded by some constants C1,C2 respectively, uniformly over

uuu,vvv ∈ Sd−1 , as long as |λ | ≤
√

n/(4v2
1τ̄). Substituting the above bounds into (A.10) yields,

Eexp
{

λ
√

nuuuT
∇δδδ B̄BB(δδδ )vvv

}
≤

n

∏
i=1

[
1+

λ 2τ̄2

n
e
|λ |τ̄√

n

{
sup

uuu∈Sd−1
Ee

|λ |τ̄√
n (uuuTzzzi)

2
+ sup

uuu∈Sd−1
E(uuuTzzzi)

4e
|λ |τ̄√

n (uuuTzzzi)
2
}]

≤ exp
{

λ
2
τ̄

2e
|λ |τ̄√

n (C1 +C2)
}

≤ exp
{

2(C1 +C2)τ̄
2e−4v2

1 · λ
2

2

}
valid for all λ

2 ≤ 2 · n
32τ̄2v4

1
.

With the above preparations, we apply Theorem A.3 in Spokoiny (2013) with v2
0 =

2(C1 +C2)τ̄
2e−4v2

1 and g2 = n/(32τ̄2v4
1) to yield

sup
βββ∈βββ

∗+BΣΣΣ(r)
||BBB(βββ )−EBBB(βββ )||2 ≤ 12

√
C1 +C2τ̄e−2v2

1

√
2d + t

n
· r (A.11)

with probability at least 1− e−t , as long as n≥ 64τ̄2v4
1(2d + t).

Lastly, combining (A.9) and (A.11), we have

sup
βββ∈βββ

∗+BΣΣΣ(r)
||BBB(βββ )||2 ≤

{
δ (r)+12

√
C1 +C2τ̄e−2v2

1

√
2d + t

n

}
r (A.12)

with probability at least 1−e−t , as long as n≥ 64τ̄2v4
1(2d+t). Recall from the proof of Theorem

1.6.1 that we have β̂ββ ∈ βββ
∗+BΣΣΣ(r0) with probability at least 1−2e−t for some r0�σε

√
(d + t)/n.

Taking r = r0 in (A.12) and γ = σε

√
n/(d + t) finishes the proof.

A.2.3 Proof of Theorem 1.6.3

Proof. Let uuu ∈ Rd be an arbitrary vector, and J = E{wτ(ε)xxxxxxT} be the Hessian matrix. Define

Sn = n−1/2
∑

n
i=1 aibi and its centered version S0

n = Sn−E(Sn), where ai = wτ(εi)`
′
γ(εi) and

bi = 〈J−1uuu,xxxi〉. We first show that the centered partial sum S0
n is close to the quantity of interest
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n1/2〈uuu, β̂ββ −βββ
∗〉. By an application of Theorem 1.6.2 and Lemma A.1.2 with γ = σε

√
n/(d + t)

and t = logn, we obtain

∣∣n1/2〈uuu, β̂ββ −βββ
∗〉−S0

n
∣∣

≤ n1/2
∣∣∣〈ΣΣΣ

1/2J−1uuu,ΣΣΣ−1/2J(β̂ββ −βββ
∗)− 1

n

n

∑
i=1

wτ(εi)`
′
γ(εi)ΣΣΣ

−1/2xxxi

〉∣∣∣+ ∣∣ESn
∣∣

≤ n1/2∣∣∣∣J−1uuu
∣∣∣∣

ΣΣΣ
·
∣∣∣∣ΣΣΣ−1/2J(β̂ββ −βββ

∗)− 1
n

n

∑
i=1

wτ(εi)`
′
γ(εi)ΣΣΣ

−1/2xxxi
∣∣∣∣

2 +n1/2
∣∣∣E[〈J−1uuu,xxx〉E

{
wτ(ε)`

′
γ(ε)|xxx

}]∣∣∣
≤ n1/2∣∣∣∣J−1uuu

∣∣∣∣
ΣΣΣ
C · d + logn

n
+n1/2 τ̄v3

γ2

(
E〈J−1uuu,xxx〉2

)1/2

≤C1
∣∣∣∣J−1uuu

∣∣∣∣
ΣΣΣ

d + logn√
n

, (A.13)

with probability at least 1−3n−1, where C1 =C+ τ̄v3/σ2
ε .

Next, we show that the centered partial sum S0
n = n−1/2

∑
n
i=1(1−E)aibi is approximately

normally distributed. It follows from Berry-Esseen inequality (e.g., see Tyurin (2011)) that

sup
x∈R

∣∣P(S0
n ≤ var(S0

n)
1/2x)−Φ(x)

∣∣≤ E|aibi−Eaibi|3

2var(S0
n)

3/2√n
. (A.14)

Thus, it suffices to obtain a lower bound for var(S0
n) and an upper bound for E(|aibi−Eaibi|3).

By an application of Lemma A.1.2, we have E(aibi)≤ τ̄v3||J−1uuu||ΣΣΣ/γ2 and E(aibi)
2 ≥ τ2(σ2

ε −

2v3/γ)‖J−1uuu‖2
ΣΣΣ

. Thus, var(S0
n) = E(aibi)

2− (Eaibi)
2 ≥ ‖J−1uuu‖2

ΣΣΣ
(τ2σ2

ε −2τ2v3/γ− τ̄2v2
3/γ4).

For sufficiently large γ (i.e., n & d), we obtain the lower bound var(S0
n)

3/2 ≥ ||J−1uuu||3
ΣΣΣ
(τ3σ3

ε /2).

Next, we proceed to obtain an upper bound for the centered third moment E|aibi−E(aibi)|3.

Recall that m3 = supuuu∈Sd−1 E|〈uuu,ΣΣΣ−1/2xxx〉|3, we have

E|aibi|3 ≤ E
[
|〈J−1uuu,xxxi〉|3E

{
|wτ(εi)`

′
γ(εi)|3|xxxi

}]
≤ τ̄

3v3m3||J−1uuu||3
ΣΣΣ
.

Along with Minkowski’s inequality |a+b|p ≤ 2p−1(|a|p + |b|p), we obtain E|aibi−Eaibi|3 ≤

4τ̄3v3m3(1+ v2
3/m3γ6)||J−1uuu||3

ΣΣΣ
. Therefore E|aibi−Eaibi|3 ≤ 8τ̄3v3m3||J−1uuu||3

ΣΣΣ
provided that
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n & d. Substituting the above inequalities into (A.14), we have

sup
x∈R

∣∣P(S0
n ≤ var(S0

n)
1/2x)−Φ(x)

∣∣≤C2n−1/2, (A.15)

where C2 = 8v3m3τ̄3/(τσε)
3.

Let σ2 = E(aibi)
2 = uuuTJ−1E

[{
wτ(ε)`

′
γ(ε)

}2xxxxxxT
]
J−1uuu. An application of Lemma A.1.2

indicates that τ2(σ2
ε − 2v3/γ)‖J−1uuu‖2

ΣΣΣ
≤ σ2 ≤ τ̄2σ2

ε ||J−1uuu||2
ΣΣΣ

. Moreover, |var(S0
n)− σ2| =

|Eaibi|2 ≤ τ̄2v2
3||J−1uuu||2

ΣΣΣ
/γ4. Provided that n & d, we obtain

∣∣∣∣var(S0
n)

σ2 −1
∣∣∣∣≤ (1− 2v3

σ2
ε γ

)−1

·
τ̄2v2

3

τ2σ2
ε

· 1
γ4 ≤

2τ̄2v2
3

τ2σ2
ε

· 1
γ4 .

An application of Lemma A.7 in the supplement of Spokoiny and Zhilova (2015) indicates that

sup
x∈R

∣∣Φ(x/var(S0
n)

1/2)−Φ(x/σ)
∣∣≤C3γ

−4, (A.16)

where C3 = (τ̄v3/τσε)
2.

Let G ∼N (0,1). Applying the inequalities in (A.13), (A.15), and (A.16), along with

the fact that for all a < b and σ > 0, Φ(b/σ)−Φ(a/σ)≤ (2π)−1/2(b−a)/σ , we obtain that

for any x ∈ R and uuu ∈ Rd ,

P(n1/2〈uuu, β̂ββ −βββ
∗〉 ≤ x)≤ P

(
S0

n ≤ x+C1
∣∣∣∣J−1uuu

∣∣∣∣
ΣΣΣ

d + logn√
n

)
+

3
n

≤ P
(

var(S0
n)

1/2G≤ x+C1
∣∣∣∣J−1uuu

∣∣∣∣
ΣΣΣ

d + logn√
n

)
+

3
n
+

C2√
n

≤ P
(

σG≤ x+C1
∣∣∣∣J−1uuu

∣∣∣∣
ΣΣΣ

d + logn√
n

)
+

3
n
+

C2√
n
+

C3

γ4

≤ P
(

σG≤ x
)
+

C1||J−1uuu||ΣΣΣ√
2πσ

d + logn√
n

+
3
n
+

C2√
n
+

C3

γ4

. P
(

σG≤ x
)
+

d + logn√
n

+
1
n
+

1√
n
+

(d + logn)2

n2 ,
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where the last inequality follows from σ � ||J−1uuu||ΣΣΣ and taking γ = σε

√
n/(d + logn). A

similar argument leads to a series of reverse inequalities. Since the above bounds are independent

of x and uuu, they hold uniformly over x ∈ R and uuu ∈ Rd .

Putting together all the pieces, we conclude that by taking γ = σε

√
n/(d + logn), we

have

sup
uuu∈Rd ,x∈R

∣∣P(n1/2〈uuu, β̂ββ −βββ
∗〉 ≤ σx)−Φ(x)

∣∣. d + logn√
n

,

as long as n & d.

A.3 Proof of Lemmas

A.3.1 Proof of Lemma 1.6.1

Proof. The proof is a simplified version of the proof of Lemma 2.5.1, which can be found

in Appendix B.3.1. In the following, we outline the slight difference of the two proofs.

Let δδδ = ΣΣΣ
1/2(βββ − βββ

∗) and zzzi = ΣΣΣ
−1/2xxxi. Using the arguments from the beginning of the

proof of Lemma 2.5.1 to (B.20), it can be shown that E{B(α)} ≥ 3/4 provided that γ ≥

4
√

2max{σε ,2A2
1r}, where B(α) is as defined in (B.19). Moreover, since d < n, by Cauchy-

Schwarz inequality, we have

E(∆)≤ γ

r
E
{

sup
α∈B(r)

1
n

n

∑
i=1
〈eizzzi,α〉

}
≤ γ

rn
E sup

α∈B(r)

∣∣∣∣∣∣ n

∑
i=1

eizzzi

∣∣∣∣∣∣
2
· ||α||2

≤ γ

r

√
d
n
.

Consequently, we have ∆≤ 1/4 with high probability provided that n & (γ/r)2(d + t). Combin-

ing the above pieces finishes the proof.
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A.4 Proof of Propositions

A.4.1 Proof of Proposition 1.6.1

Proof. Let δδδ = βββ
∗−βββ

∗
γ . The optimality of βββ

∗
γ and the mean value theorem indicate respectively

that ∇R(βββ ∗γ) = 000, and

δδδ
T
∇

2R(β̃ββ
∗
γ)δδδ = 〈∇R(βββ ∗)−∇R(βββ ∗γ),δδδ 〉

= 〈∇R(βββ ∗),δδδ 〉=−1
n

n

∑
i=1

E{wτ(εi)`
′
γ(εi)xxxT

i δδδ}, (A.17)

where β̃ββ
∗
γ = λβββ

∗+(1−λ )βββ ∗γ for some 0≤ λ ≤ 1.

We start with an upper bound on the right-hand side of (A.17). By the fact that

E{wτ(ε)ε|xxx}= 0 and |`′(u)−u| ≤ u2, we have

E{wτ(ε)`
′
γ(ε)|xxx} ≤ E[γwτ(ε){`′(ε/γ)− ε/γ}|xxx]≤ τ̄σ

2
ε /γ.

Consequently

E{wτ(εi)`
′
γ(εi)xxxT

i δδδ} ≤ E|xxxT
δδδ | · τ̄σ

2
ε /γ ≤ ||ΣΣΣ1/2

δδδ ||2 · τ̄σ
2
ε /γ. (A.18)

Next, we obtain a lower bound for δδδ
T
∇2R(β̃ββ

∗
γ)δδδ . Let Lτ,∞(·) be the resulting asymmetric

`2 loss when taking γ = ∞ in Lτ,γ(·). Moreover, let R∞(βββ ) = E{Lτ,∞(y− xxxTβββ )}. Since R(·) is

convex and minimized at βββ
∗
γ , we have

R(β̃ββ
∗
γ)≤ λR(βββ ∗)+(1−λ )R(βββ ∗γ)≤R(βββ ∗)≤R∞(βββ

∗)≤ τ̄σ
2
ε /2.

On the other hand, by the definition of Huber loss, for all βββ ∈ Rd , we have

R(βββ )≥ n−1
n

∑
i=1

Ewτ(yi− xxxT
i βββ )(γ|yi− xxxT

i βββ |− γ
2/2)1(|yi− xxxT

i βββ |> γ).
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Let ε̃i = yi− xxxT
i β̃ββ
∗
γ . Combining the above inequalities, we have

γ

n

n

∑
i=1

E{wτ(ε̃i)|ε̃i|1(|ε̃i|> γ)} ≤ γ2

2n

n

∑
i=1

E{wτ(ε̃i)1(|ε̃i|> γ)}+ τ̄σ2
ε

2

≤ γ

2n

n

∑
i=1

E{wτ(ε̃i)|ε̃i|1(|ε̃i|> γ)}+ τ̄σ2
ε

2
,

which further implies that

1
n

n

∑
i=1

E{wτ(ε̃i)1(|ε̃i|> γ)} ≤ 1
nγ

n

∑
i=1

E{wτ(ε̃i)|ε̃i|1(|ε̃i|> γ)} ≤ τ̄σ2
ε

γ2 . (A.19)

Moreover, note that ∇2R(β̃ββ
∗
γ) = n−1

∑
n
i=1E{wτ(ε̃i)xxxixxxT

i }− n−1
∑

n
i=1E{wτ(ε̃i)1(|ε̃i| >

γ)xxxixxxT
i }. It then follows from the Cauchy–Schwarz inequality and (A.19) that

δδδ
T
∇

2R(β̃ββ
∗
γ)δδδ =

1
n

n

∑
i=1

E{wτ(ε̃i)(δδδ
Txxxi)

2}− 1
n

n

∑
i=1

E{wτ(ε̃i)1(|ε̃i|> γ)(xxxT
i δδδ )2}

≥ τ||ΣΣΣ1/2
δδδ ||22−

{
1
n

n

∑
i=1

Ew2
τ(ε̃i)1

2(|ε̃i|> γ)

}1/2{
1
n

n

∑
i=1

E(xxxT
i δδδ )4

}1/2

≥ τ||ΣΣΣ1/2
δδδ ||22−

{
1
n

n

∑
i=1

τ̄Ewτ(ε̃i)1(|ε̃i|> γ)

}1/2{
1
n

n

∑
i=1

E〈ΣΣΣ1/2
δδδ ,ΣΣΣ−1/2xxxi〉4

}1/2

≥ τ||ΣΣΣ1/2
δδδ ||22−

τ̄σε

γ
A2

1||ΣΣΣ1/2
δδδ ||22.

Picking γ ≥ 2σεA2
1τ̄/τ , we have

δδδ
T
∇

2R(β̃ββ
∗
γ)δδδ ≥ τ||ΣΣΣ1/2

δδδ ||22/2. (A.20)

Putting together (A.17), (A.18), and (A.20) completes the proof.

A.5 Proof of Technical Lemmas A.1.1–A.1.2
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A.5.1 Proof of Lemma A.1.1

Proof. The proof is a simple combination of the proofs of Lemmas B.1.1 and B.1.2, and is thus

omitted. Detailed proofs of Lemmas B.1.1 and B.1.2 can be found in Appendix B.5.

A.5.2 Proof of Lemma A.1.2

Proof. We start with obtaining an upper bound for E{wτ(ε)`
′
γ(ε)}. Denote `(·) as the Huber

loss with γ = 1. By the fact that |`′(u)−u| ≤ |u|3 for all u ∈ R, we have

∣∣E{wτ(ε)`
′
γ(ε)}

∣∣= ∣∣Eγwτ(ε)
{
`′(ε/γ)− (ε/γ)

}∣∣≤ τ̄γ
−2E|ε|3 = τ̄γ

−2v3.

Turning to E
{

wτ(ε)`
′
γ(ε)

}2, note that E`′γ(ε)2 = σ2
ε −Eε2

1(|ε| > γ)+ γ2P(|ε| > γ).

By Markov’s inequality, E(ε2− γ2)1(|ε| > γ) ≤ γ−1E|ε|3 = γ−1ν3. Combining this with the

fact that τ ≤ wτ(ε)≤ τ̄ and |`′γ(ε)| ≤ |ε| completes the proof.
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Appendix B

Supplementary Material for Chapter 2

B.1 Preliminary Results

Given τ ∈ (0,1), let {(yi,xxxi)}n
i=1 be a sample of independent data vectors from the linear

regression model in (1.1), yi = xxxT
i βββ
∗(τ)+ εi(τ), where εi(τ) satisfies eτ(εi|xxxi) = 0. In other

words, the conditional τ-mean of yi give xxxi is a linear combination of xxxi. We suppress the

dependency of βββ
∗(τ) and ε(τ) on τ throughout the Appendix. Let wτ(u) := |τ−1(u < 0)| and

let `γ(u) = γ2`(u/γ). Recall from (1.5) that L(u) := Lτ,γ(u) = wτ(u)`γ(u) and let

Rn(βββ ) =
1
n

n

∑
i=1

L(yi− xxxT
i βββ ) and ∇Rn(βββ ) =−

1
n

n

∑
i=1

L′(yi− xxxT
i βββ )xxxi,

where L′(u) = γwτ(u)`′(u/γ) is the first-order derivative of L(u).

For βββ ∈Rd , let www(βββ ) = ∇Rn(βββ )−∇R(βββ ), where R(βββ ) =E{Rn(βββ )} is the population

loss. Moreover, we define the quantity www∗ = ∇Rn(βββ
∗)−∇R(βββ ∗) as the centered score func-

tion. Recall from Definition 2.5.1 that C(L) = {δδδ : ‖δδδ‖1 ≤ L‖δδδ‖2}. Let C1 := {δδδ : ‖δδδS c‖1 ≤

3‖δδδS ‖1}. Moreover, define the symmetrized Bregman divergence B : Rp×Rp→ [0,∞) asso-

ciated with the convex function Rn(·) evaluated at βββ 1,βββ 2 as

B(βββ 1,βββ 2) = 〈∇Rn(βββ 1)−∇Rn(βββ 2),βββ 1−βββ 2〉. (B.1)

Recall from Condition 2 that λu ≥ λmax(ΣΣΣ), where ΣΣΣ = E(xxxxxxT). Also recall from Condition 3
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that E(ε2|xxx)≤ σ2
ε .

We present some technical lemmas that are useful for analyzing the high-dimensional

penalized retire estimator. Recall that the penalized retire estimator is obtain by solving

optimization problem (2.1). For notational convenience, throughout the Appendix, we define the

minimizer of (2.1) as

β̂ββ
(t)
∈ argmin

βββ∈Rd

{
Rn(βββ )+‖λλλ (t) ◦βββ‖1

}
, (B.2)

where λλλ
(t) = (λ

(t)
1 , . . . ,λ

(t)
d )T is a d-dimensional vector of tuning parameters with λ

(t)
j =

p′
λ
(|β̂ (t−1)

j |), and ◦ is the Hadamard product. Throughout the proof, we drop the superscript

from β̂ββ
(t)

and λλλ
(t) when the context is clear.

The proofs of all of the technical lemmas are deferred to Appendix B.5.

Lemma B.1.1. Under Conditions 1, 2, and 3, we have

‖∇R(βββ ∗)‖2 ≤ γ
−1

τ̄λ
1/2
u σ

2
ε and ‖∇R(βββ ∗)‖∞ ≤ γ

−1
τ̄σxxxσ

2
ε .

Moreover, for any t ≥ 0,

‖www∗‖∞ = ‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞ ≤ ν0σxxxτ̄

(
2σε

√
logd + t

n
+ γ

logd + t
n

)

holds with probability at least 1−2e−t .

Lemma B.1.1 reveals the proper range for the penalty level λ so that event {λ ≥

2‖∇Rn(βββ
∗)‖∞} occurs with high probability. Let S be the active set of the true regression

parameter βββ
∗, and S = E(xxxS xxxT

S ) be the s× s principal submatrix of ΣΣΣ. Denote by λmax(S) the

maximal eigenvalue of S. Write www∗ = ∇Rn(βββ
∗)−∇R(βββ ∗). The next lemma provides an upper

bound for the centered score www∗, projected on the true support S .
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Lemma B.1.2. Under Conditions 2–3, for any t > 0, we have

‖www∗S ‖2 ≤ 3τ̄ν0λ
1/2
max(S)

(
σε

√
2s+ t

n
+ γ

2s+ t
2n

)
,

with probability at least 1− e−t .

The following two lemmas contain some results for the solution of (B.2). Both lemmas

are essential for the proof of Proposition B.2.1, which is the key to the proof of Theorem 2.5.2.

Lemma B.1.3. Let A be a set such that S ⊆A ⊆ [d]. For any βββ ∈ Rd , let βββA c = 0. Assume

that ‖λλλA c‖min > ‖www(βββ )‖∞. Then, any solution β̂ββ to the optimization problem (B.2) satisfies

‖(β̂ββ −βββ )A c‖1 ≤
{
‖λλλ‖∞ +‖www(βββ )‖∞

}
‖(β̂ββ −βββ )A ‖1 +‖∇R(βββ )‖2‖β̂ββ −βββ‖2

‖λλλA c‖min−‖www(βββ )‖∞

. (B.3)

Lemma B.1.4. Let A be a set such that S ⊆A ⊆ [d] and |A |= k. Let λλλ = (λ1, . . . ,λd)
T be

a vector of tuning parameters that satisfies ‖λλλ‖∞ ≤ λ and ‖λλλA c‖min ≥ aλ for some constant

a ∈ (0,1] and λ ≥ s−1/2‖∇R(βββ ∗)‖2. Then, under the event {aλ ≥ 2‖www∗‖∞}, any solution β̂ββ

to (B.2) satisfies β̂ββ ∈ βββ
∗+C(L) with L = (2+ 2/a)k1/2 + 2s1/2/a. In addition, let κ,r > 0

satisfy r > κ−1(2s1/2 + k1/2a/2)λ . Then, under the event Ersc(r,L,κ), we have

‖β̂ββ −βββ
∗‖2 ≤ κ

−1{(2s1/2 + k1/2a/2)λ
}
< r.

B.2 Proof of Theorems

B.2.1 Proof of Theorem 2.5.1

Proof. Let β̂ββ := β̂ββ
(1)

be a minimizer of (2.1) with p′
λ
(0) = λ , i.e., optimization problem (2.1)

reduces to the `1-penalized robustified expectile regression, i.e.,

β̂ββ ∈minimize
βββ∈Rd

{
1
n

n

∑
i=1

Lτ,γ(yi− xxxT
i βββ )+λ

d

∑
j=2
|β j|

}
. (B.4)
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Let S = {1, . . . ,d} be the active set of βββ
∗, i.e., the index set S contains indices for which

βββ
∗
j 6= 0. Let s = |S | be the cardinality of S . Recall the definition of the symmetric Bregman

divergence in (B.1). The main crux of the proof of Theorem 2.5.1 involves establishing upper and

lower bounds for B(β̂ββ ,βββ ∗). We start with deriving an upper bound for B(β̂ββ ,βββ ∗). Throughout

the proof, we write δ̂δδ = β̂ββ −βββ
∗.

Since β̂ββ is a minimizer of (B.4), we have

Rn(β̂ββ )−Rn(βββ
∗)≤ λ (‖βββ ∗‖1−‖β̂ββ‖1) (B.5)

≤ λ (‖βββ ∗S ‖1−‖βββ ∗S + δ̂δδS ‖1−‖δ̂δδS c‖1)

≤ λ (‖δ̂δδS ‖1−‖δ̂δδS c‖1). (B.6)

By the optimality condition of β̂ββ , we have 〈∇Rn(β̂ββ )+λ ẑzz, β̂ββ −βββ
∗〉 ≤ 0, where ẑzz ∈ ∂‖β̂ββ‖1 and

〈ẑzz, β̂ββ 〉= ‖β̂ββ‖1. Thus, conditioned on the event Escore := {λ ≥ 2‖∇Rn(βββ
∗)‖∞}, B(β̂ββ ,βββ ∗) can

be upper bounded by

B(β̂ββ ,βββ ∗) = 〈∇Rn(β̂ββ )−∇Rn(βββ
∗), β̂ββ −βββ

∗〉 (B.7)

= 〈∇Rn(β̂ββ )+λ ẑzz, β̂ββ −βββ
∗〉+ 〈−λ ẑzz−∇Rn(βββ

∗), β̂ββ −βββ
∗〉

≤ 0+λ (‖βββ ∗‖1−‖β̂ββ‖1)+‖∇Rn(βββ
∗)‖∞ · ‖δ̂δδ‖1

≤ λ (‖δ̂δδS ‖1−‖δ̂δδS c‖1)+
λ

2
(‖δ̂δδS ‖1 +‖δ̂δδS c‖1)

≤ 3
2

λ s1/2‖δ̂δδ‖2. (B.8)

We now obtain a lower bound for B(β̂ββ ,βββ ∗). To this end, we apply the restricted strong

convexity result in Lemma 2.5.1. First, from the proof of Lemma 2.5.1, we know that the result in

Lemma 2.5.1 is applicable for any βββ ∈ βββ
∗+B(r)∩C1, for which β̂ββ does not necessarily satisfies.

To this end, we define an intermediate quantity to help facilitate the proof. Let A1 be a constant

that satisfies E(uuuTΣΣΣ
−1/2xxx)4 ≤ A4

1‖uuu‖4
2 for all uuu ∈ Rd and let rloc = γ/(8

√
2λuA2

1). Consider
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β̂ββ η = ηβ̂ββ + (1−η)βββ ∗, where η = sup
{

u ∈ [0,1] : (1− u)βββ ∗+ uβ̂ββ ∈ βββ
∗+B(rloc)

}
. Then,

β̂ββ η ∈ βββ
∗+∂B(rloc) whenever β̂ββ /∈ βββ

∗+B(rloc) where ∂B(rloc) is the boundary of B(rloc), and

β̂ββ η = β̂ββ whenever β̂ββ ∈ βββ
∗+B(rloc). Let δ̂δδ η = β̂ββ η −βββ

∗. It remains to show that β̂ββ η ∈ βββ
∗+C1,

i.e., ‖(δ̂δδ η)Sc‖1 ≤ 3‖(δ̂δδ η)S‖1. By convexity of Rn(·), we have

Rn(β̂ββ )−Rn(βββ
∗)≥ 〈∇Rn(βββ

∗), δ̂δδ 〉 ≥ −‖∇Rn(βββ
∗)‖∞ · ‖δ̂δδ‖1 ≥−

λ

2
(‖δ̂δδS ‖1 +‖δ̂δδS c‖1) (B.9)

Combining (B.6) and (B.9), we have ‖δ̂δδS c‖1 ≤ 3‖δ̂δδS ‖1, conditioned on the event Escore. Since

ηδ̂δδ = δ̂δδ η , we have verified that β̂ββ η ∈ βββ
∗+B(rloc)∩C1, conditioned on Escore. Applying Lemma

2.5.1 with βββ = β̂ββ η , the following bound holds with probability at least 1− e−t

B(β̂ββ η ,βββ
∗) = 〈∇Rn(β̂ββ η)−∇Rn(βββ

∗), β̂ββ η −βββ
∗〉 ≥ 1

2
κ1τ‖δ̂δδ η‖2

2, (B.10)

as long as (γ,n,d) satisfies γ ≥ 4
√

2λuσε and n & s logd + t. For notational convenience, we

denote the event at (B.10) as Ersc with P(Ersc)≥ 1− e−t .

We now combine the lower and upper bounds in (B.8) and (B.10). Since Rn(·) is convex,

by Lemma C.1 in Sun, Zhou and Fan (2020) we have B(β̂ββ η ,βββ
∗)≤ ηB(β̂ββ ,βββ ∗), and thus implies

that 
‖δ̂δδ η‖2 ≤ 3(κ1τ)−1s1/2λ ;

‖δ̂δδ η‖1 ≤ 4s1/2‖δ̂δδ η‖2 ≤ 12(κ1τ)−1sλ .

We now show that with proper choice of λ and γ , β̂ββ ∈ βββ
∗+B(rloc), implying β̂ββ η = β̂ββ . Let

γ = σε

√
n/(logd + t). By Lemma B.1.1,

‖∇Rn(βββ
∗)‖∞ ≤ τ̄σxxxσε(3ν0 +1)

√
(logd + t)/n

with probability at least 1−2e−t , suggesting that λ = 2cτ̄
√

(logd + t)/n where c = σxxxσε(3ν0+

1). Moreover, it can be verified that γ ≥ 4
√

2λuσε under the scaling condition n & s logd + t.
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Finally, we have ‖β̂ββ η−βββ
∗‖2 ≤ 3(κ1τ)−1s1/2λ .

√
s(logd + t)/n <

√
n/(logd + t)� rloc, i.e.,

β̂ββ η ∈ βββ
∗+B(rloc). This further implies that β̂ββ = β̂ββ η by construction. Thus, we obtain the

desired results 
‖β̂ββ −βββ

∗‖2 ≤ 3(κ1τ)−1s1/2λ ;

‖β̂ββ −βββ
∗‖1 ≤ 12(κ1τ)−1sλ ,

with probability P
(
Escore∩Ersc

)
≥ 1−3e−t .

B.2.2 Proof of Theorem 2.5.2

Recall that R(βββ ∗) = E{Rn(βββ
∗)} be the population loss evaluated at βββ

∗ and let www∗ =

∇Rn(βββ
∗)−∇R(βββ ∗) be the centered score function. We first show that given an estimator at

the (T − 1)th iteration, β̂ββ
(T−1)

, the estimation error of the subsequent estimator β̂ββ
(T )

can be

improved sequentially by a δ -fraction for some constant δ ∈ (0,1), under a beta-min condition on

‖βββ ∗S ‖min. We establish a deterministic claim in the following proposition, where we conditioned

on events that are related to the local restricted strong convexity property and the gradient of the

loss function, Ersc(r,L,κ) and {p′0(a0)λ ≥ 2www∗}, respectively.

Proposition B.2.1. Let p0(·) be a penalty function that satisfies Condition 6. Given κ > 0,

assume that there exists some constant a0 > 0 such that p′0(a0) > 0 and κ >
√

5/(2a0) . Let

c > 0 be a constant that is the solution to the equation

0.5p′0(a0)(c2 +1)1/2 +2 = cκa0. (B.11)

Assume the beta-min condition ‖βββ ∗S ‖min ≥ a0λ and let rcrude = ca0s1/2λ . Conditioned on the

event Ersc(r,L,κ)∩{p′0(a0)λ ≥ 2‖www∗‖∞} with

L = {2+2/p′0(a0)}(c2 +1)1/2s1/2 +2s1/2/p′0(a0), r > rcrude, and λ ≥ s−1/2‖∇R(βββ ∗)‖2,
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the sequence of solutions β̂ββ
(1)
, . . . , β̂ββ

(T )
obtained from solving (2.1) satisfies

‖β̂ββ
(T )
−βββ

∗‖2 ≤ δ‖β̂ββ
(T−1)

−βββ
∗‖2 +κ

−1{‖p′
λ
{(|βββ ∗j |−a0λ )+}‖2 +‖www∗S ‖2 +‖∇R(βββ ∗)‖2

}
, (B.12)

where δ =
√

5/(2a0κ) ∈ (0,1) and z+ = max(z,0). Furthermore, we have

‖β̂ββ
(T )
−βββ

∗‖2 ≤ δ
T−1rcrude +{(1−δ )κ}−1{‖p′

λ
{(|βββ ∗j |−a0λ )+}‖2 +‖www∗S ‖2 +‖∇R(βββ ∗)‖2

}
.

(B.13)

Proposition B.2.1 establishes the fact that every additional iteration of the proposed

iteratively reweighted method shrinks the estimation error of the solution obtained from the

previous iteration by a factor of δ ∈ (0,1), at the cost of inducing some extra terms ‖p′
λ
{(|βββ ∗j |−

a0λ )+‖2, ‖www∗S ‖2, and ‖∇R(βββ ∗)‖2, which can be shown to be smaller than rcrude. Such a

phenomenon is also known as the contraction property and has been studied in different contexts

(Fan et al., 2018, Pan, Sun and Zhou, 2021). We refer the reader to Pan, Sun and Zhou (2021)

for a detailed discussion on the various terms that appear in (B.13). For completeness, we also

provide the proof of Proposition B.2.1 in Appendix B.4.1.

The results in Proposition B.2.1 are deterministic, conditioned on some events. In the fol-

lowing proof of Theorem 2.5.2, we provide an appropriate choice of the set of tuning parameters

(λ ,γ) such that the event Ersc(r,L,κ)∩{p′0(a0)λ ≥ 2‖www∗‖∞} holds with high probability. More-

over, we will control the shrinkage bias ‖p′
λ
{(|βββ ∗j |−a0λ )+‖2 in (B.13) by proposing slightly

stronger conditions on the minimum signal strength ‖βββ ∗S ‖min as well as the first derivative of

the penalty function pλ (·).

Proof. The proof is based on Proposition B.2.1. We will show that under the stated conditions in

Theorem 2.5.2, the events Ersc(r,L,κ) and {p′0(a0)λ ≥ 2‖www∗‖∞} in Proposition B.2.1 hold with

high probabilities. We then show that the terms p′
λ
{(|βββ ∗j |−a0λ )+}‖2, ‖www∗S ‖2, and ‖∇R(βββ ∗)‖2

can be upper bounded with high probabilities.

80



Picking γ = σε

√
n/(s+ logd + t) and applying Lemma B.1.1 indicates that

‖∇R(βββ ∗)‖2 ≤ τ̄σελ
1/2
u
√
(s+ logd + t)/n.

and

‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞ ≤ 3ν0τ̄σxxxσε

√
(logd + t)/n,

with probability at least 1−2e−t . Picking λ �σε

√
(logd + t)/n, we have λ ≥ s−1/2‖∇R(βββ ∗)‖2

and the event {p′0(a0)λ ≥ 2‖www∗‖∞} holds with probability at least 1−2e−t .

Next, we set κ = 0.5κ1τ and set the constant c to be the solution to (B.11). Picking

r = γ/(8
√

2λuA2
1), it can be shown that r � σε

√
n/(s+ logd + t)> σε

√
s(logd + t)/n� rcrude

and δ =
√

5/(a0κ1τ) < 1. Thus, setting L = {2+ 2
p′0(a0)

}(c2 + 1)1/2s1/2 + 2
p′0(a0)

s1/2, Lemma

2.5.1 indicates that the event Ersc(r,L,0.5κ1τ) holds with probability at least 1− e−t .

Moreover, by Lemma B.1.2 and the choice of γ = σε

√
n/(s+ logd + t), we obtain

‖www∗S ‖2 . σε

√
s+ t

n
, (B.14)

with probability at least 1− e−t .

Finally, we obtain an upper bound for the term ‖p′
λ
(|βββ ∗S |−a0λ )+‖2. Since |β ∗j | ≥ (a0+

a1)λ for any j ∈S , we have p′
λ
(|β ∗j |−a0λ ) = 0. Combining the aforementioned inequalities

to (B.13), we obtain

‖β̂ββ
(T )
−βββ

∗‖2 . δ
T−1

σε

√
s(logd + t)

n
+

σε

1−δ

√
s+ logd + t

n
,

with probability at least 1−4e−t . Setting T & log{log(d+t)}
log(1/δ ) leads to the desired results in (2.5)

and (2.6).
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B.3 Proof of Lemmas

B.3.1 Proof of Lemma 2.5.1

Proof. For notational convenience, throughout the proof we let δδδ = βββ − βββ
∗. Recall from

Definition 2.5.1 that B(r) = {δδδ ∈ Rd : ‖δδδ‖2 ≤ r} is a ball and C(L) = {δδδ : ‖δδδ‖1 ≤ L‖δδδ‖2} is

an `1-cone. In the following proof, we will provide a lower bound for the symmetrized Bregman

divergence B(βββ ,βββ ∗) under the constraint βββ ∈ βββ
∗+B(r)∩C(L).

We start by defining the events

Ei(δδδ ,r,γ) = {|εi| ≤ γ/2}∩
{
|xxxT

i δδδ | ≤ γ‖δδδ‖2

2r

}
(B.15)

for i = 1, . . . ,n. The symmetrized Bregman divergence can then be low bounded by

B(βββ ,βββ ∗) =
1
n

n

∑
i=1

{
L′(εi)−L′(εi− xxxT

i δδδ )
}
· xxxT

i δδδ

≥ 1
n

n

∑
i=1

{
L′(εi)−L′(εi− xxxT

i δδδ )
}
· xxxT

i δδδ ·1Ei(δδδ ,r,γ),

(B.16)

where 1Ei(δδδ ,r,γ) is an indicator function that takes value one when the event in (B.15) holds and

zero otherwise. Thus, it suffices to obtain a lower bound on (B.16) for any βββ ∈ βββ
∗+B(r)∩C(L).

Recall from Appendix B.1 that L′(u) = γwτ(u)`′(u/γ) with wτ(u) = |τ − I(u < 0)|.

Conditioned on the event Ei(δδδ ,r,γ), for any δδδ ∈ B(r), we have |εi| ≤ γ and |εi− xxxT
i δδδ | ≤ γ/2+

γ/2 = γ . For notational convenience, let ui = εi and let vi = εi− xxxT
i δδδ . Then, the term

{
L′(εi)−

L′(εi− xxxT
i δδδ )
}
· xxxT

i δδδ can be rewritten as {L′(ui)−L′(vi)}(ui− vi). In the following, we obtain a

lower bound for the term {L′(ui)−L′(vi)}(ui−vi) for any ui,vi ∈ [−γ,γ]. Let κ1 =min|t|≤1 `
′′(t).

To this end, we consider three possible cases:

(i) (uivi = 0). If vi = 0, we have {L′(ui)−L′(vi)}(ui− vi) ≥ γwτ(ui){`′(ui/γ)− `′(0)}ui ≥

κ1τu2
i , where the last inequality hold by the mean value theorem. Similarly if ui = 0,

{L′(ui)−L′(vi)}(ui− vi)≥ κ1τv2
i .
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(ii) (uivi > 0). In this case, wτ(ui) = wτ(vi) and hence {L′(ui)−L′(vi)}(ui− vi) = γwτ(ui)

{`′(ui/γ)− `′(vi/γ)}(ui− vi)≥ κ1τ(ui− vi)
2.

(iii) (uivi < 0). In this case, we have either u > 0,v < 0 or u < 0,v > 0. For the former,

{L′(ui)−L′(vi)}(ui−vi) = γ{τ`′(ui/γ)−(1−τ)`′(vi/γ)}(ui−vi)≥ κ1τ(ui−vi)
2, where

the last inequality holds by the mean value theorem. The latter can be shown in a similar

fashion.

Combining all three cases, we conclude that {L′(ui)−L′(vi)}(ui− vi) ≥ κ1τ(ui− vi)
2 for all

ui,vi ∈ [−γ,γ]. Substituting this into (B.16) yields

B(βββ ,βββ ∗)≥ κ1τ

n

n

∑
i=1

(xxxT
i δδδ )2

1Ei(δδδ ,r,γ) (B.17)

for any δδδ ∈ B(r).

Next, we will derive a lower bound for (1/n)∑
n
i=1(xxx

T
i δδδ )2

1Ei(δδδ ,r,γ), uniformly over δδδ ∈

B(r). To this end, we smooth the discontinuous indicator function 1Ei(δδδ ,r,γ) = 1{|xxxT
i δδδ |≤γ‖δδδ‖2/(2r)} ·

1{|εi|≤γ/2} by a Lipschitz continuous function. Using similar ideas from the proof of Proposition 2

in Loh (2017), for any R≥ 0, we define the truncated squared function as

ϕR(u) = u2
1(|u| ≤ R/2)+(|u|−R)2

1(R/2 < |u| ≤ R), u ∈ R.

It can be verified that the function ϕR(·) is R-Lipschitz continuous and satisfies the following:

u2
1(|u| ≤ R/2)≤ ϕR(u)≤min

{
u2
1(|u| ≤ R),(R/2)2} and ϕcR(cu) = c2

ϕR(u) for any c≥ 0.

(B.18)
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It then follows from (B.17) and (B.18) that

B(βββ ,βββ ∗)≥ κ1τ ‖δδδ‖2
2 ·

1
n

n

∑
i=1

1(|εi| ≤ γ/2) ·ϕγ/(2r)(xxx
T
i α)︸ ︷︷ ︸

=:B(α)

, where α := δδδ/‖δδδ‖2 ∈ Sd−1.

(B.19)

Next, we bound the random quantity B(α) from below. Let ∆ = supα∈Sd−1−B(α)+

E{B(α)}. Then, we have B(α) ≥ E{B(α)}−∆. It suffices to obtain a lower bound for

E{B(α)} and an upper bound for the random fluctuation ∆. We start with obtaining a lower

bound for E{B(α)}.

Recall that A1 is a constant that satisfies E{(uuuTxxx)4}≤ A4
1‖uuu‖4

ΣΣΣ
≤ λ 2

u A4
1‖uuu‖4

2 for all uuu∈Rd .

Applying the inequality in (B.18), for any α ∈ Sd−1, we have

E{B(α)} ≥ E
{
(xxxT

i α)2
1(|εi| ≤ γ/2)1(|xxxT

i α| ≤ γ/4r)
}

≥ E
[
(xxxT

i α)2{1−1(|xxxT
i α|> γ/4r)−1(|εi|> γ/2)

}]
≥ 1− (4r/γ)2E(xxxT

i α)4−E
[
(xxxT

i α)2E
{
(2|εi|/γ)2|xxxi

}]
≥ 1− (4r/γ)2

λ
2
u A4

1− (2/γ)2
σ

2
ε λu (B.20)

Provided γ ≥ 4
√

2λu max{σε ,2A2
1r}, we obtain E{B(α)} ≥ 3/4.

Next, we obtain an upper bound for ∆ = supα∈Sd−1−B(α)+E{B(α)}. Applying the

inequality in (B.18) on ϕγ/(2r)(·), we have B(α)≤ (γ/4r)2. Applying Theorem 7.3 in Bousquet

(2003) and the inequality ab≤ a2/4+b2, for any t ≥ 0, we obtain

∆≤ E(∆)+
√

γ2t
4r2n

E(∆)+λuA2
1

√
2t
n
+

γ2

48r2 ·
t
n

≤ 1.25E(∆)+λuA2
1

√
2t
n
+

γ2

3r2 ·
t
n
, (B.21)

with probability at least 1− e−t .

It remains to bound E(∆). Let Bi(α) = 1(|εi| ≤ γ/2) · ϕγ/(2r)(xxxT
i α) and note that
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E(∆) = E
[

supα∈Sd−1
{
− (1/n)∑

n
i=1 Bi(α) + (1/n)∑

n
i=1EBi(α)

}]
. By the symmetrization

inequality for empirical process, E(∆)≤ 2E
{

supα∈Sd−1(1/n)∑
n
i=1 eiBi(α)

}
, where e1, . . . ,en

are independent Rademacher random variables. Recall that C1 = {δδδ : ‖δδδS c‖1 ≤ 3‖δδδS ‖1}

where S = supp(βββ ∗). For all βββ ∈ βββ
∗+B(r)∩C1, we have ‖βββ −βββ

∗‖1 ≤ 4‖(βββ −βββ
∗)S ‖1 ≤

4s1/2‖βββ−βββ
∗‖2. Since Bi(α) is γ/(2r)-Lipschitz, applying the Talagrand’s contraction principle

(Ledoux and Talagrand, 1991) and Holder’s inequality, we have

E(∆)≤ γ

r
E

{
sup

βββ∈βββ
∗+B(r)∩C1

1
n

n

∑
i=1

〈
eixxxi,

βββ −βββ
∗

‖βββ −βββ
∗‖2

〉}

≤ γ

rn
4s1/2E

∥∥∥∥∥ n

∑
i=1

eixxxi

∥∥∥∥∥
∞

. (B.22)

Let S j = ∑
n
i=1 eixi j for j = 1, . . . ,d. It remains to bound E‖∑

n
i=1 eixxxi‖∞ = E(max j |S j|).

Since xxx is sub-exponential, by Condition 2, we have P(|xi j| ≥ ν0σ
1/2
j j t)≤ e−t . Consequently, we

obtain

E(|eixi j|k)≤
∫

∞

0
P(|xi j|k ≥ t)dt ≤ k!νk

0σ
k/2
j j for all k ≥ 2.

Along with the fact that E(eixi j) = 0, for any 0≤ λ ≤ (ν0σxxx)
−1, the moment generating function

of eixi j can be upper bounded by

E
(

eλeixi j
)
≤ 1+ ∑

k≥2

λ k

k!
E|eixi j|k

≤ 1+ ∑
k≥2

(ν0σ
1/2
j j λ )k

≤ 1+
ν2

0 σ2
xxx λ 2

1−ν0σxxxλ

Using the inequality log(1+ x)≤ x for all x > 0, we have

log{E(eλS j)} ≤
n

∑
i=1

log{1+ν
2
0 σ

2
xxx λ

2/(1−ν0σxxxλ )} ≤ (2nν
2
0 σ

2
xxx λ

2)/{2(1−ν0σxxxλ )}
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for any 1≤ j ≤ d and 0≤ λ ≤ (ν0σxxx)
−1. Consequently S1, ...,Sd are sub-gamma Γ+(v,c) with

v = 2nν2
0 σ2

xxx and c = ν0σxxx. Applying Corollary 2.6 in Boucheron, Lugosi, and Massart (2013),

we obtain

E

∥∥∥∥∥ n

∑
i=1

eixxxi

∥∥∥∥∥
∞

= E
(

max
j
|S j|
)
≤
√

2v log2d + c log2d = ν0σxxx

(
2
√

n log2d + log2d
)

(B.23)

Combining (B.21), (B.22), and (B.23), we obtain

∆≤ 5s1/2 γν0σxxx

r

(
2

√
log2d

n
+

log2d
n

)
+λuA2

1

√
2t
n
+

γ2

3r2
t
n
,

with probability at least 1−e−t . Provided that n & (σxxxν0γ/r)2s(logd+ t), we have ∆≤ 1/8 with

probability at least 1−e−t . Putting all pieces together, as long as γ ≥ 4
√

2λu max{σε ,2A2
1r} and

n & (σxxxν0γ/r)2(s logd + t), the following bound holds uniformly over βββ ∈ βββ
∗+B(r)∩C1:

B(βββ ,βββ ∗)≥ 1
2

κ1τ‖βββ −βββ
∗‖2

2,

with probability at least 1− e−t . The final result is obtained by replacing 4s1/2 by L.

B.4 Proof of Propositions

B.4.1 Proof of Proposition B.2.1

Proof. We start by obtaining an upper bound for β̂ββ
(1)

obtained by solving (2.1), or equivalently,

solving (B.2), with an initial estimator β̂ββ
(0)

= 0 and λλλ
(0) = p′

λ
(0) = (λ , . . . ,λ )T. Conditioned

on the event Ersc(r,L0,κ)∩Escore(λ ) with L0 = 6s1/2, and from the proof of Lemma B.1.4 with

parameters r,κ,λ > 0 such that r > 2.5κ−1s1/2λ , any solution β̂ββ
(1)

to (B.2) satisfies

‖β̂ββ
(1)
−βββ

∗‖2 ≤ 2.5κ
−1s1/2

λ . (B.24)

We now continue to establish an upper bound on the estimation error for the subsequent
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estimators β̂ββ
(t)

for t ≥ 2. For t = 1,2, . . ., we first construct a series of augmented sets

At = S ∪
{

1≤ j ≤ d : λ
(t−1)
j < p′0(a0)λ

}
.

Let c > 0 be a constant such that 0.5p′0(a0)(c2 + 1)1/2 + 2 = cκa0. In the following, using

mathematical induction, we will show that the cardinality of At can be upper bounded as

|At | ≤ (c2 +1)s. (B.25)

For t = 1, the inequality holds trivially, i.e., |A1|= |S |= s≤ (c2+1)s. Now, assume that (B.25)

holds for some integer t ≥ 2. We aim to show that |At+1| ≤ (c2 + 1)s. To this end, we first

obtain an upper bound of the cardinality of the set At+1 \S . Since p′
λ
(·) is monotonically

decreasing on R+, by the definition of At+1, for each j ∈ At+1 \S , we have p′
λ
(|β̂ββ

(t)
j |) =

λ
(t)
j ≤ p′0(a0)λ = p′

λ
(a0λ ), which implies |β̂ββ

(t)
j | ≥ a0λ . Moreover, the monotonicity of p′

λ
(·)

on R+ and the definition of At imply that ‖λλλ (t−1)‖∞ = ‖p′
λ
(|β̂ββ

(t−1)
|)‖∞ ≤ ‖p′

λ
(0)‖∞ = λ and∥∥λλλ

(t−1)
A c

t

∥∥
min ≥ p′0(a0)λ , respectively.

Conditioned on the event Ersc(r,L,κ)∩ {p′0(a0)λ ≥ 2‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞} with

L = {2+2/p′0(a0)}(c2 +1)1/2s1/2 +2s1/2/p′0(a0), it follows from the proof of Lemma B.1.4

that

‖β̂ββ
(t)
−βββ

∗‖2 ≤
‖λλλ (t−1)

S ‖2 +‖www∗At
‖2 +‖∇R(βββ ∗)‖2

κ
(B.26)

≤
{

0.5p′0(a0)(c2 +1)1/2 +2
}

s1/2λ

κ

= ca0s1/2
λ = rcrude < r. (B.27)
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Along with the fact that βββ
∗
j = 0 for all j ∈At+1 \S , we obtain

|At+1 \S |1/2 = ‖1At+1\S ‖2 ≤
∥∥∥∥( β̂ββ

(t)

a0λ

)
At+1\S

∥∥∥∥
2

≤ 1
a0λ

∥∥(β̂ββ (t)
−βββ

∗)At+1\S
∥∥

2 (B.28)

≤ cs1/2,

where the last inequality holds by applying (B.27). Therefore |A`+1| = |A`+1 \S |+ |S | ≤

(c2 +1)s. By induction, |At | ≤ (c2 +1)s holds for all t ≥ 1. Consequently, (B.26) holds for all

t ≥ 1.

We note that the upper bound (B.27) is not sharp and is mainly derived for proving (B.28).

We now derive a sharper upper bound for β̂ββ
(t)

by controlling the terms ‖λλλ (t−1)
S ‖2 and ‖www∗At

‖2

more carefully. We start with providing a tighter upper bound for ‖λλλ (t−1)
S ‖2. For each j ∈S ,

we consider the following two cases: (i) if |β̂ββ
(t−1)
j −βββ

∗
j | ≥ a0λ , then the inequality λ

(`−1)
j ≤

λ ≤ a−1
0 |β̂ββ

(t−1)
j − βββ

∗
j | holds trivially; (ii) if |β̂ββ

(t−1)
j − βββ

∗
j | < a0λ , then along with minimal

signal strength condition ‖βββ ∗S ‖min ≥ a0λ and the monotonicity of p′
λ
(·) on R+, we have

0 ≤ |βββ ∗j | − a0λ ≤ |β̂ββ
(t−1)
j |, thus λ

(t−1)
j = p′

λ
(|β̂ββ

(t−1)
j |) ≤ p′

λ
{(|βββ ∗j | − a0λ )+}. Combining the

two cases above, we obtain

‖λλλ (t−1)
S ‖2 ≤ ‖p′

λ
{(|βββ ∗j |−a0λ )+}‖2 +a−1

0 ‖(β̂ββ
(t−1)
−βββ

∗)S ‖2 (B.29)

88



We now obtain an upper bound for ‖www∗At
‖2. Since At = S ∪ (At \S ), we have

‖www∗A`
‖2 = ‖www∗S ‖2 +‖www∗At\S ‖2

≤ ‖www∗S ‖2 + |At \S |1/2‖www∗‖∞

≤ ‖www∗S ‖2 +
p′0(a0)

2a0
‖(β̂ββ

(t−1)
−βββ

∗)At\S ‖2 (B.30)

≤ ‖www∗S ‖2 +
1

2a0
‖(β̂ββ

(t−1)
−βββ

∗)At\S ‖2, (B.31)

where (B.30) holds from applying (B.28), and (B.31) holds from the fact that p′
λ
(a0)≤ 1.

Putting (B.26), (B.29), and (B.31) together, and applying the inequality
√

a+
√

b/4≤√
5(a+b)/4 for a,b≥ 0, we obtain

‖β̂ββ
(t)
−βββ

∗‖2 ≤
‖λλλ (t−1)

S ‖2 +‖www∗A`
‖2 +‖∇R(βββ ∗)‖2

κ

≤
‖p′

λ
{(|βββ ∗j |−a0λ )+}‖2 +‖www∗S ‖2 +‖∇R(βββ ∗)‖2

κ
+

√
5

2a0κ
‖(β̂ββ

(t−1)
−βββ

∗)A`
‖2

≤
‖p′

λ
{(|βββ ∗j |−a0λ )+}+‖www∗S ‖2 +‖∇R(βββ ∗)‖2

κ
+δ‖β̂ββ

(t−1)
−βββ

∗‖2, (B.32)

for all t ≥ 2. The result in (B.13) can then be obtained by applying (B.32) iteratively.

B.5 Proof of Technical Lemmas B.1.1–B.1.4

B.5.1 Proof of Lemma B.1.1

Proof. We start with an upper bound for the term ‖∇R(βββ ∗)‖2 = supuuu∈Sd−1 E{L′(ε)uuuTxxx}. Under

Condition 1 on `(·) and Condition 3 on the random noise ε , we have E(ε2|xxx)≤ σ2
ε and |`′(u)−

u| ≤ u2. Since E[wτ(ε)ε|xxx] = 0 and L′(ε) = γwτ(ε)`
′(ε/γ), we have

∣∣E{L′(ε)|xxx}∣∣≤ ∣∣γE[wτ(ε){`′(ε/γ)− ε/γ}|xxx
]∣∣≤ ∣∣γ−1E

{
wτ(ε)ε

2|xxx
}∣∣≤ γ

−1
τ̄σ

2
ε .
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Therefore,

E
{

L′(ε)uuuTxxx
}
= E

[
E{L′(ε)|xxx}uuuTxxx

]
≤ γ
−1

τ̄σ
2
ε E(|uuuTxxx|)≤ γ

−1
τ̄σ

2
ε ‖uuu‖ΣΣΣ.

Taking the supremum over all uuu ∈ Sd−1, we have ‖∇R(βββ ∗)‖2 ≤ γ−1τ̄σ2
ε λ

1/2
u , as desired.

Next, we obtain an upper bound for the centered score www∗ = ∇Rn(βββ
∗)−∇R(βββ ∗) =

−(1/n)∑
n
i=1
[
L′(εi)xxxi−E{L′(εi)xxxi}

]
using the Bernstein’s inequality. We start with establishing

an upper bound on the kth moment of L′(εi)xxxi. Let e j ∈ Rd be the canonical basis vector, i.e.,

the jth entry equals one and all other entries equal zero. Setting uuu = e j in Condition 2 yields

P
(
|xi j| ≥ ν0σ

1/2
j j t
)
≤ e−t . Therefore,

E|xi j|k =
∫

∞

0
kuk−1P(|xi j| ≥ u)du

=
∫

∞

0
kν

k
0σ

k/2
j j P

(
|xi j| ≥ ν0σ

1/2
j j t
)

tk−1dt

≤ ν
k
0σ

k/2
j j k

∫
∞

0
tk−1e−tdt

= k!νk
0σ

k/2
j j .

In addition, |`′(u)| ≤min(1, |u|) for all u∈R, thus |L′(εi)|= |γwτ(εi)`
′(εi/γ)| ≤min

{
τ̄γ, τ̄|εi|

}
.

Combining the above inequalities, for all k ≥ 2 and 1≤ j ≤ d, we have

E|L′(εi)xi j|k ≤ E
{
(τ̄γ)k−2|xi j|k ·E(τ̄2

ε
2
i |xxxi)

}
≤ τ̄

k
γ

k−2
σ

2
ε E|xi j|k

≤ τ̄
k
γ

k−2
σ

2
ε ν

k
0σ

k/2
j j k!

≤ k!
2
(2τ̄

2
σ

2
ε ν

2
0 σ

2
xxx )(ν0τ̄σxxxγ)k−2.
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By Bernstein’s inequality, for every u > 0 and j ∈ {1, . . . ,d}, we obtain

∣∣∣∣1n n

∑
i=1

[
L′(εi)xi j−E{L′(εi)xi j}

]∣∣∣∣≤ ν0σxxxτ̄

(
2σε

√
u
n
+ γ

u
n

)

with probability at least 1−2e−u. Applying the union bound yields

‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞ ≤ ν0σxxxτ̄

(
2σε

√
u
n
+ γ

u
n

)

with probability at least 1−2de−u. We then set u = logd + t to reach

‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞ ≤ ν0σxxxτ̄

(
2σε

√
logd + t

n
+ γ

logd + t
n

)
(B.33)

with probability at least 1−2e−t .

Finally, we now obtain an upper bound for ‖∇Rn(βββ
∗)‖∞. By the triangle inequality,

we have ‖∇Rn(βββ
∗)‖∞ ≤ ‖∇Rn(βββ

∗)−∇R(βββ ∗)‖∞ +‖∇R(βββ ∗)‖∞. It suffices to obtain an upper

bound for ‖∇R(βββ ∗)‖∞. We have

‖∇R(βββ ∗)‖∞ = max
j

E{L′(εi)xi j} ≤max
j

E
[
xi jE{L′(εi)|xxxi}

]
≤max

j
E(|xi j|γ−1

τ̄σ
2
ε )≤ σxxxγ

−1
τ̄σ

2
ε .

Combining the above and (B.33), we have

‖∇Rn(βββ
∗)‖∞ ≤ σxxxτ̄

(
2ν0σε

√
logd + t

n
+ν0γ

logd + t
n

+ γ
−1

σ
2
ε

)

with probability at least 1−2e−t , as desired.

B.5.2 Proof of Lemma B.1.2

Proof. Recall that www∗ = ∇Rn(βββ
∗)−∇R(βββ ∗). The goal is to obtain an upper bound for the

oracle centered loss function www∗S under the `2 norm. To this end, we employ a covering argument.

Specifically, for any ε ∈ (0,1), there exists an ε-net Nε of the unit sphere in Rs with cardinality
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|Nε | ≤ (1+2/ε)s such that

‖www∗S ‖2 ≤
1

1− ε
max
uuu∈Nε

〈
−www∗S ,uuu

〉
=

1
1− ε

max
uuu∈Nε

1
n

n

∑
i=1

[
L′(εi)xxxT

iS uuu−E
{

L′(εi)xxxT
iS uuu

}]
(B.34)

From Condition 1 on the loss function `(·), we have |`′(u)| ≤min(1, |u|) for all u ∈ R. Thus, we

have |L′(εi)|= |γwτ(εi)`
′(εi/γ)| ≤min

(
τ̄γ, τ̄|εi|

)
. Since xxx is sub-exponential, by Condition 2,

we have P
(
|uuuTxxx| ≥ ν0‖uuu‖ΣΣΣ · t

)
≤ e−t for all t ∈ R and uuu ∈ Rd . Thus, for all k ≥ 2, and by a

change of variable, we obtain

E
(∣∣L′(εi)xxxT

iS uuu
∣∣k)≤ E

{
(τ̄γ)k−2|xxxT

iS uuu|kE
(
τ̄

2
ε

2
i |xxxiS

)}
≤ τ̄

k
γ

k−2
σ

2
ε E
∣∣xxxT

iS uuu
∣∣k

≤ τ̄
k
γ

k−2
σ

2
ε

∫
∞

0
ktk−1P

(
|xxxT

iS uuu| ≥ t
)
dt

≤ k!
2

(
2τ̄

2
σ

2
ε ν

2
0‖uuu‖2

S

)
·
(

τ̄γν0‖uuu‖S

)k−2
.

Applying the Bernstein’s inequality with a = 2τ̄2σ2
ε ν2

0‖uuu‖2
S and b = τ̄γν0‖uuu‖S, along

with the inequality ‖uuu‖S ≤ λ
1/2
max(S)‖uuu‖2 = λ

1/2
max(S), we have for all x > 0,

1
n

n

∑
i=1

[
L′(εi)xxxT

iS uuu−E{L′(εi)xxxT
iS uuu}

]
≤ τ̄ν0λ

1/2
max(S)

(
2σε

√
x
n
+ γ

x
n

)
, (B.35)

with probability at least 1− e−x. Combining (B.34) and (B.35), and applying the union bound

over all vectors uuu ∈Nε , we have

‖www∗S ‖2 ≤
τ̄ν0λ

1/2
max(S)

1− ε

(
2σε

√
x
n
+ γ

x
n

)

with probability at least 1− (1+2/ε)se−x. Selecting ε = 1/3 and x = 2s+ t, we obtain

‖www∗S ‖2 ≤ 3τ̄ν0λ
1/2
max(S)

(
σε

√
2s+ t

n
+ γ

2s+ t
2n

)
,
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with probability at least 1− e−t .

B.5.3 Proof of Lemma B.1.3

Proof. Let β̂ββ be any solution to (B.2). Since (B.2) is convex, there exists a subgradient ξξξ ∈

∂‖β̂ββ‖1 such that ∇Rn(β̂ββ )+λλλ ◦ξξξ = 0. Thus, we have

0 = 〈∇Rn(β̂ββ )+λλλ ◦ξξξ , β̂ββ −βββ 〉

= 〈∇Rn(β̂ββ )−∇Rn(βββ ), β̂ββ −βββ 〉+ 〈∇Rn(βββ )−∇R(βββ ), β̂ββ −βββ 〉+ 〈∇R(βββ ), β̂ββ −βββ 〉+ 〈λλλ ◦ξξξ , β̂ββ −βββ 〉

≥ 0+ 〈www(βββ ), β̂ββ −βββ 〉+ 〈∇R(βββ ), β̂ββ −βββ 〉+ 〈λλλ ◦ξξξ , β̂ββ −βββ 〉

≥ −‖www(βββ )‖∞‖β̂ββ −βββ‖1−‖∇R(βββ )‖2‖β̂ββ −βββ‖2 + 〈λλλ ◦ξξξ , β̂ββ −βββ 〉

Since βββA c = 0,‖ξξξ‖∞ ≤ 1, and 〈ξξξ , β̂ββ 〉= ‖β̂ββ‖1, we can obtain a lower bound for 〈λλλ ◦ξξξ , β̂ββ −βββ 〉

as

〈λλλ ◦ξξξ , β̂ββ −βββ 〉= 〈(λλλ ◦ξξξ )A c, β̂ββA c〉+ 〈(λλλ ◦ξξξ )A ,(β̂ββ −βββ )A 〉

≥ ‖λλλA c‖min‖β̂ββA c‖1−‖λλλA ‖∞‖(β̂ββ −βββ )A ‖1

≥ ‖λλλA c‖min‖(β̂ββ −βββ )A c‖1−‖λλλ‖∞‖(β̂ββ −βββ )A ‖1.

Combining the above inequalities yields

‖www(βββ )‖∞‖β̂ββ −βββ‖1 +‖∇R(βββ )‖2‖β̂ββ −βββ‖2 ≥ ‖λλλA c‖min‖(β̂ββ −βββ )A c‖1−‖λλλ‖∞‖(β̂ββ −βββ )A ‖1.

The result (B.3) can then be obtained by rearranging the terms.

B.5.4 Proof of Lemma B.1.4

Proof. The proof is similar to that of the proof of Theorem 2.5.1. For some r > 0 to be

specified, define an intermediate quantity β̂ββ η = ηβ̂ββ +(1−η)βββ ∗ where η = sup{u ∈ [0,1] :

(1−u)βββ ∗+uβ̂ββ ∈ βββ
∗+B(r)}. When β̂ββ ∈ βββ

∗+B(r), we have β̂ββ η = β̂ββ . On the other hand, when

β̂ββ /∈ βββ
∗+B(r), β̂ββ η lies on βββ

∗+∂B(r) with η < 1.

93



We first show that β̂ββ η ∈ βββ
∗+B(r)∩C(L). Since Rn(·) is convex, by an application of

Lemma C.1 in Sun, Zhou and Fan (2020), we have

0≤ 〈∇Rn(β̂ββ η)−∇Rn(βββ
∗), β̂ββ η −βββ

∗〉 ≤ η〈∇Rn(β̂ββ )−∇Rn(βββ
∗), β̂ββ −βββ

∗〉. (B.36)

Conditioned on the event {aλ ≥ 2‖∇Rn(βββ
∗)−∇R(βββ ∗)‖∞} and the assumption that ‖λλλ‖∞ ≤ λ

and ‖λλλA c‖min ≥ aλ , applying Lemma B.1.3, we have

‖(β̂ββ −βββ
∗)A c‖1 ≤

{
‖λλλ‖∞ +‖www(βββ ∗)‖∞

}
‖(β̂ββ −βββ

∗)A ‖1 +‖∇R(βββ ∗)‖2‖β̂ββ −βββ
∗‖2

‖λλλA c‖min−‖www(βββ ∗)‖∞

≤
(

1+
2
a

)
‖(β̂ββ −βββ

∗)A ‖1 +
2

aλ
‖∇R(βββ ∗)‖2‖β̂ββ −βββ

∗‖2

By the assumption that λ ≥ s−1/2‖∇R(βββ ∗)‖2, we have

‖β̂ββ −βββ
∗‖1 ≤ (2+2/a)‖(β̂ββ −βββ

∗)A ‖1 +
2

aλ
‖∇R(βββ ∗)‖2‖β̂ββ −βββ

∗‖2

≤ (2+2/a)k1/2‖(β̂ββ −βββ
∗)A ‖2 +

2
aλ
‖∇R(βββ ∗)‖2‖β̂ββ −βββ

∗‖2

≤
{
(2+2/a)k1/2 +2s1/2/a

}
‖β̂ββ −βββ

∗‖2.

The above inequality implies that β̂ββ ∈ βββ
∗+C(L) with L = (2+ 2/a)k1/2 + 2s1/2/a. Since

β̂ββ η −βββ
∗ = η(β̂ββ −βββ

∗) and β̂ββ η ∈ βββ
∗+B(r) by construction, we have β̂ββ η ∈ βββ

∗+B(r)∩C(L).

Consequently, conditioned on the event Ersc(r,L,κ), we have

〈∇Rn(β̂ββ η)−∇Rn(βββ
∗), β̂ββ η −βββ

∗〉 ≥ κ‖β̂ββ η −βββ
∗‖2

2. (B.37)

Next we upper bound the right-hand side of (B.36). Let Since β̂ββ is a solution to (B.2),
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we have

〈∇Rn(β̂ββ )−∇Rn(βββ
∗), β̂ββ −βββ

∗〉= 〈∇Rn(β̂ββ )+λλλ ◦ξξξ , β̂ββ −βββ
∗〉−〈λλλ ◦ξξξ , β̂ββ −βββ

∗〉

−〈∇Rn(βββ
∗)−∇R(βββ ∗), β̂ββ −βββ

∗〉−〈∇R(βββ ∗), β̂ββ −βββ
∗〉

:= Π1−Π2−Π3−Π4

We now obtain bounds for the terms Π1, . . . ,Π4. For Π1, since β̂ββ is a solution to (B.2), we have

Π1 ≤ 0. For Π2, since [d] = S ∪ (A \S )∪A c, βββ
∗
S c = 0,‖ξξξ‖∞ ≤ 1, and 〈ξξξ , β̂ββ 〉= ‖β̂ββ‖1, we

have

〈λλλ ◦ξξξ , β̂ββ −βββ
∗〉= 〈(λλλ ◦ξξξ )S ,(β̂ββ −βββ

∗)S 〉+ 〈(λλλ ◦ξξξ )A \S , β̂ββA \S 〉+ 〈(λλλ ◦ξξξ )A c, β̂ββA c〉

≥ −‖λλλS ‖2‖(β̂ββ −βββ
∗)S ‖2 + 〈λλλA \S , |β̂ββA \S |〉+ 〈λλλA c , |β̂ββA c |〉

≥ −‖λλλS ‖2‖(β̂ββ −βββ
∗)S ‖2 +0+‖λλλA c‖min‖β̂ββA c‖1

≥−‖λλλS ‖2‖(β̂ββ −βββ
∗)S ‖2 +‖λλλA c‖min‖(β̂ββ −βββ

∗)A c‖1.

For Π3, it can be shown that

〈∇Rn(βββ
∗)−∇R(βββ ∗), β̂ββ −βββ

∗〉= 〈www∗A , β̂ββ −βββ
∗〉+ 〈www∗A c , β̂ββ −βββ

∗〉

≥ −‖www∗A ‖2‖(β̂ββ −βββ
∗)A ‖2−‖www∗‖∞‖(β̂ββ −βββ

∗)A c‖1.

Finally, for Π4, we have

〈
∇R(βββ ∗), β̂ββ −βββ

∗〉≥−‖∇R(βββ ∗)‖2‖β̂ββ −βββ
∗‖2.
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Combining all of the above inequalities with ‖λλλA c‖min ≥ aλ ≥ 2‖www∗‖∞, we obtain,

〈∇Rn(β̂ββ )−∇Rn(βββ
∗), β̂ββ −βββ

∗〉 ≤
(
−‖λλλA c‖min +‖www∗‖∞

)
‖(β̂ββ −βββ

∗)A c‖1

+‖www∗A ‖2‖(β̂ββ −βββ
∗)A ‖2 +‖λλλS ‖2‖(β̂ββ −βββ

∗)S ‖2

+‖∇R(βββ ∗)‖2‖β̂ββ −βββ
∗‖2

≤
(
‖λλλS ‖2 +‖www∗A ‖2 +‖∇R(βββ ∗)‖2

)
‖β̂ββ −βββ

∗‖2. (B.38)

Putting (B.36), (B.37), and (B.38) together, and using the fact that η‖β̂ββ −βββ
∗‖2 = ‖β̂ββ η −βββ

∗‖2,

we obtain

κ‖β̂ββ η −βββ
∗‖2 ≤ ‖λλλS ‖2 +‖www∗A ‖2 +‖∇R(βββ ∗)‖2. (B.39)

Furthermore, under the scaling conditions, we have ‖λλλS ‖2 ≤ s1/2λ and ‖www∗A ‖2 ≤ k1/2aλ/2.

Putting these into (B.39), we obtain ‖β̂ββ η −βββ
∗‖2 ≤ κ−1{(2s1/2 + k1/2a/2)λ

}
< r. Thus, β̂ββ η

falls in the interior of βββ
∗+B(r), implying that η = 1 and that β̂ββ η = β̂ββ . This completes the proof

that ‖β̂ββ −βββ
∗‖2 ≤ κ−1{(2s1/2 + k1/2a/2)λ

}
.
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Appendix C

Supplementary Material for Chapter 3

C.1 Derivation of Algorithm 6

Recall that the penalized-retire amounts to solving the general optimization problem

β̂ββ ∈minimize
βββ∈Rd

{Rn(βββ )+P(βββ )} , (C.1)

where Rn(βββ ) = n−1
∑

n
i=1 Lτ,γ(yi− xxxT

i βββ ) is the empirical loss function, and P(βββ ) is the penalty

function described in Section 3.1. Let ∇Rn(βββ ) be the gradient of Rn(βββ ), we locally majorize

Rn(βββ ) at β̂ββ
(k−1)

by constructing an isotropic quadratic function Gn(·) of the form

Gn(βββ |φk, β̂ββ
(k−1)

) = Rn(β̂ββ
(k−1)

)+ 〈∇Rn(β̂ββ
(k−1)

),βββ − β̂ββ
(k−1)
〉+ φk

2
||βββ − β̂ββ

(k−1)
||22,

where φk > 0 is a quadratic parameter to be determined at the k-th iteration. Then define the k-th

iterate β̂ββ
(k)

as the solution to

minimize
βββ∈Rd

Gn(βββ |φk, β̂ββ
(k−1)

)+P(βββ ). (C.2)

By the principal of the LAMM algorithm, solving the penalized-retire (C.1) amounts

to solving (C.2) iteratively. Starting from β̂ββ
(0)

= 0, the first-order optimization condition at the
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k-th iteration for (C.2) implies

0 ∈ ∇Rn(β̂ββ
(k−1)

)+φk(β̂ββ
(k)
− β̂ββ

(k−1)
)+∂P(βββ )|

βββ=β̂ββ
(k), (C.3)

where ∂P denotes the subdifferential of P : Rd → [0,∞). Moreover, let S(a,b) = sign(a) · (|a|−

b)+ be the shrinkage operator, sign(·) be the sign function and (c)+ = max(c,0). Furthermore,

let ∇βββ g
Rn(·) be the sub-vector of the gradient ∇Rn(·) indexed by the g-th group. Below we

derive the explicit update rules for all penalty functions described in Section 3.1.

1. Weighted lasso (Tibshirani, 1996): P(βββ ) = ∑
d
j=1 λ j|β j|, where λ j ≥ 0 for j = 1, . . . ,d.

For notational convenience, let y = β̂
(k−1)
j −φ

−1
k ∇β jRn(β̂ββ

(k−1)
) be a quantity determined

by the (k−1)-th iteration. It can be checked that the subdifferential ∂P satisfies

∂P(βββ )
∂β j

∣∣∣∣
βββ=β̂ββ

(k)
= λ jz, where z =


sign(β̂ (k)

j ) if β̂
(k)
j 6= 0,

[−1,1] if β̂
(k)
j = 0.

When β̂
(k)
j 6= 0, rearranging the first-order condition (C.3) along with the fact that u =

sign(u) · |u| for arbitrary u ∈ R, we have

sign(β̂ (k)
j ) · (|β̂ (k)

j |+φ
−1
k λ j) = sign(y) · |y|.

Consequently, sign(β̂ (k)
j ) = sign(y) and |y| = |β̂ (k)

j |+ φ
−1
k λ j > 0. Plug-in sign(β̂ (k)

j ) =

sign(y) to obtain

β̂
(k)
j = sign(y) · (|y|−φ

−1
k λ j)

= sign(y) · (|y|−φ
−1
k λ j)+

= S(y,φ−1
k λ j),
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where the second equality comes from the fact that |y|−φ
−1
k λ j = |β̂ (k)

j |> 0.

When β̂
(k)
j = 0, rearrange the first-order condition (C.3) to yield

y = φ
−1
k λ jz.

Therefore, |y|= φ
−1
k λ j|z| ≤ φ

−1
k λ j and β̂

(k)
j = S(y,φ−1

k λ j) = 0.

Combining the two cases, β̂
(k)
j takes the update rule

β̂
(k)
j ← S

{
β̂
(k−1)
j −φ

−1
k ∇β jRn(β̂ββ

(k−1)
),φ−1

k λ j
}
.

2. Elastic net (Zou and Hastie, 2005): P(βββ ) = λα||βββ ||1 +λ (1−α)||βββ ||22, where λ > 0 and

α ∈ (0,1).

For notational convenience, let y = β̂
(k−1)
j −φ

−1
k ∇β jRn(β̂ββ

(k−1)
) be a quantity determined

by the (k−1)-th iteration. It can be checked that the subdifferential ∂P satisfies

∂P(βββ )
∂β j

∣∣∣∣
βββ=β̂ββ

(k)
= λαz+2λ (1−α)β̂

(k)
j , where z =


sign(β̂ (k)

j ) if β̂
(k)
j 6= 0,

[−1,1] if β̂
(k)
j = 0.

When β̂
(k)
j 6= 0, rearranging the first-order condition (C.3) along with the fact that u =

sign(u) · |u| for arbitrary u ∈ R, we have

sign(β̂ (k)
j ) ·

[{
1+2φ

−1
k λ (1−α)

}
|β̂ (k)

j |+φ
−1
k λα

]
= sign(y) · |y|.

Consequently, sign(β̂ (k)
j ) = sign(y) and |y| =

{
1+ 2φ

−1
k λ (1−α)

}
|β̂ (k)

j |+φ
−1
k λα > 0.
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Plug-in sign(β̂ (k)
j ) = sign(y) to obtain

{
1+2φ

−1
k λ (1−α)

}
β̂
(k)
j = sign(y) · (|y|−φ

−1
k λα)

= sign(y) · (|y|−φ
−1
k λα)+

= S(y,φ−1
k λα),

where the second equality comes from the fact that |y| − φ
−1
k λα =

{
1+ 2φ

−1
k λ (1−

α)
}
|β̂ (k)

j |> 0. Therefore β̂
(k)
j =

{
1+2φ

−1
k λ (1−α)

}−1S(y,φ−1
k λα).

When β̂
(k)
j = 0, rearrange the first-order condition (C.3) to yield

y = φ
−1
k λαz.

Therefore, |y| = φ
−1
k λα|z| ≤ φ

−1
k λα , S(y,φ−1

k λα) = 0, and β̂
(k)
j =

{
1 + 2φ

−1
k λ (1−

α)
}−1S(y,φ−1

k λα) = 0.

Combining the two cases, β̂
(k)
j takes the update rule

β̂
(k)
j ←

1
1+2φ

−1
k λ (1−α)

S
{

β̂
(k−1)
j −φ

−1
k ∇β jRn(β̂ββ

(k−1)
),φ−1

k λα
}
.

3. Group lasso (Yuan and Lin, 2006): P(βββ ) = λ ∑
G
g=1 wg||βββ g||2, where βββ G is a sub-vector of

βββ corresponding to the g-th group of coefficients, and wg > 0.

For notational convenience, let yyy = β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

) be a vector determined

by the (k−1)-th iteration. It can be checked that the subdifferential ∂P satisfies

∂P(βββ )
∂βββ g

∣∣∣∣
βββ=β̂ββ

(k)
=


λwg

β̂ββ
(k)
g

||β̂ββ
(k)
g ||2

if β̂ββ
(k)
g 6= 0,

λwgzzz if β̂ββ
(k)
g = 0, where ||zzz||2 ≤ 1.
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When β̂ββ
(k)
g 6= 0, rearrange the first-order condition (C.3) to obtain

(
1+

λwg

φk||β̂ββ
(k)
g ||2

)
β̂ββ
(k)
g = yyy, (C.4)

which implies (as vectors) β̂ββ
(k)
g and yyy have the same direction, i.e., β̂ββ

(k)
g /||β̂ββ

(k)
g ||2 = yyy/||yyy||2.

Plug into (C.4) to obtain β̂ββ
(k)
g =

(
1− λwg

φk||yyy||2

)
yyy. The same direction statement in return

implies 1− λwg
φk||yyy||2 > 0, consequently β̂ββ

(k)
g =

(
1− λwg

φk||yyy||2

)
+
· yyy.

When β̂ββ
(k)
g = 0, rearrange the first-order condition (C.3) to yield

yyy =
λwg

φk
zzz.

Therefore, ||yyy||2 =
λwg
φk
||zzz||2 ≤

λwg
φk

. Consequently 1− λwg
φk||yyy||2 ≤ 0, and β̂ββ

(k)
g =

(
1−

λwg
φk||yyy||2

)
+
· yyy = 0.

Combining the two cases, β̂
(k)
j takes the update rule

β̂ββ
(k)
g ←

{
β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

)
}
·

(
1−

λwg

φk||β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

)||2

)
+

.

4. Sparse group lasso (Simon et al., 2013): P(βββ ) = λ ||βββ ||1 +λ ∑
G
g=1 wg||βββ g||2.

For notational convenience, let yyy = β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

) be a vector determined

by the (k−1)-th iteration. It can be checked that the subdifferential ∂P satisfies

∂P(βββ )
∂βββ g

∣∣∣∣
βββ=β̂ββ

(k)
=


λ sign(β̂ββ

(k)
g )+λwg

β̂ββ
(k)
g

||β̂ββ
(k)
g ||2

if β̂ββ
(k)
g 6= 0,

λ zzz1 +λwgzzz2 if β̂ββ
(k)
g = 0, where |zzz1| ≤ 1, ||zzz2||2 ≤ 1.

When β̂ββ
(k)
g 6= 0, rearranging the first-order condition (C.3) along with the fact that u =
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sign(u) · |u| for arbitrary u ∈ R, we have

sign(β̂ββ
(k)
g ) ·

{
λ

φk
+

(
1+

λwg

φk||β̂ββ
(k)
g ||2

)
|β̂ββ

(k)
g |

}
= sign(yyy) · |yyy|. (C.5)

Consequently, sign(β̂ββ
(k)
g ) = sign(yyy) and |yyy| − φ

−1
k λ =

(
1+ λwg

φk||β̂ββ
(k)
g ||2

)
|β̂ββ

(k)
g | > 0 (entry-

wise). Plug sign(β̂ββ
(k)
g ) = sign(yyy) into (C.5) to obtain

(
1+

λwg

φk||β̂ββ
(k)
g ||2

)
· β̂ββ

(k)
g = sign(yyy) · (|yyy|−φ

−1
k λ )

= sign(yyy) · (|yyy|−φ
−1
k λ )+

= S(yyy,φ−1
k λ ). (C.6)

Note that (as vectors) β̂ββ
(k)
g has the same direction as S(yyy,φ−1

k λ ), i.e. β̂ββ
(k)
g /||β̂ββ

(k)
g ||2 =

S(yyy,φ−1
k λ )/||S(yyy,φ−1

k λ )||2. Combine with (C.6) to obtain

β̂ββ
(k)
g =

(
1−

λwg

φk||S(yyy,φ−1
k λ )||2

)
S(yyy,φ−1

k λ ).

The same direction statement in return implies 1− λwg

φk||S(yyy,φ−1
k λ )||2

> 0, consequently β̂ββ
(k)
g =(

1− λwg

φk||S(yyy,φ−1
k λ )||2

)
+
·S(yyy,φ−1

k λ ).

When β̂ββ
(k)
g = 0, rearrange the first-order condition (C.3) to yield

λwg

φk
zzz2 = yyy−φ

−1
k λ zzz1.

Consider arbitrary entry i in group g, it can be checked that

|yi−φ
−1
k λ z1,i| ≥max{|yi|−φ

−1
k λ ,0} ≥ |S(yi,φ

−1
k λ )|.
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Consequently, λwg
φk
≥ ||yyy−φ

−1
k λ zzz1||2 ≥ ||S(yyy,φ−1

k λ )||2 and 1− λwg

φk||S(yyy,φ−1
k λ )||2

≤ 0. There-

fore, β̂ββ
(k)
g =

(
1− λwg

φk||S(yyy,φ−1
k λ )||2

)
+
·S(yyy,φ−1

k λ ) = 0.

Combining the two cases, β̂
(k)
j takes the update rule

β̂ββ
(k)
g ← S

{
β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

),φ−1
k λ

}
·

(
1−

λwg

φk||S{β̂ββ
(k−1)
g −φ

−1
k ∇βββ g

Rn(β̂ββ
(k−1)

),φ−1
k λ}||2

)
+

.
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