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We analyze the transient-dc and frequency-dependent electrical conductivities be-
tween blocking electrodes. We extend this analysis to measurements of ions’ trans-
port in freshly excised bulk samples of human brain tissue whose complex cellular
structure produces blockages. The associated ionic charge-carrier density and diffu-
sivity are consistent with local values for sodium cations determined non-invasively
in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The character-
istic separation between blockages, about 450 microns, is very much shorter than that
found for sodium-doped gel proxies for brain tissue, > 1 cm. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4928652]

Mapping and understanding ionic charge transport in defined regions of brain tissue is an
essential element of neural research. Here we analyze the electrical conductivity of freshly excised
bulk samples of brain tissue. Simple dc conductivity measurements exhibit a temporal decay. This
temporal decay presumably results from the failure of ionic charge carriers to penetrate blockages.
These dc conductivity measurements are complemented with conductivity measurements at low
frequencies (6 – 1000 Hz). We analyze these measurements to estimate the dc limit of the elec-
trical conductivity of brain tissues’ ionic charge carriers and the characteristic separation between
blockages to their flow. These estimates are consistent with sodium cation density and microscopic
diffusivity determined non-invasively with MRI and diffusion-MRI.

Metallic electrodes generally function as extrinsic impenetrable barriers to ions’ flow. In
addition, intrinsic barriers can result from structural features of an inhomogeneous material that
preclude the passage of ions on the time scale of a transport measurement.

First consider the temporal decay of the dc conductivity obtained with a circuit like that de-
picted schematically in Fig. 1. Current will flow within a homogeneous sample having blocking
electrodes immediately following application of a spatially constant electric field at a time we define
as zero. Initially carriers’ flow will be characterized by their intrinsic dc conductivity σdc. However,
the transient conductivity will decay from this initial value to zero as carriers are progressively
stopped at the blocking electrode.

The non-uniform carrier density that results when the current flow ceases is determined by
solving the corresponding charge-flow equation:

J (∞) = 0 =
nq2D

kT
E − qD

dn
dx

, (1)
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FIG. 1. Schematic illustration of our circuit for measuring the dc conductivity of a sample between blocking electrodes
separated by the distance L.

where q, n and D respectively represent the carrier’s charge, density and diffusion constant and E
indicates the strength of the applied electric field. Here the carrier mobility µ is related to its diffu-
sion constant by the Einstein relation, µ = qD/kT , where k and T signify the Boltzmann constant
and the temperature, respectively. Solving this first-order differential equation yields an expression
for the resulting non-uniform spatial distribution of ions:

n (x,∞) = neexp (qEx/kT) , (2)

where the maximum ion density occurs at the interface at which ions are blocked from exiting the
material x = L while the minimum ion density occurs at the opposing electrical contact at x = 0.
The relationship between the constant ne and the equilibrium carrier density n0 is obtained by
requiring constancy of the net number of ions:

n0L = ne

 L

0
dx exp (qEx/kT) = ne

exp (qEL/kT) − 1
(qE/kT) . (3)

Thus, at arbitrarily long times the non-uniform distribution of ions approaches

n (x,∞) = n0
(qEL/kT)

exp (qEL/kT) − 1
exp (qEx/kT) . (4)

Structures from which charge can neither enter nor escape serve as “polarization centers.”
For example, an electronic charge carrier confined to an isolated pair of a semiconductor’s dop-
ants comprises a well-known polarization center.1 Applying a constant electric field shifts centers’
confined charges. The conductivity associated with this polarization decreases after the electric
field is applied as exp(−t/τ), where τ denotes the center’s characteristic relaxation time.1,2 This
two-center relaxation time is calculated with the master equations in terms of the rates with which a
carrier moves between sites.

A macroscopic sample whose mobile ions are confined by their inability to penetrate electrical
contacts constitutes a macroscopic polarization center. In particular, with a sufficiently small car-
rier density one can ignore carriers’ mutual interactions and generalize the two-center polarization
current to account for multiple ionic carriers with multiple polarization distances. Then the macro-
scopic specimen’s relaxation is described with the classical diffusion equation in terms of carriers’
diffusion constant.3

The decaying conductivity is then modelled as the sum of contributions that each arises from a
carrier’s diffusing to its blockage. With the time characterizing a carrier’s diffusing a distance l to
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reach the blocking contact being τ(l) = l2/2D this decaying conductivity becomes:

σ (t) = σdc

L

 L

0
dle−t/τ(l) =

σdc

L

 L

0
dle−2Dt/l2

= σdc

 ∞

1
du

e−(2Dt/L2)u
2u3/2

=
σdc

2
E3/2

�
2Dt/L2� , (5)

where E3/2(x) designates the established exponential integral defined in Eq. (5.1.4) of Ref. 4.
As illustrated in Fig. 2, this transient conductivity monotonically falls from σdc at t = 0 toward
zero with increasing time. In particular, this exponential integral’s value at t = 0 is given by
E3/2(0) = 1/[(3/2) − 1] = 2. In the complementary long-time limit, 2Dt/L2 ≫ 1, the dc conduc-
tivity’s temporal decay is described by:

σ (t) � σdc



exp
�
−2Dt/L2�

(2Dt/L2) + 3/2


. (6)

Distinctively, the relaxation time for interfacial conductivity produced by impenetrable elec-
trodes decreases as the inter-electrode separation L is decreased. We observed the temporal decay
of the ionic conductivities of samples of gelatin gels doped with NaCl. These NaCl-doped gels are
commonly employed proxies for brain tissues in that their sodium cation concentrations and diffu-
sion constants are close to those of human brain tissue. We witnessed the relaxation times (102 – 103

sec) falling as the sample length and the associated inter-electrode separation L is reduced. In
these instances our metallic electrodes function as extrinsic impenetrable barriers that dominate the
temporal decay of the conductivity.

Measurement of the real part of the frequency-dependent conductivity, via a circuit like that
schematically depicted in Fig. 3, provides an alternative way of studying the transient decay of the
conductivity. In particular, the real part of the frequency-dependent ac conductivity corresponding
to this temporally decaying current is obtained from the Fourier transforms of the current density

FIG. 2. The conductivity at time t after initiating measurement of the dc conductivity is plotted in units of the intrinsic
dc conductivity σ(0)=σdc versus t in units of L2/2D, where D and L respectively denote the charge-carriers’ diffusion
constant and the separation between blocking electrodes.
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FIG. 3. Schematic illustration of our circuit for measuring the ac conductivity of a sample between blocking electrodes
separated by the distance L.

and the strength of the applied electric field, J(t) and E, respectively:

Re [σ (ω)] ≡ Re


J (ω)
E (ω)


=

 ∞
0 dt eiωt J (t)
E
 ∞

0 dt eiωt
=

 ∞
0 dt eiωt J (t)

iE/ω
= ω

 ∞

0
dtσ (t) sin (ωt) . (7)

Evaluating this formula for our model yields:

Re [σ (ω)] = σdc

L
ω

 L

0
dl

 ∞

0
dt e−2Dt/l2

sin (ωt) = σdc

L

 L

0
dl



(
ωl2

2D

)2

1 +
(
ωl2

2D

)2



= σdc


2D
ωL2

 
ωL2
2D

0
dy


y4

1 + y4


. (8)

Figure 4 displays a plot of Re[σ(ω)] versus (ωL2/2D)1/2. As expected, Re[σ(ω)] vanishes in
the dc limit, ω → 0, since carriers cannot penetrate the electrodes. However, Re[σ(ω)] remains finite
at finite applied frequencies. In particular, Re[σ(ω)] manifests its strongest frequency dependence
when ω ∼ 2D/L2. At higher frequencies, ω ≫ 2D/L2, the frequency dependence of the measured
conductivity weakens. In this domain the measured conductivity asymptotically approaches the
material’s intrinsic dc conductivity σdc:

Re [σ (ω)] � σdc


1 −

(
56
45

) 
2D
ωL2


. (9)

We have extensively studied samples (∼ 1 cm3) of tissue freshly excised from various brain
locations during surgeries on pediatric epilepsy patients.5,6 Here we summarize some of the salient
features of just the bulk conductivity measurements of Refs. 5 and 6. Application of a dc elec-
tric field generates a transient conductivity that decays significantly within minutes, τ ∼ 102 sec.
In addition, the ac conductivity measured between 6 – 1000 Hz only increased very slowly with
increasing frequency. These results imply that τ ∼ L2/2D ≫ 1/ω. Thus the frequencies of the ac
conductivity measurements are too high to observe the relatively slow transient decay. Rather,
these ac conductivity measurements simply provide an estimate of the initial dc conductivity:
σdc > σ(1000 Hz). The measured dc conductivity at room temperature is σdc ∼ 0.15 S/m.

The average Na+ concentration measured in human brain tissue is about 2.4 × 1025 m−3 (about
40 mM).7 A very similar average Na+ concentration is found in the brain tissue of healthy rats. In
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FIG. 4. The ac conductivity, σ(ω) at applied frequency ω, in units of the initial dc conductivity σdc is plotted versus the
square-root of ω in units of 2D/L2, where D and L respectively denote the charge-carriers’ diffusion constant and the
separation between blocking electrodes.

particular, the extracellular and intracellular concentrations of sodium reported for healthy rat brain
tissue are 140 mM and 10 mM, respectively, with the extracellular volume fraction being ∼ 0.2.8

Taken together, the density of Na cations nNa and σdc provide an estimate of their diffu-
sion constant Dσ ≡ [(kT/q)/nNaq]σdc. In particular, associating our measured dc conductivity with
the typical density of human brains’ Na cations yields their diffusion constant at room tempera-
ture, kT = 2.5 × 10−2 V, Dσ = [(2.5 × 10−2 V)/(2.4 × 1025 m−3)(1.6 × 10−19 C)](1.5 × 10−1 S/m)
� 10−9 m2/sec. In addition, the room-temperature diffusion constants measured with proton-
diffusion MRI for the protons of human brain tissue’s water molecules are also ∼10−9 m2/sec.6 This
result is not surprising in that the diffusion of Na cations in water is associated with substantial
reorientation of some of the surrounding water molecules.9 Furthermore, diffusion-MRI measure-
ments on Na nuclei in living rat brain also yield anisotropic local apparent diffusion constants of ∼ 1
(µm)2/ms = 10−9 m2/sec.8 Similarly, the local anisotropic diffusion constants inferred from proton
diffusion-MRI measurements in rat brain are also ∼ 10−9 m2/sec.10 Thus, the diffusion constant of
sodium in freshly excised bulk human brain tissue estimated from measurements of its electrical
conductivity is comparable to local values determined non-invasively with MRI and diffusion-MRI.

Attributing the slow transient decay of human brain tissues’ dc conductivity to sodium cat-
ions moving between blockages provides an estimate of the characteristic separation between
them, Lσ ≡ (2Dστ)1/2. With Dσ = 10−9 m2/sec and τ = 102 sec we find Lσ = (20 × 10−8 m2)1/2

� 4.5 × 10−4 m = 450 µm. The smallness of Lσ relative to the sample size L ∼ 10−2 m implies that
Na cations’ transport is primarily limited by blockages within the material rather than by the exper-
iment’s electrodes. For example, ions diffusing through intercellular fluid must navigate through a
dense distribution of cells with diameters up to 40 µm.10,11 All told, sodium cations would appear to
tortuously diffuse among many cells in the brain’s complex inhomogeneous medium before being
effectively blocked.

In summary, we addressed the temporal decay of ionic charge carriers’ dc conductivity and
the associated ac conductivity that results from simple blockages. The analysis has been applied
to electrical conductivity measurements 1) on bulk NaCl-doped gelatin gels that are commonly
employed proxies for brain tissue and 2) on actual freshly excised bulk brain tissue. The temporal
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decay of the conductivities of our NaCl-doped gelatin gels appear extrinsic, Lσ > L, dominated
by ions encountering impenetrable electrodes separated by 1 cm. By contrast, the temporal decay
of our conductivity measurements of freshly excised bulk brain tissue appears intrinsic, Lσ < L,
dominated by effective blockages separated by about 450 microns. These microstructural blockages
impede ionic transport through complex inhomogeneous bulk brain tissue.
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