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ORIGINAL ARTICLES

The Network Modification (NeMo) Tool:
Elucidating the Effect of White Matter Integrity Changes

on Cortical and Subcortical Structural Connectivity

Amy Kuceyeski,1 Jun Maruta,2 Norman Relkin,3 and Ashish Raj1

Abstract

Accurate prediction of brain dysfunction caused by disease or injury requires the quantification of resultant neu-
ral connectivity changes compared with the normal state. There are many methods with which to assess anatom-
ical changes in structural or diffusion magnetic resonance imaging, but most overlook the topology of white
matter (WM) connections that make up the healthy brain network. Here, a new neuroimaging software pipeline
called the Network Modification (NeMo) Tool is presented that associates alterations in WM integrity with
expected changes in neural connectivity between gray matter regions. The NeMo Tool uses a large reference
set of healthy tractograms to assess implied network changes arising from a particular pattern of WM alteration
on a region- and network-wise level. In this way, WM integrity changes can be extrapolated to the cortices and
deep brain nuclei, enabling assessment of functional and cognitive alterations. Unlike current techniques that as-
sess network dysfunction, the NeMo tool does not require tractography in pathological brains for which the al-
gorithms may be unreliable or diffusion data are unavailable. The versatility of the NeMo Tool is demonstrated by
applying it to data from patients with Alzheimer’s disease, fronto-temporal dementia, normal pressure hydro-
cephalus, and mild traumatic brain injury. This tool fills a gap in the quantitative neuroimaging field by enabling
an investigation of morphological and functional implications of changes in structural WM integrity.

Key words: altered brain connectivity; brain networks; fiber tracking; neurodegenerative disorder; traumatic
brain injury

Introduction

Disruption in the brain’s structural network of white
matter (WM) pathways occurs in many diseases and

disorders, including multiple sclerosis (Kutzelnigg et al., 2005),
trauma (Kinnunen et al., 2011), tumor (Yen et al., 2009), nor-
mal pressure hydrocephalus (NPH) (Hattori et al., 2012), ad-
diction (Schulte et al., 2012), and neurodegeneration (Zhang
et al., 2009). Across and within most of these conditions,
there is great variation in the extent and type of physical
and cognitive dysfunction that occurs (Chen et al., 2000;
Røe et al., 2009). Some of this variation in dysfunction is likely
due to differences in the size and location of pathology as well
as differences in its effect on the structural brain network
(Alstott et al., 2009; Johansen-Berg, 2010; Kuceyeski et al.,
2011; Lipton et al., 2012). This complexity is one of the reasons

that a neurological assessment of cognitive and functional al-
terations secondary to WM pathology have hitherto been
challenging to quantify, let alone predict. Although there
exist a panoply of neuroimaging analysis tools for assessment
of morphological and microstructural changes, a few enable a
systematic quantification of the network effects, and those
that do require diffusion imaging and tractography to be per-
formed in patient populations.

Filling this important gap requires mathematical encoding
of the expectation that focal or diffuse alterations of WM
integrity have distal consequences at the terminating gray
matter (GM) regions. We, thus, present a software pipeline
called the Network Modification (NeMo) Tool that takes a
map of alterations (either positive or negative) of a brain’s
WM characteristics and determines the changes to implied
whole-brain inter-regional fiber connectivity. Our tool allows
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a user to project WM injury to the cortices and deep brain nu-
clei, which then enables the assessment of region-specific
functional and cognitive alterations. Global changes to the
network are assessed by the NeMo Tool via graph theoretic
metrics, a technique that has become popular in brain net-
work analysis (Achard et al., 2006; Bullmore and Sporns,
2009; Sporns and Zwi, 2004). In contrast to existing methods,
our tool can directly assess the effect of a given pattern of WM
alteration on whole-brain network properties, incorporating
the size, severity, and location of WM lesions without having
to perform tractography in pathological brains. Whether or
not to perform tractography in diseased patients is still an
open question, and there will be neurological scenarios that
necessitate tractography in patients. Our approach provides
a convenient tool in other scenarios, for example, in cases
where practitioners are uncomfortable or unable to do trac-
tography in their subjects or when diffusion data do not exist.

The type of connectivity analysis provided by the NeMo
Tool represents one of the first steps in predicting executive
and behavior-specific changes that may occur due to a certain
pattern of WM integrity alterations in various disorders.
More importantly, network-based metrics that capture the
systemic effects of pathology are more likely to be attuned
to the level of disability or recovery after an onset of disease
or injury than deductions based on anatomical changes in
specific structures. To this end, the NeMo Tool provides mea-
sures of global network modifications that can be used to create
biomarkers for prognosis, monitoring of disease progression or
recovery, and, possibly, subsequent development of rehabilita-
tion programs which optimize outcomes.

The first step in the NeMo Tool pipeline is to superimpose
user-defined WM alteration masks onto the Tractogram
Reference Set (TRS) that consists of a large number of tracto-
grams from normal subjects. For each tractogram, the NeMo
Tool finds the tracts that pass through areas in the WM alter-
ation mask and records the GM regions they connect. The
output of this tool consists of (1) the Change in Connectivity
(ChaCo) metric, defined for each cortical/subcortical GM re-
gion in a particular atlas, which gives the amount of increase
or decrease in that region’s connection to the rest of the net-
work and (2) overall network changes as measured by sum-
mary graph metrics.

A primary advantage of the NeMo Tool is the capacity to
provide dis/hyper-connectivity analysis without having to
perform tractography in normal or abnormal subjects. Trac-
tography is an active area of research that requires some ex-
pertise to perform, and the NeMo Tool enables researchers
and clinicians to investigate changes in brain connectivity
without having to implement these rather complex tools.
Thus far, most analyses of brain network connectivity
changes have depended on tractography performed in brains
affected by a disease, injury, or aging. It is not known whether
these methods, which are sensitive to noise, can yield reliable
connectivity information in abnormal brains (Pagani et al.,
2007; Pierpaoli et al., 2001; Wheeler-Kingshott and Cer-
cignani, 2009). For example, in a previous study of mild trau-
matic brain injury (TBI), connectivity metrics based on
tractography in healthy normal individuals yielded function-
ally meaningful correlations with behavioral data, whereas
those derived directly from patients did not (Kuceyeski
et al., 2011). The NeMo Tool’s use of a large collection of trac-
tograms from healthy subjects to project the location of integ-

rity changes in patients may better capture pathological
connectivity changes than by performing tractography di-
rectly in those populations. Other advantages of the NeMo
Tool include its ease of use; a mask of brain changes from
an individual or group is all that is required as input. It can
be used in retrospective studies in which diffusion images
do not exist or in studies in which the diffusion data cannot
be acquired, such as in patients for whom long sessions of
magnetic resonance imaging (MRI) are untenable.

The purpose of this article is to introduce the NeMo Tool
and demonstrate its functionality by applying it to a variety
of patient image data to show both novel findings and an in-
teresting comparison with existing knowledge. We explore
three different and unique disease datasets: (1) Alzheimers
(AD) and frontotemporal dementia (FTD) data from a previ-
ous study (Kuceyeski et al., 2012); (2) a single NPH subject
whose WM alteration masks are two hand-drawn binary re-
gions of interest (ROI) denoting abnormal WM hyperinten-
sities; and (3) WM alteration maps from individuals with
chronic-stage mild TBI showing both losses and gains in ap-
parent WM fiber integrity. In all cases, the unique strength
of the proposed tool in unraveling the WM–GM relationship
was established.

Previous work

Pathologic brain changes can be measured by structural,
diffusion, or functional MRI and assessed with voxel-based
morphometry (VBM) (Ashburner and Friston, 2000), defor-
mation-based morphometry (DBM) (Chung et al., 2001),
tract-based spatial statistics (TBSS) (Smith et al., 2006), MR vol-
umetrics (Fischl and Dale, 2000; Ad-Dab’bagh et al., 2006;
Friston et al., 2006; Woolrich et al., 2009), functional magnetic
resonance imaging activation analysis (Cox, 1996), and so on.
Recently, an exploration of the cortical and subcortical WM
connectivity network has become an area of wide interest
due to two developments: the rise of diffusion imaging that
can measure WM structures in vivo (Assaf and Pasternak,
2008) and the application of complex network analysis (Bara-
bási, 2009; Przulj, 2004; Strogatz, 2001) to the observed WM
structural network (Bullmore and Sporns, 2009; Raj and
Chen, 2011; Sporns et al., 2004; Sporns and Zwi, 2004).

The integrity of WM tracts is essential to the quality of the
signal transmitted through these connections and may influ-
ence cognitive or physical behaviors that depend on these
connections (Fields, 2008; Johansen-Berg, 2010). Although
atlases that parcellate WM tissue into anatomically coherent
regions (i.e., fiber bundles) have been created based on exist-
ing knowledge of their trajectories and connections to GM re-
gions (Hua et al., 2008; Oishi et al., 2009; Wakana et al., 2004),
these atlases do not allow a quantitative analysis of GM con-
nectivity disruption at the regional or global level. A few
studies have linked increases in the integrity of specific WM
pathways to behavioral improvement ( Johansen-Berg et al.,
2010; Scholz et al., 2009). Conversely, other studies have
assessed how decreases in the integrity of WM pathways re-
late to dysfunction in stroke (Mukherjee, 2005), aging (Pfef-
ferbaum et al., 2005), mild TBI (Niogi et al., 2008), and
multiple sclerosis (Charil et al., 2003; Vellinga et al., 2009; Wil-
son et al., 2003). Yet other studies have focused on changes to
the overall network in various states, including aging (Wen
et al., 2011) and disorders such as schizophrenia (Bassett et al.,

452 KUCEYESKI ET AL.



2008; Zalesky et al., 2010), AD (He et al., 2009; Lo et al., 2010),
and stroke (Chen et al., 2000; Crofts et al., 2011; Nazzal et al.,
2009). There are methods that can be used to detect local as
well as global connectivity changes in pathological brains.
Rubinov and Sporns (2010) developed a toolbox within
Matlab to enable analysis via graph theoretical metrics on
functional and structural brain networks, while Irimia et al.
(2012) developed a way to construct and visualize connectiv-
ity networks and applied it to three cases of TBI individuals.
In another interesting use of tractography to infer connectiv-
ity changes, Pannek et al. (2011) compared average path
length maps in normal and severe TBI cases.

The present work builds on our own previous work on
WM connectivity importance maps, which demonstrated
the use of network-centric methods applied to WM lesion
maps (Kuceyeski et al., 2011), as well as another recent
work that modeled disease propagation as a diffusion process
on the normal brain connectivity network (Raj et al., 2012).
The utility of the present approach is substantiated by our
earlier investigation of implied loss of connectivity in the cor-
tex due to loss of WM integrity in AD and FTD (Kuceyeski
et al., 2012b) and preferential disruption in the brain’s reward
processing sub-network in alcohol-dependent individuals
(Kuceyeski et al., 2012a). The NeMo Tool incorporates these
early investigations, and formalizes them within a fully exe-
cutable software pipeline with expanded capabilities. Com-
pared with an earlier work, this tool (1) allows both
positive and negative WM alterations with the capability of
indicating WM integrity gains due to network rewiring
post-injury or disease onset; (2) has greatly reduced popula-
tion bias by establishing a reference set of data with a larger
number of normal subjects; (3) integrates tractograms from
individual subjects into common Montreal Neurological
Institute (MNI) space, allowing for more reliable tract infer-
ence and minimization of coregistration errors, while speed-
ing up and simplifying calculations; and (4) features
various outputs, including surface and ‘‘glass brain’’ render-
ings and graph-theoretic statistics.

Materials and Methods

The TRS

The TRS is a large collection of sets of streamlines that rep-
resent WM fiber tracts of a normal individual cohort. The TRS
constitutes the database with which the NeMo Tool examines
the effects of the user-defined WM alteration mask. The
streamlines in the TRS were created first in diffusion space
and then transformed into common MNI space. This study’s
normal subject data were collected jointly by Weill Cornell
Medical College and the Brain Trauma Foundation. Sev-
enty-three healthy subjects (40 men, 33 women, 30.2 – 6.7
years) were used to create the normative connectivity in-
formation in the form of tractograms. The conditions for
exclusion were pregnancy, a history of neurological or psy-
chiatric diagnosis, seizure, or drug or alcohol abuse. T1-
weighted structural and diffusion-weighted MR images
were collected on a 3 T GE Signa EXCITE scanner (GE Health-
care, Waukesha, WI). The High Angular Resolution Diffusion
Images data were acquired with 55 isotropically distributed
diffusion-encoding directions at b = 1000 sec/mm2 and one
at b = 0 sec/mm2, from 72 1.8-mm thick interleaved slices
(no slice gap) and 128 · 128 matrix size, zero-filled during re-

construction to 256 · 256, with a field of view (FOV) of
230 mm2. The structural scan was an axial threedimensional
inversion-recovery fast spoiled gradient-recalled echo se-
quence ((echo time [ET] = 1.5 msec, repetition time [TR] = 6.3
msec, inversion time [TI] = 400 msec) flip angle of 15�) with
a 256 · 256 matrix over a 230 mm2 FOV and 156 1.0-mm con-
tiguous partitions. The diffusion images were corrected for
eddy current and motion artifacts using FMRIB Software
Library (FSL) (Smith et al., 2004).

The T1 images were processed by first segmenting the tis-
sue into cerebrospinal fluid, WM and GM. The GM segment
was subsequently parcellated into 116 different ROIs using
the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). The AAL atlas is widely used and has
a moderate number of discrete GM ROIs, but other atlases
may be more desirable by the user. The analyses in this
work were done using the 116-region atlas, but an 86 region
atlas that corresponds to the FreeSurfer ROIs is also available
in the NeMo Tool. The parcellated GM was then linearly
transformed and resampled to diffusion image space for
use in tractography. Briefly, the surface voxels of the parcel-
lated cortical and subcortical structures were used to seed
the tracts. Proposed and validated in Iturria-Medina and col-
leagues (2005), the tractography algorithm implemented here
incorporates tissue classification probability and orientation
distribution information in a Bayesian manner. A tract termi-
nated when the algorithm reached the boundary of an image
volume, the edge of a GM region, a voxel not in the gray or
WM masks, or when the angle between subsequent steps
exceeded p/3. This analysis was done using the eighth ver-
sion of Statistical Parametric Mapping (SPM), (Friston et al.,
2006), a software package within Matlab R2009a (The Math-
works, Inc., Natick, MA), and the Individual-Based Atlas
toolbox (Alemán-Gómez et al., 2005) within SPM. Further de-
tails of the image processing and tractography method are
given in a previous publication (Kuceyeski et al., 2011).

To transform the streamlines into MNI space, we first ap-
plied the inverse of the linear transformation to map the dif-
fusion space streamlines to their corresponding position in T1
space. Next, the 12-parameter non-affine transform that core-
gistered each subject’s T1 image to the MNI T1 atlas was
found using the normalize function within SPM (Friston
et al., 2006). The coefficients of the deformation field that cor-
respond to this transform were defined for each voxel center;
so, they were interpolated to be applied to points not at the
center of a voxel. The tri-linearly interpolated coefficients
were applied on a point-by-point basis to the T1-space
streamline, providing the corresponding streamline in MNI
space. For the details of the validation of the tractogram nor-
malization (see Supplementary Data S1; Supplementary Data
are available online at www.liebertpub.com/brain).

Once the WM tracts were mapped and the connectivity of
different regions in the brain were determined, the results
were represented by a graph, which was analyzed using
available graph theoretical methods (see Gondran and Min-
oux, 1984). A graph G = (R, C) is defined by a set of vertices
R that are linked pairwise by edges C. The edges can be
assigned a capacity or weight cij that describes the strength
of connection between any two vertices i and j. A graph can
also be represented by a matrix c whose element in the ith col-
umn and the jth row is the edge weight cij. In the graph that
represents brain connections, the vertices of the original
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graph are GM regions and the edges are their connections via
WM tracts. The connectivity between regions can be summa-
rized in different ways, including probability of connection or
the amount of WM tissue connecting any two regions. For
each tractogram in the TRS, the weights cij of the correspond-
ing graph were integer values greater than zero that were
simply a count of the number of WM tracts between regions
i and j. Finally, the characteristics of each connectivity net-
work in the TRS can be summarized using metrics, including
degree, characteristic path length, efficiency, betweenness
centrality, and clustering coefficient.

The NeMo tool

The NeMo Tool, freely available at http://ideal-cornell
.com/index.php/research/brain-tools, quantifies disease- or
injury-related neural connectivity changes by predicting the
effects of a hypothetical lesion (or other changes) to specific
WM tracts among the normal subjects in the TRS. The work-
flow of the NeMo Tool, including a screenshot of the user in-
terface, is summarized in Figure 1. In the following text, we
describe the user input to and output of the NeMo Tool.

The NeMo Tool takes a mask of WM alterations as input
from the user and searches the TRS for streamlines passing
through this mask. The user input mask is a representation
of a brain volume that indicates either the state (binary) or
the progression (continuous) of disease or injury from a single
subject or a population. The values of the mask can be be-
tween �1 and 1, indicating WM integrity decreases or in-
creases, respectively. This mask is not created within the
NeMo Tool, but rather should be provided by the user. The
mask can be generated from existing image processing tools
such as FSL (Smith et al., 2004) or SPM (Friston et al., 2006).
For example, the mask could indicate areas of WM hyperin-
tensity, increases or decreases from normal values of diffu-
sion summary statistics such as fractional anisotropy (FA),

longitudinal diffusivity (LD), or radial diffusivity (RD), or
even contain a hand-drawn ROI. The alteration mask can ei-
ther be uploaded in MNI space or supplied with an accompa-
nying structural MRI that can be used for MNI space
normalization. Depending on the sparsity of the alter-
ation mask, the NeMo calculation can take from under an
hour up to several hours, as tested on a Linux desktop com-
puter with 12 GB of RAM and six 3.33 GHz Intel Core i7
processors.

The NeMo Tool outputs two separate summaries of net-
work connectivity alteration: (1) the ChaCo score defined
for each GM region and (2) changes in overall network sum-
mary statistics. The ChaCo score for each ROI is calculated
via the following process:

1. All of the streamlines which connect to that ROI are
identified and assigned a weight of zero.

2. The non-zero values in the WM alteration mask that a
streamline passes through are collected, and that
streamline’s weight is reassigned by taking the mini-
mum of these values. If a streamline passes through
only zero entries, its weight remains at zero.

3. The ChaCo score for that ROI is then calculated by tak-
ing the sum of the streamline weights and dividing by
the number of tracts connecting to it to ensure normali-
zation and enable a comparison between regions.

The ChaCo score parallels measures of differences in con-
nection density that are derived using tractograpy in patho-
logical brains. It can be thought of as a weighted proportion
of altered tracts; for example, if the alteration mask is binary
and negative, then the resulting score is negative one times
the proportion of tracts passing through ‘‘injured’’ WM
areas which connect to that ROI. Other ways of streamline
weight assignment may be more appropriate depending on
the situation (see section ‘‘Limitations’’).

FIG. 1. The Network Modification (NeMo) tool workflow. The user inputs a mask of white matter (WM) pathology/alter-
ation, which is then transformed into MNI space if needed using Statistical Parametric Mapping’s non-linear normalization
routine. The Tractogram Reference Set (TRS) is searched for streamlines traveling through areas with altered WM integrity.
Two outputs are generated: (1) the regional connectivity changes in the form of the weighted proportion of tracts connecting
to a region which travel through the alteration mask, that is, Change in Connectivity (ChaCo) scores, and (2) the global net-
work changes in the form of metrics on the connectivity network matrices corresponding to that alteration mask. The top of the
middle panel provides a snapshot of the online version of the NeMo Tool.
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In the second output of the NeMo Tool, overall network
changes as compared with the intact brain network are char-
acterized by graph theoretic metrics. As stated in the previous
section, the edge weights cij for the networks of each normal
individual in the TRS were calculated by counting the num-

ber of streamlines between ROI pairs. This process was iden-
tical to assigning each streamline a weight of 1 and taking the
sum of these weights. For the network resulting from a given
WM alteration mask, edge weights cij between the ROI pair i
and j are calculated via the following process:

1. All the streamlines connecting ROIs i and j are collected
and assigned a default weight of 1.

2. The non-zero values in the WM alteration mask which a
streamline passes through are collected, and that
streamline’s weight is reassigned by taking the mini-
mum of these values and adding 1. If a streamline passes
through only zero entries in the WM alteration mask, its
weight remains at 1. If a streamline passes through a
voxel marked as ‘‘injured,’’ its weight is less than 1 (0
when the alteration mask is binary and negative).

3. The weights of all the streamlines connecting i and j are
then summed and entered into the altered brain net-
work matrix as edge cij.

4. The altered network is constructed by repeating this
process for each ROI pair.

For a given WM alteration mask, the ChaCo scores and
summary network metrics are calculated for each subject in
the TRS. The averages of the ChaCo scores and summary net-
work metrics represent the expected connectivity changes
caused by the specified WM alterations. However, there are

FIG. 2. Step-wise continuous function for converting voxel-
wise z-scores of fractional anisotropy into WM alteration
masks for the mild traumatic brain injury (TBI) patient data.

FIG. 3. NeMo results for Alzheimer’s disease (AD). The glassbrain visualization displays each of the 116 regions’ centroids as
a sphere (color coded by regional membership) whose size corresponds to the mean ChaCo of that region (larger spheres in-
dicate more negative ChaCo). The boxplot in the bottom panel shows the distribution of ChaCo scores across the 73 subjects in
the TRS for each of the 116 regions (color coded by regional membership), to demonstrate the influence of the normal variation
of WM architecture on the results. If a region’s boxplot has a smaller range, greater confidence can be assigned to the discon-
nection estimates than can be assigned to regions with a higher variation. The black boxplots denote those regions whose
ChaCo distributions are not significantly different from zero.
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normal variations in WM architecture across individuals
that may influence the NeMo Tool’s results. In addition to pop-
ulation variance, there is noise introduced from the tractogra-
phy algorithm itself. The influence of these sources of noise
can be estimated by examining the range of the ChaCo scores
and summary network metrics across subjects in the TRS
for the same WM alteration mask. The bottom panels of Figures
3 and 5 illustrate the distribution of the ChaCo scores for the AD
and FTD masks using a boxplot that is color coded by regional
membership (frontal = blue, parietal = pink, occipital = green,
temporal = red, subcortical = cyan, and cerebellar = yellow). Wil-
cox signed-rank tests with Bonferroni correction are performed
on the distributions of ChaCo scores to test whether they are
significantly different from zero (colored boxes) or not (black
boxes). The reporting of variance information is an important
aspect of our tool, as it gives the user the ability to assess the
level of confidence in the estimation of disconnection. For a
WM alteration mask with uniform zero values (a trivial alter-
ation mask representing a ‘‘normal’’ subject by definition), the
ChaCo scores are zero with zero variance, while summary net-
work metrics replicate those for each subject in the TRS, repre-
senting variations within a normal population.

The mean results of the NeMo analysis can be displayed in
various ways. The top panel of Figures 4 and 5 shows one pos-
sible mode of display called the ‘‘glassbrain’’ which conveys
the ChaCo scores by the size and location of spheres that are

color coded by regional membership using the same scheme
as the boxplots and centered at each GM region. Alternatively,
the user can display the ChaCo scores as a color on the surface
of each GM region as in Figure 7, called the ‘‘gummibrain,’’
with red, yellow, and green indicating decreases, no change,
and increases in connectivity, respectively. The gummibrain vi-
sualization is suitable for showing the results from WM alter-
ation masks with positive and negative values, as the colored
surfaces can illustrate the positive and negative changes in con-
nectivity. As preliminary validation of the NeMo Tool, we cre-
ated two binary WM alteration masks that ‘‘removed’’ the
splenium of the corpus callosum and the superior longitudinal
fasciculus, and checked that proper GM regions were identi-
fied for a particular WM lesion (Supplementary Data S2).

Application to various disorders

AD/FTD/normal control data. This set of data was the
same as was used in Zhang and colleagues (2009) and
Kuceyeski and colleagues (2012b); here, they were re-pro-
cessed using the NeMo Tool. The details of the image process-
ing can be found in the latter publication. In short, a group-
wise comparison of the diffusion summary statistics of FA,
LD, and RD was computed for AD versus age-matched cog-
nitively normal controls (CN) and FTD versus CN, resulting
in two sets of three t-maps. The t-maps were thresholded

FIG. 4. Local properties of the altered AD network. The values of these local network properties (average shortest path length,
average local efficiency, betweenness centrality, clustering coefficient, eccentricity, and modularity) are communicated via the ra-
dius of the sphere. Color denotes regional membership except for the modularity plot in which color denotes cluster assignment.
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utilizing a significance level of p = 0.05 (with adjustment for
multiple comparisons performed using voxel-wise false dis-
covery rate (FDR) method (Genovese et al., 2002) to find
areas of significant WM integrity loss. The union of the
three binary masks was taken, resulting in a WM alteration
mask in MNI space for input to the NeMo Tool.

NPH. T2 fluid-attenuated inversion recovery MRI data
were acquired at Weill Cornell Medical College for a subject
with probable NPH on a 3 T GE system sequence (TE = 9500
msec, TR = 144 msec, and TI = 2250 msec) with a 320 · 192 ma-
trix over a 220 mm2 FOV and 3.0-mm slice thickness. These
images were used by a board certified neurologist and co-au-
thor to identify binary peri-ventricular WM hyperintensity
masks for input to the NeMo Tool. Two masks were made,
one with an anterior locus and the other with a posterior
locus, in order to separately investigate their possible effects.

TBI. The mild TBI data were collected jointly by the Weill
Cornell Medical College and the Brain Trauma Foundation.
Diffusion images were collected from 28 subjects (17 men,
11 women, 36.5 – 11.8 years) with identical acquisition pa-
rameters as those for CN in the TRS and were post-processed
in the same way. Each T1 image was downsampled into
diffusion space and transformed into MNI space via a 12-
parameter non-affine transformation (found using SPM).

This transformation was then applied to the FA maps using
trilinear interpolation, and each patient’s voxel-wise z-map
was calculated using the mean and standard deviations of
the FA map from the 73 CN in the TRS. Once the z-maps
were found, the WM alteration masks were created using
the piece-wise continuous function, illustrated in Figure 2:

f (z) =
sign(z) jzjqzFDR

sign(z)
zFDR � zUNC

(jZj � zUNC) zUNCpjZj<zFDR

0 otherwise,

8<
:

where zUNC was the z-value corresponding to the uncorrected
significance level, and zFDR was the z-value corresponding to
the group-wise FDR corrected significance level. The value of
zUNC (here – 2.576, corresponding to a = 0.005) can be adjusted
to ensure a sufficient noise exclusion (Supplementary Data
S3) and a reduced computation time. It should be emphasized
that in all of these analyses, including TBI, the WM alteration
masks were generated to represent deviations from the nor-
mal population and not change over time.

Results

Application to various disorders

AD and FTD. The ChaCo results derived from the single
WM alteration mask for the AD population are given in Fig-
ure 3. The ‘‘glassbrain’’ (top row) shows the mean ChaCo

FIG. 5. NeMo results for frontotemporal dementia. The glassbrain visualization displays each of the 116 regions’ centroids as
a sphere (color coded by regional membership) whose size corresponds to the ChaCo of that region (larger spheres indicate
more negative ChaCo). The boxplot in the bottom panel shows the distribution of ChaCo scores across the 73 subjects in
the TRS for each of the 116 regions (color coded by regional membership), to demonstrate the influence of the normal variation
of WM architecture on the results. If a region’s boxplot has a smaller range, greater confidence can be assigned to the discon-
nection estimates than can be assigned to regions with a higher variation. The black boxplots denote those regions whose
ChaCo distributions are not significantly different from zero.
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scores over the 73 normal subjects in the TRS. To assess the
influence of algorithmic and normal population variance in
the ChaCo results, we create boxplots (bottom row) that illus-
trate the distribution of the ChaCo scores across the normal
subjects in the TRS. The areas with largest implied connectiv-
ity losses include the temporal regions, hippocampi and pos-
terior cingulate, as well as some parietal and occipital regions,
with the left containing more disconnections than the right
(see Table in Supplemental Data S4). Figure 4 displays vari-
ous network properties of each node in the altered AD net-
work, including average shortest path length, efficiency,
clustering coefficient, eccentricity, and modularity. The
color in all the subfigures denotes regional membership, ex-
cept the modularity plot in which color denotes membership
in a cluster. The results for the WM alteration mask for the
FTD population are illustrated in Figure 5. The areas with
largest implied connectivity losses are mostly the frontal
and subcortical regions (insula, bilateral putamen, caudate
nucleus, pallidum, thalamus, and hippocampus), anterior
and middle cingulatecortices, and some temporal regions.
Cerebellar regions (in yellow in the boxplot) are very close
to zero in both groups.

NPH. Figure 6A displays the normalization process for
the anterior (top row) and posterior (bottom row) masks.
The left column is the lesion in patient space superimposed

on the patient’s scan, the middle column is the lesion in
MNI space superimposed on the normalized patient scan,
and the right column is the lesion in MNI space superim-
posed on the template scan. The corresponding mean
ChaCo scores are given in Figure 6B for the anterior (top)
and posterior (bottom) masks. The anterior pathology mask
(top row) implicates losses in connectivity in the subcortical
regions of the left caudate and putamen and frontal areas, in-
cluding left insula, frontal inferior, and superior orbital gyri.
The posterior mask (bottom row) implicates highest disrup-
tion in the right cuneus and precuneus. Since the glassbrain
visualization shows the ChaCo scores with a relative scale
that is consistent only within the plot, the effects of the two
different alteration masks cannot be directly compared in
these figures. The mean ChaCo scores from the two alteration
masks are plotted together in Figure 6C to show the relative
contribution of the anterior and posterior masks.

TBI. Figure 7 shows the mean ChaCo scores via the
gummibrain visualization for three representative mild TBI pa-
tients, with decreases in connectivity shown in red (dark
red = 1, yellow = 0) and increases in green (dark green = 1, yel-
low = 0). The top panel of Figure 8 shows the distribution of
the mean ChaCo scores per region for each of the 28 TBI sub-
jects; regions with negative group-mean changes in connectiv-
ity are in red while changes that are not significantly different

FIG. 6. NeMo results for normal pressure hydrocephalus. (A) Illustrates the normalization process for the anterior (top row)
and posterior (bottom row) hand-drawn regions of interest masks that indicate peri-ventricular WM hyperintensities. The left
column is the lesion in original patient space superimposed on the patient’s scan, the middle column is the lesion in MNI
space superimposed on the normalized patient scan, and the right column is the lesion in MNI space superimposed on the tem-
plate scan. The corresponding ChaCo scores are given in (B) for the anterior (top) and posterior (bottom) masks. Each of the 116
regions’ centroids are a sphere (color coded by regional membership) whose size corresponds to the ChaCo of that region (larger
spheres indicate more negative scores). (C) Shows the two masks’ results in the same brain as to illustrate their inter-relationship.
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from zero are in black. The bottom two panels in Figure 8 show
global network properties of the TBI subjects, indicating a
change from the mean of the CN given in blue.

High levels of potential disconnection were found in the
frontal and subcortical areas (Fig. 8, top). The subcortical
areas had the most negative ChaCo scores in this TBI popula-
tion, including the bilateral caudate, putamen, thalami, right
hippocampus, and left pallidum. Particularly negative in the
frontal lobes are the left insula, right cingulate regions, mid-
dle and superior frontal orbital, and superior frontal gyri.
Some areas of the parietal lobe also appeared to have moder-
ate potential disconnection, including the right posterior cin-
gulate and left postcentral gyri. The WM alteration masks
in some patients predicted small but significant implied
increases in connectivity in areas of the cerebellum. On a pop-
ulation level, these were deemed not statistically different
from zero (see Fig. 8). The spread in the ChaCo scores
shows the extent of between-individual variations in implied
GM connectivity changes associated with variations of WM
changes in the TBI subjects.

Discussion and Conclusions

The NeMo Tool is a novel, automatic, spatially unbiased,
region- and network-based approach that will enable re-
searchers to examine the potential influence of particular pat-

terns of tissue damage or rewiring on the brain’s structural
connectivity network with the eventual goal of predicting
concurrent behavioral outcomes. Although quantitative trac-
tography in patients is commonly reported in the literature,
the practice needs to be scrutinized because of the increased
noise associated with pathological data (Kuceyeski et al.,
2011; Pagani et al., 2007; Pierpaoli et al., 2001; Wheeler-King-
shott and Cercignani, 2009). On the other hand, the problem
can be avoided altogether. In our approach, voxels associated
with pathology or changes are projected directly onto normal
anatomy, from which connectivity changes are inferred. This
tool may improve many facets of patient care across a variety
of diseases, including prognosis, diagnosis, disease progres-
sion monitoring, and rehabilitation planning. The examples
given in this article represent only a few of the tool’s wide
range of possible applications.

Interpretation of the NeMo results

The functionality of the NeMo Tool was demonstrated by
applying it to four disease/injury states (AD, FTD, NPH,
and TBI) with various data arrangements (single subjects/
groups) and different methods for creating the WM alteration
masks. The flexibility of the NeMo Tool enables creation of al-
teration masks using other methods such as VBM, DBM, and
TBSS as well.

FIG. 7. Gummibrain visualization of the ChaCo scores for three mild TBI patients. The ChaCo score of each region is that
region’s color, where losses are represented in red, no changes in yellow, and gains in green.
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AD and FTD. The results shown here generally agreed
with the pathology of both AD (hippocampi, temporal, and
posterior cingulate structures) and FTD (orbito-frontal, ante-
rior cingulate, and subcortical structures). The variance in
the ChaCo scores across individuals in the TRS (as shown
with the boxplots, Figs. 3 and 5) suggests there is some influ-
ence of normal population differences and/or algorithmic
variance in the NeMo Tool results.

NPH subject. NPH is frequently associated with periven-
tricular T1 hyperintensities that can be reversed by shunt
treatment. After creating the hand-drawn ROIs outlining
these periventricular WM abnormalities, the images were
normalized to MNI space. The ventricles in the NPH subject
were quite large; so, there were some small differences in
the relative location of the masks but overall, the quality of
the normalization was deemed acceptable. Since the NeMo
Tool reports results as distributions over a population of
CN, small differences in ROI location should not unduly in-
fluence the results. The NeMo results indicated that the
fiber tracts passing through these regions connect to cortical
and subcortical structures which have been implicated as

loci of abnormal brain function in NPH (Akiguchi et al.,
2008; Gleichgerrcht et al., 2009; Otani et al., 2004; Saito
et al., 2011). Both the anterior and posterior masks showed re-
duced connections only ipsi-laterally. While this observation
may reflect an actual change in connectivity, the lack of cross-
hemispheric connections could also be a by-product of the
probabilistic tractography that emphasizes shorter u-fibers
and has trouble reproducing long-range connections which
are contained in the corpus callosum. Since the posterior le-
sion mask is proximal to the cortex, the ChaCo metric
might have been influenced largely by u-fibers. When the re-
sults from the anterior and posterior masks were plotted to-
gether, the posterior regions showed only slightly lower
disconnection measures than the anterior regions. This com-
parison sheds light on the relative contribution of anterior
and posterior pathologies to functional changes.

TBI subjects. In agreement with the etiology of the pa-
thology, the ChaCo scores varied widely from individual to
individual within TBI (as shown in the boxplots of the top
panel of Fig. 8). In general, however, the regions the NeMo
Tool reported as having high implied disconnection included

FIG. 8. NeMo results for mild TBI. The top panel shows the boxplot of the ChaCo scores of the 28 mild TBI individuals, with
significant average population losses in connectivity given in red and non-significant changes in black. The bottom panels
show characteristic path length and efficiency for the mild TBI individuals with the red boxplot and the mean of these metrics
from the normal population with the single blue point.
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those associated with executive functioning and memory.
The precentral gyrus, which includes the frontal eye field,
was another region with high disconnection. These observa-
tions agree with symptoms classically associated with mild
TBI, namely attention and memory. In particular, some of
these regions agree with those found to correlate with atten-
tion measures in Fan and colleagues (2005). The global net-
work metrics of the TBI subjects varied from the normal
population as expected, with increases in characteristic path
length and decreases in efficiency (bottom panel of Fig. 8).
The global network metrics also varied widely in this popula-
tion, providing potential for exploring correlations to cogni-
tive measurements.

Limitations

The NeMo methodology is susceptible to errors introduced
at different levels of analysis, including image acquisition and
tractography. The diffusion acquisition resolution of 1.8 mm
iso-voxel may be insufficient to capture small fiber tracts in
the brain, especially u-fibers that are adjacent to GM. Draw-
backs in tractography include difficulties in handling crossing
or kissing fibers, which was somewhat corrected here with
the use of probabilistic tractography. Nevertheless, probabilis-
tic tractography has difficulty in reconstructing long-range
fiber connections and assigns higher probabilities to shorter
streamlines, which can exaggerate the number of WM tracts
adjacent to GM. Subcortical regions are particularly susceptible
to these effects, as they tend to be smaller in volume and have
complex adjacent WM structure. The effects of some of these
limitations on the NeMo Tool can be demonstrated with
hand-drawn masks that remove gross WM structures (Supple-
mental Data S2). The accuracy of the NeMo Tool will improve
as better tractography methods become available. Another
way in which we attempted to reduce the influence of data
and algorithm error in the NeMo Tool was the use of global
network metrics, which have been shown to be less susceptible
to sources of error than individual measures of region-to-re-
gion connectivity (Vaessen et al., 2010).

When analyzing the TBI cohort, we chose to assign
streamline weights based on the minimum value of nonzero
entries in the WM alteration mask that a particular stream-
line encounters within its length. This ‘‘bottleneck’’ ap-
proach seems intuitive for streamlines that go through
damaged tissue, as axons will only be as functional as
their most damaged section. For tracts that pass through
WM areas with both normal and increased integrity, we es-
timated their increase in functionality to be limited by the
smallest increase in the structural integrity. This method
assumes that normal tissues are equipped to handle trans-
mission of signals with fidelity higher than ordinary. Alter-
native approaches may include taking the average of the
values of the WM alteration mask over the entire streamline.
Various methods of assigning streamline weights may be
tested with further studies.

The normal population variation in WM connectivity
architecture has not been quantified and may be large. This
population variance can be estimated by analyzing the
ChaCo scores and network metrics across the normal individ-
uals in the TRS. We postulate that these variations reflect in-
dividuals’ susceptibility to alterations of WM integrity in
specific locations and that this susceptibility is related to the

functional outcome for the individual, the validation of
which awaits further studies.

Coregistering individual brains that have anatomical ab-
normalities to a common space is a well-known and difficult
problem, especially if that brain has a gross abnormality or
has advanced aging effects. For the examples in this article,
all the coregistrations were checked visually and deemed ac-
ceptable. Quality control steps will be in place within the
NeMo Tool; so, the user can check that the coregistration is ac-
ceptable. In cases of severely atrophied or deformed brains,
SPM’s coregistration routine may prove inadequate. If the
need arises, it will be possible to implement an option within
the NeMo Tool to use more sophisticated normalization rou-
tines such as SPM’s DARTEL or FSL.
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