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ARTICLE

The season for large fires in Southern California is
projected to lengthen in a changing climate
Chunyu Dong 1,2, A. Park Williams2,3, John T. Abatzoglou 4, Kairong Lin 1, Gregory S. Okin2,

Thomas W. Gillespie2, Di Long5, Yen-Heng Lin 6, Alex Hall 6 & Glen M. MacDonald2✉

Southern California is a biodiversity hotspot and home to over 23 million people. Over recent

decades the annual wildfire area in the coastal southern California region has not significantly

changed. Yet how fire regime will respond to future anthropogenic climate change remains an

important question. Here, we estimate wildfire probability in southern California at station

scale and daily resolution using random forest algorithms and downscaled earth system

model simulations. We project that large fire days will increase from 36 days/year during

1970–1999 to 58 days/year under moderate greenhouse gas emission scenario (RCP4.5) and

71 days/year by 2070–2099 under a high emission scenario (RCP8.5). The large fire season

will be more intense and have an earlier onset and delayed end. Our findings suggest that

despite the lack of a contemporary trend in fire regime, projected greenhouse gas emissions

will substantially increase the fire danger in southern California by 2099.
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California has a Mediterranean climate characterised by
mild, wet winters and hot, dry summers, which are con-
ducive to wildfires. Anthropogenic warming during the

past century has increased aridity and aggravated drought risk in
California1,2, directly contributing to increasing fuel aridity, a
longer fire season, and increased wildfire activity over much of
the state3–7. In 2017 and 2018, California experienced consecutive
exceptional fire seasons, burning a combined area of 13,255 km2,
and three of the seven largest fires in California’s modern record
occurred during this time5,8. However, these years are eclipsed by
2020, as 16,907 km2 have burned during this single year9. The
annual fire suppression budget of CalFire (California Department
of Forestry and Fire Protection) has also increased from less than
$30 million in the 1980s to approximately $640 million during
2015–20199.

In most of California, both large fire frequency and total area
burned peak in summer, while in some years extremely large fires
driven by the Santa Ana winds (SAW)10 cause the coastal
southern California area (CSCA) to experience a peak in area
burned in October11,12. Due to the nature of the CSCA’s fires, a
large population, and patterns of land development at wildland-
urban interfaces, the area has suffered some of the highest
property losses caused by wildfires in the entire United States13.
The annual minimum of CSCA fire activity occurs from late
winter to spring (January–May) due to higher fuel moisture in
response to intermittent precipitation, relatively low temperature,
and low vapour pressure deficit (VPD). Recent studies suggest
that warming and drying have extended the fire-season length in
the western United States, including in California3,14–17. How-
ever, in the CSCA, there has been no significant trend in the
annual or seasonal total burned area over the past five decades,
possibly due to a combination of high interannual variability in
climate, reduced ignitions, improved fire suppression, and land
cover change5.

Some researchers suggest that climate has not been and will not
become a major determinant of fire activity over California’s
lower elevations and latitudes, such as the CSCA18–20. Moreover,
other researchers find that irrespective of fuel and fire manage-
ment, climate change alone has driven an increase in large fires in
California21,22. Thus, compared with small fires, which are sen-
sitive to human ignitions and other direct anthropogenic impacts,
the recently increased large fires in California seem to be prin-
cipally linked to weather and climate forcings14,23. Alternatively,
the interaction of climate change and continuously present
human ignition sources may be responsible for the increase in
large fires, i.e., climate change leads to faster drying of fuels and
increased large fire risk in areas where human ignitions are
prevalent15,23,24. This hypothesis is supported by the fact that a
recent increase in large fire frequency occurred when human-
ignited fires decreased in the CSCA21,23.

Moreover, climate-model projections of continued warming,
increased VPD, and frequency of extreme fire-danger days raise
questions as to whether an increasing trend of large fire occur-
rence in the CSCA will develop and persist in the future5,22.
However, addressing this question in the geographically small
(~41,000 km2) and topographically/climatologically diverse spa-
tial domain of CSCA (Fig. 1) requires a degree of spatial and
temporal resolution typically not employed in similar predictive
studies. This study applies station-based climate projection data
and a machine learning-based fire modelling approach to address
the following questions: What climatic conditions produce large
fire days in the CSCA and how will the inter- and intra-annual
variability in large fire days respond to future climate change
anticipated for the mid- and late 21st centuries? To what degree is
the answer to this question dependent on greenhouse gas (GHG)
emission scenarios?

Results
Drivers of the large wildfire probability. To address the above
questions, we statistically model the relationship between daily
climate and the probability of large (> 40 hectares) wildfires at the
local scale in the CSCA (see Methods). Then, we estimate the
change in large fire occurrence in response to changes in climate
from historical (1950–2005) and future (2006–2099) simulations
from an ensemble of earth system models (ESMs) of the 5th phase
of the Coupled Model Intercomparison Project (CMIP5).
Potential predictors of daily large fire probability (LFP) include
the meteorological variables vapour pressure deficit (VPD), wind
speed (WS), and precipitation, as well as fire-danger indices from
the National Fire Danger Rating System (NFDRS), including the
energy release component (ERC), burning index (BI), spread
component (SC), ignition component (IC) and 100-h (F100) and
1000-h (F1000) dead fuel moisture (see Methods). Meteorological
records obtained from 49 weather stations (Fig. 1) in the CSCA
are used in the analysis (Supplementary Table 1). Future climate
simulations for a high GHG emission scenario (RCP8.5) and a
moderate emission scenario (RCP4.5) were used to project future
conditions. The daily climate simulations needed to calculate all
of the above predictor variables for the historical, RCP8.5, and
RCP4.5 scenarios are available for 14 CMIP5 ESMs (Supple-
mentary Table 2). We downscale these models to each of the 49
CSCA weather stations.

Observations of the meteorological variables and fire-danger
indices are assessed as potential predictors of daily large fire
occurrence using the random forest technique25. Random forest
is an ensemble of decision trees, which can be understood as the
sum of piecewise linear functions in contrast to global linear
regression models25. Random forest is a robust statistical
approach in dealing with the nonlinear interactions and feedbacks
between variables26. Previous studies11,27 suggest that there are
two categories of wildfires in the CSCA, i.e., the fires in the usual
dry season (principally driven by hot and dry weather during
April to September) and the fires in the usual shoulder and wet
season (strongly affected by the Santa Ana winds during the
typically wetter months of October to March). Thus, we applied
random forest models separately for the dry and wet seasons
(Methods; Supplementary Table 3). The relative importance of
each predictor is given by its contribution to the model accuracy
of LFP. The best model is selected based on a five-fold cross-
validation of simulated fire presence/absence against observations
during the calibration period of 1996–2010. In each cross-
validation, we use independent data from three consecutive years
as the out-of-bag samples and the rest of the data to train the
model. Then, the selected model is applied to execute the future
fire probability projections. We compute both the inter- and
intra-annual time series of the multimodel ensemble means
(MEMs) of meteorological variables, fire probabilities, and the
number of large fire days for the historical and future periods.
The 30-year mean climatologies of these variables and the
variance for the late 20th century (1970–1999), mid-21st century
(2040–2069), and late 21st century (2070–2099) are compared to
demonstrate the seasonal changes in climate and fire regime.

The random forest model performs well at simulating the
probability of large fire occurrence, with an overall accuracy of
82–84% based on cross-validation against observed data (Meth-
ods, Supplementary Fig. 1, Supplementary Table 4). The random
forest models display a stable performance when the model
parameters are changed (Supplementary Fig. 1, Methods). An
analysis of variable importance indicates that the top four
predictors of LFP for the dry (wet) season are VPD, IC, F1000,
and ERC (F1000, VPD, WS, and IC) (Methods, Supplementary
Fig. 2). VPD and F1000 are the most important variables driving
large fires in dry and wet seasons, respectively, consistent with
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prior studies5. The varying ranks of the predictors’ importance
for the dry/wet season models likely suggest that the driving
mechanisms of large fires can change with seasons, and this has
been revealed by other researchers11,28.

To further investigate the specific relations between LFP and
the predictors, we conduct accumulated local effect (ALE)
analysis for the top four key drivers of the random forest models
(Fig. 2). ALE plots are powerful in describing how features
influence the prediction of a machine learning model, and they
are unbiased even when features are correlated29. The ALE plots
show that higher dry-season VPD can approximately linearly
increase LFP. At the same time, there is a nonlinear relation
between the dry-season F1000 and LFP. A higher F1000 only
decreases dry-season fire risk above the mean by 0.0–0.8 standard
deviation (s.d.). In the wet season, abnormally dry fuels
(F1000 < 0.0 s.d.) can exponentially increase LFP. As a compar-
ison, the relation between the wet-season VPD and LFP is also
nonlinear, and a higher VPD only increases LFP above the mean
by 0.6–0.8 s.d. These results agree with the fact that F1000 has
higher importance than VPD in the wet season (Fig. 2,
Supplementary Fig. 2). Ignition component (IC) ranks the second
driver of the dry-season large fires, and the ALE plot suggests
elevated ignition sources can always increase large fire occurrence
during the warm and dry season. By contrast, the contribution of
IC to LFP becomes ambiguous in wet season, as ignitions may not
inevitably trigger a fire when the fuel moisture is high (Fig. 2). As
a composite fuel moisture index that reflects the contribution of
all live and dead fuels to potential fire intensity30, ERC also
displays high importance in the dry season. ERC and IC show
very similar relationships with LFP, while ERC has a relatively
lower effect than IC.

The altered relative importance of the predictors with seasons
may reflect the local-scale fire behaviour processes. For example,
the high sensitivity of LFP to negative standardised F1000 may
imply the influence of Santa Ana winds, which can quickly dry
the fuels and trigger large fires. This is supported by the elevated
importance of wind speed (WS) in the wet season (Fig. 2).
Abnormally strong winds (i.e. Santa Ana winds) can strikingly
increase LFP. However, since the wet-season fuel moisture is

normally high due to frequent rainfalls, LFP is not sensitive to
small declines in positive F1000 anomalies (0.0–2.0 s.d. above the
mean). Similarly, it is only when the wet-season VPD increases to
a very high level that it becomes a dangerous driver of large fires.
In the dry season, as VPD is normally very high for most of the
time, this variable can always increase LFP (Fig. 2).

Seasonal changes of the future large wildfires. The simulated
seasonal variations in LFP indeed display high correspondence to
the observed daily fire frequency (Supplementary Fig. 3). To
improve the capability of the random forest models in capturing
most of the potential large fires, we apply a resampling procedure
to the training dataset, while recognising that this process inevi-
tably induces some overestimation of LFP. Then, we employ a
linear regression model to reduce the bias of the LFP estimation
(Methods, Supplementary Fig. 3). The bias-correction linear
regression model explains 67.4% of the variance in LFP. In gen-
eral, the corrected simulations of LFP fit the observed seasonal
changes in fire frequency well. Uncertainties in the LFP simula-
tions and the bias-correction model are discussed in Methods.

Seasonal projections of climate variables suggest strong
warming in spring and autumn (Supplementary Fig. 4). Pre-
cipitation is expected to increase in winter but decrease in spring
and late autumn, and this seasonal shift has been revealed by
another study31. VPD is projected to increase markedly from
spring to autumn, while fuel moisture will likely decrease most in
spring and autumn (Supplementary Fig. 5). IC and ERC seem to
have large increases in autumn. At the same time, WS is expected
to increase in summer but decrease in autumn, which is
consistent with a previous study32. In addition, some previous
studies suggest a future suppression of Santa Ana winds in the
CSCA33. This may imply that the contribution of the Santa Ana
winds to the autumn and winter fire risk will likely be weakened
in the future.

Based on the ESM ensemble simulations, we find a general
increase in LFP throughout the year for both the RCP4.5 and
RCP8.5 scenarios, with annual mean increases by ~39% and
~62%, respectively, by the late 21st century (Fig. 3) because the
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RCP8.5 scenario leads to greater changes in the key drivers
favouring large fires, e.g., higher VPD, IC, ERC, and lower F1000
(Supplementary Fig. 5).

The LFP normally peaks in summer (August) and reaches its
annual minimum in spring (March–April). However, the LFP in
the transition period of spring-summer (April–June) is projected
to increase by 110% by the late 21st century under RCP8.5
(Fig. 3). Since the random forest model suggests that VPD plays a
dominant role in driving these dry-season fires (Supplementary
Fig. 2), the simulated increase in fire potential in late spring to
early summer is probably mainly driven by intense warming and
aridification (Supplementary Figs. 4 and 5). Apparent LFP
increases in autumn-winter (November–January) are likely linked
to VPD increases and fuel moisture declines (Supplementary
Figs. 5).

As the LFPs in July and September are already very high,
similar to that in August, a slight increase in LFP may induce
more large fire days for these two months (Fig. 3). Thus, both July
and September are projected to have obvious increases in large
fire days under the high-emission scenario by 2070–2099
compared with the baseline period of 1970–1999. As a result,
these models suggest that the large fire season will have an earlier
onset and delayed end (Fig. 4).

The particularly strong relative increases in fire potential in
spring and autumn are likely a response to a combination of
warming, elevated aridity, and reductions in precipitation totals
in autumn (Supplementary Figs. 4 and 5), in addition to
reductions in daily precipitation frequency in these months34.
The expected slight declines in autumn and winter WS may help
relieve the fire risks in this season33 (Supplementary Fig. 5).
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Fig. 2 Sensitivity of large fire probability (LFP) to meteorological variables and fire indices. Accumulated local effect (ALE) plots show the relationship
between large fire risk and the top four key drivers in dry (a–d) and wet (e–h) seasons. The x-axes represent the independent covariates (in units of
standard deviation), and the y-axes represent the size of the mean effect each covariate has on large fire probability (LFP). Variables are ranked in order of
the relative importance in random forest models from high (a, e) to low (d, h). Grey lines refer to locally weighted smooth series with the 95% confidence
intervals indicated.
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Inter-annual changes of the future large wildfires. Based on the
CMIP5 data, we further calculate the historical and future
interannual changes in the top five key drivers of large wildfires
indicated by the random forest models (Fig. 4a–e). Climate
projections suggest that a higher emission scenario will cause
obviously elevated 21st-century warming and slightly increased
precipitation in the CSCA (Supplementary Fig. 6). In 2040–2069,
the two GHG emission scenarios exhibit similar degrees of
warming, approximately 1.0–1.5 °C above the 1970–1999 base-
line, but in 2070–2099, the RCP4.5 and RCP8.5 scenarios produce
differentiable warming estimates of ~2.5 °C and ~5.5 °C above
baseline, respectively. Increases in VPD, IC, and ERC and
reductions in fuel moisture (F1000) are projected to follow similar
trajectories, with much more substantial changes projected for the
RCP8.5 scenario (Fig. 4). WS displays only small annual
ensemble-mean trends for either the historical or future periods
(Fig. 4). In addition, an expected increase in precipitation varia-
bility (Supplementary Fig. 6) in California may bring more
extreme arid and wet years in the future35 as well as prolonged
periods of dry days interrupted by more extreme but less frequent
storm events34.

Our ESM-based simulations of LFP reveal that recent climate
change has significantly (p < 0.001 in a t-test) increased the
frequency of large fire days from ~34 days/yr in 1950–1979 to
~43 days/yr in 2000–2019 (Fig. 4f). Both scenarios are expected to
increase the annual frequency of large fire days to ~55 days by
2050. By the end of the 21st century (2070–2099), climate change
under a high GHG emissions scenario will likely increase the
annual large fire days from ~36 days in 1970–1999 to ~71 days,
while moderate GHG emissions scenario will increase it to
~58 days. This departure of the RCP8.5 climate scenario from the
RCP4.5 scenario seems to begin in the mid-21st century.

Discussion
Our results indicate that the CSCA will experience striking
increases in climatologically identifiable large fire days in the mid-
21st century and that this trend will accelerate in the latter half of
the century. Under the RCP8.5 emissions scenario, such days will
nearly double in frequency by 2100, and under the more

moderate RCP4.5 scenario, they will increase by ~60% compared
with the late 20th century.

In the literature, previous researchers have provided contra-
dictory conclusions regarding future changes in wildfire risks in
southern California. For example, some researchers5,36,37 predict
a future increase in fire probability, burned area or fire-danger
days in southern California, while others19,24,38 suggest a decrease
in fire risk in this area. The opposing projections of the previous
studies might be because the spatial and/or temporal resolution of
such studies is generally coarse and cannot provide detailed
information on fire risk changes for small regions, such as the
CSCA. Here, we have developed a rather different approach from
previous researchers. We applied station-based downscaling of
ESM data and random forest-based local-scale fire modelling. A
cluster-based resampling and buffering analysis help fully utilise
the limited large fire records and capture the real relationships
between meteorological stations and fire perimeters. Based on
these improvements in methodology, we could simulate the local-
scale changes in large fire days under different climate change
scenarios.

The annual increase in large fire days reflects both an inten-
sification of conditions during the traditional summer fire season
and a lengthening of the large fire season in spring and fall. This
finding is consistent with a recent large-scale study39, which also
estimates the Mediterranean regime mountains in California will
likely have striking increases in very-large fires from spring to
autumn. The elevated fire risk in the future is most likely linked to
the remarkably increased VPD and decreased F1000 fuel moist-
ure, as the two variables happen to be the top drivers of large fires
for dry and wet seasons, respectively. The effects of Santa Ana
winds on wildfires will probably be weakened due to the projected
declines in WS in the wet season.

The long-term trends of the southern California fire weather
are a likely regional feature of the large-scale circulation changes
under global warming. Some researchers40,41 find that the
strengthening and expanding Hadley Circulation due to climate
warming reduces tropospheric relative humidity and increases the
frequency of dry events in the subtropics. Then, the enhanced
warming and drying in the southwest US exacerbates the
occurrences of large wildfires42. Previously, it was difficult to link
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Fig. 3 Seasonal variations in the earth system model (ESM) ensemble-mean large fire probability (LFP). Monthly LFPs for the end of the 20th century
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the general circulation model outputs and the local-scale fire
risk43. Here, a downscaling of the CMIP5 model outputs to sta-
tion levels and a machine learning approach allow us to predict
how climate change will affect the local-scale future changes in
daily LFP and show what process plays a dominant role in driving
the dry/wet fire risk.

Many studies indicate that fire management and human
activities play an important role in altering the fire regimes18,44.
However, the inclusion of human factors in future fire prediction
remains a major challenge, as there are large uncertainties in
estimating future fire management policies and human activities.
This challenge is beyond the scope of this study. As this study
excluded small fires that are mainly related to human ignition, we
assume that the remaining large fire records are closely linked to
extreme fire weather conditions, and in speculating on future fires
we also assume that fuel management will not experience radical
alteration. In some circumstances, the above two assumptions
may not be satisfied, which becomes a shortcoming of this study.
Indeed, some studies have revealed that southern California has

displayed a shortened fire-return interval (more fires), while
northern California shows opposing trends45. The distinct fire
frequency changes in the same state have implications in
understanding the role of climate and fuels as drivers of wildfire
risk in California.

These modelling approaches and findings should be useful in
scenario development regarding the future climate change
impacts on CSCA wildfires. The findings and approach may be
useful for other Mediterranean climate regions and generally
where fine spatial scale predictive modelling of fires is required.
The CSCA region has already experienced an increase in climatic
conditions that are conducive to large fires (Fig. 1), but no clear
trend has been observed in annual area burned. The expected
continuation of this climatic trend towards longer and more
severe fire seasons and its intensification in the mid-21st century
will largely enhance conditions favouring increasing magnitudes
and frequency of wildfires, which may overwhelm the effect of
some of the non-climatic factors acting in the recent past to
moderate the annual area burned in Mediterranean-type regions.
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Fig. 4 Earth system model (ESM) ensemble means of the top-five key predictors and the simulated annual number of large fire days. a vapour pressure
deficit (VPD), b 1000-h dead fuel moisture (F1000), c ignition component (IC), d wind speed (WS), e energy release component (ERC), f number of large
fire days. Both the historical (grey, 1950–2005) and future (blue/tan, 2006–2099, left: moderate emission scenario, RCP4.5, right: high emission scenario,
RCP8.5) variations of these variables are shown. Shaded areas represent ±1 standard deviation. A low-pass filter was applied to remove the highest 20%
frequencies to reduce noise in the time series. Bold lines (grey: historical, blue: RCP4.5, orange: RCP8.5) refer to locally weighted smooth series with the
95% confidence intervals indicated.
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The current wildfire management policies in these regions mainly
focus on fire suppression with often limited mechanisms to
address ongoing climate change and rapidly accumulated fuels
due to the more frequent droughts today and in the furure46. The
“novel” or “no analogue” environmental conditions caused by
increased large wildfires in these Mediterranean climate ecosys-
tems would present new challenges for natural resource and
development planning and management47.

Methods
Datasets used in this study. The fire perimeter data for the period of 1950–2019
were provided by the California Department of Forestry and Fire Protection
(FRAP, https://frap.fire.ca.gov). The observations of Remote Automatic Weather
Stations (RAWS) by the US Forest Service for 1996–2010 and the CMIP5 down-
scaled weather data for the historical (1950–2005) and future (2006–2099) periods
were downloaded from the website: https://climate.northwestknowledge.net/JFSP/
JFSP/pages/data.html. Fourteen ESMs (Supplementary Table 2) were used to
generate the CMIP5 dataset and then statistically downscaled using the multi-
variate adaptive constructed analogues method48 for 49 stations in the CSCA
(Fig. 1, Supplementary Table 1). Then, these observations and CMIP5 data were
used to derive the daily fire indices.

National Fire Danger Rating System fire indices. The National Fire Danger
Rating System (NFDRS) provides a series of fire indices that help estimate fire-
danger changes for a given location30. The burning index (BI) is a function of the
spread component (SC), an index of the rate of fire spread, and the energy release
component (ERC), an index of the amount of heat released per unit area in the
flaming zone of an initiating fire30. The ignition component (IC) is a rating of the
probability that a firebrand will cause a fire requiring suppression action. The
NFDRS 100-h (F100) and 1000-h (F1000) dead fuel moisture represent the
modelled moisture content of dead fuels with different time lags. They are calcu-
lated based on the boundary conditions determined from precipitation duration,
maximum and minimum temperature, and relative humidity30. We calculated all
the BI, IC, SC, ERC, F100, and F1000 time series using the USFS (United States
Forest Service) FireFamilyPlus 5 software49.

Fire probability modelling. We applied random forest algorithms to perform fire
probability modelling. Ensemble decision-tree based approaches, such as random
forest and probability estimation tree, have been shown to achieve high predictive
accuracy in either classifications or regressions with large numbers of predictor
variables25,39. The previous studies50 indicate that random forest has a lower risk of
overfitting, as it measures the out-of-bag error for each classification or regression.
However, some other researchers did find overfitting when using the random forest
algorithm51,52. Thus, we utilised a five-fold cross-validation in training the random
forest model to avoid overfitting. In each run of the five-fold cross-validation, we
selected all the data of three consecutive years within 1996–2010 as the out-of-bag
samples, which helps reveal the true performance of the model in predicting LFP.

In this study, vapour pressure deficit (VPD), wind speed (WS), precipitation
(Precip), ERC, BI, IC, SC, F100, and F1000 were used as predictors to estimate the
probability of a large fire (>40 hectares) for each station on a given day. VPD is a
useful indicator of potential burned areas in the western United States53,54. VPD
combines temperature and water vapour content information. Following the
equations used by Seager et al.54, we first calculated the saturation vapour pressures
es(T) for the maximum (Tmax) and minimum (Tmin) daily temperatures:

es Tmax

� � ¼ es0exp 17:67 ´
Tmax

Tmax þ 243:5

� �
ð1Þ

es Tmin

� � ¼ es0exp 17:67 ´
Tmin

Tmin þ 243:5

� �
ð2Þ

Then, we computed the daily mean es as follows:

es Ta

� � ¼ es Tmax

� �þ es Tmin

� �� �
=2 ð3Þ

Finally, VPD is calculated as follows:

VPD ¼ es Ta

� �
1� RH=100
� � ð4Þ

Elevation and canopy density (representing the proportion of an area that is
covered by the crown of trees) were included as predictors in the initial models.
However, these predictors are ultimately excluded because they contribute
minimally to the model accuracy (Supplementary Fig. 3). The RAWS observations
and the FRAP fire perimeter records for 1996–2010 were used to train the random
forest models. We did not use ignition coordinate data to indicate fire occurrence,
as ignition coordinates cannot distinguish small/large fires and many large fires
may have more than one ignition point. We assume that large fires are mainly
caused by extreme fire weather and that they are sensitive to climate change, while
many small fires are primarily human-caused. We applied the standardised
anomalies of weather and fire index time series except for precipitation in

modelling to avoid bias induced by variability differences among stations and
variables. We used percentiles of precipitation, instead of standardised anomalies,
in the modelling due to its nonnormal distribution. We transferred the fire
perimeter data to a binary variable (0: nonfire; 1: fire) before the modelling, and
thus, it is not necessary to standardise it.

Previous studies suggest that wildland fires in southern California can be
divided into two categories: autumn-winter fires typically triggered by strong
offshore Santa Ana winds and summer fires principally driven by hot and dry
weather with weak onshore winds11. Santa Ana winds normally occur between
October and March10. We assume that the above meteorological variables
contribute differently to the two kinds of fires, and thus, we train and run the
random forest models separately for the dry (non-Santa Ana fires,
April–September) and wet (Santa Ana fires, October–March) seasons. We also
tried to use both the dry and wet-season models to simulate the LFP for the months
connecting the two seasons (i.e., March, April, September, and October) and
averaged the results of the two models. However, this procedure decreased the
model accuracy, and thus, we used random forest models to simulate LFP
separately for the dry/wet seasons.

There were 579 large fires recorded in coastal southern California (CSCA) from
1996–2010 (Fig. 1). Both the meteorological stations and the historical burned
areas are distributed unevenly in southern California, which has highly
heterogeneous terrain, vegetation and climate. Thus, the climate data derived from
one station may only be informative for fire probability estimation for a certain
area. In addition, the size of this area may change with seasons and locations. Most
previous studies interpolated climate data and fire records to gridded datasets24,37.
However, this method may induce many errors in the modelling due to the
unbalanced distribution of weather stations and fire perimeters. In addition, since
we only have meteorological observations at stations, the statistical downscaling of
the CMIP5 data is basically station-based.

Here, we utilised a very unusual method of fire data processing. We tested
buffer distances of 5, 10, 25, 50, and 100 km from each station to capture the
recorded fire perimeters (Supplementary Table 3). Any fire within a specific buffer
zone of a station is regarded as a fire occurrence at this station. There should be an
optimal buffer distance that demonstrates the true capability of the stations in
reflecting the fire weather conditions for this region. We generated 10 sets of daily
fire records for the two seasons (dry and wet) and five buffer distances (5, 10, 25,
50, and 100 km). In addition to the fire data, the non-fire-day samples were used in
the model to indicate meteorological conditions that have low fire risks. Model
performance for different combinations of buffer distance and model parameters
(maxnode, mtry, and ntree)25 was compared for the calibration period of
1996–2010 (Supplementary Fig. 1). As an ensemble algorithm, random forest
consists of a large number of individual decision trees. maxnode refers to the
maximum number of terminal nodes trees in the forest can have; mtry determines
the number of variables randomly sampled as candidates at each split; ntree means
the number of trees to grow in a random forest25.

Then, we used the dataset sampled with the best buffer distance (10 km) as the
model input and applied the above best model parameters to train the model for
the dry and wet seasons. Finally, we utilised the two models to predict the LFP for
the historical and future periods.

As a large fire is an inherently rare event, the imbalanced prevalence of fire and
nonfire samples can severely degrade the performance of random forest55. In
predicting these small-probability events, most existing methods tend to
underestimate the minority classes to optimise the overall accuracy without
considering the relative distribution of each class56. Many researchers have
suggested using cluster-based algorithms to resample imbalanced data samples and
have achieved higher prediction accuracy56,57. Here, we applied k-means clustering
to undersample the major classes of the samples (nonfire days), and k= number of
minority samples58, which reduced the number of nonfire samples but reserved
most of the information within the data.

After resampling, the results suggest that the balanced data can largely improve
the model accuracy. However, to capture most of the large fires, the model tends to
misclassify some nonfire days as large fire days. In other words, the predicted LFP
was higher than the historical, real large fire occurrence (Supplementary Fig. 3). To
overcome this problem, previous researchers21 suggest using a post facto
calibration to correct the biased fire probability. The initially simulated LFP in our
study showed a linear relation with the observed large fire occurrence
(Supplementary Fig. 3). In addition, the LFP simulations displayed the highest
correlations with the observed decadal mean LFP during 1950–2019 than the long-
term mean during either 1996–2010 or 1950–2019. Thus, we applied a linear
regression between the predicted and observed (decadal averages during
1950–2019) mean daily LFP to reduce the overestimation of the simulations
(Supplementary Fig. 3b). The regression explains ~67.4% of the variance in the
LFP. The bias-correction model greatly improves the simulations of LFP
(Supplementary Fig. 3c).

Please note that there is still a slight seasonal departure (1~2 weeks) between the
simulated and observed LFP after the bias correction. We only have limited years of
fire history, which cannot represent the true fire regime of the study area. This
result is reflected by the large variance in the observed LFP (~2 months in seasonal
variations, Supplementary Fig. 3c). Thus, the fire observations themselves have
large uncertainties, and thus, it is not reasonable to further adjust the simulated
LFP to match these limited fire observations. In fact, modelling the daily scale LFP
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is a very challenging task. As we increase the temporal resolution of fire modelling
from annual or monthly to daily, the available records of large fires for this small
area become extremely insufficient for use. Thus, a lack of data hinders the
improvement of model performance.

Taking the observed annual LFP as a baseline, we identify any day with a
simulated LFP that exceeds the baseline LFP threshold as a potential large fire day
(LFD). Then we analysed the inter-annual changes of the number of LFD for both
the moderate (RCP4.5) and high (RCP8.5) emission climate change scenarios.

We applied the widely used area under the ROC (receiver operating
characteristic) curve (AUC) to evaluate the modelling performance. The AUC is
recognised as a robust measure of a diagnostic test’s discriminatory power, with
AUCs of 1.0 and 0.5 indicating a theoretically perfect test and no discriminative
value, respectively59. Moreover, we also utilised the metrics of accuracy, false
positive rate (FPrate), precision, and recall, which are derived from the confusion
matrix of binary classification, to evaluate the modelling performance.

We tested the random forest parameter sets of maxnode ranging from 10–1000,
mtry ranging from 2–8, and ntree ranging from 10–2000. Together with the five
buffer distances, there are 31,250 cross-validation model runs for the dry and wet
seasons. We selected the best parameter combinations based on the AUCs of all
models. The variations in the model AUC against buffer distance and the three
random forest parameters are shown in Supplementary Fig. 1. The results suggest
that most model runs achieved an AUC of >0.7, indicating the good performance
of random forest in predicting LFP. The parameters maxnode, mtry and ntree
displayed small effects on model performance (Supplementary Fig. 1a–c). The
model AUC displayed a high sensitivity to buffer distance changes (Supplementary
Fig. 1d). Finally, the best parameter combination for the dry season is buffer
distance= 10 km, maxnode= 500, mtry= 2, and ntree= 500; the best
combination for the wet season is buffer distance= 10 km, maxnode= 100,
mtry= 2, and ntree= 500 (Supplementary Table 4). The overall accuracy for the
wet and dry seasons is 82% and 84%, respectively, suggesting a good performance
of the models.

To quantify the contribution of each predictor to LFP, we utilised a
permutation-based approach to calculate the relative importance of all
predictors60. The rationale of this metric is to measure the decrease in accuracy on
out-of-bag (OOB) data when the model randomly permutes the values for that
feature. A small value of decrease-in-accuracy for a feature means it is not
important, and vice-versa. According to the relative importance of the predictors,
VPD, IC, F1000, and ERC (F1000, VPD, WS, and IC) were the four most
important variables in the dry-season (wet-season) model (Supplementary Fig. 2).
The varying ranks of the predictors’ importance for the dry and wet seasons may
imply that the primary mechanisms driving a large fire in the two seasons have
some differences.

Then we further used accumulated local effects (ALE) plots to identify the
detailed relationships between LFP and the top four drivers for both wet and dry
seasons. An analysis of ALE determines the effect that each predictor, isolated from
all others, has on LFP. In other words, the ALE plots can isolate the change in LFP
caused by a change in a single predictor60. The ALE plots of LFP against each
variable are consistent with the relative importance ranks of the predictors (Fig. 2,
and Supplementary Fig. 2). For example, high VPD anomalies can always linearly
increase LFP in the dry season, while the wet-season VPD mainly increases LFP
when VPD is at a very high level (~0.6–0.8 s.d. above the mean). Abnormally dry
fuels (lower F1000) seem to remarkably increase LFP in the wet season (Fig. 2);
thus, F1000 becomes the primary fire driver in these months. WS displays a higher
influence in the wet season than in the dry season (Supplementary Fig. 2). Overall,
the NFDRS indices demonstrate a high capability to predict large fire risk in CSCA,
and the relative contribution of these variables to wildfires shows some changes
between dry and wet seasons.

Data availability
California fire perimeter data are publicly available at the GIS data portal of the
California Department of Forestry and Fire Protection (FRAP, https://frap.fire.ca.gov/
mapping/gis-data/). The Remote Automatic Weather Stations (RAWS) data and the
CMIP5 downscaled weather data are publicly available through the Joint Fire Science
Program (https://climate.northwestknowledge.net/JFSP/JFSP/pages/data.html). All the
NFDRS indices were calculated using the USFS (United States Forest Service)
FireFamilyPlus 5 software, which can be downloaded through the National Wildfire
Coordinating Group (NWCG, https://www.nwcg.gov/committees/fire-danger-
subcommittee/nfdrs/fire-family-plus) funded by the US government.

Code availability
The R programming codes used for the statistical analysis of this study are publicly
available through the open-access repository Zenodo (https://doi.org/10.5281/
zenodo.5713530).
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