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A S S O C I A T I O N S T U D I E S A R T I C L E

Modeling prior information of common genetic

variants improves gene discovery for neuroticism
Min-Tzu Lo1,†, Yunpeng Wang2,3,†, Karolina Kauppi1,4, Nilotpal Sanyal1,
Chun-Chieh Fan1,5, Olav B. Smeland2,6, Andrew Schork5,7, Dominic Holland3,
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Abstract
Neuroticism reflects emotional instability, and is related to various mental and physical health issues. However, the majority
of genetic variants associated with neuroticism remain unclear. Inconsistent genetic variants identified by different genome-
wide association studies (GWAS) may be attributable to low statistical power. We proposed a novel framework to improve the
power for gene discovery by incorporating prior information of single nucleotide polymorphisms (SNPs) and combining two
relevant existing tools, relative enrichment score (RES) and conditional false discovery rate (FDR). Here, SNP’s conditional FDR
was estimated given its RES based on SNP prior information including linkage disequilibrium (LD)-weighted genic annotation
scores, total LD scores and heterozygosity. A known significant locus in chromosome 8p was excluded before estimating FDR
due to long-range LD structure. Only one significant LD-independent SNP was detected by analyses of unconditional FDR and
traditional GWAS in the discovery sample (N¼59 225), and notably four additional SNPs by conditional FDR. Three of the five
SNPs, all identified by conditional FDR, were replicated (P<0.05) in an independent sample (N¼170 911). These three SNPs
are located in intronic regions of CADM2, LINGO2 and EP300 which have been reported to be associated with autism,
Parkinson’s disease and schizophrenia, respectively. Our approach using a combination of RES and conditional FDR improved
power of traditional GWAS for gene discovery providing a useful framework for the analysis of GWAS summary statistics by
utilizing SNP prior information, and helping to elucidate the links between neuroticism and complex diseases from a genetic
perspective.
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Introduction
The Big Five personality traits, accounted for by the Five Factor
Model (FFM) of personality, were derived from factor analysis of
rating scales and have been shown to be robust across all cul-
tures and languages investigated (1,2). The dimensions of FFM
are defined as agreeableness, conscientiousness, extraversion,
neuroticism and openness to experience, and measure individ-
ual differences in behavior and experience (3).

In the FFM, neuroticism is the only dimension characterized
by emotional instability involving the tendency to experience
negative and distressing emotions, and summarizes the facets
of anxiety, angry hostility, depression, self-consciousness, im-
pulsiveness and vulnerability (4,5). There is substantial evi-
dence that neuroticism is correlated with a wider range of
mental and physical health problems than other personality
traits, including depression, anxiety, substance use and schizo-
phrenia (6–9), as well as cardiovascular diseases and asthma
(10–12). Furthermore, neuroticism is referred to as a risk factor
or predictor for psychiatric disorders (7,8,13–16) and explains
part of the comorbidity among these disorders (6,17,18). In addi-
tion, recent studies also suggest that neuroticism is associated
with increased risk of Alzheimer’s disease (19,20). Neuroticism
has been considered to possess robust predictions to mental
and physical illnesses, which implies great significance for the
public health (21).

Neuroticism is substantially heritable and about equally
shaped by genetic and environmental components. Its heritabil-
ity has been estimated to range from 25 to 56% based on twin
and family studies (22–28), and a recent meta-analysis study of
heritability, summarizing different study designs, such as twin,
adoption and family studies, showed that on average 39% of
neuroticism variations can be attributed to genetic variability
(29). High genetic correlations between neuroticism and psychi-
atric disorders were reported, such as 0.43–0.6 for major depres-
sion (17,30,31) and about 0.8 for anxiety (17,32), although some
overlaps are expected given similarities in questionnaire item
criteria between neuroticism and these disorders. Taken to-
gether, potential causations and/or comorbid conditions be-
tween neuroticism and disorders imply complex and multiple
underlying genetic mechanisms (7,21,33,34).

The most studied candidate gene for neuroticism is SLC6A4,
which encodes the serotonin transporter (5-HTT) (35–38) that is
responsible for removing serotonin from the synaptic cleft be-
tween two neurons. The short variant of the polymorphism (5-
HTTLPR) is not only significantly associated with neuroticism
(35–38), but also enhances amygdala activation in response to
negative stimuli (39–41). A similar relationship has been reported
between 5-HTT, amygdala activity and major depression (42–45).
However, 5-HTT was not genome-wide significant in a recent ge-
nome-wide association studies (GWAS) of neuroticism (46).

Recently, large-scale GWAS have identified several genes as-
sociated with neuroticism, such as MAGI1 (47), GRIK3, KLHL2,
CRHR1, MAPT, CELF4 (48) and L3MBTL2 (49). Notably, two inde-
pendent studies (48,49) both found a highly significant associa-
tion with neuroticism on chromosome 8p23.1 spanning a 4-Mb
region of long-range linkage disequilibrium (LD) due to an inver-
sion polymorphism (46,48). Of these significant genes, MAGI1,
GRIK3 and CRHR1 were linked to psychiatric disorders (50–56).
Recent studies (49,57) estimated that single nucleotide polymor-
phism (SNP) heritability (i.e. total additive contribution from all
SNPs (58)) is around 12–15% for neuroticism based on additive
genetic effects, indicating that a large fraction of variants with
small or moderate effect sizes of neuroticism are not

identifiable by current GWAS analysis due to low statistical
power. Therefore, the current study aimed to improve the sta-
tistical power to detect common genetic variants associated
with neuroticism by employing prior information of SNPs.

SNPs in GWAS are not exchangeable, for example, SNPs in or
near genes are shown to explain more variation of a trait than
SNPs between genes (59). SNPs in some annotation categories
are enriched for genetic effects and are more likely to be associ-
ated with a given trait (60). In our previous study of Covariate-
Modulated Mixture Model (CM3) (61), a relative enrichment
score (RES) was constructed for each SNP using the prior infor-
mation including LD-weighted genic annotation scores (60), to-
tal LD score (the sum of pairwise LD r2) and heterozygosity
(2f(1� f), where f is the SNP minor allele frequency, assuming
the Hardy-Weinberg equilibrium holds) based on GWAS sum-
mary statistics. Using stratification by RES, we re-ranked and
classified SNPs into RES ordinal strata and then plotted a
quantile-quantile (Q-Q) curve for each RES stratum. We esti-
mated the conditional false discovery rate (FDR) for each SNP on
the basis of the stratum-specific Q-Q curve (62,63). Applying this
to a GWAS of neuroticism (N¼ 59 225), significant SNPs (genes)
were identified at FDR< 0.05. We also performed a replication
analysis in an independent sample (N¼ 170 911) from a large-
scale GWAS (46) including samples of Genetics of Personality
Consortium (GPC) (47) and UK Biobank. Compared with tradi-
tional GWAS using significance thresholds of P-value (5� 10�8)
or unconditional FDR (0.05) without any prior information, our
framework utilizing SNP prior information (i.e. genic annotation
scores, total LD score and heterozygosity) increases the statisti-
cal power thus facilitating gene discovery.

Results
Stratified Q-Q plot and enrichment

The stratified Q-Q plot shows different enrichment levels across
RES strata, which deviates further away from the null line as
RES increases (dotted curves in Fig. 1). The earlier or greater de-
parture from the null line (leftward shift) suggests a larger pro-
portion of true associations for a given nominal P-value. As a
result, SNPs with higher RES (i.e. in stratum 4) are more likely to
be associated with neuroticism than those with lower RES.

In addition to the model-free Q-Q plot generated by empiri-
cal distributions described above, we applied a model-based
method to fit the Q-Q curve in each stratum for conditional FDR
calculation. For each stratum, the fitted Q-Q plot (solid curves in
Fig. 1) is generated from the cumulative distribution function of
the corresponding Weibull-chi-square mixture probability dis-
tribution using the stratum-specific parameters (see Materials
and Methods).

Estimation of conditional FDR from the lookup table

We used a heat map plot to construct the lookup table to visual-
ize variations of conditional FDR across nominal P-values
within RES strata shown in Figure 2. We also show variations of
unconditional FDR (�log10(FDR)) with lighter colors as nominal
P-values decrease (i.e. �log10(P) increase) in Supplementary
Material, Figure S1. In the Figure 2, a gradual decrease of condi-
tional FDR with gradient colors from bottom-left to top-right
corners suggests enrichment improved by RES strata as shown
a gradual increase of �log10(FDR). For the FDR threshold of 0.05
(i.e. �1.3 for �log10(FDR)), the corresponding nominal P-values
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reduce to around 10�4 and 10�6 for RES strata 4 and 3, whereas
they are about 10�7 for RES stratum 2 (Fig. 2) and around 10�8

for unconditional FDR (Supplementary Material, Fig. S1).

Significant loci identified by FDR

In our study, SNPs associated with neuroticism were identified by
thresholds of P-value (5� 10�8), unconditional (0.05) and condi-
tional FDR (0.05). To ensure that significant loci are independent,
we removed correlated SNPs with LD r2> 0.2 and retained the SNP
with the lowest P-value or FDR in each LD block. The retained
SNPs are referred to as LD-independent SNP. Given a GWAS
threshold of P-value< 5� 10�8 or unconditional FDR< 0.05, only
one LD-independent SNP (rs12102100, P¼ 6.81� 10�10) located on
chromosome 15 was detected (Table 1). Given the threshold of con-
ditional FDR< 0.05, we identified five LD-independent SNPs in four
loci located on different chromosomes (3, 9, 15 and 22) (Table 1).
Among these five SNPs, one SNP was detected by GWAS P-value
and unconditional FDR, but it did not reach significance level of
P-value< 0.05 and had the opposite direction of the effect size (b)
in the replication sample. The other four SNPs detected by condi-
tional FDR had the same direction of effect in the replication sam-
ple and three of them are significant (P-value< 0.05). These four
SNPs did not reach GWAS P-value threshold (5� 10�8) in discovery
sample but were uncovered by conditional FDR using SNP prior in-
formation. Notably, two SNPs (rs10812851 and rs9611505) are sig-
nificant (P-value< 5� 10�8) in our combined analysis of discovery
and replication samples at GWAS significance level (Table 1). As a
result, conditional FDR using SNP prior information to generate
RES detected more signals than P-value alone and/or uncondi-
tional FDR.

We next examined if our results were sensitive to the place-
ment of cut-off points to generate RES strata. For these five LD-
independent SNPs, their conditional FDR were robust in the sce-
narios of different cut-off points of RES for generating strata
(Supplementary Material, Table S1) and different thresholds of
dichotomized P-values in the logistic regression models to

calculate RES (Supplementary Material, Table S2). Although the
SNP, rs17022974, was borderline significant in some cases, four
significant loci were constantly found in all analyses.

Manhattan plot

To visualize SNPs associated with neuroticism, we constructed
a Manhattan plot. Four independent loci were identified by con-
ditional FDR (<0.05) (Table 1) where gene symbols for those loci
were also shown (Fig. 3). Of these four loci, only one locus was
detected by unconditional FDR (<0.05) or GWAS P-value
(<5� 10�8). In summary, conditional FDR incorporating SNP
prior information, such as annotation categories, total LD score
and heterozygosity, is a more powerful method, compared with
unconditional FDR and P-value, for gene discovery of neuroti-
cism in GWAS.

Stratified Q-Q plots based on individual SNP prior
information

To assess enrichment improved by genic annotation, total LD
score and heterozygosity, we stratified SNPs including those on
chromosome 8p by each of these characteristics separately and
generated the stratified Q-Q plots. This analysis provided sup-
porting evidence to use SNP prior information to construct RES
in our main stratified FDR analysis. For neuroticism, eight genic
annotation categories are more enriched than intergenic anno-
tation and all SNPs as shown in the stratified Q-Q plot of the
nominal P-values (Supplementary Material, Fig. S2A) using LD-
weighted genic annotation scores (60). Likewise, similar enrich-
ment patterns are also found in different levels of total LD score
and heterozygosity (Supplementary Material, Fig. S2B-C). The
results implied that SNP prior information including annotation
categories and total LD score in conjunction with heterozygosity
can be leveraged to increase power for gene discovery in GWAS
of neuroticism.

Figure 1. Enrichments in stratified Q-Q plot for neuroticism. The stratified Q-Q

plot with differential enrichments across strata (dotted curves) and its predicted

lines (solid curves) fitted by using Weibull-chi-square mixture distributions. We

re-ranked the SNPs based on their relative enrichment scores (RES) constructed

from the SNP prior information, and categorized the SNPs into four strata (e.g.

SNPs with higher RES are in the stratum 4).

Figure 2. Conditional FDR lookup table. The lookup table for conditional FDR re-

flecting RES strata against nominal P-values illustrated by gradient colors with a

color bar showing variations of FDR. Both P-value and FDR are scaled as the neg-

ative logarithm of base 10.
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No enrichment from true null based on permutation
tests in an independent dataset

We performed permutation tests in an independent dataset to
examine if our method was prone to generate false positives.
The ranges and means of the genomic inflation factors (k) of
10 000-round permutation tests across strata are shown in

Supplementary Material, Table S3. The magnitude by which k

departs from 1 is a metric of deviation of null association and
reflects over-abundance of low P-values compared with the ex-
pected null line in a Q-Q plot. Compared with the k’s from the
neuroticism GWAS using the discovery sample, the averaged k

in each stratum computed from GWAS of 10 000-round

Table 1. LD-independent SNPs significantly associated with neuroticism at GWAS thresholds of P-value (<5� 10�8) or FDR (<0.05)

Discovery (23andMe), Replication, Combined discovery
and replication

SNP Chr Closest gene A1/A2 Frq N¼ 59 225 N¼ 170 911

(region) b (se) P-value FDRa cFDRb b (se) P-value P-value N

P-valuec < 5 3 1028

rs12102100 15 MEIS2 A/G 0.42 0.264 (0.043) 6.81� 10�10 0.009 0.002 -0.004 (0.004) 0.325 0.0226 230 117
(intergenic)

Unconditional FDR < 0.05
rs12102100 15 MEIS2 A/G 0.42 0.264 (0.043) 6.81� 10�10 0.009 0.002 -0.004 (0.004) 0.325 0.0226 230 117

(intergenic)
Conditional FDR < 0.05
rs9822731 3 CADM2 T/C 0.78 0.246 (0.050) 7.51� 10�7 0.207 0.011 0.012 (0.004) 0.006 1.01� 10�6 229 877

(intron)
rs17022974 3 CADM2 T/C 0.64 -0.197 (0.044) 7.92� 10�6 0.431 0.048 -0.006 (0.004) 0.105 2. 49� 10�4 230 117

(intron)
rs10812851 9 LINGO2 T/C 0.63 0.223 (0.044) 3.60� 10�7 0.157 0.034 0.013 (0.004) 2.86� 10�4 1.15� 10�8 230 117

(intron)
rs12102100 15 MEIS2 A/G 0.42 0.264 (0.043) 6.81� 10�10 0.009 0.002 -0.004 (0.004) 0.325 0.0226 230 117

(intergenic)
rs9611505 22 EP300 T/C 0.69 -0.236 (0.046) 3.80� 10�7 0.160 0.002 -0.015 (0.004) 5.20� 10�5 1.33� 10�9 230 117

(intron)

The following abbreviations are used: Chr, chromosome; A1, effect allele; A2, non-effect allele; Frq, allele frequency of A1.
aUnconditional FDR.
bConditional FDR.
cGWAS threshold of P-value. GWAS hits in chromosome 8p are not shown as they were excluded from our FDR analysis.

Figure 3. Manhattan plot for neuroticism. The Manhattan plot shows locations of four significant LD-independent loci identified by conditional FDR beyond the given

threshold (dotted line, FDR ¼ 0.05 and �log10(FDR) � 1.3). The large and small points represent significant (FDR < 0.05) and non-significant SNPs, respectively. Two col-

ors, black and red, denote signals from unconditional and conditional FDR, respectively. The SNP (rs12102100) on chromosome 15 is also detected by GWAS P-value

(<5 � 10�8) and unconditional FDR (< 0.05), whereas the other three loci containing four SNPs are only detected by conditional FDR.
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permutations was smaller, demonstrating that our approach
did not increase additional false positive signals.

Discussion
Traditional GWAS have been limited by a stringent significance
threshold resulting in insufficient statistical power to detect ge-
netic variants with moderate effects, even in GWAS with large
samples. For neuroticism, GWAS have identified several genetic
variants but the results are inconsistent, except for the chromo-
somal region of 8p23.1. Here, we proposed a framework integrat-
ing a prior-informed approach (61) with conditional FDR (62,63)
for controlling multiple comparisons to increase power in a
GWAS of neuroticism. We prioritized SNPs based on their prior
information, including genic annotation categories, total LD score
and heterozygosity to construct a relative enrichment score (61)
for each SNP. All SNPs were stratified into ordinal strata by their
RES. Stratum with higher RES level showed greater enrichment.
Conditional FDR for each SNP was calculated according to its RES
stratum and predicted FDR. Compared with standard GWAS anal-
ysis using P-value (<5� 10�8) or unconditional FDR threshold
(<0.05) in which only one LD-independent SNP was identified in
the discovery sample (N¼ 59 225), four additional SNPs were iden-
tified by conditional FDR and three of them were replicated in an
independent GWAS (N¼ 170 911) (46).

RES was an auxiliary measure derived from CM3 to enable a
more accurate estimation of replication probabilities in a recent
methodological study (61), which used a resampling-based ap-
proach and required results of meta-analysis sub-studies of
GWAS. In our study, we constructed RES for stratification but
omitted the procedures of cross-validation by resampling sub-
studies so that our current method can be applied to datasets
without sub-samples. In contrast to RES of CM3, we used GWAS
summary statistics of height (64) to generate a polygenic-trait
RES for each SNP to avoid data overfitting if RES was calculated
using the same data for estimating FDR. Furthermore, condi-
tional FDR for detection of pleiotropic effects between two traits
was proposed by Andreassen et al. (62,63) in which FDR was con-
ditional on GWAS P-values of the second trait and here FDR was
conditional on RES. To refine estimation of conditional FDR, we
used non-overlapping strata stratified by RES and a more strin-
gent pruning threshold (r2> 0.2). Here, we combined the fea-
tures of these studies (61–63), i.e. incorporating RES for each
SNP and generating conditional FDR for each SNP given its RES
stratum, to increase statistical power for gene discovery.
Besides statistical power, false positive findings of RES were
also verified in our study (Supplementary Material, Table S3)
and it suggested that introduction of RES for stratification will
not incur additional false positive signal.

We identified five significant SNPs within four genomic loci
by conditional FDR, including MEIS2 (Meis homeobox 2), CADM2
(cell adhesion molecule 2), LINGO2 (leucine rich repeat and Ig
domain containing 2) and EP300 (E1A binding protein p300).
Apart from MEIS2, the other three loci were novel and only de-
tected by conditional FDR incorporating the SNP prior informa-
tion. The significant SNP, rs12102100, is located in the
downstream intergenic region �200 kb of MEIS2, a gene that has
been described to mediate metabolic side effects to antipsy-
chotic drugs (65) and associated with hyperactive-impulsive
symptom (66) in a GWAS. Two significant SNPs on chromosome
3 are located in intronic region of CADM2 associated with persis-
tence of temperament traits (67) and cognitive functions (68) in
GWAS and proposed as a candidate gene for autism (69).
Different dimensions of temperament have been shown to

correlate with FFM of personality such as a positive correlation
has been seen between persistence and conscientiousness
(70,71) and, our previous study (49) has shown that neuroticism
has a negative genetic correlation with conscientiousness.
These findings suggested that CADM2 may have pleiotropic ef-
fects on personality traits.

The other two significant SNPs located in intronic regions of
LINGO2 and EP300, respectively, were replicated in the indepen-
dent sample (46) and also significant in our combined analysis
(Table 1). LINGO2 has been found to be expressed in neuronal
tissues (72) and linked to neurodegenerative disorders, i.e. es-
sential tremor and Parkinson’s disease (73,74). EP300 regulates
transcription as histone acetyltransferase and is involved in the
processes of cell proliferation and differentiation (75).
Polymorphisms in EP300 were shown to correlate with schizo-
phrenia in a large-scale GWAS (76). High levels of neuroticism
are associated with schizophrenia (16) and recently another
EP300 polymorphism (rs11090039, in LD (r2¼ 0.82) with
rs9611505) was identified as a shared risk locus between schizo-
phrenia and neuroticism with concordant directionality of ef-
fect in the phenotypes (77). Interestingly, multi-center GWAS
have also identified associations of LINGO2 and CADM2 with
body mass index (BMI) and obesity (78–80), which in turn have
been positively correlated with neuroticism (81,82). These ge-
netic and phenotypic findings suggest that neuroticism may
share the same behavioral or biological pathways with psychi-
atric disorders (such as schizophrenia) and BMI and/or play an
intermediate role between genes and these traits.

Recently, two independent large GWAS (48,49) both found
neuroticism to be associated with 8p23.1, which has been sug-
gested as a potential hub for developmental neuropsychiatric
and neurodegenerative disorders (83). In this chromosomal re-
gion (spanning about 4 Mb and containing at least 36 genes),
abundant significant SNPs were identified in long-range LD
block with high pairwise correlations (r2) between SNPs. A
known inversion polymorphism might lead to this long-range
LD (84,85) and has been shown to be associated with neuroti-
cism (46). Therefore, we excluded SNPs on chromosome 8p in
the process of FDR calculation to prevent underestimation of
FDR derived from abundant correlated SNPs with lower P-values
even after we have performed pruning to remove correlated
SNPs with r2> 0.2. This finding demonstrated a limitation of our
FDR approach when genetic effects are located in high LD re-
gions. Alternatively, a new strategy has been proposed to unveil
the complex schizophrenia–MHC (major histocompatibility
complex) association using structural variations in terms of
haplotypes (86), which might be a good paradigm for studying
genetic effects on chromosome 8p.

Given the evidence of phenotypic as well as genetic associa-
tions between neuroticism and a wide range of mental and physi-
cal diseases, the discovery of new genes linked to neuroticism is
important for understanding the genetic mechanisms underlying
these diseases. By incorporating SNP prior information into a con-
ditional FDR framework, we increased power for gene discovery
for neuroticism. Our study demonstrates that this statistical
framework is a promising tool for improving power of gene dis-
covery using existing GWAS summary statistics.

Materials and Methods
Discovery sample

The GWAS summary statistics of neuroticism were obtained
from a subset of 23andMe, Inc. research participants (N¼ 59 225)
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who showed> 97% European ancestry (details in Supplementary
Material). All research participants completed a web-based imple-
mentation of the Big Five Inventory (BFI) (87,88), with 44 ques-
tions. A score for neuroticism was computed using eight of these
items (87). The procedures of genotyping and imputation were
described in Supplementary Material. A total of 13 341 935 autoso-
mal SNPs were retained after quality control.

Association tests were performed by regressing neuroticism
scores on imputed dosages of SNPs in the 23andMe cohort. Age,
gender and the top five principal components (89) for popula-
tion structure correction were included as covariates and P-val-
ues were computed using likelihood ratio tests. The original
13 341 935 SNPs were mapped to a high quality LD structure
with 2 549 449 SNPs (60) (see Supplementary Material) in our
subsequent analyses. Recent GWAS (46,48,49) showed multiple
significant SNPs for neuroticism on chromosomal region of
8p23.1 due to the long-range LD (84). Because high correlations
between SNPs in the long-range LD may bias FDR estimates (90),
we therefore removed SNPs on the 8p region (0–45 Mb) to avoid
underestimation of FDR. The remaining 2 484 994 SNPs were
then included in the FDR estimation.

The GWAS results of the meta-analysis of 23andMe and
Genetics of Personality Consortium data (47) have been published
(49). Besides traditional GWAS, in our current study, we only used
the 23andMe cohort as the discovery sample in which the analy-
sis framework including RES stratification and conditional FDR
was applied to test associations between SNPs and neuroticism.

Replication sample

The GWAS summary statistics of the replication sample were
obtained from the Social Science Genetic Association
Consortium (SSGAC), which have been published (46) and are
available in the public domain (http://www.thessgac.org/#!
data/kuzq8). In this study, the sample-size-based meta-analysis
of two large GWAS, UK Biobank and Genetics of Personality
Consortium data, were performed (N¼ 170 911) (46). We repli-
cated our findings in this large-scale study and set the signifi-
cance level as P-value< 0.05 for replication.

LD-weighted genic annotation

The total of 2 484 994 SNPs analyzed in our study were anno-
tated with a LD-weighted genic annotation score (60). The score
was calculated based on the European reference sample pro-
vided by the November 2012 release of the Phase I 1000
Genomes Project (1KGP). Specially, each SNP in the 1KGP refer-
ence panel was initially assigned to a single mutually exclusive
genic annotation category based on its genomic position (UCSC
Genome Browser on Human hg19 assembly). Eight genic anno-
tation categories were included: exon, intron, 50 untranslated re-
gion (50UTR), 30 untranslated region (30UTR), 1 and 10 kilo-base
pairs upstream of the gene transcription start positions, and 1
and 10 kilo-base pairs downstream of gene transcription end
positions. Pairwise LD correlation coefficients (r2) between SNPs
were calculated based on 1KGP. For each SNP, a continuous,
non-exclusive LD-weighted category score was assigned as the
LD weighted sum of the positional category scores for SNPs
tagged in each of the eight categories mentioned above. By in-
corporating LD information, the annotation of individual SNP
reflects the weighted annotation in the context of underlying
linkage blocks. For detailed information on SNP annotation,
score construction and quality control see Schork et al. (60).

Relative enrichment score (RES)

The relative enrichment score (RES) (61) was constructed for each
SNP using logistic regression model incorporated with informa-
tion of annotation categories, total LD score and heterozygosity.
In the logistic regression model, dichotomized P-value (if P-value
10�3, then y¼ 1; otherwise, y¼ 0) for each SNP was regressed on
LD-weighted genic annotation scores for eight categories and total
LD score (sum of all pair-wise LD r2) multiplied by heterozygosity
(H, where H¼ 2f(1� f) and f is the SNP minor allele frequency from
the 1KGP European reference panel), that is, logit(Pr(y¼ 1))¼Xb,
where X is the matrix of regressors including annotation scores
and total LD score multiplied by heterozygosity, and b is the vector
of regression coefficients. For each SNP, RES was defined as the es-
timated value of the response obtained from the above logistic re-
gression, which was a variant of RES calculation by Wang et al.
(61). Specifically, for SNP i, the RES is the scalar product Xib̂ of the
corresponding vector of regressors Xi and the vector of estimated
regression coefficients b̂ calculated based on the logistic regres-
sion model. Here, we did not include second trait information for
pleiotropy and combined total LD score and heterozygosity into a
single variable, which was used in the logistic regression model.
Our approach is in contrast to the approach of Wang et al. (61),
who considered these two variables separately (more details in
Supplementary Material). In particular, to avoid overfitting if RES
is calculated using identical data of interest, it is preferable to
choose an independent set of neuroticism GWAS results if avail-
able, or GWAS results from a highly polygenic complex trait. Here,
we used GWAS summary statistics of height (from Genetic
Investigation of ANthropometric Traits consortium, http://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consor
tium_data_files) (64) to generate a polygenic-trait RES for each
SNP, given that height is highly polygenic and its genetic compo-
nents are relevant to multiple biological mechanisms. In addition,
we evaluated different dichotomized P-values (such 10�2 and
10�4) to ensure robustness of our results (Supplementary Material,
Table S2).

Stratified Q-Q plots and enrichment

Stratified Q-Q plots are constructed by grouping SNPs on the ba-
sis of levels of an auxiliary measure, i.e. annotation categories,
total LD score, heterozygosity and RES, and plotting the Q-Q
curve separately for each level. If enrichment is captured by
stratification of the auxiliary measure, this is expressed as suc-
cessive leftward deflections in a stratified Q-Q plot as levels of
the auxiliary measure increase (61). For neuroticism, we re-
ranked and classified SNPs into four strata determined by per-
centiles of RES. The intervals for strata are not equally spaced
because a large proportion of SNPs are null and only a small
proportion of SNPs has effect on the trait for GWAS. In our
study, we empirically selected 30, 93 and 99 percentiles of RES
as cut-off points to stratify SNPs into four strata. The cut-off se-
lection was generally dependent on the distribution of effect
sizes and the LD structure of SNPs in each stratum. We then
plotted a Q-Q curve (dotted curves in Fig. 1) for each stratum
and examined whether there were differential enrichments, i.e.
whether the degree of deflection from the expected null line
was dependent on the RES stratum. Specifically, the SNPs with
higher RES showed a greater degree of deflection from the ex-
pected null line. Furthermore, we used different cut-off points
of RES to examine whether they substantially influenced detec-
tion of significant loci. We evaluated eight combinations of
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four-stratum cut-off points and showed the results in
Supplementary Material, Table S1.

Parametric model

The shape of the empirical distributions depicted in the Q-Q
plots resembles the shape of the distribution function of a mix-
ture of Weibull and chi-square distributions. So, for each RES
stratum we modeled the Q-Q curve with a function that is pro-
portional to the distribution function of a Weibull-chi-square
mixture to compute stratum-specific predicted FDR. We as-
sumed different scale parameters for the two component distri-
butions. Further, an exploratory analysis showed that a value of
0.5 is a reliable choice for the shape parameter of the Weibull
component. Keeping the shape parameter fixed at 0.5, the un-
known parameters of the mixture were estimated by maximiz-
ing a cost function using unconstrained nonlinear optimization,
where the cost function was proportional to the logarithm of
the likelihood function of the parameters given the observed
SNP distribution. The solid curve for each RES stratum in Figure
1 shows the predicted Q-Q curve from the cumulative mixture
distribution using stratum-specific estimated parameters.
Therefore, predicted FDR can be calculated from predicted Q-Q
curves estimated by using Weibull-chi-square mixture distribu-
tions based on the multiple-bin empirical quantile.

Lookup table

We used lookup tables to interpolate unconditional and condi-
tional FDR for each SNP from predicted FDR. The unconditional
FDR lookup table (Supplementary Material, Fig. S1) shows FDR
variations (changes by colors) against nominal P-values, and
the conditional FDR lookup table (Fig. 2) also shows FDR varying
by RES strata and nominal P-values (see Supplementary
Material).

Manhattan plot

To visualize the localization of the genomic loci associated with
neuroticism, we constructed a Manhattan plot by plotting all
SNPs within an LD block in relation to their chromosomal loca-
tion. In each LD block, conditional FDR values for SNPs were
ranked in ascending order and SNPs that have LD r2> 0.2 with
higher ranking were then removed. Thus, we can retain the
most significant SNP associated with neuroticism in each LD
block, i.e. LD-independent SNP. As illustrated in Figure 3, the
large and small points represent significant (FDR< 0.05) and
non-significant SNPs, respectively. Two colors, black and red,
denote signals from unconditional and conditional FDR, respec-
tively. LD-independent loci with conditional FDR< 0.05 are also
shown by their gene symbols in the plot.

Combined analysis of discovery and replication samples

The combined analysis of discovery and replication samples
was performed based on the sample-size based method using
METAL (91). We showed the meta-analysis P-values and sample
sizes of significant SNPs in Table 1.

Permutation tests

To verify validity of RES, we performed permutation tests in an
independent dataset to examine whether false positive signals

might be detected using RES for gene discovery. We shuffled the
disease status in a case-control study including 492 schizophre-
nia cases and 458 controls from the Denmark cohort of
Psychiatric Genomics Consortium (PGC) (76). Theoretically, each
randomly permuted case-control dataset satisfies the null hy-
pothesis of no association between the disease and SNPs. For
each permutation, we computed P-values of association tests
for whole-genome SNPs to construct a four-strata Q-Q plot
stratified by RES, and then, the genomic inflation factor (k) in
each stratum was calculated. The magnitude by which k devi-
ates from 1 is a metric of deviation of observed P-values from
the expected null line in a Q-Q plot. We considered 10 000 per-
mutations, i.e. 10 000 randomly permuted datasets, and for each
of them evaluated k. Note that individual genotype data are re-
quired for permutation tests but we only have summary statis-
tics for neuroticism, so we have used the Denmark cohort of
PGC to complete this analysis.

Supplementary Material
Supplementary Material is available at HMG online.
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